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DISTRIBUTED CONTROL OF SPATIALLY REVERSIBLE
INTERCONNECTED SYSTEMS WITH BOUNDARY CONDITIONS∗

CÉDRIC LANGBORT† AND RAFFAELLO D’ANDREA‡

Abstract. We present a class of spatially interconnected systems with boundary conditions that
have close links with their spatially invariant extensions. In particular, well-posedness, stability, and
performance of the extension imply the same characteristics for the actual, finite extent system. In
turn, existing synthesis methods for control of spatially invariant systems can be extended to this
class. The relation between the two kinds of systems is proved using ideas based on the “method of
images” of partial differential equations theory and uses symmetry properties of the interconnection
as a key tool.
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1. Introduction. Many systems consist of the interconnection of a large number
of identical subunits which interact with their nearest neighbors. Examples of such
interconnected systems include formations of autonomous vehicles [11], [22], cross-
directional control in the pulp and paper and chemical process industry [13], [14],
“smart structures” (large arrays of distributed micro electromechanical actuators and
sensors) [2], and semidiscretized partial differential equations [3].

Over the years, several frameworks for control of interconnected systems have
been proposed that all assumed the existence of a particular mathematical structure
induced by the interconnection. Early works [3], [17] showed that some systems,
especially semidiscretized partial differential equations, can sometimes be treated as
systems over modules. More recently, the papers [1], [5], [15] have considered so-called
spatially invariant systems and used Fourier techniques or algebraic transformations
to derive implementable and scalable optimal control algorithms, even in the limit
of an infinite number of subunits. While some practical systems can be accurately
modelled as being spatially invariant (e.g., circular plastic extrusion machines or very
large arrays of sensors and actuators), most examples do not fall into this category
because they are of finite extent and possess boundary conditions. This is why much
of the current research is geared toward spatially varying systems, in an effort to
adapt methods from the monodimensional time-varying case [8].

The approach taken in this paper is different, as we show that analysis and syn-
thesis for the actual finite extent system with boundary conditions can sometimes be
performed by studying a larger, spatially invariant system. The key assumption for
this result is another structural property which we call spatial reversibility. In short,
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we prove that a lack of spatial invariance can be made up for by spatial reversibility of
the finite extent system with boundary conditions and that, in turn, any technique de-
signed for spatially invariant systems can be used in that case too. A major difference
between spatial invariance and spatial reversibility is that the former is a property of
the interconnection while the latter is a property of the subsystems. In the language
of [6], spatial reversibility is an internal symmetry while spatial invariance is a global
symmetry of the system.

Our method borrows concepts from two different lines of thought. First, the idea
of associating a larger spatially invariant system to the actual finite extent system
is very similar in nature to the “lifting technique” introduced in [12] to relate lin-
ear time-periodic to linear time-invariant systems or to the method of [13] used to
prove robustness of cross-directional controllers. Second, the motivation for consid-
ering symmetries of the system comes from the so-called “method of images” used
in potential theory. The main issue that has to be addressed in order to establish a
real link between finite extent and spatially invariant systems is that the boundary
conditions are lost in this correspondence. One would like to consider finite extent
systems, the solution of which can be recovered from the spatially invariant system
in spite of this information loss. The method of images gives an example in which
such a situation is at hand, although in a different context. It essentially states that
boundary conditions for Laplace’s equation

Δu = 0 in U ; u = g on ∂U

on some simple domains U ⊂ Rn (e.g., half-spaces) can be dropped as such since
its solution can be determined by solving a similar equation on the whole of Rn,
provided “mirror-image singularities” are introduced [20], [9]. The main reason why
this technique works is that the Laplacian has some symmetry properties—namely, it
commutes with any isometry of Rn. It is thus natural to hope that spatial symmetry
is also relevant for our problem.

It should be noted that an “embedding technique” similar to the method of images
was already used in [3] to handle boundary conditions for the particular example of
the semidiscretized heat equation on a finite interval. However, it was not emphasized
that the possibility of using such a technique was due to symmetries of the problem.

The paper is organized as follows. After giving general preliminaries and notions
on finite extent and spatially invariant systems in sections 2 and 3, we define spatial
reversibility in section 4 and explain how it allows us to relate well-posedness, stability,
and performance of these two kinds of systems. Section 5 presents practical examples
of spatially reversible systems and section 6 is devoted to synthesis of distributed
controllers for an H∞ criterion. In particular, section 6.2 is largely independent from
the rest, as it illustrates how the specific results of [5] can be adapted to this finite
extent problem. Finally section 7 contains some generalizations of the core results,
while concluding remarks can be found in section 8.

2. Modelling spatially interconnected systems. In this section, we intro-
duce our notation and define the basic objects of interest. The goal is to provide
a framework in which infinite, periodic, and finite extent systems can be handled
simultaneously.

2.1. Signal spaces. Unless otherwise stated, M will stand for any one of the
following three sets: {1, . . . , L} for some integer L > 0, Z2L (the group of integers
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modulo 2L), and Z. We define �q2(M) as the space of functions x : M → Rq such that

‖x‖2
�q2(M) :=

∑
s∈M

x(s)∗x(s) < ∞.

Then Lq
2(M) is defined as the Hilbert space of functions x : R+ → �q2(M) such that

‖x‖2
Lq

2(M) :=

∫ ∞

0

‖x(t)‖2
�q2(M)dt < ∞.

When the dimension of the target space is clear from the context or is irrelevant, we
omit the superscript q and simply write �2(M) and L2(M). Finally, if J is a matrix,
we will abuse notation and identify it with the operator that associates y ∈ �2(M) to
x ∈ �2(M) such that y(s) = Jx(s) for all s ∈ M.

2.2. Systems. Let a linear time-invariant, finite dimensional, dynamical system
with input (d, v+, v−) and output (z, w+, w−) be given in state space by

d

dt
x(t) = Attx(t) + Ats+v

+(t) + Ats−v
−(t) + Btd(t) ; x(0) = x0,(1a)

w+(t) = Ast+x(t) + Ass+,+v
+(t) + Ass+,−v

−(t) + Bs+d(t),(1b)

w−(t) = Ast−x(t) + Ass−,+v
+(t) + Ass−,−v

−(t) + Bs−d(t),(1c)

z(t) = Ctx(t) + Cs+v
+(t) + Cs−v

−(t) + Dd(t),(1d)

where x(t), d(t), and z(t) belong to Rnt , Rm, and Rp, respectively, for all t ≥ 0,
and v+(t), v−(t), w+(t), w−(t) all belong to Rn. We also let ns := 2n. To such a
system, which we call the basic building block, we can associate three different spatially
interconnected systems as follows.

2.2.1. Infinite system. Let the shift operator S be defined on �2(Z) by

(Sv)(s) := v(s + 1) for all s.(2)

S is clearly an isometry. We introduce the operator Δs := diag(SIn,S
−1In) on �ns

2 (Z).
The infinite system associated to building block (1) is described by

d

dt
x(t) = Attx(t) + Atsv(t) + Btd(t) for all t ≥ 0 ; x(0) = x0,(3a)

(Δs −Ass) [v(t)] = Astx(t) + Bsd(t) for all t ≥ 0,(3b)

z(t) = Ctx(t) + Csv(t) + Dd(t) for all t ≥ 0,(3c)

where we have used the shorthand

Ast :=

(
Ast+

Ast−

)
, Ass :=

(
Ass+,+

Ass+,−

Ass−,+
Ass−,−

)
, Bs :=

(
Bs+

Bs−

)
,

Ats :=
(
Ats+

Ats−

)
, Cs :=

(
Cs+

Cs−

)
.

In (3), the triple (x(t), v(t), z(t)) is sought in �nt

2 (Z) × �ns

2 (Z) × �p2(Z) for all t ≥ 0,
when an initial condition x0 ∈ �nt

2 (Z) and a disturbance d such that d(t) ∈ �m2 (Z)
for all t ≥ 0 are given. The question of whether such a triple exists is addressed in
section 3. We answer it by rewriting the infinite set of differential-algebraic equations
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Fig. 1. The three types of interconnected systems. (a) Infinite system. (b) Periodic system for
L = 3. (c) Finite extent system for L = 3 (time dependence of signals is not indicated to simplify
notation).

(3) as an abstract differential equation on the Hilbert space �nt

2 (Z). However, it
should be noted that infinite interconnected systems appear more naturally in the
form of (3) than as abstract differential equations. Indeed, consider the block diagram
pictured in Figure 1(a). Each box stands for an instance of the basic building block
(1) that exchanges signals v+, v−, w+, and w− with its neighbors according to the
interconnection relation

[v+(t)](s + 1) = [w+(t)](s), s ∈ Z,(4a)

[v−(t)](s− 1) = [w−(t)](s), s ∈ Z,(4b)

where we have indexed the subsystems by s ∈ Z and considered all signals mentioned
before as vector-valued functions on Z for all t. Introducing v such that

[v(t)](s) :=
(
[v+(t)](s), [v−(t)](s)

)
for all t ≥ 0(5)

and recalling the definition of the operator Δs, it is easy to see that conditions (4) and
the state space description of each subsystem yield differential-algebraic equations (3).

2.2.2. Periodic system. A periodic interconnected system is also captured
by (3) but with the operators S and Δs now defined, respectively, on �2(Z2L) and
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�ns

2 (Z2L). In particular, the shift operator S is still defined by (2) but addition should
now be understood modulo 2L. Accordingly, the triple (x(t), v(t), z(t)) is sought in
�nt

2 (Z2L) × �ns

2 (Z2L) × �p2(Z2L) for all t ≥ 0, when an initial condition x0 ∈ �nt

2 (Z2L)
and a disturbance d such that d(t) ∈ �m2 (Z2L) for all t ≥ 0 are given.

The physical interconnection corresponding to a periodic system is illustrated in
Figure 1(b). The subsystems are again instances of the basic building block and are
interconnected according to the relation

[v+(t)](s + 1) = [w+(t)](s), s ∈ Z2L,(6a)

[v−(t)](s− 1) = [w−(t)](s), s ∈ Z2L.(6b)

For reasons that should become clear in section 3, we will say that periodic and infinite
systems are spatially invariant.

2.2.3. Finite extent system. Unlike infinite and periodic systems that can
be readily defined in a formal setting, finite extent systems are easier to introduce
through the physical interconnection they describe. Consider the block diagram of
Figure 1(c). As in the infinite and periodic case, each box represents an instance of
the basic building block, except the two end ones, which specify boundary conditions.
More precisely, if we index subsystems by 1 ≤ s ≤ L, the interconnection relation
between neighboring subsystems now is

[v+(t)](s + 1) = [w+(t)](s), 1 ≤ s ≤ L− 1,(7a)

[v−(t)](s− 1) = [w−(t)](s), 2 ≤ s ≤ L,(7b)

[v+(t)](1) = M [w−(t)](1),(7c)

[v−(t)](L) = M−1[w+(t)](L),(7d)

where M is a nonsingular matrix called the boundary conditions matrix. We can rep-
resent such a finite extent system by a set of differential-algebraic equations formally
similar to that describing infinite and periodic systems. To this end, we need to in-
troduce the operator Δbc as follows. First, if v = (v+, v−) belongs to �ns

2 ({1, . . . , L}),
we define the vector −→v ∈ RnsL by

−→v =
(
v+(1), . . . , v+(L), v−(1), . . . , v−(L)

)
.

The map −→. is an isomorphism of R-vector spaces and its inverse will be denoted ←−. .
As a consequence, we can define another isomorphism, also denoted ←−. , between the
space of nsL × nsL real matrices and the space of endomorphisms of �ns

2 ({1, . . . , L})
by

←−
J v :=

←−−−
(J−→v ) for all J ∈ RnsL×nsL, v ∈ �ns

2 ({1, . . . , L}).
With this notation, we can rewrite the interconnection relation (7) as

w =
←−C v

for the invertible interconnection matrix C. In the remainder of this paper, we will
let

←−C =: Δbc. Then, introducing again signal v as per (5), a finite extent system can
be represented by the following set of differential-algebraic equations:

d

dt
x(t) = Attx(t) + Atsv(t) + Btd(t) for all t ≥ 0 ; x(0) = x0,(8a)

(Δbc −Ass)[v(t)] = Astx(t) + Bsd(t) for all t ≥ 0,(8b)

z(t) = Ctx(t) + Csv(t) + Dd(t) for all t ≥ 0,(8c)
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which is formally similar to (3). The triple (x(t), v(t), z(t)) is sought in �nt

2 ({1, . . . , L})×
�ns

2 ({1, . . . , L})×�p2({1, . . . , L}) for all t ≥ 0, when an initial condition x0 ∈ �nt

2 ({1, . . . , L})
and a disturbance d such that d(t) ∈ �m2 ({1, . . . , L}) for all t ≥ 0 are given.

As already mentioned in the introduction, analysis is much more tractable for
spatially invariant systems than for finite extent systems, especially if L is large.
Hence, it would be desirable to know what relationships exist between them. The
main goal of the next sections is to show that stability and performance of the spatially
invariant systems actually imply similar properties for the corresponding finite extent
system, provided some reversibility properties are satisfied. A proof of this statement,
which we call the method of images, as well as a precise definition of what we call
“reversibility” are given in section 4. Before presenting these results, more should be
said about well-posedness, stability, and performance.

3. Well-posedness, stability, and performance. We have just seen that all
interconnected systems of interest can be captured by the following equations:

d

dt
x(t) = Attx(t) + Atsv(t) + Btd(t) for all t ≥ 0; x(0) = x0,(9a)

(Δ −Ass) [v(t)] = Astx(t) + Bsd(t) for all t ≥ 0,(9b)

z(t) = Ctx(t) + Csv(t) + Dd(t) for all t ≥ 0,(9c)

where

Δ = Δbc for a finite extent system,
Δ = Δs for an infinite or periodic system.

System (9) is said to be well-posed if the bounded linear operator (Δ−Ass) : �ns

2 (M) →
�ns

2 (M) is invertible. Assume system (9) is well-posed and let an initial state x0 ∈
�2(M) and a disturbance d ∈ L2(M) be given. We can write

v(t) = (Δ −Ass)
−1 (Astx(t) + Bsd(t)) for all t ≥ 0(10)

and, in turn, x will satisfy

d

dt
x(t) = Ax(t) + Bd(t) for all t ≥ 0,(11a)

x(0) = x0,(11b)

where

A =
(
Att + Ats(Δ −Ass)

−1Ast

)
; B =

(
Bt + Ats(Δ −Ass)

−1Bs

)
.(12)

Note that operators A and B are bounded and thus, in particular, A generates a
strongly continuous semigroup of operators {Φ(t)}t≥0 on �2(M). We can even write

Φ(t) = etA,(13)

where the exponential is defined by the usual power series. As a result [4], (11a) has
a unique weak solution on [0, T ] for any x0 ∈ �2(M) and d ∈ L2(M), which is the mild
solution given by

x(t) = etAx0 +

∫ t

0

e(t−τ)A(Bd(τ))dτ .
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The solution of well-posed system (9) on the interval [0, T ] is the unique triple (x, v, z)
such that x is the mild solution of (11a) on [0, T ] and (9c) and (10) are satisfied for
all 0 ≤ t ≤ T . It is not hard to see that if (x, v, z) is the solution of a periodic or
infinite system for initial condition x0 and disturbance d(t), then (x̃, ṽ, z̃) is another
solution for initial condition Sx0 and disturbance Sd(t), where

x̃(t) = S[x(t)], ṽ(t) = S[v(t)], z̃(t) = S[z(t)] for all t.

This is the reason why we chose to call these systems spatially invariant. The physical
explanation of this invariance is that all subsystems in block diagrams 1(a) and 1(b)
are identical and interconnected to their neighbors in the same way.

We now show that well-posedness can be characterized algebraically.
Proposition 3.1. (i) A finite extent system is well-posed if and only if (I −N)

is invertible, where N is defined as

⎛⎜⎜⎝
MAss−,+

0n×n(L−1) MAss−,− 0n×n(L−1)

TL(Ass+,+) TL(Ass+,−)
TU(Ass−,+) TU(Ass−,−)

0n×n(L−1) M−1Ass+,+ 0n×n(L−1) M−1Ass+,−

⎞⎟⎟⎠ ,

(14)

and the rectangular Toeplitz matrices TU(K) and TL(K) in Rn(L−1)×nL satisfy

TU(K) :=

⎛⎜⎜⎜⎜⎝
0 K · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 0 K

⎞⎟⎟⎟⎟⎠ ; TL(K) :=

⎛⎜⎜⎜⎜⎝
K 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 K 0

⎞⎟⎟⎟⎟⎠
for any given K ∈ Rn×n.

(ii) A periodic (respectively, infinite) system is well-posed if and only if (Δ(λ) −
Ass) is invertible for all λ ∈ U (respectively, for all λ ∈ ∂D), where

Δ(λ) := diag(λIn, λ
−1In) and ∂D := {z ∈ C, |z| = 1},U := {z ∈ C, z2L = 1}.

Proof. (i) Since the interconnection matrix C is invertible, so is Δbc. It is easy to

see that N satisfies
←−
N = Δ−1

bc
Ass. Hence matrix (I −N) is nonsingular if and only if

(Δbc − Ass) is. Since �2({1, . . . , L}) is finite dimensional, (Δbc −Ass)
−1

is bounded
whenever it exists.

(ii) We first study the periodic case. Let v ∈ �2(Z2L) be given. It has a discrete
Fourier transform v̂ ∈ �2(U) defined by

v̂(λ) =

2L∑
s=1

v(s)λs for all λ ∈ U.

Now assume (Δ(λ) −Ass) is invertible for all λ ∈ U. Then n defined by

n(s) =
1

2L

∑
λ∈U

λ−s (Δ(λ) −Ass)
−1

v̂(λ)

is a well-defined function on Z2L. Also, noting that

n̂(λ) = (Δ(λ) −Ass)
−1

v̂(λ) for all λ(15)
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and using Parseval’s identity, we get that

‖n‖�2(Z2L) ≤ max
λ∈U

σ((Δ(λ) −Ass)
−1

)‖v‖�2(Z2L) < ∞.

Finally, it is easy to check that it satisfies

(Δs −Ass)n = v.(16)

This is the unique solution in �2(Z2L) since any such solution must satisfy (15) and el-

ements of �2(Z2L) are fully specified by their Fourier coefficients. Hence, (Δs −Ass)
−1

is well defined on �2(Z2L) and has norm less than maxλ∈U σ((Δ(λ) −Ass)
−1

).
Conversely, assume (Δ(λ) −Ass) is not invertible for some λ = λ0 in U and let

n0 
= 0 be in the corresponding null-space. Then n defined by

n(s) = λs
0n0 for all s

belongs to �2(Z2L) and satisfies (16) with v ≡ 0. Hence operator (Δs −Ass) is not
invertible on �2(Z2L).

For the infinite system case, the proof of sufficiency is identical, replacing the
discrete Fourier transform with a two-sided Z-transform. For necessity, assuming
that there exists λ0 = eiω0 ∈ ∂D such that (Δ(λ0) −Ass) is singular, we will show
that (Δs −Ass) is not bounded below on �2(Z) and hence not injective. Let ξ0 be a
unitary vector in the null-space of (Δ(λ0) −Ass). Define the sequence of functions
{uk} from [0, 2π) to R by

uk(ω) =

{
2

k−1
2 if |ω − ω0| <

(
1
2

)k
,

0 otherwise,

and, for each k, let n̂k ∈ �2(∂D) be defined by n̂k(λ) = uk(ω)ξ0 for all λ = eiω and nk

be the inverse Z-transform of n̂k, which thus belongs to �2(Z). We have ‖nk‖�2(Z) = 1
for all k. Now, if we let vk = (Δs −Ass)nk for each k, we get

‖vk‖2
�2(Z) = ‖v̂k‖2

�2(∂D) = 2(k−1)

∫ ω+( 1
2 )k

ω−( 1
2 )k

|
(
Δ(eiω) −Ass

)
n0|2dω.

Let ε > 0. Since ω �→ ‖
(
Δ(eiω) −Ass

)
n0‖2 is continuous and

(
Δ(eiω0) −Ass

)
n0 = 0,

there exists K such that

‖
(
Δ(eiω) −Ass

)
n0‖2 < ε2 for all |ω − ω0| <

(
1

2

)k

,

provided k > K. Hence, ‖vk‖�2(Z) < ε for k > K. Since this holds for any ε > 0,

the sequence
{
‖vk‖�2(Z)

}
k

converges to zero, showing that (Δs −Ass) is not bounded
below.

Since U ⊂ ∂D, well-posedness of the infinite system implies well-posedness of the
corresponding periodic system. For a well-posed system, one can define stability as
follows.

Definition 3.2. A well-posed system is stable if, in the absence of input (d ≡ 0),
the weak solution x(t) ∈ �2(M) of (11a) is defined on R+ and satisfies

‖x(t)‖�2(M) −−−→
t→∞

0 exponentially, irrespective of the initial condition x0 .
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Equivalently, this means that there exist M, α > 0 such that

‖Φ(t)‖�2(M) ≤ Me−αt for all t ≥ 0,

where the norm in the latter equation is the �2(M)-induced norm of an operator.
It follows from the results of [1] that stability of periodic and infinite systems

can be checked by looking at the corresponding Fourier-transformed systems. More
precisely, if we associate the operator Â := FAF−1 on �2(M̂) to the operator A on
�2(M), where

M̂ = ∂D, F is the two-sided Z-transform for an infinite system,

M̂ = U, F is the discrete Fourier transform for a periodic system,

then we have the following.
Proposition 3.3 (see [1]). The following hold:

(i) Â is a multiplication operator; i.e., there exists a matrix-valued function A

such that (Âf̂)(λ) = A(λ)f̂(λ) for all f̂ ∈ �2(M̂).
(ii) The periodic and infinite system (9) is stable if and only if A(λ) is Hurwitz

for all λ ∈ M̂.
Note that (ii) is in fact simpler than the general condition of [1] for stability,

owing to the compactness of M̂. Once again, since U ⊂ ∂D, stability of the infinite
system implies stability of the corresponding periodic system.

It is easy to see that if a system is well-posed and stable then, for any d ∈
L2(M), x and in turn z also belong to L2(M). Such a system thus has a well-defined
input/output map, Tdz. It is a bounded linear map from L2(M) to L2(M) and its
induced norm, ‖Tdz‖L2(M), characterizes the performance of the system. If it is strictly
less than 1, we will say that the system is contractive.

4. Spatial reversibility and the method of images. We now turn our at-
tention to a particular class of finite extent systems, as defined below.

Definition 4.1. Given a basic building block as per (1) and a nonsingular matrix
M , we say that the block is (spatially) M -reversible if there exist matrices R ∈ Rm×m,
P ∈ Rnt×nt , and U ∈ Rp×p such that

(i) R2 = Im , P 2 = Int
, U2 = Ip; i.e., R, U , and P are involutions,

(ii)

⎛⎝ P 0 0
0 Q 0
0 0 U

⎞⎠⎛⎝ Att Ats Bt

Ast Ass Bs

Ct Cs D

⎞⎠ =

⎛⎝ Att Ats Bt

Ast Ass Bs

Ct Cs D

⎞⎠⎛⎝ P 0 0
0 Q 0
0 0 R

⎞⎠ ,

where Q := ( 0
M−1

M
0 ).

We will say that a finite extent, periodic, or infinite system is M -reversible if
the basic building block is. When the finite extent system at hand has boundary
conditions matrix M and is M -reversible, we will simply say that it is reversible
without referring to the matrix. Our goal in this section is to relate the properties
of reversible finite extent and periodic systems. This will require several properties
that we explain in turn. We start with a result that motivates our use of the notion
of spatial reversibility.

First, we introduce the reflection Υ : �2(Z2L) → �2(Z2L) such that (Υx)(s) =



10 CÉDRIC LANGBORT AND RAFFAELLO D’ANDREA

x(2L + 1 − s) for all s. Then we consider the following spaces of reversible signals:

t := {x ∈ �nt

2 (Z2L) : x = PΥx} ,
s := {v ∈ �ns

2 (Z2L) : v = QΥv } ,
d := {d ∈ �m2 (Z2L) : d = RΥd} ,
z := {z ∈ �p2(Z2L) : z = UΥz} .

Then the fact that Q and Υ, as seen as operators on �ns

2 (Z2L), satisfy

ΔsQ = QΔ−1
s

; ΔsΥ = ΥΔ−1
s

(17)

yields the following property.
Proposition 4.2. Assume periodic system (3) is M -reversible and well-posed.

Let the initial state x0 belong to t and disturbance d ∈ L2(Z2L) satisfy d(t) ∈ d for
all t ≥ 0. Then the corresponding solution (x, v, z) of (8) on R+ is spatially reversible,
i.e., x(t) ∈ t, v(t) ∈ s, and z(t) ∈ z for all t ≥ 0.

The proof relies on manipulations very similar to those used later for Theorem
4.5 and we thus omit it. Physically, Proposition 4.2 means that, for the right type of
inputs and initial conditions, the signals flowing to the right from the Lth subsystem
are related to those flowing to the left from the (L+1)th subsystem. Hence switching
left and right is equivalent to operating Q on v, P on x, and R on z. This property
allows us to draw a parallel between spatially reversible and time-reversible dynamical
systems. Recall that a nonlinear autonomous dynamical system

ẋ = f(x)(18)

is time-reversible if there exists an involution R that anticommutes with f . Then for
every solution x of the differential equation (18) we have another, i.e., x̃ : t �→ x̃(t) =
Rx(−t). If there exists t� such that x(t�) ∈ Fix(R) = {ξ : ξ = Rξ}, then the solution
x is reversible.

In both spatial and temporal cases, the key property is some kind of anticom-
mutation of an involution with an evolution operator ((17) in the spatial case) and
the result is that solutions either “come in pairs” or are reversible. It is because of
this analogy that the denomination “spatially reversible” was used in our definition,
although “symmetric” has sometimes been used in the literature with a somewhat
similar meaning [16], [21]. This latter denomination is acceptable because (17) and
Definition 4.1 essentially mean that the set of equations describing the periodic system
is equivariant under the action of Z2. However, we feel that it is desirable to keep the
adjective “symmetric” for systems that are invariant under the action of more general
groups, as is done in [10].

The second useful result is given by the following proposition.
Proposition 4.3. A spatially reversible finite extent system is well-posed if the

corresponding periodic system is well-posed.
Proof. We use a contrapositive. Assume the finite extent system is not well-posed

and let M be its boundary conditions matrix. We want to show that (Δ(θ) −Ass) is
singular for some θ ∈ U. Let ω = eiπ/L so that

U = {1, ω, ω2, . . . , ω(2L−1)}.

According to Proposition 3.1, there exists x 
= 0 such that Nx = x, where N is
defined as in (14). Also, because of spatial reversibility, we have that QAss = AssQ,
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namely, (
MAss−,−M

−1 MAss−,+M
M−1Ass+,−M

−1 M−1Ass+,+
M

)
=

(
Ass+,+

Ass+,−

Ass−,+
Ass−,−

)
.(19)

As a result, Q defined by

Q :=

⎛⎜⎜⎜⎜⎜⎜⎝
0 M

0 �

M 0
0 M−1

� 0
M−1 0

⎞⎟⎟⎟⎟⎟⎟⎠
commutes with N and Qx is also an eigenvector of N with eigenvalue 1. There are
two cases as follows.

Case 1. x = −Qx.
Since the Vandermonde matrix V (ω, ω3, . . . , ω(2L−1)) defined by

V (ω, ω3, . . . , ω(2L−1)) :=

⎛⎜⎜⎜⎜⎝
In

1
ω In . . .

(
1
ω

)(L−1)
In

In
1
ω3 In . . .

(
1
ω3

)(L−1)
In

...
...

...

In
1

ω(2L−1) In . . .
(

1
ω(2L−1)

)(L−1)
In

⎞⎟⎟⎟⎟⎠
is invertible, there exists 1 ≤ k ≤ L such that

∑L
l=1

(
1

ω(2k−1)

)(l−1)
xl 
= 0, for

otherwise we would have x1 = · · · = xL = 0 and, in turn, since x = −Qx,
x = 0, a contradiction.
For this k, let

x+ =

L∑
l=1

(
1

ω(2k−1)

)(l−1)

xl ; x− =

L∑
l=1

(
1

ω(2k−1)

)(l−1)

x(L+l) ; X =

(
x+

x−

)
.

Note that X = −QX 
= 0 and

ω(2k−1)x+ = Ass+,+

[
ω(2k−1)Mx(L+1) + x1 + · · · +

(
1

ω(2k−1)

)(L−2)

x(L−1)

]

+ Ass+,−

[
ω(2k−1)M−1x1 + x(L+1) + · · · +

(
1

ω(2k−1)

)(L−2)

x(2L−1)

]
= Ass+,+x

+ + Ass+,−x
−

since xL = −Mx(L+1), x1 = −Mx2L, and −ω(2k−1) =
(

1
ω(2k−1)

)(L−1)
.

Likewise, we get (
1

ω(2k−1)

)
x− = Ass−,+

x+ + Ass−,−x
− .

Hence, (Δ(ω(2k−1)) −Ass)X = 0 with X 
= 0.
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Case 2. x 
= −Qx.
Define z := x + Qx. Since it is nonzero, it is an eigenvector of N with
eigenvalue 1. Also, z = Qz. Considering V (1, ω2, . . . , ω(2L−2)) as for Case 1,

one deduces that there exists 0 ≤ k ≤ (L−1) such that
∑L

l=1

(
1

ω(2k)

)(l−1)
zl 
=

0.
Then, if we let

z+ =

L∑
l=1

(
1

ω(2k)

)(l−1)

zl; z− =

L∑
l=1

(
1

ω(2k)

)(l−1)

z(L+l); Z =

(
z+

z−

)
,

we get (Δ(ω(2k)) −Ass)Z = 0 with Z 
= 0, after calculations similar to those
of Case 1.

Hence, in any case, the periodic system is not well-posed.
Remark 1. Note that the condition in Proposition 4.3 is sufficient but not nec-

essary, as can be seen by considering the following case where n = 1, M = 1, and
L = 2:

Ass =

(
3 2
2 3

)
.

Ass has an eigenvalue at 1, which means that the periodic system is not well-posed.
However, the corresponding matrix I −N is

I4 −

⎛⎜⎜⎝
2 0 3 0
3 0 2 0
0 2 0 3
0 3 0 2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 0 −3 0
−3 1 −2 0
0 −2 1 −3
0 −3 0 −1

⎞⎟⎟⎠ ,

which is invertible.
In particular, this means that all analysis results pertaining to periodic systems

only yield sufficient conditions for finite extent systems.
Finally, let H : �2(Z2L) → �2({1, . . . , L}) be defined by

(Hv) (s) = v(L + s) for all s = 1, . . . , L.

Note that the restriction of H to the reversible subspaces t, s, d, and z is
invertible with, for example,

(H−1
|�s

v)(s) =

{
Qv(L + 1 − s) if s = 1, . . . , L,

v(s− L) if s = (L + 1), . . . , 2L,
(20)

and similar relations in the other cases.
Proposition 4.4. Assume the basic building block (1) is reversible. Then

H K = K H for all matrix K,(21a)

ΔsH
−1
|�s

= H−1
|�s

Δbc,(21b)

AssH
−1
|�s

= H−1
|�s

Ass,(21c)

Proof. Equation (21a) is clear. Equation (21c) simply follows from the fact that
Ass and Q commute. For (21b), we start by showing that Δbc = HΔsH

−1
|�s

. Let
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w = H−1
|�s

v, y = Δsw and z = Hy. Then, for all 1 ≤ s ≤ L,

z+(s) = y+(L + s) = w+(L + s + 1),(22a)

z−(s) = y−(L + s) = w−(L + s− 1).(22b)

If 1 ≤ s ≤ L − 1, (22a) means that z+(s) = v+(s + 1). For s = L, L + s + 1 =
2L + 1 = 1 mod 2L, and hence z+(L) = w+(1) = Mv−(L), using (20). Likewise, for
2 ≤ s ≤ L, z−(s) = v−(s− 1) while z−(1) = w−(L) = M−1v+(1). All in all, recalling
interconnection relation (7), we see that z = Δbcv. This shows that

Δbc = HΔsH
−1
|�s

.(23)

Finally, (17) implies that s is a stable subspace for operator Δs (i.e., Δsv ∈ s if
v ∈ s). We can thus left-multiply (23) by H−1

|�s

to get (ii).

We are now in a position to state and prove the main theorem of this section.
Theorem 4.5 (method of images). Let a spatially M -reversible finite extent

system be such that the corresponding periodic system is well-posed. For an input
d ∈ L2({1, . . . , L}) and initial state x0 ∈ �2({1, . . . , L}), let dP (t) := H−1

|�d
d(t) and

(x0)P := H−1
|�t

x0. Let (xP, vP, zP ) be the spatially reversible solution of the periodic

system with input dP, initial state (x0)P. Then (x, v, z) defined by x(t) := HxP (t),
v(t) := HvP (t), and z(t) := Hz(t)P for all t ≥ 0 is the unique solution of the finite
extent system with input d and initial condition x0.

Proof. First, according to Proposition 4.3, the finite extent system is well-posed
since the periodic one is. The finite system thus has a unique solution (x, v, z), where
x is the mild solution of (11a) for Δ = Δbc. Now, note that xP (t) satisfies

xP (t) = etA(x0)
P

+

∫ t

0

e(t−τ)A(BdP )(τ) dτ(24)

for A = Att + Ats(Δs −Ass)
−1Ast and B = Bt + Ats(Δs −Ass)

−1Bs. Hence

(
HxP

)
(t) = HetA(x0)

P
+ H

∫ t

0

e(t−τ)A(BdP )(τ) dτ.(25)

Using relation (17) and the fact that Ass commutes with Q, it is easy to see that the
subspace s is invariant for the mapping (Δs −Ass). Hence, we can write

H(Δs −Ass)
−1
|�s

=
(
(Δs −Ass)|�s

H−1
|�s

)−1

=
(
H−1

|�s

(Δbc −Ass)|�s

)−1

,

where we have used Proposition 4.4. This, coupled with the fact that the basic building
block is reversible, yields HAx = AbcHx for all x ∈ t and HBd = BbcHd for all
d ∈ d, where Abc = Att+Ats(Δbc−Ass)

−1Ast and Bbc = Bt+Ats(Δbc−Ass)
−1Bs.

In particular, this also implies that HetA(x0)P = etAbcH(x0)P , since (x0)P ∈ t. All
in all, plugging this back into (24) gives that

HxP (t) = etAbc H(x0)P +

∫ t

0

e(t−τ)AbcBbc(HdP )(τ)dτ,
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i.e., that x(t) = HxP (t) for all t ≥ 0 since (x0)P and dP are reversible by construction.
Once this is known, it is clear that v = HvP and z = HzP .

An easy but fundamental corollary is that stability and performance of a spatially
reversible finite extent system are related to similar properties of the corresponding
periodic and infinite system.

Corollary 4.6. If a spatially M -reversible, well-posed, periodic system is stable,
then the corresponding finite extent system, with boundary conditions matrix M , is
stable. Moreover, the input/output gains of the two systems satisfy

‖Tdz‖L2({1,...,L}) ≤

√
1 + σ̄(R)2

1 + σ(U)2
‖TP

dz‖L2(Z2L),

where Tdz and TP
dz are the input/output map of the finite extent and periodic system,

respectively. In particular, if R and U are unitary,

‖TP
dz‖L2(Z2L) < 1 ⇒ ‖Tdz‖L2({1,...,L}) < 1 .

Proof. We first prove stability. First assume that the periodic system is stable
and pick an initial condition x0 ∈ �2({1, . . . , L}) for the finite extent system. Let
(x, v, z) be the corresponding solution in the absence of an input, which is uniquely
determined since we assumed well-posedness. Let (x0)P and xP be defined as in
Theorem 4.5. Then, Theorem 4.5 implies that, for all t ≥ 0,

‖x(t)‖�2({1,...,L}) ≤ ‖xP (t)‖�2(Z2L) −−−→
t→∞

0 exponentially

since the periodic system is stable. Since this holds for any x0, the finite extent is
stable.

For performance, using the notation of Theorem 4.5, we note that

‖dP ‖2
L2(Z2L) ≤

(
1 + σ̄(R)2

)
‖d‖2

L2({1,...,L}) .

Also ‖zP ‖2
L2(Z2L) ≥

(
1 + σ(U)2

)
‖z‖2

L2({1,...,L}).

5. Examples. We now give some practical examples of spatially reversible sys-
tems and their corresponding boundary conditions.

Example 1 (two-sided platoon). The following is adapted from [19]. Consider the
problem of controlling a platoon of L vehicles such that each has a constant velocity
V and is halfway between its predecessor and successor in the line, in spite of external
noise. This design requirement captures the notion of “safety” since it ensures that
each vehicle is as far away as possible from its two closest neighbors. This system can
be described by

ė(t, s) = −v(t, s) +
1

2
(v(t, s + 1) + v(t, s− 1)) ,(26a)

v̇(t, s) = a(t, s),(26b)

ȧ(t, s) = −a(t, s) + u(t, s) + m(t, s),(26c)

z(t, s) = e(t, s) for all s = 1, . . . , L, t ≥ 0,(26d)

where, in a frame moving with constant velocity V , v(., s), a(., s), u(., s), m(., s) are
the velocity, acceleration, control, and external noise of the sth vehicle, respectively.
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e(., s) is the difference between the position of the sth vehicle and the middle of its
closest neighbors. This system can be put into the standard form (8) by choosing

x =

⎛⎝ e
v
a

⎞⎠, d =

(
u
m

)
, nt = 3, n = 1,

Att =

⎛⎝ 0 −1 0
0 0 1
0 0 −1

⎞⎠, Ats =

⎛⎝ 1
2

1
2

0 0
0 0

⎞⎠, Bt =

⎛⎝ 0 0
0 0
1 1

⎞⎠,

Ast =

(
0 1 0
0 1 0

)
, Ass =

(
0 0
0 0

)
, Bs =

(
0 0
0 0

)
,

Ct =
(

1 0 0
)
, Cs =

(
0 0

)
, D =

(
0 0

)
.

Two different sets of relevant boundary conditions can be thought of that will
yield a spatially reversible system. Both involve a virtual leader, located in front of
the first vehicle of the platoon, and a virtual follower located behind the Lth vehicle
of the platoon as follows:

• The virtual leader and follower have the same velocity as the first and last
vehicle of the platoon, respectively. This case can be captured by the bound-
ary conditions matrix M = 1 and can be used to specify that the platoon
should follow the virtual leader. The corresponding finite extent system is
then reversible with P = U = R = I.

• The virtual leader’s (respectively, follower’s) velocity is the opposite of the
first (respectively, last) vehicle’s. This boundary condition can be captured
by taking M = −1 and corresponds to a case where the leader is reversing
in front of the platoon. The corresponding finite extent system is reversible
with P = U = R = −I.

Example 2 (heat equation). The following is the partial differential equation
describing the diffusion of heat in a bar of unit length:

∂x

∂t
=

∂2x

∂l2
+ d for all l ∈ (0, 1), t ≥ 0,(27a)

x(0, l) = x0(l) for all l ∈ (0, 1),(27b)

x(t, 0) = x(t, 1) = 0 for all t ≥ 0.(27c)

In (27), x(t, l) ∈ R is the temperature at time t and position l ∈ [0, 1], and d(t, l)
is a distributed heat source. The Dirichlet boundary conditions (27c) mean that the
temperature is held constant at both ends, while initial conditions (27b) specify that
the initial temperature profile is x0.

We discretize this equation in the spatial direction using a centered finite-difference
method with step δl such that 1

δl
= L ∈ N. If we write x̄(t, s) for the approximation

of x
(
t,
(
s− 1

2

)
δl
)

and approximate ∂x
∂l (t, l) to second order in δl by

x(t, l + δl
2 ) − x(t, l − δl

2 )

δl
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for all l ∈ [0, L], we get the following semidiscretized system, [3], [5]:

dx̄

dt
(t, s) =

x̄(t, s + 1) − 2x̄(t, s) + x̄(t, s− 1)

δ2
l

(28a)

+ d

(
t,

(
s− 1

2

)
δl

)
for all s = 1, . . . , L, t ≥ 0,

x̄(0, s) = x0

((
s− 1

2

)
δl

)
(28b)

with boundary conditions

x̄(t, 0) = −x̄(t, 1); x̄(t, L) = −x̄(t, L + 1).(29)

The latter approximate the original boundary conditions (27c) up to order δ2
l , which

is also the order of accuracy of (28a). This system can be written as a finite extent
system in standard form (8) with

x = z = x̄, nt = 1, n = 1,

Att = − 2

δ2
l

, Ats =
1

δ2
l

(
1 1

)
, Bt = 1,

Ast =

(
1
1

)
, Ass =

(
0 0
0 0

)
, Bs =

(
0
0

)
,

Ct = 1, Cs =
(

0 0
)
, D = 0.

Then if we let v+(t, 1) := x̄(t, 0) and v−(L) := x̄(t, L + 1), boundary conditions (29)
can be rewritten as

v+(t, 1) = −w−(t, 1); v−(t, L) = −w+(t, L),

which corresponds to the boundary conditions matrix M = −1. It is then easy to see
that the system is spatially reversible with P = U = R = −I.

6. Control synthesis for finite extent systems. We are now interested in
solving the following H∞ synthesis problem.

Problem 1. Given a finite extent system with boundary conditions (the plant),
find another such system (the controller) such that the closed-loop is well-posed, stable,
and contractive.

It is also desirable that the algorithm for determining a satisfactory controller be
computationally tractable, irrespective of the number of subsystems in the plant. Also
note that we explicitly require the controller to have the same spatial structure as the
plant, as shown in Figure 2. Hence we are aiming for a distributed control strategy,
as opposed to a centralized strategy (in which all the subsystems of the plant are
connected to the same controller) or decentralized strategy (in which subsystems of
the controller are not interconnected with each other).

As is the case for analysis, Problem 1 has counterparts for the periodic and
infinite systems corresponding to the plant. Their statements are obvious and they
will be referred to as the periodic synthesis problem and infinite synthesis problem,
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1 2 3M M-1

� � �M M -1K K( )
Fig. 2. Interconnection of the finite extent plant and controller for L = 3. Note that feedback

is distributed.

respectively. Both the periodic synthesis problem and the infinite synthesis problem
can be efficiently solved using the methods developed in [1] and [5]. The first involves
solving a family of synthesis problems, parameterized by spatial frequency while, for
the second, synthesis conditions take the form of a single linear matrix inequality
(LMI). However, these are only sufficient conditions. In the recent past [18], [14],
Problem 1 has been tackled in the following way:

1. Solve the periodic (respectively, infinite) synthesis problem for the periodic
(respectively, infinite) system corresponding to the given, finite extent, plant.
This results in a periodic (respectively, infinite) controller.

2. Supplement the periodic or infinite controller’s realization with some “well-
chosen” boundary conditions to obtain a finite extent one solving Problem
1.

This procedure implicitly assumes that the stability and performance of the finite
extent closed-loop system can be derived from the properties of the spatially invariant
one and that the influence of the controller’s boundary conditions can be evaluated.
As already noted in [18], the last point is delicate. Bluntly stated, it is not clear what
“well-chosen” boundary conditions should be in the general case.

However, we have just established that such a link between finite extent and peri-
odic systems exists in the case of spatial reversibility. In this framework, “well-chosen”
also gains a clear meaning: given a realization of the closed-loop periodic system, a
well-chosen boundary conditions matrix Mk for the controller should be such that
the closed-loop system is spatially reversible with some boundary conditions matrix
Mc. Indeed, if this is the case, Corollary 4.6 will guarantee stability and performance
when the controller, which solves the periodic synthesis problem, is implemented on
the finite plant, with boundary conditions Mk.

In the remaining sections, we develop tools to show that Mk = (M∗)−1 is a well-
chosen boundary condition for the controller if the plant, with boundary conditions
matrix M , is spatially reversible. More precisely, we show the following.

Theorem 6.1. Given a finite extent, spatially reversible plant, there exists a
spatially reversible, finite extent controller, with nk

t
= nt, nk = n, and boundary

conditions matrix Mk = (M∗)−1, that solves Problem 1 if the LMI conditions of
[5] (equations (34)) are satisfied and if the plant’s involutions R and U satisfy R =

diag(Ru, Rd) and U = diag(Uy, Uz) with Rd =
(
Rd

)∗
=

(
Rd

)−1
, Uz = (Uz)

∗
=

(Uz)
−1

.
This means that H∞ synthesis for a spatially reversible finite extent system (with

boundary conditions) can be achieved by solving a convex problem, to determine
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the controller’s basic building block, and by “reading off” the controller’s boundary
conditions from the plant. The first step toward this synthesis result, which is also
needed to make the statement of Problem 1 more rigorous, is the interconnection of
reversible systems.

6.1. Interconnection of systems and spatial reversibility. The intercon-
nection of two finite extent, periodic, or infinite systems is obtained by performing
a linear fractional transformation of every pair of subsystems with the same index.
This is depicted in Figure 2 in the case of finite extent systems.

More precisely, suppose we are given a plant with two sets of inputs (the exogenous
disturbance d ∈ Rmd and the control input u ∈ Rmu) and outputs (the performance
output z ∈ Rpz and the measured output y ∈ Rpy ), as described by

d

dt
x(t) = Attx(t) + Atsv(t) +

(
Bu

t
Bd

t

)( u(t)
d(t)

)
, x(0) = x0,(30a)

(Δ −Ass) [v(t)] = Astx(t) +
(
Bu

s
Bd

s

)( u(t)
d(t)

)
,(30b) (

y(t)
z(t)

)
=

(
Cy

t

Cz
t

)
x(t) +

(
Cy

s

Cz
s

)
v(t) +

(
Dyu Dyd

Dzu Dzd

)(
u(t)
d(t)

)
.(30c)

Then its interconnection with the controller given by

d

dt
xk(t) = Ak

tt
xk(t) + Ak

ts
vk(t) + Bk

t
y(t), xk(0) = (xk)0,(31a)

(Δ −Ass) [vk(t)] = Ak

st
xk(t) + Bk

s
y(t),(31b)

u(t) = Ck

t
xk(t) + Ck

s
vk(t) + Dky(t) for all t ≥ 0(31c)

is the system obtained by eliminating u and y in (30) and (31). We emphasize that
[xk(t)](s) ∈ Rnk

t and [(v+)K(t)](s), [(v−)K(t)](s) ∈ Rnk

for all t ≥ 0, and s with
nk

t

= nt and nk 
= n a priori. The dimensions of the matrices defining operator Δ in

(31b) are thus chosen accordingly.
The corresponding closed-loop system equations can be put in standard form (8)

using the permutation matrix

Π =

⎛⎜⎜⎝
In 0 0 0
0 0 Ink 0
0 In 0 0
0 0 0 Ink

⎞⎟⎟⎠

in order to group the spatial variables properly. This means that the closed-loop
system is also a finite extent, periodic, or infinite system, depending on the case. A
realization of the corresponding basic building block, when Dyu = 0, is given below.
Note that this is not a restrictive assumption since one can always use loop-shifting
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if this situation is not at hand (see [5] and references therein):

Ac

tt
=

(
Att + Bu

t
DkCy

t Bu
t
Ck

t

Bk

t
Cy

t Ak

tt

)
, Ac

ts
=

(
Ats + Bu

t
DkCy

s Bu
t
Ck

s

Bk

t
Cy

s Ak

ts

)
Π,

Ac

st
= Π

(
Ast + Bu

s
DkCy

t Bu
s
Ck

t

Bk

s
Cy

t Ak

st

)
, Ac

ss
= Π

(
Ass + Bu

s
DkCy

s Bu
s
Ck

s

Bk

s
Cy

s Ak

ss

)
Π,

Bc

t
=

(
Bd

t
+ Bu

t
DkDyd

Bk

t
Dyd

)
, Bc

s
= Π

(
Bd

s
+ Bu

s
DkDyd

Bk

s
Dyd

)
,

Cc

t
=

(
Cz

t
+ DzuDkCy

t DzuCk

t

)
, Cc

s
=

(
Cz

s
+ DzuDkCy

s DzuCk

s

)
Π,

Dc = Dzd + DzuDkDyd.(32)

Using (32), it is easy to show the following.
Proposition 6.2. Let the plant, with boundary conditions matrix M , and the

controller, with boundary conditions matrix Mk, be spatially reversible. Assume fur-
ther that the involutions R and U for the plant and Rk and Uk for the controller
satisfy Rk = Uy and Uk = Ru, where U and R are partitioned conformably to the
inputs and outputs as R = diag(Ru, Rd) and U = diag(Uy, Uz). Then their inter-
connection, which has Mc = diag(M,Mk) as boundary conditions matrix, is spatially
reversible with Rc = Rd, P c = diag(P, P k), and Uc = Uz.

Proposition 6.2, combined with Corollary 4.6, already gives a way to solve Prob-
lem 1: if the periodic synthesis problem can be (tractably) solved by any means, and
if the resulting controller can be shown to be Mk-reversible for some matrix Mk, with
Rk = U and Uk = R, then this is the boundary conditions matrix that should be
used for the finite extent controller.

6.2. Reversible infinite controllers for reversible infinite plants. In this
section we give the second element needed to establish Theorem 6.1, namely, the
following.

Proposition 6.3. Consider an M -reversible infinite plant. Assume the involu-
tions R and U for the plant are of the type indicated in Theorem 6.1. Then it is always
possible to solve the infinite synthesis problem with an (M∗)−1-reversible controller,
provided the LMI condition of [5] (equation (34)) is satisfied. Moreover, Rk = Uy,
Uk = Ru, and P k = P ∗ for this controller.

It should be noted that this reversible controller is not necessarily the solution
that one would obtain by directly solving (34)–(37) with a numerical solver such as
those included in the LMI toolbox for Matlab. However, if one has a solution, one
can construct such an (M∗)−1-reversible controller by following the steps of the proof.

Before proving Proposition 6.3, we should clarify why this implies Theorem 6.1.
First, thanks to a theorem of [1] stating that the input/output gain of well-posed, sta-
ble systems over a group can be determined by a frequency-grid search, one can prove
that contractiveness of the infinite system implies contractiveness of the corresponding
periodic system, using arguments very similar to those of Proposition 3.3. As a result,
the periodic system corresponding to the (M∗)−1-reversible controller of Proposition
6.3 solves the periodic synthesis problem. The periodic closed-loop system is thus well-
posed, stable, and contractive. It is also Mc-reversible with Mc = diag(M, (M∗)−1)
by virtue of Proposition 6.2. One can then apply the method of images to show that
the corresponding finite extent closed-loop system is also well-posed and stable. Fi-
nally, since Rd and Uz are assumed to be unitary, Corollary 4.6 yields contractiveness
of the finite extent closed-loop.
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It might seem artificial to introduce the infinite system in order to solve Problem
1, while the method of images refers only to the periodic system. The main prac-
tical reason for using a finite controller corresponding to a reversible solution of the
infinite synthesis problem is the following. Imagine the number L of subsystems in
the finite extent system is changed to L′ 
= L. Then the size of the corresponding
periodic system also changes (from 2L to 2L′) and so does the corresponding group U,
which now becomes U′, the group of (2L′)th root of unity. A solution of the periodic
synthesis problem for 2L subsystems does not necessarily solve the same problem for
2L′ subsystems since well-posedness, stability, and performance of the closed-loop all
depend on the group U, and U′ may or may not be a subgroup of U. Hence, if one
uses a finite extent controller corresponding to a reversible solution of the periodic
synthesis problem, one has to redo a synthesis if the number of subsystems in the fi-
nite extent plant changes. This is not desirable since this number is in fact irrelevant
for a spatially reversible plant (only the boundary conditions matter). A reversible
solution of the infinite synthesis problem, on the other hand, solves it irrespective of
L.

Proof. The proof is by construction. For the reader’s convenience and because
they are used extensively in this proof, we first recall the notation and main results
of [5].

Given a well-posed infinite plant with basic building block (1), let

H =

(
In 0
0 −In

)
and define the bilinear algebraic transformed system by

Ass := H(Ass − I)(Ass + I)−1,(33a)

( Ast Bs ) :=
√

2H(Ass + I)−1( Ast Bs ),(33b) (
Ats

Cs

)
:=

√
2

(
Ats

Cs

)
(Ass + I)−1,(33c) (

Att Bt

Ct D

)
:=

(
Att Bt

Ct D

)
−
(

Ats

Cs

)
(Ass + I)−1( Ast Bs ),(33d)

A
g

=

(
Att Ats

Ast Ass

)
, B

g

=

(
Bt

Bs

)
, C

g

=
(
Ct Cs

)
, D

g

= D.

We also define several sets of scaling matrices:

X g = {Xg = diag(Xg

t
, Xg

s
), Xg

t
∈ Rnt×nt , Xg

t
> 0, Xg

s
∈ Rns×ns , Xg

s
is symmetric},

X k = {Xk = diag(Xk

t
, Xk

s
), Xk

t
∈ Rnk

t
×nk

t , Xk

t
> 0, Xk

s
∈ Rnk

s
×nk

s , Xk

s
is symmetric},

X gk = {X = diag(Xgk

t
, Xgk

s
), Xgk

t
∈ Rnt×nk

t , Xgk

s
∈ Rns×nk

s }.

Then, the main synthesis result of [5] is the following.

Theorem 6.4. Let the columns of Ny span the null space of ((Bug

)∗ (Dzu
g)

∗)

and let those of Nx span the null space of ((Cyg

)∗ (Dyd
g

)∗), respectively. Then
there exists an infinite controller such that the closed-loop is well-posed, stable, and
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contractive if there exist Xg and Y g in X g satisfying the following LMI:

(
Ny 0
0 I

)∗

⎛⎜⎜⎝
(

A
g

Y g + Y g(A
g

)∗ Y g(Czg

)∗

Czg

Y g −Ipz

) (
Bd

g

Dzd
g

)
(

(Bd
g

)∗ (Dzd
g

)∗
)

−Imd

⎞⎟⎟⎠(
Ny 0
0 I

)
< 0,(34a)

(
Nx 0
0 I

)∗

⎛⎜⎜⎝
(

(A
g

)∗Xg + XgA
g

XgBd
g

(Bd
g

)∗Xg −Imd

) (
(Czg

)∗

(Dzd
g

)∗

)
(

Czg

Dzd
g

)
−Ipz

⎞⎟⎟⎠(
Nx 0
0 I

)
< 0,

(34b)

(
Xg

t
I

I Y g

t

)
≥ 0.(34c)

Because (34c) is satisfied, there exist Xk and Y k in X k and Xgk and Y gk in X gk

such that (
Xg Xgk

(Xgk)∗ Xk

)
=

(
Y g Y gk

(Y gk)∗ Y k

)−1

(35)

and nk

t
= nt, n

k

s
= ns.

Then defining

X =

(
Xg Xgk

(Xgk)∗ Xk

)
,(36)

we can construct a controller that solves the infinite synthesis problem in two steps as
follows:

1. Solve the LMI ⎛⎜⎝ (A
c

)∗X + XA
c

XB
c

(C
c

)∗

(B
c

)∗X −I (D
c

)∗

C
c

D
c −I

⎞⎟⎠ < 0,(37)

which is affine in the unknown

Θ :=

(
A

k

B
k

C
k

D
k

)
,

where

(
A

c

B
c

C
c

D
c

)
=

⎛⎜⎝ A
g

0 Bd
g

0 0 0

Czg

0 Dzd
g

⎞⎟⎠+

⎛⎝ 0 Bug

I 0

0 Dzug

⎞⎠Θ

(
0 I 0

Cyg

0 Dyd
g

)
.

2. Once Θ is known, make a change of coordinates that puts Ass

k

into the form

Ass

k

=

(
A+ 0
0 A−

)
,
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where both A− and −(A+) are Hurwitz. This can always be achieved if Ass

k

has no eigenvalue on the imaginary axis. If this situation is not at hand, one
can perturb Ass

k

so that it holds and LMI (34) will still be satisfied. Then let

Hk =

(
In+ 0
0 −In−

)
,

where n± = dim(A±), and invert the bilinear algebraic transformation by

Ak

ss
:= (Hk −Ass

k

)−1(Hk + Ass

k

),(38a)

(Ak

st
Bk

s
) :=

√
2(Hk −Ass

k

)−1(Ast

k

Bs

k

),(38b) (
Ak

ts

Ck

s

)
:=

√
2

(
Ats

k

Cs

k

)
(Hk −Ass

k

)−1Hk,(38c)

(
Ak

tt
Bk

t

Ck

t
Dk

)
:=

(
Att

k

Bt

k

Ct

k

D
k

)
+

(
Ats

k

Cs

k

)
(Hk −Ass

k

)−1(Ast

k

Bs

k

),

(38d)

to find the building block of an infinite controller solving the infinite synthesis
problem.

Now assume that the plant at hand is M -reversible for some boundary conditions

matrix M with Rd =
(
Rd

)∗
=

(
Rd

)−1
and Uz = (Uz)

∗
= (Uz)

−1
. Because of spatial

reversibility and since QH = −HQ, it is easy to see that

V A
g

W = A
g

, C
g

W = UC
g

, V B
g

= B
g

R, UD
g

= D
g

R,(39)

where V := (P0
0

−Q ) and W := (P0
0
Q ).

Let Xg, Y g solve (34a)–(34b) for Nx and Ny. Then, pre- and postmultiplying
(34a) by (

I 0

0
(
Rd

)∗ )
and

(
I 0
0 Rd

)
,

(34b) by (
I 0
0 Uz

)
and

(
I 0
0 (Uz)

∗

)
,

and using (39), we get that V ∗XgW, WY gV ∗ ∈ X g also satisfy (34a)–(34b) but

with Ñx = (W0
0
Rd )Nx and Ñy = (V

∗

0
0

(Uz)∗ )Ny, the columns of which also satisfy the

assumptions of Theorem 6.4.
Now an important point is that Xg and Y g also satisfy (34a)–(34b) for Ñx and

Ñy. In fact, the matrices do not matter as long as their columns span the appropriate
null-spaces. (The reason why it is so can be easily understood if one follows the usual
procedure for formulating H∞ synthesis as a convex problem, as presented, e.g., in
Chapter 7 of [7]. See Lemma 7.2 in particular.)

Hence averaging the two sets of LMIs, we see that

X̃g =
1

2
(Xg + V ∗XgW ) and Ỹ g =

1

2
(Y g + WY gV ∗)
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solve (34) for Ñx and Ñy. Note that

Q∗X̃gQ = −X̃g and QỸ gQ∗ = −Ỹ g.

In order to solve (35), one can choose a full-rank controller by picking

Xgk

s
=

(
I − X̃s

g

Ỹs

g
)
, Xk

s
= −(Xgk

s
)∗Ỹs

g

, Y gk

s
= I.

Then easy algebra yields

Q∗Xgk

s
Q∗ = Xgk

s
, QXk

s
Q∗ = −Xk

s
,

and, in turn, that X as per (36) satisfies(
W ∗ 0
0 V

)
X

(
V 0
0 W ∗

)
= X = X

∗
=

(
V ∗ 0
0 W

)
X

(
W 0
0 V ∗

)
.

Using this scaling and pre- and postmultiplying (37) by⎛⎜⎜⎝
W ∗ 0 0 0
0 V 0 0

0 0
(
Rd

)∗
0

0 0 0 Uz

⎞⎟⎟⎠ and

⎛⎜⎜⎝
W 0 0 0
0 V ∗ 0 0
0 0 Rd 0
0 0 0 (Uz)

∗

⎞⎟⎟⎠ ,

we see that if Θ is a solution, so is Θ̂ := (W
∗

0
0
Ru )Θ(V

∗

0
0
Uy ) because of (39). Hence,

Θ̃ := 1
2 (Θ + Θ̂) also satisfies LMI (37). Note that (W

∗

0
0
Ru )Θ̃(V

∗

0
0
Uy ) = Θ̃, which

means that the corresponding controller is such that(
P ∗Ats

k

RuCs

k

)
Q∗ = −

(
Ats

k

Cs

k

)
,(40a)

Q∗
(

Ast

k

P ∗ Bs

k

Uy
)

=
(

Ast

k

Bs

k

)
,

Q∗Ass

k

Q∗ = −Ass

k

,

P ∗Att

k

P ∗ = Att

k

, P ∗Bt

k

= Bt

k

Uy,(40b)

Ct

k

P ∗ = RuCt

k

, RuD
k

Uy = D
k

.

This last relation implies that the spectrum of Ass

k

is symmetric with respect to the
origin. Thus, if it does not contain any point on the imaginary axis, we will have
n+ = dim(A+) = dim(A−) = n−. Also, because we picked a full-rank controller, we
have nk

s
= ns and thus n± = n and Hk = H.

Now, plugging (40) into (38), we get(
P ∗Ak

ts

RuCk

s

)
Q∗ = −

(
Ak

ts

Ck

s

)
,

Q∗ ( Ak

st
P ∗ Bk

s
Uy

)
= −

(
Ak

st
Bk

s

)
,

Q∗Ak

ss
Q∗ = Ak

ss
,(41a)

P ∗Ak

tt
P ∗ = Ak

tt
, P ∗Bk

t
= Bk

t
Uy,

Ck

t
P ∗ = Ck

t
, RuDkUy = Dk.(41b)

Finally, perform a state transformation on vk,

vk → Hvk,

to yield an (M∗)−1-reversible controller with Rk = Uy, Uk = Ru, and P k = P ∗
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7. Some generalizations. In this section, we explain how some assumptions
can be relaxed and our results extended to more general, spatially multidimensional,
reversible systems.

7.1. The case where Rd and Uz are not unitary. Although Theorem 6.1
treats the case where both Rd and Uz are unitary, it is possible to handle cases where(
Rd

)∗ 
= (Rd)−1 or (Uz)
∗ 
= (Uz)−1 as well. There are two cases as follows:

• σ(Rd) ≤ σ(Uz):
If one replaces the −Imd

and −Ipz blocks in (34a)–(34b) by −
(
Rd

)∗
Rd and

−Uz (Uz)
∗
, respectively, i.e., if one starts with an infinite controller such that

‖Tdz‖L2(Z) <
σ(Rd)

σ(Uz)
,

then following all the steps of the proof will yield an (M∗)−1-reversible in-
finite controller such that the closed-loop system is well-posed, stable, and
contractive. In turn, the corresponding periodic closed-loop system will also
be contractive and, since √

1 + σ(Uz)2

1 + σ(Rd)2
≥ 1,

Corollary 4.6 implies that the finite extent closed-loop system is also contrac-
tive.

• σ(Rd) > σ(Uz):
In this case, it is possible to construct an (M∗)−1-reversible infinite controller
that guarantees contractiveness of the closed-loop system if the LMIs (34a)–
(34b) have a solution. The corresponding periodic closed-loop will also be
contractive but the finite extent one need not be. We have only the upper-
bound

‖Tdz‖L({1,...,L}) <

√
1 + σ(Uz)2

1 + σ(Rd)2
.

7.2. Multiple spatial dimensions. It is straightforward to extend our present
results to cases where the subsystems are distributed on a multidimensional grid
instead of a line. The basic building block then has two interconnection inputs (v+

i ,
v−i ∈ Rni) and outputs (w+

i , w−
i ∈ Rni) per spatial dimension. The index s used to

describe the finite extent interconnection now belongs to a cartesian product set of
the form

M = Zl1 × · · · × Zlk × {1, . . . , L1} × · · · × {1, . . . , Ld}

where k ≥ 0, d > 0 and there is a boundary conditions matrix Mi, 1 ≤ i ≤ d
associated with every nonperiodic spatial dimension. Likewise, the corresponding
periodic and infinite systems are indexed over the set

M = Zl1 × · · · × Zlk × Z2L1 × · · · × Z2Ld
and M = Zl1 × · · · × Zlk × Zd,

respectively. Examples of such spatially multidimensional finite extent systems are
given in Figure 3 for k = 1, d = 1 and k = 0, d = 2.
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(a)

(b)

Fig. 3. Examples of spatially multidimensional interconnections. The inputs and outputs have
been omitted for clarity. (a) All boundary conditions matrices are equal to M1. (b) All boundary
conditions matrices for lines (respectively, columns) are equal to M1 (respectively, M2).

These spatially multidimensional systems can be represented by (9) if we let

v(t) :=
(
v+
1 (t), v−1 (t), . . . , v+

k+d(t), v
−
k+d(t)

)
∈ �ns

2 (M)

for a suitable ns and replace Δbc and Δs by multidimensional spatial operators that
capture all k + d dimensions.

For example, if k = 1, d = 1, and Sj is the shift operator in the jth spatial
dimension (1 ≤ j ≤ k + d), Δs should then be taken to be the structured operator

Δs = diag
(
S1In1 ,S

−1
1 In1 ,S2In2 ,S

−1
2 In2

)
.

Spatial reversibility can then be defined as in the spatially monodimensional case, the
only difference being that the basic building block’s realization must now commute
with several different matrices, one for each of the d spatial dimensions.
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Definition 7.1. For 1 ≤ i ≤ d, let Mi := ( 0
M−1

i

Mi

0 ) and

Qi := diag(In1 , . . . , Ink
, Ink+1

, . . . ,Mi, . . . , Ink+d
).

We say that the basic building block and, in turn, the interconnections are spatially
reversible if, for all i, there exist matrices Ri ∈ Rm×m, Pi ∈ Rnt×nt , and Ui ∈ Rp×p

such that
(i) Ri, Ui, and Pi are involutions;
(ii) RiRj = RjRi, PiPj = PjPi, and UiUj = UjUi for all 1 ≤ i, j ≤ d;
(iii) ⎛⎝ Pi 0 0

0 Qi 0
0 0 Ui

⎞⎠⎛⎝ Att Ats Bt

Ast Ass Bs

Ct Cs D

⎞⎠
=

⎛⎝ Att Ats Bt

Ast Ass Bs

Ct Cs D

⎞⎠⎛⎝ Pi 0 0
0 Qi 0
0 0 Ri

⎞⎠.

Condition (ii) is essential for the application of the method of images: it ensures
that one can extend the finite extent system by reflection in the d spatial dimensions
to yield a periodic one.

One can then proceed to analyze and perform distributed control synthesis for
multidimensional spatially reversible systems. All proofs are similar to the spatially
monodimensional case but require more intensive notational bookkeeping. The two
most important results, corresponding to Corollary 4.6 and Theorem 6.1, are given
below for the case where Ri and Ui are unitary for all 1 ≤ i ≤ d.

Theorem 7.2. If a spatially multidimensional, reversible, well-posed, periodic
system is stable, then the corresponding finite extent system is stable. Moreover, if Ri

and Ui are unitary for all 1 ≤ i ≤ d, the input/output gains of the two systems satisfy

‖TP
dz‖L2(Zl1

×···×Zlk
×Z2L1

×···×Z2Ld
) < 1 ⇒ ‖Tdz‖L2(Zl1

×···×Zlk
×{1,...,L1}×···×{1,...,Ld}) < 1.

Theorem 7.3. Given a finite extent, spatially multidimensional reversible plant,
there exists a spatially reversible, finite extent controller, with nk

t
= nt, n

k = n, and
boundary conditions matrix Mk

i = (M∗
i )−1, for each 1 ≤ i ≤ d, that solves Problem 1

if
(i) the LMI conditions of [5] for the spatially multidimensional case are satisfied;
(ii) the plant’s involutions Ri and Ui satisfy Ri = diag(Ru

i , R
d
i ), Ui = diag(Uy

i , U
z
i )

with Rd
i and Uz

i unitary for all 1 ≤ i ≤ d.
The conditions of item (i) are (34a), (34b), and (34c), supplemented by a fourth

LMI (equation (92) in [5]) needed to guarantee that the matrix Ass

k

yields an im-
plementable controller. This LMI is always trivially satisfied in the spatially mono-
dimensional case or when Ass

k

is block diagonal. We refer to [5] for more details.
The spatially multidimensional reversible controller is constructed iteratively as

follows: First, starting with any satisfactory controller and following steps that are
identical to those of the proof of Proposition 6.3, we get controller number 1 such that⎛⎝P1 0 0

0 Q∗
1 0

0 0 U1

⎞⎠⎛⎝Att

k

1 Ats

k

1 Bt

k

1

Ast

k

1 Ass

k

1 Bs

k

1

Ct

k

1 Cs

k

1 Dk

1

⎞⎠ =

⎛⎝Att

k

1 Ats

k

1 Bt

k

1

Ast

k

1 Ass

k

1 Bs

k

1

Ct

k

1 Cs

k

1 Dk

1

⎞⎠⎛⎝P1 0 0
0 Q∗

1 0
0 0 R1

⎞⎠.
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Then starting with controller number 1 and proceeding similarly, we get controller
number 2 such that⎛⎝P2 0 0

0 Q∗
2 0

0 0 U2

⎞⎠⎛⎝Att

k

2 Ats

k

2 Bt

k

2

Ast

k

2 Ass

k

2 Bs

k

2

Ct

k

2 Cs

k

2 Dk

2

⎞⎠ =

⎛⎝Att

k

2 Ats

k

2 Bt

k

2

Ast

k

2 Ass

k

2 Bs

k

2

Ct

k

2 Cs

k

2 Dk

2

⎞⎠⎛⎝P2 0 0
0 Q∗

2 0
0 0 R2

⎞⎠.

The final controller, obtained after d such iterations, is spatially reversible because
for 1 ≤ i, j ≤ d, Pi and Pj , Qi and Qj , Ri and Rj , and Ui and Uj commute.

8. Conclusion. We have shown that a finite extent spatially reversible system
is closely related to its periodic and infinite extensions and have demonstrated that
synthesis for such systems can be performed with existing tools developed in the
context of spatial invariance.

The synthesis LMI conditions that we use—which were already sufficient only for
well-posedness, stability, and contractiveness of an infinite system [5]— are even more
conservative for finite extent systems since well-posedness of the spatially invariant
systems is not necessary for well-posedness of the finite extent system. However, when
these LMI are feasible, the obtained controller guarantees stability and performance
irrespective of the number of subsystems in the finite extent interconnection, with
obvious consequences for system reconfiguration and fault tolerance. The boundary
conditions matrix of the plant is the only relevant parameter.
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MARKOV CHAINS WITH AVERAGE SAMPLE-PATH REWARDS∗
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Abstract. In this paper we study continuous-time Markov decision processes with the average
sample-path reward (ASPR) criterion and possibly unbounded transition and reward rates. We
propose conditions on the system’s primitive data for the existence of ε-ASPR-optimal (deterministic)
stationary policies in a class of randomized Markov policies satisfying some additional continuity
assumptions. The proof of this fact is based on the time discretization technique, the martingale
stability theory, and the concept of potential. We also provide both policy and value iteration
algorithms for computing, or at least approximating, the ε-ASPR-optimal stationary policies. We
illustrate with examples our main results as well as the difference between the ASPR and the average
expected reward criteria.

Key words. average sample-path reward, continuous-time Markov chain, optimal stationary
policy, policy and value iteration algorithms
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1. Introduction. Markov decision processes (MDPs) with the long-run aver-
age expected reward (AER) criterion have been widely studied in literature; see, for
instance, the books [1, 6, 12, 22, 23, 25, 31, 32, 33, 35], the survey paper [3], and
their extensive references. However, the sample-path reward corresponding to an
optimal policy that maximizes the average expected rewards may have fluctuations
from its expected reward value. To take these fluctuations into account, the av-
erage sample-path reward (ASPR) criterion has been proposed and studied; see, for
instance, [3, 10, 15, 23, 24] and their extensive bibliographies. To the best of our knowl-
edge, all the existing works with the ASPR criterion are on discrete-time MDPs. On
the other hand, many real-world problems, for instance, in communication engineer-
ing, queueing systems, and other control problems, require continuous-time models.
Therefore, there is a large amount of works in literature on continuous-time MDPs;
see, for instance, [4, 5, 16, 18, 19, 20, 21, 26, 27, 29, 31, 35, 37, 39] and their references.
All of these works, however, consider only the AER criterion. Our paper is a first
attempt to fill the gap between the works on discrete-time MDPs with the ASPR
criterion and those on continuous-time MDPs with the AER criterion.

Denumerable continuous-time MDPs are specified by the system’s four primitive
data: a countable state space S; action sets A(i), which may depend on the current
state i ∈ S; transition rates q(j|i, a) with a ∈ A(i) and j ∈ S; and reward rates r(i, a)
with a ∈ A(i). In this paper, we consider these MDPs with the ASPR criterion in the
class of randomized Markov policies satisfying some additional continuity assumptions.
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The state processes here are possibly nonhomogeneous continuous-time Markov chains
with possibly unbounded transition rates, and the reward rates may have neither upper
nor lower bounds. Under suitable conditions on the primitive data, we first prove
the existence of a solution to the optimality equation. The proof is constructive,
using policy iteration, which is based on the concept of potentials [8, 7] and is rather
different from both the “vanishing discount approach” in [16, 18, 19, 21, 26] and the
“uniformization technique” in [29, 31, 36]. We then establish the existence of ε(≥ 0)-
ASPR-optimal stationary policies by introducing a time-discretization approach to
continuous-time martingales and by using the extended generator technique. This
approach is different from those used for the discrete-time case; see, for instance, [3,
6, 10, 15, 23, 24]. Also, we provide both policy and value iteration algorithms for
computing, or at least approximating (when the algorithms take infinitely many steps
to converge), ε(≥ 0)-ASPR-optimal stationary policies. Furthermore, we use several
examples to explain our conditions and to show the difference between the AER and
ASPR criteria.

The policy iteration approach developed in this paper to establish a solution to
the optimality equation does not require any result about discounted continuous-
time MDPs. Thus, this approach is simple and direct. Also, our method to prove
the existence of an ASPR-optimal stationary policy is straightforward and different
from those in [29, 31, 36, 37], which require the equivalence between continuous- and
discrete-time MDPs as well as results about discrete-time MDPs. Finally, it should
be mentioned that the ergodicity results about continuous-time Markov chains and
the convergence results for continuous martingales available in the literature cannot
be applied to our problems because in this paper the Markov chains may be non-
homogeneous and the associated reward and transition rates may be time-dependent
and unbounded. In addition, a key feature of our results is that the conditions are
imposed on the primitive data (see (2.1)) and can be easily verified.

The rest of this paper is organized as follows. In section 2, we introduce the control
model and the optimal control problem considered in this paper. After some technical
preliminaries developed in section 3, we study the existence of the ε(≥ 0)-ASPR
optimal stationary policies in section 4. The policy and value iteration algorithms
are described in section 5. Our hypotheses and the difference between the AER and
ASPR criteria are illustrated with examples in section 6. We conclude in section 7
with some general remarks.

2. The optimal control problem. The control model that we are concerned
with can be described by

{S,A(i), q(j|i, a), r(i, a), i, j ∈ S},(2.1)

where S is the state space; A(i) is a set of admissible actions at state i ∈ S; q(j|i, a)
with i, j ∈ S and a ∈ A(i) are the system’s transition rates; and r(i, a) with i ∈ S
and a ∈ A(i) are the reward rates. Let K := {(i, a) : i ∈ S, a ∈ A(i)} be the set of all
state-action pairs.

In this paper we assume that S is denumerable and in fact we write it as the
set of nonnegative integers, i.e., S = {0, 1, 2, . . .}. Furthermore, we assume that for
each i ∈ S the set A(i) is a Borel space endowed with the Borel σ-algebra B(A(i)).
The transition rates q(j|i, a) in (2.1) satisfy q(j|i, a) ≥ 0 for all (i, a) ∈ K and
j �= i. Moreover, we assume that the matrix [q(j|i, a)] with (i, j)-element q(j|i, a)
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is conservative, i.e., ∑
j∈S

q(j|i, a) = 0 ∀(i, a) ∈ K,

and stable, which means that

q(i) := sup
a∈A(i)

qi(a) < ∞ ∀i ∈ S,

where qi(a) := −q(i|i, a) ≥ 0, for all (i, a) ∈ K. In addition, q(j|i, a) is measurable in
a ∈ A(i) for each fixed i, j ∈ S.

Finally, the function r(i, a) on K is a real-valued reward rate, and r(i, a) is as-
sumed to be measurable in a ∈ A(i) for each fixed i ∈ S. (As r(i, a) is allowed to
take positive and negative values, it can be interpreted as a cost rate rather than a
“reward” rate.)

We first introduce randomized Markov policies.
Definition 2.1 (randomized Markov policies). A randomized Markov policy is

a function πt(B|i) that satisfies the following conditions:
(1) for each i ∈ S and B ∈ B(A(i)), the mapping t �→ πt(B|i) is Borel measurable

on [0,∞), and
(2) for each i ∈ S and t ≥ 0, B �→ πt(B|i) is a probability measure on B(A(i)).

Let A :=
⋃

i∈S A(i). A (deterministic) stationary policy is a function f : S → A such
that f(i) is in A(i) for all i ∈ S.

Let Φ be the set of all randomized Markov policies and let F be the set of all
stationary policies. Note that a function f ∈ F can be viewed as a function πt(B|i) ∈
Φ for which, for all t ≥ 0 and i ∈ S, πt(·|i) is the Dirac measure at f(i). Thus, F ⊂ Φ.
We will write a randomized Markov policy πt(B|i) in Φ simply as (πt). The subscript
“t” in πt indicates the possible dependence on time; it will be dropped for simplicity
when there is no confusion.

For each (πt) ∈ Φ, the associated transition and reward rates are defined, respec-
tively, as follows:

q(j|i, πt) :=

∫
A(i)

q(j|i, a)πt(da|i) for i, j ∈ S and t ≥ 0,(2.2)

r(i, πt) :=

∫
A(i)

r(i, a)πt(da|i) for i ∈ S and t ≥ 0.(2.3)

Obviously, the transition rate q(j|i, πt) and reward rate r(i, πt) can depend on time t
if π is not stationary. When π = f ∈ F , we write q(j|i, πt) and r(i, πt) as q(j|i, f(i))
and r(i, f(i)), respectively.

For each π := (πt) ∈ Φ, let Q(πt) := [q(j|i, πt)] with t ≥ 0 be the transition
rate matrices. Any (possibly substochastic and nonhomogeneous) transition function
p̃(s, i, t, j, π) such that

lim
γ→0+

p̃(t, i, t + γ, j, π) − δij
γ

= q(j|i, πt) ∀i, j ∈ S and t ≥ 0

is called a Q-process with the transition rate matrices Q(πt), where δij is the Kronecker
delta. To guarantee the existence of such a Q-process, we now define the class of
admissible policies.



32 XIANPING GUO AND XI-REN CAO

Definition 2.2 (admissible policies). A randomized Markov policy (πt) in Φ is
said to be admissible if q(j|i, πt) is continuous in t ≥ 0 for each fixed i, j ∈ S. We
denote by Π the class of all admissible policies.

Π is nonempty because it contains F . Moreover, as shown in Example 6.3 below,
Π contains a randomized Markov policy which is not in F .

On the other hand, Q(πt) is also conservative and stable, i.e.,

qi(πt) := −q(i|i, πt) =
∑
j �=i

q(j|i, πt) < ∞ ∀i ∈ S and t ≥ 0.

Hence, for each π ∈ Π, the existence of a Q-process such as the minimum Q-process
denoted by pmin(s, i, t, j, π) (i.e., pmin(s, i, t, j, π) ≤ p̃(s, i, t, j, π) for any Q-process
p̃(s, i, t, j, π)) is guaranteed but is not necessarily regular; that is, we might have∑

j∈S pmin(s, i, t, j, π) < 1 for some i ∈ S and t ≥ s ≥ 0 (see [13] or Theorem 4.2.6
in [2]).

To ensure the regularity of a Q-process, we use the following ergodicity conditions.
Assumption A. There exist a sequence {Sn, n ≥ 1} of subsets of S, a nondecreas-

ing function w ≥ 1 on S, and two constants c > 0 and b ≥ 0, such that
(1) supi∈Sn

q(i) < ∞ for each n ≥ 1, and Sn ↑ S in the sense of convergence of
a set sequence;

(2) limn→∞[infj �∈Sn w(j)] = +∞;
(3)

∑
j∈S q(j|i, a)w(j) ≤ −cw(i) + bδ0i∀ (i, a) ∈ K; and

(4) for each f ∈ F , the minimum Q-process pmin(s, i, t, j, f) is monotone, i.e.,∑
j≥k

q(j|i, f(i)) ≤
∑
j≥k

q(j|i + 1, f(i + 1)) ∀i, k ∈ S with k �= i + 1,

and irreducible, i.e., for each pair of states i and j, either q(j|i, f(i)) > 0, or there are
an integer l (which may depend on i, j, and f) and l states i1, i2, . . . , il with i �= i1,
j �= il, ik−1 �= ik, k = 2, . . . , l, such that

q(i1|i, f(i))q(i2|i1, f(i1)) · · · q(il|il−1, f(il−1))q(j|il, f(il)) > 0.

Lemma 2.3. (a) If Assumptions A(1), A(2), and A(3) hold, then for each π =
(πt) ∈ Π the corresponding Q-process with transition rate matrices Q(πt) is regular;
that is, ∑

j∈S

pmin(s, i, t, j, π) = 1 ∀i ∈ S and t ≥ s ≥ 0.

(b) If Assumption A holds, then for each f ∈ F the corresponding Q-process with
transition rate matrices [Q(j|i, f(i))] is ergodic, and its unique invariant probability
measure μf (with μf (i) > 0 for all i ∈ S) can be determined by the equation∑

i∈S

μf (i)q(j|i, f(i)) = 0 ∀j ∈ S.(2.4)

Moreover, for each i ∈ S and t ≥ 0∣∣∣∣∣∑
j∈S

pmin(0, i, t, j, f)h(j) − μf (h)

∣∣∣∣∣ ≤ 2e−ct

[
w(i) +

b

c

]
≤ 2e−ct

(
1 +

b

c

)
w(i)(2.5)
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for any function h on S such that |h| ≤ w, where μf (h) :=
∑

j∈S h(j)μf (j).
Proof. (a) Under Assumptions A(1)–A(3), by Theorem 3.1 in [17] we see that (a)

is true.
(b) By (a) and Proposition 5.4.1 in [2], we see that (2.4) is true. Moreover, from

the proof of (3.9) in [30] we see that the condition (2.1) in [30] is not required for
Theorem 2.2(ii) in [30]. Thus, by (3.9) in [30] and Assumption A we see that (2.5) is
also true.

Under Assumptions A(1)–A(3), Lemma 2.3 shows that for each π = (πt) ∈ Π
a Q-process with transition rate matrices Q(πt) is regular. Thus, under Assump-
tion A, we will denote by {x(t, π)} the associated right-continuous Markov chain with
values in S, and write the regular Q-process pmin(s, i, t, j, π) simply as p(s, i, t, j, π).
Furthermore, for each initial state i ∈ S at time s = 0, we denote by (Ω,F , Pπ

i )
the probability measure space determined by p(s, i, t, j, π), by Eπ

i the corresponding
expectation operator, and by x(t, π)(e) the value of x(t, π) at e ∈ F .

Remark 2.4. (a) For the case where supi∈S q(i) < ∞ (see, for instance, [7, 26,
31, 35, 39]), Assumptions A(1) and A(2) are not required because they are used only
to guarantee the regularity of a Q-process. For the case of unbounded transition rates
(e.g., [18, 19]), the conditions for a Q-process to be regular are usually imposed on
both the possibly nonhomogeneous minimum Q-processes and the transition rates.
Hence, our Assumptions A(1)–A(3) are quite different from those in [18, 19].

(b) Assumptions A(1)–A(3) are an extension of both the “drift condition” in [30]
and the hypotheses of Corollary 2.2.16 in [2] for a homogeneous Q-process to be
regular. Assumption A(4) is a variant of the monotonicity conditions in Theorem 7.3.4
and the irreducibility conditions in Proposition 5.3.1 in [2].

(c) It should be mentioned that if there is a set S̄ of transient states which is
independent of stationary policies, then μf (i) = 0 for each i ∈ S̄ and f ∈ F . In this
case, Lemma 3.4 below may not hold because its proof uses the result μf (i) > 0 for
all i ∈ S.

Now we define the ASPR criterion Vsp(·, ·) as follows: for each π = (πt) ∈ Π and
i ∈ S

Vsp(π, i) := lim sup
T→∞

1

T

[∫ T

0

r(x(t, π), πt)dt

]
,(2.6)

where the subscript “sp” stands for “sample-path.” Note that Vsp(π, i) has been
defined by the so-called sample-path rewards r(x(t, π), πt); therefore, it is a random
variable rather than a number as in the AER-criterion defined as

V̄ (π, i) := lim sup
T→∞

1

T

[∫ T

0

Eπ
i r(x(t, π), πt)dt

]
(2.7)

(see [4, 7, 16, 19, 20, 21, 26, 27, 31, 35, 39], for instance). Thus, the following definition
of optimal policies for the ASPR criterion is different from that for the AER criterion.

Definition 2.5. For a given ε ≥ 0, a policy π∗ ∈ Π is said to be ε-ASPR-optimal
if there exists a constant g∗ such that

Pπ∗

i (Vsp(π
∗, i) ≥ g∗ − ε) = 1 and Pπ

i (Vsp(π, i) ≤ g∗) = 1 ∀i ∈ S and π ∈ Π.

A 0-ASPR-optimal policy is simply called an ASPR-optimal policy.
The main goal of this paper is to give conditions on the primitive data in (2.1)

that ensure the existence of an ASPR-optimal stationary policy.
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3. Preliminaries. In this section we present some preliminary facts that are
needed to prove our main results.

Let w ≥ 1 be the function in Assumption A. Following the concept of a weighted
supremum norm introduced by Lippman [28] and widely used by many authors
(e.g., [23, p. 2]), we define the weighted supremum norm ‖v‖w for a real-valued func-
tions v on S by

‖v‖w := sup
i∈S

[w(i)−1|v(i)|]

and the Banach space by Bw(S) := {v : ‖v‖w < ∞}.
Lemma 3.1. Let w̄ be any nonnegative function on S, and c̄, b̄ two constants

such that b̄ ≥ 0 and c̄ �= 0. Then, for each π = (πt) ∈ Π, the following statements are
equivalent:

(a)
∑

j∈S pmin(s, i, t, j, π)w̄(j) ≤ e−c̄(t−s)w̄(i) + b̄
c̄ [1 − e−c̄(t−s)] for all i ∈ S and

t ≥ s ≥ 0;
(b)

∑
j∈S q(j|i, πt)w̄(j) ≤ −c̄w̄(i) + b̄ for all i ∈ S and t ≥ 0.

Proof. See Lemma 3.2 in [16].

It should be noted that in Lemma 3.1, Assumption A is not required.

To establish the so-called optimality equation, we will use a policy iteration algo-
rithm instead of the vanishing discount approach in [16, 19, 21, 26]. To state the policy
iteration algorithm, in addition to Assumption A we also need the following standard
continuity-compactness conditions (Assumption B); see, for instance, [3, 19, 23, 31, 35]
and their references.

Assumption B. (1) For each i ∈ S, A(i) is compact.

(2) r(i, a) and q(j|i, a) are continuous in a ∈ A(i) for each fixed i, j ∈ S.

(3) The function
∑

j∈S q(j|i, a)w(j) is continuous in a ∈ A(i) for each fixed i ∈ S.

(4) There exists a positive constant M such that |r(i, a)| ≤ Mw(i) for all i ∈ S
and a ∈ A(i).

In the spirit of the potential concept in [8, 7], for a given f ∈ F and the corre-
sponding unique invariant probability measure μf , we define the potential

u(f, i) :=

∫ ∞

0

[Ef
i r(x(t, f), f(x(t, f))) − g(f)]dt ∀ i ∈ S,(3.1)

where the constant g(f) is defined as

g(f) :=
∑
j∈S

r(j, f(j))μf (j).(3.2)

Lemma 3.2. Let Assumptions A and B(4) hold. Then

(a) g(f) and ‖u(f, ·)‖w are both bounded in f ∈ F ,
(b) the Poisson equation g(f) = r(i, f(i)) +

∑
j∈S q(j|i, f(i))u(f, j) holds for all

i ∈ S and f ∈ F .

Proof. By (3.1) and (2.5) we see that ‖u(f, ·)‖w is bounded in f ∈ F . With the
constants M , c, and b as in Assumptions A and B(4), by Lemma 3.1, (3.1), (2.5), and
(2.7), we have |V̄ (f, ·)| = |g(f)| ≤ Mb

c for all f ∈ F , and so (a) follows. Obviously,
(b) follows from Lemma 5.1 in [16].

Under Assumptions A and B, we now state the policy iteration algorithm.
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Policy iteration algorithm 3.1.
Step I. Take n = 0 and fn ∈ F .
Step II. Solve (2.4) for μfn and then calculate u(fn, ·) and g(fn) as in (3.1) and

(3.2).
Step III. Define a new stationary policy fn+1 in the following way:

Set fn+1(i) := fn(i) for all i ∈ S for which

r(i, fn(i)) +
∑
j∈S

q(j|i, fn(i))u(fn, j) = max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u(fn, j)

}
;(3.3)

otherwise (i.e., when (3.3) does not hold), choose fn+1(i) ∈ A(i) such that

r(i, fn+1(i)) +
∑
j∈S

q(j|i, fn+1(i))u(fn, j)(3.4)

= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u(fn, j)

}
.

Step IV. If fn+1(i) satisfies (3.3) for all i ∈ S, then stop because (by Theorem 4.1
below) fn+1 is ASPR-optimal; otherwise, replace fn with fn+1 and go back to Step II.

Finally, to prove the existence of an ASPR-optimal stationary policy, in addition
to Assumptions A and B we propose the following conditions.

Assumption C. There exist nonnegative functions w∗
k ≥ 1 on S as well as constants

c∗k > 0, b∗k ≥ 0, and M∗
k > 0 (k = 1, 2) such that, for each i ∈ S and a ∈ A(i),

(1) w2(i) ≤ M∗
1w

∗
1(i) and

∑
j∈S q(j|i, a)w∗

1(j) ≤ −c∗1w
∗
1(i) + b∗1, and

(2) [q(i)w(i)]2 ≤ M∗
2w

∗
2(i) and

∑
j∈S q(j|i, a)w∗

2(j) ≤ −c∗2w
∗
k(i) + b∗2.

Remark 3.3. (a) Assumption C allows us to use the martingale stability theorem;
see Lemma 3.11 in [22], for instance. However, it is not required when a solution u∗

in (4.1) below and the transition rates are both uniformly bounded.
(b) Assumption C(2) is slightly different from Assumption B(4) in [16], but all

conclusions in [16] still hold after Assumption B(4) in [16] is replaced by Assump-
tion C(2) here.

For each n ≥ 1, take fn as the policy obtained in the policy iteration algorithm
3.1, and for each i ∈ S let

ε(fn, i) := r(i, fn(i)) +
∑
j∈S

q(j|i, fn(i))u(fn−1, j) − g(fn−1).(3.5)

Lemma 3.4. Let Assumptions A, B, and C(2) hold. Then g(fn+1) > g(fn) when
fn+1 �= fn, and for each i ∈ S, ε(fn, i) → 0 as n → ∞.

Proof. As in the proof of Theorem 5.2 and Lemma 5.3 in [16], by Lemma 3.2
above we obtain Lemma 3.4.

Lemma 3.4 will be used to establish the optimality equation (4.1) below.

4. The existence of ASPR-optimal stationary policies. In this section, we
state and prove our main result, Theorem 4.1.

Theorem 4.1. Under Assumptions A, B, and C, the following statements hold.
(a) There exist a unique constant g∗, a function u∗ ∈ Bw(S), and a stationary

policy f∗ ∈ F satisfying the optimality equation

g∗ = r(i, f∗(i)) +
∑
j∈S

q(j|i, f∗(i))u∗(j)
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= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u∗(j)

}
∀i ∈ S.(4.1)

(b) The policy f∗ in (a) is ASPR-optimal, and P f∗

i (Vsp(f
∗, i) = g∗) = 1 for all

i ∈ S.
(c) A policy f in F is ASPR-optimal if and only if it realizes the maximum of

(4.1).
(d) For given ε ≥ 0 and f ∈ F , if there is a function ū ∈ Bw(S) such that

g∗ ≤ r(i, f(i)) +
∑
j∈S

q(j|i, f(i))ū(j) + ε ∀i ∈ S,

then f is ε-ASPR-optimal.
Proof. (a) Let {fn} be the sequence of the stationary policies obtained by the

policy iteration algorithm 3.1. By Assumption B(1) and the Tichonoff theorem, the
policy class F is compact. Thus, by Lemma 3.2(a), there exist a subsequence {fnk

}
of {fn} and u∗ ∈ Bw(S) such that for each i ∈ S

lim
k→∞

u(fnk
, i) = u∗(i), lim

k→∞
fnk

(i) =: f∗(i), and lim
k→∞

g(fnk
) =: g∗.(4.2)

On the other hand, by Lemmas 3.2(b), (3.4), and (3.5), we have

g(fnk
) = r(i, fnk

(i)) +
∑
j∈S

q(j|i, fnk
(i))u(fnk

, j)

= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u(fnk
, j)

}
− ε(fnk+1, i)

≥ r(i, a) +
∑
j∈S

q(j|i, a)u(fnk
, j) − ε(fnk+1, i) ∀i ∈ S and a ∈ A(i).(4.3)

Letting k → ∞ in (4.3), by the “extension of Fatou’s Lemma” 8.3.7 in [23] and our
Lemma 3.4 and (4.2), we have

g∗ = r(i, f∗(i)) +
∑
j∈S

q(j|i, f∗(i))u∗(j)

≥ r(i, a) +
∑
j∈S

q(j|i, a)u∗(j) ∀i ∈ S and a ∈ A(i),

and so

g∗ = r(i, f∗(i)) +
∑
j∈S

q(j|i, f∗(i))u∗(j)

= max
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u∗(j)

}
∀i ∈ S,

which gives (4.1). Moreover, the proof of the uniqueness of the constant g∗ satisfying
(4.1) follows from Theorem 4.1(b) in [16] and Remark 3.3(b).

(b) To prove (b), for each i ∈ S, π = (πt) ∈ Π, and t ≥ 0, let

Δ(i, πt) := r(i, πt) +
∑
j∈S

q(j|i, πt)u
∗(j) − g∗,(4.4)
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Ft(π) := σ{x(s, π), 0 ≤ s ≤ t},
g(i, πt) :=

∑
j∈S

q(j|i, πt)u
∗(j).(4.5)

In particular, let Δ(i, f(i)) =: r(i, f(i)) +
∑

j∈S q(j|i, f(i))u∗(j) − g∗ for all f ∈ F .
We now define a (continuous-time) stochastic process,

M(t, π) :=

∫ t

0

g(x(y, π), πy)dy − u∗(x(t, π)) for t ≥ 0.(4.6)

Then {M(t, π),Ft(π), t ≥ 0} is a Pπ
i -martingale in continuous-time; that is,

Eπ
i [M(t, π)|Fs(π)] = M(s, π) ∀t ≥ s ≥ 0.(4.7)

Indeed, for each t ≥ s ≥ 0, by (4.6) and the Markov property we have

Eπ
i [M(t, π)|Fs(π)] = M(s, π) + Eπ

i

[∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
+u∗(x(s, π)) − Eπ

x(s,π)u
∗(x(t, π)).(4.8)

Since u∗ ∈ Bw(S) (by (4.2) and Lemma 3.2(a)), it follows from Assumption A(3) that∣∣∣∣∣∑
j∈S

q(j|i, a)u∗(j)

∣∣∣∣∣ ≤ ‖u∗‖w

[∑
j∈S

q(j|i, a)w(j) − 2q(i|i, a)w(i)

]
≤ ‖u∗‖w[−cw(i) + b + 2q(i)w(i)]

≤ ‖u∗‖w[b + 2q(i)w(i)](4.9)

for all a ∈ A(i) and i ∈ S. Therefore, by (4.5) and (2.2) we obtain

|g(i, πy)| ≤ ‖u∗‖w[b + 2q(i)w(i)] ∀y ≥ 0 and i ∈ S.(4.10)

On the other hand, by the Markov property we have

Eπ
i

[ ∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
= Eπ

x(s,π)

[ ∫ t

s

g(x(y, π), πy)dy

]
,

which together with (4.10), Assumption C(2), Lemma 3.1, and Fubini’s theorem gives

Eπ
i

[ ∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
=

∫ t

s

[
Eπ

x(s,π)g(x(y, π), πy)

]
dy.(4.11)

From Lemma 2.1(b) in [21] and (4.10) in [16] about the extended generator of a possibly
nonhomogeneous continuous-time Markov process, by (4.11) and (4.5) we obtain

Eπ
i

[ ∫ t

s

g(x(y, π), πy)dy|Fs(π)

]
= Eπ

x(s,π)u
∗(x(t, π)) − u∗(x(s, π)),

which together with (4.8) gives (4.7).
It follows from (4.7) that {M(n, π),Fn(π), n ≥ 1} is also a Pπ

i -martingale in
discrete-time. Moreover, By Assumption C and Lemma 3.1 we have

Eπ
i w

∗
k(x(t, π)) ≤ w∗

k(i) +
b∗k
c∗k

∀t ≥ 0 and k = 1, 2,(4.12)
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which together with (4.6), (4.10), the Hölder inequality, and Assumption C gives

Eπ
i [M(n + 1, π) −M(n, π)]2

= Eπ
i

[∫ n+1

n

g(x(y, π), πy)dy + u∗(x(n, π)) − u∗(x(n + 1, π))

]2
≤ 2Eπ

i

[∫ n+1

n

g(x(y, π), πy)dy

]2
+ 2Eπ

i [u∗(x(n + 1, π)) − u∗(x(n, π))]2

≤ 2Eπ
i

[∫ n+1

n

g2(x(y, π), πy)dy

]
(by the Hölder inequality)

+ 4‖u∗‖2
wE

π
i [w2(x(n + 1, π)) + w2(x(n, π))]

≤ 2Eπ
i

[∫ n+1

n

‖u∗‖2
w[b + 2q(x(y, π))w(x(y, π))]2dy

]
(by (4.10))

+ 4M∗
1 ‖u∗‖2

wE
π
i [w∗

1(x(n + 1, π)) + w∗
1(x(n, π))] (by Assumption C(1))

≤ 4‖u∗‖2
wE

π
i

[∫ n+1

n

(b2 + 4[q(x(y, π))w(x(y, π))]2)dy

]
+ 4M∗

1 ‖u∗‖2
wE

π
i [w∗

1(x(n + 1, π)) + w∗
1(x(n, π))]

≤ 4‖u∗‖2
wE

π
i

[∫ n+1

n

(b2 + 4M∗
2w

∗
2(x(y, π)))dy

]
(by Assumption C(2))

+ 4M∗
1 ‖u∗‖2

wE
π
i [w∗

1(x(n + 1, π)) + w∗
1(x(n, π))],

which gives

Eπ
i [M(n + 1, π) −M(n, π)]2(4.13)

≤ 16‖u∗‖2
w

[
b2 + M∗

2

(
w∗

2(i) +
b∗2
c∗2

)
+ M∗

1

(
w∗

1(i) +
b∗1
c∗1

)]
(by (4.12)).

This means that Eπ
i [M(n + 1, π) − M(n, π)]2 is bounded in n ≥ 1. Thus, by the

martingale stability theorem (e.g., [22, p. 105], or Remark 11.2.6 in [23], for instance),
we have

lim
n→∞

M(n, π)

n
= 0 a.s.− Pπ

i .(4.14)

On the other hand, for any T ≥ 1, let [T ] be the unique integer such that [T ] ≤ T <
[T ] + 1. By (4.6) we have

M(T, π)

T
=

[T ]

T

⎛⎝M([T ], π)

[T ]
+

∫ T

[T ]
g(x(y, π), πy)dy

[T ]
− u∗(x(T, π))

[T ]
+

u∗(x([T ], π))

[T ]

⎞⎠.

(4.15)

Moreover, for any arbitrary ε > 0, as in the proof of (4.13), by the Chebyshev’s
inequality we have

Pπ
i

⎛⎝
∣∣∣∫ T

[T ]
g(x(y, π), πy)dy

∣∣∣
[T ]

> ε

⎞⎠ ≤
Eπ

i

[∫ T

[T ]
|g(x(y, π), πy)|dy

]2
ε2[T ]2

≤
16‖u∗‖2

w

[
b2 + M∗

2

(
w∗

2(i) +
b∗2
c∗2

)]
ε2[T ]2

.(4.16)
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Since
∑∞

[T ]=1
1

[T ]2 < ∞, by (4.16) and the Borel–Cantelli lemma, we have

Pπ
i

⎛⎝lim sup
[T ]

⎧⎨⎩
∣∣∣∫ T

[T ]
g(x(y, π), πy)dy

∣∣∣
[T ]

> ε

⎫⎬⎭
⎞⎠ = 0.

Now let

E[T ] :=

⎧⎨⎩ |
∫ T

[T ]
g(x(y, π), πy)dy|

[T ]
> ε

⎫⎬⎭ ∈ F ,

E := lim sup[T ] E[T ] ∈ F , and Ec := Ω − E being the complement of set E. Then
Pπ
i (Ec) = 1. Let e ∈ Ec, which means that e is in finitely many sets E[T ]. So there

exists an integer N0(e) (depending on e) such that e �∈ E[T ] for all [T ] ≥ N0(e), i.e.,∣∣∣∫ T

[T ]
g(x(y, π)(e), πy)dy

∣∣∣
[T ]

≤ ε ∀ [T ] ≥ N0(e) and e ∈ Ec,

which together with Pπ
i (Ec) = 1 yields

lim
[T ]→∞

∫ T

[T ]
g(x(y, π), πy)dy

[T ]
= 0 a.s.− Pπ

i .(4.17)

Similarly, we have

lim
[T ]→∞

u∗(x(T, π))

[T ]
= lim

[T ]→∞

u∗(x([T ], π))

[T ]
= 0 a.s.− Pπ

i .(4.18)

Since limT→∞
[T ]
T = 1, by (4.14), (4.15), (4.17), and (4.18), we have

lim
T→∞

M(T, π)

T
= 0 a.s.− Pπ

i .(4.19)

By (4.4)–(4.6) it follows that

M(t, π) = −
∫ t

0

r(x(y, π), πy)dy +

∫ t

0

Δ(x(y, π), πy)dy − u∗(x(t, π)) + tg∗.(4.20)

By (4.1), (4.4), (2.2), and (2.3), we have Δ(i, πt) ≤ 0 and Δ(i, f∗(i)) = 0 for all t ≥ 0
and i ∈ S. Thus, by (4.18), (4.19), and (4.20) we obtain

Pπ
i (Vsp(π, i) ≤ g∗) = 1 and(4.21)

P f∗

i (Vsp(f
∗, i) = g∗) = 1,(4.22)

which, together with the arbitrariness of π and i, give (b).
(c) By (b), it suffices to prove that f(∈ F ) realizes the maximum of (4.1) if f is

SPAR-optimal. Now suppose that f is SPAR-optimal but does not realize the maxi-
mum of (4.1). Then there exist some i0 ∈ S and a constant α(i0, f) > 0 (depending
on i0 and f) such that

g∗ ≥ [r(i, f(i)) + α(i0, f)δi0i] +
∑
j∈S

q(j|i, f(i))u∗(j) ∀i ∈ S.(4.23)
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On the other hand, since f is SPAR-optimal, by (b) and (4.21) we have Vsp(f, i) = g∗

a.s. for all i ∈ S. Moreover, as in the proof of (4.22), from Lemma 3.2(b) we also
have Vsp(f, i) = g(f) a.s., and so

g∗ = g(f) =
∑
j∈S

μf (j)r(j, f(j)).(4.24)

Also, as in the proof of (4.12) in [16], by (4.23) and (4.24) as well as (2.7) we obtain

g∗ ≥
∑
j∈S

μf (j)[r(j, f(j)) + α(i0, f)δi0j ] = g∗ + μf (i0)α(i0, f),

which gives a contradiction because μf (i0) and α(i0, f) are both positive.
(d) Let Δū(i, f(i)) := r(i, f(i)) +

∑
j∈S q(j|i, f(i))ū(j) − g∗. Then, Δū(i, f(i)) ≥

−ε for all i ∈ S. Thus, as in the proof of (4.21), we have

P f
i (Vsp(f, i) ≥ g∗ − ε) = 1,

which together with (b) gives (d).
Theorem 4.1 is an important result: part (a) establishes the optimality equation

(4.1) and the existence of a so-called canonical policy f∗, whereas part (b) further
shows that the canonical policy f∗ is ASPR-optimal.

Remark 4.2. (a) Under Assumptions A, B, and C(2) only, from the proof of
Theorem 4.1 here and Theorem 4.1 in [16] we see that the canonical policy f∗ in
Theorem 4.1(a) is also optimal for the AER criterion. However, it is shown that an
optimal stationary policy for the AER criterion may not be canonical [18]. Therefore,
it is natural to guess that an ASPR-optimal stationary policy may not be canonical
either. An attempt to answer this problem faces significant technical difficulties, and
the problem remains unsolved to this date.

(b) From the proof of Theorem 4.1(b) and (c) we see that both Assumptions C(1)
and C(2) are indeed required for the ASPR criterion. That is because (i) the proof of
Theorem 4.1(b) and (c) uses the estimates in (4.13) and (4.16), and (ii) the proof of
(4.13) and (4.16) is based on both Assumptions C(1) and C(2); see the proof of (4.12)
and (4.24) (In the proof of the “if” part of Theorem 4.1(c), we cannot obtain (4.24) by
the dominated convergence theorem because Vsp(i, f) is defined via “limsup” instead
of “lim.”)

(c) To establish the optimality equation (4.1), we have used the policy iteration
algorithm 3.1, instead of the “vanishing discount factor method” used in [16, 18, 19,
21, 26], for instance. It should be noted that our approach is direct because it does
not require any result about discounted continuous-time MDPs. This is by way of the
same logic introduced in [25] for discrete-time unichain MDPs. (A similar approach
is adopted for discrete-time general MDPs with finite state and action sets in [9, 38]
by using simple algebra and properties of the Cesaro-limit of a transition probability
matrix and in [12, 31] by using vanishing discount factors.)

(d) We can also prove Theorem 4.1 by using the “vanishing discount factor
method.” More precisely, under Assumptions A and B, we can (i) establish the
average optimality inequalities by using the α-discounted optimality equation in [17],
(ii) obtain the optimality equation, and (iii) prove the existence of ASPR-optimal sta-
tionary policies under the additional Assumption C. However, this vanishing factor
method needs additional results about discounted continuous-time MDPs in [17].
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When the transition and reward rates are both uniformly bounded, we need to
impose conditions only on the embedded Markov chains to guarantee the existence of
SPAR-optimal stationary policies. This is stated in the following corollary.

Corollary 4.3. Suppose the following conditions (1)–(3) are satisfied.
(1) ‖q‖ := supi∈S q(i) < ∞, ‖r‖ := supi∈S,a∈A(i) |r(i, a)| < ∞.
(2) For each i ∈ S, A(i) is compact; and r(i, a) and q(j|i, a) are continuous in

a ∈ A(i) for each fixed i, j ∈ S.

(3) Either infi �=j0,a∈A(i) q(j0|i, a) > 0 for some j0 ∈ S; or
∑

j∈S supi∈S,a∈A(i)(
q(j|i,a)
‖q‖

+ δij) < 2.
Then, the following results hold.
(a) There exists an ASPR-optimal stationary policy.
(b) For each ε > 0, an ε-ASPR-optimal stationary policy can be obtained in a

finite number of steps of the policy iteration algorithm 3.1.
Proof. Define maps Tk on the set M(S) of bounded functions on S as

Tku(i) := sup
a∈A(i)

⎧⎨⎩ r(i, a)

‖q‖ + 1
+
∑
j∈S

[(
q(j|i, a)
‖q‖ + 1

+ δij

)
− μk(j)

]
u(j)

⎫⎬⎭(4.25)

for all i ∈ S, u ∈ M(S), and k = 1, 2, where the measures μk on S are given by

μ1(j) := inf
i∈S,a∈A(i)

[
q(j|i, a)
‖q‖ + 1

+ δij

]
and

μ2(j) := sup
i∈S,a∈A(i)

[
q(j|i, a)
‖q‖ + 1

+ δij

]
for j ∈ S,

which correspond to the first and second hypotheses in the condition (3), respectively.
Thus, the maps T1 and T2 are both contractive with contraction factors β1 and β2,
respectively, where

β1 := 1 − μ1(S) ∈ (0, 1) and β2 := μ2(S) − 1 ∈ (0, 1).(4.26)

Hence, the Banach’s fixed point theorem gives the existence of u∗ ∈ M(S), f∗ ∈ F
and a unique constant g∗ satisfying (4.1). Then, as in the proof of Theorem 4.1(a)
and (d), we see that Corollary 4.3 is true.

Remark 4.4. (a) The two sets in the condition (3) in Corollary 4.3 are variants of
the ergodicity condition in [22] for discrete-time MDPs, and each set implies that the

embedded chain with the transition probability ( q(j|i,f(i))
1+‖q‖ + δij) has a unique invari-

ant probability measure; see p. 56 in [22], for instance. The difference between the
“monotonicity” condition in Assumption A(4) and the condition (3) in Corollary 4.3
can be shown by examples.

(b) Corollary 4.3 can also be obtained by using the uniformization method in [29,
31, 36] and the equivalence between continuous- and discrete-time MDPs in [31, 36,
37], as well as the results for discrete-time MDPs in [3, 10, 14, 15, 22, 24, 32, 34], for
instance.

5. Algorithms. Following the procedure in the proof of Theorem 4.1, we now
provide a policy iteration algorithm to obtain ASPR-optimal stationary policies.

Proposition 5.1. Suppose that Assumptions A, B, and C hold. Then any limit
point f∗ of the sequence {fn} obtained by the policy iteration Algorithm 3.1 is ASPR-
optimal.
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Proof. The proposition follows directly from the proof of Theorem 4.1.
Under the conditions in Corollary 4.3, we provide a value iteration algorithm to

compute ε(> 0)-ASPR-optimal stationary policies. It should be mentioned that, as
in the proof of Corollary 4.3, the choice of k = 1 (or 2) corresponds to the first (or
second) hypothesis in the condition (3) in Corollary 4.3. Thus, we will understand
that k in this algorithm is fixed.

Value iteration algorithm 5.1.
Step I. For a fixed ε > 0, take arbitrarily u0 ∈ M(S).
Step II. If Tku0 = u0, then obtain a policy f (in F ) satisfying

r(i, f(i)) +
∑
j∈S

q(j|i, f(i))u0(j) = sup
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)u0(j)

}
∀i ∈ S,

and f is ASPR-optimal (by Theorem 4.1), stop; otherwise, calculate a positive integer

N ≥ 1
βk

ln ε(1−βk)
4(1+‖q‖)‖u1−u0‖ + 1 with βk as in (4.26), and uN := TN

k u0 = Tk(T
N−1
k u0)

(by (4.25)).
Step III. Choose fε(i) ∈ A(i) such that for each i ∈ S

r(i, fε(i)) +
∑
j∈S

q(j|i, fε(i))uN (j) ≥ sup
a∈A(i)

{
r(i, a) +

∑
j∈S

q(j|i, a)uN (j)

}
− ε

2
.

Then we have the following facts.
Proposition 5.2. Under the conditions in Corollary 4.3, the policy fε obtained

by the value iteration algorithm 5.1 is ε-ASPR-optimal.
For the policy iteration algorithm 3.1, if we luckily choose an initial policy such

that the algorithm 3.1 stops after a finite number of iterations, then Proposition 5.1
shows that an ASPR-optimal stationary policy can be computed. Otherwise, since the
policy space F may be infinite, the algorithm 3.1 may not stop in any finite number
of iterations. In this case, Proposition 5.1 shows that an ASPR-optimal stationary
policy can be approximated. On the other hand, Proposition 5.2 implies that under
the conditions in Corollary 4.3 an ε-ASPR-optimal stationary policy can indeed be
computed in a finite number of iterations, where ε > 0.

6. Examples. In this section, we illustrate our conditions and show the differ-
ence between the ASPR and AER criteria with examples.

Example 6.1 (a controlled birth-death system). Consider a controlled birth-
death system in which the state variable denotes the population size at any time
t ≥ 0. There are “natural” birth and death rates denoted by positive constants λ
and μ, respectively, as well as nonnegative emigration and immigration parameters.
The two parameters are assumed to be controlled by a decision-maker and denoted
by h1(i, a1) and h2(i, a2), respectively, which may depend on system’s state i and
decision variables a1 and a2 taken by the decision-maker. When the system is at
state i ∈ S := {0, 1, . . .}, the decision-maker takes an action a := (a1, a2) from a
compact set A(i) =: A1(i) × A2(i) of available actions, which increases/decreases
the emigration parameter h1(i, a1) and may incur a cost with rate c(i, a1), and also
increases/decreases the immigration parameter h2(i, a2) and gives a reward with rate
r̄(i, a2). Moreover, suppose that the benefit rate caused by a population is represented
by p > 0. Then the net income rate in this system is r(i, a) := pi+ r̄(i, a2)−c(i, a1) for
each i ∈ S and a = (a1, a2) ∈ A(i). On the other hand, when there is no population
in the system (i.e., i = 0), it is impossible to decrease/increase the emigration rate,
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and so we have h1(0, a1) ≡ 0 for all a1 ∈ A1(0). Also, in this case (i.e., i = 0)
we may assume that the decision-maker hopes to increase the immigration rate, and
then h2(0, a2) > 0 for all a2 ∈ A2(0). (This assumption guarantees the irreducibility
condition in Assumption A(4).)

We now formulate this system as a continuous-time Markov decision process. The
corresponding transition rates q(j|i, a) and reward rates r(i, a) are given as follows.

For i = 0 and each a = (a1, a2) ∈ A(0)

q(1|0, a) = −q(0|0, a) := h2(0, a2) > 0,

and for i ≥ 1 and all a = (a1, a2) ∈ A(i)

q(j|i, a) :=

⎧⎪⎪⎨⎪⎪⎩
μi + h1(i, a1) if j = i− 1,
−(μ + λ)i− h1(i, a1) − h2(i, a2) if j = i,
λi + h2(i, a2) if j = i + 1,
0 otherwise;

(6.1)

r(i, a) := pi + r̄(i, a2) − c(i, a1) for i ∈ S and a = (a1, a2) ∈ A(i).(6.2)

We aim to find conditions that ensure the existence of an ASPR-optimal stationary
policy. To do this, in the spirit of Assumptions A, B, and C we consider the following
conditions:

(E1) (a) μ − λ > 0. (b) Either κ := μ − λ + h∗
2 − h1∗ ≤ 0, or μ − λ > |h∗

2 − h1∗|
when κ > 0, where h∗

2 := supa2∈A2(i),i≥1 h2(i, a2), h1∗ := infa1∈A1(i),i≥1 h1(i, a1).
(E2) For each fixed i ∈ S, the functions h1(i, ·), h2(i, ·), c(i, ·), and r̄(i, ·) are all

continuous.
(E3) (a) There exist positive constants Lk(k = 1, 2) such that |c(i, a1)| ≤ L1(i+1)

and |r̄(i, a2)| ≤ L2(i + 1) for all i ∈ S and (a1, a2) ∈ A1(i) × A2(i). (b) ‖hk‖ :=
supi∈S,ak∈Ak(i) |hk(i, ak)| < ∞, for k = 1, 2.

To further explain Example 6.1, we consider the special case of birth-death pro-
cesses with controlled immigration. Consider a pest population in a region which may
be isolated to prevent immigration. Let c denote the cost rate when immigration
is always prevented, b denote the immigration rate without any control, and action
a ∈ [0, 1] denote the level of immigration prevented, where c and b are fixed positive
constants. When the population size is i ∈ S := {0, 1, . . .}, an action a from a set A(i)
consisting of available actions is taken. Then a cost rate ca is incurred, the immigra-
tion rate (1− a)b is permitted, and the evolution of the population depends on birth,
death, and immigration with parameters λ, μ, and (1−a)b, respectively, where λ and
μ are given positive constants. Suppose that the damage rate caused by the pest is
represented by p > 0. Then the reward rate is of the form r(i, a) := −pi− ca for each
i ∈ S and a ∈ A(i). Obviously, we have A(i) := [0, 1] for each i ≥ 1. However, when
there is no pest in the region (i.e., i = 0), to guarantee the irreducibility condition in
Assumption A(4) we need that A(0) := [0, β] with a given β ∈ (0, 1). (This, however,
can be explained as follows: For the ecological balance of the region, the pest is not
permitted to become extinct, and so the immigration rate (1−β)b > 0 is left.) Using
the notation in Example 6.1, for this model we have h1 ≡ 0 and h2(i, a2) = (1 − a)b
with a2 := a here. Hence, when μ − λ > b, the conditions E1, E2, and E3 above are
all satisfied.

Under E1, E2, and E3, we obtain the following.
Proposition 6.2. Under conditions E1, E2, and E3, the above controlled birth-

death system satisfies the Assumptions A, B, and C. Therefore (by Theorem 4.1),
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there exists an ASPR-optimal stationary policy, which can be computed or at least
approximated by the policy iteration algorithm 3.1.

Proof. We shall first verify Assumption A. Let Sn := {0, 1, . . . , n} for each n ≥ 1,
w(i) := i + 1 for all i ∈ S, and

ρ :=
μ− λ− h∗

2 + h1∗
2

= μ− λ− κ

2
> 0 when μ− λ > |h∗

2 − h1∗|.

Then Assumptions A(1) and A(2) are obviously true. Moreover, for each a = (a1, a2)∈
A(i) with i ≥ 1, by condition E1 and (6.1), we have∑

j∈S

q(j|i, a)w(j) = (λ− μ)(i + 1) + μ− λ− h1(i, a1) + h2(i, a2)

≤ −(μ− λ)w(i) + κ

≤
{
−(μ− λ)w(i) when κ ≤ 0,
−ρw(i) when κ > 0 (and so ρ > 0).

(6.3)

In particular, for i = 0 and each a = (a1, a2) ∈ A(0), we have∑
j∈S

q(j|i, a)w(j) = h2(0, a2) ≤ −(μ− λ)w(0) + b′ = −ρw(0) + b′ − κ

2
,(6.4)

where b′ := μ− λ + ‖h2‖ > 0.
By the inequalities (6.3) and (6.4) we see that Assumption A(3) holds with c :=

μ−λ and b := b′ when κ ≤ 0, or c := ρ and b := b′ when κ > 0. Since h2(0, a2) > 0 for
all a2 ∈ A2(0), by (6.1) we see that Assumption A(4) is true. Hence Assumption A
follows.

By E3 and (6.2), we have |r(i, a)| ≤ pi+L1(i+1)+L2(i+1) ≤ (p+L1 +L2)w(i)
for all i ∈ S and a ∈ A(i), which verifies Assumption B(4). Hence, Assumption B is
satisfied because Assumptions B(1), B(2), and B(3) follow from E2 and the model’s
description.

Finally, to verify Assumption C we let

w∗
1(i) := i2 + 1, w∗

2(i) := i4 + 1 ∀i ∈ S.(6.5)

Then

w2(i) ≤ M∗
1w

∗
1(i), [q(i)w(i)]2 ≤ M∗

2w
∗
2(i) ∀i ∈ S,(6.6)

with M∗
1 := 3 and M∗

2 := 8(λ + μ + ‖h1‖ + ‖h2‖).
Moreover, for each i ≥ 1 and a = (a1, a2) ∈ A(i), by (6.1), (6.5), and E3, we have∑

j∈S

q(j|i, a)w∗
1(j) = −2i[μi + h1(i, a1)] + μi + h1(i, a1)

+ 2i[λi + h2(i, a2)] + λi + h2(i, a2)

≤ −2(μ− λ)(i2 + 1) + 3(μ + λ + ‖h1‖ + ‖h2‖)i.

Hence, for each i ≥ 3(μ+λ+‖h1‖+‖h2‖)
μ−λ + 1 =: i∗, we have∑

j∈S

q(j|i, a)w∗
1(j) ≤ −(μ− λ)w∗

1(i).(6.7)
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On the other hand, since A(i) is assumed to be compact for each i ∈ S, by (6.1) and
(6.5) we see that

∑
j∈S q(j|i, a)w∗

1(j) and (μ− λ)w∗
1(i) are both bounded in a ∈ A(i)

and i ≤ i∗. Thus, from (6.7) there exists a positive constant b∗1 such that∑
j∈S

q(j|i, a)w∗
1(j) ≤ −(μ− λ)w∗

1(i) + b∗1 ∀i ∈ S and a ∈ A(i).(6.8)

Also, for each i ≥ 1 and a ∈ A(i), by (6.1) and (6.5) we have∑
j∈S

q(j|i, a)w∗
2(j) ≤ −2(μ− λ)(i4 + 1) − (μ− λ)i4 + c3i

3 + c2i
2 + c1i + c0,(6.9)

where the constants ck(k = 0, 1, 2, 3) are determined completely by λ, μ, ‖h1‖, and
‖h2‖. Similarly, by (6.9) and (6.1), there exists a positive constant b∗2 such that∑

j∈S

q(j|i, a)w∗
2(j) ≤ −(μ− λ)w∗

2(i) + b∗2 ∀i ∈ S and a ∈ A(i),(6.10)

which, together with (6.8) and (6.6), verifies Assumption C.

It should be noted that in Example 6.1 both the reward and transition rates are
unbounded; see (6.1) and (6.2). Next, we will show that our admissible policy class Π
can indeed be chosen to be larger than the usual stationary policy class F .

Example 6.3. In Example 6.1, for each i ∈ S we take arbitrarily two actions ak(i)
(k = 1, 2) from A(i) which may depend on i, and then define an admissible policy
π̃ = (π̃t) as

π̃t(B|i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
e−ρ0it if B = {a1(i)},

1 − 1

2
e−ρ0it if B = {a2(i)},

0 otherwise

(6.11)

for some fixed constant ρ0 > 0.

Then, by (6.1), (6.11), and (2.2), we see that π̃ is in Π but not in F . Therefore, we
have Π ⊃ F , but Π �= F. It is also noted that the associated Q-process p(s, i, t, j, π̃)
is nonhomogeneous, and so is the associated continuous-time Markov chain x(t, π̃).
Moreover, the corresponding reward rates r(i, π̃t) are time-dependent and unbounded;
see (6.2) and (2.3).

Finally, in the following example we show that in general the AER and ASPR
criteria are different.

Example 6.4. Let S := {1, 2}. For some π̂ = (π̂t), f ∈ Π, suppose that for
0 ≤ t ≤ 1,

Q(π̂t) :=

(
−1 + t 1 − t
2 − 2t −2 + 2t

)
and Q(f) :=

(
0 0
0 0

)
.(6.12)

Let t0 := 1, and define

Q(π̃t) :=

{
Q(π̂t) when 0 ≤ t ≤ t0,
Q(f) when t ≥ t0.

(6.13)
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By (6.12), (6.13), and Definition 2.2, we see that the associated policy π̃ belongs
to Π. For reference, we recall that for any π ∈ Π the associated regular Q-process
p(s, i, t, j, π) can be constructed as follows [13, 16, 17]: for i, j ∈ S and n ≥ 0, let

p0(s, i, t, j, π) := δije
−
∫ t

s
qi(πy)dy

,(6.14)

pn+1(s, i, t, j, π) :=

∫ t

s

e
−
∫ y

s
qi(πv)dv

∑
k �=i

q(k|i, πy)pn(y, k, t, j, π)dy.(6.15)

Then

p(s, i, t, j, π) =

∞∑
n=0

pn(s, i, t, j, π).(6.16)

For each i, j ∈ S, by (6.12)–(6.16), p(0, i, t0, j, π̂) > 0. Hence, 0 < p(0, i, t0, 2, π̂) < 1.
Moreover,

p(s, i, t, j, π̃) =

{
p(s, i, t, j, π̂) when 0 ≤ t ≤ t0,
p(s, i, t, j, f) when t ≥ s ≥ t0.

(6.17)

Let r(1, a) = 0, r(2, a) = 1 for all a ∈ A(i) with i = 1, 2. Then, by (6.12) and (6.13)
we see that states 1 and 2 are absorbing after time t0. By (6.12), (6.14)–(6.17), we get

p(t0, i, t, i, π̃) = 1 ∀i ∈ S and t ≥ t0.(6.18)

Noting that r(1, π̃t) = 0 and r(2, π̃t) = 1 for each t ≥ 0, by (6.18) and (2.6) we have
that for each i ∈ S

Vsp(π̃, i) = 1 for any sample path in {x(t, π̃) = 2, t ≥ t0}.(6.19)

On the other hand, by the Chapman–Kolmogorov equation and (6.18), we have

p(0, i, t, 2, π̃) = p(0, i, t0, 1, π̃)p(t0, 1, t, 2, π̃) + p(0, i, t0, 2, π̃)p(t0, 2, t, 2, π̃)

= p(0, i, t0, 2, π̃) < 1 ∀t0 ≤ t.(6.20)

Using again r(1, π̃t) = 0 and r(2, π̃t) = 1 for each t ≥ 0, by (6.20) and (2.7) we get

V̄ (π̃, i) = lim sup
T→∞

∫ T

0
p(0, i, t, 2, π̃)dt

T

= lim sup
T→∞

∫ T

t0
p(0, i, t, 2, π̃)dt

T

= p(0, i, t0, 2, π̂) < 1 ∀i ∈ S,(6.21)

which together with (6.19) and P π̃
i ({x(t, π̃) = 2, t ≥ t0}) = p(0, i, t0, 2, π̂) > 0 shows

the difference between the ASPR and AER criteria.

7. Concluding remarks. In the previous sections we have studied ASPR op-
timality for denumerable continuous-time Markov chains determined by possibly un-
bounded transition rates. Under suitable assumptions we have shown the existence
of a solution to the optimality equation and the existence of an ASPR-optimal sta-
tionary policy. In addition, we have presented two algorithms to compute, or at least
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approximate, the ASPR-optimal stationary policies. Our formulation and approach
are sufficiently general and can be used to analyze other important problems, such as
the relation among potentials, perturbation analysis, and Markov decision processes
in general spaces, as well as minimax control problems. These problems, as far as we
can tell, have not been previously studied for continuous-time Markov chains with un-
bounded transition or reward rates. It should be mentioned that Example 6.4 shows
that in general the ASPR and AER criteria are different, and it is an interesting
and challenging problem to further show the difference between the two criteria un-
der some ergodicity condition. Also, it remains open to show that an ASPR-optimal
stationary policy is not necessarily canonical. Research on these topics is in progress.
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LP -OPTIMAL BOUNDARY CONTROL FOR THE WAVE EQUATION∗
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Abstract. We study problems of boundary controllability with minimal Lp-norm (p ∈ [2,∞])
for the one-dimensional wave equation, where the state is controlled at both boundaries through
Dirichlet or Neumann conditions. The problem is to reach a given terminal state and velocity in a
given finite time, while minimizing the Lp-norm of the controls. We give necessary and sufficient
conditions for the solvability of this problem. We show as follows how this infinite-dimensional
optimization problem can be transformed into a problem which is much simpler: The feasible set of
the transformed problem is described by a finite number of simple pointwise equality constraints for
the control function in the Dirichlet case while, in the Neumann case, an additional integral equality
constraint appears. We provide explicit complete solutions of the problems for all p ∈ [2,∞] in the
Dirichlet case and solutions for some typical examples in the Neumann case.

Key words. optimal control, boundary control, wave equation, analytic solution, distributed
parameter systems, robust optimization, controllability, state constraints, sensitivity, test examples
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1. Introduction. In this paper, we discuss two-sided Dirchlet or Neumann con-
trols for the one-dimensional wave equation for p between 2 and ∞. We consider the
problem of exact control; that is, starting from the zero position we want to reach a
given terminal state in a given finite time. Our aim is to find control functions with
minimal Lp-norm that steer the system to the target. For certain typical cases, we
present explicit representations of such optimal control functions in terms of the given
target state.

It is well known that, in the L2-case, the optimal control functions can be charac-
terized as the L2-norm minimal solutions of a trigonometric moment problem, which
has been analyzed in depth (see [4], [19], [15]). For the Lp-case (p > 2) there are only
a few publications on the subject (see [2], [16], [12], [11], [14], [10]), and even the ques-
tion of existence of solutions, which is equivalent to the question of Lp-controllability,
has not been solved completely.

In the present paper, we give a complete analysis of this problem for the boundary
control of the one-dimensional wave equation. The problem can be reduced to the
case of the minimal time interval, where controllability is possible. This allows an
answer to be given to the question of solvability of the problem of Lp-controllability
in terms of the properties of the target states. We use the control function for the
minimal time interval to transform the infinite-dimensional problem into a problem,
which is much simpler because it has only a finite number of simple pointwise equality
constraints with an additional integral equality constraint (see (3.29) below) in the
Neumann case. The transformation is based upon the representation of the state
as a trigonometric series and on the corresponding description of the feasible set by
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a sequence of moment equations on the control time interval that is transformed
into a sequence of moment equations on a shorter time interval, namely, the interval
corresponding to the time that a characteristic curve needs to travel from one end of
the string to the other.

In the Dirichlet case, solutions of our problem of optimal control exist for all time
intervals which are at least as long as the time that waves need to travel from one
boundary of the system to the other, provided that the functions that describe the
target are sufficiently regular. The required regularity is that the initial state and the
primitive of the initial velocity are both in the space Lp(0, L). The optimal controls
are given explicitly in terms of these functions for all p ∈ [2,∞). In general, the
L∞-norm minimal control is not determined uniquely. Hence, in general there is a
set of L∞-norm minimal controls that contains more than one element. This convex
set contains a unique element with minimal L2-norm. In Theorem 2.2, we give this
element explicitly.

For Neumann boundary controls, the situation is more complicated. On the time
interval that allows a characteristic curve to travel from one boundary of the system
interval to the other, in general, controllability is possible up to a constant only, in
the sense that instead of the desired target a state can be reached that differs from
the desired target by an appropriate constant. If this time interval is enlarged by
an arbitrarily small time, Lp-controllability is possible on the elongated time interval
if and only if the target functions are sufficiently regular. In this case, the required
regularity is that the initial velocity and the derivative of the initial state are both in
the space Lp(0, L). We transform the optimal control problem to a simpler problem,
where the feasible set is defined by a finite number of constraints. For some cases, we
give explicit expressions for the solution of the optimal control problem in terms of
the given target state.

The relation between the Lp regularity of the controls and the data in the Neu-
mann and Dirichlet cases is consistent with what is known in the classical L2 theory.
The form of the optimal solutions depends on the relation between the length of the
time interval and the time that the waves need to travel from one boundary of the
system to the other. The structure of the optimal control functions is, in general,
quite complicated. The optimal controls usually do not show bang-bang behavior;
this is also true in the L∞-case. This may be surprising, since the optimal solutions
of discretized problems often are of bang-bang type. The difference between the struc-
ture of the controls that solve the PDE-constrained optimization problem and controls
that are solutions of discretized problems has been the subject of recent research; see
[9], [21], and the references therein.

This paper is also a contribution to robust optimal control: We have found con-
trols whose optimality is robust with respect to perturbations of the objective function.
For symmetric targets in the case of Dirichlet boundary controls and for antisymmet-
ric target states in the case of Neumann boundary controls, the controls that are
optimal for Lp (p > 2) are exactly the controls that are optimal with respect to the
L2-norm and sufficiently regular to be contained in the space Lp.

Our results are also interesting from the point of view of sensitivity analysis (see
[3]), since they allow us to analyze how the solutions of the optimization problems
depend on p, the target state, and the time interval.

The explicit solutions of problems of optimal control that we present provide
valuable test examples for numerical methods.

In the linear case, Lp-boundary controls have been considered in Krabs and
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Leugering [16], where W 1,p and also Lp-Dirichlet controls for p ∈ [2,∞] are applied at
one of the boundary points. Optimal control problems for first-order-in-time equations
with distributed Lp-controls have been considered in Fabre, Puel, and Zuazua [5]. See
also Glowinski and Lions [7], [8].

Our work is related to existing controllability results for nonlinear problems; see
[6] for approximate controllability results for semilinear parabolic equations with Lp-
interior or boundary controls and [20] for controllability results for a semilinear wave
equation for a class of nonlinearities that grow superlinearly at infinity.

We hope that our results will prove helpful for future analysis of optimal control
problems with nonlinear systems.

This paper is organized as follows. Section 2 considers the problem of Dirichlet
boundary control. We define the exact optimal boundary control problem, give an
exact controllability result (Theorem 2.1), and state Theorem 2.2, where boundary
controls that solve the optimal control problem are given in terms of the target state.
This result allows a sensitivity analysis for the optimal control problem that is the
subject of the next section. Then examples for the solutions presented in Theorem 2.2
are given. For the proof of the results, a series representation of weak solutions of
the initial value problem is given and the moment problem describing the successful
controls is defined. Then the minimal time interval, where controllability holds, is
studied (see Lemma 2.6). Longer time intervals are studied section 2.10. The cor-
responding moment equations are transformed to moment equations on the minimal
time interval. This transformation allows us to prove Theorem 2.1. Also by trans-
formation to a problem on the minimal time interval, Theorem 2.2 is proved. At the
end of section 2, the cases of symmetric and antisymmetric targets are discussed.

In section 3, we consider the problem of Neumann boundary control. The optimal
control problem is defined and an exact controllability result (Theorem 3.1) is given.
A series representation of the weak solution of the initial value problem and the
moment problem that describes the successful controls is stated. Exact controllability
up to a constant is proved for the minimal time interval (see Lemma 3.2). For larger
time intervals, exact controllability is proved. Theorem 3.4 on the solutions of the
optimization problem for a certain range of control times is stated. Finally, the cases
of symmetric and antisymmetric targets are considered.

2. Dirichlet boundary control. In this section we present a complete solution
of the problem of Lp-norm minimal Dirichlet boundary control of our system.

2.1. The initial-value problem. Let an interval [0, L], a time interval [0, T ],
and a wave speed c > 0 be given. We consider the initial-value problem for the wave
equation

ytt(x, t) = c2yxx(x, t), (x, t) ∈ [0, L] × [0, T ],(2.1)

subject to the initial conditions

y(x, 0) = 0, yt(x, 0) = 0, x ∈ [0, L],(2.2)

and the Dirichlet boundary conditions

y(0, t) = f1(t), y(L, t) = f2(t), t ∈ [0, T ].(2.3)

For the description of the desired target state, we add the following end conditions:

y(x, T ) = y0(x), yt(x, T ) = y1(x), x ∈ [0, L].(2.4)
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The function y0 is in the Hilbert space L2(0, L) of square integrable functions on the
interval (0, L), and the function y1 is integrable such that Y1(x) =

∫ x

0
y1(z) dz is in

L2(0, L), so y1 is contained in the corresponding Sobolev space W−1,2(0, L).

2.2. The optimization problem. For a fixed time T > 0 and a given value of
p ∈ [2,∞), we consider the following optimization problem:

C(p) : inf ‖f1‖pp,(0,T ) + ‖f2‖pp,(0,T ) s.t. f1, f2 ∈ Lp(0, T )

and the solution y of the initial boundary-value problem (2.1)–(2.3) satisfies the end
conditions (2.4).

In the case p = ∞, our optimization problem is the following:

C(∞) : inf max{‖f1‖∞,(0,T ), ‖f2‖∞,(0,T )} s.t. f1, f2 ∈ L∞(0, T )

and the solution y of (2.1)–(2.3) satisfies the end conditions (2.4).
Here, for p ∈ [2,∞), we use the norm

‖f‖p,(0,T ) =

(∫ T

0

|f(t)|p dt
)1/p

,

and for p = ∞ we use the norm ‖f‖∞,(0,T ) = ess sup{|f(t)| : t ∈ (0, T )}.
2.3. Exact controllability.
Theorem 2.1. Let p ∈ [2,∞] and T ≥ L/c be given. The initial boundary-value

problem (2.1)–(2.3) has a weak solution that satisfies the end conditions (2.4) with f1,
f2 ∈ Lp(0, T ) if and only if the target states y0, y1 satisfy the following conditions:
y0 ∈ Lp(0, L) and Y1 ∈ Lp(0, L), where Y1(x) =

∫ x

0
y1(z) dz, that is, y1 ∈ W−1,p(0, L).

This implies that problem C(p) is solvable if and only if y0 and Y1 are in Lp(0, L).
A standard method for proving an exact controllability result of this type is

to reduce the exact controllability problem to a moment problem and to prove the
solvability of the moment problem using Ingham’s classical inequalities (see [13]) or
its generalizations (see [18], [16]). For the cases p = 2 and p = ∞, Ingham’s results
provide an alternative proof of Theorem 2.1. In this paper, we use a different approach:
We give a solution of the moment problem explicitly (see section 2.9).

We expect that Theorem 2.1 holds for all p ≥ 1, but for the case 1 ≤ p < 2 a
different method of proof should be used.

In the next section we will state our main result, which gives the solution of
problem C(p) in terms of two functions that depend on the target states.

2.4. Solution of the optimal control problem. In this section we present
optimal control functions that solve problem C(p). For p < ∞, the solution is unique,
and for p = ∞, we present one element on the set of L∞-norm minimal controls,
namely, the element of this convex set with minimal L2-norm.

Theorem 2.2. Let p ∈ [2,∞] and a time T ≥ L/c be given. Choose a natural
number k such that kL/c ≤ T < (k + 1)L/c. Define the function

Y1(x) =

∫ x

0

y1(t) dt.

Assume that y0, Y1 ∈ Lp(0, L) and define the functions g1, g2 in Lp(0, L/c) by

g1(t) = y0(ct)/2 − (1/(2c)) Y1(ct),

g2(t) =y0(L− ct)/2 + (1/(2c)) Y1(L− ct).
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If p < ∞, let r̂ denote the real number that minimizes the function

hp(r) =

[∫ T−kL/c

0

1

(k + 1)p−1

[∣∣g1(t) + r
∣∣p +

∣∣g2(t) − r
∣∣p] dt

+

∫ L/c

T−kL/c

1

kp−1

[∣∣g1(t) + r
∣∣p +

∣∣g2(t) − r
∣∣p] dt] ,

while, if p = ∞, let r̂ be the real number that minimizes

h∞(r) = max
[
‖(g1(t) + r)/(k + 1)‖∞,(0,T−kL/c), ‖(g2(t) − r)/(k + 1)‖∞,(0,T−kL/c),

‖(g1(t) + r)/k‖∞,(T−kL/c,L/c), ‖(g2(t) − r)/k‖∞,(T−kL/c,L/c)

]
.

For j ∈ {0, . . . , k}, define the intervals

I1
j = [jL/c, T − k(L/c) + jL/c],

and for j ∈ {0, . . . , k − 1}, define the intervals

I2
j = [T − k(L/c) + jL/c, (j + 1)L/c].

For natural numbers j and n let gb(n+j) = g1 if n+ j is odd and gb(n+j) = g2 if n+ j
is even. Then a solution of problem C(p) is given by the pair of control functions
(f1, f2) defined as follows:

fn(T − t) =
(−1)j gb(n+j)(t− jL/c) − (−1)n r̂

k + 1
(2.5)

for n ∈ {1, 2}, j ∈ {0, . . . , k}, t ∈ I1
j , and

fn(T − t) =
(−1)j gb(n+j)(t− jL/c) − (−1)nr̂

k
(2.6)

for n ∈ {1, 2}, j ∈ {0, . . . , k − 1}, t ∈ I2
j .

If p < ∞, this is the unique solution of problem C(p). If p = ∞, this is a solution
of C(∞), namely, the element of the set of solutions that has the smallest L2-norm.

For certain interesting target states, the value of r̂ can be computed explicitly. If
y0 and y1 are symmetric, r̂ = Y1(L)/(4c). In particular, in this case the value of r̂
is independent of p. This implies that the solution is also independent of p. Hence
for a symmetric target state with y0, Y1 ∈ Lp(0, L), our optimal control that solves
problem C(p) also solves problem C(q) for all q ∈ [2, p].

Later we will characterize the feasible controls (f1, f2) that steer the system to the
desired target state as the solutions of a trigonometric moment problem. To do this,
we need a series representation of the solution of the initial boundary-value problem
that we obtain from the weak form of the problem.

Then we show that the set of successful controls can be described by a set of two
equations for each t ∈ [0, L/c]. This leads to a family of optimization problems, with
parameter t ∈ [0, L/c], whose solutions are coupled by a constant r. The solutions of
these optimization problems yield the values of the optimal controls up to the constant
r, and thus we obtain a parametric family of successful controls with parameter r.
Inserting the elements of this family into the objective function yields the values hp(r).
The optimal control is the element of this family of controls for which the value hp(r)
is minimal.
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2.5. Sensitivity analysis for the optimal control problem. The explicit
solutions that we have obtained allow a detailed study of their sensitivity with respect
to data perturbations, which is useful for obtaining some idea about what might hold
in the general case of optimal control problems with hyperbolic PDEs. Here we study
only the continuity of the solutions of C(p) as functions of the parameter p.

Lemma 2.3. The number r̂(p) that minimizes the function hp depends contin-
uously on p. In fact, if y0 and Y1 are in Lq(0, L) for some q ∈ [2,∞], we have
limp→q− r̂(p) = r̂(q) and for p1 < q we have limp2→p1

r̂(p2) = r̂(p1).
Proof. Case 1: If hq(r̂(q)) = 0, we have r̂(p) = r̂(q) for all p < q. Case 2: Assume

that q < ∞ and hq(r̂(q)) > 0. Then for all p ∈ [2, q], hp(r̂(p)) > 0 and h′′
p(r̂(p)) > 0.

Consider the function F : [2, q] × R → R, F (p, r) = h′
p(r). Then for all p ∈ [2, q],

F (p, r̂(p)) = 0 and ∂rF (p, r̂(p)) = h′′
p(r̂(p)) > 0. Hence the implicit function theorem

implies that the function r̂ is continuously differentiable on [2, q]. Case 3: q = ∞.
Let f1(r), f2(r) denote the control functions defined in Theorem 2.2 that correspond
to r ∈ R. Then for all p ∈ [2,∞) we have hp(r) = ‖f1(r)‖pp,(0,T ) + ‖f2(r)‖pp,(0,T ) and

h∞(r) = max{‖f1(r)‖∞,(0,T ) + ‖f2(r)‖∞,(0,T )}. Thus for all r, limp→∞ hp(r)
1/p =

h∞(r). Moreover, the triangle inequality for the p-norm implies that for all p ∈ [2,∞),
r1, r2 ∈ R, we have

|hp(r1)
1/p − hp(r2)

1/p| ≤ (‖f1(r1) − f1(r2)‖pp,(0,T ) + ‖f2(r1) − f2(r2)‖pp,(0,T ))
1/p.

(2.7)

For all p ∈ [2,∞] we have hp(r̂(p))
1/p ≤ hp(r̂(∞))1/p and limp→∞ hp(r̂(∞))1/p =

h∞(r̂(∞)), and hence the set {hp(r̂(p))
1/p, p ∈ [2,∞]} is bounded. With the def-

inition of hp, this implies that the set {r̂(p), p ∈ [2,∞]} is also bounded. Sup-
pose that a sequence (pk) converging to ∞ with pk ∈ [2,∞) for all k is given and
limk r̂(pk) = r∗. Using (2.7) it can be shown that h∞(r∗) = limp→∞ hp(r∗)

1/p ≤
lim supp→∞ hp(r̂(p))

1/p ≤ h∞(r̂(∞)). Thus h∞(r∗) ≤ h∞(r̂(∞)). Since r̂(∞) is the
minimizer of h∞ this implies that h∞(r∗) = h∞(r̂(∞)), and since the minimizer of h∞
is determined uniquely, this implies that r∗ = r̂(∞), and the assertion follows.

Lemma 2.3 and Theorem 2.2 imply the following proposition.
Proposition 2.4. Let p ∈ [2,∞] be given. Assume that y0 and Y1 are in Lp(0, L).

Consider a sequence (qk)k (qk ≤ p) that converges to q0 ≤ p. Then for the solutions
(f1,k, f2,k)

T of the optimization problems C(qk) presented in Theorem 2.2, we have

lim
k→∞

‖f1,k − f1,0‖p,(0,T ) + ‖f2,k − f2,0‖p,(0,T ) = 0,

where (f1,0, f2,0) is the solution of C(q0) presented in Theorem 2.2.

2.6. Examples. For our examples, let L = 1, c = 1, and T = 3.25, and hence
k = 3.

2.6.1. Example 1. Let y0(x) = x− L/2, y1(x) = 1. For p = ∞, the optimal r̂
is 5/28 and we have h∞(5/28) = 1/7. Figure 2.1(a) shows the optimal controls. The
thick lines show f1 and the dotted line shows f2. A plot of the corresponding optimal
state y in the interior of the rectangle [0, L] × [0, T ] is shown in Figure 2.1(b). Here
the optimal state is piecewise linear and the optimal velocity is piecewise constant
on areas that are bounded by characteristic curves in the interior of the rectangle
[0, L] × [0, T ].
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2.6.2. Example 2. The desired state is y0(x) = x−L/2, y1(x) = 0. For p = ∞,
the optimal r̂ equals −1/28. For p = 2, the optimal r̂ is −1/80. Figure 2.2(a) shows
the optimal controls for p = ∞. The thick lines show f1, and the dotted line shows
f2. Figure 2.2(b) is a plot of the corresponding state y in the interior of the rectangle
[0, L]× [0, T ]. Due to the form of the target, the optimal state is piecewise linear and
the optimal velocity is piecewise constant.

2.6.3. Example 3. In [21], [6] it is pointed out that the optimal boundary
controls can also be determined as boundary traces of solutions of adjoint optimal
control problems. This example illustrates that for p ∈ [2,∞), this approach yields
the same controls as Theorem 2.1.

Consider the following optimal control problem:

inf ‖v‖2,(0,2) s.t. ytt(x, t) = yxx(x, t), y(0, t) = 0, y(1, t) = v(t),(A)

y(x, 0) = y0(x), yt(x, 0) = 0, y(x, T ) = yt(x, T ) = 0, (x, t) ∈ (0, 1) × (0, 2).
Let y0 ∈ L2(0, 1) be continued to the interval (−1, 1) as the antisymmetric func-

tion y0
a, that is, y0

a(x) = y0(x) for x ∈ (0, 1), y0
a(x) = −y0(−x) for x ∈ (−1, 0).

Then problem (A) has the same solutions as problem C(2) with c = 1, L = T = 2,
y0(x) = y0

a(x + 1), y1(x) = 0 in the sense that the optimal controls satisfy f2(t) =
v(T − t) = −f1(t). The adjoint optimization problem presented in [21] is

inf
1

2

∫ 2

0

|ux(1, t)|2 dt +

∫ 1

0

y0(x)u1(x) − y1(x)u0(x) dx s.t. utt(x, t) = uxx(x, t),

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), ut(x, 0) = u1(x), (x, t) ∈ (0, 1) × (0, 2).
The solution of this adjoint optimization problem is u0(x) = const, u1(x) =

−y0(x)/2, which yields the optimal control v(t) = ux(1, t) = y0(1− t)/2 for t ∈ (0, 1),
v(t) = ux(1, t) = −y0(t− 1)/2 for t ∈ (1, 2).

Theorem 2.2 yields exactly the same solutions. With k = 1, g1(t) = y0
a(t− 1)/2,

g2(t) = y0
a(1 − t)/2, we have r̂ = 0, and hence for t ∈ (0, 1) = I2

0 we have f2(T − t) =
g2(t) and for t ∈ (1, 2) = I2

1 we have f2(T − t) = −g1(t).

2.6.4. Example 4. For p = ∞, consider the following optimal control problem:

inf ‖v‖∞,(0,2) s.t. ytt(x, t) = yxx(x, t), y(0, t) = 0, y(1, t) = v(t),(B)

y(x, 0) = y0(x), yt(x, 0) = 0, y(x, T ) = yt(x, T ) = 0, (x, t) ∈ (0, 1) × (0, 2).
Let y0 ∈ L2(0, 1) be continued to the interval (−1, 1) as the antisymmetric func-

tion y0
a. Then problem (B) has the same solutions as problem C(∞) with c = 1,

L = T = 2, y0(x) = y0
a(x+1), y1(x) = 0 in the sense that the optimal controls satisfy

f2(t) = v(T − t) = −f1(t).
Following [6], for a given solution u of the adjoint optimization problem

inf
1

2

(∫ 2

0

|ux(1, t)| dt
)2

+

∫ 1

0

y0(x)u1(x) − y1(x)u0(x) dx s.t. utt(x, t) = uxx(x, t),

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), ut(x, 0) = u1(x), (x, t) ∈ (0, 1)×(0, 2) a solution
v of problem (B) is quasi bang-bang in the sense that v(t) ∈ sign(ux(1, t)).
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Assume that y0 attains its infinity norm on a set of measure greater than zero.
Then the necessary optimality conditions for the adjoint optimization problem imply
that there is a constant c0 > 0 such that for t ∈ (0, 1), ux(1, t) = y0(1 − t)c0 if
y0(1 − t) ∈ {‖y0‖∞,(0,1),−‖y0‖∞,(0,1)}, ux(1, t) = 0 otherwise, and for t ∈ (1, 2),
ux(1, t) = −y0(t−1)c0 if y0(t−1) ∈ {‖y0‖∞,(0,1),−‖y0‖∞,(0,1)}, ux(1, t) = 0 otherwise.

Theorem 2.2 yields exactly the same solutions (f1, f2) as in Example 3. The
solution v(t) = f2(2 − t) satisfies the quasi-bang-bang characterization given above,
which is a restriction only on the set where y0 attains its infinity norm. Note that
v(t) satisfies at the same time the quasi-bang-bang characterization and is given as
the boundary trace of the optimal solution of the adjoint optimization problem for
the L2-case considered in Example 3.

2.7. Weak solutions of the initial-value problem. A general description
of the weak form of the initial boundary-value problems with Dirichlet or Neumann
boundary conditions can be found in [17]. The solution y of our initial boundary-value
problem (2.1)–(2.3) has the series representation

y(x, t) =

∞∑
j=1

(2c/L)

∫ t

0

[f1(s) − (−1)jf2(s)] sin ((cπj/L)(t− s)) ds sin ((jπ/L)x) ,

and for the time-derivative yt we have

yt(x, t) =

∞∑
j=1

2c2jπ

L2

∫ t

0

[f1(s) − (−1)jf2(s)] cos ((cπj/L)(t− s)) ds sin ((jπ/L)x) .

2.8. End conditions and a trigonometric moment problem. For j ∈ N,
define the function ϕj(x) = (

√
2/
√
L) sin(jπx/L) and the numbers

yj0 =

∫ L

0

y0(x)ϕj(x) dx, yj1 =

∫ L

0

y1(x)ϕj(x) dx.

Inserting the series representations of the solution y and its time derivative yt into
the end conditions (2.4) yields the trigonometric moment equations∫ T

0

(
√

2c/
√
L)[f1(s) − (−1)jf2(s)] sin ((cπj/L)(T − s)) ds = yj0,(2.8)

∫ T

0

(
√

2c2πj/L3/2)[f1(s) − (−1)jf2(s)] cos ((cπj/L)(T − s)) ds = yj1(2.9)

for j ∈ N. Hence, we have described the set of feasible controls as the solution set
of a trigonometric moment problem. This approach to controllability via moment
problems is well established (see, for example, [19], [1]).

2.9. The minimal time interval with controllability. In this section we
study controllability on the time interval with T = L/c. Since this is the time that a
characteristic curve starting at one end of the system needs to reach the other end, it
is clear that this is the minimal time interval, where controllability for general target
states y0 ∈ L2(0, L), y1 ∈ W−1

2 can possibly hold.
Definition 2.5. A function f ∈ L2(0, L) is symmetric with respect to the

midpoint L/2 if f(L/2 − x) = f(L/2 + x) for all x ∈ (0, L/2). The function f is
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antisymmetric on the interval [0, L] with respect to the midpoint L/2 if f(L/2− x) =
−f(L/2 + x) for all x ∈ (0, L/2).

Remark 2.1. Each function f ∈ L2(0, L) can be written as a sum f = feven +
fodd with a symmetric function feven ∈ L2(0, L) and an antisymmetric function
fodd ∈ L2(0, L). The functions feven and fodd are determined uniquely. Moreover,
f ∈ Lp(0, L) if and only if feven and fodd are in Lp(0, L). In fact, we have

feven(x) = (f(x) + f(L− x))/2, fodd(x) = (f(x) − f(L− x))/2.

Note that feven(x) − fodd(x) = f(L− x).
For given control functions f1 and f2 we introduce the sum

S(t) = (f1(T − t) + f2(T − t))/2(2.10)

and the difference

D(t) = (f1(T − t) − f2(T − t))/2.(2.11)

The trigonometric moment equations (2.8), (2.9) are equivalent to two moment
problems for the functions S and D. We start with the moment problem for D:∫ Tc

0

D(t/c)(
√

2/
√
L) sin(2πjt/L) dt = y2j

0 /2,(2.12) ∫ Tc

0

D(t/c)(
√

2/
√
L) cos(2πjt/L) dt = Ly2j

1 /(4cπj).(2.13)

This means that we know all the Fourier coefficients of the function D(·/c) except
the coefficient that corresponds to the constant function. Hence there exists a real
number r such that for all x ∈ [0, L] we have

D
(x
c

)
= r +

∞∑
j=1

y2j
0

2

√
2

L
sin

(
2πjx

L

)
− 1

2c

∞∑
j=1

−y2j
1 L

2πj

√
2

L
cos

(
2πjx

L

)
.

We define the symmetric function

Y even
1 (x) =

∞∑
j=1

−y2j
1 (L/(2πj))

√
(2/L) cos((2πj/L)x)

and the antisymmetric functions

yodd1 =

∞∑
j=1

(y2j
1 )

√
(2/L) sin(2πjx/L), yodd0 =

∞∑
j=1

(y2j
0 )

√
(2/L) sin(2πjx/L).

We have (Y even
1 )′(x) = yodd1 , and for the function D for all x ∈ [0, L/c], we have

D(x) = r + yodd0 (cx)/2 − (1/(2c))Y even
1 (cx).(2.14)

Now we consider the moment problem for the function S:∫ Tc

0

S(t/c)(
√

2/
√
L) sin((2j − 1)πt/L) dt = y2j−1

0 /2,(2.15) ∫ Tc

0

S(t/c)(
√

2/
√
L) cos((2j − 1)πt/L) dt = Ly2j−1

1 /(2(2j − 1)πc).(2.16)
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We define the symmetric functions

yeven0 (x) =

∞∑
j=1

(y2j−1
0 )

√
(2/L) sin((2j − 1)πx/L),

yeven1 (x) =

∞∑
j=1

(y2j−1
1 )

√
(2/L) sin((2j − 1)πx/L)

and the antisymmetric function

Y odd
1 (x) =

∞∑
j=1

−y2j−1
1 (L/((2j − 1)π))

√
(2/L) cos(((2j − 1)π/L)x).

Then we have (Y odd
1 )′(x) = yeven1 (x). For the function S for all x ∈ [0, L/c], we have

S(x) = yeven0 (cx)/2 − (1/(2c))Y odd
1 (cx).(2.17)

Thus, for the control functions f1, f1 that steer the system to the target state in the
time T = L/c, we have

f1(T − t) = S(t) + D(t) = r + y0(ct)/2 − (1/(2c))Y1(ct),(2.18)

f2(T − t) = S(t) −D(t) = −r + y0(L− ct)/2 + (1/(2c))Y1(L− ct),(2.19)

where r is a real number.
This representation of the functions f1 and f2 implies that if y0 and Y1 are in

the space Lp(0, L), then the functions f1 and f2 are in the space Lp(0, L/c). On the
other hand, if f1 and f2 are in the space Lp(0, L/c), then D and S also are in the
space Lp(0, L/c), which implies that yodd0 , Y even

1 , yeven0 , Y odd
1 are in Lp(0, L). This,

in turn, is equivalent to the statement that y0 and Y1 are in Lp(0, L). Thus, we have
the following.

Lemma 2.6. Let p ∈ [2,∞] and T = L/c. If the control functions f1 and f2

are in Lp(0, T ), then the state y(·, T ), yt(·, T ) that the system has reached at time T
has the following regularity: y(·, T ) is in Lp(0, L) and h(x) =

∫ x

0
yt(z, T ) dz is also in

Lp(0, L).
For a given target state (y0, y1) with y0, Y1 ∈ Lp(0, L), there exist control functions

f1 and f2 in Lp(0, T ) that steer the system to this target; moreover, these controls are
uniquely determined up to the constant r in (2.18), (2.19).

The uniqueness follows from the fact that the moment problem for S has a unique
solution in L2(0, T ) and the moment problem for D determines D up to a constant.

2.10. Controllability on larger time intervals. In this section we show how
the question of controllability for a time interval [0, T ] with T > L/c can be reduced
to the question for the minimal time interval [0, L/c] that was considered in the last
section. This reduction depends upon the fact that all the trigonometric functions
that appear in the moment equations have similar periodicity properties.

2.10.1. Transformation of the moment equations. Assume that T ≥ L/c.
Choose the natural number k such that kL/c ≤ T < (k+1)L/c. Let the function ϕ(s)
be an element of the set {sin((cπj/L)s), cos((cπj/L)s) with j ∈ N, j odd }. Then we
have ϕ(s + L/c) = −ϕ(s), and for all functions v ∈ L2(0, T ), the following equation
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is valid: ∫ T

0

v(s)ϕ(s) ds =

∫ T−kL/c

0

⎡⎣ k∑
j=0

(−1)jv(s + jL/c)

⎤⎦ϕ(s) ds

+

∫ L/c

T−kL/c

⎡⎣k−1∑
j=0

(−1)jv(s + jL/c)

⎤⎦ϕ(s) ds.

Define the function

v̂(t) =

k∑
j=0

(−1)jv(t + jL/c) for t ∈ (0, T − kL/c),(2.20)

v̂(t) =

k−1∑
j=0

(−1)jv(t + jL/c) for t ∈ (T − kL/c, L/c).(2.21)

Then ∫ L/c

0

v̂(s)ϕ(s) ds =

∫ T

0

v(s)ϕ(s) ds.

As in the last section, let the functions S and D be defined by (2.10) and (2.11). Then
for a function S that satisfies the moment equations (2.15), (2.16) for all j ∈ N, the
corresponding function v̂ must satisfy these moment equations with integrals on the
interval (0, L/c). In Lemma 2.6, we have stated that the moment equations (2.15),
(2.16) with T = L/c determine a unique solution Ŝ, which is given by (2.17).

For a function D that satisfies the moment equations (2.12), (2.13), the corre-
sponding function v̂ is defined as in (2.20), (2.21) but the numbers (−1)j are replaced
by 1 and must satisfy (2.12), (2.13) on the interval (0, L/c). These moment equations
determine D̂, which is given by (2.14) up to a constant.

In what follows, let D̂ be defined by the equation

D̂(x) = yodd0 (cx)/2 − (1/(2c))Y even
1 (cx)(2.22)

and Ŝ by

Ŝ(x) = yeven0 (cx)/2 − (1/(2c))Y odd
1 (cx).(2.23)

So we see that we can describe the feasible controls, that is, the controls that steer
the system to the target, by the following equations (with Δ = T − kL/c):

Ŝ(t) =

k∑
j=0

(−1)jS(t + jL/c), D̂(t) + r̂ =

k∑
j=0

D(t + jL/c), t ∈ (0,Δ),(2.24)

Ŝ(t) =

k−1∑
j=0

(−1)jS(t + jL/c), D̂(t) + r̂ =

k−1∑
j=0

D(t + jL/c), t ∈ (Δ, L/c),(2.25)

where r̂ can be any real number.
This means that we have reduced our problem of optimal control to an optimiza-

tion problem with four affine linear pointwise equality constraints.
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2.10.2. Proof of Theorem 2.1. Now we proceed to the proof of Theorem 2.1.
It is clear that f1 and f2 are in Lp(0, T ) if and only if S and D are in Lp(0, T ).

If y0 and Y1 are in Lp(0, L), Lemma 2.6 implies that we can find Ŝ and D̂ in
Lp(0, L/c) that satisfy the moment equations (2.15), (2.16) and (2.12), (2.13), re-
spectively. Then we can find functions S and D in Lp(0, T ) such that (2.24)–(2.25)
hold, for example, with r̂ = 0 and the definitions D(t) = D̂(t) and S(t) = Ŝ(t) for
t ∈ (0, L/c) and 0 = D(t) = S(t) for t ≥ L/c. In this way, we obtain feasible controls
f1 and f2 in Lp(0, T ).

Now we prove the converse. Let f1 and f2 in the space Lp(0, T ) be given. Then
the corresponding functions D̂ and Ŝ defined by (2.24)–(2.25) with r̂ = 0 are in the
space Lp(0, L/c). The corresponding controls on the time interval (0, L/c) reach the
same target as f1 and f2 on the time interval (0, T ) since they solve the corresponding
moment problem on the shorter time interval (0, L/c). Hence Lemma 2.6 implies that
the corresponding target state has the desired regularity, namely, y0 and Y1 are in
Lp(0, L). So the proof of Theorem 2.1 is complete.

2.11. Transformation of the optimization problem. In section 2.10.1 we
showed that the set of controls f1, f2 for which the corresponding state y satisfies the
end conditions (2.4) can be described by (2.24)–(2.25), with S defined by (2.10), D
defined by (2.11), Ŝ given by (2.23), and D̂ as in (2.22).

Thus for p < ∞, problem C(p) can be transformed into the following form:

inf ‖f1‖pp,(0,T ) + ‖f2‖pp,(0,T ) s.t. f1, f2 ∈ Lp[0, T ] and S defined by (2.10)

and D defined by (2.11) satisfy the constraints (2.24)–(2.25) for some r̂ ∈ R with
Ŝ given by (2.23) and D̂ given by (2.22). For p = ∞, C(p) is equivalent to the
corresponding problem with objective function

max{‖f1‖∞,(0,T ), ‖f2‖∞,(0,T )}.

2.11.1. Proof of Theorem 2.2. In this section, we use the transformed form
of problem C(p) that was given in the last section to prove Theorem 2.2.

First we consider the case p < ∞. Define the function

J(f1, f2) = ‖f1‖pp,(0,T ) + ‖f2‖pp,(0,T ),

which is the objective function of problem C(p) for p < ∞. We have the representation

J(f1, f2) =

∫ T−kL/c

0

k∑
j=0

∣∣f1(T − t− jL/c)
∣∣p +

∣∣f2(T − t− jL/c)
∣∣p dt(2.26)

+

∫ L/c

T−kL/c

k−1∑
j=0

∣∣f1(T − t− jL/c)
∣∣p +

∣∣f2(T − t− jL/c)
∣∣p dt.

Since f1(T − t) = S(t) + D(t) and f2(T − t) = S(t) − D(t), the constraints (2.24)
imply (for a natural number n, let b(n) = 1 if j is odd and b(n) = 2 if j is even)

k∑
j=0

(−1)jfb(j+1)(T − t− jL/c) = Ŝ(t) + D̂(t) + r̂,(2.27)

k∑
j=0

(−1)jfb(j)(T − t− jL/c) = Ŝ(t) − D̂(t) − r̂(2.28)
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for all t ∈ (0, T − kL/c), and the constraints (2.25) imply

k−1∑
j=0

(−1)jfb(j+1)(T − t− jL/c) = Ŝ(t) + D̂(t) + r̂,(2.29)

k−1∑
j=0

(−1)jfb(j)(T − t− jL/c) = Ŝ(t) − D̂(t) − r̂(2.30)

for all t ∈ (T − kL/c, L/c).
In our optimization problem, each point of the time interval [0, T ] corresponds

to two equality constraints. The objective function J is given by an integral over
the time interval [0, T ], where for each t ∈ [0, T ] the integrand is the sum of two
terms, each of which depends only on function values that appear in exactly one of
the constraints. The idea of our proof is that we can minimize the objective function
J subject to the two pointwise constraints by minimizing for each point in time both
parts of the integrand separately subject to the corresponding equality constraint.

The solutions of the resulting parametric family of optimization problems are
given in the following lemma.

Lemma 2.7. Let p ≥ 2, a natural number d, and a real number g be given.
Consider the optimization problem

H(p, d, g) : min
(f0,...,fd)∈Rd+1

d∑
j=0

|fj |p s.t.

d∑
j=0

(−1)jfj = g.

The unique solution of H(p, d, g) has the components fj = (−1)jg/(d + 1) and the
optimal value is |g|p/(d + 1)p−1.

Proof. H(p, d, g) is a convex optimization problem with a strictly convex objective
function, and hence it has at most one solution. The point with the components
(−1)jg/(d+1) is feasible and satisfies the necessary optimality conditions, and hence
it is the unique solution of H(p, d, g).

Let the number r̂ be given. Representation (2.26) of the objective function J
shows that in order to minimize J subject to our pointwise constraints, it suffices to
choose the values of our control functions f1, f2 as follows: For t ∈ [0, T − kL/c],
let fj = fb(j+1)(T − t − jL/c) (j ∈ {0, . . . , k}) be such that they solve problem

H(p, k, Ŝ(t) + D̂(t) + r̂), that is,

fb(j+1)(T − t− jL/c) = (−1)j(Ŝ(t) + D̂(t) + r̂)/(k + 1),

and let fj = fb(j)(T − t− jL/c) be the solution of problem H(p, k, Ŝ(t) − D̂(t) − r̂),
that is,

fb(j)(T − t− jL/c) = (−1)j(Ŝ(t) − D̂(t) − r̂)/(k + 1).

Similarly, for t ∈ [T−kL/c, L/c], let fj = fb(j+1)(T−t−jL/c) (j ∈ {0, . . . , k−1})
be such that they solve problem H(p, k − 1, Ŝ(t) + D̂(t) + r̂), that is,

fb(j+1)(T − t− jL/c) = (−1)j(Ŝ(t) + D̂(t) + r̂)/k,

and let fj = fb(j)(T − t − jL/c) be such that they solve problem H(p, k − 1, Ŝ(t) −
D̂(t) − r̂), that is,

fb(j)(T − t− jL/c) = (−1)j(Ŝ(t) − D̂(t) − r̂)/k.
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By Lemma 2.7, this yields the following value of the objective function:

J(f1, f2) =

∫ T−kL/c

0

(1/(k + 1)p−1)
[
|Ŝ(t) + D̂(t) + r̂|p + |Ŝ(t) − D̂(t) − r̂|p

]
dt

+

∫ L/c

T−kL/c

(1/kp−1)
[
|Ŝ(t) + D̂(t) + r̂|p + |Ŝ(t) − D̂(t) − r̂|p

]
dt.

Since this value still depends on our choice of the real number r̂, we define this value
as hp(r̂). Now the problem remains to find the value of r̂ for which the corresponding
value of the objective function is minimal. Since the function hp is strictly convex
and differentiable, the equation h′

p(r̂) = 0 uniquely determines the optimal value of r̂.

Remember that due to (2.18) and (2.19), we can compute Ŝ + D̂ and Ŝ− D̂ from
the given functions y0 and Y1, so the optimal value of r̂ can be determined.

Now we come to the case p = ∞. Also in this case, we can transform our problem
C(∞) into a problem with the four simple pointwise equality constraints (2.27)–(2.30):

inf max{‖f1‖∞,(0,T ), ‖f2‖∞,(0,T )} s.t. f1, f2 ∈ L∞(0, T )

and there is a real number r̂ such that f1, f2 satisfy (2.27)–(2.30).
In order to solve this problem, we look for solutions at each t ∈ (0, T − kL/c) of

the problems to minimize

max{|fb(j+1)(T − t− jL/c)|, j ∈ {0, . . . , k}} s.t. (2.27) is satisfied,

max{|fb(j)(T − t− jL/c)|, j ∈ {0, . . . , k}} s.t. (2.28) is satisfied,

and for each t ∈ (T − kL/c, L/c) for solutions of the analogous problems with (2.29),
(2.30), respectively. We present the solutions of the resulting parametric family of
optimization problems in the following.

Lemma 2.8. Let a natural number d and a real number g be given. Consider the
optimization problem

H(d, g) : min
(f0,...,fd)∈Rd+1

max{|fj |, j ∈ {0, . . . , d}} s.t.

d∑
j=0

(−1)jfj = g.

The unique solution of H(d, g) has the components fj = (−1)jg/(d + 1) and the
optimal value is |g|/(d + 1).

Proof. The point with the components (−1)jg/(d+1) is feasible. Hence the opti-
mal value of H(d, g) is ≤ |g|/(d+1). Suppose that there exists a point (h0, . . . , hd) with∑d

j=0(−1)jhj = g and max |hj | < |g|/(d + 1). Then |
∑d

j=0(−1)jhj | <
∑d

j=0 |g|/(d +
1) = |g|, a contradiction. So the optimal value of H(d, g) is |g|/(d + 1). Using a
similar contradiction argument we see that for every solution (h0, . . . , hd) of H(d, g)
we have |hj | = |g|/(d + 1) for all j. Inserting this condition into the equation∑d

j=0(−1)jhj = g yields
∑d

j=0(−1)jsignhj = (d + 1)signg, and hence for all j we

have signhj = (−1)jsigng, and the assertion follows.
In analogy to the case p < ∞, Lemma 2.8 yields the desired solutions. In order to

obtain an optimal control in this case, we choose r̂ such that it minimizes the function
h∞ defined as

h∞(r) = max
{
‖(Ŝ(t) + D̂(t) + r)/(k + 1)‖∞,(0,T−kL/c),

‖(Ŝ(t) − D̂(t) − r)/(k + 1)‖∞,(0,T−kL/c),

‖(Ŝ(t) + D̂(t) + r)/k‖∞,(T−kL/c,L/c), ‖(Ŝ(t) − D̂(t) − r)/k‖∞,(T−kL/c,L/c)

}
.
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This determines the value of r̂ uniquely. However, in the L∞-case, the optimal
control is in general not uniquely determined. For the given value of r̂, our construc-
tion above yields the solution of (2.27)–(2.30) with minimal L2-norm, which is in fact
the same as our solution for the case p = ∞, so we have constructed the solution of
problem C(∞) with minimal L2-norm.

2.11.2. Symmetric targets. In this subsection, we assume that for all even
j ∈ N we have ∫ L

0

y0(x)ϕj(x) dx = 0 =

∫ L

0

y1(x)ϕj(x) dx.(2.31)

This means that the functions y0 and y1 are even on the interval [0, L] with respect
to the midpoint L/2. This implies that Y1 is antisymmetric. Thus, (2.22) implies
that D̂ = 0. We have h′(0) = 0, and hence, in this case, the number r̂ = 0 is
the optimal choice. On the time interval (0, L/c) this yields the control functions
f1(T − t) = y0(ct)/2− (1/(2c))Y1(ct) = f2(T − t). Also on larger time intervals (0, T ),
for the optimal controls we have f1 = f2, since g1 = g2.

2.11.3. Antisymmetric targets. In this subsection, we assume that for all odd
j ∈ N (2.31) holds. This means that the functions y0 and y1 are antisymmetric on the
interval [0, L] with respect to the midpoint L/2. Then Y1 is symmetric, and in the
statement of Theorem 2.2 we have g1(t) = −g2(t). Therefore, for the optimal controls
we have f1 = −f2.

3. Neumann boundary control. In this section we study the problem in which
the system is controlled by Neumann boundary conditions.

3.1. The initial-value problem. Let a wave speed c > 0 be given. We consider
the initial-value problem with the wave equation

ytt(x, t) = c2yxx(x, t), (x, t) ∈ [0, L] × [0, T ],(3.1)

subject to the initial conditions

y(x, 0) = 0, yt(x, 0) = 0, x ∈ [0, L],(3.2)

and the Neumann boundary conditions

yx(0, t) = −f1(t), yx(L, t) = f2(t), t ∈ [0, T ].(3.3)

The desired target state is given in the following end conditions:

y(x, T ) = y0(x), yt(x, T ) = y1(x), x ∈ [0, L].(3.4)

The functions y0, y1 are in the space L2(0, L).

3.2. The optimization problem. For a fixed time T > 0 and a given value of
p ∈ [2,∞), we consider the following optimization problem:

C(p) : inf ‖f1‖pp,(0,T ) + ‖f2‖pp,(0,T ) s.t. f1, f2 ∈ Lp[0, T ]

and the solution y of the initial boundary-value problem (3.1)–(3.3) satisfies the end
conditions (3.4).

In the case p = ∞, the objective function is max{‖f1‖∞,(0,T ), ‖f2‖∞,(0,T )}.
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3.3. Exact controllability.
Theorem 3.1. Let p ∈ [2,∞] and T > L/c be given. The initial boundary-

value problem (3.1)–(3.3) has a weak solution satisfying the end conditions (3.4) with
f1, f2 ∈ Lp(0, T ) if and only if the target states y0, y1 satisfy the following condi-
tions: y1 ∈ Lp(0, L) and y0 ∈ L2(0, L) is such that the derivative y′0 in the sense of
distributions is in the space Lp(0, L), that is, y0 ∈ W 1

p (0, L). This implies that the
optimization problem C(p) has a solution if and only if y′0 and y1 are in Lp(0, L).

3.4. Weak solution of the initial-value problem. The solution y of the
initial boundary-value problem (3.1)–(3.3) has the series representation

y(x, t) = (c2/L)

∫ t

0

[f1(s) + f2(s)](t− s) ds

+

∞∑
j=1

(2/(cjπ))

∫ t

0

[f1(s) + (−1)jf2(s)] sin ((cπj/L)(t− s)) ds cos ((jπ/L)x)

and for the time derivative yt we obtain the series

yt(x, t) = (c2/L)

∫ t

0

[f1(s) + f2(s)] ds

+

∞∑
j=1

(2/L)

∫ t

0

[f1(s) + (−1)jf2(s)] cos ((cπj/L)(t− s)) ds cos ((jπ/L)x) .

3.5. End conditions and a trigonometric moment problem. For j ∈ N,
define the functions

ϕ0(x) = 1/
√
L, ϕj(x) = (

√
2/
√
L) cos(jπx/L),

and for j ∈ N ∪ {0}, define the numbers

yj0 =

∫ L

0

y0(x)ϕj(x) dx, yj1 =

∫ L

0

y1(x)ϕj(x) dx.

Inserting the series representation of the solution y and its time derivative yt into
the end conditions (3.4) yields the moment equations∫ T

0

(c2/
√
L)(f1(T − s) + f2(T − s)) s ds = y0

0 ,(3.5)

∫ T

0

(
√

2
√
L/(cπj))(f1(T − s) + (−1)jf2(T − s)) sin ((cπj/L)s) ds = yj0, j ∈ N.

(3.6)

(c2/
√
L)

∫ T

0

f1(T − s) + f2(T − s) ds = y0
1 ,(3.7)

∫ T

0

(
√

2/
√
L)(f1(T − s) + (−1)jf2(T − s)) cos ((cπj/L)s) ds = yj1, j ∈ N.(3.8)
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3.6. The minimal time interval with controllability up to a constant.
In this section we study controllability on the time interval with T = L/c, which is
the minimal time interval, where controllability for all target states y0, y1 in L2(0, L)
can be possible.

For given control functions f1 and f2 we introduce the sum S as in (2.10) and
the difference D as in (2.11). The trigonometric moment equations (3.5)–(3.8) are
equivalent to two moment problems for the functions S and D.

The moment problem for the difference function D is∫ Tc

0

(L/(c2(2j − 1)π))D(x/c)
√

(2/L) sin((2j − 1)πx/L) dx = y2j−1
0 /2,(3.9) ∫ Tc

0

(1/c)D(x/c)
√

(2/L) cos((2j − 1)πx/L) dx = y2j−1
1 /2.(3.10)

We define the antisymmetric functions

yodd0 (x) =

∞∑
j=1

(y2j−1
0 )

√
(2/L) cos((2j − 1)πx/L),

yodd1 (x) =

∞∑
j=1

(y2j−1
1 )

√
(2/L) cos((2j − 1)πx/L)

and the symmetric function

Y even
0 (x) = −

∞∑
j=1

y2j−1
1 ((2j − 1)π/L)

√
(2/L) sin(((2j − 1)π/L)x).

Then Y even
0 (x) = (yodd0 )′(x) and for all t ∈ [0, L/c] we have

D(t) = (c/2)yodd1 (ct) − (c2/2)(yodd0 )′(ct).(3.11)

Consider the moment problem for the function S:∫ Tc

0

(1/
√
L)S(x/c)x dx = y0

0/2,(3.12) ∫ Tc

0

S(x/c)(
√

2/L) sin ((2πj/L)x) dx = c2(2πj/L)y2j
0 /2,(3.13) ∫ Tc

0

(1/
√
L)S(x/c) dx = y0

1/(2c),(3.14) ∫ Tc

0

S(x/c)(
√

2/L) cos ((2πj/L)x) dx = cy2j
1 /2, j ∈ N.(3.15)

This system of moment equations is in fact overdetermined. If we omit (3.12), the
remaining system determines a unique solution.

We define the symmetric functions

yeven0 (x) =

∞∑
j=1

(y2j
0 )

√
(2/L) cos(2jπx/L) + y0

0/
√
L,

yeven1 (x) =

∞∑
j=1

(y2j
1 )

√
(2/L) cos(2jπx/L) + y0

1/(c
2
√
L)
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and the antisymmetric function

Y odd
0 (x) =

∞∑
j=1

−y2j
0 (2jπ/L)

√
(2/L) sin((2jπ/L)x).

Note that in the definition of yeven1 in the constant term the wave speed c2 appears.
We have (yeven0 )′(x) = Y odd

0 (x). For the function S, we have for all t ∈ [0, L/c]

S(t) = (c/2)yeven1 (ct) − (c2/2) (yeven0 )′(ct)(3.16)

since all the Fourier coefficients of S are determined by (3.13)–(3.15).
Thus the unique solution of the moment problem (3.6)–(3.8) with T = L/c is

f1(T − t) = S(t) + D(t) = (c/2)
[
y1(ct) + ((1/c2) − 1)(y0

1/
√
L)

]
− (c2/2)y′0(ct),

(3.17)

f2(T − t) = S(t) −D(t) = (c/2)y1(L− ct) − (c2/2)y′0(L− ct).(3.18)

With these control functions at time T = L/c the system reaches a target state of
the form y0 + c0, y1 since in the representation of the state y(·, T ) as a series of the
functions ϕj (j ∈ N ∪ {0}), all the coefficients for j 
= 0 are determined by (3.6).
To find control functions that satisfy the first moment equation (3.5) with c0 = 0,
in general we need a longer time interval. (However, for antisymmetric targets it is
possible; see section 3.8.2.) Thus we see that controllability to all target states in
(y0, y1) with y′0 and y1 in L2(0, L) is not possible; we have only the following result.

Lemma 3.2. Let p ∈ [2,∞] and T = L/c. If the control functions f1 and f2 are
in Lp(0, T ), then the state y(·, T ), yt(·, T ) that the system has reached at time T has
the following regularity: ∂xy(·, T ) and yt(·, T ) are in Lp(0, L).

For a given target state (y0, y1) with y′0, y1 ∈ Lp(0, L), there exist control functions
f1 and f2 in Lp(0, T ) that steer the system to a state of the form (y0 + c0, y1) with a
real constant c0; moreover, these controls are uniquely determined.

The states that can be reached at the time T = L/c are exactly the states y0,
y1 with y′0, y1 ∈ Lp(0, L) for which the controls f1, f2 given in (3.17), (3.18) satisfy
(3.5). In this case, f1, f2 given in (3.17), (3.18) are the unique solution of C(p).

3.7. Controllability on larger time intervals. In this section we show how
the question of controllability for a time interval (0, T ) with T > L/c can be solved by
transformation of the moment equations to moment equations on the interval (0, L/c).
This reduction depends on the fact that all the trigonometric functions that appear
in the moment equations have the same periodicity properties.

3.7.1. Transformation of the moment equations. Assume that T > L/c.
Choose the natural number k such that kL/c ≤ T < (k + 1)L/c.

Let the function ϕ(s) be an element of the set {1, sin((cπ2j/L)s), cos((cπ2j/L)s)
with j ∈ N}. Then we have ϕ(s+L/c) = ϕ(s), and for all functions v ∈ L2(0, T ), the
following equation is valid: ∫ T

0

v(s)ϕ(s) ds(3.19)

=

∫ T−kL/c

0

⎡⎣ k∑
j=0

v(s + jL/c)

⎤⎦ϕ(s) ds +

∫ L/c

T−kL/c

⎡⎣k−1∑
j=0

v(s + jL/c)

⎤⎦ϕ(s) ds.
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Define the function

v̂(t) =

k∑
j=0

v(t + jL/c) for t ∈ (0, T − kL/c),(3.20)

v̂(t) =
k−1∑
j=0

v(t + jL/c) for t ∈ (T − kL/c, L/c).(3.21)

Then ∫ L/c

0

v̂(s)ϕ(s) ds =

∫ T

0

v(s)ϕ(s) ds.

Again, let the functions S and D be defined by (2.10) and (2.11). Then for a function
S that satisfies the moment equations (3.13)–(3.15) for all j ∈ N, the corresponding
function v̂ must satisfy these moment equations with integrals on the interval (0, L/c).
In section 3.6 we have stated that these moment equations with T = L/c determine
a unique solution Ŝ, which is given by (3.16).

For a function D that satisfies (3.9), (3.10) for all j ∈ N, the corresponding
function v̂ is defined as in (2.20)–(2.21). Since v̂ satisfies (2.20)–(2.21) on the interval
(0, L/c), as stated in section 3.6, it is determined uniquely and is given by (3.11). In
what follows we call it D̂. Thus we have

Ŝ(t) = (c/2)yeven1 (ct) − (c2/2) (yeven0 )′(ct),

D̂(t) = (c/2)yodd1 (ct) − (c2/2) (yodd0 )′(ct).

Let Δ = T − kL/c. The set of feasible controls, that is, the controls that steer
the system to the target, can be described by the equations

Ŝ(t) =

k∑
j=0

S(t + jL/c), D̂(t) =

k∑
j=0

(−1)jD(t + jL/c), t ∈ (0,Δ),(3.22)

Ŝ(t) =

k−1∑
j=0

S(t + jL/c), D̂(t) =

k−1∑
j=0

(−1)jD(t + jL/c), t ∈ (Δ, L/c),(3.23)

and the moment equation (3.12).
This means that we have reduced our problem of optimal control to an optimiza-

tion problem with a finite number of simple pointwise equality constraints and one
integral constraint.

In terms of f1 and f2, the constraints (3.22)–(3.23) can be written as

Ŝ(t) + D̂(t) =

k∑
j=0

fb(j+1)(t + jL/c), t ∈ (0,Δ),(3.24)

Ŝ(t) − D̂(t) =

k∑
j=0

fb(j)(t + jL/c), t ∈ (0,Δ),(3.25)

Ŝ(t) + D̂(t) =

k−1∑
j=0

fb(j+1)(t + jL/c), t ∈ (Δ, L/c),(3.26)

Ŝ(t) − D̂(t) =

k−1∑
j=0

fb(j)(t + jL/c), t ∈ (Δ, L/c),(3.27)
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and f1 + f2 must satisfy (3.5). To transform (3.5), we use the equation∫ T

0

tS(t) dt

=

∫ T−kL/c

0

k∑
j=0

(t + jL/c)S(t + jL/c) dt +

∫ L/c

T−kL/c

k−1∑
j=0

(t + jL/c)S(t + jL/c) dt

=

∫ L/c

0

tŜ(t) dt +

∫ L/c

0

S(s) ds,

with

S(t) =

k∑
j=0

j(L/c)S(t + jL/c) for t ∈ [0, T − kL/c],(3.28)

S(t) =

k−1∑
j=0

j(L/c)v(t + jL/c) for t ∈ [T − kL/c, L/c].

Since the function Ŝ is known, we can replace the moment equation (3.5) by∫ L/c

0

S(t) dt =
√
Ly0

0/(2c
2) −

∫ L/c

0

tŜ(t) dt =: R0.(3.29)

The description of the feasible controls by the equality constraints (3.24)–(3.29) allows
us to prove Theorem 3.1.

3.7.2. Proof of Theorem 3.1. Now we come to the proof of Theorem 3.1. We
use the fact that f1 and f2 are in Lp(0, T ) if and only if S and D are in Lp(0, T ).

Let f1 and f2 in the space Lp(0, T ) be given such that at time T , the system has
reached the state y(·, T ) = y0, yt(·, T ) = y1. The corresponding functions D̂ and Ŝ
defined by (3.22)–(3.23) are in the space Lp(0, L/c). The corresponding controls on
the time interval (0, L/c) reach at time L/c a state of the form y0 + c0, y1 since they
solve the moment problem (3.13)–(3.15). Lemma 3.2 implies that y1 and y′0 are in
Lp(0, L).

Now we show the converse. If y′0 and y1 are in Lp(0, L), Lemma 3.2 implies that
we can find Ŝ ∈ Lp(0, L/c) that satisfies the moment equations (3.13)–(3.15) and
D̂ ∈ Lp(0, L/c) that satisfies (3.9), (3.10). Then we can find functions f1 and f2 in
Lp(0, T ) such that (3.24)–(3.29) hold, for example, if T −kL/c > 0 with the definition

f1(t + L/c) = f2(t + L/c) = R0 c/(L(T − kL/c)),

f1(t) = Ŝ(t) + D̂(t) − f2(t + L/c), f2(t) = Ŝ(t) − D̂(t) − f1(t + L/c)

for t ∈ (0, T−kL/c) and f1(t) = Ŝ(t)+D̂(t), f2(t) = Ŝ(t)−D̂(t) for t ∈ (T−kL/c, L/c)
and f1(t) = f2(t) = 0 otherwise. Then the constraints (3.24)–(3.29) hold, and thus we
have found a successful control in the space Lp(0, L). So we have proved Theorem 3.1.

3.8. Solution of the optimization problem C(p). In this section we consider
the case L/c < T < 2L/c, that is, k = 1. For p = ∞, this case has also been considered
in [10], but here we provide a solution for p < ∞. We work with the transformed
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form of problem C(p), where the feasible set F (p) is described by pointwise equality
constraints and one integral constraint:

F (p) = {f1, f2 ∈ Lp(0, T ) : (3.24)–(3.27) hold, S defined by (3.28) satisfies (3.29)}.

In our case k = 1, (3.26), (3.27) reduce to the equations

f1(t) = Ŝ(t) + D̂(t), f2(t) = Ŝ(t) − D̂(t), t ∈ (T − L/c, L/c).(3.30)

This means that the values of all feasible controls, and thus also of the optimal control,
are prescribed on the interval (T − L/c, L/c). This fact has important consequences
for the structure of the optimal controls: We see that the functions f1 and f2 can
have any form, so in general there is no reason why they should have a bang-bang,
bang-off, or a similar structure. The optimization only takes place on the two intervals
(0, T − L/c) and (L/c, T ). The constraints (3.24), (3.25) can be written as

f2(t + L/c) = Ŝ(t) + D̂(t) − f1(t), f1(t + L/c) = Ŝ(t) − D̂(t) − f2(t)(3.31)

for all t ∈ (0, T − L/c). On the middle interval (T − L/c, L/c) we have S(t) = 0 and
on (0, T − L/c) we have S(t) = (L/c)S(t + L/c), so (3.29) becomes∫ T−L/c

0

(L/c)(f1(t + L/c) + f2(t + L/c))/2 dt = R0.

We insert (3.31) and obtain the constraint∫ T−L/c

0

(L/c)
[
Ŝ(t) − (f1(t) + f2(t))/2

]
dt = R0,

and hence for p < ∞, problem C(p) reduces to the problem of minimizing

‖f1‖pp,(0,Δ) + ‖f2‖pp,(0,Δ) + ‖Ŝ + D̂ − f1‖pp,(0,Δ) + ‖Ŝ − D̂ − f2‖pp,(0,Δ)

s.t. f1, f2 ∈ Lp(0,Δ),

∫ Δ

0

(f1(t) + f2(t))/2 dt

=

∫ Δ

0

Ŝ(t) dt− (c/L)R0(with Δ = T − L/c).

We set G = Ŝ + D̂, H = Ŝ − D̂, and C0 =
∫ Δ

0
Ŝ(t) dt − (c/L)R0. Then we can

write the above optimization problem in the form

min
f1,f2

‖f1‖pp,(0,Δ) + ‖f2‖pp,(0,Δ) + ‖G− f1‖pp,(0,Δ) + ‖H − f2‖pp,(0,Δ)

s.t. f1, f2 ∈ Lp(0,Δ),
∫ Δ

0
(f1(t) + f2(t))/2 dt = C0. The corresponding necessary

optimality condition states that there exists a Lagrange multiplier λ ∈ R such that
for all t ∈ (0,Δ) the following equations hold:

|f1(t)|p−1sign(f1(t)) + |f1(t) −G(t)|p−1sign(f1(t) −G(t)) = λ,

|f2(t)|p−1sign(f2(t)) + |f2(t) −H(t)|p−1sign(f2(t) −H(t)) = λ.

For the solution of the optimality system, we use the following lemma.
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Lemma 3.3. Let p ∈ [2,∞). For a real number a, define the function

ha(x) = |x|p−1sign(x) + |x− a|p−1sign(x− a).

Then ha is strictly increasing and limx→∞ ha(x) = ∞, limx→−∞ ha(x) = −∞. So the
inverse function ψa = h−1

a exists and is strictly increasing with limλ→∞ ψa(λ) = ∞,
limλ→−∞ ψa(λ) = −∞, and for all λ ∈ R the equation ha(x) = λ has the unique
solution x = ψa(λ). For fixed λ, the function a �→ ψa(λ) is continuous. If p = 2, we
have ψa(λ) = (λ + a)/2.

Proof. Consider the function g(x) = |x|p−1sign(x). Then g is strictly increasing
and limx→∞ g(x) = ∞, limx→−∞ g(x) = −∞. Since ha(x) = g(x) + g(x − a), the
assertions for ha follow, except the continuity of the map a �→ ψa(λ).

Define F : R2 → R, F (a, x) = ha(x). Then F is continuously differentiable and
Fx(a, x) = g′(x) + g′(x − a) > 0 for (a, x) 
= (0, 0). We have F (a, ψa(λ)) = λ, and
hence the implicit function theorem implies the continuity of the map a �→ ψa(λ) for
(a, λ) 
= (0, 0). Since ha(a) = g(a) and ha(0) = −g(a) we have ψa(0) ∈ (−|a|, |a|), so
the continuity for a = λ = 0 also follows.

Hence for p < ∞, the solution of problem C(p) can be characterized in the
following form.

Theorem 3.4. Assume that L/c < T < 2L/c, p ∈ [2,∞), and that y1 and y′0 are

in Lp(0, L). Let G = Ŝ + D̂, H = Ŝ − D̂, and C0 =
∫ T−L/c

0
Ŝ(t) dt − (c/L)R0. Let

λ ∈ R be the uniquely determined solution of the equation∫ T−L/c

0

ψG(t)(λ) + ψH(t)(λ) dt = 2C0.(3.32)

Then the unique solution of problem C(p) is given by

f1(t) = ψG(t)(λ), f2(t) = ψH(t)(λ)

for t ∈ (0, T − L/c) and, on the interval (L/c, T ), the control functions f1, f2 are
defined by (3.31) and on (T − L/c, L/c) by (3.30).

For p = ∞, C(p) can be reduced to the following problem: Minimize

max{‖f1‖∞,(0,T−L/c), ‖f2‖∞,(0,T−L/c), ‖G− f1‖∞,(0,T−L/c), ‖H − f2‖∞,(0,T−L/c)}

s.t. f1, f2 ∈ L∞(0, T − L/c),
∫ T−L/c

0
(f1(t) + f2(t))/2 dt = C0.

Again let Δ = T − L/c. It is easy to see that the functions f1 = f2 = C0/Δ on
(0,Δ) satisfy the integral constraint. In fact, the number C0/Δ is a lower bound for
the optimal value of C(∞). It can happen that the L∞-norm of the control functions is
attainted in the middle interval (Δ, L/c), where their values are prescribed by (3.30).
These observations yield the following lemma.

Lemma 3.5. Assume that L/c < T < 2L/c and y1 and y′0 are in L∞(0, L). Set
C1 = C0/Δ. Assume that max{‖G − C1‖∞,(0,Δ), ‖H − C1‖∞,(0,Δ)} ≤ C1 or that
max{‖G‖∞,(Δ,L/c) , ‖H‖∞,(Δ,L/c)} ≥ max{‖G− C1‖∞,(0,Δ), ‖H − C1‖∞,(0,Δ)}.

Then a solution of C(∞) is f1 = f2 = C1 on (0,Δ). On the interval (L/c, T ),
the control functions f1, f2 are defined by (3.31) and on (Δ, L/c) by (3.30).

3.8.1. Symmetric targets. In this section we assume that y0 and y1 are sym-
metric with respect to L/2. Then we have D̂ = 0, which implies that G = H = Ŝ.
Theorem 3.4 yields the equation f1 = f2, which is also true for p = ∞ (see [10]).
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If y0 and y1 are constant functions, we have Ŝ(t) = (c/2)yeven1 (ct) = K, which is
also a constant function. Equation (3.32) in Theorem 3.4 yields ψK(λ) = C0/(T −
L/c); hence for t ∈ (0, T − L/c) we have f1(t) = C0/(T − L/c), f1(t + L/c) =
K − C0/(T − L/c) and f1(t) = K for t ∈ (T − L/c, L/c). Note that this solution is
independent of p < ∞. Since f1 and f2 are in L∞(0, L), this implies that it is also
the solution of C(∞) with minimal L2-norm. If K = 0 (that is, y1 = 0), this yields
the bang-off-bang control presented in [2] for the case p = ∞.

3.8.2. Antisymmetric targets. In this section we assume that y0 and y1 are
antisymmetric with respect to L/2. Then we have Ŝ = 0, which implies that D̂ =
G = −H and y0

0 = 0, and hence R0 = C0 = 0. Since ψ−a(0) = −ψa(0), Theorem 3.4
yields with λ = 0 the equation f1 = −f2, and for p < ∞ the optimal control satisfies
f1(t) = ψD̂(t)(0) on the interval (0, T −L/c). Since ha(a/2) = 0, this yields f1 = D̂/2

on (0, T − L/c) ∪ (L/c, T ) and f1 = D̂ on (T − L/c, L/c). Note that this solution is
again independent of p < ∞. If y1 and y′0 are in L∞(0, L), this is also the solution
with minimal L2-norm of C(∞); this follows from the next lemma.

Lemma 3.6. If f1, f2 in L∞(0, T ) solve C(p) for all p ∈ [2,∞), then f1, f2 also
solve C(∞) and are the solution of C(∞) with minimal L2-norm.

For antisymmetric targets, we have y0
0 = 0. Thus in this case, for the control

functions with f1 = −f2, (3.5) is valid. This implies that for this class of target
states, controllability is also possible on the time interval [0, L/c].

Acknowledgments. The authors thank the referees for their comments.
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1. Introduction. For controlled diffusion processes in RN ,

(CSDE)

{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt, αt ∈ A, t > 0,
X0 = x,

there are various possible notions of Lyapunov stability of an equilibrium, say, the
origin. The stability in probability has been studied for a long time; we recall here
the contributions of Kushner [31, 32], Has’minskii [26], and the recent book of Mao
[36] for uncontrolled systems, and the work of Florchinger [21, 22, 23] and Deng,
Krstić, and Williams [18] on feedback stabilization for (CSDE); see also the references
therein. The almost sure exponential stability was introduced and studied by Kozin
[29] (see also [26]), and it implies that, for each fixed sample in a set of probability
1, the (uncontrolled) system is exponentially stable in the usual sense. In this paper
we consider a property that we call almost sure stability, or uniform stability with
probability 1. For an uncontrolled system it says that for any η > 0 there exists δ > 0
such that, for any x with |x| ≤ δ, the process satisfies |Xt| ≤ η for all t ≥ 0 almost
surely (a.s.). Equivalently, for some increasing, continuous function γ null at 0, and
for small |x|,

|Xt| ≤ γ(|x|) ∀t ≥ 0 a.s.(1.1)

This property describes a behavior very similar to a stable deterministic system.
It is stronger than stability in probability and pathwise stability and, in fact, it is
never verified by a nondegenerate process. More precisely, we study the almost sure
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(stochastic open-loop) stabilizability of (CSDE), namely, that for each x as above
there exists an admissible control function whose trajectory X . verifies a.s. |Xt| ≤ η
(and |Xt| ≤ γ(|x|)) for all t. If, in addition, limt→+∞ Xt = 0 a.s., we say the system
is a.s. (stochastic open-loop) asymptotically stabilizable. For deterministic systems
(σ ≡ 0) the last property reduces to the well-known asymptotic controllability.

We follow the Lyapunov direct method and find that the infinitesimal decrease
condition to be satisfied by a Lyapunov function V for our problem is

max
α∈A, σ(x,α)TDV (x)=0

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
≥ l(x),(1.2)

with l ≥ 0 for mere Lyapunov stability and l > 0 for x �= 0 for asymptotic stability,
where a := σσT /2. This is not a standard Hamilton–Jacobi–Bellman inequality,
because the constraint on the control α depends on V . In fact it should be viewed
rather as a system of PDEs and inequalities which, in the special case of uncontrolled
diffusion, i.e., σ = σ(x), reads{

maxα∈A {−DV (x) · f(x, α)} − trace
[
a(x)D2V (x)

]
≥ l(x),

σi(x) ·DV (x) = 0 ∀ i,
(1.3)

where σi denotes the ith column of the matrix σ. To motivate the infinitesimal
decrease condition (1.3), let us give a formal argument in the case V is of class C2.
By applying Ito’s formula to the inequality dV (Xt)/dt ≤ l(Xt), we get[

DV (Xt) · f(Xt, αt) + trace
(
a(Xt)D

2V (Xt)
)]

dt + σT (Xt)DV (Xt)dBt ≤ l(Xt).

Now the properties of the Brownian motion lead to the conditions

DV (Xt) · f(Xt, αt) + trace
(
a(Xt)D

2V (Xt)
)
≤ l(Xt),

σT (Xt)DV (Xt) = 0,

and the existence of a control αt verifying this is clearly related to (1.3). A more
detailed, yet still formal, derivation of (1.3) is the following. The Dynkin formula
gives, for any control,

EV (Xt) − V (x) = E

∫ t

0

[
DV (Xs) · f(Xs, αs) + trace(a(Xs)D

2V (Xs))
]
ds,

and from the inequality in (1.3) one argues the existence of a control function such
that

EV (Xt) − V (x) ≤ −E

∫ t

0

l(Xs)ds ≤ 0.(1.4)

Therefore, the process V (Xt) is a positive supermartingale. Following this argument,
it can be proved that a function satisfying merely the Hamilton–Jacobi–Bellman in-
equality in (1.3) is a Lyapunov function for the stability in probability. The additional
equalities σi(x) ·DV (x) = 0 in (1.3) say that there is diffusion only in the directions
tangential to the level sets of V , and they are necessary conditions for the invariance
of the sublevel sets of V for the process (CSDE). It turns out that the whole set (1.3)
of equalities and inequalities implies the weak invariance, or viability, of the sublevel
sets of V , i.e., the existence of a control that maintains forever a.s. the system in such
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a set if the initial position is in the set. From this property it is possible to infer that,
for some control,

V (Xt) − V (x) ≤ −
∫ t

0

l(Xs)ds ≤ 0 almost sure,

a stronger monotonicity-type property than (1.4), which allows us to prove the almost
sure stability.

We define a Lyapunov function for the almost sure stability as a lower semicon-
tinuous proper function V , continuous at 0 and satisfying (1.2) in the viscosity sense,
and we call it a strict Lyapunov function if l > 0 off 0; see Definitions 2.3 and 2.4
below. Our main results are the natural extensions of the first and second Lyapunov
theorems to the controlled diffusions:

The existence of a local Lyapunov function implies the almost sure
(open-loop) stabilizability of (CSDE); a strict Lyapunov function im-
plies the almost sure (open-loop) asymptotic stabilizability.

The same proof provides their global versions as well: if V satisfies (1.2) in RN \ {0},
then (CSDE) is also a.s. (open-loop) Lagrange stabilizable, i.e., for all initial points
x there is a control such that (1.1) holds; moreover, if V is strict, then the system is
globally a.s. (open-loop) asymptotically stabilizable. We also give sufficient conditions
for the stability of viable (controlled invariant) sets more general than an equilibrium
point, and for the a.s. exponential stability.

These facts are much easier to prove when the Lyapunov function is smooth,
but this assumption is not necessary and would limit considerably their applicability.
The nonexistence of smooth Lyapunov functions is well known in the determinis-
tic case; see [30, 6] for stable uncontrolled systems, and see the surveys [43, 6] for
asymptotically stable controlled systems. Here we give an example of an uncontrolled
degenerate diffusion process that is a.s. stable but cannot have a continuous Lyapunov
function (Example 1 in section 6). Moreover, in a companion paper [12] the second
author proves a converse Lyapunov theorem, stating that any a.s. stabilizable system
(CSDE) has a lower semicontinuous (l.s.c.) local viscosity Lyapunov function.

All the results listed above refer to open-loop almost sure stabilizability. They
raise the question of the existence of a stabilizing feedback. Here we give an answer
only for affine systems with a smooth strict Lyapunov function. We adapt Sontag’s
method [41] to the stochastic setting and find an explicit formula for a feedback
that renders the system a.s. asymptotically stable. The feedback stabilizability of
controlled diffusions in the case of nonsmooth Lyapunov functions seems considerably
harder and we are not aware of any paper on the subject.

In the last section we study some simple applications and examples. For instance,
we consider a deterministic, asymptotically controllable system Ẋt = f(Xt, αt) with
Lyapunov pair (V,L) and look for conditions on a stochastic perturbation that keep
the system a.s. stabilizable with the same Lyapunov function V for some l ≤ L.

Our proof of the first Lyapunov-type theorem is based on the observation that
the infinitesimal decrease condition (1.2) has the rescaling property of the geometric
PDEs arising in the level set approach to front propagation (see, e.g., [9, 40] and the
references therein), and on a recent result of the first author and Jensen [11] on the
viability, or controlled invariance, of general closed sets for controlled diffusions (see
[3, 4] and the references therein for earlier work on viability for stochastic processes).
For the second Lyapunov-type theorem we use also martingale inequalities and other
properties of diffusions.
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The first Lyapunov-type theorem on local almost sure stabilizability was an-
nounced in [8], where we presented the simpler proof for uncontrolled processes. In
the forthcoming paper [13], the second author shows that the existence of an l.s.c. vis-
cosity solution of the Hamilton–Jacobi–Bellman inequality,

max
α∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
≥ l(x),

implies the open-loop stabilizability in probability of (CSDE). Converse theorems in
this setting appears in the Ph.D. thesis [14] of the second author.

We conclude with some additional references. Nonsmooth Lyapunov functions for
uncontrolled diffusion processes were studied by Ladde and Lakshmikantham [33] with
Dini-type derivatives along sample paths, and by Aubin and Da Prato [5] by means
of a stochastic contingent epiderivative. Recently, Arnold and Schmalfuss [1] gave an
extension of Lyapunov’s second method to random dynamical systems. Turning to
deterministic controlled systems, we recall that Soravia [45] gave direct and inverse
Lyapunov theorems for the open-loop stabilizability by means of viscosity solutions (in
the more general context of differential games); Sontag and Sussmann [41, 44] did it
for the asymptotic controllability (i.e., asymptotic open-loop stabilizability) by using
Dini directional derivatives. Viscosity methods for stability problems were also used
in [28, 46, 24]. There is a large literature on feedback stabilization: see [2, 42, 16], the
surveys [43, 15, 6], and the references therein. We refer to [17, 7] for the basic theory
of viscosity solutions, and to [34, 35, 9, 20, 48] for its applications to deterministic
and stochastic optimal control.

The paper is organized as follows. In section 2 we give the main definitions and
state the first and second Lyapunov-type theorems. Section 3 recalls some viabil-
ity theory and then gives the proofs of the two main theorems. Section 4 covers
feedback stabilization of affine systems with smooth Lyapunov functions. Section 5
contains some extensions to exponential stability, general equilibrium sets, and target
problems. Section 6 is devoted to the examples.

2. Lyapunov functions for almost sure stabilizability and asymptotic
stabilizability. We consider a controlled Ito stochastic differential equation,

(CSDE)

{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt, t > 0,
X0 = x,

where Bt is an M -dimensional Brownian motion. Throughout the paper we assume
that f, σ are continuous functions defined in RN × A, where A is a compact metric
space, which take values, respectively, in RN and in the space of N × M matrices,
and satisfy

|f(x, α) − f(y, α)| + ‖σ(x, α) − σ(y, α)‖ ≤ C|x− y| ∀x, y ∈ RN , ∀α ∈ A.(2.1)

We adopt the definition of admissible control function, or admissible system, of
Haussmann and Lepeltier [27, Def. 2.2, p. 853]. For a given x ∈ RN we denote by Ax

the set of admissible control functions, by α. its generic element (although it is not a
standard function R → A), and by X. the corresponding solution of (CSDE).

We define

a(x, α) :=
1

2
σ(x, α)σ(x, α)T
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and assume

{(a(x, α), f(x, α)) : α ∈ A} is convex ∀x ∈ RN .(2.2)

Definition 2.1 (almost sure stabilizability). The system (CSDE) is a.s. (stochas-
tic open-loop Lyapunov) stabilizable at the origin if for every η > 0 there exists δ > 0
such that, for any initial point x with |x| ≤ δ, there exists an admissible control
function α· ∈ Ax whose corresponding trajectory X · verifies |Xt| ≤ η for all t ≥ 0
a.s.

The system is a.s. (stochastic open-loop) Lagrange stabilizable, or it has the
property of uniform boundedness of trajectories, if for each R > 0 there is S > 0 such
that for any initial point x with |x| ≤ R there exists an admissible control function
α· ∈ Ax whose corresponding trajectory X · verifies |Xt| ≤ S for all t ≥ 0 a.s.

Remark 1. The almost sure stabilizability implies that the origin is a controlled
equilibrium of (CSDE), i.e.,

∃α ∈ A : f(0, α) = 0, σ(0, α) = 0.

In fact, the definition gives for any ε > 0 an admissible control such that the
corresponding trajectory starting at the origin satisfies a.s. |Xt| ≤ ε for all t, so

Ex

∫ +∞
0

|Xt|e−λtdt ≤ ε
λ for any λ > 0. Then infα.∈Ax Ex

∫ +∞
0

|Xt|e−λtdt = 0. The
convexity assumption (2.2) and an existence theorem for optimal controls [27] imply
that the inf is attained, and the minimizing control produces a trajectory satisfy-
ing a.s. |Xt| = 0 for all t ≥ 0. The conclusion follows from standard properties of
stochastic differential equations.

Remark 2. As is common in the modern deterministic stability theory, the previ-
ous definitions can be reformulated in terms of the comparison functions introduced
by Hahn [25]. We will use the class K of continuous functions γ : [0,+∞) → [0,+∞)
strictly increasing and such that γ(0) = 0 and the class K∞ of functions γ ∈ K such
that limr→+∞ γ(r) = +∞.

The system (CSDE) is a.s. (open-loop) stabilizable at 0 if there exists γ ∈ K and
δo > 0 such that for any starting point x with |x| ≤ δo

∃α· ∈ Ax : |Xt| ≤ γ(|x|) ∀t ≥ 0 a.s.,(2.3)

where Xt is the trajectory corresponding to α·. If (2.3) holds for some γ ∈ K∞ and
for all x ∈ RN , then the system is also a.s. (open-loop) Lagrange stabilizable.

Definition 2.2 (almost sure asymptotic stabilizability). The system (CSDE) is
a.s. (stochastic open-loop) locally asymptotically stabilizable (or a.s. locally asymp-
totically controllable) at the origin if for every η > 0 there exists δ > 0 such that, for
all |x| ≤ δ, there exists an admissible control function α· ∈ Ax whose corresponding
trajectory X · verifies a.s.

|Xt| ≤ η ∀t ≥ 0, lim
t→+∞

|Xt| = 0.

The system is a.s. (stochastic open-loop) globally asymptotically stabilizable (or
a.s. asymptotically controllable) at the origin if there is γ ∈ K∞ and for all x ∈ RN

there exists α· ∈ Ax whose trajectory X · satisfies a.s.

|Xt| ≤ γ(|x|) ∀t ≥ 0, lim
t→+∞

|Xt| = 0.
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Next we give the appropriate definition of a Lyapunov function for the study of
almost sure stabilizability. We recall the definition of the second order semijet of an
l.s.c. function V at a point x:

J 2,−V (x) :=

{
(p, Y ) ∈ RN × S(N) : for y → x

V (y) ≥ V (x) + p · (y − x) +
1

2
(y − x) · Y (y − x) + o(|y − x|2)

}
.

Definition 2.3 (control Lyapunov function). Let O ⊆ RN be an open set con-
taining the origin. A function V : O → [0,+∞) is a control Lyapunov function for
the almost sure stability of (CSDE) if

(i) V is lower semicontinuous;
(ii) V is continuous at 0 and positive definite, i.e., V (0) = 0 and V (x) > 0

for all x �= 0;
(iii) V is proper, i.e., lim|x|→+∞ V (x) = +∞ or, equivalently, the level sets

{x|V (x) ≤ μ} are bounded for every μ ∈ [0,∞);
(iv) for all x ∈ O \ {0} and (p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

σ(x, α)T p = 0 and − p · f(x, α) − trace [a(x, α)Y ] ≥ 0.(2.4)

Remark 3. The conditions (ii) and (iii) in the previous definition can be stated
as

∃ γ1, γ2 ∈ K∞ : γ1(|x|) ≤ V (x) ≤ γ2(|x|) ∀x ∈ RN .(2.5)

Therefore the level sets {V (x) ≤ μ} of the Lyapunov function form a basis of
neighborhoods of 0.

Remark 4. If the dispersion matrix σ does not depend on the control, then
condition (iv) can be reformulated as follows:

V is a solution in viscosity sense in O \ {0} of the system{
σ(x)TDV (x) = 0,
maxα∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
≥ 0.

In the general case, we can observe that if condition (iv) holds, then V in particular
is a viscosity supersolution of

max
α∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
= 0.(2.6)

Moreover, if the function V is at least differentiable, then condition (iv) can be stated
more concisely as follows:

V is a supersolution in viscosity sense in O \ {0} of the equation

max{α∈A | σ(x,α)TDV (x)=0}
{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
= 0.

Definition 2.4 (strict control Lyapunov function). A function V : O → [0,+∞)
is a strict control Lyapunov function for the almost sure stability of (CSDE) if it
satisfies conditions (i), (ii), (iii) in Definition 2.3 and (iv)′ for all x ∈ O \ {0} and
(p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

σT (x, α)p = 0 and − p · f(x, α) − trace [a(x, α)Y ] − l(x) ≥ 0(2.7)
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for some positive definite and Lipschitz continuous l : O → R.
Remark 5. In the inequality in (iv)

′
we could take

p · f(x, α) − trace [a(x, α)Y ] − l(x, α) ≥ 0

for some continuous l : O × A → R, Lipschitz continuous in x uniformly in α, with
l(x,A) convex for all x ∈ O, and such that l̃(x) := minα∈A l(x, α) is positive definite.
However, this would not increase the generality of the definition because V would also
satisfy condition (2.7) with l replaced by l̃.

Our main results are the following versions for stochastic controlled systems of
the first and the second Lyapunov theorems.

Theorem 2.5 (almost sure stabilizability). Assume (2.1), (2.2), and the existence
of a control Lyapunov function V . Then

(i) the system (CSDE) is a.s. stabilizable at the origin;
(ii) if, in addition, the domain O of V is all RN , the system is also a.s. Lagrange

stabilizable, and for all x ∈ RN there exists α. ∈ Ax such that the corresponding
trajectory X . satisfies

|Xt| ≤ γ−1
1 (γ2(|x|)) ∀ t ≥ 0 a.s.(2.8)

with γ1, γ2 ∈ K∞ verifying (2.5).
Theorem 2.6 (almost sure asymptotic stabilizability). Assume (2.1), (2.2), and

the existence of a strict control Lyapunov function V . Then
(i) the system (CSDE) is a.s. locally asymptotically stabilizable at the origin;
(ii) if, in addition, the domain O of V is all RN , the system is a.s. globally

asymptotically stabilizable.

3. A viability theorem and the proofs of stabilizability. In this section we
prove Theorems 2.5 and 2.6. Our main tool is a recent result in [11] about the almost
sure viability (called also controlled invariance and weak invariance) of an arbitrary
closed set for a controlled diffusion process. (See [3, 4] and the references therein for
earlier related results.)

Definition 3.1 (viable set). A closed set K ⊂ RN is viable or controlled
invariant or weakly invariant for the stochastic system (CSDE) if for all initial points
x ∈ K there exists an admissible control α. ∈ Ax such that the corresponding trajectory
X. satisfies Xt ∈ K for all t > 0 a.s.

It is easy to see from its definition that the almost sure stabilizability follows from
the viability of all the sublevel sets of any function satisfying conditions (i)–(iii) of
Definition 2.3. The next result gives a geometric characterization of viable sets. It
will allow us to check that the sublevel sets of a control Lyapunov function are viable
by means of condition (iv) in Definition 2.3. The Nagumo-type geometric condition
in the viability theorem is given in terms of the following second order normal cone
to a closed set K ⊂ RN , first introduced in [10]:

N 2
K(x):=

{
(p, Y ) ∈ RN × S(N) : for y → x, y ∈ K,

p · (y − x) +
1

2
(y − x) · Y (y − x) ≥ o(|y − x|2)

}
,

where S(N) is the set of symmetric N × N matrices. Note that, if (p, Y ) ∈ N 2
K(x)

and x ∈ ∂K, the vector p is a generalized (proximal or Bony) interior normal to the
set K at x. In particular, if ∂K is a smooth surface in a neighborhood of x, p/|p| is
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the interior normal and Y is related to the second fundamental form of ∂K at x; see
[10].

Theorem 3.2 (viability theorem [11]). Assume (2.1) and (2.2). Then a closed
set K ⊆ RN is viable for (CSDE) if and only if

∀x ∈ ∂K, ∀(p, Y ) ∈ N 2
K(x), ∃α ∈ A : f(x, α) · p + trace [a(x, α)Y ] ≥ 0.(3.1)

The second tool for the proof of the Lyapunov-type theorem, Theorem 2.5, is
the following lemma on the change of unknown for second order PDEs. It says that
the Hamilton–Jacobi–Bellman inequality in condition (2.4) in the definition of a con-
trol Lyapunov function behaves as a geometric equation if the unknown satisfies also
the condition in (2.4) of orthogonality between its gradient and the columns of the
dispersion matrix σ. We refer the interested reader to the chapters by Evans and
Souganidis in the book [9] for an introduction to the geometric PDEs of the theory
of front propagation.

Lemma 3.3. Let v satisfy condition (2.4) for all (p, Y ) ∈ J 2,−V (x), x ∈ RN \{0}.
Let φ be a twice continuously differentiable strictly increasing real map. Then w = φ◦v
is a viscosity supersolution of

max
α∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
= 0.(3.2)

Proof. It is easy to check that, if (p, Y ) ∈ J 2,−w(x), then

(ψ′(w(x))p, ψ′(w(x))Y + ψ′′(w(x))p⊗ p) ∈ J 2,−v(x),

where ψ is the inverse of φ and p⊗ p is the N ×N matrix whose (i, j) entry is pipj .
Then, for (p, Y ) ∈ J 2,−w(x) and x �= 0 there exists α such that

{−ψ′(w(x))p · f(x, α) − trace [a(x, α) · (ψ′(w(x))Y + ψ′′(w(x))p⊗ p)]} ≥ 0

and

trace [a(x, α) · ψ′′(w(x))p⊗ p] =
ψ′′(w(x))

(ψ′(w(x)))2
|σ(x, α)Tψ′(w(x))p|2 = 0.

Therefore

−ψ′(w(x))p · f(x, α) − trace [a(x, α) · ψ′(w(x))Y ] ≥ 0

and we can conclude that

sup
α∈A

{−p · f(x, α) − trace [a(x, α) · Y ]} ≥ 0.

Proof of Theorem 2.5. We begin with the proof of (ii). We fix an arbitrary μ > 0
and consider the sublevel set of the function V ,

K := {x |V (x) ≤ μ}.

We claim that K is viable. Then for all initial points x ∈ RN there exists α. ∈ Ax

such that the associated trajectory X . satisfies

γ1(|Xt|) ≤ V (Xt) ≤ V (x) ≤ γ1(|x|) ∀t ≥ 0 a.s.,
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which gives estimate (2.8). Then the system is a.s. stabilizable and Lagrange stabi-
lizable because γ−1

1 ◦ γ2 ∈ K∞.
To prove that K is viable we will check condition (3.1) of the viability theorem,

Theorem 3.2. For a given λ > 0 we define the nondecreasing continuous real function

ψλ(t) =

⎧⎨⎩
0, t ≤ μ,
λ(t− μ), μ ≤ t,≤ μ + 1

λ ,
1, t ≥ μ + 1

λ .

We claim that the function ψλ ◦ V is a viscosity supersolution of (3.2) for every
λ. To prove the claim we choose a sequence ψn of strictly increasing, smooth real
maps that converge uniformly on compact sets to ψλ. Then, for every n, the map
ψn ◦V is a viscosity supersolution of (3.2) by Lemma 3.3. By the stability of viscosity
supersolutions with respect to uniform convergence, we get the claim.

Next we observe that the net ψλ ◦ V is increasing and converges as λ → +∞ to
the indicator function

C(x) =

{
0, x ∈ K,
1, x �∈ K.

Viscosity supersolutions are stable with respect to the pointwise increasing conver-
gence (see, e.g., Prop. V.2.16, p. 306 of [7]). Therefore the indicator function C of K
is a viscosity supersolution of (3.2). From the definitions it is easy to check that

J 2,−C(x) = −N 2
K(x) ∀x ∈ ∂K.

By plugging this formula into (3.2) we obtain exactly condition (3.1) of the viability
theorem and complete the proof of (ii).

To prove (i) we choose μ > 0 small enough so that K := {x ∈ O : V (x) ≤ μ},
for μ ≤ μ, is closed in RN (for instance, μ < infy∈∂O lim infx→y V (x)). Then the
preceding part of this proof gives the viability of K and the estimate (2.8) for all x
such that V (x) ≤ μ. Therefore, for some δo > 0, (2.8) holds for all x with |x| ≤ δo,
and this gives the almost sure stabilizability of the origin.

Next we give the proof of Theorem 2.6 about asymptotic stability. It is obtained
by first applying Theorem 2.5 to a new system with an extra variable and then using
martingale inequalities as, e.g., in [18].

Proof of Theorem 2.6. We consider the differential system{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt,
dZt = l(Xt)dt

with initial data X0 = x and Z0 = 0. We rewrite this system in RN+1 as

(CSDE2)

{
d(Xt, Zt) = f(Xt, Zt, αt)dt + σ(Xt, Zt, αt)d(Bt, 0), t > 0,
(X0, Z0) = (x, 0),

where f(x, z, α) = (f(x, α), l(x)) and σ(x, z, α) = (σ(x, α), 0). Clearly it satisfies
conditions (2.1) and (2.2). Let us consider the function

W (x, z) :O × R → R,

(x, z) �−→ V (x) + |z|.
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We claim that it is a Lyapunov function for (CSDE2). In fact, W is positive definite
(because W ≥ 0 and W = 0 only for (x, z) = (0, 0)); W is l.s.c., continuous at (0, 0),
and proper since V is so. We have only to prove that W satisfies condition (2.4). Fix
x �= 0 and (x, z) with z > 0 and a smooth function φ such that W − φ has a local
minimum at (x, z), i.e.,

V (x) + z − φ(x, z) ≤ V (y) + w − φ(y, w),

for every (y, w), w > 0 in a neighborhood of (x, z). If we choose w = z we get a mini-
mum in x for the function V (·)−φ(·, z); therefore (Dxφ(x, z), D2

xxφ(x, z)) ∈ J2,−V (x).
If we choose y = x we find a minimum in z for the smooth function w �−→ w−φ(x,w),
so Dzφ(x, z) = 1. Then there exists α ∈ A such that (σ(x, α), 0)T (Dxφ(x, z), 1) = 0
and {

−Dφ(x, z) · f(x, z, α) − trace
[
a(x, z, α)D2φ(x, z)

]}
=

{
−(Dxφ(x, z), 1)

(
f(x, α)
l(x)

)
− trace

[(
a(x, α) 0

0 0

)
D2φ(x, z)

]}

=
{
−Dxφ(x, z) · f(x, α) − trace

[
a(x, α)D2

xxφ(x, z)
]}

− l(x) ≥ 0,

since V is a strict Lyapunov function. Now fix (x, z) with z < 0 and let φ be a smooth
function such that

V (x) − z − φ(x, z) ≤ V (y) − w − φ(y, w)

for every (y, w), w < 0 in a neighborhood of (x, z). We argue as before and now get
that there exists α ∈ A such that (σ(x, α), 0)T · (Dxφ(x, z),−1) = 0 and

−Dxφ(x, z) · f(x, α) − trace
[
a(x, α)D2

xxφ(x, z)
]
+ l(x)

> −Dxφ(x, z) · f(x, α) − trace
[
a(x, α)D2

xxφ(x, z)
]
− l(x) ≥ 0

because l is positive and V is a Lyapunov function. Finally, we consider (x, 0) and a
smooth function φ such that

V (x) − φ(x, 0) ≤ V (y) − w − φ(y, w)

for every (y, w), w < 0 in a neighborhood of (x, 0) and

V (x) − φ(x, 0) ≤ V (y) + w − φ(y, w)

for all (y, w), w > 0 in a neighborhood of (x, 0). Then (Dxφ(x, z), D2
xxφ(x, z)) ∈

J2,−V (x), Dzφ(x, 0) ≥ −1, and Dzφ(x, 0) ≤ 1. Therefore there exists α ∈ A such
that (σ(x, α), 0)T · (Dxφ(x, z), Dzφ(x, z)) = 0 and{

−Dφ(x, z) · f(x, z, α) − trace
[
a(x, z, α)D2φ(x, z)

]}
=

{
−Dxφ(x, z) · f(x, α) − trace

[
a(x, α)D2

xxφ(x, z)
]}

−Dzφ(x, z)l(x)

=
{
−Dxφ(x, z) · f(x, α) − trace

[
a(x, α)D2

xxφ(x, z)
]}

− l(x) ≥ 0.
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This completes the proof of the claim, so we can apply Theorem 2.5 to get for
every x ∈ O an admissible control α. ∈ Ax such that the corresponding trajectory
(X ., Z.) of (CSDE2) with initial data (x, 0) remains a.s. in the level set K = {(y, w) ∈
O × R |W (y, w) ≤ W (x, 0)}. Then, for all t ≥ 0 and a.s., Xt ∈ O,

W (Xt, Zt) = V (Xt) + Zt = V (Xt) +

∫ t

0

l(Xs)ds ≤ W (x, 0) = V (x)

and

0 ≤ V (Xt) ≤ V (x) −
∫ t

0

l(Xs)ds.(3.3)

In particular, since l ≥ 0, for some r > 0, |Xt| ≤ r for all t a.s.
Next we claim that l(Xt) → 0 a.s. as t → +∞. Let us assume by contradiction

that the claim is not true: then there exist ε > 0, a subset Ωε ⊆ Ω with P(Ωε) > 0,
and for every ω ∈ Ωε a sequence tn(ω) → +∞ such that l(Xtn(ω)) > ε. We define

F (r) := max
|x|≤r,α∈A

|f(x, α)|, Σ(r) := max
|x|≤r,α∈A

‖σ(x, α)‖.

We compute

E

{
sup

t≤s≤t+h
|Xs −Xt|2

}

= E

{
sup

t≤s≤t+h

∣∣∣∣∫ s

t

f(Xu, αu)du +

∫ s

t

σ(Xu, αu)dBu

∣∣∣∣2
}

≤ 2E

{
sup

t≤s≤t+h

∣∣∣∣∫ s

t

f(Xu, αu)du

∣∣∣∣2
}

+ 2E

{
sup

t≤s≤t+h

∣∣∣∣∫ s

t

σ(Xu, αu)dBu

∣∣∣∣2
}

≤ 2F 2(r)h2 + 2E

{
sup

t≤s≤t+h

∣∣∣∣∫ s

t

σ(Xu, αu)dBu

∣∣∣∣2
}

=: K.

By Theorem 3.4 in [19] (the process |
∫ s

t
σ(Xu, αu)dBu| is a positive semimartingale)

we get

K ≤ 2F 2(r)h2 + 8 sup
t≤s≤t+h

E

{∣∣∣∣∫ s

t

σ(Xu, αu)dBu

∣∣∣∣2
}

and by the Ito isometry,

K ≤ 2F 2(r)h2 + 8E

{∫ t+h

t

|σ(Xu, αu)|2du
}

≤ 2F 2(r)h2 + 8Σ2(r)h.

Then, the Chebyshev inequality gives

P

{
sup

t≤s≤t+h
|Xs −Xt| > k

}
≤

E
{
supt≤s≤t+h |Xs −Xt|2

}
k2

≤ 2F 2(r)h2 + 8Σ2(r)h

k2
.
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Since l is continuous, we can fix δ such that |l(x) − l(y)| ≤ ε
2 if |x − y| ≤ δ and

|x|, |y| ≤ r. We define

C :=

{
ω ∈ Ω : sup

0≤s≤h
|Xs − x| ≤ δ

}
and choose 0 < k < P(Ωε) and h > 0 depending on δ and ε such that

Px(C) ≥ 1 − 2F 2(r)h2 + 8Σ2(r)h

δ2
≥ 1 + k − P(Ωε).

By the uniform continuity of l, the set

B :=

{
ω ∈ Ω : sup

0≤s≤h
|l(Xs) − l(x)| ≤ ε/2

}
contains C and then

Px(B) ≥ 1 + k − P(Ωε).(3.4)

From inequality (3.3), letting t → ∞, we get

V (x) ≥ Ex

∫ +∞

0

l(Xs)ds ≥
∫

Ωε

∫ +∞

0

l(Xs) ds dP ≥
∫

Ωε

∑
n

∫ tn(ω)+h

tn(ω)

l(Xs)ds dP

≥
∫

Ωε

∑
n

h inf
[tn(ω),tn(ω)+h]

l(Xt) ≥ h
∑
n

∫
Ωε

inf
[tn(ω),tn(ω)+h]

l(Xt)dP

≥ h
∑
n

ε

2
P

[(
sup

0≤s≤h
|l(Xs) − l(x)| ≤ ε/2 | x = Xtn

)
∩ Ωε

]
.

By the properties of the solutions of (CSDE) estimate (3.4) gives P
(
sup0≤s≤h |l(Xs)−

l(x)| ≤ ε/2‖ x = Xtn

)
≥ 1+k−Px(Ωε) for every n. Therefore P

[(
sup0≤s≤h |l(Xs)−

l(x)| ≤ ε/2‖ x = Xtn

)
∩ Ωε

]
≥ k for every n. Then by the previous inequality, we

get

V (x) ≥ h
∑
n

ε

2
k = +∞.

This gives a contradiction; thus P(Ωε) = 0 for every ε > 0. We have proved that
l(Xt) → 0 a.s. as t → +∞, now the positive definiteness of l implies that |Xt| → 0
a.s. as t → +∞.

Remark 6. If the function l is only nonnegative semidefinite, the proof of the last
theorem gives, for any x, a control α. whose trajectory Xt satisfies a.s. V (Xt) ≤ V (x)
and l(Xt) → 0 as t → +∞. Then the set L := {y | l(y) = 0} is an attractor, for
a suitable choice of the control, in the sense that dist(Xt,L) → 0 a.s. as t → +∞.
For uncontrolled diffusion processes, results of this kind can be found in [37] and [18]
and are considered stochastic versions of a theorem by La Salle. The earlier paper
of Kushner [32] also studies a stochastic version of the La Salle invariance principle,
namely, that the omega limit set of the process is an invariant subset of L in a suitable
sense.
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4. Almost sure feedback stabilization of affine systems. In this section
we give a result on the feedback stabilizability of systems affine in the control in the
case where there exists a smooth strict control Lyapunov function. It is an analogue
for the almost sure stability of a celebrated theorem of Artstein [2] and Sontag [42]
for deterministic systems, extended by Florchinger [21] to the stability of controlled
diffusions in probability.

We begin with the simple case of a single-input affine system with uncontrolled
diffusion, that is,

dXt = (f(Xt) + αtg(Xt)) dt + σ(Xt)dBt,(4.1)

where f, g, σ are vector fields in RN with f(0) = 0 and σ(0) = 0, Bt is a one-
dimensional Brownian motion, and the control αt takes values in R. We seek a
function k : RN → R, at least continuous in RN \ {0}, such that the origin is a.s.
asymptotically stable for the stochastic differential equation

dXt = (f(Xt) + k(Xt)g(Xt)) dt + σ(Xt)dBt.(4.2)

Then k is called an a.s. asymptotically stabilizing feedback for the control system (4.1).
If there are no constraints on the control, a smooth strict control Lyapunov func-

tion V satisfies, in RN \ {0},

f ·DV + trace

[
1

2
σσTD2V

]
+ inf

α∈R

{αg ·DV } ≤ −l, σ ·DV = 0.

Set γ(x) := f ·DV + trace
[
σσTD2V

]
/2 + l/2 and observe that the inequality for V

means

g(x) ·DV (x) = 0 ⇒ γ(x) ≤ −l(x)/2 < 0.

It is clear that k(x) := −γ(x)/g(x) ·DV (x), k(x) := 0 if g(x) ·DV (x) = 0 could be a
stabilizing feedback, but it is discontinuous where g(x) ·DV (x) vanishes. If this case
occurs, we build a continuous feedback by means of Sontag’s universal formula [42],
i.e.,

k(x) := −γ(x) +
√
γ2(x) + (g(x) ·DV (x))4

g(x) ·DV (x)
if g(x) ·DV (x) �= 0,(4.3)

and k(x) = 0 if g(x) · DV (x) = 0. By the argument in [42], k ∈ C(RN \ {0}) if
V ∈ C2(RN \{0}) and k ∈ C1(RN \{0}) if f, g, l are of class C1 and V ∈ C3(RN \{0}).
Moreover

(f + kg) ·DV + trace

[
1

2
σσTD2V

]
≤ − l

2
, σ ·DV = 0,

in RN \ {0}, so V is a strict Lyapunov function for (4.2) and the origin is a.s. asymp-
totically stable. In conclusion, k is a stabilizing feedback for the affine control system
(4.1).

If the control must satisfy a hard constraint, say α ∈ [−1, 1], it is not hard to
check that k(x) can be used in a neighborhood of the origin provided that DV and
D2V are bounded near 0 and either g(x) → 0 or DV (x) → 0 as x → 0.
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Next we use the same idea for the more general system with both the drift and
the diffusion terms affine in the control

dXt =

(
f(Xt) +

P−1∑
i=1

αi
tgi(Xt)

)
dt +

(
σ(Xt) + αP

t τ(Xt)
)
dBt,(4.4)

where f, gi, σ, τ are vector fields in RN , Bt is a standard one-dimensional Brownian
motion, and the controls αi

t, i = 1, . . . , P , are R-valued. The existence of a strict
control Lyapunov function V implies that for some real number r the vector σ + rτ
is orthogonal to DV , so τ ·DV �= 0 at all points where σ ·DV �= 0, and we can define
for all x ∈ RN \ {0},

h(x) :=

{
0 if σ(x) ·DV (x) = 0,

−σ(x)·DV (x)
τ(x)·DV (x) if σ(x) ·DV (x) �= 0.

Proposition 4.1. Assume system (4.4) has a strict control Lyapunov function
V ∈ C2(RN \{0}) and the function h is continuous in RN \{0}. Then there exists con-
tinuous functions ki : RN \ {0} → R, i = 1, . . . , P − 1, such that (k1(x), . . . , kP−1(x),
h(x)) is an a.s. asymptotically stabilizing feedback for system (4.4).

Moreover, ki(x) ∈ [−1, 1] for x in a neighborhood of 0 if DV and D2V are bounded
near 0, and either DV (x) → 0 or gi(x) → 0 for all i as x → 0.

Proof. We recall from [42] that the function φ(a, 0) := 0 for a < 0, φ(a, b) :=
(a +

√
a2 + b2)/b is real-analytic in the set S := {(a, b) ∈ R2 : b > 0 or a < 0}. We

set

γ(x) := f(x) ·DV (x) + trace

[
(σ(x) + h(x)τ(x))(σ(x) + h(x)τ(x))T

D2V (x)

2

]
+

l(x)

2
,

β(x) :=
P−1∑
i=1

(gi(x) ·DV (x))2.

Since V is a strict control Lyapunov function,

γ(x) + inf
αi∈R

P−1∑
i=1

αigi(x) ·DV (x) ≤ − l(x)

2
,

so, for x �= 0,

β(x) = 0 ⇒ γ(x) ≤ −l(x)/2 < 0.

Therefore (γ(x), β(x)) ∈ S. Now we define, for i = 1, . . . , P − 1,

ki(x) := −φ(γ(x), β(x))gi(x) ·DV (x), x �= 0,

and k(0) = 0. Then (k1(x), . . . , kP−1(x), h(x)) is continuous in RN \ {0} and satisfies(
f +

P−1∑
i=1

kigi

)
·DV + trace

[
(σ + hτ)(σ + hτ)

T D2V

2

]
+

l

2

= γ − βφ(γ, β) = −
√
γ2 + β2 < 0.
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Since (σ + hτ) · DV = 0 by definition of h, V is a strict Lyapunov function for the
equation

dXt =

(
f(Xt) +

P−1∑
i=1

ki(Xt)gi(Xt)

)
dt + (σ(Xt) + h(Xt)τ(Xt)) dBt.

Therefore the origin is a.s. asymptotically stable for this equation.
Finally, we check the boundedness of k in a neighborhood of 0. This is trivial for

β(x) = 0. If β(x) �= 0, then

|k| ≤ |γ + |γ| + β|√
β

.

Since either DV → 0 or gi → 0 for all i, β(x) → 0 as x → 0. We fix δ > 0 such
that β(x) ≤ δ implies γ(x) < 0 and then choose a neighborhood of the origin where
β(x) ≤ δ. In this set |k(x)| ≤

√
β(x) → 0.

Remark 7. The proof above gives an explicit formula for the stabilizing feedback
in terms of the data and the Lyapunov function V only, which reduces to (4.3) if
τ ≡ 0 and P = 2. From the formula, one sees that the feedback is C1 in RN \ {0} if
h, f, g, σ, τ , and l are C1 in RN \ {0} and V ∈ C3(RN \ {0}).

Note also that the continuity assumption on h is automatically satisfied if τ ·DV
is either always nonnull or identically 0.

Finally, it is straightforward to extend the proposition to the case of M -dimensional
noise with independent Brownian components B1

t , . . . , B
M
t and a diffusion term of the

form
∑P+M−1

i=P

(
σi + αi

tτi
)
dBi

t, with σi, τi vector fields and αi
t scalar controls.

5. Some variants and extensions. In this section we collect several remarks
on other applications of our methods. We begin with the almost sure exponential
stabilizability. It means that there exists a positive rate λ and γ ∈ K such that for
every initial data x there exists an admissible control α. ∈ Ax whose corresponding
trajectory X . satisfies

|Xt| ≤ e−λtγ(|x|) a.s.

Proposition 5.1 (almost sure exponential stabilizability). Under assumptions
(2.1) and (2.2), the null state is a.s. exponentially stabilizable for (CSDE) if there
exists a control Lyapunov function V satisfying conditions (i), (ii), (iii) of Definition
2.3 and, for some λ > 0,

(iv)′ for every (p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

σ(x, α)T p = 0 and − p · f(x, α) − trace [a(x, α)Y ] − λV (x) ≥ 0.

Proof. We consider the system{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt,
dYt = dt

with initial data X0 = x and Y0 = 0, and the Lyapunov function W (x, y) = eλyV (x).
By applying Theorem 2.5 we obtain the existence of a control α. such that the
corresponding trajectory a.s. satisfies V (Xt) ≤ V (x)e−λt, which is the desired in-
equality.
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Next we extend the results of section 2 to the stabilizability of a general closed
set M ⊆ RN . We denote by d(x,M) the distance between a point x ∈ RN and M .

Definition 5.2 (almost sure stabilizability at M). The system (CSDE) is
a.s. (stochastic open-loop) stabilizable at M if there exists γ ∈ K such that, for every
x in a neighborhood of M , there is an admissible control function α· ∈ Ax whose
trajectory X · verifies

d(Xt,M) ≤ γ(d(x,M)) ∀ t ≥ 0 a.s.

If, in addition,

lim
t→+∞

d(Xt,M) = 0 a.s.,

the system is a.s. (stochastic open-loop) locally asymptotically stabilizable at M .
If these properties hold for all x ∈ RN , the system is a.s. (stochastic open-loop)

globally asymptotically stabilizable at M .
Remark 8. If M is a.s. stabilizable, then it is viable for (CSDE). In fact, the

definition gives for x ∈ M and ε > 0 an admissible control such that a.s. d(Xt,M) ≤ ε
for all t ≥ 0.

Then for such control and any λ > 0 Ex

∫ +∞
0

d(Xt,M)e−λtdt ≤ ε
λ , and so

inf
α.∈Ax

Ex

∫ +∞

0

d(Xt,M)e−λtdt = 0.

The convexity assumption (2.2) and an existence theorem for optimal controls [27]
imply that the inf is attained, and the minimizing control produces a trajectory re-
maining in M for all t ≥ 0.

Definition 5.3 (control Lyapunov functions at M). Let O be an open neighbor-
hood of the closed set M . A function V : O → [0,+∞) is a control Lyapunov function
at M for (CSDE) if

(i) V is lower semicontinuous;
(ii) there exists γ1 ∈ K∞ such that V (x) ≤ γ1(d(x,M)) for all x ∈ O;
(iii) there exists γ2 ∈ K∞ such that γ2(d(x,M)) ≤ V (x) for all x ∈ O;
(iv) for all x ∈ O \ M and (p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

condition (2.4) holds.
The function V is a strict control Lyapunov function at M if it satisfies conditions

(i)–(iii) and
(iv)′ for some Lipschitz continuous l : O → R, l > 0 for all x ∈ O \ M and

(p, Y ) ∈ J 2,−V (x), there exists α ∈ A such that condition (2.7) holds.
Now we can state the analogues of the first and second Lyapunov theorems for the

almost sure stabilizability at M . Their proofs are easily obtained from the arguments
of Theorems 2.5 and 2.6 by using d(x,M) instead of |x| and noting that conditions
(ii) and (iii) in the Definition 5.3 say that the sublevel sets of the Lyapunov function
form a basis of neighborhoods of M .

Theorem 5.4. Assume (2.1), (2.2), and the existence of a control Lyapunov
function V at M . Then

(i) the system (CSDE) is a.s. stabilizable at M;
(ii) if, in addition, the domain O of V is all RN , for all x /∈ M there exists

α. ∈ Ax such that the corresponding trajectory X . satisfies

d(Xt,M) ≤ γ−1
1 (γ2(d(x,M))) ∀ t ≥ 0 a.s.
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with γ1, γ2 ∈ K∞ from Definition 5.3; in particular, if M is bounded, the system is
also a.s. Lagrange stabilizable.

Theorem 5.5. Assume (2.1), (2.2), and the existence of a strict control Lyapunov
function V at M . Then

(i) the system (CSDE) is a.s. locally asymptotically stabilizable at M;
(ii) if, in addition, the domain O of V is all RN , the system is a.s. globally

asymptotically stabilizable at M .
Remark 9 (stochastic target problems and absorbing sets). A stochastic target

problem consists of steering the state of the system (CSDE) in finite time into a
given closed set T (the target) by an appropriate choice of the control. One of the
objects of interest is the set of initial positions from which this goal can be achieved
a.s. in a given time t. We define these reachability sets for t > 0 as

R(t) = {x ∈ RN | ∃α. ∈ Ax : Xt ∈ T a.s.}.

We consider a target T containing 0 and being invariant for the stochastic system
and we assume there exists a global strict control Lyapunov function V as defined in
(2.4) such that

inf
RN\T

l(x) = L > 0.

We are going to show that each reachability set R(t) lies between two sublevel sets of
the Lyapunov function V . The arguments in the proof of Theorem 2.6 show that for
every initial point x �∈ T there exists a control α. ∈ Ax such that the first entry time
τx of the corresponding trajectory in the target is a.s. bounded by

τx ≤
(
V (x) − inf

∂T
V (y)

)/
L.(5.1)

In particular, since the target T is invariant, it is reached a.s. in a finite time, and as
such time is also uniformly bounded, T is an absorbing set for the system according
to the terminology in [5]. Next, from the assumptions and inequality (5.1) we get{

x ∈ RN | V (x) ≤ Lt + inf
∂T

V (y)

}
⊆ R(t).

Using Chebyshev inequality and estimates of the same kind as in the proof of Theorem
2.6 we can find also for every t > 0 a positive number k(t) depending continuously on
t such that

R(t) ⊆ {x ∈ RN | V (x) ≤ k(t)}.

Let us mention that Soner and Touzi [39] developed recently a PDE approach to
stochastic target problems; see also [40] and the references therein for some interesting
applications to geometric PDEs and front propagation problems.

6. Examples. We begin with an example of an uncontrolled system that does
not have a continuous Lyapunov function but has an l.s.c. Lyapunov function and
therefore is a.s. stable. It shows that allowing V to be merely l.s.c. in Theorem
2.5 really increases the range of the applications. Our example is a variant of a
deterministic one by Krasowski [30], namely,{

Ẋt = Yt,

Ẏt = −Xt + Yt(X
2
t + Y 2

t )3 sin2
(

π
X2

t +Y 2
t

)
;
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see [6] for a discussion of this and other deterministic examples.

Example 1. We transform the previous system into polar coordinates and perturb
it with a white noise tangential to the circles Cn := {(x, y) : |(x, y)| = 1√

n
} and

nondegenerate between two consecutive circles:⎧⎨⎩ dρt =
[
ρ7
t sin2(θt) sin2( π

ρ2
t
)
]
dt +

[
σ(ρt, θt) sin2( π

ρ2
t
)
]
dBt,

dθt =
[
−1 + ρ6

t sin(θt) cos(θt) sin2( π
ρ2
t
)
]
dt,

where Bt is a one-dimensional Brownian motion and σ satisfies the hypotheses for the
existence and uniqueness of the solution of the stochastic differential equation. As in
the undisturbed case, the circles Cn are a.s. invariant and any point in Cn is eventually
reached a.s. by any trajectory starting in Cn. Then any Lyapunov function V is
constant on Cn because V (ρt, θt) ≤ V (ρ0, θ0) a.s., and cn := V|Cn

�= cn−1 := V|Cn−1

at least on a subsequence. By property (iv) in Definition 2.3 of the Lyapunov function,
for every (ρ, θ) in the interior of Cn−1 \ Cn and every (p,X) ∈ J 2,−V (ρ, θ), we get
(σ(ρ, θ) sin2( π

ρ2 ), 0) · p = 0. Since the diffusion is nondegenerate in the ρ direction in

the interior of Cn−1 \ Cn, from the previous equality we deduce that, for such (ρ, θ),
every element in J 2,−V (ρ, θ) is of the form ((0, p2), X). This implies that the function
V is constant in the ρ direction in the interior of Cn−1 \Cn and cannot be continuous.

Now we check that the Lyapunov function of the undisturbed system in the unit
ball does the job also for our perturbed stochastic system. We take

V (ρ, θ) :=
1√
n

for
1√
n
< ρ ≤ 1√

n− 1
∀θ.

This is a positive definite function, l.s.c. and continuous at 0. We calculate its second
order subjets and plug them into (2.4). If ρ �= 1√

n
for all n, (p,X) ∈ J2,−V (ρ, θ) if

and only if p = 0 and X ≤ 0, so condition (2.4) is trivially satisfied. On the other
hand, (p,X) ∈ J2,−V ( 1√

n
, θ) if and only if

p =

(
s
0

)
, s ≥ 0, and X =

(
a b
b c

)
, c ≤ 0.

At the points with ρ = 1√
n

the drift f of the system is (0,−1) and the dispersion

vector σ is (0, 0). Then

f · p +
1

2
trace

[
σσTX

]
= 0, σ · p = 0,

and condition (2.4) is satisfied. Therefore Theorem 2.5 applies and the system is
a.s. Lyapunov stable at the origin.

The next two examples are about stochastic perturbations of stabilizable systems.
We consider a deterministic controlled system in RN ,

Ẋt = f(Xt, αt),(6.1)

globally asymptotically (open-loop) stabilizable at the origin, i.e., asymptotically con-
trollable in the terminology of deterministic systems [43, 44]. By the converse Lya-
punov theorem of Sontag [41, 44], there exists a strict continuous control Lyapunov
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function for the system, i.e., for some positive definite continuous function L, a proper
function V satisfying, in RN \ {0},

max
α∈A

{−f(x, α) ·DV } − L(x) ≥ 0(6.2)

in the viscosity sense. (This is perhaps not explicitly stated in the literature; the
original result of Sontag [41] interprets this inequality in the sense of Dini derivatives
of V along relaxed trajectories; the paper of Sontag and Sussmann [44] interprets it
in the sense of directional Dini subderivatives; and both these senses are known to be
equivalent to the viscosity one; see, e.g., [47, 7]).

In the following examples we perturb (6.1) in two different ways and give a con-
dition under which V remains a control Lyapunov function for the almost sure stabi-
lizability of the new stochastic system.

Example 2. Consider the controlled diffusion process

dXt = f(Xt, α)dt + σ(Xt)dBt,(6.3)

where Bt is an M -dimensional Brownian motion and σ a Lipschitzean N ×M matrix.
Then V is a Lyapunov function for (6.3) if, for some open set O � 0 and some
continuous l : O → [0,+∞), V satisfies in viscosity sense in O \ {0},

−trace

[
1

2
σσTD2V

]
+ L− l ≥ 0, σi ·DV = 0 ∀i,(6.4)

and it is a strict Lyapunov function if l is positive definite.
In fact, this inequality and (6.2) give, for any (p,X) ∈ J2,−V (x),

max
α∈A

{−f(x, α) · p} − trace

[
1

2
σσTX

]
− l ≥ 0,

so V satisfies the inequality in condition (2.7), whereas the equality in condition (2.7)
reduces to σi · p = 0.

In the classical special case of V (x) = |x|2 and M = 1, the sufficient condition
(6.4) for V to be a Lyapunov function of (6.3) reads

l(x) := L(x) − |σ(x)|2 ≥ 0, σ(x) · x = 0.

For a noise of dimension M = N an example of σ satisfying the orthogonality condition
in (6.4) is

σ(x) = k

(
I − DV (x) ⊗DV (x)

|DV (x)|2

)
for any constant k.

Example 3. Here we consider the perturbation of the deterministic system (6.1)
by a function g of a K-dimensional diffusion process Yt:{

Ẋt = f(Xt, αt) + g(Xt, Yt),
dYt = b(Yt, Xt, αt)dt + τ(Yt, Xt, αt)dBt,

(6.5)

where the function g : Rn × RK → Rn is Lipschitz continuous with g(0, y) = 0 for
all y, Bt is a one-dimensional Brownian motion, and b, τ are vector fields in RK
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with the usual assumptions. We are still assuming that (6.1) has a strict control
Lyapunov function V , i.e., (6.2) holds with L positive definite. We are interested in
the stabilizability of the perturbed system at the set M := {(x, y) ∈ Rn×RK : x = 0},
which corresponds to the origin of the unperturbed system (6.1); see Definition 5.2.
Note that the assumption on g implies the viability of M for (6.5).

We claim that the function V , defined by V (x, y) := V (x) for all y, is a Lyapunov
function at M for (6.5) (see Definition 5.3) if, for some open set O � 0 and some
continuous l : O × RK → [0,+∞), V satisfies in viscosity sense in O \ {0},

inf
y∈RK

{−g(x, y) ·DV (x) − l(x, y)} + L(x) ≥ 0,(6.6)

and V is a strict Lyapunov function if l(x, y) > 0 for all x �= 0 and all y.
In fact, since d((x, y),M) = |x|, V satisfies conditions (i)–(iii) of Definition 5.3.

By (6.2) and (6.6) V is also a viscosity supersolution in O × RK \M of

sup
a∈A

{−f(x, a) ·DV (x)} − g(x, y) ·DV (x) − l(x, y) ≥ 0,

which is the inequality in (2.7) in this case, because V is constant in y. Finally, for
the same reason, the condition in (2.7) of orthogonality of the diffusion vector to the
level sets of V is trivially satisfied.

The inequality (6.6) is a smallness condition of the component of g in the direction
of DV with respect to L in the set O, uniformly in y. For l ≡ 0 and V smooth in
O \ {0}, it becomes

sup
y∈RK

g(x, y) ·DV (x) ≤ L(x) in O \ {0},(6.7)

which is satisfied, in particular, if

sup
y∈RK

|g(x, y)| ≤ L(x)/LipV,

where LipV denotes the Lipschitz constant of V in O. We recall that, under our as-
sumption that the deterministic system (6.1) be asymptotically controllable, although
V may not be smooth, it can be chosen semiconcave in RN \{0} and therefore locally
Lipschitz [38]. If we make this choice, it is enough that inequality (6.7) holds for all
points x ∈ O where V is differentiable, and the last inequality is guaranteed for all
perturbations g with small sup-norm with respect to y.

In the next two examples we give conditions on a radial function to be a Lyapunov
function for almost sure stability.

Example 4. We consider as a candidate Lyapunov function for the general con-
trolled system (CSDE) the function V (x) = v(|x|), for some smooth v : [0,+∞) →
[0,+∞) with v′(r) > 0 for r > 0. Since DV (x) = xv′(|x|)/|x|, in view of the orthog-
onality condition in (2.4), we restrict ourselves to controls α ∈ A such that

σi(x, α) · x = 0 ∀ i = 1, . . . ,M.(6.8)

We compute

trace
[
a(x, α)D2V (x)

]
=

v′(|x|)
|x| trace a(x, α) +

(
v′′(|x|) − v′(|x|)

|x|

)
|σ(x, α)Tx|2

|x|2
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and use (6.8) to obtain that V is a Lyapunov function if and only if, in a neighborhood
O of 0,

l(x) := max
α∈A, σ(x,α)T x=0

[−f(x, α) · x− trace a(x, α)]
v′(|x|)
|x| ≥ 0,

i.e.,

min
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] ≤ 0.(6.9)

This condition is independent of the choice of v. Moreover, if l > 0 and Lipschitz
in O \ {0} and l → 0 as x → 0, then V is a strict Lyapunov function. Note that,
although the radial component of the diffusion must be null by (6.8), its rotational
component still plays a destabilizing role. In fact, trace a(x, α) ≥ 0 and whenever it
is nonnull it must be compensated by a negative radial component of f .

In particular, a single-input affine system with uncontrolled diffusion and one-
dimensional noise Bt,

dXt = (f(Xt) + αtg(Xt)) dt + σ(Xt)dBt, αt ∈ [−1, 1],

has a radial Lyapunov function in O if and only if

σ(x) · x = 0 and |g(x) · x| ≥ f(x) · x +
|σ(x)|2

2
in O,

and V (x) = |x|2/2 is a strict Lyapunov function in O if and only if

l(x) := |g(x) · x| − f(x) · x− |σ(x)|2
2

> 0 in O \ {0}.

Moreover, k(x) := −sign(g(x) · x) is a stabilizing feedback if g(x) · x does not change
sign; if it does, k is discontinuous, and then a continuous stabilizing feedback in a
neighborhood of 0 is given by the formula (4.3) in section 4.

Example 5. Here we study a system in R2 written in polar coordinates (ρ, θ) and
look for radial Lyapunov functions, i.e., of the form V (ρ, θ) = v(ρ). Consider the
stochastic controlled system:

(CSDE)

{
dρt = f(ρt, θt, αt)dt + σ(ρt, θt, αt)dBt,
dθt = g(ρt, θt, α)dt + τ(ρt, θt, αt)dBt,

where all functions f, σ, g, τ are 2π-periodic and Bt is (for simplicity) a one-dimensional
Brownian motion. The conditions for a function V = v(ρ) to be a Lyapunov function
of this system at the set M := {(0, θ) : θ ∈ R} are the following. The orthogonality
condition in (2.7) requires that for every (ρ, θ) there exists a subset A(ρ, θ) �= ∅ of the
control set A such that

σ(ρ, θ, α) = 0 ∀α ∈ A(ρ, θ).

Then the condition (2.7) is satisfied if v is a viscosity supersolution of the ordinary
differential inequality

sup
α∈A(ρ,θ)

{−f(ρ, θ, α) · v′(ρ)} ≥ 0
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for ρ > 0 and for each fixed θ ∈ [0, 2π]. Of course the same result can be obtained
from the previous example with some calculations based on the Ito chain rule.

The last two examples are about the stabilization of systems to sets M different
from the origin, namely, the complement of a ball and a periodic orbit.

Example 6. We consider the general system (CSDE) and the set

M := {x | |x| ≥ R} = RN \BR.

We assume M is viable for the system. We take the radial function V

V (x) :=

{
R2 − |x|2 |x| < R,
0 |x| ≥ R

and use the calculations of Example 4 to see that V is a Lyapunov function at M if
and only if for every x with |x| < R there exists α ∈ A such that

σi(x, α) · x = 0 ∀i and f(x, α) · x + trace a(x, α) ≥ 0.

Contrary to Example 4, here the rotational component of the diffusion has a stabilizing
effect. In fact, the drift f(x, a) is allowed also to point away from M if its negative
radial component is compensated by the positive term trace a(x, α).

If K ⊂ BR is a compact set and

l(x) := max
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] > 0 in BR \K,

then M is locally asymptotically stable by Theorem 5.5, and for all initial points
x /∈ K there is a control whose trajectories tend a.s. to M as t → +∞. In this case
we can say that K can be made a.s. repulsive by a suitable choice of the controls. In
particular, we have a criterion of instability of an equilibrium point.

Note also that if l > 0 on ∂M = ∂BR, then for some control the trajectories
starting in a suitable neighborhood of ∂M reach M in finite time a.s., as we observed
in the last remark of section 5. In particular, if l > 0 in BR, then for every x ∈ BR

there exists a control α. such that the exit time of the corresponding trajectory X .

from BR is a.s. bounded by (R2 − |x|2)/minBR
l.

Example 7. Consider (CSDE) in R2 and assume the circle γ := {x : |x| = R} is
a viable set. By the results of [11] this occurs if for all x ∈ γ there exists α ∈ A such
that

σ(x, α) · x = 0 and f(x, α) · x + trace a(x, α) = 0.

Then γ is locally asymptotically stabilizable if, in a neighborhood {x : R− ε ≤ |x| ≤
R + ε},

max
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] > 0 if |x| < R,

min
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] < 0 if |x| > R.

This follows immediately from the arguments of Examples 4 and 6.
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THE APPROXIMATION OF HIGHER-ORDER INTEGRALS OF
THE CALCULUS OF VARIATIONS

AND THE LAVRENTIEV PHENOMENON∗

ALESSANDRO FERRIERO†

Abstract. We prove the following approximation theorem: given a function x : [a, b] → RN in
the Sobolev space Wν+1,1, ν ≥ 1, and ε > 0, there exists a function xε in Wν+1,∞ such that∫ b

a

m∑
i=1

Li(x
(ν)
ε , x

(ν+1)
ε )ψi(t, xε, x

′
ε, . . . , x

(ν)
ε ) <

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)) + ε,

xε(a) = x(a), xε(b) = x(b),

x′
ε(a) = x′(a), x′

ε(b) = x′(b),

...

x
(ν)
ε (a) = x(ν)(a), x

(ν)
ε (b) = x(ν)(b),

provided that, for every i in {1, . . . ,m}, Liψi is continuous in a neighborhood of x, Li is convex in
its second variable, and ψi evaluated along x has positive sign. We discuss the optimality of our
assumptions comparing them with an example of Sarychev [J. Dynam. Control Systems, 3 (1997),
pp. 565–588].

As a consequence, we obtain the nonoccurrence of the Lavrentiev phenomenon. In particular,

the integral functional
∫ b
a L(x(ν), x(ν+1)) does not exhibit the Lavrentiev phenomenon for any given

boundary values x(a) = A, x(b) = B, x′(a) = A′, x′(b) = B′, . . . , x(ν)(a) = A(ν), x(ν)(b) = B(ν).
Furthermore, we prove the following necessary condition: an action functional with Lagrangian

of the form
∑m

i=1 Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)), with ν ≥ 0, exhibiting the Lavrentiev phe-
nomenon takes the value +∞ in any neighborhood of a minimizer.

Key words. calculus of variations, Lavrentiev phenomenon, reparameterization
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1. Introduction. In 1926, Lavrentiev [11] proposed an example of a first-order

integral functional of the calculus of variations, I(x) =
∫ b

a
L(t, x, x′), whose infimum

taken over the space of the absolutely continuous functions W1,1(a, b) is strictly less
than the infimum taken over the space of Lipschitz continuous functions W1,∞(a, b),
with x(a) = A and x(b) = B. Later, Manià [13] published a simpler example of the
same phenomenon where the Lagrangian is

L1(x
′)ψ1(t, x) = |x′|6(x3 − t)2.

Several papers have been devoted to the problem of finding conditions under
which the Lavrentiev phenomenon does not occur: Angell [2], Clarke, Vinter [8],
Ball, Mizel [3], Lowen [12], Alberti, Serra Cassano [1]. In a recent paper by Cellina,
Ferriero, and Marchini [5] a large class of Lagrangians of the form L1(x, x

′)ψ1(t, x)
has been treated, including the autonomous and some nonautonomous cases, under
no additional conditions besides the convexity of L1 in x′ and the positivity of ψ1.
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Besides the first-order case, the Lavrentiev phenomenon occurs as well in the case

with (ν + 1)-order derivatives, I(x) =
∫ b

a
L(t, x, x′, . . . , x(ν+1)). For ν = 1, in 1994

Cheng and Mizel [7] described a restricted Lavrentiev phenomenon in which the gap
occurs for a dense subset of the absolutely continuous nonnegative functions, and they
proved that even autonomous Lagrangian L(x, x′, x′′) can exhibit it. Some years later
Sarychev [15] proved that a class of Lagrangians of the form

L1(x
′′)ψ1(x, x

′) + L2(x
′′)

exhibits the Lavrentiev phenomenon provided that ψ1(x, x
′) = φ(kx− k|x′ − 1|k−1 −

(k − 1)|x′ − 1|k) for appropriate constants k, that L1, L2, φ satisfy certain growth
conditions, and that φ(0) = 0. For example, L1(x

′′) = |x′′|7, L2(x
′′) = α|x′′|3/2,

φ1(·) = (·)2, k = 3, and α > 0 sufficiently small yield a Lagrangian whose inte-
gral exhibits the Lavrentiev phenomenon when the boundary values are x(0) = 0,
x(1) = 5/3, x′(0) = 1, x′(1) = 2.

The Lagrangians proposed by Manià and Sarychev have the property that L1 eval-
uated along the minimizer x is not integrable (this is possible because there exists
at least one point t in [a, b] such that ψ1 evaluated along x in t is 0). A condition
avoiding the occurrence of this fact will turn out, in this paper, to be essential for the
nonoccurrence of the Lavrentiev phenomenon.

We prove the following general approximation theorem: let x : [a, b] → RN be a
function in Wν+1,1 (independently on whether is a minimizer or not), then the inte-
grability of Li evaluated along x (or the assumption that ψi > 0), for every i, implies
that, given ε > 0, there exists a function xε in Wν+1,∞ with the same boundary
values of x in a and in b, i.e., xε(a) = x(a), xε(b) = x(b), x′

ε(a) = x′(a), x′
ε(b) = x′(b),

. . . , x
(ν)
ε (a) = x(ν)(a), x

(ν)
ε (b) = x(ν)(b), such that∫ b

a

m∑
i=1

Li(x
(ν)
ε , x(ν+1)

ε )ψi(t, xε, x
′
ε, . . . , x

(ν)
ε )

<

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)) + ε.

We underline that an application of this result is the nonoccurrence of the Lavrentiev
phenomenon for a class of functionals of the calculus of variations with (ν + 1)-order
derivatives, ν ≥ 1. (The case ν = 0, m = 1 has already been treated in [5]. The case
ν = 0, m > 1 can be obtained modifying slightly the proof of the main result of [5];
see [10].) Moreover, we infer a necessary condition for the Lavrentiev phenomenon.

In section 2 we state our results, we discuss the optimality of the assumptions,
and we infer the nonoccurrence of the Lavrentiev phenomenon. In section 3 we prove
the main result. In section 4 we deal with a necessary condition for the Lavrentiev
phenomenon: a functional

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)),

with ν ≥ 0, exhibiting the Lavrentiev phenomenon takes the value +∞ in any neigh-
borhood of a minimizer x̄.

2. The main result and the Lavrentiev phenomenon. For δ > 0, B[c, δ]
denotes the closed ball in RN centered in c with radius δ. For a function x in Cν [a, b],
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with values in RN , the closed δ-tube along (x, . . . , x(ν))

Tν
δ [x] = {(t, z0, . . . , zν) ∈ [a, b] × R(ν+1)N :

(z0, . . . , zν) ∈ B[x(t), δ] × · · · ×B[x(ν)(t), δ], t ∈ [a, b]}

and the closed δ-neighborhood of the image Im(x(ν)) of x(ν)

Iδ[x
(ν)] = {z ∈ RN : dist(z, Im(x(ν))) ≤ δ}

are compact sets.
We recall that the space Wν+1,p(a, b) can be seen as the space of functions x in

Cν [a, b] such that x(ν) is absolutely continuous with derivative in Lp(a, b), p ≥ 1.
The following approximation theorem is our main result.
Theorem 2.1. Let x be a function in Wν+1,1(a, b), ν ≥ 1, and let the real-valued

functions L1, . . . , Lm and ψ1, . . . , ψm be continuous on Iδ[x
(ν)] × RN and on Tν

δ [x],
respectively, for some δ > 0.

Assume that, for every i in {1, . . . ,m},
• Li(ξ, ·) is convex, for every ξ in Iδ[x

(ν)],
• ψi is nonnegative, and ψi(t, x(t), x′(t), . . . , x(ν)(t)) > 0, for every t in [a, b].

Then

(i) I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x′(t), . . . , x(ν)(t))dt > −∞;

(ii) given any ε > 0, there exists a function xε in Wν+1,∞(a, b) such that

I(xε) < I(x) + ε,

and

xε(a) = x(a), xε(b) = x(b),

x′
ε(a) = x′(a), x′

ε(b) = x′(b),

...

x(ν)
ε (a) = x(ν)(a), x(ν)

ε (b) = x(ν)(b).

As a corollary we obtain the nonoccurrence of the Lavrentiev phenomenon.
Theorem 2.2. Let Ω0, . . . ,Ων be open sets in RN , ν ≥ 1, such that the set

E = {x ∈ Wν+1,1(a, b) : x(t) ∈ Ω0, . . . , x
(ν)(t) ∈ Ων ∀t ∈ [a, b]} is nonempty.

Let L1, . . . , Lm : Ων×RN → R and ψ1, . . . , ψm : [a, b]×Ω0×· · ·×Ων → (0,+∞) be
continuous and such that Li(ξ, ·) is convex, for any ξ in Ων , and any i in {1, . . . ,m}.

Then, for all boundary values A,B ∈ Ω0, A
(1), B(1) ∈ Ω1, . . . , A

(ν), B(ν) ∈ Ων ,
the infimum of

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x′(t), . . . , x(ν)(t))dt

over the space Ea,b = {x ∈ E : x(a) = A, x(b) = B, x′(a) = A(1), x′(b) = B(1), . . . ,
x(ν)(a) = A(ν), x(ν)(b) = B(ν)} is equal to the infimum of the same functional I over
the space Ea,b ∩ Wν+1,∞(a, b).

Proof. Let {xn}n ⊂ Ea,b be a minimizing sequence for I: by the fact that
ψi > 0, for every i, the theorem follows from Theorem 2.1 applied to any xn, with
ε = 1/n.
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Setting m = 1, ψ1 = 1, and L1 = L, we obtain that a Lagrangian depending
only on x(ν) and x(ν+1) satisfies the assumptions of Theorem 2.2. Hence, the integral
functional ∫ b

a

L(x(ν)(t), x(ν+1)(t))dt

does not exhibit the Lavrentiev phenomenon, for any boundary values

x(a) = A, x(b) = B,

x′(a) = A(1), x′(b) = B(1),

...

x(ν)(a) = A(ν), x(ν)(b) = B(ν).

This extends some previous results ([1], [4]), where functionals without boundary
conditions, or with boundary conditions only in a, have been considered.

We point out that the assumption ψi(t, x(t), x′(t), . . . , x(ν)(t)) 
= 0 ∀t ∈ [a, b] in

Theorem 2.1 will be used only to infer that
∫ b

a
Li(x

(ν), x(ν+1)) is finite, provided that
I(x) is finite (point (a) in the proof). The theorem holds under the weaker assumption∫ b

a
|Li(x

(ν), x(ν+1))| < +∞, for every i.
To verify how sharp our assumptions are, consider the following example of A. V.

Sarychev [15]: for ν = 1, m = 1, minimize the functional∫ 1

0

|x′′(t)|7[3x(t) − 3|x′(t) − 1|2 − 2|x′(t) − 1|3]2dt,

with boundary conditions x(0) = 0, x(1) = 5/3, x′(0) = 1, x′(1) = 2. He proved

that the infimum taken over the space W2,1(0, 1), assumed in x̄(t) = (2/3)
2
√
t3 + t, is

strictly lower than the infimum taken over the space W2,∞(0, 1).

The assumption
∫ b

a
|L1(x

′, x′′)| < +∞ along x̄ is not verified. Indeed, setting
ψ1(t, x, ξ) = [3x− 3|ξ− 1|2 − 2|ξ− 1|3]2 and L1(ξ, w) = |w|7, we see that ψ1 ≥ 0 (but,
for example, ψ1(0, x(0), x′(0)) = 0) and that∫ 1

0

|x̄′′(t)|7dt =

∫ 1

0

1

(2
√
t)7

dt = +∞.

3. Proof of the main theorem. In what follows, x denotes the matrix (x, . . . ,
x(ν−1)) and x = x(ν−1), so that x′ = x(ν), x′′ = x(ν+1) (similarly, z = (z, . . . , z(ν−1)),
and z = z(ν−1)). The Lagrangian we consider takes the form

m∑
i=1

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t)).

(In case ν = 1, x, x′, x′′ coincide with x, x′, x′′, respectively.)
(i) For every t ∈ [a, b], Li(x

′(t), x′′(t)) ≥ Li(x
′(t), 0) + 〈p0(t), x

′′(t)〉, where p0(t) is
any selection from the subdifferential ∂wLi(x

′(t), 0) of Li with respect to its second
variable. Set Ei = {t ∈ [a, b] : [Li(x

′(t), x′′(t))]− 
= 0}, so that∫ b

a

[Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))]−dt

≤ −
∫
Ei

[Li(x
′(t), 0) + 〈p0(t), x

′′(t)〉]ψi(t,x(t), x′(t))dt,
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for any i. Since ψi is bounded and, by Proposition 2 in [5], p0(t) is bounded, the
claim follows by Hölder’s inequality.

(ii) Fix ε > 0; set ε̄ = ε/m. Without loss of generality, we shall assume ε < 1,
and also δ < 1.

In case
∫ b

a
Li(x

′(t), x′′(t))ψi(t,x(t), x′(t))dt = +∞, for some i, any Lipschitz func-
tion xε satisfying the boundary conditions is acceptable. Hence we can assume, for
every i, ∫ b

a

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))dt < +∞.

The proof is in three steps. In Step (1) of the proof we introduce the new functions
L̃i such that L̃i = Li+const and such that their polar functions L̃∗

i (with respect to the
second variable) are nonnegative. In Step (3) we define a variation zn in W∞,1(a, b),
with the same boundary values of x in a and in b, such that I(zn) < I(x) + ε. In
order to define zn, in Step (2) we define a sequence of reparameterizations sn of [a, b].

Step (1). We claim that there exists functions L̃i and a constant η such that
L̃i = Li + η and L̃∗

i ≥ 0, for any i.
In fact, consider the set

Vi = {(ξ, p) : ξ ∈ Iδ[x
(ν)], p ∈ ∂wLi(ξ, w), |w| ≤ 1}.

By Proposition 2 in [5], arguing by contradiction, we obtain that Vi is compact. Let
L∗
i (ξ, p) = supw∈RN 〈p, w〉 − Li(ξ, w) be the polar function of Li with respect to its

second variable. Then, minVi L
∗
i is attained and is finite. Applying Proposition 3 in [5],

we obtain that L∗
i (ξ, p) ≥ minVi L

∗
i , for every ξ ∈ Iδ[x

(ν)], for every p ∈ ∂wLi(ξ, w)
and for every w ∈ RN . Set η = min{minV1

L∗
1, . . . ,minVm

L∗
m}.

Consider L̃i(ξ, w) = Li(ξ, w) + η. Since ∂wLi(ξ, w) = ∂wL̃i(ξ, w), we have that

L̃∗
i (ξ, p) ≥ 0, for any i. (We denote Ĩi the functional

∫ b

a
L̃iψi.)

(a) We set some preliminary constants, depending on ε̄ fixed, that we shall use in
the following steps.

By the condition on ψi, there exists c > 0 such that ψi(t,x(t), x′(t)) ≥ c, for every
t in [a, b], and we obtain

+∞ >

∫ b

a

|Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))|dt + η

∫ b

a

ψi(t,x(t), x′(t))dt

≥
∫ b

a

|L̃i(x
′(t), x′′(t))ψi(t,x(t), x′(t))|dt ≥ c

∫ b

a

|L̃i(x
′(t), x′′(t))|dt.

Set �i =
∫ b

a
|L̃i(x

′(s), x′′(s))|ds, � = max{�1, . . . , �m}, and Ψ and L̃ the maximum

value of |ψ1|, . . . , |ψm| over Tν
δ [x] and of |L̃1|, . . . , |L̃m| over Iδ[x

(ν)]×B[0, |x′′(τ)|+ δ],
respectively. Denote α = max{1, (b− a)ν}.

From the uniform continuity of ψ1, . . . , ψm on Tν
δ [x], we infer that we can fix

h ∈ N, 1/2h < δ, such that whenever (t1,x1, ξ1), (t2,x2, ξ2) ∈ Tν
δ [x] and

|t1 − t2| ≤
b− a

2h
, |x1,j − x2,j | ≤

1

2h
∀j ∈ {0, . . . , ν − 1}, |ξ1 − ξ2| ≤

1

2h
,

we have

|ψi(t1,x1, ξ1) − ψi(t2,x2, ξ2)| < min

{
ε̄

8(� + L̃ + 1)
,

ε̄

2(|η| + 1)(b− a)

}
,
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for any i.
Let θ : R → [0, 1] be a C∞ increasing function with value 0 on (−∞, 0] and 1 on

[1,+∞). Observe that 1 ≤ ||θ(j)||∞ ≤ ||θ(j+1)||∞, for any j ≥ 0. Set Θ = ||θ(ν+1)||∞.
There exists a point τ in (a, b) that is a Lebesgue point for the functions

L̃1(x
′(·), x′′(·))ψ1(·,x(·), x′(·)), . . . , L̃m(x′(·), x′′(·))ψm(·,x(·), x′(·)) and x′′, x′′(τ) in

RN . By definition of Lebesgue point, there exists a positive number ρ less than

min

{
1

2h+4(ν + 2)(ν + 1)νΘα2
,

ε̄

32L̃Ψ

}
such that, for any λ−, λ+ in (0, ρ),

∫ τ+λ+

τ−λ−
|L̃i(x

′(t), x′′(t))ψi(t,x(t), x′(t)) − L̃i(x
′(τ), x′′(τ))ψi(τ,x(τ), x′(τ))|dt

≤ (λ+ + λ−)ε̄

for any i, and ∫ τ+λ+

τ−λ−
|x′′(t) − x′′(τ)|dt ≤ (λ+ + λ−)

1

2h+4(ν + 1)νΘα
.

Fix t−0 = (b− a)v−/2γ , t+0 = (b− a)v+/2γ , where γ ∈ N, v−, v+ ∈ {0, 1, . . . , 2γ},
v− < v+, are such that τ ∈ (τ−, τ+) ⊂ (τ − ρ, τ + ρ).

We define the absolutely continuous function z′ : [a, b] → RN by z′(t) = x(ν)(a) +∫ t

a
z′′, where

z′′(t) =

⎧⎪⎨⎪⎩x(ν+1)(τ) +
1

τ+ − τ−

∫ τ+

τ−
[x′′ − x′′(τ)], t ∈ [τ−, τ+],

x(ν+1)(t), otherwise.

By definition, z′′(t) = x′′(t), z′(t) = x′(t), for any t in [a, τ−] ∪ [τ+, b]. For any t in
[τ−, τ+], we have that z′′(t) ∈ B[0, |x′′(τ)| + δ/2] and

|z′(t) − x′(t)| ≤ 2

∫ τ+

τ−
|x′′(τ) − x′′| < (τ+ − τ−)

1

2h+3(ν + 1)νΘα
.

Step (2). Our purpose is to show that there exists a sequence of reparameteriza-
tions sn of [a, b] into itself such that z′ ◦ sn is Lipschitz continuous on [a, b].

From the uniform continuity of x, . . . , x(ν) on [a, τ−]∪ [τ+, b], we infer that we can
fix k ∈ N, such that whenever |s1 − s2| ≤ (b − a)/2k, we have |x(j)(s1) − x(j)(s2)| <
(τ+ − τ−)ν+2, for any j in {1, . . . , ν}.

For v = 0, . . . , 2k − 1, set Iv = [(b− a)v/2k, (b− a)(v + 1)/2k], Hv =
∫
Iv

|z′′(s)|ds,
μ = max{2k+1Hv/(b− a) : v = 0, . . . , 2k − 1}, and

THv =

{
s ∈ Iv : |z′′(s)| ≤ 2k+1Hv

b− a

}
;

we have that |THv | ≥ (b− a)/2k+1.



APPROXIMATION OF HIGHER-ORDER ACTIONS 105

Since {(z′(s), z′′(s)) : s ∈
⋃2k−1

v=0 THv} belongs to a compact set and L1, . . . , Lm

are continuous, there exists a constant M , such that∣∣∣∣L̃i(z
′(s) + ξ, 2z′′(s) + w)

1

2
− L̃i

(
z′(s) + ξ, z′′(s) +

w

2

)∣∣∣∣ ≤ M,

for any s ∈
⋃2k−1

v=0 THv
, any |ξ| ≤ δ, any |w| ≤ δ, and any i.

For every n ∈ N, set Sv
n = {s ∈ Iv : |z′′(s)| > n}. From the integrability of z′′ it

follows that
∫
Sv
n
(|z′′(s)|/n− 1)ds converges to 0, as n goes to ∞. Hence, we can fix a

subset Σv
n of THv

such that |Σv
n| = 2

∫
Sv
n
(|z′′(s)|/n− 1)ds.

We define the absolutely continuous functions tn by tn(s) = a +
∫ s

a
t′n, where

t′n(s) =

⎧⎪⎪⎨⎪⎪⎩
1 + (|z′′(s)|/n− 1), s ∈ Sn =

⋃2k−1
v=0 Sv

n,

1 − 1/2, s ∈ Σn =
⋃2k−1

v=0 Σv
n,

1, otherwise.

One verifies that tn admits inverse function sn on the interval [a, b]. Furthermore,
for any v in {0, . . . , 2k − 1}, the restriction of tn to Iv maps Iv onto itself. Hence,
|tn(s) − s| ≤ (b − a)/2k, for any s in [a, b]. If n is greater than |x′′(τ)| + δ/2, the
restriction of tn to [τ−, τ+] is the identity.

The function z′ ◦ sn is Lipschitz continuous on [a, b]. In fact, fix t where s′n(t)
exists: we obtain

∣∣∣∣d(z′ ◦ sn)

dt
(t)

∣∣∣∣ = |z′′(sn(t))s′n(t)|

⎧⎪⎨⎪⎩
= n, t ∈ Sn,

≤ μ, t ∈ Σn,

≤ n, otherwise.

Step (3). We construct a function zn : [a, b] → RN , with the same boundary
values of x in a and b, such that zn belongs to Wν+1,∞(a, b) and Ĩi(zn) < Ĩi(x)+ ε̄/2.

Set f ′(t) = θ((t − τ−)/(τ+ − τ−)), for any t in [a, b] (the function θ as defined
in point (a)): then f ′ is identically 0 on [a, τ−], it is identically 1 on [τ+, b], and
||f (j+1)||∞ = ||θ(j)||∞/(τ+ − τ−)j , for any j ≥ 0.

We define ν absolutely continuous functions zn,ν−1, . . . , zn,0 : [a, b] → RN by

zn,ν−1(t) = x(ν−1)(a) +

∫ t

a

z′ ◦ sn + f ′(t)Dν−1,

zn,ν−2(t) = x(ν−2)(a) +

∫ t

a

zn,ν−1 + f ′(t)Dν−2,

...

zn,0(t) = x(a) +

∫ t

a

zn,1 + f ′(t)D0,

where, for any j in {0, · · · , ν − 2},

Dj = x(j)(b) − x(j)(a) −
∫ b

a

zn,j+1, Dν−1 = x(ν−1)(b) − x(ν−1)(a) −
∫ b

a

z′ ◦ sn.
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Set zn = zn,0. The derivatives of zn up to the order ν + 1 are

z′n(t) = zn,1(t) + f ′′(t)D0,

z′′n(t) = zn,2(t) + f ′′′(t)D0 + f ′′(t)D1,

...

z(ν−1)
n (t) = zn,ν−1(t) +

∑ν−2
j=0 f (ν−j)(t)Dj ,

z(ν)
n (t) = z′(sn(t)) +

∑ν−1
j=0 f (ν−j+1)(t)Dj ,

z(ν+1)
n (t) = z′′(sn(t))s′n(t) +

∑ν−1
j=0 f (ν−j+2)(t)Dj .

We denote by H′ the function
∑ν−1

j=0 f (ν−j+1)Dj . By the properties of f (j) and sn,

we have that zn belongs to Wν+1,∞(a, b), with ||z(ν+1)
n ||∞ ≤ n+ ||H′′||∞ (where || · ||∞

is the essential supremum on (a, b)), and it has the same boundary values of x in
a and b.

(b) We claim that ||z(j)
n − x(j)||∞ ≤ 1/2h and ||z(j)

n ◦ tn − x(j)||∞ ≤ 1/2h, for any
j in {0, . . . , ν}, eventually in n.

In fact, for any n greater than |x′′(τ)| + δ/2, we have

|Dν−1| ≤
∫ τ−

a

|x′ − x′ ◦ sn| +
∫ τ+

τ−
|x′ − z′| +

∫ b

τ+

|x′ − x′ ◦ sn|

≤ (τ+ − τ−)2
[
3α(τ+ − τ−)ν +

1

2h+3(ν + 1)νΘα

]
≤ (τ+ − τ−)2

1

2h+2(ν + 1)νΘα
,

|Dν−2| ≤
∫ τ+

a

∣∣∣∣x′(t) − x′(a) −
∫ t

a

z′ ◦ sn − f ′(t)Dn,ν−1

∣∣∣∣ dt
+

∫ b

τ+

∣∣∣∣∣x′(t) − x′(b) +

∫ b

t

z′ ◦ sn − [1 − f ′(t)]Dn,ν−1

∣∣∣∣∣ dt
≤

∫ τ+

a

∫ t

a

|x′ − z′ ◦ sn|dt + (τ+ − τ−)|Dn,ν−1| +
∫ b

τ+

∫ b

t

|x′ − z′ ◦ sn|dt

≤ (τ+ − τ−)3
[
4α(τ+ − τ−)ν−1 +

1

2h+3(ν + 1)νΘα

]
+ (τ+ − τ−)|Dν−1|

≤ (τ+ − τ−)3
2

2h+2(ν + 1)νΘα
,

...

|Dj | ≤ (τ+ − τ−)ν−j+1 ν − j

2h+2(ν + 1)νΘα
≤ (τ+ − τ−)ν−j+1 1

2h+2(ν + 1)Θ

∀j ∈ {0, . . . , ν − 1},

so that ||H′||∞ ≤
∑ν−1

j=0 ||f (ν−j+1)||∞(τ+−τ−)ν−j+1/[2h+2(ν+1)Θ] ≤ (τ+−τ−)/2h+2,
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||H′′||∞ ≤ 1/2h+2, and

|z′(sn(t)) − x′(t)| ≤ (τ+ − τ−)

[
3α(τ+ − τ−)ν+1 +

1

2h+3(ν + 1)νΘα

]
≤ 1

2h+2(ν + 1)νΘα
,

|zn,ν−1(t) − x(ν−1)(t)| ≤
∫ b

a

|z′ ◦ sn − x′| + (b− a)|Dν−1| ≤ (1 + b− a)|Dν−1|

≤ 2α

2h+2(ν + 1)νΘα
,

...

|zn,j(t) − x(j)(t)| ≤ (ν − j + 1)α

2h+2(ν + 1)νΘα
≤ 1

2h+2
∀j ∈ {0, . . . , ν − 1}.

Hence, we can fix n such that MΨ|Σn| < ε̄/8, ||z(j)
n − x(j)||∞ ≤ 1/2h+1, and

||z(j)
n ◦ tn − x(j)||∞ ≤ ||z(j)

n ◦ tn − x(j) ◦ tn||∞ + ||x(j) ◦ tn − x(j)||∞ ≤ 1/2h,

for any j in {0, . . . , ν}. The graph of the function (zn, z
′
n) is included in Tν

δ [x], and
z′′n(t) ∈ B[0, |x′′(τ)| + δ], for any t in [τ−, τ+]. (From what follows, it turns out that
zn is the sought variation xε.)

(c) We show that Ĩi(zn) < Ĩi(x) + ε̄/2, for any i.
Using the change of variable formula [16], we compute Ĩi(zn) − Ĩi(x) as the sum

of the following three appropriate terms:∫ b

a

L̃i(z
′
n(tn(s)), z′′n(tn(s)))ψi(tn(s), zn(tn(s)), z′n(tn(s)))t′n(s)ds

−
∫ b

a

L̃i(x
′(s), x′′(s))ψi(s,x(s), x′(s))ds

=

∫ b

a

[
L̃i (z

′
n(tn(s)), z′′n(tn(s))) t′n(s) − L̃i(z

′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))

]
× ψi(tn(s), zn(tn(s)), z′n(tn(s)))ds

+

∫ b

a

L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))

× [ψi(tn(s), zn(tn(s)), z′n(tn(s))) − ψi(s,x(s), x′(s))]ds

+

∫ b

a

[
L̃i (z

′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s))) − L̃i(x

′(s), x′′(s))
]
ψi(s,x(s), x′(s))ds

= I1
i + I2

i + I3
i .

To estimate I1
i , it is enough to estimate its integrand over the sets Sn and Σn

(because it is identically 0 elsewhere). Since Σn ⊂ T and ||H′′||∞ ≤ δ, we obtain that

L̃i (z
′(s) + H′(tn(s)), 2z′′(s) + H′′(tn(s)))

1

2

− L̃i

(
z′(s) + H′(tn(s)), z′′(s) +

H′′(tn(s))

2

)
≤ M,
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for every s in Σn. By Propositions 3 and 4 in [5], for every s in Sn,

L̃i

(
z′n(tn(s)), n

z′′(s) + t′n(s)H′′(tn(s))

|z′′(s)|

)
|z′′(s)|

n

− L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s))) ≤ −

(
|z′′(s)|

n
− 1

)
L̃∗
i (z

′
n(tn(s)), p) ≤ 0,

where p ∈ ∂wLi(z
′
n(tn(s)), n(z′′(s) + t′n(s)H′′(tn(s)))/|z′′(s)|). Using the fact that ψi

is positive and bounded by Ψ, we have I1
i ≤ MΨ|Σn| < ε̄/8.

To estimate I2
i , we observe that

L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s))) =

{
L̃i(z

′
n(s), z′′(s) + H′′(s)), s ∈ [τ−, τ+],

L̃i(x
′(s), x′′(s)), otherwise.

By the fact that |ψi(tn(s), zn(tn(s)), z′n(tn(s)))−ψi(s,x(s), x′(s))| ≤ ε̄/[8(�+ L̃ + 1)],
for any s in [a, b], and that z′′ + H′′ ∈ B[0, |x′′(τ)| + δ] on [τ−, τ+], we have I2

i ≤ ε̄/8.
To estimate I3

i , it is enough to estimate the integrals over [τ−, τ+]
(because it is identically 0 elsewhere). Recalling that τ is a Lebesgue point for
L̃i(x

′(·), x′′(·))ψi(·,x(·), x′(·)), we have

I3
i ≤

∫ τ+

τ−
[L̃i(z

′
n(s), z′′(s) + H′′(s))ψi(s,x(s), x′(s))

− L̃i(x
′(τ), x′′(τ))ψi(τ,x(τ), x′(τ))]ds +

ε̄

8

≤ 4ρL̃Ψ +
ε̄

8
<

ε̄

4
.

Hence, I1
i + I2

i + I3
i < ε̄/2, for any i.

Conclusion. We have obtained∫ b

a

Li(z
′
n(t), y′′n(t))ψi(t, zn(t), z′n(t))dt−

∫ b

a

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))dt

<

∫ b

a

[Li(z
′
n(t), z′′n(t)) + η]ψi(t, zn(t), z′n(t))dt

−
∫ b

a

[Li(x
′(t), x′′(t)) + η]ψi(t,x(t), x′(t))dt +

ε̄

2

=

∫ b

a

L̃i(z
′
n(t), z′′n(t))ψi(t, zn(t), z′n(t))dt−

∫ b

a

L̃i(x
′(s), x′′(s))ψi(s,x(s), x′(s))ds +

ε̄

2

< ε̄.

Hence, I(zn) − I(x) <
∑m

i=1 ε̄ = ε.
So, setting xε = zn, we have proved the theorem.

4. A necessary condition for the Lavrentiev phenomenon. The content
of this section is provided to show the following necessary condition: a functional

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)),
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with ν ≥ 0, exhibiting the Lavrentiev phenomenon takes the value +∞ in any neigh-
borhood of a minimizer x̄; or equivalently if I assumes only finite values on a neigh-
borhood of x̄, then I does not exhibit the Lavrentiev phenomenon.

This is proved in the following corollary to Theorem 2.1 and Theorem 1 in [5].
Corollary 4.1. Let Ω0, . . . ,Ων be open sets in RN , ν ≥ 0, such that the set

E = {x ∈ Wν+1,1(a, b) : x(t) ∈ Ω0, . . . , x
(ν)(t) ∈ Ων ∀t ∈ [a, b]} is nonempty. Let

A,B ∈ Ω0, A
(1), B(1) ∈ Ω1, . . . , A

(ν), B(ν) ∈ Ων be given boundary values.
Let L1, . . . , Lm : Ων ×RN → R and ψ1, . . . , ψm : [a, b]×Ω0 × · · · ×Ων → [0,+∞)

be continuous and such that Li(ξ, ·) is convex, for any ξ in Ων , any i in {1, . . . ,m}.
Let

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x′(t), . . . , x(ν)(t))dt

be a functional exhibiting the Lavrentiev phenomenon, and let x̄ be a minimum of
I over Ea,b = {x ∈ E : x(a) = A, x(b) = B, x′(a) = A(1), x′(b) = B(1), . . . ,
x(ν)(a) = A(ν), x(ν)(b) = B(ν)}.

Assume that for any δ > 0 there exists σδ > 0 such that σδ → 0, for δ → 0, and
that ψi restricted to Tν

δ [x̄] may vanish only on the graph of (x̄, x̄′, . . . , x̄(ν)) or on a
σδ-neighborhood of (a,A, . . . , A(ν)) or on a σδ-neighborhood of (b,B, . . . , B(ν)), for
any i in {1, . . . ,m}.

Then, for any ε > 0, there exists xε in Ea,b such that the graph of (xε, x
′
ε, . . . , x

(ν)
ε )

is included in Tν
ε [x̄] and I(xε) = +∞.

Proof. Fix ε > 0. From Theorem 2.1 and Theorem 1 in [5], it follows that∫ b

a
|Li(x̄

(ν), x̄(ν+1))| = +∞, for at least one i in {1, . . . ,m}.
Without loss of generality, we suppose that

∫ (a+b)/2

a
|Li(x̄

(ν), x̄(ν+1))| = +∞.
Let g : (−∞,+∞) → [0, 1] be a C∞ increasing function with value 1 on [b,+∞)

and 0 on (−∞, (a + b)3/4]. We define the integrable function xδ,ν+1 : [a, b] → RN by

xδ,ν+1(t) =

{
0, t ∈ [a, a + σδ),

x̄(ν+1)(t− σδ), otherwise,

and ν absolutely continuous functions xδ,j(t) = A(j) +
∫ t

a
xδ,j+1 + g(t)Dδ,j , for any

t in [a, b], where Dδ,j = B(j) −A(j) −
∫ b

a
xδ,j+1, for any j in {0, . . . , ν}.

Set xδ = xδ,0. The derivatives of xδ up to the order ν + 1 are

x′
δ(t) = xδ,1(t) + g′(t)Dδ,0,

x′′
δ (t) = xδ,2(t) + g′′(t)Dδ,0 + g′(t)Dδ,1,

...

x
(ν+1)
δ (t) = xδ,ν+1(t) +

∑ν
j=0 g

(ν−j+1)(t)Dδ,j .

By definition, xδ belongs to Wν+1,1(a, b), it has the same boundary values of x̄
in a and in b, and, for j in {ν, ν + 1}, for any t in [a + σδ, (a + b)3/4], we have

x
(j)
δ (t) = x̄(j)(t − σδ). Furthermore, there exist constants cj , dj , independent on δ,

such that |Dδ,j | ≤ cj
∫ b

b−σδ
|x̄(ν+1)| and ||xδ,j − x

(j)
δ ||∞ ≤ dj

∫ b

b−σδ
|x̄(ν+1)|. Hence, for

any j in {0, . . . , ν},

||x̄(j) − x
(j)
δ ||∞ ≤

⎛⎝cj + ||g(ν+1)||∞
ν∑

j=0

dj

⎞⎠∫ b

b−σδ

|x̄(ν+1)|.
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By hypothesis, we can choose δ̄ > 0 such that (cj + ||g(ν+1)||∞
∑ν

j=0 dj)
∫ b

b−σδ̄
|x̄(ν+1)|

< ε and σδ̄ < (b− a)/4.

Set Ψi = min{ψi(t, xδ̄(t), . . . , x
(ν)

δ̄
(t)) : t ∈ [a + σδ̄, (a + b)3/4]}: by hypothesis,

Ψi is positive. We have obtained that the graph of (xδ̄, x
′
δ̄
, . . . , x

(ν)

δ̄
) belongs to Tν

ε [x̄]
and ∫ b

a

|Li(x
(ν)

δ̄
(t), x

(ν+1)

δ̄
(t))ψi(t, xδ̄(t), . . . , x

(ν)

δ̄
(t))|dt

≥
∫ (a+b)3/4

a+σδ̄

|Li(x̄
(ν)(t− σδ̄), x̄

(ν+1)(t− σδ̄))|ψi(t, xδ̄(t), . . . , x
(ν)

δ̄
(t))dt

≥ Ψi

∫ (a+b)/2

a

|Li(x̄
(ν)(t), x̄(ν+1)(t))|dt = +∞.

From (i) in the proof of Theorem 2.1 and Theorem 1 in [5], we infer that I(xδ̄) = +∞.
So, setting xε = xδ̄, we have proved the corollary.
The corollary above applies to the functionals of Manià and Sarychev, for instance,

and to the examples of functionals exhibiting the Lavrentiev phenomenon proposed
in [3], [4], [11], [12], [13], [14], and [15].

Acknowledgment. We thank the anonymous referees for many interesting com-
ments.
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TIME-OPTIMAL SYNTHESIS FOR LEFT-INVARIANT CONTROL
SYSTEMS ON SO(3)∗

UGO BOSCAIN† AND YACINE CHITOUR‡

Abstract. Consider the control system (Σ) given by ẋ = x(f + ug), where x ∈ SO(3), |u| ≤ 1,
and f, g ∈ so(3) define two perpendicular left-invariant vector fields normalized so that ‖f‖ = cos(α)
and ‖g‖ = sin(α), α ∈]0, π/4[. In this paper, we provide an upper bound and a lower bound for
N(α), the maximum number of switchings for time-optimal trajectories of (Σ). More precisely, we
show that NS(α) ≤ N(α) ≤ NS(α) + 4, where NS(α) is a suitable integer function of α such that
NS(α)

∼
α → 0 π/(4α). The result is obtained by studying the time-optimal synthesis of a projected

control problem on RP 2, where the projection is defined by an appropriate Hopf fibration. Finally,
we study the projected control problem on the unit sphere S2. It exhibits interesting features which
will be partly rigorously derived and partially described by numerical simulations.

Key words. optimal control, optimal synthesis, minimum time, SO(3)

AMS subject classifications. 49k15

DOI. 10.1137/S0363012904441532

1. Introduction. Let (Σ) be the control system given by

ẋ = x(f + ug),(1.1)

where x ∈ SO(3), |u| ≤ 1, and f, g ∈ so(3) give rise to two nonzero perpendicular
left-invariant vector fields on SO(3). In this paper, we consider the following problem:
given any pair of points x1, x2 of SO(3), find a trajectory of (1.1) steering x1 to x2 in
minimum time. That issue is known as the problem of determining the time-optimal
synthesis (TOS) for (Σ). The strategy to determine a TOS usually consists of two
steps:
1. Reduction procedure: it is based on the Pontryagin maximum principle (PMP)

which is a first-order necessary condition for optimality. Roughly speak-
ing, the PMP reduces the candidates for time optimality to the so-called ex-
tremals, which are solutions of a pseudo-Hamiltonian system. This reduction
procedure may be refined using higher-order conditions, such as Clebsch–
Legendre conditions, higher-order maximum principle, envelopes, conjugate
points, and index theory (cf. for instance [2,3,5,12,18,19,21,26,27,28,30,32,
33,34,35]).

2. Selection procedure: it consists of selecting the time-optimal trajectories among
the extremals that passed the test of Step 1 (see for instance [8, 12,16,25]).

Step 1 is already nontrivial and, in general, the second one is extremely difficult: if the
state space is two dimensional, the problem of determining the TOS for single-input
control systems is now well understood [9, 11, 12, 14, 15, 23, 24, 32, 33]. However, for
higher dimensions, very few examples of complete TOS for a nonlinear control system
are available (see for instance [29]). Intermediate issues were thus deeply investigated:
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determining estimates for the number of switchings of optimal trajectories, describing
the local structure of optimal trajectories, finding families of trajectories sufficient for
optimality (cf. [6, 13,19,22,26,28,36]), etc.

For the control system (Σ), we normalize the two perpendicular vector fields
induced by f and g in such a way that ‖f‖ = cos(α), ‖g‖ = sin(α), with α ∈]0, π/2[
(for the precise meaning of “perpendicular” and of the symbol ‖.‖, we refer to section
2.1). Defining X+ := f + g and X− := f − g, we have ‖X+‖ = ‖X−‖ = 1 and α is
the angle between f and X+.

By a standard argument (see section 2 below), one can show that every time
optimal trajectory is a finite concatenation of bang arcs (i.e., u ≡ ±1) or singular
arcs (u = 0) the Fuller phenomenon (i.e., existence of a trajectory of a control system
joining two points in (finite) minimum time, with an infinite number of switchings,
cf. [20,37]) never occurs. (A switching time—or simply a switching—along an extremal
is a time t0 so that the control u is not constant in any open neighborhood of t0.)
Moreover, one can easily show that the supremum N(α) of the number of switchings
over all time optimal trajectories of (Σ) is finite.

By using the index theory developed by Agrachev, it is proved in [3] that

N(α) ≤ NA :=
[π
α

]
,(1.2)

where [·] stands for the integer part. That result was not only an indirect indication
that N(α) would tend to ∞ as α tends to zero, but it also provided a hint on the
asymptotic of N(α) as α tends to zero.

A related line of work regards the study of the distributional version of (Σ),
which is the driftless control system given by ẋ = x(u1f1 + u2f2), |u1|, |u2| ≤ 1, and
f1, f2 ∈ so(3) linearly independent. Indeed, assuming that ‖f1‖ = ‖f2‖, Sussmann
and Tang [36] showed that time-optimal trajectories have at most four switchings and
they provided a finitely parametrized family of trajectories sufficient for optimality.
That result was extended to the general case (f1 and f2 just linearly independent;
cf. [13]): time-optimal trajectories have at most five switchings. For both works, the
elimination from optimality of extremals with, respectively, five or six bangs relies on
the envelope theory developed in the context of control theory by Sussmann (cf. [35]).

In light of the previous results, there was strong evidence for two radically sit-
uations as α tends to zero: for (Σ), N(α) is expected to go to infinity, and as for
the distributional control system, there exists a universal bound on the number of
switchings. The main result of the present paper confirms that difference, i.e., N(α)
tends to ∞ as α tends to zero. More precisely, we complete the inequality (1.2) as
follows.

Theorem 1. Let (Σ) be the control system defined in (1.1) with f, g perpen-
dicular so that ‖f‖ = cos(α) and ‖g‖ = sin(α), α ∈]0, π/4[. Then, if N(α) is the
maximum number of switchings along a time-optimal trajectory of (Σ), we have

NS(α) ≤ N(α) ≤ NS(α) + 4, where NS(α) := 2
[ π

8α

]
−
[
2
[ π

8α

]
− π

4α

]
.(1.3)

The above theorem improves (1.2) in two ways: (i) for α small, it (essentially)
divides the upper bound of N(α) by four with respect to (1.2); and (ii) it provides a
lower bound of N(α) differing from the upper bound by a constant.

The lower bound is in fact our main contribution and, to get it, one must prove the
existence of time-optimal trajectories of (Σ) admitting at least a number of switchings
equal to that lower bound. Our strategy consists of projecting the control problem
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onto another (Σ)S defined next. First, let RP 2 be the two-dimensional real projective
space (i.e., the two-dimensional manifold made of the directions of R3) and fix a point
x0 ∈ SO(3). Consider the Hopf fibration Π : SO(3) → RP 2 defined by KerdΠ(x0) =
Span{x0f}, which means, roughly speaking, that Π annihilates the drift term f at
x0. Then, we project (Σ) by Π and obtain a single-input SO(3)-equivariant control
system (Σ)S on RP 2 given by ẏ = y(fS+ugS), with fS = dΠ(f) and gS = dΠ(g), that
is locally controllable. We then consider the minimum time problem for connecting
Π(x0) to any other point of RP 2.

In fact, we study a slightly different time optimal problem by lifting (Σ)S to
the unit sphere S2. By an abuse of notation, we still denote by (Σ)S the control
system obtained in that way. Hence Π(x0) is identified with the north pole and RP 2

is identified with NH, the subset of the sphere made of the union of NH, the (open)
top hemisphere of S2, together with half of the equator.

The time optimal problem now consists of connecting, in minimum time, the
north pole to any point of NH. Thanks to the suitable choice of the Hopf projection
and since α belongs to the interval ]0, π/4[, all extremals of the projected problem
are bang-bang (i.e., they are a finite concatenation of trajectories corresponding to
controls +1 or −1). Let NS(α) be the supremum of the number of switchings for
time-optimal trajectories of (Σ)S starting at the north pole and ending in NH (such
trajectories of (Σ)S are actually entirely contained in NH, see Lemma 7).

The use of the Hopf fibration Π is motivated by two facts: first, every time-optimal
trajectory for the time optimal problem on (Σ)S staying in NH is the projection
by Π of a time-optimal trajectory for the time optimal problem on (Σ) and thus
NS(α) ≤ N(α). Taking full advantage of the theory developed in [12], we will actually
compute exactly NS(α) as given in (1.3). Second, using the fact that the fiber above
Π(x0) is the support of a singular arc (for this problem singular arcs are integral
curves of the drift xf), we show that every regular bang-bang trajectory with at least
NS(α) + 5 cannot be optimal and thus, the upper bound.

It is then clear, by now, that the most delicate part of the argument relies on the
exact determination of NS(α). This is done by studying the TOS for the time optimal
problem on (Σ)S . Such a TOS is usually constructed, following the theory developed
in [9, 11, 12, 14, 15, 23, 24, 32, 33], recursively on the number of extremals arcs, and by
checking at each step whether they are optimal or not. For the problem on RP 2, we
are not able to complete all the steps of the above construction, which would imply as
a by-product the existence of the TOS. In particular, we cannot show the optimality
of all the extremals (i.e., the trajectories candidate for time optimality), but, from
their study, we can demonstrate enough partial results in order to compute NS(α)
precisely and thus to conclude the proof of Theorem 1.

The complete time-optimal synthesis is then studied numerically (actually on the
whole S2) and is shown on the top of Figure 5.2. In particular, due to the compact-
ness of S2, one of the main issues is to understand the singularities developed by the
minimum time wave front as it approaches the south pole. We provide numerical sim-
ulations that describe the evolution of the extremal front. As α → 0, these numerical
simulations suggest the emergence of three cyclically alternating patterns of optimal
synthesis, each of them depending on an arithmetic property of α.

The rest of the paper is organized as follows. Section 2 collects basic facts relative
to the time-optimal trajectories of (Σ), and in section 3, the Hopf fibration is described
and the proof of Theorem 1 is provided, assuming some facts about the time-optimal
synthesis of (Σ)S , whose arguments are deferred to the next section. In particular
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we use the expression for NS(α) and the relation between the length of interior bang
arcs for the problem on RP 2. The construction of the time-optimal synthesis of (Σ)S
is investigated in section 4, where an exact computation of NS(α) is established. We
conclude the section with two remarks, the first one explaining the relation between
the TOS on the sphere and the TOS of a controlled linear pendulum, and the second
one establishing a link with an optimal control problem on SU(2). Finally, in section 5,
we provide the results of the numerical simulations, completing the study of the time-
optimal synthesis (in particular of the possible behavior in a neighborhood of the
south pole), and we propose some open problems stated as conjectures.

2. Statement of the problem and properties of optimal trajectories.

2.1. Basic facts. In this paper, we consider the control (Σ) given by (1.1), where
x ∈ SO(3), |u| ≤ 1, and f, g ∈ so(3). An admissible control u is a measurable function
u : [a, b] → [−1, 1], where a, b depend (in general) on u; cf. [18]. A trajectory γ of (Σ) is
an absolutely continuous curve γ : J → SO(3), where J = [a, b] is a compact segment
of R such that there exists an admissible control u for which γ̇(t) = γ(t)(f + u(t)g)
holds a.e. in J . We then say that (γ, u), defined as before, is an admissible pair for
(Σ).

Definition 1. A trajectory γ of (Σ), defined on [a, b], is time optimal if for every
trajectory γ′ of (Σ) defined on [a′, b′] with γ(a) = γ′(a′) and γ(b) = γ′(b′), we have
b− a ≤ b′ − a′.

The Lie algebra (so(3), [., .]) is isomorphic to the Lie algebra (R3,×), where ×
denotes the vector product. This isomorphism is realized by the map

φL : so(3) → R3(2.1)

φL

⎛⎝⎛⎝ 0 −c b
c 0 −a
−b a 0

⎞⎠⎞⎠ :=

⎛⎝a
b
c

⎞⎠ ,

and provides an inner product on so(3) given by 〈z1, z2〉 := 〈φL(z1), φL(z2)〉, where
z1, z2 ∈ so(3). The symbol 〈., .〉 on the right-hand side of the above equation stands
for the Euclidean inner product of R3. With this definition, it follows that 〈z1, z2〉 :=
− 1

2Tr(z1z2). In other words, this scalar product is the opposite of the Killing form on

so(3). In the following, ‖z‖ :=
√
〈z, z〉 and Id is the 3 × 3 identity matrix. We will

sometimes consider the 2 × 2 matrix corresponding to the planar rotation of angle β
and we use Rβ to denote it.

In this paper, we will assume that f and g are perpendicular and normalized
so that ‖f‖ = cos(α) and ‖g‖ = sin(α), α ∈]0, π/2[. Here, we adopt the following
notation used throughout the paper, cα := cos(α), c2α := cos2(α), sα := sin(α), and
s2
α := sin2(α). We define h := [f, g] = fg − gf and

X+ := f + g, X− := f − g.

Note that ‖Xε‖ = 1, with ε = +,−. For a vector field z ∈ so(3), we use etz to denote
the flow of z, acting on the right, so that t 
→ petz ∈ SO(3) is the integral curve of z

starting at p at time 0. Since z is linear, we have etz =
∑∞

n=0
(tz)n

n! . We use adz to
denote the operator w 
→ [z, w], acting on vector fields. If z, w are vector fields, then

et adz(w) := etzwe−tz. The Lie bracket relations between f, g, h are

[f, g] = h, [g, h] = s2
αf, [h, f ] = c2αg.
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From them, one deduces the following classical relations that will be useful later:

et adXε(f) = (c2α + s2
α cos(t))f + εc2α(1 − cos(t))g − ε sin(t)h,(2.2)

et adXε(g) = εs2
α(1 − cos(t))f + (s2

α + c2α cos(t))g + sin(t)h,(2.3)

et adXε(h) = εs2
α sin(t)f − c2α sin(t)g + cos(t)h,(2.4)

et adXε(X−ε) = (cos(2α) + 2s2
α cos(t))f + ε(cos(2α)− 2c2α cos(t))g− 2ε sin(t)h,(2.5)

etXε = Id + sin(t)Xε + (1 − cos(t))X2
ε ,(2.6)

etadf (g) = cos(tcα)g +
sin(tcα)

cα
h.(2.7)

2.2. Existence of optimal trajectories. A control system is complete if, for
every measurable control function u : [a, b] → [−1, 1] and every initial state p, there
exists a trajectory γ corresponding to u, which is defined on the whole interval [a, b]
and satisfies γ(a) = p. Since SO(3) is compact and the function F(x, u) := x(f +ug)
is regular enough, the system (1.1) is complete. Note that (f, g) satisfies the strong
bracket generating condition (cf. [31]) and the set of velocities V (x) := {x(f+ug), u ∈
[−1, 1]} is compact and convex. Then (cf. for instance [36]) we have the following
proposition.

Proposition 1. For each pair of points p and q belonging to SO(3), there exists
a time-optimal trajectory joining p to q.

2.3. Pontryagin maximum principle and switching functions. We next
state the PMP (cf. [26]) for our minimum time problem on SO(3). Define the following
maps called, respectively, Hamiltonian and minimized Hamiltonian:

H : T ∗SO(3) × [−1, 1] → R, H(p, x, u) := 〈p, x(f + ug)〉,(2.8)

H : T ∗SO(3) → R, H(p, x) := min
v∈[−1,1]

H(p, x, v).(2.9)

The PMP asserts that if γ : [a, b] → SO(3) is a time-optimal trajectory corresponding
to a control u : [a, b] → [−1, 1], then there exists a nontrivial field of covectors along γ,
that is an absolutely continuous function λ : t ∈ [a, b] 
→ λ(t) ∈ T ∗

γ(t)SO(3) (identified

with so(3)) never vanishing and a constant λ0 ≥ 0 such that, for a.e. t ∈ Dom(γ), we
have

(i) λ̇(t) = −∂H
∂x (λ(t), γ(t), u(t)) = −λ(t)(f + u(t)g),

(ii) H(γ(t), λ(t), u(t)) + λ0 = 0,
(iii) H(γ(t), λ(t), u(t)) = H(γ(t), λ(t)).
Remark 1. The PMP is just a necessary condition for optimality. A trajectory

γ (resp., a couple (γ, λ)) satisfying the conditions given by the PMP is said to be an
extremal (resp., an extremal pair). An extremal corresponding to λ0 = 0 is said to be
an abnormal extremal, otherwise we call it a normal extremal. For a normal extremal,
we can always normalize λ0 = 1, and we do this all through the paper. Note that in
general an extremal corresponds to more than one covector. For this reason, usually,
one distinguishes between abnormal extremals that are strict (i.e., they correspond
only to covectors satisfying λ0 = 0) and abnormal extremals that are nonstrict (i.e.,
they correspond to covectors with λ0 = 0 and to covectors with λ0 �= 0).

A control u : [a, b] → [−1, 1] is said to be bang-bang if u(t) ∈ {−1, 1} a.e. in
[a, b]. Moreover, if u(t) ∈ {−1, 1} and u(t) is constant for almost every t ∈ [a, b], then
u is called a bang control. A switching time of u is a time t ∈ [a, b] such that, for
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every ε > 0, u is not bang on (t − ε, t + ε) ∩ [a, b]. A control with a finite number
of switchings is called regular bang-bang. A trajectory of Σ is a bang trajectory,
bang-bang trajectory, or regular bang-bang trajectory, respectively, if it corresponds
to a bang control, bang-bang control, or regular bang-bang control. The switching
functions, associated with an extremal pair (γ, λ), are the three “components” of the
covector λ(t) on the basis {f, g, h} transported to the point γ(t). More precisely we
have the following definition.

Definition 2 (switching functions). Let Φi(x, p) (i = 1, 2, 3) be the Hamilto-
nian functions corresponding, respectively, to the vector fields f, g, h (cf. [18]), i.e.,
Φ1(x, p) := 〈p, xf〉, Φ2(x, p) := 〈p, xg〉, Φ3(x, p) := 〈p, xh〉 and (γ, λ) be an extremal
pair. The switching functions associated with (γ, λ) are the evaluations of Φi(x, p)
along the extremal, i.e.,

ϕ1(t) := Φ1(γ(t), λ(t)) = 〈λ(t), γ(t)f〉,(2.10)

ϕ2(t) := Φ2(γ(t), λ(t)) = 〈λ(t), γ(t)g〉,(2.11)

ϕ3(t) := Φ3(γ(t), λ(t)) = 〈λ(t), γ(t)h〉.(2.12)

Remark 2. Note that the ϕi’s are at least continuous and since λ never vanishes,
the three switching functions cannot be all zero at the same time t. Moreover, using
the switching functions, (ii) of PMP reads

H(λ(t), γ(t), u(t)) = ϕ1(t) + u(t)ϕ2(t) + λ0 = 0 a.e.(2.13)

The switching functions are important because they determine where the controls
may switch. In fact, using the PMP, one easily gets the following proposition.

Proposition 2. A necessary condition for a time t to be a switching is that
ϕ2(t) = 0. Therefore, on any interval where ϕ2 has no zeros (resp., finitely many
zeros), the corresponding control is bang (resp., bang-bang). In particular, ϕ2 > 0
(resp., ϕ2 < 0) on [a, b] implies u = −1 (resp., u = +1) a.e. on [a, b]. On the other
hand, if ϕ2 has a zero at t and ϕ̇2(t) exists and is different from zero, then t is an
isolated switching.

As a corollary, it holds a.e. along an extremal trajectory that

u(t)ϕ2(t) = −|ϕ2(t)|.(2.14)

An extremal trajectory γ of Σ defined on [c, d] is said to be singular if the switching
function ϕ2 vanishes on [c, d]. To compute the control corresponding to a singular
trajectory, one should compute the derivatives of the ϕi’s. Using the Lie bracket
relations between f, g, h, one gets the system of differential equations (called the
adjoint system) satisfied a.e.:

ϕ̇1 = −uϕ3,(2.15)

ϕ̇2 = ϕ3,(2.16)

ϕ̇3 = s2
αuϕ1 − c2αϕ2.(2.17)

From (2.12) and (2.16), one immediately gets that ϕ2 is at least a C1 function. More-
over, if γ is singular in [a, b], then ϕ2 = 0 and, from (2.16), we get ϕ3 = 0 a.e. From
(2.13) (cf. PMP (ii)), we get ϕ1 ≡ −1 a.e. on [a, b]. From (2.17) we get u = 0 a.e.,
i.e., we have the following proposition.

Proposition 3. For the minimum time problem for (Σ), singular trajectories
are integral curves of the drift, i.e., they correspond to a control a.e. vanishing.
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In what follows, we will use the following convention. The letter B refers to a bang
trajectory and the letter S refers to a singular extremal trajectory. A concatenation
of bang and singular trajectories will be labeled by the corresponding letter sequence,
written in order from left to right. Sometimes, we will use a subscript to indicate the
time duration of a trajectory so that we use Bt to refer to a bang trajectory defined
on an interval of length t and, similarly, St for a singular trajectory defined on an
interval of length t.

If we fix u ∈ [−1, 1], then the integral curves of x(f + ug) are periodic. In
particular, the integral curves of xXε are periodic with period 2π while the integral
curves of the drift xf are periodic with period 2π/cα, which means the following
proposition.

Proposition 4. If γ is an extremal trajectory of type Bt (resp., St), then t < 2π
(resp., t < 2π/cα).

There are two quantities that remain constant along an extremal trajectory. The
first one comes from the fact that the minimized Hamiltonian H is constant along the
extremal pairs (γ, λ) (cf. (2.13) and (2.14)):

I1 := −ϕ1(t) + |ϕ2(t)| = λ0,(2.18)

with λ0 equal to 0 or 1 (cf. Remark 1). The second conserved quantity is

I2 := c2αϕ
2
2 + s2

αϕ
2
1 + ϕ2

3 = K2, for some K ∈ R.(2.19)

Remark 3. Equations (2.15)–(2.17) are Hamiltonian equations on the dual
of so(3), with respect to the canonical Poisson structure induced by the brackets
of f, g, h ∈ so(3), and corresponding to the left-invariant Hamiltonian (2.8). The
conserved quantity I2 is the Casimir function (see for instance [1]).

There is a geometric interpretation of the above equations. Let (γ, λ) be a normal
extremal lift of the time-optimal control problem. Then, the adjoint vector λ with
coordinates (ϕi)i=1,2,3 lies in the intersection of the region defined by (2.18) and the
ellipsoid defined by (2.19).

2.4. Classification of optimal trajectories. In this section, we investigate
the structure of time-optimal trajectories by analyzing the extremal flow defined in
(2.15)–(2.17), subject to (2.18) and (2.19). First we study abnormal extremals (we
prove that they are regular bang-bang and we establish a relation between the interior
bang times). Then we study normal extremals that are bang-bang (again we find
a relation between the interior bang times). Finally we study optimal trajectories
containing a singular arc. The results presented in this section are well known, and
some of them already contained in [3, 4], although in many cases without proof. To
have a self-contained paper, we provide an argument for all of them.

2.4.1. Abnormal extremals. The following proposition describes the switch-
ing behavior of abnormal extremals.

Proposition 5. Let γ be an abnormal extremal. Then, it is regular bang-bang
and the time duration between two consecutive switchings is always equal to π. In
other words, γ is of kind BπBπ · · ·BπBt with t ≤ π.

Proof of Proposition 5. By definition, λ0 = 0. Then (2.13) becomes

ϕ1(t) = −u(t)ϕ2(t) for a.e. t ∈ Dom(γ).(2.20)

If γ is singular on some interval [c, d], then ϕ2 ≡ 0 and from (2.16) ϕ3 ≡ 0 on [c, d].
Equation (2.20) gives ϕ1 ≡ 0, contradicting the nontriviality of λ (cf. Remark 2).
Then γ cannot contain a singular arc. Therefore, u2 = 1 a.e. t ∈ Dom(γ).
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From (2.17) and (2.20), we get a.e. ϕ̇3(t) = (−s2
αu(t)2 − c2α)ϕ2(t) = −ϕ2(t). This

means that, in the (ϕ3, ϕ2) plane, the vector z(t) := (ϕ3(t), ϕ2(t)) rotates with angular
velocity equal to 1 (cf. (2.16)). This implies γ is a regular bang-bang trajectory
and the time duration between two consecutive switchings along γ is always equal
to π.

2.4.2. Normal bang-bang extremals. Let γ be a bang-bang trajectory start-
ing at p0 and ending at p0e

(t0X+)e(t1X−)e(t2X+)e(t3X−). The case in which the first
bang is of kind X− is similar. We have ϕ2(t0) = ϕ2(t0 + t1) = ϕ2(t0 + t1 + t2) = 0
which implies

〈λ(t0 + t1), p2e
−t1adX−(g)〉 = 〈λ(t0 + t1), p2g〉(2.21)

= 〈λ(t0 + t1), p2e
t2adX+(g)〉 = 0,

where p2 = p0e
(t0X+)e(t1X−). We need the following definition. If z1, z2, z3 are (pos-

sibly time-varying) vector fields of SO(3), the application q 
→ q(z1 ∧ z2 ∧ z3) is
the field of 3-vectors associated with the zi’s, where q(z1 ∧ z2 ∧ z3) is an element of∧3

TqSO(3), the 3-fold exterior power of TqSO(3). We now rewrite (2.21) by using
fields of 3-vectors. We obtain

g ∧ e−t1adX−(g) ∧ et2adX+(g) = 0.(2.22)

Thanks to (2.3), (2.22) is equivalent to r(t1, t2)f ∧ g ∧ h = 0 for an appropriate real-
valued function r. After computations, we get r(t1, t2) = sin( t1−t2

2 ). This implies
that t1 = t2 = t3.

Similar to what we did in the proof of Proposition 5, consider now a time-optimal
trajectory of the form BBTB, where BT is a nontrivial interior bang arc associated
with a normal extremal and T ∈]0, 2π[. From (2.17) and (2.13) (with λ0 = 1), we
get ϕ̇3 = −(ϕ2 + s2

αu). Using (2.16), this means that the vector z = (ϕ3, ϕ2 + us2
α)T

satisfies the differential equation

ż =

(
0 −1
1 0

)
z, t ∈]0, T [,

with boundary conditions (the switching conditions imply ϕ2(0) = ϕ2(T ) = 0) z(0) =
(ϕ3(0), us2

α) and z(T ) = (ϕ3(T ), us2
α). Using ϕ2(0) = 0 and the fact that u > 0

(resp. u < 0) implies 0 > ϕ̇2(0) = ϕ3(0) (resp. 0 < ϕ̇2(0) = ϕ3(0)), one easily gets
tan(T/2) = ϕ3(0)/(us2

α) < 0. It follows that T ∈ (π, 2π). In summary, we have proved
the following proposition.

Proposition 6. Let γ be a bang-bang normal extremal. Then the time duration
T along an interior bang arc is the same for all interior bang arcs and verifies π <
T < 2π.

Remark 4. From Propositions 5 and 6, we get that, for an extremal bang-bang
trajectory (normal or abnormal), the time duration T along an interior bang arc is
the same for all interior bang arcs and verifies π ≤ T < 2π.

2.4.3. Optimal trajectories containing a singular arc. The purpose of this
section is to describe the structure of time-optimal trajectories containing singular
arcs.

Proposition 7. Let γ be a time-optimal trajectory containing a singular arc.
Then γ is of the type BtSsBt′ , with s ≤ π

cα
if t > 0 or t′ > 0 and s < 2 π

cα
otherwise.
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Proof of Proposition 7. Let γ be a time-optimal trajectory containing a singular
arc St, t > 0. From Proposition 3, we know that t < 2π/cα.

Assume now that γ contains a singular arc and a nontrivial interior bang arc.
Then, we may assume that γ contains a piece of the type SsBt or BtSs (say the first),
with Bt a complete bang arc. Then we have ϕ2(s) = ϕ3(s) = ϕ2(s + t) = 0. This
translates to g ∧h∧ etadXε(g) = 0. Using (2.3), it implies that cos(t) = 1, i.e., t = 2π.
This contradicts the time optimality of γ. Finally, from (2.7), we get e

π
cα

adf (g) = −g.
From this, we deduce for t ≥ 0, e

π
cα

fetXε = etX−εe
π
cα

f . Therefore, for t, s ≥ 0, we
have esfetXε = e(s− π

cα
)fetX−εe

π
cα

f . Then, if s > π
cα

and t > 0 and taking into account
what precedes, esfetXε cannot be optimal.

2.5. Uniform bound on the number of switchings for time-optimal tra-
jectories. For α ∈]0, π/2[, let N(α) be the supremum of the number of switchings
of any time-optimal trajectory on SO(3). Thanks to the left invariance of the con-
trol system (1.1), we may assume that the supremum is taken over any time optimal
trajectory starting at Id. In this section, we prove the following proposition.

Proposition 8. For α ∈]0, π/2[, N(α) is finite (and thus achieved).

Proof of Proposition 8. Let us first prove the following claim.

Claim. Every optimal trajectory of (Σ) is a finite concatenation of bang and
singular arcs.

Let γ : [a, b] → SO(3) be a time-optimal trajectory of (Σ). Let S be the set of
zeros of ϕ2 such that if t ∈ S, then ϕ2 does not vanish identically in some neighborhood
of t. Clearly, S is the set of times t such that γ(t) is the junction of two bang arcs
or the junction of a singular arc and a bang arc. The conclusion follows if S is finite.
Reasoning by contradiction, S must have a limit point t̄. Moreover t̄ ∈ S, otherwise
ϕ2 would vanish identically in a neighborhood of t̄, contradicting the fact that t̄ is a
limit point of S. Note also that ϕ̇2 is continuous in an open (in [a, b]) neighborhood
N of t̄ (see Remark 2). By definitions of S and t̄, there exists a sequence (tn) in N
converging to t̄ such that ϕ2(tn) �= 0. Choose n large enough so that if [t′n, t

′′
n] is the

maximal subinterval containing tn with ϕ2 �= 0 on (t′n, t
′′
n), then [t′n, t

′′
n] ⊂ N . Clearly,

ϕ2(t
′
n) = ϕ2(t

′′
n) = 0, γ is a bang arc on [t′n, t

′′
n], and t′′n − t′n tends to zero as n goes

to infinity since tn tends to t̄. But, by Proposition 6, t′′n − t′n ≥ π for n large enough.
So we have reached a contradiction and S is finite. The claim is proved.

To finish the proof of Proposition 8, it remains to show that the (finite) number
of switchings for any time-optimal trajectory is uniformly bounded over SO(3). The
argument goes by contradiction: there would then exist a sequence of regular bang-
bang time-optimal trajectories BsnBTn · · ·BTnBtn , where sn, tn < 2π, π < Tn < 2π,
and the number of switchings mn goes to infinity as n goes to infinity. Therefore, there
exists a sequence of points (xn) of SO(3) such that the minimum time τn needed to
connect Id to xn by a trajectory of (Σ) goes to infinity as n goes to infinity.

To reach a contradiction, it is enough to show that there exists a time T so that,
for every point x ∈ SO(3), there exists a trajectory γ of (Σ) connecting Id to x with
T (γ) ≤ T . By a compactness argument and thanks to the SO(3)-invariance of (Σ),
that would result from the following fact: there exists t̄ > 0 and an open neighborhood
U ⊂ SO(3) of Id such that every point x ∈ U can be reached from Id in time less than
or equal to t̄. The latter simply results from the facts that (Σ) has the accessibility
property and etf is periodic.

Remark 5. Since the degree of nonholonomy of the distribution generated by
(f, g) is equal to 2, by standard controllability arguments, one can quantitatively
relate the size of U and t̄ as follows: U contains a ball of radius Ct̄

α2 for some positive
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constant C. Therefore, N(α) can be bounded above by C′

α2 , for some positive constant
C ′.

3. The Hopf fibration and proof of Theorem 1.

3.1. The Hopf projection. In this section, we describe explicitly the Hopf
projection from SO(3) to RP 2. This projection provides SO(3) with a structure of
fiber bundle with base RP 2 and fiber S1. In what follows, we use the identification
of RP 2 with S2\ ∼, where ∼ is the antipodal map, that is RP 2 is the set of rows
(y1, y2, y3),

∑
y2
i = 1, where (y1, y2, y3) ∼ (−y1,−y2,−y3). In what follows, RP 2 is

identified with the subset NH, made of the (open) top hemisphere together with half
of the equator. Fix a point y0 ∈ RP 2. The Hopf projection is defined as

Π : SO(3) → RP 2,

x 
→ y = y0x,

where y0x is the standard matrix product. Then, any left-invariant vector field V :
x 
→ xv on SO(3), v ∈ so(3), is transformed by dΠ into the (left-equivariant) vector
field VS = dΠ(V ) : y 
→ yv. In the following, we call, respectively, the control systems
ẋ = x(f + ug), x ∈ SO(3), and ẏ = y(f + ug), y ∈ RP 2, the control systems upstairs
and downstairs. As explained next, it is crucial to choose y0 so that the drift term
at the initial point, Idf , vanishes downstairs, so we require Π(Id) = y0. Indeed, if
this is the case, then (i) from the point y0, we have local controllability (see next
section) and this greatly helps in the construction of the optimal synthesis; and (ii)
if a trajectory upstairs starts with a singular arc (that is, with u ≡ 0, i.e., it is an
integral curve of the drift f), then its projection is a point. That suitable choice of
y0 is made possible by the following normalizations:

f = cα

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ and g = sα

⎛⎝0 0 0
0 0 1
0 −1 0

⎞⎠ , y0 = (0, 0, 1).

In that way, the control system downstairs reads ẏ = FS(y)+uGS(y), where FS(y) =
yf, GS(y) = yg. In order to respect the convention in control theory where states
are represented by column vectors and costates by row vectors, we will consider the
transposed control system and, with the change of notations yT → y, fT = −f → f ,
gT = −g → g, we obtain downstairs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ = FS(y) + uGS(y), |u| ≤ 1, where

FS(y) = fy = f × y = cα

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠⎛⎝y1

y2

y3

⎞⎠ =

⎛⎝−y2

y1

0

⎞⎠ ,

GS(y) = gy = g × y = sα

⎛⎝0 0 0
0 0 −1
0 1 0

⎞⎠⎛⎝y1

y2

y3

⎞⎠ =

⎛⎝ 0
−y3

y2

⎞⎠ .

(3.1)

3.2. Proof of Theorem 1. For the rest of the paper, we assume α ∈]0, π/4[.
In this section we prove Theorem 1, using a lemma describing the structure of time-
optimal trajectories of (Σ)S connecting the north pole to any point of NH, which will
be studied in the next section.

Lemma 1. Consider the control system (Σ)S and the time-optimal trajectories
connecting the north pole to any point of NH. Then
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(i) They are regular bang-bang with same time durations for the interior bang arcs,
i.e., they are of the type BsBv(s) · · ·Bv(s)Bt, where s ∈ [0, π], t ∈ [0, v(s)] and

v(s) = π + 2 arctan

(
ss

cs + cot2(α)

)
.(3.2)

(ii) Set N0(α) := 2
[

π
8α

]
. Then the maximum number of switching of these trajectories

is

NS(α) = N0(α) −
[
N0(α) − π

4α

]
.(3.3)

The above formula means that NS(α) can take the values N0(α), N0(α) + 1,
or N0(α) + 2.

(iii) They are projections, through the Hopf map Π, of time-optimal trajectories of
(Σ) starting at Id.

Proof of Lemma 1. For the proof of (i), see Proposition 10 and Proposition 11.
For the proof of (iii), see Lemma 7 and Lemma 8. For the proof of (ii) see Proposition
13.

We now prove separately the two inequalities of Theorem 1.
Proof of the inequality NS(α) ≤ N(α). From (iii) of Lemma 1, every time-optimal

trajectory of (Σ)S connecting the north pole to any point of NH is the projection
by Π of a time-optimal trajectory of (Σ) with the same time duration (in particu-
lar, of the time-optimal trajectory connecting the two fibers). Therefore, NS(α) ≤
N(α).

Proof of the inequality N(α) ≤ NS(α) + 4. We refer to Figure 3.1. Consider a
time-optimal trajectory γ of (Σ) containing N(α) switchings. With no loss of gener-
ality, we may assume that N(α) > 2. By Propositions 6 and 7, we deduce that γ is
regular bang-bang and is of the type BsBT · · ·BTBt, with s, t ≥ 0, π ≤ T ≤ 2π. Since
every subarc of a time-optimal trajectory is also time optimal, we may assume that
s = t = 0. Let Id and x1 be the initial and terminal points of γ and consider γS , a
time-optimal trajectory for (Σ)S connecting Π(Id) and Π(x1). From (i) of Lemma 1,
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γS is of the type Bs′Bv(s′) · · ·Bv(s′)Bt′ with s′ ≤ π, t′ < v(s′) and m interior bangs.
We thus have m ≤ NS(α) − 1. We now build, from γS , a suboptimal trajectory con-
necting Id and x1 as follows: we can lift γS to SO(3) to an admissible trajectory γ̃S
of (Σ) connecting x0 and x1, with x0 in the fiber of Π(Id). It is also clear that γS and
γ̃S have same time durations. By construction of the fiber of Π(Id), we get x0 = et

′′f

with t′′ ≤ 2π. Finally, the curve γ̃ obtained as the concatenation of et
′′f and γ̃S is an

admissible trajectory of (Σ) connecting Id and x1. Its time duration is equal to

T (γ̃) = t′′ + T (γ̃S) = t′′ + T (γS) = t′′ + mv(s′) + s′ + t′,

with m ≤ NS(α) − 1. Since γ is time optimal, we have T (γ) ≤ T (γ̃), which implies
that (

N(α) − 1
)
T ≤ t′′ + mv(s′) + s′ + t′.

Using all the estimates on T, s′, t′, t′′ (i.e., T ∈ [π, 2π) (cf. Remark 4), s′ ≤ π, t′ ≤
maxs′∈[0,π] v(s

′), t′′ < 2π), we deduce that(
N(α) − 1

)
π < NS(α)V (α) + 3π, where V (α) := maxs∈[0,π] v(s),

from which we have

N(α) −NS(α) < NS(α)
V (α) − π

π
+ 4.(3.4)

Set r(α) := NS(α)V (α)−π
π . A simple computation shows that

r(α) = NS(α)
2

π
arcsin(tan2(α)).

Using (3.3), it is easy to see that r(α) ∈]0, 1[ on ]0, π/4[. Since N(α) and NS(α) are
integers, we get N(α) −NS(α) ≤ 4.

4. The time-optimal synthesis downstairs. In this section, to compute NS(α),
we study the time-optimal synthesis for the problem downstairs (3.1), starting from
the point y0.

Definition 3. A time-optimal synthesis for the problem downstairs (3.1), start-
ing from the point y0, is a family of time-optimal trajectories Γ = {γy : [0, by] 
→ RP 2,
y ∈ RP 2 : γy(0) = y0, γy(by) = y}.

For that purpose, we use the theory of optimal syntheses on two-dimensional
manifolds developed by Sussmann, Bressan, Piccoli and the first author in [9, 10, 11,
14, 15, 23, 24, 32, 33] and recently rewritten in [12]. The core of the theory consists
of an explicit algorithmic construction (by induction on the number of switchings) of
the optimal synthesis.

Note that the previous theory uses a more elaborated concept of synthesis, namely,
that of regular synthesis (see for instance [8, 12,16,25] and cf. section 4.1.1).

In the following, in order to compute NS(α) we just need to follow the steps of
the algorithmic construction mentioned above, without requiring the existence of a
regular synthesis. In what follows, by time-optimal synthesis, we refer to one in the
sense of Definition 3, whose existence is simply guaranteed by Proposition 1.

Consider a two-dimensional smooth manifold M and the problem of computing
the time-optimal synthesis from a fixed point y0 ∈ M for the control system:

ẏ = F (y) + uG(y), y ∈ M, |u| ≤ 1,(4.1)
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where F and G are C∞ vector fields. We introduce three functions:

ΔA(y) := Det(F (y), G(y)) = F1(y)G2(y) − F2(y)G1(y),(4.2)

ΔB(y) := Det(G(y), [F,G](y)) = G1(y)[F,G]2(y) −G2(y)[F,G]1(y),(4.3)

fS(y) := −ΔB(y)/ΔA(y).(4.4)

The sets Δ−1
A (0),Δ−1

B (0) of zeros of ΔA,ΔB are, respectively, the set of points where
F and G are parallel and the set of points where G is parallel to [F,G]. These loci are
fundamental in the construction of the optimal synthesis. In fact, assuming that they
are smooth embedded one-dimensional submanifold of M , we have the following:

• In each connected region of M\(Δ−1
A (0) ∪ Δ−1

B (0)), every extremal trajec-
tory is bang-bang with at most one switching. Moreover, if the trajectory is
switching, then the value of the control switches from −1 to +1 if fS > 0 and
from +1 to −1 if fS < 0.

• The support of singular trajectories (that are trajectories for which the switch-
ing function identically vanishes, see Definition 4 below) is always contained
in the set Δ−1

B (0).
• A trajectory not switching on the set of zeros of G is an abnormal extremal

(i.e., a trajectory with vanishing Hamiltonian) if and only if it switches on
the locus Δ−1

A (0).

Then the synthesis is built recursively on the number of switchings of extremal tra-
jectories, canceling at each step the nonoptimal trajectories (see [12, Chapter 1]).

Remark 6. As we will see later (see Proposition 10), the condition α < π/4
guarantees that there are no singular trajectories for the problem downstairs.

4.1. Basic definitions and facts on optimal synthesis on two-dimensional
manifolds. Consider the minimum time problem for the control system (4.1). In this
section, we recall some key facts for the construction of time-optimal synthesis fol-
lowing [12].

The first ingredient is, as usual, the PMP that, on a two-dimensional manifold,
has exactly the same form as described in section 2.3 but with the following change of
notation: x ∈ SO(3) → y ∈ M , λ(t) ∈ Tγ(t)SO(3) → λ(t) ∈ Tγ(t)M. As for the prob-
lem upstairs, switchings are described by the switching function given by Definition 4.

Definition 4 (switching function). Let (γ, λ) be an extremal pair. The corre-
sponding switching function is defined as φ(t) := 〈λ(t), G(γ(t))〉.

Again, φ is at least continuously differentiable (φ̇(t) = 〈λ(t), [F,G](γ(t))〉, cf.
discussion in (2.16), and it determines the switching rule, according to Proposition 2
with the change of notation ϕ2 → φ. Also, an extremal trajectory γ, defined on [a, b],
is called singular if φ ≡ 0 in [a, b]. The following three lemmas illustrate the role of
the two functions defined in (4.2) and (4.3). The proofs can be found in [9, 12,24].

Lemma 2. Let γ be an extremal trajectory that is singular in [a, b] ⊂ Dom(γ).
Then γ|[a,b] is associated with the so-called singular control ϕ(γ(t)), where

ϕ(y) = −∇ΔB(y) · F (y)

∇ΔB(y) ·G(y)
,(4.5)

with ΔA and ΔB defined in (4.2) and (4.3). Moreover, on Supp(γ), ϕ(y) is always well
defined and its absolute value is less than or equal to 1. Finally Supp(γ|[a,b]) ⊂ Δ−1

B (0).
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Lemma 3. Let γ be an extremal bang-bang trajectory for the control problem
(4.1), t0 ∈ Dom(γ) be a time such that φ(t0) = 0 and G(γ(t0)) �= 0. Then, the
following conditions are equivalent: (i) γ is an abnormal extremal; (ii) γ(t0) ∈ Δ−1

A (0);
and (iii) γ(t) ∈ Δ−1

A (0) for every time t ∈ Dom(γ) such that φ(t) = 0.

The following lemma describes what happens when ΔA and ΔB are different from
zero.

Lemma 4. Let Ω ⊂ M be an open set such that Ω ∩ (Δ−1
A (0) ∪ Δ−1

B (0)) = ∅.
Then all connected components of Supp(γ) ∩ Ω, where γ is an extremal trajectory of
(4.1), are bang-bang with at most one switching. Moreover, if fS > 0 throughout Ω,
then γ|Ω is associated with a constant control equal to +1 or −1 or has a switching
from −1 to +1. If fS < 0 throughout Ω, then γ|Ω is associated with a constant control
equal to +1 or −1 or has a switching from +1 to −1.

Definition 5. Let γ+ : [0, τ ] → M (resp. γ− : [0, τ ] → M) be the trajectory of
(4.1) starting at y0 and corresponding to the constant control u ≡ 1 (resp., u ≡ −1).
For t ∈]0, τ ], let Γ+(t) (resp., Γ−(t)) be the support of the curve γ+|[0,t] (resp., γ−

[0,t]).

Under the assumption F (y0) = 0 and ΔB(y0) �= 0, the next lemma (for a proof,
see for instance [12, 26]) describes the shape of the optimal synthesis in a neighborhood
of y0. That local behavior of the optimal synthesis remains actually the same as long
as Γ+(t) and Γ−(t) do not intersect Δ−1

B (0) and Δ−1
A (0) (except of course at y0).

Lemma 5. Consider the control system (4.1). Assume that F (y0) = 0 and
ΔB(y0) �= 0. Let Ω be an open neighborhood of y0 such that Ω ∩ Δ−1

B (0) = ∅ and
Ω ∩ Δ−1

A (0) is an embedded one-dimensional submanifold of Ω. Let γ+ : [0, τ ] → M
(resp., γ− : [0, τ ] → M) be the trajectory of (4.1) starting at y0 and corresponding to
the constant control u ≡ 1 (resp., u ≡ −1). Then, for every t+, t− ∈]0, τ [ such that
(a) Γ+(t+),Γ−(t−) ⊂ Ω, (b) Γ+(t+) ∩ Δ−1

A (0) = Γ−(t−) ∩ Δ−1
A (0) = {y0}, and (c)

Γ+(t+)∩Γ−(t−) = {y0}, we have the following. There exists an open neighborhood U
of Γ+(t+) ∪ Γ−(t−) contained in Ω such that, for every y ∈ U , there exists a unique
extremal trajectory of (4.1) of the type BsBt contained in U , which is time optimal
and steers y0 to y. In particular, the system (4.1) is controllable in U and γ+ (resp.,
γ−) is time optimal up to t+ (resp., t−); see Figure 4.1(a).

Finally, we need one more lemma, related to Lemma 3 and whose hypotheses are
illustrated in Figure 4.1(b).

Lemma 6. Consider the control system (4.1). Assume that (i) F (y0) = 0,
ΔB(y0) �= 0, (ii) there exists t̄+ > 0 such that Γ+(t̄+) ∩ Δ−1

A (0) = {y0, γ
+(t̄+)}, and

(iii) there exists ε > 0 such that Γ+(t̄++ε)∩Δ−1
B (0) = ∅. Then γ+ is extremal exactly

up to time t̄+. Moreover, any extremal trajectory γ defined on [0, T ] with T > t̄+ and
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coinciding with γ+ on [0, t̄+] switches at t̄+ to the constant control u ≡ −1 and thus
γ is an abnormal extremal (cf. Lemma 3). A similar statement holds for γ−.

Remark 7. Under the hypotheses of Lemma 6, one can prove that the abnormal
extremal γ restricted to an interval [0, T̄ ] is a nonstrict abnormal extremal if T̄ < t̄+,
while it becomes a strict abnormal extremal if T̄ ≥ t̄+ (cf. section 2.3). In other
words, γ becomes a strict abnormal extremal after the first switching. These facts
are analyzed in details in [11] and [12] (see Chapter 4, and in particular section 4.3,
where strict abnormal extremals are called nontrivial abnormal extremals).

4.1.1. Frame curves and frame points. In this section, we briefly recall, for
the sake of completeness, the main results of the theory developed in [23, 24] (see
also [12]). That material is only used here and in section 5, where some numerical
simulations and conjectures are presented. In [23, 24] (see also [12]), it was proved that
the control system (4.1), under generic conditions on F and G (with the additional
assumption F (y0) = 0), admits a time-optimal regular synthesis in finite time T ,
starting from y0. By generic conditions, we mean conditions verified on an open and
dense subset of the set of C∞ vector fields endowed with the C3 topology (see [12,
formula 2.6, p. 39]). More precisely, let R(T ) be the reachable set in time T > 0 given
by

R(T ) := {y ∈ M : ∃ by ∈ [0, T ] and a trajectory

γy : [0, by] → M of (4.1) such that γy(0) = y0, γy(by) = y}.

Then a time-optimal regular synthesis is defined by (i) a family of time-optimal tra-
jectories Γ = {γy : [0, by] → M , y ∈ R(T ) : γy(0) = y0, γy(by) = y} such that if
γy ∈ Γ and ȳ = γy(t) for some t ∈ [0, by], then γȳ = γy|[0,t]; and (ii) a stratification
of R(T ) (roughly speaking a partition of R(T ) in manifolds of different dimensions;
see [12, Definition 27, p. 56]) such that the optimal trajectories of Γ can be obtained
from a feedback u(y) satisfying

• on strata of dimension 2, u(y) = ±1;
• on strata of dimension 1, called frame curves (FC), u(y) = ±1 or u(y) = ϕ(y),

where ϕ(y) is defined by (4.5).
The strata of dimension 0 are called frame points (FP). Every FP is an intersection
of two FCs. In [24] (see also [12]), a complete classification of all types of FPs and
FCs, under generic conditions, is provided. All the possible FCs are

• FCs of kind Y (resp., X), corresponding to subsets of the trajectories γ+

(resp., γ−) defined as the trajectory exiting y0 with constant control +1
(resp., constant control −1);

• FCs of kind C, called switching curves, i.e., curves made of switching points;
• FCs of kind S, i.e., singular trajectories;
• FCs of kind K, called overlaps and reached optimally by two trajectories

coming from different directions;
• FCs which are arcs of optimal trajectories starting at FPs. These trajectories

“transport” special information.
The FCs of kind Y,C, S,K are depicted in Figure 4.2. There are 18 topological
equivalence classes of FPs. A detailed description can be found in [10,12,24].

Remark 8. The proof of the existence of a regular synthesis is shown by means
of a constructive algorithm (working recursively on the number of switchings) that
builds explicitly the optimal trajectories (see [12, section 2.5, p. 56]). We stress the
fact that the existence of a regular synthesis cannot be guaranteed before the complete
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execution of the algorithm. Since for our system (3.1), we do not reach the end of
that construction, we cannot conclude that such a regular synthesis exists. However,
we conjecture that last fact (see also section 5).

4.2. The problem downstairs. In this section, we apply the theory recalled in
section 4.1 to the control system (3.1) on S2 in order to compute NS(α), the maximum
number of switchings for time-optimal trajectories connecting the north pole to any
point of NH. First we need some notations.

Definition 6. Set

X+
S (y) = FS(y) + GS(y) = X+y = X+ × y

=

⎛⎝ 0 −cα 0
cα 0 −sα
0 sα 0

⎞⎠⎛⎝y1

y2

y3

⎞⎠ =

⎛⎝ −cαy2

cαy1 − sαy3

sαy2

⎞⎠ ,

X−
S (y) = FS(y) −GS(y) = X−y = X− × y

=

⎛⎝ 0 −cα 0
cα 0 sα
0 −sα 0

⎞⎠⎛⎝y1

y2

y3

⎞⎠ =

⎛⎝ −cαy2

cαy1 + sαy3

−sαy2

⎞⎠ .

Let γ : [t1, t2] → S2 be a trajectory of (4.1). If γ corresponds to the constant con-
trol +1 (resp., −1) in [t1, t2], we say that γ|[t1,t2] is a X+–trajectory (resp., X−–
trajectory). Moreover, we call γ± the trajectories exiting the point x0 with, respec-
tively, constant control +1 and −1. Let t±op be the last times for which γ± are optimal.
We define γ±

op := γ±|[0,t±op]. If γ1 : [a, b] → S2 and γ2 : [b, c] → S2 are trajectories of

(3.1) such that γ1(b) = γ2(b), then the concatenation γ2 ∗ γ1 is the trajectory

(γ2 ∗ γ1)(t) :=

{
γ1(t) for t ∈ [a, b],
γ2(t) for t ∈ [b, c].

Note that in the notation γ2 ∗ γ1, γ1 comes first.
The first quantities to be computed are Δ−1

A (0),Δ−1
B (0) and the sign of fS . Re-

ferring to Figure 4.4, we have for the system (3.1)

Δ−1
A (0) = {(y1, y2, y3)

T ∈ S2 : y2 = 0},
Δ−1

B (0) = {(y1, y2, y3)
T ∈ S2 : y3 = 0},

fS(y) > 0, ∀ y ∈ {(y1, y2, y3)
T ∈ S2 : y2y3 > 0},

fS(y) < 0, ∀ y ∈ {(y1, y2, y3)
T ∈ S2 : y2y3 < 0}.
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The set Δ−1
B (0) is called the equator and Δ−1

A (0) the meridian. Moreover, let NH be
the (open) top hemisphere, i.e., the set of points (y1, y2, y3)

T so that y3 > 0 and (see
Figure 4.3)

NH+ := {y ∈ NH : y2 < 0},
M+ = {y ∈ NH : y1 > 0, y2 = 0},
E+ = {y ∈ S2 : y2 < 0, y3 = 0}.

Similarly

NH− = {y ∈ NH : y2 > 0},
M− = {y ∈ NH : y1 < 0, y2 = 0},
E− = {y ∈ S2 : y2 > 0, y3 = 0}.

We also parametrize points y of the meridian by the oriented angle between
−→
0y0 and−→

0y. We use P (ξ), ξ ∈ [−π, π], to denote the point of the meridian defined by the
angle ξ. Then P (0) = y0 and P (α) (resp., P (−α)) is the center of rotation in the
north hemisphere of X+

S (resp. X−
S ). We also have that γ+ (resp., γ−), up to time π,

is a half-circle with diameter [y0, P (2α)] (resp., [y0, P (−2α)]); see Figure 4.3. From
Lemma 4, Proposition 9 follows.

Proposition 9. Let γ : [0, T ] → S2, γ(0) = y0 be an optimal trajectory for the
control system (3.1). Then

• γ has at most a X+ ∗X− switching in NH−, that is, if Supp(γ|[a,b]) ⊂ NH−,
then γ|[a,b] corresponds to one of the three following controls:
(-) u = +1 in [a, b],
(-) u = −1 in [a, b],
(-) there exists c ∈]a, b[ such that u = −1 in [a, c[ and u = +1 in ]c, b];

• γ has at most an X−
S ∗X+

S switching in NH+;
• γ has at most an X−

S ∗X+
S switching in the region {x ∈ S2 : y2 > 0, y3 < 0};

• γ has at most an X+
S ∗X−

S switching in the region {x ∈ S2 : y2 < 0, y3 < 0}.
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In Figure 4.4, the integral curves of FS , GS , X
+
S , X−

S and the loci Δ−1
A (0),Δ−1

B (0)
are depicted. Moreover, the allowed switchings are indicated.

Remark 9. Note that, in NH+ (resp., NH−), X+
S points on the right (resp., on the

left) of X−
S , while, on the meridian, X+

S and X−
S are parallel (see Figure 4.3). More

precisely, X+
S and X−

S point in the same direction on {P (ξ), ξ ∈]α, π−α[
⋃

]−π+α,−α[}
and in opposite directions on {P (ξ), ξ ∈] − α, α[

⋃
]π − α, π]

⋃
[−π,−π + α[}.

4.2.1. Two properties of extremal trajectories. The following two propo-
sitions are essential in the construction of the optimal synthesis.

Proposition 10. Every time-optimal trajectory of (3.1), starting at the north
pole, is regular bang-bang.

Proof of Proposition 10. Since α < π
4 , by taking into account Lemmas 5 and 6,

the curves γ+ and γ− defined in Definition 6 do not intersect the equator and are
time optimal until the first time they meet the meridian, i.e., exactly up to time π.
Moreover, since singular arcs are contained in the equator and thanks to Lemma 6, any
time optimal trajectory γ of (3.1), with at least one switching, is of the form BsBt · · ·,
with s ∈]0, π] and t > 0. Finally, since γ is the projection of a time-optimal trajectory
γ̃ of (1.1), the latter is also of the type BsBt · · ·. Therefore, by Proposition 7, γ̃ and
so γ, cannot contain any singular arc.

Proposition 11. Let γ : [0, T ] → S2 be a time-optimal trajectory for the control
system (3.1) of the type BsBt1Bt2 · · ·. Then, all time durations of interior bang arcs
are equal to v(s), where

v(s) := π + 2 arctan

(
ss

cs + cot2(α)

)
.(4.6)

Proof of Proposition 11. Consider γ̃ : [0, T ] → SO(3), an optimal trajectory that
projects on γ through the Hopf fibration Π. Thanks to Proposition 6 (see also Remark
4), we have γ̃ = BsBt1Bt1 · · ·, where t1 ∈ [π, 2π[. Moreover, since that curve projects
on a time-optimal trajectory for (3.1), we will establish a relation between s and t1.
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We start from the relations ϕ2(s) = ϕ2(s + t1) = 0, which can be written as

〈λ(s), GS(γ(s))〉 = 〈λ(s + t1), GS(γ(s + t1))〉 = 0.(4.7)

Recall that λ(s) = λ(0)e−sXε , λ(s + t1) = λ(0)e−sXεe−t1X−ε and γ(s) = esXεγ(0),
γ(s + t1) = et1X−εesXεγ(0). Since γ is nontrivial, λ(0) is a nonzero line vector of R3.
Moreover, γ(0) = y0 = (0, 0, 1)T . Equation (4.7) can be written as

λ(0)e−sXε(g × esXεγ(0)) = 0, λ(0)e−sXεe−t1X−ε(g × et1X−εesXεγ(0)) = 0.

The previous equations can be transformed to

det(esXελ(0)T , g, esXεγ(0)) = 0, det(et1X−εesXελ(0)T , g, et1X−εesXεγ(0)) = 0

and then to

det(esXελ(0)T , g, esXεγ(0)) = 0, det(esXελ(0)T , e−t1X−εg, esXεγ(0)) = 0.

Since esXελ(0)T is not zero, we deduce that

det(g, esXεγ(0), e−t1X−εg) = 0.(4.8)

We end up with the relation

−s2
α cos(s− t1/2) = c2α cos(t1/2).(4.9)

Taking into account that π ≤ t1 < 2π, we can simplify the previous equation to get
(4.6).

4.3. Construction of the time-optimal synthesis. In this section, we present,
step by step, the construction of the TOS for (3.1). We will not complete that con-
struction, but only provide here the steps for which the outcome is justified by a rig-
orous argument. For the other steps of the construction, we refer to the last section
where we propose conjectures on their outcomes, which are supported by numerical
simulation.

Step 1. By Lemmas 5 and 6, for every ε > 0, there exists an open neighborhood
U of Γ+(π − ε) ∪ Γ−(π − ε) (recall Definition 5) where the time-optimal synthesis is
described in Figure 4.5(a). Moreover, t+op = t−op = π (recall Definition 6).

Step 2. Taking into account the analysis of Sections 4.1 and 4.2, the time-optimal
trajectories for the problem downstairs are described by the following
proposition.

Proposition 12. Every time-optimal trajectory for the system (3.1), starting
from the north pole, is contained in the following two sets of extremals, which are
parametrized by the length of the first bang arc, the one of the last bang arc, and the
number of arcs:

Ξ+(s, t) =

m terms︷ ︸︸ ︷
eX

ε
SteX

−ε
S

v(s) · · · eX
−
S
v(s)eX

+
S
s y0,(4.10)

Ξ−(s, t) = eX
ε′
S teX

−ε′
S

v(s) · · · eX
+
S
v(s)eX

−
S
s︸ ︷︷ ︸

m′ terms

y0,(4.11)

where s ∈ [0, π], t ∈ [0, v(s)], the number of bang arcs (m and m′, respectively) is an
integer, and
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(-) ε = +1 (resp., ε = −1) if m is odd (resp., even);
(-) ε′ = +1 (resp., ε′ = −1) if m′ is even (resp., odd).
Step 3. Let A+ and A− be the two extremal trajectories starting, respectively,

with controls u ≡ 1 and u ≡ −1, and switching after time π, i.e., corresponding,
respectively, to Ξ+(π, ·) and Ξ−(π, ·). These two curves are abnormal extremals and
their respective first bang arcs coincide with γ+

op and γ−
op. As explained in Remark 7,

these two curves become strict abnormal extremals after time π.
To describe them, consider, for ε = ± and 0 ≤ k ≤ k̃ (k̃ defined below), the

half-circles Lε
k ⊂ Clos(NHε), whose centers lie on

−−−−→
0P (εα) and pass through the points

P−ε
k and P ε

k+1, where

P+
n := P (2nα), P−

n := P (−2nα)

for the integers n so that 2nα ≤ π
2 +2α. Note that π

2 +2α < π for α < π
4 and, in fact,

the last P ε
n belongs to the bottom-half hemisphere, i.e., n ≤ k̃, where k̃ := 2 +

[
π
4α

]
.

It is easy to see that A+ intersects the top half-meridian according to the following
ordered sequence of points: y0, P+

1 , P−
2 , P+

3 , . . .. Similarly, A− intersects the top
half-meridian at y0, P−

1 , P+
2 , P−

3 , . . .. Moreover, let y+
eq and y−eq be the antipodal

points of the equator which are the respective first intersections of A+ and A− with
the equator. Note that they are reached at the same time Teq. Finally, consider the
open subset of the top hemisphere bounded below by the equator and obtained by
removing the supports of A+ and A− up to time Teq, i.e., all the Lε

k. That set is the
disconnected union of the two “snake-shaped” simply connected regions S+ and S−

(defined so that each Sε contains the center of rotation of Xε
S). Clearly S+ and S− are

made of open segments of the meridian and open simply connected regions Dε
k ⊂ NHε

defined as follows. For k = 0, Dε
0 is delimited by Supp(γε

op) and the segment [P0, P
ε
1 ]

and, for k ≥ 1, Dε
k is delimited by Lε

k−1 on the top, Lε
k on the bottoms, and by the

segments [P−ε
k−1, P

−ε
k ] and [P ε

k , P
ε
k+1] on the sides; see Figure 4.5(b).

In what follows, if A,B are two subsets of points of Sε, we say that A is above B
(or equivalently B is below A) if A ⊂ Dε′

k and B ⊂ Dε′′

k′ with k < k′, for some ε′, ε′′.
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Step 4. The switching curves (SC), associated with the set of extremals given in
(4.10) and (4.11), are defined as follows: they can be divided into two families, (C+

k )
and (C−

k ). If ε = ±, 1 ≤ k ≤ N0 − 1, and s ∈ [0, π], then

Cε
1(s) = eX

ε
Sv(s)eX

−ε
S

sy0, Cε
k+1(s) = eX

ε
Sv(s)C−ε

k (s).

The boundary points of Cε
k are Cε

k(0) = P ε
k and Cε

k(π) = P ε
k+1. By using Proposi-

tion 9 and since v(s) ≥ π, s ∈ [0, π], the support of Cε
k is contained in the subset

of Clos(NHε), delimited by the half-circle centered on
−−−−−−−−−−→
0P (α(2k + 1)) and passing

through the points P ε
k , P

ε
k+1, and the segment of the meridian [P ε

k , P
ε
k+1]; see Fig-

ure 4.5(b). In particular, a SC with boundary points in the top hemisphere is entirely
contained in the top hemisphere and the intersection of its support with the top
meridian reduces to its boundary points (see Lemma 3).

We next describe the shape of the first SC intersecting the equator. By sym-
metry, we may assume ε = +. We claim that its intersection with the equator reduces
to the point P (π2 ) = (1, 0, 0)T . Indeed, by the switching rules established in Proposi-
tion 9, the SC intersecting the equator is contained in {y ∈ S2 : y2 ≤ 0, y3 ≥ 0}∪{y ∈
S2 : y2 ≥ 0, y3 ≤ 0}. Taking into account the regularity of the SC and the values of
its boundary points, the claim is proved; see Figure 4.6(a).

4.4. Computation of NS(α). In the previous section, we provided detailed
information about extremal trajectories and switching curves but we did not show
that every extremal of (4.10) and (4.11) is in fact time optimal. Anyway, a rigorous
derivation of NS(α) is possible with the available knowledge of time-optimal trajec-
tories combined with the subsequent lemmas.

Lemma 7. Every time-optimal trajectory γ starting at y0 intersects the equator
at most once.

Proof of Lemma 7. We argue by contradiction. There would exist two distinct
points of the equator qi, qf so that γ(ti) = qi, γ(tf ) = qf and γ|(ti,tf ) is entirely
contained in the (closed) bottom hemisphere. Let γsing be the integral curve of FS

(contained in the equator) connecting qi to qf . Consider now the region of the bottom
hemisphere bounded by γsing and γ|(ti,tf ). Taking into account, first, the relative

positions of X+
S , X−

S , FS , and GS along the equator and, second, the sign of fS in
the bottom hemisphere, one can check that T (γsing) ≤ T (γ|(ti,tf )). The argument is
similar to that of [32] (see also [12]) and is based on the use of Stokes theorem. Since
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time-optimal trajectories starting at y0 do not contain a singular arc, it follows that
γ cannot be time optimal. We have reached a contradiction.

Lemma 8. Every time-optimal trajectory γ, starting at y0 and remaining in NH,
is the projection of a time-optimal trajectory of (Σ) starting at Id.

Proof of Lemma 8. From the definition of the Hopf fibration, every trajectory γ
of (Σ)S , starting at y0, associated with an admissible control u and staying in NH, is
the projection of the trajectory γ̄ of (Σ) starting at Id with the same control u. In
particular, γ and γ̄ have same time duration. It is clear that if γ is time optimal, then
γ̄ is also time optimal.

Lemma 9. Recall that Sε ⊂ NH. With the notations above, choose any point
y in the region Sε and let γy be a time-optimal trajectory connecting the north pole
y0 to y. If s ∈]0, π[ is the time duration of the first bang arc and T (y) the total time
duration of γy, then γy|(s,T (y)] is entirely contained in Sε.

Proof of Lemma 9. By the switching rules of Proposition 9, along every time-
optimal trajectory contained in NHε, the control must switch from ε to −ε, when
arriving at a switching curve Cε

k. In addition, the time-optimal trajectory switches
from being an arc of a circle (integral curve of Xε

S) to another arc of a circle of
bigger radius (integral curve of X−ε

S ). After rectification of the flow of Xε
S (i.e., the

one entering the SC Cε
k), and then by taking into account Remark 9, one gets the

situation depicted in Figure 4.6(b).

By contradiction, we assume that there exists a time-optimal trajectory γ with
time duration T and first bang arc time duration s < T such that γ connects y0 to
y ∈ Sε and γ|(s,T ] exits from Sε. Let t′ be the smallest time (in [0, T ]) so that γ|(t′,T ]

is entirely contained in Sε. Then γ(t′) belongs to Supp(A+
[0,Teq ]

)∪ Supp(A−
[0,Teq ]

) (see

step 3 of section 4.3 for the definition of Teq). If γ(t′) is on the (top) meridian,
then it has to switch so that the interior bang time duration is constant, equal to
π. Therefore, γ|(t′,T ] will never re-enter S+. We thus deduce that γ(t′) is not on
the meridian and, with no loss of generality, we will assume that γ(t′) belongs to the
(one-dimensional) interior of some L+

k , k ≥ 1. Now we make the following two claims.

Claim 1. With the notations above, there exist t′′ < t′ < t′′′ such that

γ|(t′,t′′′) ⊂ Dε′

k ⊂ Sε and γ|(t′′,t′) ⊂ Dε′

k+1 ⊂ S−ε, for some ε′ ∈ {+,−},

i.e., γ passes (backward in time) from Sε to S−ε at time t′ by going “down.”

Proof of Claim 1. It is clear that there exists a neighborhood U of t′ so that γ|U
is an integral curve of X−ε

S . Thanks to Remark 9 and to the argument above, γ|U
intersects Int(L+

k ) transversally (see Figure 4.7) in such a way that γ, run backward
in time, goes from D+

k to D+
k+1. Claim 1 is proved.

Now, by definition of t′, γ(t′) ∈ Aε|[0,Teq ]. Let γab be the restriction of Aε between
y0 and γ(t′). Consider γ̃, the concatenation of γab and γ|(t′,T ]. The conclusion of
Lemma 9 will follow if one can show that the time duration T ′ of γ̃ is less than T , the
time duration of γ. This, in turn, amounts to showing that T ′ (the time duration of
γab) is less than t′ (the time duration of γ|[0,t′]). This is the object of the next claim.

Claim 2. With the notations above, we have T ′ < t′.

Proof of Claim 2. The trajectory γ, run backward in time from t′, is an X−ε′

S -

integral curve until it hits a SC in some Dε
L ∈ NHε′ , for some integer L ≥ k + 1,

at a point Cε′

L (s̄), s̄ ∈]0, π[. One can easily conclude that the only possibility is
L = k + 1. By Claim 1, a time-optimal trajectory can pass (backward in time) from
Sε to S−ε only by going down, i.e., by passing from some Dε′

k to Dε′

k+1. Therefore, by
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an elementary counting argument, one gets

t′ = s̄ + ts̄ + (k + 1)v(s̄),

where ts̄ is the time needed to go from γ(t′) to C+
k+1(s̄). On the other hand,

T ′ = (K + 1)π − t̃,

where t̃ ∈]0, π[ is the time needed for Aε to go from γ(t′) to P+
k+1. Since v(s̄) > π,

T ′ < t′. The proof of Lemma 9 is finished.

Remark 10. Coupled with the proof of Claim 2, a simple continuity argument
implies that A+ and A− are time-optimal trajectories in the top hemisphere.

Gathering all the information on time-optimal trajectories, we are now able to
compute NS(α).

Proposition 13. For α ∈]0, π/4[, we have

NS(α) := 2
[ π

8α

]
−
[
2
[ π

8α

]
− π

4α

]
.(4.12)

Proof of Proposition 13. Let y ∈ S+ and γ be a time-optimal trajectory connecting
y0 to y. The point y belongs to some D+

k , k ≤ N0 and, by Lemma 9, γ remains in
S+. Since the function v takes values in [π, π + π/2], it is easy to see from (4.10)
and (4.11) and Remark 10 that γ, run backward in time, will go through the ordered
sequence of regions D+

k , D−
k−1, D+

k−2, etc. until hitting one of the two curves γ+
op

or γ−
op. Moreover, in each of the regions Dε

l , γ will switch exactly once, thanks to
Proposition 9. Therefore, the number of times an optimal trajectory γ starting at y0

switches is exactly equal to the number of times γ crosses the subset of the meridian
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Fig. 4.8. Stereographic projection and synthesis of the linear pendulum.

contained in NH. The same conclusion holds for points belonging to S−, A+, and A−.
By a systematic examination of all the possible cases, we end up with (4.12). Note
that NS(α) is the number of switchings for a time-optimal trajectory ending on the
equator.

4.5. Geometric remarks.

4.5.1. Relations with the linear pendulum. In a fixed neighborhood of
the north pole, the control system on the sphere (3.1) behaves, when α > 0 is small
enough, as a controlled linear pendulum. More precisely, let us consider the stere-
ographic projection of the sphere from the south pole (0, 0,−1) on V , the tangent
plane to the sphere at the north pole. If y1, y2, y3 are the coordinates of the three-
dimensional Euclidean space where the sphere is embedded, a system of coordinates
on V is (y1, y2); see Figure 4.8. Let x+

0 and x−
0 be the projections of the equilibrium

points of X+
S and X−

S in NH.

An alternative way of parametrizing this problem (instead of fixing the radius of
the sphere and varying the axes of rotations) consists of fixing the points x+

0 = (1, 0)T ,
x−

0 = (−1, 0)T and varying the radius r of the sphere. The relation between α and
r is tan(α) = 1/r. The range α ∈]0, π/4[ becomes r ∈]1,∞[ and α → 0 corresponds
to r → ∞. In V , fix a ball B(0, r0) of radius r0 > 0 centered in the origin, and
consider the stereographic projection of the integral curves of X+

0 and X−
0 . For

r → ∞, they become circles centered at the points x±
0 . Then, one easily sees that, in

B(0, r0), the limit system (and the associated synthesis) corresponds to a controlled
linear pendulum (with the associated synthesis) given by the equation ẏ1 = −y2,
ẏ2 = y1 − u, |u| ≤ 1. Note that limα→∞ v(s) = π, that is exactly the time duration of
interior bang arcs for the linear pendulum.

4.5.2. The time-optimal problem on SU(2). The optimal control problem
on NH is the projection (by a Hopf fibration) of an optimal control problem on
SO(3). Similarly, the corresponding problem on the whole sphere S2 is the projection
(by an appropriate Hopf fibration) of an optimal control problem on SU(2). Indeed,
SU(2) is the universal (double) covering of SO(3) and they have the same Lie algebra
so(3). The existence of that double covering justifies, by a factor 2, the difference
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between our bound and the bound (1.2), on the maximal number of switchings for
the control problem on SO(3). Indeed, the index theory developed by Agrachev and
Gamkrelidze in [3, 5] provides a bound on the number of switchings by proving that
a certain extremal is not optimal because it loses local optimality working at the Lie
algebraic level. This is why the upper bound in (1.2) corresponds (essentially) to a
control problem on SU(2), and thus, after projection, on a control problem on the
whole sphere S2, and not just on NH. The other factor 2, of the difference between
our bound and the bound given in (1.2), comes from the fact that in [3] the index of
the second variation was estimated up to an additive factor 1 (see [3, p. 275]).

5. Conclusion and open problems. In the previous section, we derived a set
of properties of the optimal synthesis that were sufficient to compute the maximum
number of switchings of a time-optimal trajectory joining y0 to any point of the north
hemisphere. This enabled us to provide a precise estimate for N(α), α ∈]0, π/4[.
However, the following questions remain unsolved.

Question 1. Are all the extremal trajectories (4.10) and (4.11) optimal in the north
hemisphere?

The answer to this question depends on the answer to the next question.

Question 1′. In the north hemisphere, are the switching curves Cε
k(s), s ∈]0, π[, locally

optimal? (The points s = 0, s = π are not included since we already know
that the two abnormal extremal A± are optimal in NH.)

Roughly speaking we say that a switching curve is locally optimal if it never
“reflects” the trajectories. More precisely, we have the following definition (clarified
by Figure 5.1).

Definition 7. Consider a smooth switching curve C between two smooth vec-
tor fields Y1 and Y2 on a smooth two-dimensional manifold. Let C(s) be a smooth
parametrization of C. We say that C is locally optimal if, for every s ∈ Dom(C), we
have

Ċ(s) �= α1Y1(C(s)) + α2Y2(C(s)), for every α1, α2 such that α1α2 ≥ 0.(5.1)

The points of a switching curve on which relation (5.1) is not satisfied are usually
called “conjugate points.”

Remark 11. Note that, if all the switching curves are locally optimal in the north
hemisphere, it follows that the set of extremals (4.10) and (4.11) (restricted to NH) is
an optimal synthesis for problem (3.1) on RP 2. In this case, on RP 2, the extremals
(4.10) and (4.11) lose global optimality before losing local optimality.
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Question 2. If the answer to Question 1′ is yes, what about the same question for the
optimal control problem on S2? More precisely, one would like to understand
how the extremal trajectories (4.10) and (4.11) are going to lose optimality
in a neighborhood of the south pole (i.e., if the loss of optimality is local or
just global).
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Question 3. What is the shape of the optimal synthesis in a neighborhood of the
south pole?

In this section, we present the results of some numerical simulations which provide
some hints regarding the above questions. More precisely we make the following
observations.

• There is strong numerical evidence for a positive answer to Question 1′. This
means that the switching curves in the north hemisphere never reflect trajec-
tories. In other words, situations like those considered in the proof of Lemma
9 (cf. Figure 4.7) are not possible.

• As regards Question 2, we conjecture the following:
C1. The curves Cε

k(s), s ∈]0, π[ are locally optimal if and only if X+
S (Cε

k(0)) =
α1X

−
S Cε

k(0) and X+
S (Cε

k(π)) = α2X
−
S Cε

k(π) with α1, α2 ≥ 0 but not
both vanishing.

This condition is verified if and only if k ≤
[
π−α
2α

]
−1, which simply follows

from Remark 9.
Set NA :=

[
π
2α

]
. Analyzing the evolution of the minimum time wave front

in a neighborhood of the south pole, it is reasonable to conjecture the fol-
lowing.
C2. For T ≤ (NA − 1)π, the synthesis built above is optimal. Every x ∈ S2

is reached in time T ≤ (NA + 1)π. sxsEvery optimal trajectory has at
most NA switchings and there exists an optimal trajectory having NA−1
switchings.

On the top of Figure 5.2, the optimal synthesis is plotted.
• Regarding Question 3, numerical simulations suggest that the shape of the

optimal synthesis for time T > (NA − 1)π depends on the remainder

r := π − 2αNA = π − 2α
[ π

2α

]
.

Note that r belongs to the interval [0, 2α[. More precisely, we conjecture the
following
C3. For α ∈]0, π/4[, there exist two positive numbers α1 and α2 such that

0 < α1 < α < α2 < 2α and
Case A: r ∈]α2, 2α[. The switching curve starting at P+

NA
glues to

an overlap curve that passes through the origin (see the bottom of
Figure 5.2, Case A).

Case B: r ∈ [α1, α2]. An overlap curve starts exactly at P+
NA

and passes
through the origin.

Case C: r ∈]0, α1[. The situation is more complicated and it is depicted
in the bottom of Figure 5.2, Case C.

For r = 0, the situation is the same as in Case A, but for the switching
curve starting at P+

NA−1.
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Abstract. In this paper, by a new constructive method, the authors reprove the global exact
boundary controllability of a class of quasilinear hyperbolic systems of conservation laws with linearly
degenerate characteristics. It is shown that the system with nonlinear boundary conditions is globally
exactly boundary controllable in the class of piecewise C1 functions. In particular, the authors give
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1. Introduction. Consider the following quasilinear system in a form of conser-
vation laws: {

ut + f (u, v)x = 0,
vt + g (u, v)x = 0,

(1.1)

where u = u(t, x) and v = v(t, x) are unknown functions and f, g ∈ C2(N ) for some
closed bounded domain N in R2. Let F = (f, g)T and

∇F (U) =

(
fu fv
gu gv

)
,

where U = (u, v). We assume that
(H1) On the domain N under consideration, system (1.1) is strongly strictly hy-
perbolic, i.e., for any given U ∈ N , ∇F (U) has two distinct real eigenvalues λ1(U),
λ2(U):

λ1(U) < 0 < λ2 (U) ∀ U ∈ N .(1.2)

Let �li(U) = (li1(U), li2(U)) (resp., �ri(U) = (ri1(U), ri2(U))T ) be a left (resp., right)
eigenvector corresponding to λi(U) (i = 1, 2):

�li (U)∇F (U) = λi (U)�li (U) (resp., ∇F (U)�ri (U) = λi (U)�ri (U)) .

(H2) System (1.1) is linearly degenerate:

∇λi (U) · �ri (U) ≡ 0 (i = 1, 2) ∀ U ∈ N .(1.3)
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(H3) For any given real number a, let Ha
i

�
= {U |λi(U) = a} (i = 1, 2). For any

given U1, U2 ∈ Ha
i , there exists a C1 curve segment U = U(τ) (τ ∈ [τ1, τ2]) in N such

that

U (τj) = Uj (j = 1, 2) and U (τ) ∈ Ha
i ∀ τ ∈ [τ1, τ2](1.4)

and

∇λi (U (τ)) �= 0 ∀ τ ∈ [τ1, τ2] (i = 1, 2).(1.5)

(H4) There are global Riemann invariants for the system (1.1)

R1 = R1 (U) , R2 = R2 (U) .(1.6)

Remark 1.1. Any quasilinear hyperbolic system with two unknown functions

∂ui

∂t
+

2∑
j=1

aij(u1, u2)
∂uj

∂x
= 0 (i = 1, 2)

can always be reduced to a system with the diagonal form at least in a local domain.
This means that for any quasilinear hyperbolic system with two unknown functions,
the local Riemann invariants always exist. On the other hand, many physical systems
(for example, the system of isentropic gas) always possess global Riemann invariants.

By the assumptions (H2) and (H4), in the Riemann invariants, (1.1) can be
rewritten as ⎧⎪⎨⎪⎩

∂R1

∂t
+ μ1 (R2)

∂R1

∂x
= 0,

∂R2

∂t
+ μ2 (R1)

∂R2

∂x
= 0,

(1.7)

where

μ1 (R2 (U)) = λ1 (U) and μ2 (R1 (U)) = λ2 (U) .(1.8)

Recently, Kong [5] investigates the following exact boundary control problem for
the system (1.1). Consider system (1.1) posed on the domain

D = {(t, x)| t ≥ 0, −1 ≤ x ≤ 1}

with the nonlinear boundary conditions

B1(u, v, t) + h1(t) = 0 at x = −1,
B2(u, v, t) + h2(t) = 0 at x = 1

(1.9)

and the initial data

t = 0 : (u, v) =

{(
u−

0 (x) , v−0 (x)
)

∀ x ∈ [−1, 0],(
u+

0 (x) , v+
0 (x)

)
∀ x ∈ [0, 1],

(1.10)

where Bi(u, v, t) are given smooth functions, (u−
0 (x), v−0 (x)) ∈ N and (u+

0 (x), v+
0 (x)) ∈

N are C1 vector functions, defined for x ∈ [−1, 0] and x ∈ [0, 1], respectively, satisfying(
u−

0 (0) , v−0 (0)
)
�=

(
u+

0 (0) , v+
0 (0)

)
.(1.11)
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Exact Boundary Control Problem. Given

Uz(x) =

{
(u−

z (x) , v−z (x)) ∈ C1([−1, 0]) × C1([−1, 0]),

(u+
z (x) , v+

z (x)) ∈ C1([0, 1]) × C1([0, 1]),
z = 0, T,(1.12)

can we find a time T > 0 and control inputs h1(t), h2(t) in the class of piecewise C1

functions defined on [0, T ], such that the boundary control system (1.1), (1.9) has a
piecewise C1 solution U = U(t, x) containing contact discontinuities and satisfying
the initial condition (1.10) and the terminal condition

U(T, x) = UT (x)?(1.13)

Kong [5] proves the following theorem.
Theorem A. Under the hypotheses (H1)–(H4), for given Uz(x) (z = 0, T ) (see (1.12))

and for any T > T̄0, there exist piecewise C1 control inputs h1(t) and h2(t) defined for
t ∈ [0, T ] such that system (1.1), (1.9) possesses a piecewise C1 solution U = U(t, x)
on the domain

D(T ) = {(t, x)| 0 ≤ t ≤ T, −1 ≤ x ≤ 1}(1.14)

containing four contact discontinuities and satisfying

U(0, x) = U0(x), U(T, x) = UT (x) ∀ x ∈ [−1, 1],(1.15)

where T̄0 is defined by

T̄0 = max

{
− 2

λ̄1
,

2

λ2

}
+ max

{
− 2

λ̄1
,

2

λ2

,
4

λ2 − λ̄1

}
,(1.16)

in which

λ̄1 = max
|R2|≤M

μ1(R2), λ2 = min
|R1|≤M

μ2(R1).(1.17)

Here M is given by

M = max
z=0,T
i=1,2

{
‖Ri(u

−
z (x), v−z (x)‖C0([−1,0]), ‖Ri(u

+
z (x), v+

z (x)‖C0([0,1])

}
.(1.18)

Remark 1.2. Theorem A shows that the system (1.1) with nonlinear boundary
conditions (1.9) is globally exactly boundary controllable in the class of piecewise C1

functions. However, the control time T̄0, defined by (1.16), is not optimal.
In this paper, by a new constructive method, we reprove the global exact boundary

controllability of the system (1.1) with the optimal control time. The main result is
the following theorem.

Theorem 1.1. Under the hypotheses (H1)–(H4), for given Uz(x) (z = 0, T )
(see (1.12)) and for any T > T0, there exist piecewise C1 control inputs h1(t) and
h2(t) defined for t ∈ [0, T ] such that system (1.1), (1.9) possesses a piecewise C1

solution U = U(t, x), containing four contact discontinuities and satisfying (1.15), on
the domain D(T ), where T0 is defined by

T0 = max

{
− 2

λ̄1
,

2

λ2

,
4

λ2 − λ̄1

}
.(1.19)
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Remark 1.3. Comparing (1.16) with (1.19), we observe that T̄0 > T0. The
condition T > T0 in Theorem 1.1 is sharp and T0 is optimal in the sense that, if
T ≤ T0, we may find a pair of initial and terminal states such that no matter what
control inputs we choose, the system will not go from the given initial state to the
desired terminal state during the time interval [0, T ]. In this sense, T0 defined by
(1.19) is called the optimal control time of the system (1.1).

In order to illustrate the assertion claimed in Remark 1.3, i.e., the affirmation
that the condition T > T0 in Theorem 1.1 is sharp and T0 is optimal, for simplicity
we only consider the case that the characteristics λ1, λ2 are constants. In the present
situation, there are two cases

Case I: 0 < −λ1 ≤ λ2;
Case II: 0 < λ2 < −λ1.
For Case I, we find that T0 = −2/λ1. If T ≤ T0, by the characteristic method,

it is easy to show that, there exists a pair of initial and terminal states such that no
matter what control inputs we choose, the system will not go from the given initial
state to the desired terminal state during the time interval [0, T ]. In fact, it suffices
to take the pair of initial and terminal states satisfying

R1

(
u+

0 (1), v+
0 (1)

)
�=

{
R1

(
u−
T (λ1T + 1), v−T (λ1T + 1)

)
if λ1T + 1 ≤ 0,

R1

(
u+
T (λ1T + 1), v+

T (λ1T + 1)
)

if λ1T + 1 ≥ 0.
(1.20)

Noting that the Riemann invariant R1 keeps continuous across the contact disconti-
nuities corresponding to the characteristic filed λ2, we observe that, for such a pair of
initial and terminal states satisfying (1.20), no matter what control inputs we choose,
the system will not go from the given initial state to the desired terminal state during
the time interval [0, T ].

For Case II, we have a similar discussion.
Remark 1.4. The hypothesis (H3) is a technical assumption only for construct-

ing contact discontinuities, Kong [5] gives two examples to show that some physical
systems always satisfy it. Moreover, if the initial and terminal data are C1 smooth,
then the hypothesis (H3) is not needed. In this case, Theorem 1.1 is the result given
in Li and Zhang [9].

Remark 1.5. As in other works (e.g., [9]), the solution of our exact boundary
control problem does not possess uniqueness. In fact, even if the initial and terminal
data are smooth, the solution of the system does not have uniqueness either (see [8],
[9]). In particular, the control inputs are not unique. This is due to the fact that
we have some freedom to choose the control inputs, because the waiting time T > T0.
This fact can be observed from the proof of Theorem 1.1.

This paper is organized as follows. Theorem 1.1 is proved in section 2 by a new
constructive method. Section 3 gives some important supplementary remarks, while
section 4 provides a new example of system such as described in section 3, namely,
the system for time-like extremal surfaces in the (1+n)-dimensional Minkowski space
R1+n.

2. Proof of Theorem 1.1. For readers’ convenience, before starting the proof
of Theorem 1.1, we first recall the definition of contact discontinuity.

Definition 2.1. U = U(t, x) is called a piecewise C1 solution containing a kth
(k = 1, 2) contact discontinuity x = xk(t) if U = U(t, x) satisfies the system (1.1) out
of x = xk(t) in the classical sense and satisfies the Rankine–Hugoniot condition on
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x = xk(t), i.e.,

σ · [U ] = [F ],(2.1)

σ = λk

(
U+

)
= λk

(
U−) ,(2.2)

where U± = U(t, xk(t) ± 0) and σ = x′
k(t).

Let

A = (0,−1), B = (0, 1), C = (T, 1), D = (T,−1),
O = (0, 0), N = (T, 0), E = (te, xe), F = (tf , xf ),

(2.3)

where E is the intersection point of the lines

L1 : x = λ̄1t + 1 and L2 : x = λ2t− 1(2.4)

and F is the intersection point of the lines

L̄1 : x = λ̄1(t− T ) − 1 and L̄2 : x = λ2(t− T ) + 1.(2.5)

Noting (1.19) and T > T0, we observe that

te < tf .(2.6)

Step 1: Generalized Riemann problem for the system (1.1). First, we
solve the generalized Riemann problem for the system (1.1) with discontinuous initial
data (1.10). The following lemma comes from [7].

Lemma 2.1. Under the hypotheses (H1)–(H4), the generalized Riemann problem
(1.1), (1.10) has a unique piecewise C1 solution (u, v) = (u(t, x), v(t, x)), containing
two C1 contact discontinuities starting from O, on the maximum determined domain
Ω1 enclosed by the characteristics x = x1(t), x = x2(t) and the x-axis:

Ω1 = {(t, x)| 0 ≤ t ≤ tp, x2(t) ≤ x ≤ x1(t)},(2.7)

where x = x1(t) satisfies

dx1(t)

dt
= λ1 (u, v) , x1(0) = 1,(2.8)

where x = x2(t) satisfies

dx2(t)

dt
= λ2 (u, v) , x2(0) = −1,(2.9)

and while tp is the time coordinate of the intersection point, denoted by P = (tp, xp),
of the characteristic x = x1(t) with the characteristic x = x2(t). See Figure 1.

The solution (u, v) of the generalized Riemann problem (1.1), (1.10) is denoted
by U = U1(t, x) on the domain Ω1, its two contact discontinuities are denoted by
x = ξ1(t) and x = ξ2(t), respectively. By the definition of contact discontinuity,
x = ξi(t) (i = 1, 2) satisfy

ξi(t)

dt
= λi

(
U±

1

)
, ξi(0) = 0 (i = 1, 2).(2.10)

Moreover, let P1 = (tp1 , xp1) (resp. P2 = (tp2 , xp2)) be the the intersection point of the
characteristic x = x2(t) (resp. x = x1(t)) with the contact discontinuity x = ξ1(t)
(resp. x = ξ2(t)). See Figure 1.
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N CD

Q1 Q2

Q

Ω1

Ω2

Ω8Ω9

Q3Q4

Ω4 Ω3Ω6

P4

Ω10 P1

P

P2

P3

Ω7

BOA

Ω5

Fig. 1. Domains Ωi (i = 1, . . . , 10); characteristics: AP : x = x2(t), BP : x = x1(t), CQ :
x = x̃2(t), DQ : x = x̃1(t); contact discontinuities: OP1 : x = ξ1(t), P1P4 : x = ζ1(t), OP2 : x =
ξ2(t), P2P3 : x = ζ2(t), NQ1 : x = ξ̃2(t), Q1Q4 : x = ζ̃2(t), NQ2 : x = ξ̃1(t), Q2Q3 : x = ζ̃1(t).

Similarly, we can solve the backward generalized Riemann problem for the system
(1.1) with discontinuous initial data (1.13). We have the following lemma.

Lemma 2.2. Under the hypotheses (H1)–(H4), the backward generalized Riemann
problem (1.1), (1.13) has a unique piecewise C1 solution (u, v) = (u(t, x), v(t, x)), con-
taining two C1 contact discontinuities starting from N , on the maximum determined
domain Ω2 enclosed by the characteristics x = x̃1(t), x = x̃2(t) and the line t = T :

Ω2 = {(t, x)| tq ≤ t ≤ T, x̃1(t) ≤ x ≤ x̃2(t)},(2.11)

where x = x̃1(t) satisfies

dx̃1(t)

dt
= λ1 (u, v)) , x̃1(T ) = −1,(2.12)

where x = x2(t) satisfies

dx̃2(t)

dt
= λ2 (u, v)) , x̃2(T ) = 1(2.13)

and while tq is the time coordinate of the intersection point, denoted by Q = (tq, xq),
of the characteristic x = x̃1(t) with the characteristic x = x̃2(t). See Figure 1.

The solution (u, v) of the backward generalized Riemann problem (1.1), (1.13) is
denoted by U = U2(t, x) on the domain Ω2, its two contact discontinuities are denoted
by x = ξ̃1(t) and x = ξ̃2(t), respectively. By the definition of contact discontinuity,
x = ξ̃i(t) (i = 1, 2) satisfy

ξ̃i(t)

dt
= λi

(
U±

2

)
, ξ̃i(0) = 0 (i = 1, 2).(2.14)

Moreover, let Q1 = (tq1 , xq1) (resp. Q2 = (tq2 , xq2)) be the the intersection point of the

characteristic x = x̃1(t) (resp. x = x̃2(t)) with the contact discontinuity x = ξ̃2(t)
(resp. x = ξ̃1(t)). See Figure 1.
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Remark 2.1. From the argument mentioned above, we observe that

0 ≤ tp ≤ te, tf ≤ tq ≤ T.(2.15)

Step 2: Mixed initial-boundary value problem for the system (1.1). Let
Ω3 be the domain enclosed by the characteristics PP2 and QQ2, and the straight line
segments PQ and P2Q2. It is easy to see that the straight line PQ can be expressed
by

x = xp + α(t− tp)
�
= c(t), t ∈ [tp, tq],(2.16)

where α is the slope of the line PQ

α=
xq − xp

tq − tp
.(2.17)

Similarly, the straight line P2Q2 can be expressed by

x = xp2
+ α2(t− tp2)

�
= c2(t), t ∈ [tp2 , tq2 ],(2.18)

where α2 is the slope of the line P2Q2

α2 = (xq2 − xp2)/(tq2 − tp2).(2.19)

Noting (1.7), the system (1.1) can be equivalently rewritten as⎧⎪⎪⎨⎪⎪⎩
∂R1

∂x
+

1

μ1 (R2)

∂R1

∂t
= 0,

∂R2

∂x
+

1

μ2 (R1)

∂R2

∂x
= 0

(2.20)

for smooth solutions. We next consider the mixed initial-boundary value problem for
the system (2.20) (equivalently, (1.1)) on the domain Ω3 with the following boundary
conditions:

on the characteristic PP2: x = x1(t) (t ∈ [tp2 , tp])

R2 = R2(U1(t, x1(t)))
�
= r2(t), t ∈ [tp2 , tp],(2.21)

on the characteristic QQ2: x = x̃2 (t ∈ [tq, tq2 ])

R1 = R1(U2(t, x̃2(t)))
�
= r̃1(t), t ∈ [tq, tq2 ](2.22)

and the initial condition on the line segment PQ

R1 = s1(t), R2 = s2(t), t ∈ [tp, tq],(2.23)

where s1(t), s2(t) are C1 functions of t ∈ [tp, tq]. Here we have interchanged the
role of x and t variables. In order to ensure that the mixed initial-boundary value
problem (2.20)–(2.23) has a C1 solution on Ω3, the initial data (s1(t), s2(t)) must
satisfy certain compatibility conditions. First of all, it is required that

s1(tp) = R1(U1(tp, xp)), s2(tq) = R2(U2(tq, xq)).(2.24)
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Moreover, it is also required that

s1(tq) = R1(U2(tq, xq)) = r̃1(tq), s2(tp) = R2(U1(tp, xp)) = r2(tp).(2.25)

Notice that along the characteristic QQ2: x = x̃2(t)

r̃′1(t) =
∂R1

∂t
+ μ2(R1)

∂R1

∂x
= (μ2(R1) − μ1(R2))

∂R1

∂x
.

Then,

r̃′1(tq) = (μ2(R1(U2(tq, xq))) − μ1(R2(U2(tq, xq))))
∂R1

∂x
(tq, xq).(2.26)

On the other hand, along the line PQ: x = c(t)

s′1(t) =
∂R1

∂t
+ α

∂R1

∂x
= (α− μ1(s2))

∂R1

∂x
.

Then,

s′1(tq) = (α− μ1(s2(tq)))
∂R1

∂x
(tq, xq).(2.27)

Therefore, we need that

s′1(tq) =
α− μ1(R2(U2(tq, xq)))

μ2(R1(U2(tq, xq))) − μ1(R2(U2(tq, xq)))
r̃′1(tq).(2.28)

Similarly, at (tp, xp) we require that

s′2(tp) =
α− μ2(R1(U1(tp, xp)))

μ1(R2(U1(tp, xp))) − μ2(R1(U1(tp, xp)))
r′2(tp).(2.29)

We have the following proposition.
Proposition 2.1. The angles formed by the line segment PQ and the charac-

teristic QC, by the line segment PQ and the characteristic PB are less than π.
Proof. Consider the angle between PQ and QC. The worst case is given by

P =

(
2

λ2 − λ1

,
λ1 + λ2

λ2 − λ1

)
, Q =

(
T − 2

λ2 − λ1

,−λ1 + λ2

λ2 − λ1

)
.

In the worst case, the slope of PQ is

dx

dt
=

2 (λ1 + λ2)

4 − T (λ2 − λ1)
.

In order to ensure the angle formed by the line segment PQ and the characteristic
QC is less than π, it is sufficient to require that the slope of the line segment PQ is
less than the slope of the characteristic QC, i.e.,

2 (λ1 + λ2)

4 − T (λ2 − λ1)
< λ2.(2.30)

Noting (1.19) and T > T0, we have

T >
4

λ2 − λ̄1
.
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Hence, in order to guarantee the validity of inequality (2.30), it suffices to require that

T >
2

λ2

.

This is true because of (1.19) and the fact T > T0.
Similarly, consider the angle between PQ and PB. The worst case is given by

P =

(
2

λ̄2 − λ̄1
,
λ̄1 + λ̄2

λ̄2 − λ̄1

)
, Q =

(
T − 2

λ̄2 − λ̄1
,− λ̄1 + λ̄2

λ̄2 − λ̄1

)
.

A similar argument yields

T > − 2

λ̄1
.

This is also true because of (1.19) and the fact T > T0. Thus, the proof of Proposition
2.1 is completed.

Therefore, using Lemma 2.3 and Remark 2.1 in [9], we obtain the following lemma.
Lemma 2.3. Under the hypotheses (H1)–(H4), the mixed initial-boundary value

problem (2.20)–(2.23) admits a unique C1 solution (R1, R2) = (R1(t, x), R2(t, x)) on
Ω3, provided that the compatibility conditions (2.24)–(2.25) and (2.28)–(2.29) hold.

By Lemma 2.3, let U = U3(t, x) be the solution of the system (1.1) corresponding
to (R1(t, x), R2(t, x)) given by Lemma 2.3 on the domain Ω3.

On the other hand, let Ω4 be the domain enclosed by the characteristics PP1 and
QQ1, and the straight line segment PQ: x = c(t) = xp + α(t − tp), tp ≤ t ≤ tq and
the straight line segment P1Q1:

x = xp1
+ α1(t− tp1

)
�
= c1(t), t ∈ [tp1

, tq1 ],(2.31)

where α1 is the slope of the line P1Q1

α1 =
xq1 − xp1

tq1 − tp1

.

On the domain Ω4, we consider the mixed initial-boundary value problem for the
system (2.20) (equivalently, (1.1)) with the following boundary conditions:

on the characteristic PP1: x = x2(t) (t ∈ [tp1
, tp])

R1 = R1(U1(t, x2(t)))
�
= r1(t), t ∈ [tp1

, tp],(2.32)

on the characteristic QQ1: x = x̃1(t) t ∈ [tq, tq1 ]

R2 = R2(U2(t, x̃1(t)))
�
= r̃2(t), t ∈ [tq, tq1 ](2.33)

and the initial condition on the line segment PQ

R1 = s1(t), R2 = s2(t), t ∈ [tp, tq].(2.34)

As before, we choose s1(t), s2(t) to satisfy the compatibility conditions (2.28)–
(2.29) and

s′1(tp) =
α− μ1(R2(U1(tp, xp)))

μ2(R1(U1(tp, xp))) − μ1(R2(U1(tp, xp)))
r′1(tp),

s′2(tq) =
α− μ2(R1(U2(tq, xq)))

μ1(R2(U2(tq, xq))) − μ2(R1(U2(tq, xq)))
r̃′2(tq).

(2.35)

Similar to Proposition 2.1, we have the following.
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Proposition 2.2. The angles formed by the line segment PQ and the charac-
teristic QD and by the line segment PQ and the characteristic PA are less than π.

Using Lemma 2.3 and Remark 2.1 in [9] again, we obtain the following lemma.
Lemma 2.4. Under the hypotheses (H1)–(H4), the mixed initial-boundary value

problem (2.20), (2.32)–(2.34) admits a unique C1 solution (R1, R2) = (R1(t, x),
R2(t, x)) on Ω4, provided that the compatibility conditions (2.24)–(2.25), (2.28)–(2.29)
and (2.35) hold.

We denote the solution of the system (1.1) corresponding to (R1(t, x), R2(t, x)),
given by Lemma 2.4, on the domain Ω4 by U = U4(t, x).

Step 3: Cauchy problem for the system (2.20). Consider the Cauchy
problem in the x-direction for the system (2.20) with the following initial condition
on the line segment P2Q2:

R1(t, c2(t)) = R1(U3(t, c2(t)))
�
= σ1(t),

R2(t, c2(t)) = R2(U3(t, c2(t)))
�
= σ2(t),

t ∈ [tp2
, tq2 ].(2.36)

Similar to Proposition 2.1, we have the following.
Proposition 2.3. The angles formed by the line segment P2Q2 and the char-

acteristic Q2C, by the line segment P2Q2 and the characteristic P2B are less than π.
Proof. Consider the angle between P2Q2 and Q2C. The worst case is given by

P2 =

(
1

λ2 − λ1

,
λ2

λ2 − λ1

)
, Q2 =

(
T − 1

λ2 − λ1

,− λ1

λ2 − λ1

)
.

In the worst case, the slope of P2Q2 is

dx

dt
=

λ1 + λ2

2 − T (λ2 − λ1)
.

In order to ensure the angle formed by the line P2Q2 and the characteristic Q2C is
less than π, it is sufficient to require that the slope of the line P2Q2 is less than the
slope of the characteristic Q2C, i.e.,

λ1 + λ2

2 − T (λ2 − λ1)
< λ2.(2.37)

Noting (1.19) and T > T0, we have

T >
4

λ2 − λ̄1
.

Hence, in order to guarantee the validity of inequality (2.37), it suffices to require that

T >
1

λ2

.

Of course, this is true because of (1.19) and the fact T > T0.
Similarly, consider the angle between P2Q2 and P2B. The worst case is given by

P2 =

(
1

λ̄2 − λ̄1
,

λ̄2

λ̄2 − λ̄1

)
, Q2 =

(
T − 1

λ̄2 − λ̄1
,− λ̄1

λ̄2 − λ̄1

)
.
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A similar argument gives

T > − 1

λ̄1
.

Obviously, this is true because of (1.19) and the fact T > T0. Thus, the proof of
Proposition 2.3 is finished.

Using the Corollary 2.1 in [9], we have the following lemma.
Lemma 2.5. Under the hypotheses (H1)–(H4), the Cauchy problem (2.20), (2.36)

admits a unique C1 solution (R1, R2) = (R1(t, x), R2(t, x)) on the maximum deter-
mined domain Ω5 enclosed by the straight line segment P2Q2, the straight line segment
P3Q3, the characteristic P2P3: x = ζ2(t) (t ∈ [tp2

, tp3
]) and the characteristic Q2Q3:

x = ζ̃1(t) (t ∈ [tq3 , tq2 ]), where P3 = (tp3 , 1) is the intersection point of the charac-
teristic x = ζ2(t) with the line BC, and Q3 = (tq3 , 1) is the intersection point of the

characteristic x = ζ̃1(t) with the line BC, while the characteristic ζ = ζ̃1(t) satisfies

dζ̃1(t)

dt
= μ1 (R2) , ζ̃1(tq2) = xq2(2.38)

and the characteristic ζ = ζ2(t) satisfies

dζ2(t)

dt
= μ2 (R1) , ζ2(tp2) = xp2 .(2.39)

See Figure 1.
We denote the solution of the system (1.1) corresponding to (R1(t, x), R2(t, x)),

given by Lemma 2.5, on the domain Ω5 by U = U5(t, x).
Similarly, we consider the Cauchy problem in the anti-x-direction for the system

(2.20) with the following initial condition on the line segment P1Q1:

R1(t, c1(t)) = R1(U4(t, c1(t)))
�
= θ1(t),

R2(t, c1(t)) = R2(U4(t, c1(t)))
�
= θ2(t),

t ∈ [tp1 , tq1 ].(2.40)

Similar to Proposition 2.3, we have the following.
Proposition 2.4. The angles formed by the line segment P1Q1 and the char-

acteristic Q1D, by the line segment P1Q1 and the characteristic P1A are less than π.
By the Corollary 2.1 in [9], we have the following lemma.
Lemma 2.6. Under the hypotheses (H1)–(H4), the Cauchy problem (2.20), (2.40)

admits a unique C1 solution (R1, R2) = (R1(t, x), R2(t, x)) on the maximum deter-
mined domain Ω6 enclosed by the straight line segment P1Q1, the straight line segment
P4Q4, the characteristic P1P4: x = ζ1(t) (t ∈ [tp1 , tp4 ]) and the characteristic Q1Q4:

x = ζ̃2(t) (t ∈ [tq4 , tq1 ]) (see Figure 1), where P4 = (tp4 , 1) is the intersection point
of the characteristic ζ = ζ1(t) with the line AD, and Q4 = (tq4 , 1) is the intersec-

tion point of the characteristic ζ = ζ̃2(t) with the line AD, while the characteristic
ζ = ζ1(t) satisfies

dζ1(t)

dt
= μ1(R2), ζ1(tp1) = xp1(2.41)

and the characteristic ζ = ζ̃2(t) satisfies

dζ̃2(t)

dt
= μ2(R1), ζ̃2(tq1) = xq1 .(2.42)

See Figure 1.



GLOBAL EXACT BOUNDARY CONTROLLABILITY OF CONSERVATION LAWS 151

Let U = U6(t, x) be the solution of the system (1.1) corresponding to (R1(t, x),
R2(t, x)), given by Lemma 2.6, on the domain Ω6.

Step 4: Goursat problem for the system (2.20). We next consider the
Goursat problem in the x-direction for the system (2.20) with the following charac-
teristic boundary conditions:

on the characteristic P2B: x = x1(t) (t ∈ [0, tp2
])

R2 = R2(U1(t, x1(t)))
�
= η2(t), t ∈ [0, tp2 ],(2.43)

on the characteristic P2P3: x = ζ2(t) (t ∈ [tp2 , tp3 ])

R1 = R1(U5(t, ζ2(t)))
�
= η1(t), t ∈ [tp2

, tp3
].(2.44)

By the Lemma 2.2 in [9], we have the following.
Lemma 2.7. Under the hypotheses (H1)–(H4), the Goursat problem (2.20),

(2.43)–(2.44) has a unique C1 solution (R1, R2) = (R1(t, x), R2(t, x)) on the domain
Ω7 enclosed by the straight line segment BP3, the characteristic BP2: x = x1(t) (t ∈
[0, tp2 ]) and the characteristic P2P3: x = ζ2(t) (t ∈ [tp2 , tp3 ]). See Figure 1. Moreover,
it holds that

R1(t, ζ2(t)) = η1(t) ∀ t ∈ [tp2
, tp3

],

R2(t, x1(t)) = η2(t) ∀ t ∈ [0, tp2
].

(2.45)

Let U = U7(t, x) be the solution of the system (1.1) corresponding to (R1(t, x),
R2(t, x)), given by Lemma 2.7, on the domain Ω7.

Similarly, consider the Goursat problem in the x-direction for the system (2.20)
with the following characteristic boundary conditions:

on the characteristic Q2C: x = x̃2(t) (t ∈ [tq2 , T ])

R1 = R1(U2(t, x̃2(t)))
�
= η̃1(t), t ∈ [tq2 , T ],(2.46)

on the characteristic Q2Q3: x = ζ̃1(t) (t ∈ [tq3 , tq2 ])

R2 = R2(U5(t, ζ̃1(t)))
�
= η̃2(t), t ∈ [tq3 , tq2 ].(2.47)

Similar to Lemma 2.7, we have the following.
Lemma 2.8. Under the hypotheses (H1)–(H4), the Goursat problem (2.20),

(2.46)–(2.47) has a unique C1 solution (R1, R2) = (R1(t, x), R2(t, x)) on the domain
Ω8 enclosed by the straight line segment Q3C, the characteristic Q2C: x = x̃2(t) (t ∈
[tq2 , T ]) and the characteristic Q2Q3: x = ζ̃1(t) (t ∈ [tq3 , tq2 ]). See Figure 1. More-
over, it holds that

R1(t, x̃2(t)) = η̃1(t) ∀ t ∈ [tq2 , T ],

R2(t, ζ̃1(t)) = η̃2(t) ∀ t ∈ [tq3 , tq2 ].
(2.48)

Let U = U8(t, x) be the solution of the system (1.1) corresponding to (R1(t, x),
R2(t, x)), given by Lemma 2.8, on the domain Ω8.

On the other hand, we consider the Goursat problem in the anti-x-direction for
the system (2.20) with the following characteristic boundary conditions:
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on the characteristic Q1D: x = x̃1(t) (t ∈ [tq1 , T ])

R2 = R2(U2(t, x̃1(t)))
�
= γ̃2(t), t ∈ [tq1 , T ],(2.49)

on the characteristic Q1Q4: x = ζ̃2(t) (t ∈ [tq4 , tq1 ])

R1 = R1(U6(t, ζ̃2(t)))
�
= γ̃1(t), t ∈ [tq4 , tq1 ].(2.50)

Similar to Lemma 2.8, we have the following.
Lemma 2.9. Under the hypotheses (H1)–(H4), the Goursat problem (2.20),

(2.49)–(2.50) has a unique C1 solution (R1, R2) = (R1(t, x), R2(t, x)) on the domain
Ω9 enclosed by the straight line segment Q4D, the characteristic Q1D: x = x̃1(t) (t ∈
[tq1 , T ]) and the characteristic Q4Q1: x = ζ̃2(t) (t ∈ [tq4 , tq1 ]). See Figure 1. More-
over, it holds that

R1(t, ζ̃2(t)) = γ̃1(t) ∀ t ∈ [tq4 , tq1 ],

R2(t, x̃1(t)) = γ̃2(t) ∀ t ∈ [tq1 , T ].
(2.51)

Let U = U9(t, x) be the solution of the system (1.1) corresponding to (R1(t, x),
R2(t, x)), given by Lemma 2.9, on the domain Ω9.

Finally, we consider the Goursat problem in the anti-x-direction for the system
(2.20) with the following characteristic boundary conditions:

on the characteristic AP1: x = x2(t) (t ∈ [0, tp1 ])

R1 = R1(U1(t, x2(t)))
�
= γ1(t), t ∈ [0, tp1 ],(2.52)

on the characteristic P1P4: x = ζ1(t) (t ∈ [tp1 , tp4 ])

R2 = R2(U6(t, ζ1(t)))
�
= γ1(t), t ∈ [tp1

, tp4
].(2.53)

Similar to Lemma 2.9, we have the following.
Lemma 2.10. Under the hypotheses (H1)–(H4), the Goursat problem (2.20),

(2.52)–(2.53) has a unique C1 solution (R1, R2) = (R1(t, x), R2(t, x)) on the domain
Ω10 enclosed by the straight line segment AP4, the characteristic AP1: x = x2(t) (t ∈
[0, tp1

]) and the characteristic P1P4: x = ζ1(t) (t ∈ [tp1
, tp4

]). See Figure 1. Moreover,
it holds that

R1(t, x2(t)) = γ1(t) ∀ t ∈ [0, tp1 ],

R2(t, ζ1(t)) = γ2(t) ∀ t ∈ [tp1 , tp4 ].
(2.54)

Let U = U10(t, x) be the solution of the system (1.1) corresponding to (R1(t, x),
R2(t, x)), given by Lemma 2.10, on the domain Ω10.

Step 5: Piecewise C1 solution with four C1 contact discontinuities.
Now we choose s1(t), s2(t) in (2.23) from the space C1[tp, tq] so that the compatibility
conditions (2.24)–(2.25), (2.28)–(2.29) and (2.35) are all satisfied and the C0 norms
of s1(t), s2(t) are bounded by M .

Define the piecewise C1 function

U = U(t, x) =

⎧⎨⎩
U1(t, x) for (t, x) ∈ Ω1,
· · · · · ·

U10(t, x) for (t, x) ∈ Ω10

(2.55)
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and the piecewise C1 curves

�1 = { (t, x) | x = ξ1(t) for t ∈ [0, tp1
]; x = ζ1(t) for t ∈ [tp1

, tp4
]},

�2 = { (t, x) | x = ξ2(t) for t ∈ [0, tp2
]; x = ζ2(t) for t ∈ [tp2

, tp3
]},

�̃1 = { (t, x) | x = ξ̃1(t) for t ∈ [tq2 , T ]; x = ζ̃1(t) for t ∈ [tq3 , tq2 ]},
�̃2 = { (t, x) | x = ξ̃2(t) for t ∈ [tq1 , T ]; x = ζ̃2(t) for t ∈ [tq4 , tq1 ]}.

(2.56)

By the construction of Ui (i = 1, . . . , 10), we observe that U = U(t, x) defined by
(2.55) is a C1 function out of curves �1, �2, �̃1 and �̃2; meanwhile �1 (i.e., OP4), �2
(i.e., OP3), �̃1 (i.e., NQ3) and �̃2 (i.e., NQ4) are C1 smooth curves. See Figure 1.

Obviously, U = U(t, x), defined by (2.55), satisfies the system (1.1) on the domain
D(T ), but out of the curves �1, �2, �̃1 and �̃2, in the class sense. On the other hand,
it is clear that U = U(t, x) satisfies the condition (1.15).

In what follows, we show that the curves �1 and �̃1 (resp., �2 and �̃2 ) are contact
discontinuities corresponding to λ1(U) (resp., λ1(U)).

In fact, we only need to prove that the Rankine–Hugoniot conditions (2.1)–(2.2)
hold on the curves x = ζ1(t) (t ∈ [tp1 , tp4 ]), x = ζ2(t) (t ∈ [tp2 , tp3 ]), x = ζ̃1(t) (t ∈
[tq3 , tq2 ]) and x = ζ̃2(t) (t ∈ [tq4 , tq1 ]).

It follows from (1.8) and (2.53) that

λ1 (U6 (t, ζ1(t))) = λ1 (U10 (t, ζ1(t)))
�
= σ(t) ∀ t ∈ [tp1

, tp4
].(2.57)

This is just the desired (2.2) for the case k = 1 and x = ζ1(t).
We next show that the Rankine–Hugoniot condition (2.1) holds on x = ζ1(t).
By (H3), we know that, for any fixed t ∈ [tp1 , tp4 ], there exists a C1 curve segment

U = U(τ) (τ ∈ [τ1, τ2]) in N such that

U (τ1) = U6(t, ζ1(t)), U (τ2) = U10 (t, ζ1 (t)) ,

and

λ1 (U (τ)) = σ(t) ∀ τ ∈ [τ1, τ2] .(2.58)

Differentiating (2.58) with respect to τ gives

∇λ1 (U (τ)) · dU
dτ

(τ) = 0 ∀ τ ∈ [τ1, τ2] .(2.59)

By (1.3), (1.5), and (2.59), we observe that dU
dτ (τ) is proportional to �r2(U(τ)). Then

we have

σ(t)
dU

dτ
(τ) = ∇F (U (τ))

dU

dτ
(τ) ∀ τ ∈ [τ1, τ2] .

Integrating this yields the Rankine–Hugoniot condition (2.1) on x = ζ1(t).
Others are similar.

Step 6: Control inputs h1(t) and h2(t). Finally, we define h1(t) and h2(t)
as follows:

h1(t) =

⎧⎪⎨⎪⎩
−B1(U10(t,−1), t) as t ∈ [0, tp4

],

−B1(U6(t,−1), t) as t ∈ [tp4
, tq4 ],

−B1(U9(t,−1), t) as t ∈ [tq4 , T ]

(2.60)
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and

h2(t) =

⎧⎪⎨⎪⎩
−B2(U7(t, 1), t) as t ∈ [0, tp3 ],

−B2(U5(t, 1), t) as t ∈ [tp3 , tq3 ],

−B2(U8(t, 1), t) as t ∈ [tq3 , T ].

(2.61)

h1(t) and h2(t) are just the desired control inputs such that the system (1.1), (1.9)
possesses a piecewise C1 solution U = U(t, x) containing four contact discontinuities
and satisfying (1.15) on the domain D(T ), provided that T > T0. Thus, the proof of
Theorem 1.1 is completed.

3. Some remarks. In this section, we give some important supplementary re-
marks.

Remark 3.1. Some physical systems always satisfy the hypotheses (H1)–(H4), for
example, the system of isentropic gas with the Von Kármán–Tsien pressure law, the
system of relativistic gas dynamics with the relativistic counterpart of the Chaplygin
pressure law, etc. (see [5]).

Remark 3.2. Consider the general quasilinear system of conservation laws

∂u

∂t
+

∂f(u)

∂x
= 0,(3.1)

where u = (u1, . . . , un)T is the unknown vector function of (t, x), f : Rn → Rn is a
given C2 vector function of u. Suppose that on the domain under consideration, (3.1)
is a nonstrictly hyperbolic system with two characteristics, and each characteristic has
a constant multiplicity, say, on the domain under consideration,

λ1 (u) ≡ · · · ≡ λm (u)
�
= λ (u) < μ (u)

�
= λm+1 (u) ≡ · · · ≡ λn (u) ,

where 1 ≤ m ≤ n − 1. When m > 1 or m < n − 1, the system (3.1) is nonstrictly
hyperbolic. In particular, when n ≥ 4 and 1 < m < n − 1, the system (3.1) is rich,
and λ(u), μ(u) must be linearly degenerate (see [1], [4], or [10]). In this case, the
system (3.1) can be rewritten as

∂Ri

∂t
+ λ (u)

∂Ri

∂x
= 0 (i = 1, . . . ,m),(3.2)

∂Rj

∂t
+ μ (u)

∂Rj

∂x
= 0 (j = m + 1, . . . , n),

where Ri (i = 1, . . . , n) are the Riemann invariants. For the present situation, we
have a similar result.

In fact, the rich systems generalize the class of 2 × 2 systems while preserving
their essential properties:

(1) diagonalization with the help of the strict Riemann invariants;
(2) the infinite dimension of the entropy space.

See [10]. Therefore, noting the above properties and the linear degeneracy of the char-
acteristic fields λ(u), μ(u), in a manner completely similar to the proof of Theorem
1.1 we can obtain the conclusion stated in Remark 3.2. In this sense, we may call the
system (3.1) (equivalently, (3.2)) a generalized 2 × 2 system with linearly degenerate
characteristics.

Remark 3.3. Hypothesis (H3) is a geometric assumption for constructing contact
discontinuities with nonsmall jumps. It is needed since we do not require that the
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oscillations of u±
0 (x), v±0 (x), u±

T (x), v±T (x) and the jumps |u+
0 (0) − u+

0 (0)|, |v+
0 (0) −

v+
0 (0)|, |u+

T (0) − u+
T (0)|, |v+

T (0) − v+
T (0)| are small. If the above jumps are small,

then the hypothesis (H3) is not needed. Moreover, in Theorem 1.1, a part of contact
discontinuities in the solution U = U(t, x) may disappear. If the initial and terminal
functions are continuous at x = 0, then the contact discontinuities in U = U(t, x)
degenerate weak discontinuities. If the initial and terminal functions are C1 smooth
on [−1, 1], then the solution U = U(t, x) is also C1 smooth, in this case Theorem 1.1
is only the result given in [9].

Remark 3.4. The hypothesis (H4) is also needful since we do not require that
the oscillations and jumps of the initial and terminal functions are small. If the oscil-
lations and jumps of the initial and terminal functions are small, then the hypothesis
(H4) is not needed. Moreover, it is also required in the proof of Theorem 1.1 that the
mapping defined by (1.6) is inverse, i.e., we can solve U from (1.6).

4. A new example — the system for time-like extremal surfaces in the
(1 +n)-dimensional Minkowski space R1+ n. In this section, we provide a new
example of system such as described in Remark 3.2, namely, the system for time-like
extremal surfaces in the (1 + n)-dimensional Minkowski space R1+n.

We first give some notations and definitions.
Let X = (t, x1, . . . , xn)T be the position vector of a point in the (1+n)-dimensional

Minkowski space R1+n. The scalar product of two vectors X and X̄ is

X · X̄ =

n∑
i=1

xix̄i − tt̄;(4.1)

in particular,

X ·X =

n∑
i=1

x2
i − t2.(4.2)

The Lorentz metric of the space R1+n reads as

ds2 =

n∑
i=1

dx2
i − dt2.(4.3)

A nonzero vector X ∈ R1+n is called space-like (resp., time-like or light-like) if

X ·X > 0 (resp., < 0 or = 0).(4.4)

We now consider a smooth surface Σ in the space R1+n. Let a point p be in Σ, i.e.,
p ∈ Σ. The surface Σ is said to be time-like (resp., space-like or light-like) at p if
the unit normal vector of Σ at p, denoted by �np, is space-like (resp., time-like or
light-like). If Σ is time-like (resp., space-like or light-like) at every point p ∈ Σ, then
the surface Σ is called to be time-like (resp., space-like or light-like).

Let z = (x2, . . . , xn)T . The local equation of a surface Σ in R1+n in a suitable
coordinate system can be written as

z = f(t, x1) or zj = fj(t, x1) (j = 2, . . . , n).(4.5)

In what follows, we use the notation

x = x1
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and we only consider the time-like1 surfaces. By the definition, it is easy to prove the
following.

Proposition 4.1. The surface Σ is time-like if and only if

1 + |fx|2 − |ft|2 − |ft|2|fx|2 + 〈ft, fx〉2 > 0.

Definition 4.1. The surface Σ is called an extremal surface if f is the critical
point of the area functional

I =

∫∫ √
1 + |fx|2 − |ft|2 − |ft|2|fx|2 + 〈ft, fx〉2dxdt,(4.6)

where 〈·, ·〉 stands for the inner product.
More generally, we consider a vector function φ = (φ1, . . . , φn)T , which is the

critical point of the area functional

I =

∫∫ √
1 + |φx|2 − |φt|2 − |φt|2|φx|2 + 〈φt, φx〉2dxdt,(4.7)

where 〈·, ·〉 stands for the inner product. The corresponding Euler–Lagrange equation
is as follows: (

φt√
1 + |φx|2 − |φt|2 − |φt|2|φx|2 + 〈φt, φx〉2

)
t

+

(
φx√

1 + |φx|2 − |φt|2 − |φt|2|φx|2 + 〈φt, φx〉2

)
x

(4.8)

+

(
|φx|2φt − 〈φt, φx〉φx√

1 + |φx|2 − |φt|2 − |φt|2|φx|2 + 〈φt, φx〉2

)
t

−
(

〈φt, φx〉φt − |φt|2φx√
1 + |φx|2 − |φt|2 − |φt|2|φx|2 + 〈φt, φx〉2

)
x

= 0.

Remark 4.1. In fact, φ = φ(t, x) stands for a time-like extremal surface in the
(1 + (1 + n))-dimensional Minkowski space R1+(1+n).

Remark 4.2. In particular, let (t, x, y) be points in the (1 + 2)-dimensional
Minkowski space R1+2. We now consider a time-like extremal surface Σ1+2 taking the
form

y = φ(t, x).(4.9)

Corresponding to (4.8), the Euler–Lagrange equation reads as(
φt√

1 + φ2
x − φ2

t

)
t

−
(

φx√
1 + φ2

x − φ2
t

)
x

= 0,(4.10)

which is the Born–Infeld equation (see [2]).

1The time-like corresponds to the relation of cause and effect in physics.
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Remark 4.3. Recently, Brenier [3] suggests an equation for extremal surfaces in
the (1 + 4)-dimensional Minkowski space, which is related to classical electrodynam-
ics. By prescribing (t, s) → (t, s, Y (t, s)) to be an extremal surface in the (1 + 4)-
dimensional Minkowski space (t, s, x1, x2, x3) with the signature (−,+,+,+,+), we
know that the area functional is

I =

∫∫ √
1 + |∂sY |2 − |∂tY |2 − |∂sY × ∂tY |2dsdt.(4.11)

The corresponding Euler–Lagrange equation is

(4.12)(
φt√

1 + |φx|2 − |φt|2 − |φt × φx|2

)
t

−
(

φx√
1 + |φx|2 − |φt|2 − |φt × φx|2

)
x

+

(
φx × (φt × φx)√

1 + |φx|2 − |φt|2 − |φt × φx|2

)
t

−
(

φt × (φt × φx)√
1 + |φx|2 − |φt|2 − |φt × φx|2

)
x

= 0,

where x stands for s in (4.11), and φ = (φ1, φ2, φ3)
T represents Y in (4.11).

Let

u = φx, v = φt.(4.13)

Then (4.8) can be equivalently rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − vx = 0,(
v√

1 + |u|2 − |v|2 − |v|2|u|2 + 〈u, v〉2

)
t

−
(

u√
1 + |u|2 − |v|2 − |v|2|u|2 + 〈u, v〉2

)
x

+

(
|u|2v − 〈u, v〉u√

1 + |u|2 − |v|2 − |v|2|u|2 + 〈u, v〉2

)
t

−
(

〈u, v〉v − |v|2u√
1 + |u|2 − |v|2 − |v|2|u|2 + 〈u, v〉2

)
x

= 0

(4.14)

for smooth solutions. The following lemma comes from [6].
Lemma 4.1. If the surface is time-like, that is,

(u, v)
�
= 1 + |u|2 − |v|2 − |v|2|u|2 + 〈u, v〉2 > 0,(4.15)

then (4.14) is a nonstrictly hyperbolic system with two n-constant multiple eigenvalues:

λ1 ≡ · · · ≡ λn
�
= λ− < λ+

�
= λn+1 ≡ · · · ≡ λ2n,(4.16)

where

λ± =
1

1 + |u|2
(
−〈u, v〉 ±

√
1 + |u|2 − |v|2 − |v|2|u|2 + 〈u, v〉2

)
;

moreover, the system (4.14) is linear degenerate.
Noting Remark 3.2, under suitable assumptions we can obtain the global exact

boundary controllability for the system (4.14) (equivalently, (4.8)) in the class of
piecewise C1 functions. Here we omit the details.



158 DE-XING KONG AND HUI YAO

Acknowledgments. The authors would like to thank the referee for pertinent
comments and valuable suggestions. The first author (Kong) thanks Prof. Ta-Tsien Li
for his constant encouragement and valuable suggestions. This work was completed
while Kong was visiting University of Potsdam during the summer of 2003. Kong
thanks Prof. B.-W. Schulze for his invitation and hospitality.

REFERENCES
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ON THE BACKWARD STOCHASTIC RICCATI EQUATION
IN INFINITE DIMENSIONS∗
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Abstract. We study backward stochastic Riccati equations (BSREs) arising in quadratic opti-
mal control problems with infinite dimensional stochastic differential state equations. We allow the
coefficients, both in the state equation and in the cost, to be random. In such a context BSREs are
backward stochastic differential equations existing in a non-Hilbert space and involving quadratic
nonlinearities. We propose two different notions of solutions to BSREs and prove, for both of them,
existence and uniqueness results. We also show that such solutions allow us to perform the synthesis
of the optimal control. Finally we apply our results to the optimal control of a delay equation and
of a wave equation with random damping.

Key words. backward stochastic differential equations, Riccati equation, linear quadratic
optimal control, Hilbert spaces, stochastic coefficients
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1. Introduction. Backward stochastic Riccati differential equations (BSREs)
naturally arise in the study of stochastic optimal linear quadratic control problems
with stochastic coefficients.

The interest of proving existence and uniqueness results for such a class of equa-
tions was first addressed by Bismut in [2]. It was clear from the beginning that to
study those highly nonlinear backward stochastic differential equations was already a
challenging task in the finite dimensional case (see [3], [20], or the historical review
in [12]). The difficulty comes essentially from the fact that, in its general formula-
tion, the BSRE involves quadratic terms in both the unknowns (in particular in the
so-called martingale term). Moreover the nonlinearity can be well defined only in a
subset of the space of nonnegative matrices (where the equation naturally exists).

Several works followed the pioneering paper [2] (see [19], [12], [13], [14], [15]).
In particular only very recently, in [21], the proof of the existence and uniqueness
of a solution of the BSRE was given in the general case corresponding to a finite
dimensional, linear quadratic problem with random coefficients and state- and control-
dependent noise. This last result, somehow, completes the theory of finite dimensional
BSREs. We remark that in all the above literature it is clear that the treatment of the
equation cannot be solely based on general backward stochastic differential equation
techniques but needs to exploit the interplay between the Riccati equation and its
control theoretic interpretation (for results on general backward stochastic differential
equations with quadratic nonlinearities see [11] and [17]).

On the other hand several works, motivated by control of stochastic partial dif-
ferential equations, have been devoted to linear quadratic optimal control problems
for infinite dimensional stochastic differential equations with deterministic coefficients
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(see, for instance, [22] and references within). The corresponding Riccati equation is
a deterministic nonlinear ODE in a suitable space of symmetric, nonnegative, Hilbert
valued operators.

The present paper is, as far as we know, the first attempt to consider infinite
dimensional BSREs. Such equations naturally arise in several models; namely they
appear in all the situations in which one has to perform the synthesis of the op-
timal control for a linear quadratic problem having, as state equation, an infinite
dimensional stochastic evolution equation with random coefficients (see examples in
sections 9 and 10). We also emphasize that the study of infinite dimensional BSREs
introduces specific new difficulties in the theory of backward stochastic differential
equations. Specifically these are nonlinear backward stochastic differential equations
that involve unbounded linear terms and quadratic nonlinearities. Moreover, and this
is the main difficulty, they naturally exist in a non-Hilbertian infinite dimensional
space.

In order to separate difficulties we consider here only the case in which the non-
linearity does not depend on the “martingale term” of the backward equation. In
other words we consider the infinite dimensional analogue of the equation considered,
in the finite dimensional case in [19]. We believe that, as we explain in the following,
this case already presents serious new difficulties.

To be more precise: in this paper we consider a quadratic optimal control problem
for a system governed by the following state equation:{

dy(t) = (Ay(t) + A�(t)y(t) + B(t)u(t)) dt + C(t)y(t) dW (t), t ∈ [0, T ],
y(0) = x.

(1.1)

In the above equation y is the state of the system and u is the control ; y has values
in a Hilbert space H and u has values in another Hilbert space U ; W is a cylindrical
Ξ-valued Wiener process defined on a probability space {Ω,F ,P}, where Ξ is a third
Hilbert space. Expanding notation with respect to an orthonormal basis {fi : i ∈ N}
in Ξ we have C(t)y(t) dW (t) =

∑∞
i=1 Ci(t)y(t)dβi(t), where {βi : i ∈ N} := {(fi,W )Ξ :

i ∈ N} is a family of standard independent Brownian motions.
We assume that the unbounded operator A : D(A) ⊂ H → H is independent

of ω ∈ Ω and t ∈ [0, T ] and is the infinitesimal generator of a C0-semigroup. On
the contrary A�, B, and C are allowed to be random; namely they are bounded,
operator valued, stochastic processes that we assume to be predictable relatively to
the filtration F = {Ft : t ≥ 0} generated by W (this last condition is not restrictive;
see Remark 2.4).

Our purpose is to minimize, over all predictable controls u, the quadratic cost
functional

E

∫ T

0

(
|
√
S(s)y(s)|2H + |u(s)|2U

)
ds + E(PT y(T ), y(T ))H ,(1.2)

where S is a predictable stochastic process and PT is a random variable, both taking
values in the set of linear, symmetric, nonnegative, and bounded operators from H
into H.

If we define the stochastic value function by

(P (t)x, x)H=̇ inf
u

EFt, y(t)=x

[∫ T

t

(
|
√
S(s)y(s)|2H + |u(s)|2U

)
ds + (PT y(T ), y(T ))H

]
,

(1.3)
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then P solves, at least in a formal way, the following backward stochastic differential
equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−dP (t) =

(
A∗P (t)+P (t)A+A∗

� (t)P (t)+P (t)A�(t)−P (t)B(t)B∗(t)P (t)+S(t)
)
dt

+ Tr[C∗(t)P (t)C(t)+C∗(t)Q(t)+Q(t)C(t)] dt+Q(t) dW (t), t ∈ [0, T ],

P (T ) = PT .

(1.4)

We notice that the unknowns in (1.4) are the two processes P and Q (the second one is
sometimes referred to as a martingale term). Process P has values in the cone Σ+(H)
of bounded, nonnegative, linear symmetric operators in H and process Q in the space
L2(Ξ,Σ(H)) of Hilbert–Schmidt operators from Ξ to the space Σ(H) of bounded,
linear symmetric operators in H. Moreover, again making the notation explicit,
we have

Tr[C∗(t)PC(t) + C∗(t)Q + QC(t)] =

∞∑
i=1

[C∗
i (t)PCi(t) + C∗

i (t)(Qfi) + (Qfi)Ci(t)].

The specificity of our situation resides in the fact that the above equation involves
both the unbounded term A∗P + PA and the quadratic term PBB∗P . Moreover
Σ(H) is not a Hilbert space; thus some essential tools in stochastic calculus commonly
used in the theory of backward stochastic differential equations, such as the Kunita–
Watanabe martingale representation theorem, fail to hold. To overcome this difficulty
one could try to compute the operator valued random variables on the vectors of a
basis and then apply classical representation results to each component, but this
procedure does not seem to allow the reconstruction of a suitable operator valued
process Q. The point is that, due to the presence of an unbounded term, we cannot
consider (1.4) in its classical sense. Normally this leads to a mild formulation of the
equations. Here, due to the difficulty of handling the martingale representation term
Q, this approach causes problems. As a matter of fact mild formulation requires
defining the process like s → e(s−t)A∗

Q(s)e(s−t)Ah, h ∈ H, while only the processes
Q(·)h with h independent on t are well defined.

For the same reason, in the generality considered here, it seems difficult to show
uniqueness of weak solutions of BSREs.

To cope with such a roadblock we propose the following strategy inspired by the
notion of “strong solution” for partial differential equations; see [1] or [16] and ref-
erences therein. Roughly speaking the method consists of first considering equations
with more regular data and then defining the solution in the general case by a limiting
procedure.

To continue with this program we devote the first part of the paper (up to sec-
tion 5) to the case in which the process S and the random variable PT (corresponding,
respectively, to the running and final cost) take values in the Hilbert space L2(H) of
Hilbert–Schmidt operators H → H (see assumption (A5)). To begin we prove ex-
istence, uniqueness, and stability with respect to approximations of the solution to
a class of infinite dimensional backward stochastic differential equations with un-
bounded linear term and lipschitz nonlinearity; see Theorem 4.4. This result is essen-
tially included in [10] in sofar as existence and uniqueness are concerned (except that
we find a slightly more regular solution) while the part dealing with stability seems
to be new and of independent interest.
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The above general result is then applied to the affine Lyapunov equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−dP (t) = (A∗P (t) + P (t)A + Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)]) dt

+(A∗
� (t)P (t) + P (t)A�(t) + L(t)) dt + Q(t) dW (t), t ∈ [0, T ],

P (T ) = PT

(1.5)

when L is a given Hilbert–Schmidt valued predictable process.
Then by fixed point technique and a priori estimates (see also [19]) we are able

to show that if S and PT take values in the Hilbert space L2(H), then (1.4) has, in
L2(H), a unique mild solution (P,Q). By that we mean a pair of processes verifying
P-a.s. for all t ∈ [0, T ]:

P (t) =

∫ T

t

e(s−t)A∗
Tr[C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)]e(s−t)A ds

+e(T−t)A∗
PT e

(T−t)A +

∫ T

t

e(s−t)A∗
Q(s)e(s−t)A dW (s)

+

∫ T

t

e(s−t)A∗
S(s)e(s−t)A ds +

∫ T

t

e(s−t)A∗
(A∗

� (s)P (s)

+P (s)A�(s)−P (s)B(s)B∗(s)P (s))e(s−t)A ds.(1.6)

Moreover, we prove that such a solution can be approximated by the classical solutions
of the equations obtained replacing A by its Yosida approximations. Once we have
a solution to the Riccati equation it is easy to perform in this Hilbertian framework,
the standard synthesis of the optimal control: that is, to verify that (P (0)x, x)H
is the optimal cost and that the unique optimal control u verifies the feedback law
u(t) = −B∗(t)P (t)y(t) (see Theorem 5.14).

Hilbert–Schmidt Assumption (A5) is too restrictive in many of the concrete appli-
cations (see the example in section 10 and Remark 10.1) so it is necessary to complete
the above mentioned programm in order to include in the theory general running
costs S and final conditions PT . In section 6 we introduce the concept of generalized
solutions of (1.4). By this we mean limits (in a suitable sense) of solutions correspond-
ing to Hilbert–Schmidt data S and PT . We are able to prove, under fairly general
assumptions, that a generalized solution, in the above sense, exists and is unique (see
Theorem 6.6). Notice that if existence of a generalized solution is somehow expected,
uniqueness seems a more interesting result; its proof is largely based on the control-
theoretic interpretation of (1.4). Moreover, we show that such a solution still allows
to perform the synthesis of the optimal control as in the Hilbert–Schmidt case (see
again Theorem 6.6). We also notice that their control theoretic interpretation imply
that generalized solutions enjoy “strong continuity” property (see Lemma 6.5).

In section 7 we prove that generalized solutions verify the following variation of
constants formula:

(P (t)x, x)H = (Lt,TPTx, x)H +

∫ T

t

(Lt,sS(s)x, x)H ds

−
∫ T

t

(Lt,sP (s)B(s)B∗(s)P (s)x, x)H ds P-a.s.,(1.7)
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where Lt,s is the evolution operator corresponding to the Lyapunov equation (1.5)
with L = 0. We are also able to show that there exists a unique process P verifying
(1.7). Thus (1.7) can be regarded as an alternative definition of solution to the BSRE
(1.4). We notice that in both the definitions of solution we propose that only the P
term in the BSRE is characterized. This is natural from the point of view of control
theory and, in any case, is enough to complete the synthesis of the optimal control,
see also Remark 6.3.

In sections 9 and 10 we show that our general results can be applied to a variety
of concrete examples. The first example is a minimization of variance problem for a
delay equation with a stochastic coefficient. The interest of such an example is that
on one side it is extremely simple (and consequently applicable to a wide range of
concrete situations) on the other it is connected with financial applications. Namely
it is a firs step towards a mean variance hedging problem for a market with stochastic
variance and memory effects. The second example is an optimal control problem for a
wave equation in random media. In this case a stochastic coefficient is introduced, in a
realistic way, assuming that the equation is subject to a stochastic damping due to the
media. We notice that for the example in section 9 the Hilbert–Schmidt assumption
(A5) is verified and we obtain mild solutions of the corresponding Riccati equation.
On the contrary, for the example in section 9 the Hilbert–Schmidt assumption (A5)
is never verified and we have to use the concept of generalized solution of the Riccati
equation.

2. Main notation and assumptions. By H, U , and Ξ we will always indicate
real separable Hilbert spaces.

If K is a Hilbert space, its inner scalar product and norm will be denoted by
(·, ·)K and | · |K , omitting the K when no confusion is possible.

For any Banach space E by B(E) we denote its Borel σ-field.

For any pair K1 and K2 of separable real Hilbert spaces we denote by L(K1,K2)
the Banach space of linear and bounded operators from K1 to K2 endowed by the
norm |T |L(K1,K2) = sup{x∈K1,|x|K1

=1} |Tx|K2 (as usual L(H) = L(H,H)).

By Σ(H) we denote the subspace of all symmetric and bounded operators, and
by Σ+(H) the cone of Σ(H) that contains all positive semidefinite operators.

L2(K,H) denotes the Hilbert space of Hilbert–Schmidt operators from K to H,
endowed with the Hilbert–Schmidt norm |T |2L2(K,H) =

∑∞
i=1 |Tei|2H ({ei : i ∈ N}

being an orthonormal basis in K), and we set L2(H,H) = L2(H). Σ2(H) is the
subset of L2(H) that consists of all linear and symmetric operators, and Σ+

2 (H) is
the cone of Σ2(H) that consists of all nonnegative operators.

The cylindrical Wiener process. We fix a probability basis (Ω,F ,P). A
cylindrical Wiener process with value in Ξ is a family W (t), t ≥ 0, of linear mappings
Ξ → L2(Ω) such that

(i) for every h ∈ Ξ, {W (t)h, t ≥ 0} is a real (continuous) Wiener process;
(ii) for every h, k ∈ Ξ and t, s ≥ 0, E(W (t)h ·W (s)k) = (t ∧ s)(h, k)Ξ.

We denote by Ft its natural filtration augmented with the set N of P-null sets of F .
As is well known, the filtration Ft satisfies the usual conditions. By EFt we denote
the conditional expectation with respect to Ft.

Finally by P we denote the predictable σ-field on Ω × [0, T ].

Some classes of stochastic process. Let K be any separable Hilbert space
and let B(K) be its Borel σ-field on K. The following classes of processes will be used
in this work.
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• Lp
P(Ω×[0, T ];K), p ∈ [1,+∞] denotes the subset of Lp(Ω×[0, T ];K), given by

all equivalence classes admitting a predictable version. This space is endowed
with the natural norm

|Y |p
Lp

P(Ω×[0,T ];K)
= E

∫ T

0

|Ys|pK ds

Elements of this space are defined up to modification.
• Lp

P(Ω;L2([0, T ];K)) denotes the space of equivalence classes of processes Y ,
admitting a predictable version such that the norm

|Y |p
Lp

P(Ω;L2([0,T ];K))
= E

(∫ T

0

|Ys|2K ds

)p/2

is finite. Elements of this space are defined up to modification.
• CP([0, T ];Lp(Ω;K)) denotes the space of K-valued processes Y such that
Y : [0, T ] → Lp(Ω,K) is continuous and Y has a predictable modification,
endowed with the norm

|Y |pCP([0,T ];Lp(Ω;K)) = sup
t∈[0,T ]

E|Yt|pK

Elements of CP([0, T ];Lp(Ω;K)) are identified up to modification.
• Lp

P(Ω;C([0, T ];K)) denotes the space of predictable processes Y with contin-
uous paths in K such that the norm

|Y |p
Lp

P(Ω;C([0,T ];K))
= E sup

t∈[0,T ]

|Yt|pK

is finite. Elements of this space are defined up to indistinguishability.
Now let us consider the space L(H) of linear and bounded operators from a

separable Hilbert space H to H. Moreover, it turns out that the σ-field generated by
the operator norm in L(H) is too large. For instance if A generates a C0 semigroup,
the map t → etA is not even measurable with respect to such σ-field, see [5, pp.
23–24]. We are, therefore, led to introduce the σ-field

LS = σ{{T ∈ L(H) : Tu ∈ A}, where u ∈ H and A ∈ B(H)}.

Again following [5] the elements of LS are called strongly measurable.
We notice that the maps P → |P |L(H) and (P, u) → Pu are measurable from

(L(H),LS) to (R,B(R)) and from (L(H)×H,LS ⊗B(H)) to (H,B(H)), respectively.
Moreover, LS is identical to the weak σ-field

LS = σ{{T ∈ L(H) : (Tu, x)H ∈ A}, where u, x ∈ H and A ∈ B(R)}.

We define the following spaces.
• L∞

P,S(Ω× [0, T ];L(H)) the space of essentially bounded, strongly measurable
predictable processes Y : Ω × [0, T ] → L(H). That is, Y is measurable from
(Ω× [0, T ],P) to (L(H),LS) and the real valued random valued |Y |L(H) is in
L∞(Ω × [0, T ]; R). By |Y |L∞

P,S
(Ω×[0,T ];L(H)) we indicate the norm of |Y |L(H)

in L∞(Ω× [0, T ]; R). Elements of this space are identified up to modification.
• L∞

S (Ω,Ft;L(H)) is the space of measurable maps Y : (Ω,Ft) → (L(H),LS)
such that |Y |L(H) is in L∞(Ω; R). By |Y |L∞

S
(Ω;L(H)) we indicate the norm of

|Y |L(H) in L∞(Ω; R).
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• L1
P,S([0, T ];L∞(Ω, L(H))) is the space of predictable, strongly measurable

processes such that |Y |L(H) is in L1([0, T ];L∞(Ω; R)). By
|Y |L1

P,S
([0,T ];L∞(Ω,L(H))) we indicate the norm of |Y |L(H) in L1([0, T ];L∞(Ω; R)).

Elements of this space are identified up to modification.
We identically define, with trivial changes the spaces: L∞

P,S(Ω × [0, T ]; Σ+(H)),

L∞
P,S(Ω × [0, T ];L(U,H)), L1

P,S([0, T ];L∞(Ω,Σ+(H))), and L∞
S (Ω,Ft; Σ

+(H)). Ele-
ments of these spaces are identified up to modification.

Statement of the problem and general assumptions on the coefficients.
We consider the following infinite dimensional stochastic differential equation:{

dy(s) = (Ay(s) + A�(s)y(s) + B(s)u(s)) ds + C(s)y(s) dW (s), s ∈ [t, T ],
y(t) = x,

(2.1)

where y is an H valued process that represents the state of the system and is our
unknown, u is the control and the initial data x is in H. To stress its dependence
on u, t, and x we will denote the (mild; see Definition 3.1) solution of (2.1) by yt,x,u

when needed.
Our purpose is to minimize with respect to u the cost functional

J(0, x, u) = E

[∫ T

0

(
(S(s)y0,x,u(s), y0,x,u(s))H + |u(s)|2U

)
ds

+(PT y
0,x,u(T ), y0,x,u(T ))H

]
.(2.2)

We also introduce the following random variables for t ∈ [0, T ]:

J(t, x, u) = EFt

[∫ T

t

(
(S(s)yt,x,u(s), yt,x,u(s))H + |u(s)|2U

)
ds

+(PT y
t,x,u(T ), yt,x,u(T ))H

]
.

We will work under the following general assumptions on A, B, and C that will hold
throughout the paper.

Hypothesis 2.1.

(A1) A : D(A) ⊂ H → H is the infinitesimal generator of a C0 semigroup etA :
H → H.

(A2) We assume that A� ∈ L∞
P,S(Ω × [0, T ];L(H)). We denote by MA�

a positive
constant such that

|A�(t, ω)|L(U,H) ≤ MA�
, P-a.s. and for a.e. t ∈ (0, T ).

Moreover, B ∈ L∞
P,S(Ω × [0, T ];L(U,H)). We denote by MB a positive con-

stant such that

|B(t, ω)|L(U,H) ≤ MB , P-a.s. and for a.e. t ∈ (0, T ).

(A3) We assume that C is of the form: C =
∑∞

i=1 Ci(·, fi)Ξ, where {fi : i ∈ N} is
an orthonormal basis in Ξ. Moreover, we suppose that

Ci ∈ L∞
P,S(Ω × [0, T ];L(H)) and

( ∞∑
i=1

|Ci(t, ω)|2L(H)

)1/2

≤ MC ,

P-a.s. for a.e. t ∈ (0, T )
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for a suitable positive constant MC .
On S and PT we will need to play with two different sets of assumptions. We

introduce both of them here
(A4) S ∈ L1

P,S([0, T ];L∞(Ω; Σ+(H))) and PT ∈ L∞
S (Ω,FT ; Σ+(H));

(A5) S ∈ L2
P(Ω × [0, T ]; Σ+

2 (H)) and PT ∈ L2(Ω,FT ; Σ+
2 (H)).

We introduce, for later use, the Yosida approximants of the unbounded operator A,
letting

Ah = AJ(h,A), where J(h,A) = h(hI −A)−1, h : 1, 2, . . . .

We denote by MA a positive constant such that

sup
t∈[0,T ]

|etAh |L(H) ≤ MA ∀h ∈ N and sup
t∈[0,T ]

|etA|L(H) ≤ MA(2.3)

Remark 2.2. If we set βi(t) := (fi,W (t))Ξ, then {βi : i ∈ N} is a family of inde-
pendent standard (real valued) Brownian motions. Moreover, the term C(t)y(t)dW (t)
can be rewritten as

∑∞
i=1 Ci(t)y(t) dβi(t).

Remark 2.3. In section 9 we show that assumptions (A1)–(A5) are satisfied by
a general class of controlled stochastic delay equations. In section 10 we point out
that for stochastic controlled partial differential equations, assumptions (A1)–(A4) are
satisfied while (A5) typically fails. We also notice that when H is finite dimensional,
(A5) and (A4) reduce to the requirements S ∈ L2

P,S([0, T ];L∞(Ω; Σ+(H))) and PT ∈
L∞
S (Ω,FT ; Σ+(H)) which slightly generalize the assumptions in [19] and [12], [13],

[14], where S is uniformly bounded.
Remark 2.4. The fact that in the previous assumptions measurability and pre-

dictability has always been required with respect to the filtration {Ft : t ≥ 0} gen-
erated by the noise {Wt : t ≥ 0} is not restrictive. Such a condition can in fact be
easily weakened by the following standard procedure.

Let Ξ̂ ⊃ Ξ be a larger separable Hilbert space and let {Ŵt : t ≥ 0} be a cylindrical

Wiener process with values in Ξ̂. Moreover, let {f̂i : i ∈ N} an orthonormal basis

in Ξ̂ with {f̂i : i ∈ N} ⊃ {̇fi : i ∈ N}. Finally let Ĉi = Ci if fi ∈ Ξ, Ĉi = 0 if

fi /∈ Ξ and Ĉ =
∑∞

i=1 Ĉi(·, f̂i)Ξ̂. If now we replace Ξ by Ξ̂, W by Ŵ , and C by Ĉ,
(2.1) is unchanged while in all the assumptions filtration {Ft : t ≥ 0} can be replaced

by filtration {F̂t : t ≥ 0} generated by Ŵ . In addition, in order to allow F0 to be
nontrivial there are no difficulties in letting the noise W to be defined in [−ρ,+∞[,
for some ρ > 0, instead that in [0,+∞[.

3. The state equation. This section is devoted to the state equation (2.1). We
recall the well known notion of mild solution.

Definition 3.1. Given x ∈ H and u ∈ L2
P(Ω× [t, T ];U), a mild solution of (2.1)

is a process y ∈ L2
P(Ω × [t, T ];H) such that, almost surely in Ω × [t, T ],

y(s) = e(s−t)Ax+

∫ s

t

e(s−σ)A [A�(σ)y(σ)+B(σ)u(σ)] dσ+

∫ s

t

e(s−σ)AC(σ)y(σ) dW (σ).

The following existence and uniqueness result is now well known.
Theorem 3.2. Assume (A1)–(A3). Given any x ∈ H and u ∈ L2

P(Ω × [t, T ];U)
problem (2.1) has a unique mild solution y ∈ CP([t, T ];L2(Ω;H)). Moreover,

sup
s∈[t,T ]

E|y(s)|2 ≤ C2

[
|x|2 + E

∫ T

t

|u(s)|2 ds
]

(3.1)
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for a suitable constant C2 depending on T,MB ,MC MA�
, and MA.

Finally if p > 2 and

E
(∫ T

t

|u(s)|2 ds
) p

2

< ∞,

then we have that y ∈ Lp
P(Ω;C([t, T ];H)) and

E sup
s∈[t,T ]

|y(s)|p ≤ Cp

[
|x|p + E

(∫ T

t

|u(s)|2 ds
) p

2
]

(3.2)

for some positive constant Cp depending on p, T,MB ,MC , MA, and MA�
.

Proof. The argument is identical to the one included in [5, Theorem 7.4] and
[7, Proposition 3.2]. The only difference is that here the operators B and C are
stochastic processes. Anyway, thanks to their boundedness stated in Hypotheses 2.1,
one can proceed exactly as in the above mentioned papers.

To stress dependence on the initial data and on the control we will, when neces-
sary, denote the above solution by yt,x,u.

For all x ∈ H and u ∈ Lp
P(Ω;L2([t, T ];U)), p ≥ 2 we also introduce the following

family of approximating problems, h ∈ N:

{
dyh(s) = (Ahyh(s) + A�(s)yh(s) + B(s)u(s)) dt + C(s)yh(s) dW (s), s ∈ [t, T ],
y(t) = x.

(3.3)

It is well known (see [5]) that, under the same hypotheses of Theorem 3.2, problem
(3.3) has, for every h ∈ N, a unique classical solution yh ∈ Lp

P(Ω;C([t, T ];H)) that,

when necessary, we will denote by yt,x,uh .
The following stability result for the approximated problems holds.
Theorem 3.3. Assume that xh → x in H and uh → u in Lp

P(Ω;L2([t, T ];U)), as

h → ∞. If p = 2, yt,xh,uh

h → yt,x,u in CP([t, T ];L2(Ω;H)). If p > 2, yt,xh,uh

h → yt,x,u

in Lp
P(Ω;C([t, T ];H)).
Proof. The proof consists in a straightforward application of the parameter de-

pending contraction argument (see, for instance, [24, Theorem 10.1]). The case with
p = 2 is treated also in [22, Theorem 1.1]. For the case p > 2 it is enough to proceed
as in [7, Proposition 3.2].

4. Backward stochastic equations: Stability with respect to approxi-
mations. In this section we prove, for later use, a result on the stability of a generic
backward stochastic equation with value in an real and separable Hilbert space K
and Lipschitz nonlinearity. Beside the same hypotheses on the noise introduced in
the previous section, we are given

(i) a positive number T > 0;
(ii) an unbounded operator G : D(G) ⊂ K → K and a sequence of bounded

operators Gh : K → K;
(iii) a map ψ : [0, T ] × Ω ×K × L2(Ξ,K) → K;
(iv) a final data η ∈ L2(Ω,FT ,P;K).

We assume the following.
Hypothesis 4.1.

1. G generates a C0-semigroup {etG : t ≥ 0} in K.
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2. There exists a constant MG such that

sup
t∈[0,T ]

|etGh |L(H) ≤ MG ∀h ∈ N and sup
t∈[0,T ]

|etG|L(H) ≤ MG.(4.1)

3. supt∈[0,T ]

∣∣etGhx− etGx
∣∣→ 0 for all x ∈ K.

4. ψ is measurable from P⊗B(K)⊗B(L2(Ξ,K)) to B(K) and E
∫ T

0
|ψ(s, 0, 0)|2K

ds < +∞
5. There exists a constant Mψ such that, P almost surely for almost every t ∈

[0, T ], the following holds for all Y1, Y2 ∈ K, Z1, Z2 ∈ L2(Ξ,K):

|ψ(t, Y1, Z1) − ψ(t, Y2, Z2)|K ≤ Mψ

(
|Y1 − Y2|K + |Z1 − Z2|L2(Ξ,K)

)
.(4.2)

We consider the following backward stochastic equation:{
dY (s) = −GY (s) ds− ψ(s, Y (s), Z(s)) ds− Z(s) dW (s), s ∈ [0, T ],
Y (T ) = η

(4.3)

and the following sequence of approximating problems:

{
dYh(s) = −GhYh(s) ds− ψ(s, Yh(s), Zh(s)) ds− Zh(s) dW (s), s ∈ [0y, T ],
Yh(T ) = η.

(4.4)

Definition 4.2. A mild solution of (4.3) is a couple of predictable processes
(Y,Z) such that Y belongs to L2

P(Ω, C([0, T ];K)), Z belongs to L2
P(Ω×[0, T ];L2(Ξ;K)),

and they verify for all t ∈ [0, T ]

Y (t) =e(T−t)Gη +

∫ T

t

e(s−t)Gψ(s, Y (s), Z(s)) ds +

∫ T

t

e(s−t)GZ(s) dW (s) P-a.s.

(4.5)

An identical definition is given for a mild solution of (4.4).
Remark 4.3. Gh being bounded, it is immediate to check that the couple (Yh, Zh)

is a mild solution of (4.4) if and only if it is a classical solution of (4.4); that is, it
verifies, for all t ∈ [0, T ],

Yh(t) =ηh +

∫ T

t

(GhYh(s) + ψ(s, Yh(s), Zh(s))) ds +

∫ T

t

Zh(s) dW (s) P-a.s.

(4.6)

The following result will be used in several occasions in what follows. As far as
the existence and uniqueness part is concerned, is very similar to the one included in
[10] (except from the fact that we obtain a more regular solution). On the contrary
the part dealing with stability with respect to approximations is new.

Theorem 4.4. Under Hypothesis 4.1 problem (4.3) has a unique mild solution
(Y,Z). Moreover, for all h ∈ N, problem (4.4) has a unique classical (equivalently
mild) solution (Yh, Zh).

Finally

lim
h→∞

E
(

sup
t∈[0,T ]

|Yh(t) − Y (t)|2K
)

= 0, lim
h→∞

E

∫ T

0

|Zh(s) − Z(s)|2L2(Ξ;K)ds = 0.

(4.7)
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Proof. Part I. Existence and uniqueness for a simplified equation. We consider
the simplified equation

Y (t) = e(T−t)Gη +

∫ T

t

e(s−t)GF (s) ds +

∫ T

t

e(s−t)GZ(s) dW (s), t ∈ [0, T ],

(4.8)

with F ∈ L2
P(Ω×[0, T ];K). In [10, Proposition 2.1] it is shown that the above equation

admits a unique solution (Y,Z) ∈ L2
P(Ω× [0, T ];K)× L2

P(Ω× [0, T ];L2(Ξ;K)) given
explicitly by

Y (t) = e(T−t)G(EFtη) +

∫ T

t

e(s−t)G(EFtF (s)) ds,(4.9)

Z(t) = −e(T−t)GV (t) −
∫ T

t

e(s−t)GL(t, s) ds,(4.10)

where V and L verify

EFtη = η −
∫ T

t

V (σ) dW (σ), 0 ≤ t ≤ T,(4.11)

EFtF (s) = F (s) −
∫ s

t

L(σ, s) dW (σ), 0 ≤ t ≤ s ≤ T(4.12)

(existence and uniqueness of V and L are given by the Kunita–Watanabe martingale
representation result applied in the Hilbert space K; again see [10]).

We now estimate such a solution in a suitable norm. For every β > 0,

E sup
t∈[0,T ]

e2βt|Y (t)|2K ≤ 2M2
G

[
E sup
t∈[0,T ]

e2βt

(∫ T

t

EFt |F (σ)|K dσ

)2

+E sup
t∈[0,T ]

e2βt|EFtη|2K
]
.

Since

(∫ T

t

|F (σ)|K dσ

)2

≤
∫ T

t

e−2βs ds

∫ T

t

e2βs|F (s)|2K ds ≤ e−2βt

2β

∫ T

t

e2βs|F (s)|2K ds,

one gets that, thanks to Jensen and Doob inequalities,

E sup
t∈[0,T ]

e2βt

(∫ T

t

EFt |F (s)|K ds

)2

≤ E sup
t∈[0,T ]

(
EFt sup

t∈[0,T ]

eβt
∫ T

t

|F (s)|K ds

)2

≤ 4E sup
t∈[0,T ]

e2βt

(∫ T

t

|F (s)|K ds

)2

≤ 4

2β
E

∫ T

0

e2βs|F (σ)|2K ds.

Thus we have, using again Doob inequality,

E sup
t∈[0,T ]

e2βt|Y (t)|2K ≤ 4M2
G

β
E

∫ T

0

e2βs|F (σ)|2K ds + 8M2
Ge

2βTE|η|2K .(4.13)
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As far as Z is concerned we have

|Z(t)|2L2(Ξ;K) ≤ 2M2
G

[
|V (t)|2L2(Ξ;K) +

e−2βt

2β

∫ T

t

e2βs|L(t, s)|2L2(Ξ;K) ds

]
.

Therefore,

E

∫ T

0

e2βt|Z(t)|2L2(Ξ;K) dt ≤ 2M2
G

[
E

∫ T

0

e2βt|V (t)|2L2(Ξ;K) dt

+
1

2β
E

∫ T

0

∫ T

t

e2βs|L(t, s)|2L2(Ξ;K) ds dt

]
≤ 2M2

G

[
4e2βTE|η|2K

+
1

2β
E

∫ T

0

e2βs

∫ s

0

|L(t, s)|2L2(Ξ;K) dt ds

]
and we can conclude

E

∫ T

0

e2βt|Z(t)|2L2(Ξ;K) dt ≤ 2M2
G

[
4e2βTE|η|2K +

2

β

∫ T

0

e2βsE|F (s)|2K ds

]
.(4.14)

In an identical way we can prove that for all h ∈ N there exists a unique couple
of processes (Yh, Zh) that belongs to L2

P(Ω;C([0, T ];K)) × L2
P(Ω × [0, T ];L2(Ξ;K))

verifying, for all t ∈ [0, T ],

Yh(t) = e(T−t)Ghη +

∫ T

t

e(s−t)GhF (s) ds +

∫ T

t

e(s−t)GhZh(s) dW (s) P-a.s.

(4.15)

with F ∈ L2
P(Ω × [0, T ];K).

Moreover, Yh and Zh verify (4.13) and (4.14).
Part II. Stability with respect to approximations of the simplified equation. By

(4.10), we have, for a.e. t ∈ [0, T ],

Zh(t) − Z(t) = −e(T−t)GhV (t) + e(T−t)GV (t) −
∫ T

t

e(s−t)GhL(t, s) ds

+

∫ T

t

e(s−t)GL(t, s) ds P-a.s.(4.16)

with V ∈ L2
P(Ω × [0, T ];L2(Ξ;K)) and L ∈ L2

P(Ω × [0, T ] × [0, T ];L2(Ξ;K)).
By the dominated convergence theorem, we immediately have that

lim
h→+∞

E

∫ T

0

|Zh(t) − Z(t)|2L2(Ξ;K) dt = 0.(4.17)

Now we consider the term Yh − Y . We have

Yh(t) − Y (t)
[
e(T−t)Ghη − e(T−t)Gη

]
+ EFt

∫ T

t

[
e(s−t)GhF (s)−e(s−t)GF (s)

]
ds.

To estimate the first term of the right-hand side we can proceed as follows:

E sup
t∈[0,T ]

∣∣EFt [e(T−t)Ghη − e(T−t)Gη]
∣∣2
K

≤ E sup
t∈[0,T ]

(
EFt

∣∣e(T−t)Ghη − e(T−t)Gη
∣∣
K

)2
≤ E sup

t∈[0,T ]

(
EFt sup

t∈[0,T ]

∣∣e(T−t)Ghη−e(T−t)Gη
∣∣
K

)2

≤ 4E
(

sup
t∈[0,T ]

∣∣[e(T−t)Ghη−e(T−t)Gη
]∣∣

K

)2

≤ 4E
(

sup
t∈[0,T ]

∣∣[e(T−t)Ghη−e(T−t)Gη
]∣∣2

K

)
.
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Similarly, for the second,

E sup
t∈[0,T ]

∣∣∣∣∣EFt

[∫ T

t

e(s−t)GhF (s) − e(s−t)GF (s) ds

]∣∣∣∣∣
2

K

≤ E sup
t∈[0,T ]

(
EFt

∫ T

t

|e(s−t)GhF (s) − e(s−t)GF (s)|K ds

)2

≤ E sup
t∈[0,T ]

(
EFt

∫ T

0

sup
σ∈[0,T ]

|eσGhF (s) − eσGF (s)|K ds

)2

≤ 4E

(∫ T

0

sup
σ∈[0,T ]

|eσGhF (s) − eσGF (s)|K ds

)2

≤ 4TE

∫ T

0

sup
σ∈[0,T ]

|eσGhF (s) − eσGF (s)|2K ds.

Therefore, we get that

E sup
t∈[0,T ]

|Yh(t) − Y (t)|2K ≤ 8E

(
sup

t∈[0,T ]

|e(T−t)Ghη − e(T−t)Gη|2K
)

+ 8T E

∫ T

0

sup
σ∈[0,T ]

|eσGhF (s) − eσGF (s)|2K ds.

By point (iii) in Hypothesis 4.1 and the dominated convergence theorem we can
conclude

E sup
t∈[0,T ]

|Yh(t) − Y (t)|2K → 0.(4.18)

Part III. Conclusion. We let, for β > 0, K(β) = L2
P(Ω, C([0, T ];K)) × L2

P(Ω ×
[0, T ];L2(Ξ;K)) endowed with the norm (equivalent to the natural one)

|(Y,Z)|2
K(β) = E sup

t∈[0,T ]

e2βt|Y (t)|2 + E

∫ T

0

e2βs|Z(s)|2ds.

Moreover, we define a map Γ : K(β) → K(β) and a sequence of maps Γh :

K(β) → K(β), h ∈ N, letting Γ(Ŷ , Ẑ) = (Y,Z) (respectively, Γh(Ŷ , Ẑ) = (Yh, Zh)),
where (Y,Z) (respectively, (Yh, Zh)) is the solution of (4.8) (respectively, (4.15)) with

F (s) = ψ(s, Ŷ (s), Ẑ(s)).
We notice that F belongs to L2

P(Ω×[0, T ];K) thus the above definition is justified
by part I of the present proof.

Moreover, (4.13) and (4.14) immediately yield the following inequality, holding

for all (Ŷ , Ẑ), (Ỹ , Z̃) in K(β),

|Γ(Ŷ , Ẑ) − Γ(Ỹ , Z̃)|2
K(β) ≤

4M2
GM

2
ψ

β
|(Ŷ , Ẑ) − (Ỹ , Z̃)|2

K(β),

and an identical formula holds (with the same constant) for Γh.
So we can conclude that, for β large enough, Γ and Γh are contractions in K(β).

Clearly the unique fixed point of Γ (respectively, Γh) is the unique mild solution of
(4.3) (respectively, (4.4)).
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Finally by the parameter depending contraction principle (see [24, Theorem 10.1]),

relation (4.7) follows immediately if we prove that for all fixed (Ŷ , Ẑ) ∈ L2
P

(Ω, C([0, T ];K)) × L2
P(Ω × [0, T ];L2(Ξ;K)), letting (Y,Z) = Γ(Ŷ , Ẑ) and (Yh, Zh) =

Γh(Ŷ , Ẑ), then

E sup
t∈[0,T ]

|Y (s) − Yh(s)|2 + E

∫ T

0

|Z(s) − Zh(s)|2ds → 0 as h → ∞.

The above relation is an immediate consequence of (4.18) and (4.17), letting F (s) =

ψ(s, Ŷ (s), Ẑ(s)) in part II of the present proof.

Remark 4.5. As a byproduct of the previous argument we have the following
estimate for the solution (Y,Z) of (4.3):

|(Y,Z)|2K(β) ≤ Ĉ

[
e2βTE|PT |2Σ2(H) +

1

β

∫ T

0

e2βsE|ψ(s, 0, 0)|2Σ2(H)ds

]
,(4.19)

holding for β large enough, depending on T , MG, Mψ, and for a suitable constant Ĉ,
depending on T , MG.

To prove it just notice that, for β large enough, Γ is a 1/2 contraction in K(β).
Since (Y,Z) = limn→∞ Γn(0, 0) we have |(Y,Z)|K(β) ≤ 2|Γ(0, 0)|K(β) and the claim
follows by (4.14) and (4.13).

An identical estimate holds (with the same constant) for the solution (Yh, Zh) of
the approximating equation (4.4).

Remark 4.6. Notice that although the semigroup generated by G is not, in gen-
eral, a contraction semigroup and ψ(·, 0, 0) is only in L2

P(Ω× [0, T ];K), Y nevertheless
has continuous trajectories. This is not true for standard (forward) stochastic differ-
ential equations (that is when the initial datum is specified rather the final one). For
instance, in Theorem 3.2, if u is in L2

P(Ω × [0, T ];K), then y is only mean-square
continuous.

The reason for such extra regularity of Y can be found in relation (4.9), at least for
the simplified equation. Indeed in (4.9) it is clear that Y can be represented only by
conditional expectations and deterministic convolutions. In particular, no stochastic
convolution is involved in (4.9).

5. The Riccati equation in the Hilbert–Schmidt case. The natural space
in which the deterministic Riccati equation is studied is the space Σ(H) that is not an
Hilbert space. Thus (see the introduction) we initially consider the Riccati equation
in the Hilbert space Σ2(H) of symmetric and Hilbert–Schmidt linear operators in H.

5.1. The Lyapunov equation. We start from the linear part of the Riccati
equation. Namely we consider the Lyapunov equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−dP (t) = (A∗P (t) + P (t)A + A∗

� (t)P (t) + P (t)A�(t) + L(t)) dt + Q(t) dW (t)

+Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)] dt, t ∈ [0, T ],

P (T ) = PT ,

(5.1)
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where, defining the notation with respect to the basis {fi : i ∈ N} of Ξ, for all
P ∈ Σ2(H), and Q ∈ L2(Ξ,Σ2(H)),

Tr[C∗(t)PC(t) + C∗(t)Q + QC(t)] =

∞∑
i=1

[C∗
i (t)PCi(t) + C∗

i (t)(Qfi) + (Qfi)Ci(t)].

In order to give a precise definition of the mild solution of (5.1) we introduce the
family {etA : t ≥ 0} of linear operators Σ(H) → Σ(H), letting

etAX := etA
∗
XetA, t ≥ 0, X∈Σ(H),

We notice that the above family is a semigroup of bounded operators in the sense
that

etAesAX = e(t+s)AX, X ∈ Σ(H), t, s ≥ 0,

but is not necessarily strongly continuous, in Σ(H); see also [1, Chapter 1]. On
the other hand, if we restrict it to Σ2(H), then it becomes a strongly continuous
semigroup. Namely we have the following result (also concerning approximations)
that will considerably simplify our work.

Lemma 5.1. Under hypothesis (A1) the family of linear operators {etA : t ≥ 0}
is a strongly continuous semigroup of bounded operators in Σ2(H).

Moreover, for all X ∈ L2(H),

lim
h→∞

sup
t∈[0,T ]

|etA∗
hXetAh − etA

∗
XetA|L2(H) = 0.(5.2)

Proof. We prove only continuity for t = 0. The proof of continuity in a generic
t follows by semigroup law. Moreover, (5.2) is proved by an identical argument. We
fix X ∈ L2(H) and a basis {ei : i ∈ N} in H. Clearly

∞∑
i=1

|etA∗
XetAei −Xei|2H ≤ 2

∞∑
i=1

|etA∗
XetAei − etA

∗
Xei|2H + 2

∞∑
i=1

|etA∗
Xei −Xei|2H .

We have to prove that both the above terms converge to 0 as t ↓ 0. As far as the
second is concerned, since

|etA∗
Xei −Xei|2H ≤ 2(M2

A + 1)|Xei|2H and

∞∑
i=1

|Xei|2H = |X|2L2(H) < +∞,

the claim follows by the dominated convergence theorem. As far as the first is con-
cerned, we have

∞∑
i=1

|etA∗
XetAei−etA

∗
Xei|2H ≤ M2

A

∞∑
i=1

|XetAei−Xei|2H = M2
A

∞∑
i=1

|X∗etA
∗
ei−X∗ei|2H ,

and the claim follows again by the dominated convergence theorem.
Let us denote by A : D(A) ⊂ Σ2(H) → Σ2(H) the infinitesimal generator of the

semigroup {etA : t ≥ 0} in Σ2(H). Notice that

(AXx, y)H = (Xx,Ay)H + (XAx, y)H , X ∈ D(A), x, y ∈ D(A).
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We now assume that PT ∈ L2(Ω,FT ; Σ2(H)) and L ∈ L2
P(Ω× [0, T ]; Σ2(H)) and

give the following definition of a mild solution (P,Q) of (5.1) with values in Hilbert–
Schmidt case. We need also the following approximations to A.

Definition 5.2. We define a sequence of bounded operators An : Σ2(H) →
Σ2(H) as follows:

AhX=̇A∗
hX + XAh, X ∈ Σ2(H), h = 1, 2, . . .

Definition 5.3. A mild solution of problem (5.1) is a pair of processes

(P,Q) ∈ L2
P(Ω, C([0, T ]; Σ2(H))) × L2

P(Ω × [0, T ];L2(Ξ; Σ2(H)))

that verifies, for all t ∈ [0, T ],

P (t) =e(T−t)A∗
PT e

(T−t)A +

∫ T

t

e(s−t)A∗ [
L(s) + A∗

� (s)P (s) + P (s)A�(s)
]
e(s−t)A ds

+

∫ T

t

e(s−t)A∗
Tr[C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)]e(s−t)A ds +(5.3)

+

∫ T

t

e(s−t)A∗
Q(s)e(s−t)A dW (s) P-a.s.

We also introduce the regularized versions of (5.1) corresponding to the ones we
have introduced for the state equation. Namely we consider

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−dPh(t) =

(
A∗

hPh(t) + Ph(t)Ah + A∗
� (t)Ph(t) + Ph(t)A�(t) + L(t)

)
dt

+Qh(t) dW (t) + Tr[C∗(t)Ph(t)C(t) + C∗(t)Qh(t) + Qh(t)C(t)] dt, t ∈ [0, T ],

P (T ) = PT ,

(5.4)

where Ah are the Yosida approximants of A. The definition of mild solution for the
above equation is obtained from the one corresponding to (5.1) just by replacing A
by Ah. Since Ah is bounded, mild solutions are classical solutions, i.e., they satisfy
P-a.s. for all t ∈ [0, T ]:

Ph(t) = PT +

∫ T

t

(
A∗

hPh(s) + Ph(s)Ah + A∗
� (s)Ph(s) + Ph(s)A�(s) + L(s)

)
ds

+

∫ T

t

Tr[C∗(s)Ph(s)C(s) + C∗(s)Qh(s) + Qh(s)C(s)] ds +

∫ T

t

Qh(s) dW (s).

Theorem 5.4. Assume hypotheses (A1)–(A3). Moreover, assume that PT ∈ L2
P

(Ω,FT ; Σ2(H)) and L ∈ L2
P(Ω × [0, T ]; Σ2(H)).

Then problem (5.1) has a unique mild solution (P,Q) ∈ L2
P(Ω, C([0, T ]; Σ2(H)))×

L2
P(Ω × [0, T ];L2(Ξ; Σ2(H))). Moreover, for all h ∈ N, problem (5.4) has a unique

classical solution (Ph, Qh) ∈ L2
P(Ω, C([0, T ]; Σ2(H)))×L2

P(Ω× [0, T ];L2(Ξ; Σ2(H))).
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Finally the following stability result holds:

lim
h→∞

E

(
sup

t∈[0,T ]

|Ph(t) − P (t)|2Σ2(H)

)
= 0, lim

h→∞
E

∫ T

0

|Qh(s)−Q(s)|2L2(Ξ;Σ2(H))ds = 0.

(5.5)

Proof. The claim is a special case of Theorem 4.4, letting K = Σ2(H), G = A,
Gh = Ah, η = PT , and defining, for all P ∈ Σ2(H), Q ∈ L2(Ξ,Σ2(H)),

ψ(s, P,Q) = Tr[C∗(s)PC(s) + C∗(s)Q + QC(s)] + L(s) + A∗
� (s)P + PA�(s).

We have just to check that in this specific situation Hypothesis 4.1 holds, but this
is a direct consequence of hypotheses (A1)–(A3) and of the fact that L ∈ L2

P(Ω ×
[0, T ]; Σ2(H)).

Remark 5.5. Remark 4.5 gives, in the present case, the following estimate for the
solution (P,Q) of (5.1):

|(P,Q)|2K ≤ Ĉ

[
e2βTE|PT |2Σ2(H) +

1

β

∫ T

0

e2βsE|L(s)|2Σ2(H)ds

]
(5.6)

holding for β large enough, depending on T , MA, MA�
, MC , and for a suitable constant

Ĉ, depending on T , MA, MA�
.

An identical estimate holds (with the same constant) for the solution (Ph, Qh) of
the approximating equation (5.4).

The following result is a key step towards the fundamental relation (see Proposi-
tion 5.11). Moreover, it gives useful estimates on the solution to (5.1).

Theorem 5.6. Besides the hypotheses of Theorem 5.4, assume that PT belongs
to L∞

S (Ω,FT ;L(H)) and L belongs to L1
P,S([0, T ];L∞(Ω;L(H))). Let (P,Q) be the

unique mild solution to (5.1) and let yt,x,u be the mild solution to (2.1). Then for all
t ∈ [0, T ], x ∈ H, u ∈ L2

P(Ω × [0, T ];U) it holds, P-a.s., that

(P (t)x, x) = EFt(PT y
t,x,u(T ), yt,x,u(T )) + EFt

∫ T

t

[(L(s)yt,x,u(s), yt,x,u(s))

−2(P (s)B(s)u(s), yt,x,u(s))]ds.(5.7)

Moreover, for all t ∈ [0, T ],

|P (t)|L(H) ≤ C2

[
|PT |L∞

S
(Ω;L(H)) +

∫ T

t

|L(s)|L∞
S

(Ω;L(H)) ds

]
P-a.s.,(5.8)

where C2 is the positive constant depending only on T,MB ,MC ,MA,MA�
defined in

(3.1).
Similarly if, for all h ∈ N, (Ph, Qh) is the unique solution of problem (5.4) and

for all t ∈ [0, T ],

|Ph(t)|L(H) ≤ C2

[
|PT |L∞

S
(Ω;L(H)) +

∫ T

t

|L(s)|L∞
S

(Ω;L(H)) ds

]
P-a.s.

Proof. The proof will be concluded in three steps. In the first we will prove (5.7)
for u ∈ L6

P(Ω× [0, T ];U), then we will prove estimate (5.8), and finally we will extend
(5.7) to all the admissible controls.
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First step. The following argument is simple but has some delicate points; thus we
expose it here in all details. Let yh = yt,x,uh be the classical solution to (3.3). By Theo-
rem 3.3 we know that yh ∈ L6

P(Ω, C([t, T ];H)) and yh → yt,x,u in L6
P(Ω, C([t, T ];H))

as h → ∞.
Let Ψ ∈ C2(H) with Ψ(y) = 1 for |y| ≤ 1, Ψ(y) = 0 for |y| ≥ 2 and Ψ(y) ∈

[0, 1]∀y ∈ H. Differentiating by the Itô rule we obtain (we consider Ψ′ ∈ H, Ψ′′ ∈
L(H))

ds[Ψ (yh(s)/N) (Ph(s)yh(s), yh(s))] = N−1FN (s)ds + GN (s)dWs

−Ψ(yh(s)/N)[(L(s)yh(s), yh(s))H−2(Ph(s)B(s)u(s), yh(s))H ]ds,

(5.9)

where

FN (s) =
(
Ψ′(N−1yh(s)), [Ahyh(s)+A�(s)yh(s)

+B(s)u(s)]
)
H

(Ph(s)yh(s), yh(s))H

+2

∞∑
i=1

(
Ψ′(N−1yh(s)), Ci(s)yh(s)

)
H

(Ph(s)Ci(s)yh(s), yh(s))H

+
1

2N

∞∑
i=1

(
Ψ′′(N−1yh(s))Ci(s)yh(s), Ci(s)yh(s)

)
H

(Phyh(s), yh(s))H

+

∞∑
i=1

(
Ψ′(N−1yh(s)), Ci(s)yh(s)

)
H

(Qi
hyh(s), yh(s))H ,

GN (s)fi = 2Ψ(N−1yh(s))(Ph(s)Ci(s)yh(s), yh(s))H

−Ψ(N−1yh(s))(Qi
h(s)yh(s), yh(s))H

+
1

N
(Ph(s)yh(s), yh(s))H(Ψ′(N−1yh(s)), Ci(s)yh(s))H ,

where Qi
h = Qhfi, with {fi}i∈N an orthonormal basis of Ξ.

As it can be easily verified E
∫ T

t
|FN (s)|ds ≤ const. for all N ∈ N. Moreover,

since Ψ(N−1y) = 0 and Ψ′(N−1y) = 0 if |y| > 2N we have, for all N ∈ N,

∞∑
i=1

E

∫ T

t

|GN (s)fi|2Hds ≤ c2N
4

{
M2

CE

∫ T

t

sup
s∈[t,T ]

‖Ph(s)‖2
L(H) ds

+ E

∫ T

t

‖Qh(s)‖2
Σ2(H) ds

}
< +∞,

where c2 is a positive universal constant. Finally (Lyh, yh)H and (PhBu, yh) belong
to L1

P(Ω × [t, T ],R) and Ψ(yh(s)/N) converges to 1 P-a.s. for all s.
Thus, first integrating in [t, T ] and then computing conditional expectation with

respect to Ft (EFt) and finally letting N → 0, relation (5.9) becomes

(Ph(t)x, x)H = EFt(PT yh(T ), yh(T ))H + EFt

∫ T

t

[
(L(s)yh(s), yh(s))H

−2(Ph(s)B(s)u(s), yh(s))H
]
ds

and the claim follows, letting h → +∞ thanks to (3.3) and (5.4).
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Second step. The following L∞ bound for the L(H) norm of the mild solution to
(5.1) will be important in the approach to the (nonlinear) Riccati equation. In the
finite dimensional case a similar result is proved by a slightly different argument in
[19]. Here is our proof. From the first step we know that for all x ∈ H, P-a.s.

(P (t)x, x) = EFt(PT y
t,x,0(T ), yt,x,0(T )) − EFt

∫ T

t

(L(s)yt,x,0(s), yt,x,0(s))ds;(5.10)

consequently

|(P (t)x, x)| ≤ |PT |L∞
S

(Ω;L(H))E
Ft |yt,x,0(T )|2 +

∫ T

t

|L(s)|L∞
S

(Ω;L(H))E
Ft |yt,x,0(s)|2ds,

and by estimate (3.1) for u ≡ 0, with E replaced by EFt ,

|(P (t)x, x)| ≤ C2|PT |L∞
S

(Ω;L(H))+C2

∫ T

t

|L(s)|L∞
S

(Ω;L(H))ds ∀x∈H, |x| ≤ 1, P−a.s.,

and the claim holds, H being separable. The same estimate holds true also for every
|(Ph(t)x, x)|, since the constant C2 does not depend on h.

Third step. For a general u ∈ L2
P(Ω×[0, T ];U) we choose a sequence um → u such

that um is bounded and um → u in L2
P(Ω×[0, T ];U). By Theorem 3.3, yt,x,um → yt,x,u

in CP([t, T ];L2(Ω;H)) and, by the second step, P ∈ L∞
P,S(Ω×[0, T ];L(H)). Moreover,∣∣∣∣EFt

∫ T

t

(L(s)yt,x,um(s), yt,x,um(s))H − (L(s)yt,x,u(s), yt,x,u(s))H ds

∣∣∣∣
≤
[(

sup
s∈[t,T ]

EFt |yt,x,um(s)|2
)1/2

+
(

sup
s∈[t,T ]

EFt |yt,x,u(s)|2
)1/2]

×
(

sup
s∈[t,T ]

EFt |yt,x,um(s)−yt,x,u(s)|2
)1/2

∫ T

t

|L(s)|L∞
S

(Ω,H) ds.

Thus we can pass relation (5.7) to the limit as m → ∞ obtaining the claim.

5.2. Existence of a unique solution for the Riccati equation and the
synthesis of the optimal control. In this section we prove the existence of a
unique mild solution for the Riccati equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−dP (t) = (A∗P (t) + P (t)A + Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)]) dt

−(P (t)B(t)B∗(t)P (t)−A∗
� (t)P (t)−P (t)A�(t)−S(t)) dt+Q(t) dW (t), t ∈ [0, T ],

P (T ) = PT

(5.11)

under assumptions (A1)–(A5).
The presence of a quadratic nonlinear term imposes the following approach (clas-

sical when dealing with the Riccati equation; see [22]) in solving the problem: first we
will find a local solution and then we will prove some a priori estimate for the solution
to guarantee the existence of a global solution. The method we use to prove the a
priori bound is based on the so called fundamental relation (see Proposition 5.11) and
uses, in an essential way, the control-theoretic interpretation of the Riccati equation.
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We start extending the notion of mild solution given in section 5.1.
Definition 5.7. Fix T0 ∈ [0, T ]. A mild solution for problem (5.11), considered

in [T0, T ] is a pair (P,Q) with

P ∈ L2
P(Ω, C([T0, T ]; Σ2(H))) ∩ L∞

P,S(Ω;C([T0, T ]; Σ+(H))),

Q ∈ L2
P(Ω × (T0, T );L2(Ξ; Σ2(H)))

such that for all t ∈ [T0, T ]

(5.12)

P (t) =

∫ T

t

e(s−t)A∗
Tr[C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)]e(s−t)A ds

+e(T−t)A∗
PT e

(T−t)A +

∫ T

t

e(s−t)A∗
[S(s) + A∗

� (s)P (s) + P (s)A�(s)]e
(s−t)A ds

+

∫ T

t

e(s−t)A∗
Q(s)e(s−t)AdW (s)−

∫ T

t

e(s−t)A∗
P (s)B(s)B∗(s)P (s)e(s−t)A ds P-a.s.

Proposition 5.8 (local existence). Under Hypotheses (A1)–(A5) there exists a
δ ∈]0, T ] such that problem (5.11) has a unique mild solution in the interval [T −δ, T ].

Proof. To simplify the notation we will set

|PT |L∞
S

(Ω;L(H)) = MP , |S|L1
P,S

([0,T ];L∞(Ω;L(H))) = MS .

We choose r > C2(MP + MS) and δ such that C2[MP + r2δM2
B + MS ] ≤ r.

We define

B(r) =
{
P ∈ L2(Ω;C([T − δ, T ]; Σ2(H))) : sup

t∈[T−δ,T ]

|P (t, ω)|L(H) ≤ r P-a.e.
}

endowed with the norm

|P |2β = E sup
t∈[T−δ,T ]

e2βt|P (t)|2Σ2(H).

On B(r) we construct the map Λ : B(r) → B(r), letting Λ(K) = P , where (P,Q) is
the unique solution to (5.1) (in [T − δ, T ]) with L = −KBB∗K; that is,

P (t) =

∫ T

t

e(s−t)A∗
Tr[C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)]e(s−t)A ds

+

∫ T

t

e(s−t)A∗
S(s)e(s−t)A ds + e(T−t)A∗

PT e
(T−t)A

+

∫ T

t

e(s−t)A∗
Q(s)e(s−t)A dW (s)

−
∫ T

t

e(s−t)A∗ [
A∗

� (s)P (s)+P (s)A�(s)−K(s)B(s)B∗(s)K(s)
]
e(s−t)A ds.

We claim that the map Λ is a contraction in B(r).
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First of all we check that it maps B(r) into itself. By Theorem 5.4 (applied in
[T − δ, T ]) we know that Λ(K) ∈ L2

P(Ω × [T − δ, T ]; Σ2(H)). So it is enough to show
that for all t ∈ [T − δ, T ] it holds |Λ(K)(t)|L(H) ≤ r P-a.s. Thanks to (5.8) we have
that P-a.s.

|Λ(K)(t)|L(H) ≤ C2

[
|PT |L∞

S
(Ω,L(H)) +

∫ T

T−δ

(|K(s)B(s)B∗(s)K(s)|L∞
S

(Ω,L(H))

+|S(s)|L∞
S

(Ω,L(H))) ds

]
≤ C2[MP + r2δM2

B + MS ] ≤ r.

Moreover, by (4.19) for all K1 and K2 in B(r) (since (4.19) is stated in the whole
[0, T ] we should, to be precise, extend K1(s) = K2(s) = 0 for s < T − δ)

|Λ(K2) − Λ(K1)|2β ≤ Ĉ

β

∫ T

T−δ

e2βsE|K2BB∗K2 −K1BB∗K1|2Σ2(H)ds.

Since |Ki|Σ2(H) ≤ r, i = 1, 2, P-a.s. for all t ∈ [T − δ, T ] the above relation gives

|Λ(K2) − Λ(K1)|2β ≤ Ĉ

β
r2M4

B

∫ T

T−δ

e2βsE|K2 −K1|2Σ2(H)ds.

Therefore, if β is large enough, Λ is a contraction in B(r). If P is its unique fixed
point, the mild solution (P,Q) of (5.1) with L = −PBB∗P is the unique mild solution
of (5.11).

Clearly local uniqueness of the solution immediately implies global uniqueness.
Corollary 5.9 (global uniqueness). Let (Pi, Qi), i = 1, 2, be two mild solutions

of the Riccati equation (5.11) in the interval [T0, T ] for some T0 ∈ [0, T ). Then P1(t) =
P2(t), P-a.s. for all t ∈ [T0, T ] and Q1(t) = Q2(t), P-a.s. for almost all t ∈ [T0, T ].

Remark 5.10. The length δ of the interval on which the mild solution of the Ric-
cati equation exists depends only on T , MA, MA�

, MB , MC , |S|L1
P,S

([0,T ];L∞(Ω;L(H))

and |PT |L∞
S

(Ω;L(H)). Thus to extend the solution to the whole [0, T ] it is sufficient
to establish an a priori bound for the L∞(Ω;L(H)) norm of the P part of any local
solution, independently on the length of the interval in which it is defined.

This will be done using the following consequence of Theorem 5.6. The next
relation also has an obvious control-theoretic interpretation and will be essential in
performing the synthesis of the optimal control.

Proposition 5.11 (fundamental relation). Assume (A1)–(A5) and let (P,Q)
be the mild solution of (5.11) in an interval [T0, T ]. Then, for all t ≥ T0, x ∈ H
u ∈ L2

P(Ω × [t, T ];U) it holds

(P (t)x, x)H = J(t, x, u) − EFt

∫ T

t

|u(s) + B∗P (s)yt,x,u(s)|2H ds.(5.13)

Proof. We start by noticing that, by definition, (P,Q) is a mild solution of the
Lyapunov equation (5.1) with L = −PBB∗P + S. Thus by (5.7)

(P (t)x, x) = EFt(PT y
t,x,u(T ), yt,x,u(T )) + EFt

∫ T

t

|
√
S(s)yt,x,u(s)|2Hds

−EFt

∫ T

t

[
(yt,x,u(s), [P (s)B(s)B∗(s)P (s) + S(s)]yt,x,u(s))H

+ 2(P (s)B(s)u(s), yt,x,u(s))H
]
ds.
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Then the claim follows just adding and subtracting EFt
∫ T

t
|u(s)|2Uds.

Proposition 5.12 (positivity and a priori estimate). Let (P,Q) be the mild
solution to (5.11) in [T0, T ]; then

1. for every t ∈ [T0, T ] and x ∈ H, (P (t)x, x)H ≥ 0 P-a.s.;
2. for every t ∈ [T0, T ], |P (t)|L(H) ≤ C2[MP + MS ] P-a.s,

where C2 is the constant defined in Theorem 3.2.
Proof. If we apply (5.13) to u ≡ 0, we obtain for all x ∈ H with |x|H ≤ 1 and for

all t ∈ [T0, T ]

(P (t)x, x)H = EFt(PT y
t,x,0(T ), yt,x,0(T ))H+EFt

∫ T

t

|
√
S(s)yt,x,0(s)|2H ds

≤ |PT |L∞
S

(Ω,L(H))E
Ft |yt,x,0(T )|2H +

∫ T

t

|S(s)|L∞
S

(Ω,L(H))E
Ft |yt,x,0(s)|2H ds

and by (3.1)

(P (t)x, x)H ≤ C2[|PT |L∞
S

(Ω;L(H)) + |S|L1
P,S

([0,T ];L∞(Ω;L(H)))] P-a.s. ∀x : |x|H ≤ 1.
(5.14)

Then consider the following closed loop equation, starting at a certain instant
t ≥ T0 with an arbitrary initial data x ∈ H:{

dy(r) = [Ay(r) + A�(r)y(r) −B(r)B∗(r)P (r)y(r)] dr + C(r)y(r) dW (r),
y(t) = x.

(5.15)

Notice that if we replace A� by A� − BB∗P , then assumptions of Theorem 3.2 still
hold. Thus there exists a unique solution y ∈ Lp

P(Ω, C([t, T ];H)) for every p ≥ 2.
Applying then the fundamental relation (5.13) to u = −B∗Py and consequently to
yt,x,ū = y we get

(P (t)x, x)H = EFt(PT y(T ), y(T ))H + EFt

∫ T

t

[|
√
S(r)y(r)|2H + |B∗(r)P (r)y(r)|2H ] dr;

(5.16)

thus (P (t)x, x)H ≥ 0, P-a.s. for all x ∈ H, and this together with (5.14) gives the
claim.

We summarize the content of the section in the following result.
Theorem 5.13. Assume (A1)–(A5). Problem (5.11) has a unique mild solution

(P,Q) with the following regularity: P ∈ L2
P(Ω;C([0, T ]; Σ+

2 (H)))∩L∞
P,S(Ω;C([0, T ];

Σ+(H))) and Q ∈ L2
P(Ω × [0, T ];L2(Ξ; Σ2(H))).

Proof. The a priori estimate in Proposition 5.12 allows us to apply the local
existence result in Proposition 5.8 recursively in time intervals of fixed length (see also
Remark 5.10) to obtain a global solution of (5.11). Indeed, let M̃P = C2(MP +MS);
then it is enough to choose r̃ such that r̃ > C2(M̃P + MS) and δ̃ such that

C2[M̃P + r̃2δ̃M2
B + MS ] ≤ r̃.

Then we can iterate the procedure in [T − nδ̃, T − (n − 1)δ̃] for a finite number of
n ≥ 1 until we cover the whole interval [0, T ].

Now we are ready to solve the finite horizon problem in a standard way.
Theorem 5.14. Fix T > 0 and x ∈ H. Then we have the following:
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1. There exists a unique optimal control. That is a unique control ū ∈ L2
P(Ω ×

[0, T ];U) such that

J(0, x, ū) = inf
u∈L2

P(Ω×[0,T ];U)
J(0, x, u).

2. If ȳ is the mild solution of the state equation corresponding to ū (that is the
optimal state), then ȳ satisfies the closed loop equation

{
dsȳ(s) = [Aȳ(s) + A�(s)ȳ(s) −B(s)B(s)∗P (s)ȳ(s)] ds + C(s)ȳ(s) dW (s),
ȳ(0) = x.

(5.17)

3. The following feedback law holds P-a.s. for almost every s:

ū(s) = −B∗(s)P (s)ȳ(s).(5.18)

4. The optimal cost is given by EJ(0, x, ū) = E(P (0)x, x)H for all x ∈ H.
Proof. Let (P,Q) be the unique mild solution to Riccati equation (5.11). Relation

(5.13) becomes

J(0, x, u) = (P (0)x, x)H + E

∫ T

0

|u(s) + B∗P (s)yt,x,u(s)|2 ds.

Thus J(0, x, u) ≥ (P (0)x, x)H for all u ∈ L2
P(Ω × [0, T ];U) and the equality holds if

and only if (5.18) holds, that is, if and only if y solves (5.17) and u = ū.

6. The general case. In order to get rid of assumption (A5) we introduce the
following new notion of solution.

Definition 6.1. A process P ∈ L∞
P,S(Ω× [0, T ]; Σ+(H)) is a generalized solution

if there exists a sequence (SN , PN , QN ) where
(i) SN ∈ L1

P,S([0, T ];L∞(Ω; Σ+(H))) ∩ L2
P(Ω× [0, T ]; Σ2(H)) and there exists a

positive function c∈L1([0, T ]) such that |SN (t)|L(H) ≤ c(t), for all N ∈ N,
P-a.s. for a.e. t ∈ [0, T ];

(ii) the pair (PN , QN ) is a mild solution to the Riccati equation (5.11) in the
space of Hilbert–Schmidt operators, with forcing term SN and final data PN

T =
PN (T ). Namely (PN , QN ) is the unique mild solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−dPN (t) = (A∗PN (t) + PN (t)A+ Tr[C∗(t)PN (t)C(t) +C∗(t)QN (t)

+QN (t)C(t)]) dt+ (A∗
� (t)P

N (t) +PN (t)A�(t)

−PN (t)B(t)B∗(t)PN (t)+SN (t)) dt+QN (t) dW (t), t ∈ [0, T ],

PN (T ) = PN
T

such that
(iii) for all x ∈ H,

SN (t, ω)x → S(t, ω)x in H P a.s. for a.e. t ∈ [0, T ];

(iv) for every t ∈ [0, T ] and for all x ∈ H,

PN (t, ω)x → P (t, ω)x in H P a.s.
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Remark 6.2. Although in the definition the value of P (t) seem determined for
a.e. t, point (iv) in the definition implies that there exists a version such that for all
t ∈ [0, T ] and for all x ∈ H the value of P (t)x is determined P-a.s. Actually we will
show extra regularity property for the generalized solution if evaluated at a vector
x ∈ H.

Remark 6.3. In the previous definition only the process P in the Riccati equation
is characterized. On one hand this is natural for control theory since Q is not involved
in the expression for the optimal cost or in the expression for the optimal feedback law
(see Theorem 6.6). On the other hand it is a general feature of backward stochastic
differential equations that the martingale representation term is only an auxiliary
variable that can be determined computing the joint quadratic variation between the
other unknown process and the noise; see [18]. We start by showing some regularity
properties of the generalized solutions.

Lemma 6.4. Every generalized solution fulfills the fundamental relation, i.e., for
all t ∈ [0, T ], for all x ∈ H, and for all u ∈ L2

P(Ω × [0, T ];U),

(P (t)x, x)H = J(t, x, u) − EFt

∫ T

t

|u(s) + B∗(s)P (s)y(s)|2 ds P- a.s.(6.1)

Proof. At each fixed N the pair (PN , QN ) is the mild solution of the Riccati
equation; therefore, by Proposition 5.11, we have that for all t ∈ [0, T ] and x ∈ H:

(PN (t)x, x)H = EFt(PN
T y(T ), y(T ))H + EFt

∫ T

t

[|
√
SN (s)y(s)|2 + |u(s)|2] ds

− EFt

∫ T

t

|u(s) + B∗(s)PN (s)y(s)|2 ds P-a.s.

Now, we have to pass to the limit as N → ∞ in the identity. We notice that if
we show that the right-hand side converges in mean to

EFt(PT y(T ), y(T ))H + EFt

∫ T

t

[|
√
S(s)y(s)|2 + |u(s)|2] ds− EFt

∫ T

t

|u(s)

+B∗(s)P (s)y(s)|2 ds,

then the proof is completed just by choosing a subsequence on which convergence
occurs P a.s.

Coming now to the proof of convergence, considering for instance the second term,
by Jensen inequality it is enough to show that

lim
N→∞

E

∣∣∣∣ ∫ T

t

((S − SN )(s)y(s), y(s))Hds

∣∣∣∣ = 0.

Applying a first time dominated convergence theorem, we get E|((S − SN )(t)y(t),
y(t))H | → 0 for all fixed s ∈ [t, T ]. Then we notice that

E|((S − SN )(s)y(s), y(s))H | ≤ 2c(s)E|y(s)|2,

where the map c is in L1([0, T ]) and the map s → E|y(s)|2 is in C([0, T ]; R). Thus we
can apply a second time dominated convergence theorem to obtain the claim. Since
the other terms can be treated in an identical way, the proof is completed.
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Lemma 6.5. Let P (t) be any generalized solution. Then P (t)x ∈ CP([0, T ];
Lp(Ω;H)) for all x ∈ H and for all p ≥ 2.

Proof. We have to prove that, for all x ∈ H, limr→t E|[P (r) − P (t)]x|pH = 0 or,
equivalently,

lim
r→t

E|(P (r)x, x)H − (P (t)x, x)H |p = 0 ∀x ∈ H.

Let us consider the state equation corresponding to u = 0. Then for all x ∈ H the
following holds P-a.s.:

(P (t)x, x)H = EFt(PT y(T ), y(T ))H + EFt

∫ T

t

|
√
S(s)y(s)|2 ds

−EFt

∫ T

t

|B∗(s)P (s)y(s)|2 ds.

We set yt,x = yt,x,0 and we recall that yt,x ∈ Lp
P(Ω;C([0, T ];H)) for all p ≥ 2 (see [7,

Proposition 3.2]). Moreover, the map (t, x) → yt,x(·) is continuous from [0, T ]×H to
Lp
P(Ω;C([0, T ];H)); again see [7, Proposition 3.3].

Taking all these facts into account, we have that, for all 0 ≤ t ≤ r ≤ T ,

E|(P (r)x, x)H − (P (t)x, x)H |p ≤ c(p)E|EFr (PT y(T ), y(T ))H − EFt(PT y(T ), y(T ))H |p
(6.2)

+ E|EFr

∫ T

r

|
√
S(s)yr,x(s)|2H ds− EFt

∫ T

t

|
√
S(s)yt,x(s)|2H ds|p

+ E|EFr

∫ T

r

|B∗(s)P (s)yr,x(s)|2H ds− EFt

∫ T

t

|B∗(s)P (s)t,xy(s)|2H ds|p.

Since PT ∈ L∞
S (Ω,FT ,P, L(H)) and consequently (PT y(T ), y(T ))H ∈ Lp(Ω,FT ,P,R),

for all p ∈ [2,∞[ by the Kunita–Watanabe martingale representation theorem there
exists a process Z in Lp

P(Ω;L2([0, T ]; Ξ∗)) such that

∣∣EFr (PT y(T ), y(T ))H − EFt(PT y(T ), y(T ))H
∣∣ =

∣∣∣∣∫ t

r

Z(s) dW (s)

∣∣∣∣ .
Now fix τ ∈ [0, T ]; by Burkholder–Davies–Gundy inequalities and the dominated
convergence theorem we get that

lim
r↑τ, t↓τ

E|EFr (PT y(T ), y(T ))H − EFt(PT y(T ), y(T ))H |p(6.3)

= lim
r↓τ, t↑τ

E

∣∣∣ ∫ r

t

Z(s) dW (s)
∣∣∣p ≤ lim

r↓τ, t↑τ
E
(∫ r

t

|Z(s)|2Ξ∗ ds
)p/2

= 0.

Let us consider the second term on the right-hand side in (6.2):

lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√
S(s)yr,x(s)|2H ds− EFt

∫ T

t

|
√
S(s)yt,x(s)|2H ds|p(6.4)

≤ lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√
S(s)yr,x(s)|2H ds− EFr

∫ T

t

|
√
S(s)yt,x(s)|2H ds|p

+ lim
r↓τ, t↑τ

E|[EFr − EFt ]

∫ T

t

|
√
S(s)yt,x(s)|2H ds|p.
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Setting yr,x(s) = x for s ∈ [t, r], first splitting the above expression, and then applying
the Jensen inequality we get

lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√
S(s)yr,x(s)|2H ds−EFr

∫ T

r

|
√
S(s)yt,x(s)|2H ds

+EFr

∫ r

t

|
√
S(s)yt,x(s)|2H ds|p ≤ c(p)[ lim

r↓τ, t↑τ
E|
∫ T

r

(|
√
S(s)[yr,x(s)−yt,x(s)]|2H) ds|p

+ lim
r↓τ, t↑τ

E|EFr

∫ r

t

|
√
S(s)yt,x(s)|2H ds|p] ≤ C(T, p,MS)

× lim
r↓τ, t↑τ

∫ T

t

E sup
s∈[t,T ]

(|[yr,x(s)− yt,x(s)]|2pH ) ds+C(T, p)

× lim
r↓τ, t↑τ

E

∫ r

t

|
√
S(s)yt,x(s)|2pH ds].

Therefore, by the dominated convergence theorem we get that

lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√
S(s)yr,x(s)|2H ds− EFr

∫ T

t

|
√
S(s)yt,x(s)|2H ds|p = 0.

The second term on the right-hand side of (6.4) can be treated like the term
EFr (PT y(T ), y(T ))H in (6.3). The third term in (6.2) follows identically as does
the second term in (6.2).

This concludes the proof of the lemma.
Now we can state the main result of the paper.
Theorem 6.6. Assume that hypotheses (A1)–(A4) hold true. Then there exists

a unique generalized solution of problem (5.11).
Moreover, we have the following characterization of the optimal control: fix T > 0

and x ∈ H. Then
1. there exists a unique control u ∈ L2

P(Ω × [0, T ];U) such that

J(0, x, u) = inf
u∈L2

P(Ω×[0,T ];U)
J(0, x, u);

2. if y is the mild solution of the state equation corresponding to u (that is, the
optimal state), then y is the unique mild solution to the closed loop equation

{
dy(r) = [Ay(r) + A�(r)y(r) −B(r)B∗(r)P (r)y(r)] dr + Cy(r) dW (r),
y(0) = x;

(6.5)

3. the following feedback law holds P-a.s. for almost every s:

u(s) = −B∗(s)P (s)y(s);(6.6)

4. the optimal cost is given by J(0, x, u) = (P (0)x, x)H .
Proof. We divide the proof into three steps.
First step: Existence of a generalized solution. We fix a complete orthonormal

basis {ei : i ∈ N} in H and introduce, for each N ∈ N, the finite dimensional

projections ΠN : H → H : v →
∑N

i=1(v, ei)Hei. For each N ∈ N we define for (t, ω)
fixed:

ΠNPT (ω)ΠN = PN
T (ω) and SN (t, ω) =

{
ΠNS(t, ω)ΠN , |S(t, ω)|L(H) ≤ N,
0, |S(t, ω)|Σ(H) > N.

(6.7)
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First of all we notice that, from this definition, PN
T ∈ Σ+

2 (H), P-a.s., for all N ∈ N

and that for all x ∈ H, (PN
T x, x)H ↗ (PTx, x)H , P-a.s. Again from this definition it

follows that SN (t, ω) ∈ Σ+
2 (H), for all N ∈ N and that for all x ∈ H, (SN (t)x, x)H ↗

(S(t)x, x)H , P-a.s. for a.e. t ∈ [0, T ]. Moreover, |SN (t)|Σ(H) ≤ |S(t)|Σ(H)P-a.s. for
a.e. t ∈ [0, T ], so in particular (i) and (iii) in Definition 6.1 are verified. The pair
(PN

T , SN ) will become the data of the following approximating problems:

(6.8)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−dPN (t)=(A∗PN (t) +PN (t)A + A∗

� (t)P
N (t) +PN (t)A�(t)

−PN (t)B(t)B∗(t)PN (t)) dt+SN (t)dt + Tr[C∗(t)PN (t)C(t)
+C∗(t)QN (t) +QN (t)C(t)] dt+QN (t) dW (t), t ∈ [0, T ],

PN (T )=PN
T .

We notice that the above equation satisfies the assumptions of Theorem 5.13. Thus for
each fixed N ∈ N there exists a mild solution (PN , QN ) with PN ∈ L2

P(Ω;C([0, T ];
Σ+

2 (H)))∩L∞
P,S(Ω;C([0, T ]; Σ+(H))) and QN ∈ L2

P(Ω× [0, T ];L2(Ξ; Σ2(H))). Notice

that PN has strongly continuous trajectories, so the final condition PN (T ) = PN
T , P-

a.s. is attained.
Points (i)–(iii) in Definition 6.1 are satisfied by construction. We only have to

show that (iv) holds true.
We fix t ∈ [0, T ]. By Theorem 5.14

(PN (t)x, x)H = inf{JN (t, x, u) : u ∈ L2
P(Ω × [0, T ];U)},

where

JN (t, x, u) = EFt

∫ T

t

[∣∣∣√SN (s)yt,x,u(s)
∣∣∣2
H

+ |u(s)|2
]
ds +

∣∣∣√PN
T yt,x,u(T )

∣∣∣2.
Clearly at each u ∈ L2

P(Ω×[0, T ];U) fixed, we have that, for every t ∈ [0, T ] and x ∈ H,
the sequence {JN (t, x, u) : N ∈N} is P-a.s. nondecreasing. Moreover, it is bounded
by J(t, x, u) < +∞ P-a.s. Thus the sequence of random variables (PN (t)x, x)H =
infu∈L2

P(Ω×[0,T ];U) J
N (t, x, u) is nondecreasing as well. Since it is P-a.s. bounded, it

has a limit. It remains for us to show that this limit is actually of the form (P (t)x, x)H
with P ∈ L∞

P,S(Ω × [0, T ]; Σ+(H)).
Let D=̇{xi}i∈N be a dense subset of H; then we can find a subset Ω0 ⊂ Ω, with

P (Ω0) = 1, such that for every xi ∈ D, ∃ limN→+∞(PN (t)xi, xi)H , for every ω ∈ Ω0.
Thus we define the limit φ(t, xi, xi) as follows:

φ(t, xi, xi) =

{
limN→+∞(PN (t)xi, xi)H ∀xi ∈ D if ω ∈ Ω0,
0 ∀xi ∈ D if ω /∈ Ω0.

For every ω ∈ Ω0 the quadratic functional φ(t, xi, xi) defines a continuous, positive
semidefinite, quadratic form on a dense subset. Indeed thanks to (5.8) one has the
following uniform bound, modifying Ω0 if necessary:

|φ(t, xi, xi)| ≤ sup
N∈N

|PN (t)|Σ(H)|xi|2H ≤ C2(Mp + Ms)|xi|2H ∀ω ∈ Ω0.

Therefore, φ(t, xi, xi) can be extended to the whole H × H by density. Moreover,
by the Riesz theorem we can associate with this quadratic form a linear, bounded
symmetric, and positive semidefinite operator P (t) such that for every t ∈ [0, T ]

φ(t, x, y) = (P (t)x, y)H ∀ω ∈ Ω0 ∀x, y ∈ H.
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The following uniform bound is valid for all t ∈ [0, T ]:

|P (t)|L(H) ≤ C2[MP + MS ] ∀ω ∈ Ω0.(6.9)

The process P is by construction predictable and strongly measurable. Finally, be-
cause the operators are positive and symmetric, the weak convergence also implies
the strong convergence for all t ∈ [0, T ] we have that

|PN (t)x− P (t)x|H → 0 ∀ω ∈ Ω0, ∀x ∈ H.(6.10)

This concludes the proof of the first step since (6.10) implies (iv) in the Definition 6.1.

Second step: Characterization of the optimal control. By Lemma 6.4 we know
that any generalized solution verifies (6.1). In particular for t = 0 we have that

J(0, x, u) = (P (0)x, x)H + E

∫ T

0

|u(s) + B∗(s)P (s)yt,x,u(s)|2 ds.

Thus J(0, x, u) ≥ (P (0)x, x)H for all u ∈ L2
P(Ω × [0, T ];U), and the equality holds

if and only if (6.6) holds, that is, if and only if y solves (6.5) and u = u. This
completely characterizes the optimal control. We notice that existence and uniqueness
of a solution to the closed loop equation (6.5) are guaranteed since the assumptions
of Theorem 3.2 are satisfied if A� is replaced by A� −BB∗P .

Third step: Uniqueness of the generalized solution. Let P1 and P2 be two gen-
eralized solutions. We choose ū = −B∗P1ȳ, where ȳ solves (6.5) with P replaced by
P1. By the fundamental relation (6.1) and the characterization of the optimal control
proved above we immediately have

(P1(t)x, x)H = J(t, x, ū) = (P2(t)x, x)H + EFt

∫ T

t

|ū(s) + B∗(s)P2(s)ȳ(s)|2 ds P-a.s.

Thus (P1(t)x, x)H ≥ (P2(t)x, x)H P-a.s. The claim follows by repeating the argument,
choosing P2 instead of P1 and repeating the argument.

Remark 6.7. The idea of regularizing the data and then defining a generalized
notion of solution is rather classical in the PDE context; see, for instance, the definition
of “strong solution” in [16], [1], and the references therein, although it seems to be
the first time that is used in the context of the Riccati equation.

Remark 6.8. If assumptions (A1)–(A5) in Hypothesis 2.1 hold, then comparing
relation (6.1) and relation (5.13) we immediately deduce that generalized solutions of
(5.11) are mild solutions of (5.11) (see section 5 for definition of mild solutions) and
vice versa. On the contrary, when (A5) fails, generalized solutions still exist and are
unique while mild solutions cannot be defined.

7. Generalized solutions and variation of constant formula. The aim of
this section is to give a further characterization of the generalized solution just defined.
To this purpose we notice that the state equation defines an evolution operator in
a suitable sense, and we recover a variation of the constant formula for the value
function. The main ingredient is the fundamental relation (6.1) that on one hand is
verified by the generalized solution and on the other hand will turn out to be essential
to define the evolution operator.
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Definition 7.1. Assume (A1)–(A3) and consider the state equation starting
from x at time t ∈ [0, T ] and with control u = 0, namely{

dy(s) = (Ay(s) + A�(s)y(s)) ds + C(s)y(s) dW (s), s ∈ [t, T ],
y(t) = x.

We denote by yt,x its mild solution and define the family of maps Lt,σ : L∞
S (Ω,Fσ;

Σ(H)) → L∞
S (Ω,Ft; Σ(H)) for 0 ≤ t ≤ σ ≤ T in the following way. For every

V ∈ L∞
S (Ω,Fσ; Σ(H)) we define

(Lt,σV x, x)H = EFt(V yt,x(σ), yt,x(σ))H .(7.1)

We collect some properties for the evolution operator Lt,σ that can be easily
deduced from its definition.

Lemma 7.2. The family of operators {Lt,σ : 0 ≤ t ≤ σ ≤ T} has the following
properties:

1. for every 0 ≤ t ≤ σ ≤ T Lt,σ is a linear and bounded operator

L
t,σ

: L∞
S (Ω,Fσ; Σ(H)) → L∞

S (Ω,Ft; Σ(H));

2. for every 0 ≤ t ≤ r ≤ σ ≤ T one has that

Lt,σ = Lt,r ◦ Lr,σ P-a.s.;

3. with fixed V ∈ L∞
S (Ω,Fσ; Σ(H)), x ∈ H, and σ in [0, T ] the map t →

(Lt,σV x, x)H belongs to CP([0, T ];Lp(Ω,R)) for all p ≥ 2.
Proof.
1. We have that

sup
x∈H,|x|H≤1

|(Lt,σV x, x)H = sup
x∈H,|x|H≤1

|EFt(V yt,x(σ), yt,x(σ))H |

≤ |V |L∞
S

(Ω,Fσ ;L(H)) sup
x∈H,|x|H≤1

E|yt,x(σ)|2H ≤ C2|V |L∞
S

(Ω,Fσ ;L(H)).

2. The proof follows from the semigroup property of the solution yt,x(σ) and
the property of conditional expectations with respect to the filtration Ft.

3. The proof is identical to that of Lemma 6.5.
We notice that the fundamental relation (6.1), evaluated at u = 0, can be rewrit-

ten in terms of the evolution operator and reads as follows, for all t ∈ [0, T ] and all
x ∈ H:

(P (t)x, x)H = EFt(PT y(T ), y(T ))H + EFt

∫ T

t

|
√
S(s)y(s)|2 ds(7.2)

−EFt

∫ T

t

|B∗(s)P (s)y(s)|2 ds

= (Lt,TPTx, x)H +

∫ T

t

(Lt,sS(s)x, x)H ds

−
∫ T

t

(Lt,sP (s)B(s)B∗(s)P (s)x, x)H ds P-a.s.

This relation suggests a new characterization for a solution of (5.11).
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Definition 7.3. A variation of constants solution to problem (5.11) is a map P ∈
L∞
P,S((0, T ) × Ω; Σ+(H)) such that for all x ∈ H, ∀p ≥ 1, Px ∈ CP([0, T ];Lp(Ω;H))

and the following variation of constant formula is verified, P-a.s.,

(P (t)x, x)H = (Lt,TPTx, x)H +

∫ T

t

(Lt,sS(s)x, x)H ds(7.3)

−
∫ T

t

(Lt,sP (s)B(s)B∗(s)P (s)x, x)H ds.

We can prove existence and uniqueness of such solutions.
Theorem 7.4. Assume (A1)–(A4); then there exists a unique solution of problem

(5.11) in the sense of Definition 7.3.
Proof. We already know that the generalized solution defined in the previous

section verifies (7.3) and it is regular enough to be a solution in the sense of Definition
7.3. It remains to prove the uniqueness of the solution in this class. Let P1 and
P2 be two solutions in the sense of Definition 7.3 and denote by P̄ their difference
P̄ (t) = P1(t) − P2(t). Then the following holds, for all t ∈ [0, T ] and x ∈ H, P-a.s.:

(P̄ (t)x, x)H =

∫ T

t

(Lt,sP2(s)B(s)B∗(s)P̄ (s)x, x)H

+

∫ T

t

(Lt,sP (s)B(s)B∗(s)P1(s)x, x)H ds.

Therefore, for every t ∈ [0, T ] we have that

|P (t)|L(H) = sup
x∈H,|x|H≤1

(P (t)x, x)H

≤ sup
x∈H,|x|H≤1

∫ T

t

(Lt,sP2(s)B(s)B∗(s)P (s)x, x)H

+

∫ T

t

(Lt,sP (s)B(s)B∗(s)P1(s)x, x)H ds

≤ C

∫ T

t

|P (s)|L(H) ds P-a.s.,

where C depends on C2,MB , |P1|L∞
P,S

(Ω×[0,T ];L(H)), and |P2|L∞
P,S

(Ω×[0,T ];L(H)).

Applying the Gronwall lemma to s → |P (s)|L∞(Ω,Fs,L(H)) we get that P1(t) =
P2(t), P-a.s. for all t ∈ [0, T ].

Remark 7.5. Since the solution of Definition 7.3 is also the unique general-
ized solution, it is obvious that it allows the synthesis of optimal controls as in
Theorem 6.6.

8. Nonhomogeneous problem. As in [13] we consider a simple generalization
of our original control problem that enlarges the set of applicability of our abstract
results.

We fix η ∈ L2(Ω,FT ,P, H) and ν ∈ L2
P(Ω× [0, T ], H) and instead of J(0, x, u) we

minimize

Ĵ(0, x, u) = E

∫ T

0

(
(S(s)(y0,x,u(s) − ν(s)), (y0,x,u(s) − ν(s)))H + |u(s)|2U

)
ds

+E(PT (y0,x,u(T ) − η), (y0,x,u(T ) − η))H .
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We assume that (A1)–(A4) in Hypothesis 2.1 hold and let P be the unique generalized
solution of the Riccati equation (5.11). Moreover, (p, q) with p in L2

P(Ω, C([0, T ];H))
and q in L2

P(Ω, L2([0, T ];L2(Ξ, H))) is the unique mild solution of the backward equa-
tion ⎧⎨⎩

dp(s)=
(
−A∗p(s) −A∗

� (s)p(s) + P (s)B(s)B∗(s)p(s) − Tr[C∗(s)q(s)]
)
ds

−S(s)ν(s)ds + q(s)dW (s), s ∈ [0, T ],
p(T )=PT η,

(8.1)

where, defining notation with respect to the usual basis {fi : i ∈ N} in Ξ,

Tr[C∗(s)q(s)] =

∞∑
i=1

C∗
i (s)(q(s), fi).

Moreover, existence and uniqueness of a mild solution to (8.1) are guaranteed by
Theorem 4.4, whose assumptions are easily verified.

The following is the analogue of Theorem 6.6.
Theorem 8.1. Assume that hypotheses (A1)–(A4) hold true. Then
1. there exists a unique control u ∈ L2

P(Ω × [0, T ];U) such that

Ĵ(0, x, u) = inf
u∈L2

P(Ω×[0,T ];U)
Ĵ(0, x, u);

2. if y is the mild solution of the state equation corresponding to u (that is the
optimal state), then y is the unique mild solution to the closed loop equation

(8.2)⎧⎨⎩
dy(r) = [Ay(r) + A�(r)y(r) −B(r)B∗(r)P (r)y(r) + B(r)B∗(r)p(r)] dr

+Cy(r) dW (r),
y(0) = x;

3. the following feedback law holds P-a.s. for almost every s:

u(s) = −B∗(s)P (s)y(s) + B∗(s)p(s);(8.3)

4. the optimal cost is given by

Ĵ(0, x, u) = (P (0)x, x)H − 2(p(0), x)H + E(PT η, η)H

+E

∫ T

0

(
(S(s)ν(s), ν(s))H − |B∗(s)p(s)|2H

)
ds.

Proof. Let (ph, qh) ∈ L2
P(Ω;C([0, T ];H)) × L2

P(Ω;L2([0, T ];L2(Ξ, H))), h =
1, 2, . . . , be the unique classical solution of the backward equation

⎧⎨⎩
dp(s)=

(
−A∗

hph(s) −A∗
� (s)ph(s) + P (s)B(s)B∗(s)ph(s) − Tr[C∗(s)qh(s)]

)
ds

−S(s)ν(s)ds + qh(s)dW (s), s ∈ [0, T ],
p(T )=PT η.

(8.4)

We proceed as in the proof of Theorem 5.6. Namely we choose Ψ ∈ C2(H) with
Ψ(y) = 1 for |y| ≤ 1, Ψ(y) = 0 for |y| ≥ 2, and Ψ(y) ∈ [0, 1]∀y ∈ H. Then we
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differentiate dΨ(N−1yh(s))(ph(s), yh(s))H by the Itô rule. We integrate in [0, T ] and
compute the mean value. Finally we let N → +∞ to obtain

E(PT η, yh(T ))H = (p(0), x)H + E

∫ T

0

(P (s)B∗(s)B(s)ph(s), yh(s))Hds

+ E

∫ T

0

[(u(s), B∗(s)ph(s))H − (S(s)ν(s), yh(s))H ]ds.

Letting h → ∞ we get by Theorems 3.3 and 4.4

E(PT η, y(T ))H = (p(0), x)H + E

∫ T

0

(P (s)B∗(s)B(s)p(s), y(s))Hds

+ E

∫ T

0

[(u(s), B∗(s)p(s))H − (S(s)ν(s), y(s))H ]ds.

Thus by easy computations

Ĵ(0, x, u) = E

∫ T

0

|u(s) + B∗(s)P (s)y(s)−B∗(s)p(s)|2 ds+ (P (0)x, x)H

− 2(p(0), x)H + E(PT η, η)H

+ E

∫ T

0

[
(S(s)ν(s), ν(s))H − |B∗(s)p(s)|H

]
ds.

The above relation completes the proof (notice that existence and uniqueness of the
mild solution of (8.2) can be proved exactly as are existence and uniqueness of the
mild solution of (2.1)).

9. Example: Minimal variance problem for a stochastic equation with
delay and random volatility. We consider the controlled stochastic differential
equation with memory effects:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dξ(t) =

[∫ 0

−1

ξ(t + θ) a(dθ) + r(t)u(t)

]
dt +

d∑
i=1

σi(t)ξ(t)dβ
i
t, t ∈ [0, T ],

ξ(0) = μ0, ξ(θ) = ν0(θ), for a.e. θ ∈ (−1, 0),

(9.1)

where μ0 ∈ Rn, ν0 ∈ L2((−1, 0); Rn), (Ω, E ,P) is a complete probability space,
{βi

t : t ≥ 0, i = 1, . . . , d} are independent standard Brownian motions defined in
Ω. Moreover, Ft denotes the σ-algebra generated by {βi

σ, σ ∈ [0, t], i = 1, . . . , d}
and augmented with the sets of F with P-measure zero (see Remark 2.4 to see how
this requirement can be relaxed, and notice that for some i = 1, . . . , d, σi can be
null).

We assume that a is a L(Rn,Rn)-valued finite measure on [−1, 0], r : [0, T ] ×
Ω → L(Rd,Rn) is bounded and predictable stochastic process, and σi : [0, T ] × Ω →
L(Rn,Rn) are bounded and predictable stochastic processes, i = 1, . . . , d.

We also consider the following cost functional of minimal variance type:

J(0, μ0, ν0, u) = E

∫ T

0

|u(τ)|2
Rddτ + E(k(ξ(T ) − ζ), (ξ(T ) − ζ))Rn ,

where k ∈ L∞(Ω,FT ,P; Σ+(Rn)) and ζ ∈ L2(Ω,FT ,P; Rn).
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Our purpose is to minimize J(0, μ0, ν0, u) over all predictable controls u : [0, T ]×
Ω → Rd.

Following [4] and [6] we set H = Rn × L2((−1, 0); Rn),

D(A) =

{(
μ
ν

)
∈ H : ν ∈ W 1,2((−1, 0); Rn) and ν(0) = μ

}
,

A

(
μ
ν

)
=

( ∫ 0

−1
ν(θ)a(dθ)

dν
dθ

)
.

It is proved in [9], among other places, that A generates a strongly continuous semi-
group in H (see also [6]). Moreover, if we set U = Rd and for t ∈ [0, T ], μ ∈ Rn,
ν ∈ L2((−1, 0); Rn), u ∈ Rd,

x =

(
μ0

ν0

)
, B(t)u =

(
r(t)u

0

)
, Ci(t)

(
μ
ν

)
=

(
σi(t)μ

0

)
,

PT

(
μ
ν

)
=

(
k(t)μ

0

)
, η =

(
ζ
0

)
, y(τ) =

(
ξ(τ)
ξτ (·)

)
,

where xτ (θ) = x(θ + τ), τ ≥ 0, θ ∈ [−1, 0], then (9.1) is equivalent (see [4] and
[6, Chapter 10]) to⎧⎪⎨⎪⎩dy(τ) = (Ay(τ) + Buτ ) dτ +

d∑
i=1

Ci(τ)y(τ)dβi
τ , τ ∈ [0, T ],

y(0) = y0.

Moreover, the cost functional becomes

Ĵ(0, x, u) = E

∫ T

0

|u(τ)|2
Rdds + E

∣∣∣√PT (y(T ) − η)
∣∣∣2
H

Moreover, it is easy to verify that (A1)–(A5) of Hypothesis 2.1 hold. Thus Theo-
rem 8.1 can be applied to obtain the synthesis of the optimal control. We notice that
in this case the Riccati equation has a unique mild solution in the sense clarified by
Definition 5.3.

Remark 9.1. We believe that the present example is interesting on its own because
of its simplicity. Notice that the model is finite dimensional, but the presence of a
simple delay term and of the stochastic coefficient σ immediately requires us to use
backward stochastic Riccati equations in infinite dimensional spaces.

In addition it can be regarded as a first step towards realistic financial applica-
tions of the theory. Namely in [14] (see also [25]) the authors showed that the mean
variance hedging problem for a (incomplete) Black and Scholes market with stochastic
volatility can be treated as a singular linear quadratic control problem with stochastic
coefficients. The solution of such problem requires one to prove existence and unique-
ness of the solution of a backward stochastic Riccati equation in finite dimensions. On
the other hand, in [8] it was pointed out that memory effects can be introduced in the
market model describing the evolution of the share prices by a delay equation. Thus
the present example can be seen as a contribution towards the solution of the mean
variance hedging problem for a market with stochastic volatility and memory effects.
To deal with the realistic formulation of the problem it would be necessary to allow



192 GIUSEPPINA GUATTERI AND GIANMARIO TESSITORE

control dependent noise and singular costs. This complicates the form of the Riccati
equation and requires careful mixing of the techniques developed in this paper to deal
with infinite dimensional stochastic Riccati equations and of the ones developed in
[14] and [23] to deal with singular control problems and control dependent noise. This
will be the topis of a future work.

10. Example: Optimal control for a wave equation in random media
with stochastic damping. In order to show that our general results can be applied
to concrete controlled stochastic PDEs arising in applications we consider a stochastic
wave equation with diffused control. We assume that the system is evolving in a
random media, and this influences its evolution in two ways: through a stochastic force
of elastic type (the term

∑∞
i=1 ci(t, ζ)ξ(t, ζ)dβi(t) below) and through a stochastic

damping (the term μ(t, ζ)∂tξ(t, ζ)dt below). Notice that in this model it is natural
to introduce the stochastic coefficient μ; moreover, although only one coefficient is
stochastic, the use of backward stochastic Riccati equations is necessary to solve the
optimal control problem.

We consider the state equation

(10.1) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dt∂tξ(t, ζ) = Δζξ(t, ζ)dt + b(t, ζ)u(t, ζ)dt + μ(t, ζ)∂tξ(t, ζ)dt

+
∑∞

i=1 ci(t, ζ)ξ(t, ζ)dβi(t), ζ ∈ D, t ∈ [0, T ],
ξ(t, ζ) = 0, ζ∈∂D, t∈ [0, T ],

ξ(0, ζ) = x0(ζ), ∂tξ(0, ζ) = v0(ζ), ζ ∈ D,

and the cost functional

(10.2)

J(0, x, u) = E

∫ T

0

∫
D

[
κ1(t, ζ)ξ

2(t, ζ) + κ2(t, ζ)

(
∂ξ

∂t
(t, ζ)

)2
]
dζ dt

+ E

∫ T

0

∫
D
u2(t, ζ)dζ dtE

∫
D

[
π1(ζ)ξ

2(T, ζ) + π2(ζ)

(
∂ξ

∂t
(T, ζ)

)2
]
dζ.

In the above formulae D ⊂ Rd is a bounded domain with regular boundary. By B(D)
we denote the Borel σ-field in D.

Moreover, {βi : i = 1, 2, . . . } are independent standard (real valued) Brownian
motions defined on (Ω,F ,P). We set Ft = σ{βi(s) : s ∈ [0, t], i = 1, 2, . . . } and
denote by P the predictable σ-field in Ω × [0, T ].

On the coefficients we assume the following.
1. μ is a bounded measurable process defined on ([0, T ]×Ω)×D endowed with

the σ-field P ⊗ B(D) with values in R+ (with Borel σ-field).
2. b, κ1, κ2, and ci, i = 1, 2, . . . , are bounded measurable maps [0, T ]×D → R.

We assume that κ1 and κ2 have values in R+.
3. There exists a constant M > 0 such that

∑∞
i=1 |ci(t, ζ)|2 ≤ M for a.e. t ∈

[0, T ] and a.e. ζ ∈ D.
4. π1 and π2 are bounded measurable maps D → R+.

Following, for instance, [1] we set
1. H = H1

0 (D) × L2(D), U = L2(D);
2. W (t) =

∑∞
i=1 fiβi(t), where {fi : i = 1, 2, . . . } is an orthonormal basis in an

arbitrary separable real Hilbert space Ξ;
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3. D(A) =
[
H2(D) ∩H1

0 (D)
]
×H1

0 (D) and

(
A

(
ξ
v

))
(ζ) =

(
v(ζ)

Δζξ(ζ)

)
,

(
ξ
v

)
∈ D(A),(

A�(t)

(
ξ
v

))
(ζ) =

(
0

μ(t, ζ)ξ(ζ)

)
,

(
ξ
v

)
∈ H;

4. (B(t)u)(ζ) =

(
0

b(t, ζ)u(ζ)

)
,

(
Ci(t)

(
ξ
v

))
(ζ) =

(
0

ci(t, ζ)ξ(ζ)

)
;

5.

(
S(t)

(
ξ
v

))
(ζ) =

(
κ1(t, ζ)ξ(ζ)
κ2(t, ζ)v(ζ)

)
,

(
PT (t)

(
ξ
v

))
(ζ) =

(
π1(ζ)ξ(ζ)
π2(ζ)v(ζ)

)
,

x =

(
x0

v0

)
.

With this setting the state equation (10.1) is equivalent to (2.1) and the cost
(10.2) is equivalent to (2.2). Moreover, it is easy to verify that assumptions (A1)–
(A4) in Hypothesis 2.1 are verified. So in this case we can apply the results in
Theorem 6.6 to obtain existence of a unique solution of the Riccati equation both
in the “generalized” sense of Definition 6.1 and the “variation of constants” sense
of Definition 7.3. Moreover, such a solution allows to perform the synthesis of the
optimal control as it is stated in Theorem 6.6.

Remark 10.1. Notice that assumption (A5) is in general not satisfied; take, for
instance, κ2 ≡ 1 or π2 ≡ 1.
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RELAXATION OF AN OPTIMAL DESIGN PROBLEM WITH AN
INTEGRAL-TYPE CONSTRAINT∗
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Abstract. We study a new relaxation for a two-dimensional optimal design problem in conduc-
tivity consisting of determining how to mix two given conducting materials in order to minimize the
amount of one of them, subject to a constraint on the efficiency of the conducting properties of the
mixture. Our approach here is different from that obtained in [R. V. Kohn and G. Strang, Comm.
Pure Appl. Math., 39 (1986), pp. 113–137, 139–182, 353–377], and is based on a local reformula-
tion of the optimal design problem by means of the introduction of new potentials. The concept of
constrained quasiconvexification is used in an important way.
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1. Introduction. We would like to analyze the following optimal design prob-
lem. We have at our disposal two given conducting materials; one of them is a bad
and cheap conductor and the other is better but also more expensive, and we want to
fill out the domain Ω (a regular, open and simply connected set of R2) mixing those
materials in order to minimize the amount of the most expensive conductor. The
respective conductivities are α and β with 0 < α < β. If χ(x) is the characteristic
function of the set where we put the material with conductivity α, the conductivity
function in Ω is

a(x) = χ(x)α + (1 − χ(x))β.

The electric potential of the body is given by the solution of the diffusion equation{
−div(a(x)∇u(x)) = 0 in Ω,

a(x)∇u · n = f on ∂Ω,
(1)

where f ∈ H− 1
2 (∂Ω) stands for the current flux on ∂Ω and n is the outer normal

vector to ∂Ω. We assume the compatibility condition∫
∂Ω

f ds = 0,

in order to guarantee the existence of the solution of (1). Recall that under that
condition, (1) has a unique solution up to an additive constant. The optimal design
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problem we want to address consists of finding a layout of material, i.e., a characteristic
function χ, minimizing the functional

I(χ) =

∫
Ω

(1 − χ(x)) dx

under the integral-type constraint

J(χ) =

∫
Ω

1

a(x)
|∇u(x)|2 dx ≤ γ,(2)

where γ > 0 is given. The integral J(χ) represents the rate at which energy is
dissipated to heat in the composite material given by the design χ (the bigger this
integral is, the more dissipation of energy and the less efficient the design is) so that
(2) constrains the efficiency with which the conductivity a conducts the current load
f through Ω.

A typical feature in optimal design problems like the one considered here is the
lack of optimal solutions (see, for instance, [14]), so that relaxation is needed in
order to understand the behavior of minimizing sequences. For our optimal design
problem, relaxation has been analyzed in [10, 11, 12] using a suitable reformulation
of the problem as a min-max variational problem amenable to relaxation. In that
paper the authors also consider the case of multiple constraints of type (2) for several
boundary data of fi. In our work, we only deal with the case of a single integral
constraint. Recent papers about this subject are [1, 7, 13].

In this paper, we propose a different approach to analyze relaxation of this optimal
design problem. We reformulate this one, in an equivalent way, as a genuine vector
variational problem subject to an integral-type constraint, and then study relaxation
for this new problem. As usual, relaxation for variational problems is carried out on
two different levels: convexified problems in which we change the energy density by
a suitable convex envelope of it, and generalized problems in which we enlarge the
set of admissible functions to the set of Young measures generated by sequences of
admissible functions for the original problem. Very recently this approach has been
successfully used in other optimal design problems in conductivity (see [4, 19] for the
two-dimensional case and [5, 6] for the three-dimensional situation).

Let us see how we reformulate the optimal design problem as a vector variational
problem subject to an integral constraint. The state equation (1) is equivalent to the
existence of a stream function v ∈ H1(Ω) such that

a(x)∇u(x) + T∇v(x) = 0, a.e. x ∈ Ω,(3)

where T is the counterclockwise rotation of angle π
2 (see [9]). Due to the fact that u

verifies the boundary condition

a∇u · n = f,

(3) implies that the tangential derivative of v is equal to the negative normal com-
ponent of a∇u. Hence, up to an arbitrary constant, the boundary values of v are
determined by indefinite integration along the boundary

v = v0 = −
∫

f ds on ∂Ω,

where v0 ∈ H
1
2 (∂Ω).
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Now we put the functions u and v together in a single field U = (u, v) and consider
the functions

W,V : M2×2 → R∗ = R ∪ {+∞}

defined by

W (A) =

⎧⎨⎩
0 if A ∈ Λα,
1 if A ∈ Λβ\Λα,

+∞ otherwise,

and

V (A) =

⎧⎪⎨⎪⎩
1
α

∣∣A(1)
∣∣2 if A ∈ Λα,

1
β

∣∣A(1)
∣∣2 if A ∈ Λβ ,

+∞ otherwise,

where for δ > 0

Λδ =
{
A ∈ M2×2 : δA(1) + TA(2) = 0

}
.

Here, A(i) stands for the i-row of the matrix A, i = 1, 2. Note that

Λα ∩ Λβ =

(
0
0

)
,

so there is no ambiguity in the definition of V . We must take into account that W and
V are not Carathéodory functions since they take on the value +∞ in a noncontinuous
way; however, V is continuous where it is finite and W too, except at the origin.1

This fact will be important in the study of relaxation in the next section.

It is easy to realize that the original optimal design problem is equivalent to the
following variational problem:

minimize

∫
Ω

W (∇U(x)) dx(4)

over the class of admissible functions

U =
{
U ∈ H1(Ω; R2), U (2) = v0 on ∂Ω

}
subject to ∫

Ω

V (∇U(x)) dx ≤ γ.

Due to this equivalence, the new problem does not have a solution, and there-
fore we are interested in characterization of minimizing sequences for it. To this
end, we will analyze relaxation of this variational problem, proving, at first step, a

1This fact is not a difficulty due to 0-1 law proved in [3, Theorem 1.3]. See section 3 for more
details.
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subrelaxation result in terms of the appropriate convex envelope and Young mea-
sures generated by sequences of admissible gradients. Indeed, that convex envelope is
defined in the following fashion. For a fixed x ∈ Ω, ρ > 0, set

W �(A, ρ) = inf

{∫
M2×2

W (F ) dν(F ) : ν ∈ A(A, ρ)

}
,(5)

where A(A, ρ) is the set of homogeneous H1 Young measures ν such that∫
M2×2

F dν(F ) = A

and ∫
M2×2

V (F ) dν(F ) = ρ.

This will be carried out in section 2.
As a second step, being the most important part of this paper and where the

greatest emphasis is placed, we focus on the explicit computation of the envelope W �

and the optimal microstructures, that is to say, the minimizers of (5). Section 3 is
devoted to that computation, whose conclusion is stated in the following theorem.

Theorem 1. Let B be the set of pairs of matrices and real numbers (A, ρ) defined
by the two inequalities(

β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)
≤ 1 +

(
β + α

β − α

) ∣∣βA(1) + TA(2)
∣∣2

α(detA− β2ρ)
(6)

and

α2 ≤ detA

ρ
≤ β2.(7)

The constrained envelope W � is given by

W �(A, ρ) =

⎧⎪⎨⎪⎩
(
β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)
if (A, ρ) ∈ B,

+∞ otherwise.

Moreover, if (6) happens with equality, there exists a unique first order laminate,

ν = (1 − t0)δAα + t0δAβ
,

which is the optimal microstructure (that is,W �(A, ρ) =
∫

M2×2 W (F ) dν(F ) and ν
has barycenter A).

On the contrary, if (6) holds with strict inequality, the optimal microstructures
are second order laminates

νi,j = (1 − σi,j)δAα,j + σi,j(ρi,jδAβ
+ (1 − ρi,j)δĀα,i

), i, j = 1, 2, i 	= j,

where

σi,j =
t0(rj − ri)

t0(1 − ri) − ri(1 − rj)
, ρi,j =

t0(1 − ri) − ri(1 − rj)

rj − ri
.

In both cases, t0 =
(

β+α
β−α

) |αA(1)+TA(2)|2
β(detA−α2ρ) .
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The values ri and the rest of the matrices will be defined in section 3.
Note also that the function W � is well-defined for (A, ρ) such that detA = α2ρ,

because in that case, A ∈ Λα. In this situation, W (A, ρ) = 0 and the laminate is
ν = δA. In the same way, if A ∈ Λβ , W (A, ρ) = 1 and the optimal is attained at the
same laminate.

Before going into relaxation a word should be said about the envelope W �. Due
to the fact that functions W,V are not Carathéodory functions, the infimum in (5)
defined over homogeneous gradient Young measures could be different from (less than
or equal to) the corresponding infimum defined over gradients, so that being rigorous
we should say that W � is a constrained semiconvex envelope instead of a constrained
quasiconvexification. Anyhow, working with W � is enough to have a relaxation result
in our setting, and we are even able to give a full and explicit computation of it.
Therefore, with a little abuse of language, we will refer to that function as constrained
quasiconvexification.

It is worth saying that the approach presented here is not exclusively two-
dimensional as it could seem being based on the fact that, for any solution of (6),
there exists a conjugate. In the three-dimensional case the recent paper [6] analyzes
classical questions of the calculus of variations for functionals depending on gradients
and curls in dimension three, and the conclusions of that paper were implemented in
the analysis of the relaxation of a three-dimensional optimal design problem related to
the one considered here (cf. [5]). We think that the analysis presented here could be
extended to the three-dimensional case following the ideas presented in those papers.

2. Relaxation. A general analysis of relaxation of variational problems un-
der integral constraints has been carried out in [17] where densities W and V are
Carathéodory functions. That analysis has been applied in that paper to obtain a
subrelaxation (in the sense that the infimum of the relaxed problem is less than or
equal to the original one) for general structural design problems in which also the fact
of having non-Carathédory densities happen. We could apply those results to directly
obtain a subrelaxation; however, we will go into the analysis of relaxation of problem
(4) in a slightly different way. We get to improve the subrelaxation result, although
we do not get a complete relaxation result; we will deal with this question at the end
of the section. We would like to emphasize that the more important and interesting
result of this paper is Theorem 1 rather than the results shown in this section, which
are mainly of a technical nature (although of considerable theoretical interest). Any
reader not particularly interested in the questions analyzed here can pass over this
section, keeping in mind the conclusion of Theorem 2, and read directly to section 3.

Proposition 1. The infimum

m� = inf

{∫
Ω

W �(∇U(x), t(x)) dx : U ∈ U , ‖t‖L∞(Ω) ≤ M,

∫
Ω

t(x) dx ≤ γ

}
is attained.

Proof. Let us call

I�(U, t) =

∫
Ω

W �(∇U(x), t(x)) dx.

This functional is coercive because of any function taking values on the set where W �

is finite is bounded. This property was proved in [4] in the context of another optimal
design problem in conductivity, and the proof uses the essential fact that Sobolev
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functions with gradients taking values on the support of function W � are solutions of
linear elliptic PDEs with uniformly bounded coefficients.

To apply the direct method we need to prove that the functional I� is also weak
and lower semicontinuous. To this end, it is enough to show that W � verifies the
following jointly convex property:

W �(A, θ) ≤ 1

|Ω|

∫
Ω

W �(A + ∇V (y), θ + t(y)) dy,

for all (A, θ) ∈ M2×2 × R, V ∈ H1
0 (Ω; R2) and t ∈ L∞(Ω) with vanishing mean-value

(cf. [8]).
Let V ∈ H1

0 (Ω; R2) and t ∈ L∞(Ω) such that
∫
Ω
t(y) dy = 0. For a.e. y ∈ Ω, we

can find a minimizing probability measure νy ∈ A(A + ∇V (y), θ + t(y)) such that

W �(A + ∇V (y), θ + t(y)) =

∫
M2×2

W (F ) dνy(F ).

Proving that such a minimizing measure exists, there is an elementary fact of func-
tional analysis due to the functional to minimize linear over measures, and the set
A(A + ∇V (y), θ + t(y)) is closed convex and consequently compact in the weak-�
topology on the Radon measures’ space.

Let us prove that the family of probability measures ν = {νy}y∈Ω is an H1 Young
measure. To this end, we use [15, Theorem 8.16], which gives the following sufficient
conditions for being a gradient Young measure: in our case, ν = {νy}y∈Ω is a H1

Young measure if it verifies
(a) ∇U(y) =

∫
M2×2 F dνy(F ) for some U ∈ H1;

(b)
∫

M2×2 ϕ(F ) dνy(F ) ≥ ϕ(∇U(y)) for any quasiconvex function ϕ;

(c)
∫
Ω

∫
M2×2 |F |2 dνy(F ) dy < ∞.

(a) holds by definition of the set A(A, ρ), actually U = V + A · y in this case; (b)
is true because each νy is a Young measure, as any term of a Young measure is a
homogeneous Young measure itself, and consequently it verifies Jensen’s inequality for
any quasiconvex function (see [15]), and (c) holds because of the facts that supp(νy) ⊂
Δ, a.e. y ∈ Ω, and that the quadratic growth conditions on the function V are finite
at any time.

Finally, the average measure of ν, ν̄ is an homogeneous H1 Young measure be-
longing to A(A, θ) and such that

1

|Ω|

∫
Ω

W �(A + ∇V (y), θ + t(y)) dy =

∫
Ω

∫
M2×2

W (F ) dνy(F ) dy

=

∫
M2×2

W (F ) dν̄(F ) ≥ W �(A, θ).

The averaging measure procedure is a standard technique when dealing with Young
measures and can be checked at [15].

Proposition 2. If A stands for the set of H1 Young measures such that there
exists U ∈ H1(Ω; R2) with

∇U(x) =

∫
M2×2

F dνx(F ),

U (2) = v0 on ∂Ω,
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then the infimum

m̃ = inf

{∫
Ω

∫
M2×2

W (F ) dνx(F ) dx :

ν = {νx}x∈Ω ∈ A,

∫
Ω

∫
M2×2

V (F ) dνx(F ) dx ≤ γ

}
is attained.

The proof is standard and is based on the minimization of a linear functional on
a closed convex set; see [15]. The following is a subrelaxation result.

Theorem 2. Under above conditions, if we put

m = inf

{∫
Ω

W (∇U(x)) dx : U ∈ U ,
∫

Ω

V (∇U(x)) dx ≤ γ

}
,

then

m̃ ≤ m� ≤ m.

Proof. The inequality

m� ≤ m

is trivial as a consequence of the definition of the constrained semiconvex envelope
W �. Let us prove the other inequality. Let U ∈ H1(Ω; R2), t ∈ L∞(Ω) be such that

U (2) = v0 on ∂Ω,∫
Ω

W �(∇U(x), t(x)) dx < +∞,∫
Ω

t(x) dx ≤ γ,

and

‖t‖L∞(Ω) ≤ M.

As was shown in the proof of Proposition 1, for a.e. x ∈ Ω there exists a homoge-
neous H1 Young measure νx ∈ A(∇U(x), t(x)) such that

W �(∇U(x), t(x)) =

∫
M2×2

W (F ) dνx(F )

and the family of probability measures ν = {νx}x∈Ω is an H1 Young measure. More-
over, ν verifies ∫

Ω

∫
M2×2

W (F ) dνx(F ) dx =

∫
Ω

W �(∇U(x), t(x)) dx

and ∫
Ω

∫
M2×2

V (F ) dνx(F ) dx =

∫
Ω

t(x) dx ≤ γ.

This finishes the proof.
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In order to obtain a full relaxation result it would be enough to prove the equality

m = m̃.(8)

This fact would be true if, given any Young measure with support contained in the set
where W is finite, Λ, and verifying the integral constrained, there exists a generating
sequence of gradients such that it verifies all the admissibility constraints for the
problem, and, further, those gradients take values on Λ. Otherwise, it could happen
that for an optimal Young measure there is no admissible generating sequence taking
values on Λ and therefore the inequality m̃ ≤ m would be strict. That is to say, there is
a gap between the values of the two infima. From the point of view of applications that
is not really important because it just means that small errors in the designs would
improve the cost, as is extensively discussed in [16]. In our case the authors have not
been able to prove equality (8). Concretely, the difficulty is the following: given a
Young measure with support contained on Δ and satisfying the integral constraint,
we are able to find a generating sequence for the Young measure taking values on Δ,
but it is not clear how to modify a generating sequence in order to make sure that
such a constraint is verified.

The following result is an improvement of the subrelaxation result in the sense
pointed out above.

Theorem 3. For any family of measures ν = {νx}x∈Ω belonging to A and such
that

supp(νx) ⊂ Λ, a.e. x ∈ Ω,

there exists a sequence of gradients {∇Uj} generating ν and verifying that, for any j,

(i) Uj ∈ H1(Ω; R2), U
(2)
j = v0,

(ii) {|∇Uj |2} is equi-integrable,
(iii) ∇Uj(x) ∈ Λ, a.e. x ∈ Ω.
Proof. Let ν = {νx}x∈Ω, satisfying the hypotheses of the theorem, and let

{
∇Ūj

}
be a sequence of gradients of functions in H1(Ω; R2) generating ν such that {|∇Ūj |2}
is equi-integrable and

Ū
(2)
j = v0 on ∂Ω.

Let us consider the function

ϕ(A) = min{|αA(1) + TA(2)|2, |βA(1) + TA(2)|2}.

It is obvious that the zero set of ϕ(·) is Λ and consequently∫
M2×2

ϕ(F ) dνx(F ) = 0, a.e. x ∈ Ω.

Due to the growth conditions verified by ϕ and the equi-integrability of the sequence,
it is true that

lim
j→+∞

∫
Ω

ϕ
(
∇Ūj(x)

)
dx = 0.

Moreover,

ϕ
(
∇Ūj(x)

)
= |σj(x)∇Ū

(1)
j (x) + T∇Ū

(2)
j (x)|2,
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for some σj(x) taking values on {α, β}. Hence, the above limit reads as

lim
j→∞

∫
Ω

|σj(x)∇Ū
(1)
j (x) + T∇Ū

(2)
j (x)|2dx = 0.(9)

Solving the Neumann boundary values problem{
−div (σj(x)∇u(x)) = 0 in Ω,

σj∇u · n = f on ∂Ω,

and denoting by U
(1)
j its solution (unique up to an additive constant) and U

(2)
j the

corresponding stream function, it is clear that this new sequence verifies (i) and (iii).
Finally, if we prove that

∇Ūj −∇Uj → 0, strong in L2,(10)

the sequence {∇Uj} generates ν and will verify (ii).
Let us see (10). By ellipticity,

α

∫
Ω

|∇U
(1)
j (x) −∇Ū

(1)
j (x)|2 dx

≤
∫

Ω

〈σj(x)(∇U
(1)
j (x) −∇Ū

(1)
j (x)),∇U

(1)
j (x) −∇Ū

(1)
j (x)〉 dx

adding and subtracting T∇U
(2)
j (x) and T∇Ū

(2)
j (x) in the first factor of the scalar

product,

=

∫
Ω

〈−(σj(x)∇Ū
(1)
j (x) + T∇Ū

(2)
j (x)),∇U

(1)
j (x) −∇Ū

(1)
j (x)〉 dx

+

∫
Ω

〈σj(x)∇U
(1)
j (x) + T∇U

(2)
j (x),∇U

(1)
j (x) −∇Ū

(1)
j (x)〉 dx

+

∫
Ω

〈T∇Ū
(2)
j (x) − T∇U

(2)
j (x),∇U

(1)
j (x) −∇Ū

(1)
j (x)〉 dx.

The second term vanishes because of σj(x)∇U
(1)
j (x) + T∇U

(2)
j (x) = 0 a.e. x ∈ Ω.

The third term is equal, taking into account that the transpose matrix of T is −T , so
this integral results in∫

Ω

〈∇Ū
(2)
j (x) −∇U

(2)
j (x), T∇Ū

(1)
j (x) − T∇U

(1)
j (x)〉 dx

and, integrating by parts, it is equal to

−
∫

Ω

div(T∇Ū
(1)
j (x) − T∇U

(1)
j (x))(Ū

(2)
j (x) − U

(2)
j (x)) dx

+

∫
∂Ω

(Ū
(2)
j (x) − U

(2)
j (x))((T∇Ū

(1)
j (x) − T∇U

(1)
j (x)) · n) dS,
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but the function T∇Ū
(1)
j (x) − T∇U

(1)
j (x) is obviously divergence-free, and the func-

tions U (2) and Ū (2) satisfy the same Dirichlet boundary condition. Therefore the
third term also vanishes. Then applying Hölder’s inequality,

α

∫
Ω

|∇U
(1)
j (x) −∇Ū

(1)
j (x)|2 dx ≤ lim

j→∞

∫
Ω

|σj(x)∇Ū
(1)
j (x) + T∇Ū

(2)
j (x)|2 dx

and ∫
Ω

|∇U
(1)
j (x) −∇Ū

(1)
j (x)|2 dx → 0

by (9). For the second components a similar argument works.

3. Proof of Theorem 1. This section is devoted to the computation of the
constrained envelope defined by

W �(A, ρ) = inf

{∫
M

W (F ) dν(F ) : ν ∈ A(A, ρ)

}
,

where

A(A, ρ) =

{
ν homog. H1 Young meas.,

∫
M

F dν(F ) = A,

∫
M

V (F ) dν(F ) = ρ

}
.

The proof follows along the lines of the computations in [18]. For the sake of clarity,
we divide the proof into various steps.

Step 1. Let us consider ν a homogeneous H1 Young measure with barycenter A.
To avoid singular cases we first assume A 	∈ Λ.

By definition of W and V , we can restrict our attention to all admissible measures
ν with support in Λ. That is,

ν = (1 − t)να + tνβ , t ∈ (0, 1), supp(να) ⊂ Λα, supp(νβ) ⊂ Λβ .

This decomposition would not be well-defined when the null matrix belongs to supp(ν).
However this situation cannot happen, as was proved in [3, Theorem 1.3]. There, it
was shown that if null matrix belongs to supp(ν), then ν = δ0, and consequently it
does not have barycenter A 	= 0.2

Let us start studying some properties of first and second moments of such admis-
sible measures. Considering the respective first moments of να and νβ ,

Aα =

∫
Λα

F dνα(F ), Aβ =

∫
Λβ

F dνβ(F ).

It is clear that A = (1 − t)Aα + tAβ , with Aα ∈ Λα and Aβ ∈ Λβ . Then, using the
definition of Λδ, we can write

Aα =

(
z

αTz

)
, Aβ =

(
w

βTw

)
,(11)

and therefore, it is an easy computation to obtain

z =
1

(1 − t)(β − α)
(βA(1) + TA(2)), w =

−1

t(β − α)
(αA(1) + TA(2)).(12)

2In the same way, gradients of admissible functions cannot take zero value.
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Now, let us define the second moments

xα =

∫
Λα

|F (1)|2 dνα(F ), xβ =

∫
Λβ

|F (1)|2 dνβ(F ).

From Jensen’s inequality follows

xα =

∫
Λα

|F (1)|2 dνα(F ) ≥
∣∣∣∣∫

Λα

F (1) dνα(F )

∣∣∣∣2 = |A(1)
α |2 = |z|2,

and similarly xβ ≥ |w|2.

⎫⎪⎬⎪⎭(13)

On the other hand, using the weak continuity of the determinant and the fact
that ν can be generated by a sequence satisfying the hypotheses of Theorem 3, it
holds that

detA =

∫
M

detF dν(F ) = (1 − t)

∫
Λα

detF dνα(F ) + t

∫
Λβ

detF dνβ(F ).(14)

And now, taking into account that if F ∈ Λα, then detF = α|F (1)|2, and F ∈ Λβ

implies detF = β|F (1)|2, it is obtained that

detA = (1 − t)α

∫
Λα

|F (1)|2 dνα(F ) + tβ

∫
Λβ

|F (1)|2 dνβ(F ).

So (14) reads as

detA = (1 − t)αxα + tβxβ .(15)

We now consider the integral constraint. By definition of V we have

ρ =

∫
M

V (F ) dν(F )

= (1 − t)

∫
Λα

1

α

∣∣∣F (1)
∣∣∣2 dνα(F ) + t

∫
Λβ

1

β

∣∣∣F (1)
∣∣∣2 dνβ(F )

=
(1 − t)

α
xα +

t

β
xβ .

(16)

Therefore, from (15) and (16), the second moments of all admissible measures ν ∈
A(A, ρ) such that ν = (1 − t)να + tνβ , t ∈ (0, 1), have to verify

xα =
α(detA− β2ρ)

(1 − t)(α2 − β2)
, xβ =

β(detA− α2ρ)

t(β2 − α2)
.(17)

Step 2. Once we have explicit expressions of xα and xβ , (13) reads as

α(detA− β2ρ)

(1 − t)(α2 − β2)
≥ 1

(1 − t)2(β − α)2
|βA(1) + TA(2)|2,

β(detA− α2ρ)

t(β2 − α2)
≥ 1

t2(β − α)2
|αA(1) + TA(2)|2.

(18)
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First, note that detA− β2ρ ≤ 0 and detA−α2ρ ≥ 0 (otherwise, first and second
inequalities have no sense, respectively) and consequently

α2 ≤ detA

ρ
≤ β2.(19)

On the other hand, if detA = β2ρ or detA = α2ρ, then xα = 0 or xβ = 0,
and therefore A ∈ Λβ or A ∈ Λα, respectively, but we have previously assumed that
A 	∈ Λ. Then, for A 	∈ Λ we can assume strict inequality in (19).

Therefore, making some easy computations, the first inequality is written as

t ≤ 1 +

(
β + α

β − α

) ∣∣βA(1) + TA(2)
∣∣2

α(detA− β2ρ)
,

and the second one is

t ≥
(
β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)
,

so that (
β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)
≤ t ≤ 1 +

(
β + α

β − α

) ∣∣βA(1) + TA(2)
∣∣2

α(detA− β2ρ)
,(20)

which, in this particular case, implies(
β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)
≤ 1 +

(
β + α

β − α

) ∣∣βA(1) + TA(2)
∣∣2

α(detA− β2ρ)
.(21)

As a consequence, for all admissible ν = (1 − t)να + tνβ ∈ A(A, ρ), (A, ρ) has to
verify (19) and (21), which are the inequalities given in the statement of Theorem 1.

Step 3. Obtaining the value of W � is a direct consequence of the definition of
W and (20). If (A, ρ) satisfies (19) and (21),

W �(A, ρ) = inf

{∫
M

W (F ) dν(F ) : ν ∈ A(A, ρ)

}
= inf

{
(1 − t)

∫
Λα

W (F ) dνα(F ) + t

∫
Λβ

W (F ) dνβ(F ) : ν ∈ A(A, ρ)

}

= inf {t : ν ∈ A(A, ρ)} =

(
β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)

for A 	∈ Λ.

Step 4. For the construction of the laminates, we will follow the idea presented
in [18, 19]. First, we observe that for

t0 =

(
β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)
,(22)

substituting in (12) and (17), we see that

xβ =
β2(detA− α2ρ)2

|αA(1) + TA(2)|2(β + α)2
= |w|2,
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so that ∫
Λβ

|F (1)|2 dνβ(F ) = |w|2 = |A(1)
β |2,

and due to the strict convexity of the integrand νβ = δAβ
.

On the other hand, if we determine the rank-one directions going through A with
extreme points on Λα and Λβ , we must look for Aα ∈ Λα, Aβ ∈ Λβ , and r ∈ [0, 1]
such that

A = (1 − r)Aα + rAβ and det(Aα −Aβ) = 0.(23)

After some manipulations, this condition implies that A and r have to satisfy

(24)
α

(1 − r)2(β − α)2

∣∣∣βA(1) + TA(2)
∣∣∣2 +

β

r2(β − α)2

∣∣∣αA(1) + TA(2)
∣∣∣2

+
α + β

r(1 − r)(β − α)2
(αA(1) + TA(2)) · (βA(1) + TA(2)) = 0.

Therefore, there will be such rank-one directions if A is such that the above expression
has solutions for r ∈ [0, 1]. We assert that if (A, ρ) ∈ B, then there exists r ∈ [0, 1]
satisfying (24).

Let us prove our claim. It is clear that condition (A, ρ) ∈ B implies (18). That is
to say, xα ≥ |z|2 and xβ ≥ |w|2. Then, from (15) we deduce that

detA ≥ (1 − t)α|z|2 + tβ|w|2,

which can be written as

t2(β − α)2 detA + t(α|βA(1) − TA(2)|2 − β|αA(1) + TA(2)|2 − (β − α)2 detA)

+β|αA(1) + TA(2)|2 ≤ 0.

Now, if PA(t) stands for the second degree polynomial on the left-hand side, then
(A, ρ) ∈ B implies PA(t) has its roots in [0, 1] (note that PA is an upward parabola
where PA(0) and PA(1) are positive and t ∈ (0, 1)). Making some easy computations,
it turns out that (24) can be written as PA(r) = 0. That is, (A, ρ) ∈ B implies that
there exist as many rank-one directions going through A with extreme points in Λα

and Λβ as roots in equation PA(r) = 0.
Namely, if (21) happens with equality, then it is easy to realize that xα = |z|2

and xβ = |w|2. Therefore the laminate has to be ν = (1− t0)δAα + t0δAβ
for t0 given

in (22). Note that Aα and Aβ are only dependent on t0 and A, so the laminate is
unique. That is, PA(r) has only one solution.

On the contrary, if (21) is a strict inequality, then there are two solutions of
PA(r) = 0, denoted by ri, i = 1, 2, and therefore two rank-one directions going through
A with extreme points in Λα and Λβ . If we denote by Aα,i and Aβ,i, i = 1, 2, the
extreme points in Λα and Λβ , respectively, we can construct second order laminates
in the following way.

Let us consider Āα,i = Aβ + ζi(Aα,i − Aβ,i) such that Āα,i ∈ Λα. We have to
adjust the parameter ζi conveniently. Making some easy computations,

Aβ + ζi(Aα,i −Aβ,i) =

(
w + ζ(zi − wi)

αT
(

β
αw + ζi

α (αzi − βwi)
))

,
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where zi and wi are the corresponding vectors for Aα,i and Aβ,i in the same way as
(12).

This matrix will be in Λα if and only if

w + ζi(zi − wi) =

(
β

α
w +

ζi
α

(αzi − βwi)

)
.

This implies w − ζiwi = 0, and thus

ζi =
ri
t0
.

Then,

Āα,i =

(
z̄i

αT z̄i

)
for z̄i =

ri
t0(1 − ri)(β − α)

(βA(1) + TA(2))

and t given in (22).
In this situation, the laminates

νi,j = (1 − σi,j)δAα,j + σi,j(ρi,jδAβ
+ (1 − ρi,j)δĀα,i

), i, j = 1, 2, i 	= j,

where

σi,j =
t0(rj − ri)

t0(1 − ri) − ri(1 − rj)
, ρi,j =

t0(1 − ri) − ri(1 − rj)

rj − ri
,

where t0 is given in (22), are optimal microstructures,3 and obviously∫
M

W (F ) dνi,j(F ) =

(
β + α

β − α

) ∣∣αA(1) + TA(2)
∣∣2

β(detA− α2ρ)
, i, j = 1, 2, i 	= j.

Step 5. Finally, let us see what happens if A ∈ Λ. For instance, we assume
A ∈ Λα. Then Aα = A, Aβ = 0 and (15), (16) imply detA = α2ρ, and as a
consequence t0 = 0. That is, W �(A, ρ) = 0. In the same way, if A ∈ Λβ , detA = β2ρ
and W �(A, ρ) = 1. This finishes the proof.
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A CONVERSE LYAPUNOV THEOREM FOR LINEAR
PARAMETER-VARYING AND LINEAR SWITCHING SYSTEMS∗
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Abstract. We study families of linear time-varying systems, where time variations have to satisfy
restrictions on the dwell time, that is, on the minimum distance between discontinuities, as well as on
the derivative in between discontinuities. Such classes of systems may be formulated as linear flows
on vector bundles. The main objective of this paper is to construct parameter-dependent Lyapunov
functions, which characterize the exponential growth rate. This is possible in the generic irreducible
case. As an application the Gelfand formula is generalized to the class of systems studied here. In
other words, the maximal exponential growth rate may be approximated by only considering the
periodic systems in the family of time-varying systems. A perspective on the question of continuous
dependence of the exponential growth rate on the data is given.
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systems, linear flows on vector bundles, Gelfand formula, periodic systems
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1. Introduction. In this paper we consider linear time-varying systems of the
form

ẋ(t) = A(t)x(t),(1.1)

where A : R → M is a measurable map, and M is a compact set of real or complex
matrices of a given dimension. We are interested in the exponential growth rate of
not one individual system but a set of systems described by a subset A ⊂ L∞(R,M).
The stability and spectral properties of such systems have been actively investigated
over the past two decades.

In this paper we present a framework covering many of the systems studied in the
areas of linear parameter-varying (LPV) systems with constraints on the derivative
and of linear switching systems with dwell times. We introduce a certain class of
linear time-varying systems that allows for (i) bounds on the minimal time between
discontinuities and (ii) bounds on the derivative of parameter variations between
discontinuities.

The main contribution of the present paper lies in the construction of parameter-
ized Lyapunov functions that characterize the exponential growth rate of the system
under consideration. The construction is possible in the generic irreducible case,
in which the system leaves no nontrivial subspace invariant. For each parameter the
corresponding Lyapunov function is a norm. One of the features of the Lyapunov func-
tions is that for any solution the corresponding infinitesimal decay is upper bounded
by the maximal growth rate. Also the exponential growth rate can be realized instan-
taneously from every initial condition of the state and the parameter. Under mild
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assumptions the Lyapunov functions are Lipschitz continuous in both the state and
the parameter. As in [25], it would be possible to consider smooth approximations to
obtain differentiable Lyapunov functions, which still yield a decay arbitrarily close to
the growth rate. This problem is not pursued here, as the method is well described
in the literature; see [9, 25, 32].

Using the existence of Lyapunov functions, we give a fairly simple proof of a
version of the Gelfand formula. By this result the exponential growth rate can be
approximated to arbitrary precision using periodic parameter variations. This result
would appear to be new for LPV systems with bounds on the derivative as well as for
linear switching systems with dwell time.

The results obtained in this paper are generalizations of [34] on the exponential
growth rate of families of time-varying systems with measurable parameter variations.
The proofs are often similar, but more preparation has to be undertaken to proceed
to the actual results. In [34] it is also shown how the same ideas yield results on
the (Lipschitz) continuity of the growth rate as a function of the data. We briefly
comment on this problem here; see [36] for further details.

It is interesting to note that the subject of exponential growth of certain sets of
linear time-varying systems has been taken up by different communities over time.
We will not try to give an overview of the relevant literature, but an effort has been
made to at least cite landmarks in each of the areas, and the reader is invited to
look for further references in these papers. The literature related to this problem
is not readily accessible because the terms families of linear time-varying systems,
linear differential inclusions, LPV systems, linear flows on vector bundles, and linear
switching systems are different names for very similar situations. All these names
cover at least the case in (1.1), where we consider A = L∞(R,M).

Probably the oldest exponent of this area is formed by the theory of linear flows
on vector bundles, which has been developed in the dynamical systems community
at least since the 1970s. For a recent account of the state of the art insofar as it is
related to control theory, we refer to [13]. In fact, in this book it is shown that a good
deal of work is necessary before system (1.1) with A = L∞(R,M) can be justifiably
interpreted as a linear flow on a vector bundle. Another good general reference in this
area is [8]. The problem of exponential growth rates is treated in [18].

Papers concerned with linear differential inclusions and families of time-varying
systems often treat the case when A = L∞(R,M). In this area a detailed description
of spectral concepts is available (see [11, 12, 13]) and a good Lyapunov theory has
been developed [5, 26, 34]. Furthermore, it is known that the uniform exponential
growth rate can be approximated arbitrarily well by periodic systems. This result is
sometimes called the Gelfand formula in reminiscence of the characterization of the
spectral radius of bounded linear operators as the infimum of norms of its powers; see
[7, 11, 16].

The control and robustness analysis of LPV systems have been actively inves-
tigated during the last decade. In particular, parameter-dependent quadratic Lya-
punov functions for such systems are frequently discussed in the literature, and many
sufficient results for the existence of Lyapunov functions have been obtained in the
framework of linear matrix inequalities (LMIs); see [2, 3, 4, 6, 17, 21, 30, 31]. In some
papers, however, the interesting added feature is that time variations are restricted
by requiring certain bounds on the derivative of the parameter variations as well; see,
e.g., [2]. Also for this case sufficient conditions for the existence of Lyapunov functions
are available in terms of LMIs. It is interesting to note that the parameter variations
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in this case may be interpreted as a solution set to a differential inclusion so that the
results in [32] can be interpreted in such a manner as to yield a converse Lyapunov
theorem also in this case; see Remark 3.3(i). A preliminary version of the present
paper treats exclusively the case of parameter variations without discontinuities [35].

To complete the enumeration of different concepts we have to mention the term
linear switching system, which is to be found most often in engineering literature. For
an overview and much of the related literature we refer to [15, 23, 24]. For instance, the
paper [1] analyzes conditions for exponential stability and gives a complete solution
to the question of which systems stability can be determined based on knowledge of
the Lie algebra generated by the systems matrices. While is often assumed in this
area that the set of matrices M is a finite set, this does not really change the overall
problem; as for inclusions at least, the exponential growth rate defined by M and its
convex hull is the same.1

However, also in the analysis of linear switching systems a certain twist has been
added, which consists of a condition on the minimal time that has to elapse between
two discontinuities of the switching signal. This minimal time is called the dwell
time. This approach derives its motivation in part from adaptive control and has been
discussed in [27, 28]. Sufficient conditions for the existence of Lyapunov functions in
terms of LMIs are available; see, e.g., [20].

We proceed as follows. In section 2 we introduce the exponential growth rate un-
der the (essential) assumption of shift-invariance. This is one of the primary interests
in this paper. The precise definition of the class of systems studied in the paper is
given in section 3 introducing parameter variations defined by a value set, a set of
admissible derivatives, and a dwell time.

One of our initial results will be that each system in this class defines a linear flow
on a vector bundle. This concept from dynamical systems theory treats the following
situation: Given a compact metric space M and a vector space Kn, we consider a
continuous dynamical system

Φ : R ×M × Kn → M × Kn,

where each time-t map Φt : M × Kn → M × Kn can be represented in the form
Φt = (Φ1

t ,Φ
2
t ) such that Φ1

t : M →M is continuous and Φ2
t : M × Kn →Kn is a linear

map in the second component. (Here we have described only trivial vector bundles,
which are all that is needed in this paper. More generally, the described situation is
only valid in appropriate local coordinates.)

So in particular, any LPV system and linear switching system with dwell time
can be interpreted as such a linear flow. While this result is mostly of interest for clas-
sification purposes, it has the advantage nonetheless that the general results on linear
flows are available. In particular, the general theory on linear flows provides results
on growth rates, fiberwise Lyapunov functions, bifurcation theory, and Hartman–
Grobman-type results; see, e.g., [8, 13].

In section 4 a rather tedious analysis of the concatenation structure within the set
of admissible parameter variations is undertaken, which turns out to be vital in the

1In the literature on switching systems it is often assumed that parameter variations have to
be piecewise constant with an arbitrarily small, positive, lower bound on the distance between dis-
continuities. With respect to the problem treated in this paper, note that there is no difference
in the exponential growth rate, whether one considers parameter variations or switching signals in
L∞(R,M) or in the subset thereof consisting of piecewise continuous functions with an (arbitrarily
small) lower bound on the distance between discontinuities.
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subsequent construction of Lyapunov functions. In section 5 irreducibility of a sys-
tem is introduced and some immediate consequences of this property are shown. The
assumption of irreducibility is used in section 6 to construct parameter-dependent Lya-
punov norms that characterize the exponential growth rate. We particularly discuss
the case of linear switching systems with dwell time, for which an easy interpretation
is available. Finally, in section 7 the Gelfand formula is proved, and we comment on
the question of continuous dependence on the systems parameters in section 8. The
paper concludes with some final comments in section 9.

Finally, we would like to warn the reader that our use of the term Lyapunov
function is not quite standard. It will be used to denote functions that characterize
the exponential growth rate of the system if evaluated along trajectories. Now if
the system is stable, then this will give the usual decrease condition. However, if the
system is not exponentially stable, then we still speak of a Lyapunov function because
of the characterization of the growth rate.

2. Families of linear time-varying systems. Let K = R,C denote the real
or the complex field. In this paper we study families of continuous time LPV systems
in Kn that are given in the form of linear systems subject to (time-varying) variations
of certain parameters entering the equation. The parameter space Θ is taken to be a
compact subset of Km, and the map A : Θ → Kn×n that associates a matrix to a given
parameter is assumed to be continuous. Parameter variations are always taken to be
elements of L∞(R,Θ). Every such parameter variation θ (·) induces a time-varying
linear system of the form

.
x(t) = A(θ(t))x(t), t ∈ R.(2.1)

The corresponding evolution operator is denoted by Φθ (t, s), t, s ∈ R.
The main object of this paper is to discuss families of linear time-varying systems

defined by a set of admissible parameter variations U ⊂ L∞(R,Θ). An important
property of these sets is the following.

Definition 2.1. A set U ⊂ L∞(R,Θ) is called shift-invariant if for all u ∈ U
and all t ∈ R the function w (·) := u(t+ ·), defined by w (s) = u(t+ s), is an element
of U .

We now define the primary interest in this paper, which is the (uniform) expo-
nential growth rate associated with system (2.1). Given the map A : Θ → Kn×n and
the set of admissible parameter variations U ⊂ L∞(R,Θ), define for t ≥ 0 the sets of
finite time evolution operators

St(A,U) := {Φu(t, 0) |u ∈ U}, S(A,U) :=
⋃
t≥0

St(A,U).

We now introduce for t > 0 finite time growth constants given by

ρ̂t(A,U) := sup

{
1

t
log ‖S‖ |S ∈ St(A,U)

}
.

It is easy to see that under the assumption of shift-invariance of U , the function
t �−→ tρ̂t(A,U) is subadditive. Using a folklore result (see, e.g., [22, pp. 27–28]), this
implies that the following limit exists:

ρ̂(A,U) := lim
t→∞

ρ̂t(A,U) = inf
t≥0

ρ̂t(A,U).(2.2)
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It is well known that an alternative way to describe ρ̂ is given by

ρ̂(A,U) = inf{β ∈ R | ∃M ≥ 1 such that ‖Φu(t, 0)‖ ≤ Meβt for all u ∈ U , t ≥ 0}.
(2.3)

For this reason the quantity ρ̂(A,U) is called the uniform exponential growth rate of
the family of linear time-varying systems of the form (2.1) given by U and A. An
alternative way to define exponential growth is to employ a trajectorywise definition.
In this case we define the Lyapunov exponent corresponding to an initial condition
x0 ∈ Kn \ {0} and u ∈ U by

λ(x0, u) := lim sup
t→∞

1

t
log ‖Φu(t, 0)x0‖(2.4)

and define the exponential growth rate as κ(A,U) := sup{λ(x, u) | 0 
= x ∈ Kn, u ∈
U}.

If U is shift-invariant and closed in the weak-∗ topology induced by L∞(R,Km),
then U is metrizable (recall that Θ is compact), and by [13, Lem. 4.2.4] the shift is
continuous on U endowed with that topology. If also the map (t, x, u) �→ Φu(t, 0)x
is continuous jointly in all variables (which is affirmative if u �→ Φu(t, 0) is uniformly
continuous on compact time intervals), then the following time-t maps define a con-
tinuous dynamical system or a flow on U × Kn:

(u, x) �→ (u(t + ·),Φu(t, 0)x) ,

and in fact define a linear flow on the vector bundle π : U × Kn → U . Under this
assumption it follows using Fenichel’s uniformity lemma that κ(A,U) = ρ̂(A,U); see
[13, Prop. 5.4.15].

The outlined setup works if we assume that the set U is convex and that the
function A is affine in θ; see [13, Chap. 4]. These assumptions, however, are somewhat
restrictive. In the following section, it is shown that LPV systems and linear switching
systems with dwell times may be formulated as linear flows on vector bundles.

As it is our aim to construct a certain class of parameter-dependent Lyapunov
functions, it should be noted that a general theory of quadratic Lyapunov functions
for linear flows on vector bundles exists; see [8, Chap. 3]. However, this theory works
with Lyapunov functions defined individually in every fiber; in our case, individually
for every u ∈ U . This is too fine a point of view for the results that we want to obtain.
In particular, despite some effort on the part of the author, the fine point of view has
not yielded a way of proving the Gelfand formula.

One might now be tempted to take a very coarse point of view and to look for
norms that are Lyapunov functions for the whole system and characterize the quantity
ρ̂(A,U), as for the case of linear differential inclusions [34]. However, the following
lemma shows that this is not a very fruitful enterprise.

Lemma 2.2. Let U ⊂ L∞(R,Θ) be shift-invariant and assume system (2.1)
defines a linear flow on the vector bundle π : U ×Kn → U . Assume that the constant
functions u ≡ θ, θ ∈ Θ are contained in U . If there is a norm v on Kn, such that for
all x ∈ Kn, u ∈ U and the corresponding evolution operator Φu(t, s) it holds that

v(Φu(t, 0)x) ≤ eρ̂(A,U)t v(x) ∀t ≥ 0,(2.5)

then ρ̂(A,U)=ρ:= max{λ(x,B) | 0 
= x ∈ Kn, B : R→A(Θ) measurable}, where λ(x,B)
denotes the Lyapunov exponent corresponding to the initial condition x and B defined
as in (2.4).
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Proof. Clearly, we only have to show that ρ̂(A,U) ≥ ρ. Let v∗ be the dual norm
to v; see [19]. The assumption (2.5) implies that for all A ∈ A (Θ), all x ∈ Kn, and all
l ∈ Kn with 〈l, x〉 = v(x) = v∗(l) = 1 we have 〈l, Ax〉 ≤ ρ̂(A,U) by [10, Thm. 4.6.3].
This, however, implies that ρ ≤ ρ̂(A,U) by [5, Thm. 5].

By the previous lemma, a norm satisfying (2.5) can only exist for (2.1) if the
parameter-varying system realizes the exponential growth, which is obtained by al-
lowing all measurable functions with values in A(Θ); in other words, by studying (2.1)
with U = L∞(R,Θ). For general sets of parameter variations this situation is rarely
encountered. For this reason we use a different approach that introduces a family of
norms with an extremal property. The idea of using parameter-dependent Lyapunov
functions, proposed by several authors (see, e.g., [2, 20, 21]), can be made exact in this
way. That is, a family of parameter-dependent Lyapunov norms may be constructed
such that the exponential growth rate of system (2.1) is the incremental growth rate
with respect to this family. Note that we cannot restrict our attention to quadratic
norms to perform such a construction.

Remark 2.3. The main technical problem in this paper is that S(A,U) does not
naturally carry the structure of a semigroup. As an example consider the case when
U consists of all globally Lipschitz continuous functions with values in Θ and fixed
Lipschitz constant L. For u1, u2 ∈ U the concatenation of u1|[0,t] and u2|(t,∞) is an
admissible parameter variation if and only if u1(t) = u2(t). This complicates matters
compared to the case of linear inclusions of the form

ẋ ∈ {Ax | A ∈ A(Θ)},

as studied in [5, 11, 15, 16, 34] and references therein.

3. Parameter variations. We denote the space of nonempty, compact subsets
of Km by K (Km) and the subset of nonempty, convex, compact subsets of Km by
Co (Km). Both these spaces are complete metric spaces if endowed with the Hausdorff
metric defined by

dH (X,Y ) := max

{
max
x∈X

dist (x, Y ) , max
y∈Y

dist (y,X)

}
.

All ensuing topological statements on K (Km) ,Co (Km) should be understood with
respect to this metric. The convex hull of a set X is denoted by convX. We denote
by X − y the set {x− y | x ∈ X}, as usual.

In the remainder of the paper the admissible parameter variations are described
by the following data: a space of parameters Θ ∈ K (Km) given as a finite union of
pairwise disjoint compact convex sets Ωj , j = 1, . . . , l; a space describing the rate
of parameter variation Θ1 ∈ Co (Km); a dwell time h ∈ (0,∞] that describes the
minimal time between discontinuities; and a continuous map A ∈ C(Km,Kn×n). A
system is therefore now a quadruple Σ = (h,Θ,Θ1, A) ∈ (0,∞]×K (Km)×Co (Km)×
C(Km,Kn×n). We will always assume that the following assumptions are satisfied:

(A1) h ∈ (0,∞];
(A2) Θ ⊂ Km is a finite, disjoint union of sets Ωj ∈Co (Km), j ∈{1, . . . , l}. If

h = ∞, then l = 1, i.e., Θ is compact and convex;
(A3) Θ1 ∈ Co (Km);
(A4) 0 ∈ Θ1;
(A5) A : Θ → Kn×n is a continuous map.

In some cases we will need an additional assumption that allows for additional freedom
in the construction of parameter variations. Recall that the relative interior of a
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convex set M, denoted by riM, is the interior of M in the relative topology of the
affine space generated by M. Or in other words, the interior of M relative to the
smallest affine space containing M. With this we formulate the following condition.

(A6) 0 ∈ ri Θ1 and span Θ1 ⊃ span (Ωj − ηj), j = 1, . . . , l, for some ηj ∈ Ωj .
In order to denote the discontinuities of parameter variations, which for the pur-

poses of this paper are discrete sets, we consider (bounded or unbounded) index sets
I ⊂ Z. In the following it will always be tacitly assumed that these index sets are
given as the intersection of a real interval with Z, i.e., of the form I := [a, b] ∩ Z,
where a, b ∈ R ∪ {±∞}.

Definition 3.1. Consider a system Σ = (h,Θ,Θ1, A) satisfying (A1)–(A5). If
h ∈ (0,∞), a parameter variation θ : R → Θ is called admissible (with respect to Σ)
if there is an index set Iθ ⊂ Z and times tk, k ∈ Iθ, such that

(i) h ≤ tk+1 − tk for k ∈ Iθ, k < sup Iθ,
(ii) for k ∈ Iθ, k < sup Iθ the function θ is absolutely continuous on the interval

[tk, tk+1) and satisfies

θ̇(t) ∈ Θ1 a.e.(3.1)

(This condition also applies to (−∞, inf Iθ), resp., (sup Iθ,∞), if inf Iθ, resp.,
sup Iθ, is finite.)

If h = ∞, the admissible parameter variations are given as the set of absolutely
continuous functions θ : R → Θ satisfying (3.1) a.e. on R.

The set of admissible parameter variations is denoted by U or U(h,Θ,Θ1, A) if
dependence on the data needs to be emphasized. By convention we let t0 > 0, and
t0(u) denotes the smallest positive discontinuity of a parameter variation u. If there
is no such discontinuity, then we set t0(u) := ∞.

Remark 3.2. (i) Note that the set U defined above is clearly shift-invariant,
but not convex in general, because convex combinations of the admissible parameter
variations would in general have too many switches. Thus [13, Chap. 4] is not directly
applicable to our situation. We will be able to show the necessary properties of U by
a different strategy, which also allows us to dispense with the assumption that A is
affine.

(ii) In the case h = ∞, it is reasonable to assume that Θ itself is convex, as
parameter variations cannot leave the sets Ωj . So with the notation of (A2) we have
ρ̂(∞,Θ,Θ1, A) = maxj ρ̂(∞,Ωj ,Θ1, A). Hence it is sufficient to assume Θ is convex.

(iii) Assumption (A4) guarantees that the constant trajectories u ≡ θ, θ ∈ Θ
are admissible parameter variations. This assumption is not absolutely essential but
simplifies several of the ensuing statements. It would, of course, be interesting to
consider systems in which only the interplay of the continuous and discontinuous
behavior allows for trajectories defined on R. An example of this kind is given by
Θ = [0, 2] ,Θ1 = [1, 2], h = 1.

(iv) If Assumption (A6) is satisfied, then for a fixed convex component Ωj of Θ the
set of derivatives Θ1 contains a neighborhood of 0 in the linear subspace span (Ωj−ηj)
for ηj ∈ Ωj . Thus there is a constant c > 0 such that for any pair θ, η ∈ Ωj we have
c(θ − η) ∈ Θ1. Hence for all t > ‖θ − η‖/c there is a u ∈ U with u(0) = θ, u(t) = η.
In particular, as the Ωj are compact, there is a constant c̄ > 0 such that any pair
θ, η ∈ Ωj may be connected by an admissible parameter variation in a time equal to
c̄ for all j = 1, . . . , l.

(v) We explicitly exclude the case in which the parameter variations θ(·) are
arbitrary (measurable) functions taking values in Θ. This corresponds to taking
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h = 0 in a way that can be made precise. For this case the results analogous to those
obtained in this paper are already available in the literature; see [5, 13, 16, 34, 37].

Remark 3.3. (i) In the literature on LPV systems it is often assumed that the
parameter variations θ(·) are continuously differentiable and that the derivative satis-
fies certain constraints. However, it can be shown that the exponential growth rates
defined by the sets

{θ : R → Θ | θ is Lipschitz continuous and θ̇(t) ∈ Θ1 a.e.}

and

{θ : R → Θ | θ is continuously differentiable and θ̇(t) ∈ Θ1 for all t ∈ R}

are the same [37] so that our setup from the point of view of stability theory encom-
passes this standard case. We find the set of Lipschitz continuous parameter variations
easier to handle.

In fact, LPV systems are a special case, which may be subsumed under the
following more general framework; see [37]. Consider systems of the form

.
x(t) = A(θ(t))x(t), t ∈ R,

θ̇(t) ∈ F(θ(t)) a.e. t ∈ R,
(3.2)

where A : Θ → Kn×n is a given continuous map, Θ ⊂ Km is a compact, pathwise
connected set, and F : Θ → Km is an upper semicontinuous set-valued map with
compact values that defines a complete dynamical system on Θ. Under controllability
assumptions for the parameter variations, a number of the basic results of this paper
hold. Let us point out that for systems of the form (3.2) with ρ̂ < 0 the natural
attractor to consider is {0} × Θ. For this case a Lyapunov function theory exists.
Namely, ρ̂ < 0 if and only if there exists a smooth Lyapunov function on Kn × Θ
for the overall system (3.2); see [9, 32]. This result is therefore also applicable to
the LPV systems commonly studied in the literature. With respect to this case, the
contribution of the present paper is merely a construction of a particular type of
Lyapunov functions (and a proof of the Gelfand formula, of course).

(ii) A further class of families of linear time-varying systems that has attracted
widespread interest recently is the so-called linear switching systems with dwell times,
as discussed in the introduction. These systems are often given by a finite set of
matrices Θ = {A1, . . . , Ak} and a restriction on discontinuities by two numbers h > 0
and N ∈ N. In our terminology a parameter variation (in this context often called
a switching function) is a piecewise constant function θ : R → Θ such that on any
compact time interval [a, b] the number of discontinuities is bounded from above by

b− a

h
+ N.

The class of systems we have set up encompasses the case in which N = 1. The
Ωj are then simply singleton sets, and Θ1 is irrelevant. There does not seem to be
a significant technical obstacle to generalizing the results of this paper to the case
N > 1. However, the framework used here does become rather tedious for larger N
so that we have chosen to restrict the system class for the time being.

4. Concatenation of admissible parameter variations. In this section the
basic machinery for describing our problem is set up. We introduce sets of parameter
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variations that can be concatenated to a given one, and we analyze the associated
sets of evolution operators. To this end some topological properties of the space
of parameter variations are needed. These imply, in particular, that we are indeed
dealing with certain linear flows on vectors bundles. Then several useful properties
of the sets of evolution operators are collected that arise from the concatenation
restrictions. As a by-product, it is obtained that the exponential growth rate is at
least an upper semicontinuous function of the data.

As we will be dealing with set-valued maps, let us briefly recall that a set-valued
map F from X ⊂ Km to Kn is a map that associates to every point in X a subset
of Kn. We will encounter only the easy case, in which the images are compact sets.
Such a map is called upper semicontinuous at x ∈ X if for every ε > 0 there exists
a δ > 0 such that ‖x − x̃‖ < δ implies F (x̃) ⊂ F (x) + εB, where B is the open unit
ball in Kn. The map F is called upper semicontinuous, if it is so at every x ∈ X, and
locally Lipschitz continuous, if for every compact subset K ⊂ X there is a constant
L such that dH(F (x), F (y)) < L‖x− y‖ for all x, y ∈ K.

If F is a set-valued map from X1 ×X2 to Kn, then we call the above properties
in x1 uniform with respect to x2 if the δ corresponding to an ε, resp., the L, can be
chosen for x1 uniformly for all x2 ∈ X2.

In this section we assume the system Σ = (h,Θ,Θ1, A) to be given. For ease
of notation we will therefore suppress the dependence of ρ̂(A,U), St(A,U), etc. on
these data. As we have noted before, simple concatenation of admissible parameter
variations does not in general result in an admissible parameter variation. In contrast,
for every admissible parameter variation u ∈ U and t ≥ 0 there is a certain subset of
U of admissible parameter variations w for which the following concatenation is also
admissible:

(u �t w)(s) :=

{
u(s), s < t,
w(s− t), t ≤ s.

(4.1)

It is easy to see that this subset depends on the continuous extension of u at t
from the left and, in the case h ∈ (0,∞), on the difference between the time instance t
and the largest discontinuity of u smaller than t. To denote these quantities we define

u(t−) := lim
s↗t

u (s)(4.2)

and

τ− (u, t) := min{h, t− max{tk | tk < t, where tk is a discontinuity of u}}.(4.3)

We first treat the case h ∈ (0,∞) and define for (θ, τ) =: ω ∈ Θ × [0, h) the set
of concatenable parameter variations by

U (ω) := U (θ, τ) := {u ∈ U |u (0) = θ and h ≤ t0 (u) + τ} ;

here τ represents the time elapsed since the last discontinuity. For τ = h and ω =
(θ, h),

U (ω) := U (θ, h) := {u ∈ U |u (0) = θ or h ≤ t0 (u)} .

Note that with this definition we clearly have U = ∪ω∈Θ×[0,h] U (ω), as every
admissible parameter variation is continuous on some interval of the form [0, τ ].
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The interpretation of the set U (θ, τ) is the following. Consider a parameter vari-
ation u defined on the interval (−∞, t) and the concatenation (4.1). If a discontinuity
of u occurs in the interval (t−h, t), then admissible concatenations in t have to result
in a continuous function in t. This requires u(t) = w(0). Additionally, w has to wait
for a time span of length at least h−τ−(u, t) until it is allowed to have a discontinuity,
so t0(w) ≥ h− τ−(u, t) is also necessary. If there is no discontinuity of u in (t− h, t),
equivalently if τ−(u, t) = h, then we can either introduce a discontinuity at t, in
which case t0(w) ≥ h is necessary, or we can continue continuously with u(t) = w(0),
in which case there is no restriction on the first discontinuity of w. In all, for w ∈ U
the concatenation u �t w defines an admissible parameter variation if and only if

w ∈ U(u(t−), τ− (u, t)).

Note that for 0 ≤ τ1 < τ2 ≤ h we have

U (θ, τ1) ⊂ U (θ, τ2) .

This implies that for 0 ≤ τ ≤ τ− (u, t) we have at least the property that if
w ∈ U(u(t−), τ), then u �t w from (4.1) defines an admissible parameter variation.
Furthermore, it should be noted that the sets U (θ, 0) are not really needed for con-
catenation purposes but are included for continuity reasons.

In the case h = ∞ there is no need to account for discontinuities. We thus define
for θ ∈ Θ the set

U(θ) := {u ∈ U | u(0) = θ}.

For the sake of a unified notation, we define

Π(Θ, h) :=

{
Θ × [0, h] if h ∈ (0,∞),
Θ if h = ∞.

In the following we denote the restriction of a parameter variation u to an interval
(a, b) by u|(a,b). Given the sets U(ω), ω ∈ Π(Θ, h), we now define parameter variations
that may be an “initial piece” for all parameter variations w ∈ U (ω) by

B(θ, τ) :=
{
u|(−∞,t) |u ∈ U , u(t−) = θ, τ ≤ τ−(u, t)

}
if h ∈ (0,∞),

B(θ) :=
{
u|(−∞,t) |u ∈ U , u(t−) = θ

}
else.

Note that any parameter variation defined on a finite interval (s, t) can be extended to
an admissible parameter variation on R if the conditions of Definition 3.1 are respected
on (s, t). We will therefore also use the notation u|(s,t) ∈ Bt (ω). The interpretation
of this is that a suitable extension of u|(s,t) to (−∞, t) lies in Bt (ω) for ω ∈ Π(Θ, h).

In all we have introduced notation just to be able to make the following statement,
which is now obvious.

Lemma 4.1. Consider a system Σ = (h,Θ,Θ1, A) satisfying (A1)–(A5) and let
u,w ∈ U . The concatenation (4.1) yields an admissible parameter variation u �t w if
and only if there exists ω ∈ Π(Θ, h) such that

u|(−∞,t) ∈ B (ω) and w ∈ U (ω) .

For each ω ∈ Π(Θ, h) and t ≥ 0 we define the set of evolution operators “starting
in ω” by

St(ω) := {Φu(t, 0) | u ∈ U (ω)}.(4.4)
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Similarly, we define for ω, ζ ∈ Π(Θ, h) and for t ≥ 0 the sets of evolution operators
“starting in ω and ending at ζ” by

Rt(ω, ζ) := {Φu(t, 0) |u ∈ U(ω), u|(−∞,t) ∈ B(ζ),

and for all w ∈ U(ζ) it holds that u �t w ∈ U(ω)}.
(4.5)

Thus by definition if R ∈ Rs(ω, ζ) and S ∈ St(ζ), then SR ∈ St+s (ω).
Remark 4.2. The definition of Rt(ω, ζ) might seem peculiar at first glance. In

fact, in the case h=∞ the third condition in (4.5) is superfluous. It is sufficient
that u(0) = θ, u(t) = η in order for u �t w ∈ U(θ) for all w ∈ U(η). However, if
h ∈ (0,∞), then although the condition u|(−∞,t) ∈ B (ζ) implies that u�tw defines an
admissible parameter variation if w ∈ U(ζ), it does not automatically imply that this
concatenation lies in U(ω). For this, further restrictions regarding the discontinuities
have to be observed. Namely, if ω = (θ, τ) and ζ = (η, σ), a short calculation shows
that it is necessary that t ≥ σ − τ to guarantee u �t w ∈ U(ω) for all w ∈ U(ζ). In
particular, if t ≥ h, then again the third condition in (4.5) is superfluous.

We now define

S≤T (ω) :=
⋃

0≤t≤T

St(ω) and S(ω) :=
⋃
t≥0

St(ω), resp.,

R≤T (ω, ζ) :=
⋃

0≤t≤T

Rt(ω, ζ) and R(ω, ζ) :=
⋃
t≥0

Rt(ω, ζ).

Note that for every ω ∈ Π(Θ, h) the set R(ω, ω) is a semigroup.
Remark 4.3. It is useful to keep in mind the following remark on parameter

variations connecting two points ω, ζ ∈ Π(Θ, h). If h ∈ (0,∞), then for all ω, ζ ∈
Θ × [0, h] the set R2h(ω, ζ) is not empty. For if ω = (θ, τ), ζ = (η, σ), then it suffices
to define u(s) = θ, 0 ≤ s < h and u(s) = η, h ≤ s ≤ 2h. Similarly, if h = ∞ and (A6)
holds, then it follows from Remark 3.2(iv) and the constant c̄ used in that remark
that Rc̄(θ, η) 
= ∅ for all θ, η ∈ Θ.

In a first step let us clarify the continuity properties of the sets just defined. To
this end we note the following consequence of the Arzela–Ascoli theorem.

Lemma 4.4. Let Θ ∈ K (Km), Θ1 ∈ Co (Km), h ∈ (0,∞] satisfy (A1)–(A4) and
consider the space U of admissible parameter variations in the sense of Definition 3.1.

Given T > 0 and sequences ωk, ζk ∈ Π(Θ, h), uk ∈ U(ωk) with Φuk
(T, 0) ∈

R(ωk, ζk), there exist subsequences such that
(i) the limits limμ→∞ ωkμ =: ω and limμ→∞ ζkμ =: ζ exist;
(ii)

{
ukμ

}
μ∈N

converges in the weak-∗topology on [0, T ] to an admissible parame-

ter variation u ∈ U(ω) with Φu(T, 0) ∈ R(ω, ζ).
Furthermore,

Φukμ
(t, 0) → Φu(t, 0) uniformly on [0, T ].

Proof. Fix T > 0. By compactness we may assume that ωk → ω and ζk → ζ. For
the case h = ∞ the claims are immediate from the Arzela–Ascoli theorem.

We now treat the case h ∈ (0,∞) and let ωk =: (θk, τk) → (θ, τ) and ζk =:
(ηk, σk) → (η, σ). For each k the function uk has finitely many discontinuities on
[0, T ], the number of which is bounded by T/h + 1. By choosing an appropriate
subsequence we may therefore assume that the number of discontinuities of uk is
equal to a certain number 0 ≤ l ≤ T/h + 1 independent of k. Furthermore, without
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loss of generality the discontinuities 0 < s1k < · · · < slk ≤ T of uk converge to points
s1, . . . , sl as k → ∞. Clearly, sj+1 − sj ≥ h, j = 1, . . . , l − 1, as the same is true for
the points s1k, . . . , slk for all k.

As Θ and Θ1 are bounded, the conditions of the Arzela–Ascoli theorem are satis-
fied by the uk on [sj + ε, sj+1 − ε] for all ε > 0 small enough. By applying a diagonal
sequence argument, we may assume that uk converges to a function u uniformly on
any interval of the form [sj + ε, sj+1 − ε] for ε > 0 small enough. If s1 > 0, the same
argument applies to the interval [0, s1 − ε]. Similarly, if sl < T , we can treat the
interval [sl + ε, T ] in this way. It follows that u is well defined on [0, T ] \ {s1, . . . , sl}.
By continuous extension from the right in the points s1, . . . , sl we obtain that u is
Lipschitz continuous on each of the intervals [sj , sj+1). By construction, u(t) ∈ Θ for
all t ∈ [0, T ]. Furthermore, u̇ (·) is the weak-∗ limit of an appropriate subsequence of
the u̇k(·) (as Θ1 is compact). By the convexity of Θ1 it follows that u̇(t) ∈ Θ1 for
almost all t ∈ [0, T ]. Hence u is admissible.

We now show that u ∈ U(θ, τ). If τ ∈ [0, h), then s1 > 0 because s1k + τk ≥ h
by definition, and hence s1 ≥ h − τ > 0. Thus uk(0) = θk → θ = u(0) by uniform
convergence on [0, s1−ε] for some ε > 0 small enough. This shows that u ∈ U(θ, τ). If
τ = h and s1 > 0, the same argument is applicable so that it remains to treat the case
when τ = h and s1 = 0. In this case we have defined u(0) as the continuous extension
of u|(0,s2), so that u(0) 
= θ is possible. However, we also have s2 ≥ h, and so the first
discontinuity of u occurs after time h. Thus u ∈ U(θ, h) according to Definition 3.1.
The arguments showing that u|[0,T ) ∈ B(η, σ) are completely analogous. To show that
Φu(T, 0) ∈ RT (ω, ζ) we finally have to check that T ≥ σ − τ by Remark 4.2. This
follows by the assumption T ≥ σk − τk for all k.

The final statement is now immediate from the uniform convergence of the uk on
[0, T ] \ ∪l

j=1(sj − ε, sj + ε) for all small ε > 0.
We note an immediate consequence, which is of independent interest, and which

will turn out to be useful in section 7.
Corollary 4.5. Given a system Σ = (h,Θ,Θ1, A) satisfying (A1)–(A5), the set

U is a metrizable compact space, and the map

(t, u, x) �→ (u(t + ·),Φu(t, 0)x)(4.6)

defines a linear flow on the vector bundle π : U × Kn → U .
Proof. It is a standard result that L∞(R, conv Θ) endowed with the weak-∗ topol-

ogy is compact and metrizable. The shift u(·) �→ u(t + ·) is continuous on that space
by [13, Lem. 4.2.4]. Lemma 4.4 shows that U is a compact subset of that space, and
so in particular is also metrizable. Furthermore, by the same lemma it follows that
(4.6) is continuous as a function of t, u, x. Linearity in the x component is clear by
construction.

We are now ready to prove an essential though fairly basic lemma concerning
the dependence of the parameterized sets of transition operators on time and the
parameters. To this end we introduce the set

W := {(t, ω, ζ) ∈ R+ × Π(Θ, h)2 | Rt(ω, ζ) 
= ∅}.

Lemma 4.6. Consider system (2.1) given by Σ satisfying (A1)–(A5). Then
(i) for all (t, ω, ζ) ∈ [0,∞) × Π(Θ, h)2 the sets St(ω) and Rt(ω, ζ) are compact.
(ii) the maps S : R+ × Π(θ, h) → K(Kn), R : W → K(Kn) given by

(t, ω) �→ St(ω), (t, ω, ζ) �→ Rt(ω, ζ)(4.7)

are upper semicontinuous.
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(iii) assume h ∈ (0,∞) and denote ω = (θ, τ), ζ = (η, σ). Then for fixed θ ∈ Θ
the maps in (4.7) are locally Lipschitz continuous in t, τ (resp., in t, τ, σ for
fixed θ, η). For h = ∞ and θ ∈ Θ (resp., θ, η ∈ Θ) fixed, the maps are locally
Lipschitz continuous in t.

(iv) if additionally (A6) holds, the maps from (4.7) are locally Lipschitz continuous
on R+ × Π(Θ, h) (resp., W ).

(v) if (A6) holds and S(A,U) is bounded, the Lipschitz constants with respect to
ω ∈ Π(Θ, h) (resp., (ω, ζ) ∈ W ) may be chosen uniformly in t.

(vi) if h ∈ (0,∞) and S(A,U) is bounded, the maps from (4.7) are upper semi-
continuous in (θ, τ) (resp., (θ, τ, η, σ)) uniformly in t.

Proof. It is clear that each of the sets St(θ, τ),Rt(θ, τ, η, σ) is bounded by the
boundedness of A(Θ). From Lemma 4.4 it is now immediate that they are also closed,
so that the proof of (i) is complete. Assertion (ii) is another immediate consequence
of Lemma 4.4.

For the remaining statements we restrict our attention to the case h ∈ (0,∞)
and the sets St(θ, τ), as the arguments for h = ∞, resp., Rt(θ, τ, η, σ), are of a very
similar nature.

In order to show (iii), let θ be fixed and consider a compact time interval [0, T ].
Let t1, t2 ∈ [0, T ] and τ1, τ2 ∈ [0, h]. We may assume without loss of generality that
τ1 ≤ τ2. Note that in this case we have St(θ, τ1) ⊂ St(θ, τ2) for all t ≥ 0. Let
S = Φu(t2, 0) ∈ St2(θ, τ2) for some u ∈ U . As 0 ∈ Θ1, this implies that

S̃ :=

{
eA(θ)t1 if t1 ≤ τ2 − τ1,
Φu(t1 − (τ2 − τ1), 0)eA(θ)(τ2−τ1) else

is an element of St1(θ, τ1). We obtain for the second case that

‖S − S̃‖ ≤ ‖S‖‖I − eA(θ)(τ2−τ1)‖ + ‖Φu(t2, t1 − (τ2 − τ1)) − I‖‖S̃‖
≤ L|τ2 − τ1| + L(|t2 − t1| + |τ2 − τ1|)

(4.8)

for a suitable constant L independent of S and θ (which exists as, by the compactness
of Θ, the set of evolution operators of length t generated by the system is uniformly
bounded for t ∈ [0, T ]). It is now easy to check that the same estimates apply to the
first case if we use t1 ≤ τ2 − τ1 along the way.

Conversely, let S = Φu(t1, 0) ∈ St1(θ, τ1) for some u ∈ U . Then S ∈ St1(θ, τ2) by
definition. If t2 ≤ t1, then S̃ := Φu(t2, 0) ∈ St2(θ, τ2). Otherwise, letting η := u(t−1 )
we have S̃ := eA(η)(t2−t1)S ∈ St2(θ, τ2). Using this, the required Lipschitz estimate in
|t1 − t2| can be obtained easily.

Thus we have obtained the desired local Lipschitz estimate in (t, τ).
In order to show (iv) note that we have shown local Lipschitz continuity in t, τ uni-

formly in θ. Thus, if we prove Lipschitz continuity with respect to θ locally uniformly
in t, τ , then we have overall local Lipschitz continuity. To this end it is sufficient to
restrict our attention to one of the convex components Ωj of Θ, which we now assume
to be fixed. Fix θ1, θ2 ∈ Ωj . As (A6) holds, we may use Remark 3.2(iv) to obtain
that the map s �→ θ1 + sc(θ2 − θ1)/‖θ2 − θ1‖, s ∈ [0, ‖θ2 − θ1‖/c] is the initial part
of an admissible parameter variation connecting θ1 and θ2. Here c > 0 is a suitable
constant depending only on Θ,Θ1. Denote by R ∈ S‖θ2−θ1‖/c(θ1, τ) the corresponding
evolution operator. For any S = Φu(t, 0) ∈ St(θ2, τ) with t ≥ ‖θ2 − θ1‖/c, it follows
that S̃ := Φu(t− ‖θ2 − θ1‖/c, 0)R ∈ St(θ1, τ). Then again

‖S − S̃‖ ≤ ‖S‖‖I −R‖ + ‖Φu(t, t− ‖θ2 − θ1‖/c) − I‖‖S̃‖,(4.9)



A CONVERSE LYAPUNOV THEOREM 223

which allows for a Lipschitz estimate in ‖θ1 − θ2‖ independently of t ∈ [‖θ2 − θ1‖/
c, T ], τ ∈ [0, h] as in (4.8), and using symmetry, the proof is complete. The case that
t < ‖θ2 − θ1‖/c is an easy exercise.

(v) If the set of evolution operators of the system is bounded, then the expressions
in (4.8) and (4.9) can be bounded independently of S, S̃ so that L does not depend
on t, as desired.

(vi) On the bounded interval [0, 3h] the assertion is clear from Lemma 4.4 so that
we restrict our attention to t ≥ 3h.

Fix (θ0, τ0) ∈ Θ × [0, h]. According to (i) the map (θ, τ) �→ S3h(θ, τ) is upper
semicontinuous at (θ0, τ0) so that for every ε > 0 there exists a δ > 0 such that ‖θ −
θ0‖+|τ−τ0| < δ implies S3h(θ, τ) ⊂ S3h(θ0, τ0)+εB. Let t ≥ 3h, Φu(t, 3h)Φu(3h, 0) ∈
St(θ, τ) be arbitrary, and let w ∈ U(θ0, τ0) be such that ‖Φu(s, 0) − Φw(s, 0)‖ < ε
for all s ∈ [0, 3h]. The proof of Lemma 4.4 shows that we may assume that the
discontinuities of u and w are no more than ε apart.

Let su, sw ∈ [0, 3h] be two discontinuities of u, resp., w with |su − sw| < ε
(assuming they exist; if not, set su := sw := 3h/2) and define

ũ(t) :=

{
w(t), t < sw,
u(t− sw + su), t ≥ sw.

Then Φũ(t, 0) ∈ St(θ0, τ0) and we obtain that

‖Φu(t, 0) − Φũ(t, 0)‖ ≤ ‖Φu(t, su)‖‖Φu(su, 0) − Φw(sw, 0)‖
+ ‖Φu(t, t− sw + su) − I‖‖Φũ(t, 0)‖

≤ M(‖Φu(su, 0) − Φw(sw, 0)‖ + ‖Φu(t, t− sw + su) − I‖),

where M is some bound on the norm of Φu(t, 0), u ∈ U , t ≥ 0. Using that ‖Φu(s, 0)−
Φw(s, 0)‖ < ε for all s ∈ [0, 3h] and that |su−sw| < ε, we see that the last bound may
be made arbitrarily small by choosing δ small enough. As the bound is independent
of t, this shows the assertion.

Remark 4.7. It should be noted that without assumption (A6) the maps studied
in the previous lemma need not be continuous in θ. As an example consider the
convex subset of R3 given by

Θ := conv {[0 0 1]′} ∪ {[x x2 0]′ | x ∈ [0, 1]},

and let Θ1 = {0}×{0}×[−1, 1], A(z1, z2, z3) = z3 ∈ R, h ∈ (0,∞]. For fixed 0 < t ≤ 1
and the initial value θ(0) = [0, 0, 0], the function

u(s) = [0, 0, s]′, s ∈ [0, t]

defines an admissible parameter variation which yields the evolution operator
Φu(t, 0) = exp(t2/2) ∈ St(θ(0), τ), τ ∈ [0, h]. On the other hand, for arbitrary 1≥ ε >
0 and the parameter value θ(ε) = [ε, ε2, 0] the only admissible parameter variation is
the function uε ≡ θ(ε), as no point of the form [ε, ε2, z3], z3 
= 0, is contained in Θ.
Hence

St(θ(ε), τ) = {1}

as long as t+ τ < h. In particular, for all t > 0 small enough the map ε �→ St(θ(ε), τ)
is discontinuous in ε = 0.
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With arguments very similar to those employed in the proof of Lemma 4.4, a
semicontinuity property of ρ̂ may be shown. We denote the space of systems

L := {Σ := (h,Θ,Θ1, A) | Σ satisfies (A1)–(A5)}

and endow it with the product topology inherited from (0,∞]×K(Rn×n)×Co(Rn×n)×
C(Rm,Rn×n), where we consider the topology of locally uniform convergence on
C(Rm,Rn×n).

Proposition 4.8. The map

ρ̂ : L → R, (h,Θ,Θ1, A) �→ ρ̂(h,Θ,Θ1, A)

is upper semicontinuous.
Proof. It is sufficient to show that the maps (h,Θ,Θ1, A) �→ ρ̂t(h,Θ,Θ1, A)

are upper semicontinuous, as by (2.2) we have ρ̂ = inft>0 ρ̂t and the infimum of
upper semicontinuous maps is upper semicontinuous. So fix t ≥ 0 and a sequence
Σk = (hk,Θk,Θ1,k, Ak) → Σ = (h,Θ,Θ1, A) ∈ L. We first consider the case h ∈
(0,∞). Let uk ∈ U(Σk) be such that ‖Φuk

(t, 0)‖ = ρ̂t(Σk). We may assume that
limk→∞ Φuk

(t, 0) =: S exists, and we now have to show that S ∈ St(Σ) because in
this case ρ̂t(Σ) ≥ lim supk→∞ ρ̂t(Σk).

Now, as in the proof of Lemma 4.4 we may choose a subsequence of the uk

such that the discontinuities of uk on [0, t] converge to finitely many points s1, . . . , sl.
These are at least distance h apart. On the intervals of the form [sj + ε, sj+1 − ε], j =
1, . . . , l, we may (after going to a further subsequence) assume that the uk converge
uniformly and that their derivatives converge in the weak-∗ sense. Then it follows
again that u ∈ U(Σ) and that S = Φu(t, 0), as desired.

If h = ∞ and hk = ∞, the same argument is applicable. We finally have to treat
the case hk ∈ (0,∞), hk → ∞. In this case the number of discontinuities of uk on
[0, t] is bounded by t/hk + 1. Thus it may happen that for a given choice of t and
uk ∈ U(Σk) the discontinuities of uk in [0, t] converge to one point s1 ∈ [0, t]. In
this case the limit function u is not an element of U(h,Θ,Θ1, A). However, we have
Φu(t, s1) ∈ S(h,Θ,Θ1, A) as well as Φu(s1, 0) ∈ S(h,Θ,Θ1, A). Thus using (2.3), for
every ε > 0 there is a constant Mε such that

‖Φu(t, 0)‖ ≤ ‖Φu(t, s1)‖‖Φu(s1, 0)‖ ≤ M2
ε e

(ρ̂(h,Θ,Θ1,A)+ε)t.

As t is arbitrary, the last inequality implies that also in this case ρ̂(h,Θ,Θ1, A) ≥
lim supk→∞ ρ̂(hk,Θk,Θ1k, Ak), as desired.

If we describe the exponential growth rate within the subsets of evolution opera-
tors with given initial and end conditions, this leads to the definitions

ρ̂t(ω) := max

{
1

t
log ‖S‖ |S ∈ St(ω)

}
, ρ̂t(ω, ζ) := max

{
1

t
log ‖S‖ |S ∈ Rt(ω, ζ)

}
.

With this, the problem arises in which the functions t �→ tρ̂t(ω) and t �→ tρ̂t(ω, ζ) are
no longer subadditive, so that it does not follow automatically to what value they are
converging, if at all. It is therefore useful to point out the following.

Lemma 4.9. Consider the system (2.1) with (A1)–(A5) and let one of the follow-
ing assumptions be satisfied:

(a) h ∈ (0,∞).
(b) h = ∞ and (A6) is satisfied.
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Then there is a constant C ∈ R such that for all ω, ζ ∈ Π(Θ, h) we have

tρ̂t(ω, ζ) ≥ tρ̂− C for all t > 0.(4.10)

In particular, it follows for all ω, ζ ∈ Π(Θ, h) that

ρ̂ = lim
t→∞

ρ̂t(ω, ζ) = lim
t→∞

ρ̂t(ω).

Proof. Fix ω, η ∈ Π(Θ, h). Clearly, for all t ≥ 0 we have ρ̂t(ω, ζ) ≤ ρ̂t(ω) ≤
ρ̂t so that in order to show the second assertion it is sufficient to show that ρ̂ ≤
lim inft→∞ ρ̂t(ω, ζ). This, however, is an immediate consequence of (4.10).

In order to show (4.10), note that by (2.2) we can for each t > 0 choose a
matrix St ∈ St with log ‖St‖ = tρ̂t ≥ tρ̂. Then St ∈ R(ω1, ζ1) for suitable ω1, ζ1
(depending on t). If (a) holds, then we may by Remark 4.3 for each such St choose
an R1 ∈ R2h(ω, ω1) and an R2 ∈ R2h(ζ1, ζ). With this choice we obtain that

R2StR1 ∈ Rt+4h(ω, ζ),

and so

(t + 4h)ρ̂t+4h(ω, ζ) ≥ log ‖R2StR1‖ ≥ log ‖St‖‖R−1
2 ‖−1‖R−1

1 ‖−1

≥ tρ̂t − 2 log max{‖S−1‖ | S ∈ S2h}
≥ tρ̂− 2 log max{‖S−1‖ | S ∈ S2h},

which shows the assertion under assumption (a). To prove the assertion when (b)
holds, we can use Remarks 4.3 and 3.2(iv), by which all pairs θ, η ∈ Θ can be connected
in time c̄ independently of θ, η. The remaining arguments are then exactly the same
as before.

5. Irreducibility. We aim to construct parameter-dependent Lyapunov func-
tions that exactly reflect the exponential growth rate of the system Σ = (h,Θ,Θ1, A).
To this end it is crucial to assume the irreducibility of A(Θ). Recall that a set of
matrices M ⊂ Kn×n is called irreducible, if only the trivial subspaces {0} and Kn are
invariant under all A ∈ M, and called reducible otherwise.

Remark 5.1. (i) Note that the set of systems Σ for which A(Θ) is irreducible is
open and dense in the set L of all systems satisfying (A1)–(A5), with the topology
introduced just before Proposition 4.8.

(ii) If A(Θ) is reducible, we can find a similarity transformation T such that for
all θ ∈ Θ the transformed matrix TA (θ)T−1 is of the form⎡⎢⎢⎢⎣

A11 (θ) A12 (θ) . . . A1d (θ)
0 A22 (θ) . . . A2d (θ)

. . .
. . .

...
0 0 Add (θ)

⎤⎥⎥⎥⎦,(5.1)

where the sets Aii(Θ) ⊂ Kni×ni are irreducible or {0}, i = 1, . . . , d. It is an easy
exercise to show that in this case ρ̂ (A,U) = maxi=1,...,d ρ̂ (Ai,U), where Ai : Θ →
Kni×ni is the map θ �→ Aii (θ). Having said this, it is clear that for the analysis of ρ̂
with respect to one system we can assume irreducibility without loss of generality.
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The next simple lemma is crucial in the following construction.
Lemma 5.2. Let K = R,C and let S ⊂ Kn×n be an irreducible semigroup. For

any family of sets St, t ∈ R+, with

S =
⋃
t≥0

St,

there are ε > 0 and T ∈ R+ such that for all z ∈ Kn, A ∈ Kn×n there is an S ∈⋃
1≤t≤T St with

‖ASz‖ ≥ ε‖A‖‖z‖.

Proof. This is a minute generalization of [34, Lem. 3.1].
We now begin to study the consequences of irreducibility. The following properties

are essential in our construction of Lyapunov functions.
Proposition 5.3. Consider system (2.1) with Assumptions (A1)–(A5). Assume

that A(Θ) is irreducible and let one of the following assumptions be satisfied:
(a) h ∈ (0,∞).
(b) h = ∞ and (A6) is satisfied.

Then for all ω, ζ ∈ Π(Θ, h),
(i) the set R(ω, ζ) is irreducible.
(ii) the set S(ω) is irreducible.
Proof. (i) We first show the claim assuming (a). Fix an arbitrary nontrivial

subspace X and let Φu(t, 0) ∈ R(ω, ζ) with t ≥ 2h be such that Φu(t, 0)X = X.
(If no such Φ exists, we are done.) Let t∗ ∈ (0, t) be a discontinuity of u, or
if such a discontinuity does not exist, let t∗ = t/2. Denote Y := Φu(t∗, 0)X.
As A(Θ) is irreducible, there exists a θ∗ ∈ Θ such that exp(A(θ∗)s)Y 
⊂ Y for
some s ≥ h. Hence Φu(t, t∗) exp(A(θ∗)s)Φu(t∗, 0)X 
⊂ X. On the other hand,
Φu(t, t∗) exp(A(θ∗)s)Φu(t∗, 0) ∈ R(ω, ζ) because we may at time t∗ jump to θ∗, remain
there for the time s, and jump back to u(t∗). This defines an admissible parameter
variation, and the assertion follows.

Now assume that (b) holds and let X be a nontrivial invariant subspace for all
Φu(t, 0) ∈ R(θ, η). Fix one of the corresponding parameter variations u. As 0 ∈ Θ1,
we also have for arbitrary 0 ≤ s ≤ t and all r ≥ 0 that Φu(t, s) exp(A(u(s))r)Φu(s, 0) ∈
R(θ, η). Denoting Ys := Φu(s, 0)X we obtain that exp(A(u(s))r)Ys = Ys for all r ≥ 0,
s ∈ [0, t], so that A(u(s))Ys ⊂ Ys for all s ∈ [0, t].

Assume that dimYs = m for some 1 ≤ m < n and denote the Grassmannian of m-
dimensional subspaces of Kn by G (n,m). Consider the induced differential equation
on G (n,m) given by

Ẋ (s) = A (u (s))X (s) .(5.2)

Then the function s �→ Ys, s ∈ [0, t] is a solution of (5.2), as we have by the previous
construction for all s ∈ [0, t] that Φu (s, 0)X = Ys. On the other hand, we have

d

ds
Ys =

d

ds
Φu (s, 0)X = A (u (s)) Φu (s, 0)X = A (u (s))Ys ⊂ Ys,

or in other words d
dsYs = 0 for all s ∈ [0, t] in the Grassmannian. This shows that

Ys ≡ X so that X is a common invariant subspace for all A(u(s)), s ∈ [0, t]. Under
condition (A6), however, we may for arbitrary θ1 ∈ Θ choose an admissible parameter
variation u such that for suitable times 0 ≤ s ≤ t we have u(0) = θ, u(s) = θ1, u(t) = η.
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By the previous argument this implies that X is an invariant subspace of A(θ1) so that
X is a common invariant subspace for all A ∈ A(Θ), which contradicts irreducibility
of A(Θ). This completes the proof.

(ii) This is immediate from (i) as S(ω) = ∪ζ∈Π(Θ,h)R(ω, ζ).

6. Parameterized Lyapunov functions. In this section the main result of
the paper is derived. In Theorem 6.4 we obtain the existence of parameterized Lya-
punov functions that characterize the exponential growth rate. Also some results of
the Lipschitz continuous dependence of the Lyapunov function on the parameter are
presented.

The main step of the proof relies on the following construction. By Lemma 4.9
the exponential growth in S and in the subsets S(ω), R(ω, η) is essentially the same.
It therefore makes sense to define limit sets as follows:

S∞(ω) := {S ∈ Kn×n | ∃ tk → ∞, Sk ∈ Stk(ω) : e−ρ̂tkSk → S },(6.1)

R∞(ω, ζ) := {S ∈ Kn×n | ∃ tk → ∞, Sk ∈ Rtk(ω, ζ) : e−ρ̂tkSk → S }.(6.2)

We note the following properties of S∞(ω) and R∞(ω, ζ).
Lemma 6.1. Consider the system (2.1) with (A1)–(A5). Assume that A(Θ) is

irreducible and let one of the following assumptions be satisfied:
(a) h ∈ (0,∞).
(b) h = ∞ and (A6) is satisfied.

Then
(i) the set ∪ω∈Π(Θ,h)S∞(ω) is bounded,

and for all ω, ζ ∈ Π(Θ, h) it holds that
(ii) R∞(ω, ζ) is a compact, nonempty set not equal to {0}.
(iii) S∞(ω) is a compact, nonempty set not equal to {0}.
(iv) for every t ≥ 0 we have that if R ∈ Rt(ω, ζ) and S ∈ S∞(ζ), or if R ∈

R∞(ω, ζ) and S ∈ St(ζ), then e−ρ̂tSR ∈ S∞(ω).
(v) for every S ∈ S∞(ω) and every t ∈ R+ there exist ζ ∈ Π(Θ, h), R ∈ Rt(ω, ζ),

and T ∈ S∞(ζ) such that S = e−ρ̂tTR.
(vi) R∞(ω, ω), S∞(ω) are irreducible.
Proof. Without loss of generality, we may assume in this proof that ρ̂ = 0 by

considering the map Ã(θ) := A(θ) − ρ̂I.
(i) For ease of notation define

δ := min{‖R−1‖−1 | R ∈ S≤γ} > 0,

where γ = 2h in the case (a) or γ = c̄ in the case (b) is the constant described in
Remark 4.3.

If the assertion is false, then there are tk → ∞, Sk ∈ Stk(ωk) with ‖Sk‖ → ∞.
Without loss of generality, we may assume that Sk ∈ Rtk(ωk, ωk). To see this, note
that by Remark 4.3 we can always ensure that RkSk ∈ Rtk(ωk, ωk) for some Rk ∈ Sγ .
It is easy to see that ‖RkSk‖ ≥ ‖Sk‖‖R−1

k ‖−1 ≥ ‖Sk‖δ → ∞ as k → ∞.
Fix some ω ∈ Π(Θ, h). The set R(ω, ω) is a semigroup and irreducible by Propo-

sition 5.3. We may therefore use Lemma 5.2 to find constants 1 ≥ ε1 > 0 and
T > 0 such that for all x ∈ Kn and all B ∈ Kn×n there is an R ∈ R≤T (ω, ω) with
‖BRx‖ ≥ ε1‖B‖‖x‖.

Now define ε := min{1, ε1δ
2} and choose k large enough such that

‖Sk‖ > 4/ε.
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Fix U ∈ R≤γ(ωk, ω) and V ∈ R≤γ(ω, ωk) and pick an arbitrary x0 ∈ Kn, ‖x0‖ = 1,
such that ‖Skx0‖ ≥ ‖Sk‖ ε/2. Then we can choose R1 ∈ R≤T (ω, ω) such that

‖SkV R1USkx0‖ ≥ ε1‖SkV ‖‖USkx0‖ ≥ ε1‖Sk‖‖V −1‖−1‖U−1‖−1‖Skx0‖

≥
(
‖Sk‖

ε

2

)2

.

Note that by construction SkV R1USk ∈ R≤2tk+T+2γ(ωk, ωk). Applying the same
arguments again, we can choose R2 ∈ R≤T (ω, ω) such that

‖SkV R2USkV R1USkx0‖ ≥
(
‖Sk‖

ε

2

)3

.

Arguing inductively we construct times τl with ltk ≤ τl ≤ l(tk +T +2γ) and matrices
Tl ∈ Rτl(ωk, ωk) with

1

τl
log ‖Tl‖ ≥ l

τl
log

(
‖Sk‖

ε

2

)
≥ l

τl
log 2 ≥ 1

tk + T + 2γ
log 2 > 0.

This contradicts the assumption that lim supl→∞
1
τl

log ‖Tl‖ ≤ 0, which follows from
ρ̂ = 0.

(ii) A standard argument shows that R∞(ω, ζ) is closed and by part (i) it is
bounded. Thus we have to show that there are nonzero elements. Now Lemma 4.9
shows that there exists a constant C > 0 and sequences tk → ∞, Sk ∈ Rtk(ω, ζ) with
‖Sk‖ ≥ C for all k ∈ N. By (i) the sequence is bounded so that it has a convergent
subsequence with nonzero limit. By definition this limit is contained in R∞(ω, ζ).

(iii) As R∞(ω, ζ) ⊂ S∞ (ω), it is clear from (i) that S∞ (ω) is nonempty and not
equal to {0}. Closedness is immediate from the definition and so compactness follows
from (i).

(iv) This is an easy exercise.
(v) Let tk → ∞, uk ∈ U(ω) be sequences such that Φuk

(tk, 0) → S ∈ S∞(ω). Fix
t ≥ 0. Applying Lemma 4.4 we may assume that there exists a u ∈ U(ω) such that
Φuk

(s, 0) → Φu(s, 0) uniformly for s ∈ [0, t+3h]. For some ζ ∈ Π(Θ, h), we have that
Φu(t, 0) ∈ R(ω, ζ).

We now treat the case h ∈ (0,∞). If the limit function u has no discontinuity in
(t, t+3h), then for all k large enough the parameter variations uk have no discontinuity
in (t + h/2, t + 5h/2). This implies that we may introduce a discontinuity at s =
t + 3h/2, and the functions

vk(σ) :=

{
u(σ) if σ < t + 3h/2,
uk(σ) if σ ≥ t + 3h/2

are admissible parameter variations. Furthermore,

Φvk
(tk, 0) = Φuk

(tk, t + 3h/2)Φu(t + 3h/2, 0)

and so

‖Φvk
(tk, 0) − Φuk

(tk, 0)‖ ≤ ‖Φuk
(tk, t + 3h/2)‖

× ‖Φuk
(t + 3h/2, 0) − Φu(t + 3h/2, 0)‖,

(6.3)
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which converges to 0 for k → ∞. (Here we are using (i) to bound the first factor on
the right independently of tk.) Now the construction implies that

Φvk
(tk, t) ∈ S(ζ).

If we extract a convergent subsequence of Φvk
(tk, t) with limit T , then we have T ∈

S∞(ζ). Also by (6.3) we have S = TΦu(t, 0). This shows the assertion.
If u has a discontinuity s ∈ (t, t + 3h), then there exists a sequence sk → s,

where each sk is a discontinuity of uk. This implies that the following function is an
admissible parameter variation:

vk(σ) :=

{
u(σ), 0 ≤ σ < s,
uk(σ − s + sk), s ≤ σ ≤ tk + s− sk.

Again we see

‖Φvk
(tk + s− sk, 0) − Φuk

(tk, 0)‖ ≤ ‖Φuk
(tk, sk)‖‖Φuk

(sk, 0) − Φu(s, 0)‖,

which converges to 0 by the uniform convergence of the uk and as s−sk → 0. As before
we may extract a convergent subsequence of the sequence Φvk

(tk + s− sk, t) ∈ S(ζ),
and for the limit we have that S = TΦu(t, 0).

If h = ∞ and (A6) holds, then by Remark 3.2(iv) there are nonnegative times
sk → 0 and Sk ∈ Rsk (ζ, uk(t)). Then we have

Φuk
(tk, t)SkΦu(t, 0) ∈ Stk+sk(ω).

Defining Tk := Φk(tk, t)Sk ∈ S(ζ) we may assume, without loss of generality, that
Tk → T ∈ S∞(ζ), and it follows that TΦu(t, 0) = S. This shows the assertion.

(vi) Fix ω ∈ Π(Θ, h). As we have noted, the set R(ω, ω) is a semigroup, which is
irreducible by Proposition 5.3. By (iv) it is easy to see that if S ∈ R(ω, ω)∪R∞(ω, ω)
and T ∈ R∞(ω, ω), then ST, TS ∈ R∞(ω, ω) (where we have used the assumption
ρ̂ = 0; otherwise some further factors appear according to (iv)). Using (ii) this shows
that R∞(ω, ω) is a nonzero semigroup ideal of the irreducible semigroup

R∞(ω, ω) ∪R(ω, ω).

By [29, Lem. 1] this shows irreducibility of R∞(ω, ω). The second assertion follows
from R∞(ω, ω) ⊂ S∞(ω).

The following interesting observation is obtained through the previous proof.
Corollary 6.2. Under the assumption of Lemma 6.1 the set S(A,U) is bounded

if ρ̂ = 0.
Proof. If the assertion is false, then there exists a sequence ‖Sk‖ → ∞.

This is brought to a contradiction in the proof of Lemma 6.1(i) of the previous theo-
rem.

We note the following corollary with respect to the maps ω �→ S∞(ω), (ω, ζ) �→
R∞(ω, ζ).

Corollary 6.3. Consider system (2.1) with (A1)–(A5). Assume that A(Θ) is
irreducible and let (A6) hold. Then the set-valued maps

ω �→ S∞(ω),(6.4)

(ω, ζ) → R∞(ω, ζ)(6.5)
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are Lipschitz continuous on Π(Θ, h), resp., (Π(Θ, h))
2
, with respect to the Hausdorff

topology.
Proof. Without loss of generality, we may assume that ρ̂ = 0 so that in particular

the set of evolution operators S(A,U) is bounded by Corollary 6.2. This and the
assertions imply that Lemma 4.6(v) is applicable and the map (ω, t) �→ St(ω) is
Lipschitz continuous in ω uniformly in t. Thus if Sk → S for Sk ∈ Stk(ω1), tk → ∞,
then for ω2 ∈ Π(Θ, h) there exist evolution operators Rk ∈ Stk(ω2) with ‖Sk −Rk‖ ≤
L‖ω1 − ω2‖. We extract a convergent subsequence from the sequence {Rk}k∈N with
limit R. Then ‖S −R‖ ≤ L‖ω1 − ω2‖. By symmetry this implies the assertion. The
proof for (6.5) is, of course, exactly the same.

We now define for ω ∈ Π(Θ, h) the function vω : Kn → R+ by setting

vω(x) := max {‖Sx‖ |S ∈ S∞(ω)} .(6.6)

Using Lemma 6.1(iii) and (vi) it is easy to see that for every ω ∈ Π(Θ, h) the
function defined in (6.6) is a norm on Kn. The following result shows that in this
manner we have defined a family of parameterized Lyapunov functions for our system.

Theorem 6.4. Consider system (2.1) with (A1)–(A5). Assume that A(Θ) is
irreducible and let ω ∈ Π(Θ, h) be arbitrary. Then

(i) for all u ∈ U(ω), t ≥ 0 and all x ∈ Kn it holds that

vζ(Φu(t, 0)x) ≤ eρ̂t vω(x)(6.7)

whenever Φu(t, 0) ∈ Rt(ω, ζ) for ζ ∈ Π(Θ, h). In particular, for all t ≥ s ≥ 0
it holds that

vu(t−),τ−(u,t)(Φu(t, 0)x) ≤ eρ̂(t−s) vu(s−),τ−(u,s)(Φ(s, 0)x).

(ii) for every x ∈ Kn, ω ∈ Π(Θ, h), and t ≥ 0 there exist u ∈ U(ω) and a
piecewise continuous map ζ : [0, t] → Π(Θ, h), with ζ(0) = ω, and such that
for all s ∈ [0, t] we have

vζ(s)(Φu(s, 0)x) = eρ̂s vω(x).

If h = ∞, then ζ may be chosen to be continuous. If h < ∞ and ω = (θ, τ) ∈
Θ × [0, h), the function ζ may be chosen so that its discontinuities on [0, t)
coincide with those of u. Otherwise, ζ may have one further discontinuity
at 0.

Proof. Without loss of generality, we may assume that ρ̂ = 0.
(i) Fix u∈U(ω), t≥ 0 and assume that Φu(t, 0)∈Rt(ω, ζ) for a suitable ζ ∈Π

(Θ, h). Assume furthermore that vζ(Φu(t, 0)x)>vω(x). Then by definition ‖TΦu(t,
0)x‖ > vω(x) for some T ∈S∞(ζ). Now Lemma 6.1(iv) shows that TΦu(t, 0)∈S∞(ω).
Therefore vω(x)≥‖TΦu(t, 0)x‖, which is a contradiction.

The second assertion is simply a special case of the first statement.
(ii) Fix x∈Kn, ω ∈ Π(Θ, h), and t ≥ 0 and let S ∈ S∞(ω) be such that ‖Sx‖ =

vω(x). By Lemma 6.1(iv) there exist ζ̂ ∈ Π(Θ, h) and Φu(t, 0) ∈ Rt(ω, ζ̂), T ∈ S∞(ζ̂)
such that S = TΦu(t, 0).

If h=∞, we set ζ(s) =u(s), s ∈ [0, t]. To treat the case h ∈ (0,∞) let ω= (θ, τ). If
0≤ τ <h and t0 ≤ t is the smallest positive discontinuity of u, then define ζ(s) = (u(s),

min{τ + s, h}) for s ∈ [0, t0] and ζ(s) = (u(t−), τ−(u, t)) for s ∈ (t0, t) and ζ(t) = ζ̂.
This is clearly a piecewise continuous map, whose discontinuities coincide with those
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of u on [0, t) and which satisfies ζ(0) = (θ, τ) as by assumption u(0) = θ. This
construction also works if ω = (θ, h) and u(0) = θ. Otherwise, if u(0) 
= ω, we define

ζ(0) = ω and ζ(s) = (u(t−), τ−(u, t)) for s ∈ (0, t) and ζ(t) = ζ̂.
In all, ζ is defined in such a manner that for all s ∈ (0, t] we have Φu(s, 0) ∈

R(ω, ζ(s)), and for s ∈ [0, t) it holds that u(s + ·) ∈ U(ζ(s)). Then it follows from
Lemma 6.1(iv) that TΦu(t, s) ∈ S∞(ζ(s)) for s ∈ [0, t] and we have by part (i) for
s ∈ [0, t] that

vω(x) = ‖Sx‖ = ‖TΦu(t, s)Φu(s, 0)x‖ ≤ vζ(s)(Φu(s, 0)x) ≤ vω(x).

This concludes the proof.
The previous result has a particularly easy interpretation in the case of linear

switching systems, which we briefly discuss. Let A(Θ) = {A1, . . . , Am} be a finite,
irreducible set and assume we are given a dwell time h ∈ (0,∞). As the system has no
other possibility than to stay in a certain Ai for a time period of at least length h after a
discontinuity, we see that for τ ∈ [0, h) we have S∞(i, τ) = S∞(i, h)e−ρ̂(h−τ)eA(i)(h−τ).
Thus the norms vi,τ are related through the equality

vi,τ (x) = e−ρ̂(h−τ)vi,h(eA(i)(h−τ)x), τ ∈ [0, h].

It is therefore sufficient to consider the norms vi := vi,h. If we investigate (6.7) with
this in mind, we see that after discontinuities this equation contains no information.
To be precise, if u has a discontinuity at 0 and u(t) = i, t ∈ [0, h), then for t ∈ [0, h)
(6.7) is equivalent to the tautology vi(e

A(i)hx) = vi(e
A(i)hx). So after switching, a

transient phase is allowed. The interesting information is contained in the other times
and the result yields a finite number of norms, which are of interest. We summarize
this in the following statement.

Corollary 6.5. Let {A1, . . . , Am} ⊂ Kn×n be a finite irreducible set and let
h ∈ (0,∞). Then the following two statements are equivalent:

(i) ρ̂(A1, . . . , Am, h) ≤ ρ.
(ii) There are norms v1, . . . , vm on Kn with the following properties:

vi(e
Aitx) ≤ eρtvi(x) for all t ≥ 0, x ∈ Kn, i = 1, . . . ,m,(6.8)

vj(e
Ajtx) ≤ eρtvi(x) for all t ≥ h, x ∈ Kn, i, j = 1, . . . ,m.(6.9)

Proof. (i)⇒(ii): By assumption we may apply the results of Theorem 6.4 to the
system Σ = (Θ,Θ1, h, A) given by Θ = {1, . . . ,m},Θ1 = {0}, A(i) = Ai. Define
the norms vi by vi := vi,h, where vi,h is defined according to (6.6). Now consider
the admissible parameter variation u ≡ i. For this we have u ∈ U(i, h) and Φu(t, 0) =
eAit ∈ Rt((i, h), (i, h)) for all t ≥ 0 so that (6.7) implies (6.8). If we consider

u(t) :=

{
i for t < 0,
j for t ≥ 0,

then u ∈ U(i, h) and Φu(t, 0) = eAjt ∈ Rt((i, h), (j, h)) for all t ≥ h. In this case,
(6.7) implies (6.9).

(ii)⇒(i): By the discussion in section 2 and by Corollary 4.5, it is sufficient to
show that all Lyapunov exponents λ(x, u) are upper bounded by ρ. So fix 0 
= x ∈ Kn

and an admissible parameter variation u. If u has no discontinuities on an interval
of the form (a,∞), where a ≥ 0, the assertion is obvious from (6.8). Otherwise
let t0, t1, . . . denote the switching times of u and let i(k) be such that u(t) = i(k)
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for t ∈ [tk, tk+1). Without loss of generality let t0 = 0, which we may assume as
λ(x, u) = λ(x, u(· − t0)). Then we have by (6.8) that

vi(0)(exp(Ai(0)t)x) ≤ eρtvi(0)(x) for t ∈ [t0 + h, t1],

and so for t ∈ [t1 + h, t2] it follows, again using (6.9), that

vi(1)(Φu(t, 0)x) = vi(1)(exp(Ai(1)(t− t1)) exp(Ai(0)t1)x)

≤ eρ(t−t1)vi(0)(exp(Ai(0)t1)x) ≤ eρtvi(0)(x).

By induction we obtain for t ∈ [tk + h, tk+1] that

1

t
log

(
vi(k)(Φu(t, 0)x)

)
≤ ρ +

1

t
log(vi(0)(x)).

As the growth in the intervals [tk, tk +h] is bounded, and as vi(0) ≤ Cvi, i = 1, . . . ,m,
for a suitable constant C, this implies that λ(x, u) ≤ ρ, as desired.

We are now aiming at a continuity result for the norms vω. To this end we need
a notion of distance between norms. We therefore introduce the space of continuous,
positively homogeneous functions on Kn defined by

Hom (Kn,R) := {f : Kn → R | ∀α ≥ 0 : f(αx) = αf(x) and f is continuous on Kn} .

Clearly, all norms on Kn are elements of Hom (Kn,R). This space becomes a Banach
space if equipped with the norm

‖f‖∞,hom := max {|f (x)| | ‖x‖2 = 1} .

Proposition 6.6. Consider system (2.1) with (A1)–(A5). Assume that A(Θ) is
irreducible and let (A6) hold. Then the map

ω �→ vω(6.10)

is Lipschitz continuous from Π(Θ, h) to Hom (Kn,R).
Proof. Fix ω, ζ ∈ Π(Θ, h). By definition we have

‖vω − vζ‖∞,hom = max
‖x‖2=1

|vω(x) − vζ(x)| .

Fix x ∈ Kn and let vω(x) = ‖S̃x‖ for a suitable S̃ ∈ S∞(ω). Then there is a T ∈ S∞(ζ)
such that ‖S̃ − T‖ ≤ dH(S∞(ω),S∞(ζ)) and we obtain

vω(x) − vζ(x) ≤ ‖S̃x‖ − ‖Tx‖ ≤ ‖S̃ − T‖‖x‖ ≤ CdH(S∞(ω),S∞(ζ))‖x‖2,

where C is a constant such that ‖x‖ ≤ C‖x‖2. This shows that

‖vω − vζ‖∞,hom ≤ CdH(S∞(ω),S∞(ζ)).

Now the assertion follows from Corollary 6.3.
Corollary 6.7. Consider system (2.1) with (A1)–(A5). Assume that A(Θ) is

irreducible and let one of the following assumptions be satisfied:
(a) h ∈ (0,∞).
(b) h = ∞ and (A6) is satisfied.
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Then there exists a constant 1 ≤ C ∈ R such that for all ω, ζ ∈ Π(Θ, h) and all x ∈ Kn

we have

C−1vω(x) ≤ vζ(x) ≤ Cvω(x).(6.11)

Proof. We may assume that ρ̂ = 0.
It is clearly sufficient to prove the inequality on the left-hand side, as the other

follows by symmetry. Let ω, ζ ∈ Π(Θ, h) be arbitrary. Fix x ∈ Kn and let S ∈ S∞(ω)
be such that vω(x) = ‖Sx‖. Fix an arbitrary ω0 ∈ Π(Θ, h). Using Remark 4.3 we
have that R≤max{2h,c̄}(ω, ω0),R≤max{2h,c̄}(ω0, ζ) 
= ∅. By Lemma 5.2 there exists
ε > 0 such that for all x ∈ Kn, B ∈ Kn×n there is an R ∈ R∞(ω0, ω0) with

‖BRx‖ ≥ ε‖B‖‖x‖.

Choose T1 ∈ Rs1(ζ, ω0), T2 ∈ Rs2(ω0, ω) for s1, s2 ≤ max{2h, c̄}. Then we may choose
R ∈ R∞(ω0, ω0) such that ST2RT1 ∈ S∞(ζ) (by Lemma 6.1(iv)) and so that

vζ(x) ≥ ‖ST2RT1x‖ ≥ ε‖ST2‖‖T1x‖
≥ ε(min{‖Φu(s, 0)−1‖−1 | u ∈ U , s ∈ [0,max{2h, c̄}]})2‖Sx‖ ≥ C−1vω(x)

for a constant C ≥ 1 and independent of ω, ζ, and x. This shows the assertion.
Remark 6.8. Note that the construction of parameterized Lyapunov functions

for reducible systems is now an easy exercise by using the upper block triangular
structure (5.1). In general, however, only a decay of ρ̂ + ε, where ε > 0 is arbitrary,
will be achievable. See [16, 34] for related results in the case of linear inclusions.

7. The Gelfand formula. In this section we give an application of the exis-
tence of the parameterized Lyapunov functions we have described so far. One of the
classical results in the analysis of families of linear time-varying systems states that
under certain conditions the exponential growth rate can be approximated by just
considering the subset of periodic systems within the family. Results to this effect
can be found in [7, 11, 13, 16]. We now show that the same statement is true for our
class of systems. In our case periodicity of the underlying parameter variation is the
natural assumption, which is analyzed in what follows.

For t ∈ R+ we define the set of evolution operators corresponding to periodic
u ∈ U by

Pt :=
⋃

ω∈Π(Θ,h)

Rt (ω, ω) .

Then we may define the normalized supremum over the spectral radii by

ρ̄t := sup

{
1

t
log r (S) |S ∈ Pt

}
,

and the supremum of the exponential growth rates obtainable by periodic parameter
variations is defined by

ρ̄ := lim sup
t→∞

ρ̄t.

As it is clear that ρ̄t ≤ ρ̂t for all t ≥ 0, we obtain immediately that ρ̄ ≤ ρ̂. We intend
to show that these quantities are equal. To this end we need the following lemma.

Lemma 7.1. Consider system (2.1) with (A1)–(A5). Assume that A(Θ) is irre-
ducible and let one of the following assumptions be satisfied:
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(a) h ∈ (0,∞).
(b) h = ∞ and (A6) is satisfied.

Then there exist ω ∈ Π(Θ, h), x ∈ Kn, vω(x) = 1, and a sequence Sk ∈ Rtk(ω, ω),
tk ≥ 1, with

e−ρ̂tkSkx → x.

Proof. We may assume that ρ̂ = 0. Pick an arbitrary ω0 ∈ Π(Θ, h) and z ∈ Kn

such that vω0(z) = 1. By Theorem 6.4(ii) there exist an ω1 and S1 ∈ R1(ω0, ω1) such
that vω1(S1z) = vω0(z) = 1. Applying this argument again, we see that there exist ω2

and S2 ∈ R1(ω1, ω2) such that vω2
(S2S1z) = 1. Repeating this argument inductively

we obtain sequences {ωk}k∈N and {Sk}k∈N with

vωk
(SkSk−1, . . . , S1z) = 1 for all k ∈ N.

As Π(Θ, h) is compact, there exists a convergent subsequence ωkl
→ ω ∈ Π(Θ, h).

Applying Corollary 6.7 we may assume, without loss of generality, that zkl
:=

Skl
Skl−1, . . . , S1z → x. We denote Tkl

:= Skl
Skl−1, . . . , Skl−1

∈ R(ωkl−1
, ωkl

). After
relabeling we return to the index k.

Now by Lemma 4.6(vi) and using assumption (a) or (b), the map (ω, ζ) →
Rt(ω, ζ) is upper semicontinuous uniformly in t (which is crucial, as we have no
control over the length of the intervals needed to define the sequence {Tk}). Thus
by convergence of ωk → ω and for every ε > 0 there exists a k0 such that for every
k ≥ k0 there exists an Rk ∈ R(ω, ω) with ‖Tk −Rk‖ < ε and so that vω(zk − x) ≤ ε.
Then we obtain that

vω(Rkx− x) ≤ vω(Rk − Tk)vω(x) + vω(Tkx− Tkzk) + vω(zk+1 − x)

≤ ε (vω(x) + vω(Tk) + 1) .

This implies that there exists a sequence {Rk} ⊂ R(ω, ω) with Rkx − x → 0, as
desired.

Before we can state the main result of this section, we need a further observation
for the case h = ∞.

Proposition 7.2. Let Θ,Θ1 ∈ Co (Km), A ∈ C(Km,Kn×n), and h = ∞ satis-
fying (A1)–(A5) be given. Let Θ2 be the largest convex set contained in Θ1 such that
0 ∈ ri Θ2. Then

ρ̂(∞,Θ,Θ1, A) = ρ̂(∞,Θ,Θ2, A).

Proof. It is clear that ρ̂(∞,Θ,Θ1, A) ≥ ρ̂(∞,Θ,Θ2, A) so that we only have to
show the converse direction.

If 0 ∈ ri Θ1, there is nothing to show. Otherwise denote by X2 the linear subspace
generated by Θ2 and denote by X⊥

2 its orthogonal complement. Recall the definition
(2.4) and choose θ(·) ∈ U such that for some x0 
= 0 we have

ρ̂(∞,Θ,Θ1, A) = λ(x0, θ(·)).

As mentioned before, this choice is possible using Corollary 4.5 and [13, Prop. 5.4.15].
Now θ may be decomposed as θ = θ1 +θ2 such that θ̇1 : R+ → X⊥

2 and θ̇2 : R+ →
Θ2. Furthermore, as 0 is contained in the boundary of Θ1, there exists a supporting
hyperplane X in 0, which has to contain X2. Hence there is a vector d 
= 0 such that
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〈d, θ̇1 (t)〉 ≥ 0 and 〈d, θ̇2 (t)〉 ≡ 0 for all t ≥ 0. Now Θ is compact and so 〈d, θ〉 is
bounded over θ ∈ Θ. This implies that the expression

c := 〈d, θ(0)〉 +

∫ ∞

0

〈d, θ̇1 (t)〉dt = lim
t→∞

〈d, θ(t)〉

is well defined. If we introduce the set Θc := {η ∈ Θ | 〈d, η〉 = c}, we see that

dist (θ(t),Θc) → 0 for t → ∞.

Thus for the set Θc,ε := {η ∈ Θ | dist (η,Θc) ≤ ε} we obtain θ(t) ∈ Θε for all t large
enough. This implies that for all ε > 0 and for t large enough we have

ρ̂(∞,Θ,Θ1, A) ≥ ρ̂(∞,Θc,ε,Θ1, A) ≥ λ(Φθ(t, 0)x0, θ(t + ·)) = λ(x0, θ(·))

so that equality holds throughout. Now by Proposition 4.8 it follows that

ρ̂(∞,Θc,Θ1, A) ≥ lim
ε→0

ρ̂(∞,Θc,ε,Θ1, A) = ρ̂(∞,Θ,Θ1, A),

and the converse inequality holds because Θc ⊂ Θ. Furthermore, any admissible
parameter variation with derivative in Θ1, that remains in Θc, has to satisfy 〈d, θ(t)〉 ≡
0. This implies 〈d, θ̇(t)〉 = 0 a.e., from which it follows that θ̇(t) ∈ Θ2 a.e. Hence we
have

ρ̂(∞,Θc,Θ1, A) = ρ̂(∞,Θc,Θ2, A).

This completes the proof.
We are now ready to prove the main result of this section: the exponential growth

rate ρ̂ coincides with the maximum of the growth rates corresponding to periodic
parameter variations ρ̄.

Theorem 7.3. Consider a system Σ = (h,Θ,Θ1, A) satisfying (A1)–(A5); then

ρ̄(h,Θ,Θ1, A) = ρ̂(h,Θ,Θ1, A).(7.1)

Proof. Without loss of generality we may assume that ρ̂ = 0.
If h = ∞ and (A6) does not hold, then we may first assume that 0 ∈ ri Θ1 using

Proposition 7.2. Let X = span Θ1. Then with the notation Θz := Θ ∩ (z + X) we
may write

Θ =
⋃

z∈X⊥

Θz.

As each (nonempty) Θz is invariant under parameter variations with derivative in Θ1,
we see that

ρ̂(∞,Θ,Θ1, A) = sup
z,Θz =∅

ρ̂(∞,Θz,Θ1, A).

Thus if we can show the assertion for each of the terms on the right-hand side, it
follows also for (∞,Θ,Θ1, A). Note that (A6) is satisfied for (∞,Θz,Θ1, A) so that
from now on we may assume that h ∈ (0,∞) or (A6) is satisfied.

Furthermore, if A(Θ) is reducible, then there exists a regular T ∈ Kn×n such that
all matrices A0 ∈ A(Θ) can be transformed to upper block triangular form as in (5.1).
For this form it is easy to see that

ρ̂(A,U) = max
i=1,...,d

ρ̂(Ai,U) and ρ̄(A,U) = max
i=1,...,d

ρ̄(Ai,U).(7.2)
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Hence, if we show (7.1) for each of the irreducible blocks, then it follows for the overall
system.

So assume now that A(Θ) is irreducible and that h ∈ (0,∞) or (A6) holds. By
Lemma 7.1 there exist ω ∈ Π(Θ, h), x ∈ Kn, vω(x) = 1, and a sequence Sk ∈ R(ω, ω)
such that Skx− x → 0. Then we have by [16, Lem. 2] for the eigenvalues λi(k) of Sk

that

0 ≤ min
1≤i≤n

1 − |λi (k)| ≤ min
1≤i≤n

|1 − λi (k)| ≤ C‖Skx− x‖1/n,

where C is a constant depending only on the upper bound of ‖Sk‖. Denoting by λ̃k an
eigenvalue of Sk for which the minimum on the left is attained, we see that |λ̃k| → 1
as k → ∞. As we have |λ̃k| ≤ 1 and tk ≥ 1, we obtain ρ̄ ≥ 1/tk log |λ̃k| ≥ log |λ̃k|,
and it follows that ρ̄ ≥ 0. This completes the proof.

Remark 7.4. Note that the proof of the previous result shows for the particular
case ρ̂ = 0 that

lim sup
t→∞

max{r(S) | S ∈ Pt} = 0

holds. This statement is slightly stronger than that of Theorem 7.3.

8. Continuity of the exponential growth rate. One of the basic questions
in stability theory is whether stability is a robust property in the space of systems. A
first step toward answering this question is obtained by showing that the exponential
growth rate is an upper semicontinuous function, because then the set of exponentially
stable systems given by {ρ̂ < 0} is open. It is, however, even more desirable to have
continuous dependence of the growth rate on the data. We will first show that the
Gelfand formula, which we just proved in Theorem 7.3, allows for an easy criterion of
continuity. Unfortunately, we then have to present an example showing that, in the
setup we have studied so far, ρ̂ is not a continuous function of the data.

Corollary 8.1. Let N be a subset of L such that the maps

(h,Θ,Θ1, A) �→ St(h,Θ,Θ1, A)

are continuous on N for all t large enough. Then the map

(h,Θ,Θ1, A) �→ ρ̂(h,Θ,Θ1, A)

is continuous on N .
Proof. We already know that ρ̂ is upper semicontinuous on N by Proposition 4.8.

The assumption implies that the maps ρ̄t : N → R are continuous for all t large enough
by continuity of the spectral radius. Now ρ̄ = supt>0 ρ̄t is lower semicontinuous as the
supremum of continuous functions. Using Theorem 7.3, the function ρ̂ = ρ̄ is both
upper semicontinuous and lower semicontinuous, and thus continuous on N .

Example 8.2. Let h = ∞, Θ1 := [−1, 1] × {0} ⊂ R2, define Θ(0) = [0, 2π] × {0},
and define the sets Θ(φ) = BφΘ(0), where Bφ is the rotation matrix

Bφ :=

[
cosφ sinφ
− sinφ cosφ

]
, φ ∈ (−π, π).

Define furthermore

A(θ1, θ2) =

[
−1 + 3/2 cos2 θ1 1 − 3/2 sin θ1 cos θ1

−1 − 3/2 sin θ1 cos θ1 −1 + 3/2 sin2 θ1

]
.
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(The reader will most likely recognize the famous example of a periodic system of
Hurwitz stable matrices that is unstable; see, e.g., [14, 33]. We recall the well-known
fact that the characteristic polynomial of A(θ1, θ2) is equal to p(z) = z2 + 1/2z + 1/2
with zeros −1/4 ± i

√
7/4 independent of θ.)

We will show that the exponential growth rate as a function of Θ(φ) with all the
other data left fixed has a discontinuity at 0. Clearly, the map φ �→ Θ(φ) is Lipschitz
continuous.

For 0 
= φ ∈ (−π, π) only the constant functions are admissible parameter varia-
tions because Θ1 only allows for variations in the first component. Hence for φ 
= 0
we have ρ̂(φ) = max{Reλ | λ ∈ σ(B);B ∈ A(Θ(φ))} = −1/4.

On the other hand, time-varying systems are possible for φ = 0 because Θ(0)
is collinear to the admissible derivatives in Θ1. In particular, we cannot expect the
assumption of Corollary 8.1 to be satisfied, as with time-varying parameter varia-
tions we expect to be able to construct a much richer set of transition operators. In
particular, if we define the admissible parameter variation

θ(t) =

{
t, t ∈ [0, 2π],
4π − t, t ∈ [2π, 4π],

and continue this function periodically, then we have the classical example on the
interval [0, 2π], where it is well known that

Φθ(2π, 0) =

[
eπ 0
0 e−2π

]
.

For the calculation of Φθ(4π, 2π), numerical evaluation yields

Φθ(4π, 2π) =

[
0.0597 −0.178
0.178 0.1932

]
.

By calculating the spectral radius r(Φθ(4π, 0)) = r(Φθ(4π, 2π)Φθ(2π, 0)) ≈ 1.3799,
we see that the exponential growth rate corresponding to Θ(0) is positive.

The previous example is a bit unfair because the constraint on the derivative that
can be effectively used is simply Θ1 = {0} for φ 
= 0. Another way of saying this is
that there is a discontinuity hidden in the data in the previous example: at φ = 0 the
derivative constraint set changes discontinuously from {0} to Θ1. This shows that, so
far, we were too lenient in our description of the system data.

With reasonable extra assumptions, however, it is possible to obtain (Lipschitz)
continuity results in the spirit of [34], which for reasons of space appears in [36]; see
also [37].

9. Conclusions. In this paper we have studied certain classes of families of
LPV systems that are basically described by constraints on the distance between
discontinuities and on the derivative in the time between discontinuities. Both the
LPV system class and linear switching system class are special cases of the presented
setup. For these classes parameter-dependent Lyapunov functions, which are norms
for each fixed parameter, have been constructed in such a way that the resulting Lya-
punov function characterizes the exponential growth rate in an infinitesimal manner.
This result complements constructions of Lyapunov functions for linear inclusions in
[5, 26, 34]. It was shown how the existence of such norms can be used to obtain a
fairly simple proof of the Gelfand formula in this case. Conditions for continuous
dependence of the growth rate on the data can be derived using the tools developed
here. This is discussed in [36].
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MA, 2000.

[14] W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Math. 629, Springer-Verlag,
Berlin, New York, 1978.

[15] W. P. Dayawansa and C. F. Martin, A converse Lyapunov theorem for a class of dynamical
systems which undergo switching, IEEE Trans. Automat. Control, 44 (1999), pp. 751–760.

[16] L. Elsner, The generalized spectral-radius theorem: An analytic-geometric proof, Linear Al-
gebra Appl., 220 (1995), pp. 151–159.

[17] P. Gahinet, P. Apkarian, and M. Chilali, Affine parameter-dependent Lyapunov functions
and real parametric uncertainty, IEEE Trans. Automat. Control, 41 (1996), pp. 436–442.
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Abstract. (J, J ′)-lossless factorization plays a central role in H∞-control because it gives a
simple and unified framework of H∞-control from the viewpoint of classical network theory, and it
includes the well-known inner–outer factorization of rational matrices, Wiener–Hopf factorization,
and spectral factorization of positive rational matrices as special cases. However, up to now, there
is still a lack of numerically reliable methods for this important factorization problem in a general
setting. In this paper, we present necessary and sufficient solvability conditions and develop a
numerically reliable algorithm based on a generalized eigenvalue approach for the (J, J ′)-lossless
factorization of general rational matrices.

Key words. (J, J ′)-lossless factorization, rational matrix, eigenfactorization orthogonal trans-
formation
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1. Introduction. Throughout this paper the following notation will be used:
• J ∈ Rp×p and J ′ ∈ Rm×m are two given symmetric matrices.
• M ≥ 0 means that M is symmetric and positive semidefinite.
• For any M,N ∈ Rn×n with M nonsingular, ρ(M,N) denotes the spectral

radius of the pencil −sM + N , and ρ(N) := ρ(I,N).
• C0,C+ denote the imaginary axis and open right half complex plane, respec-

tively.
• Rp×m(s),RLp×m

∞ (s) denote the set of p×m real rational matrices and set of
p×m proper real rational matrices having no poles on C0, respectively.

• G(s) =
[ −sE + A B

C D

]
means that G(s) has a realization G(s) = D+C(sE−

A)−1B.
The H∞-control problem has been studied extensively based on several different

approaches; see, e.g., [10, 14, 15, 17, 21, 22, 33, 35, 40] and the references therein.
Among these approaches, the linear matrix inequality (LMI) approach [21, 22] has
become very popular because it converts the H∞-control problem into LMIs [19],
where one works with larger size matrices to keep matrix equations linear rather than
having to solve nonlinear matrix equations of Riccati type. This approach employs
methods of semidefinite programming to compute the desired optimal H∞-controllers.
This is very attractive, because easy-to-use methods for semidefinite programming are
readily available; see, e.g., [16, 20]. However, the computational complexity of this
approach for a control plant with dimension n is up to O(n6) [44], which is rather high.
Another remarkable approach is that of (J, J ′)-lossless factorization, which provides
a simple and unified framework of an H∞-control problem from the point of view of
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classical network theory [2, 6, 9, 10, 13, 27, 30, 32, 33, 36, 38, 39]. This approach
reduces the H∞-control problem to a (J, J ′)-lossless factorization of a chain-scattering
representation of the system. Generally, the existence and solution of the (J, J ′)-
lossless factorization can be characterized by Riccati equations. Consequently, by
the (J, J ′)-lossless factorization approach, the optimal controllers for the H∞-control
problem are obtained by solving the associated Riccati equations. Numerical methods
for solving such Riccati equations have been developed in [4, 28, 34, 44], but these
Riccati equations may become very ill-conditioned when the computed optimal H∞-
norm approaches the exact optimal H∞-norm, which leads to these Riccati equations
being very difficult to solve. Therefore, although every existing approach, including
the LMI and (J, J ′)-lossless factorization approaches, has a method of solving the H∞-
control problem, many numerical problems associated with it remain to be studied.

In this paper, motivated by the importance of the (J, J ′)-lossless factorization for
H∞-control, we study the (J, J ′)-lossless factorization problem for general rational
matrices.

Definition 1 (see [36, 41]). (i) A matrix Θ(s) ∈ RLp×m
∞ (s) is (J, J ′)-unitary if

ΘT (−s)JΘ(s) = J ′ ∀s ∈ C.

(ii) A matrix Θ(s) ∈ RLp×m
∞ (s) is (J, J ′)-lossless if it is (J, J ′)-unitary and

ΘT (s̄)JΘ(s) ≤ J ′ ∀s ∈ C0 ∪ C+,

where s̄ is the complex conjugate of s.
Definition 2 (see [36, 41]). G(s) ∈ Rp×m(s) has a (J, J ′)-lossless factorization

if it can be represented as a product

G(s) = Θ(s)Ξ(s),

where Θ(s) ∈ RLp×m
∞ (s) is (J, J ′)-lossless, and Ξ(s) ∈ Rm×m(s) has neither zeros

nor poles in C+.
The notion of (J, J ′)-lossless factorization was first introduced in [41] in a geo-

metrical context. It is a generalization of the well-known inner–outer factorization
of rational matrices. It also includes spectral factorization and Wiener–Hopf factor-
ization for positive rational matrices as special cases. Some connections between the
(J, J ′)-lossless factorization and the chain-scattering formulation of H∞-control were
discussed in [10, 31]. The (J, J ′)-lossless factorization of proper rational matrices
without zeros on C0 was studied in [29] based on the theory of conjugation developed
in [36]. Later, the (J, J ′)-lossless factorization of general proper rational matrices
was considered in [23], and the solvability conditions and state-space realizations
of the factors Π(s) and Θ(s) were derived there, based on a generalized eigenvalue
approach. The (J, J ′)-lossless factorization problems in the setting of discrete-time
systems with/without zeros on the unit circle were investigated in [7, 8]. The main
existing result for the (J, J ′)-lossless factorization of general proper rational matrices
can be summarized in Theorem 3 below, which is a slight extension of Theorem 1 in
[23] and a continuous-time version of Theorem 7 in [7].

Assume that G(s) =
[ −sI + A B

C D

] ∈ RLp×m
∞ (s) is left invertible, i.e.,

max
s∈C

rank

[
−sI + A B

C D

]
= n + m,(1)
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Then there exist an
orthogonal matrix S and a nonsingular matrix T [25, 42] such that

S

[
−sI + A B

C D

]
T =

⎡⎣
n− n0∞ n0∞ m

−sEnf + Anf 0 0
� −sE11 + A11 A12

� A21 A22

⎤⎦ }n0∞
}m

,

where Enf is of full column rank, E11 is nonsingular, and

rank (−sEnf + Anf ) = n− n0∞ ∀s ∈ C0,

rank

[
−sE11 + A11 A12

A21 A22

]
= n0∞ + m ∀s ∈ C\C0.

Partition S and T into

S =

⎡⎣
n p

S11 S12

S21 S22

S31 S32

⎤⎦ }n0∞
}m

, T =

[n− n0∞ n0∞ m

T11 T12 T13

T21 T22 T23

]
}n
}m.

Furthermore, let the columns of the full column rank matrix

⎡⎣
r

L1

L2

L3

⎤⎦ }n
}n
}m

span the stable eigenspace of the matrix pencil⎡⎣−sI + A 0 B
−CTJC −sI −AT −CTJD
DTJC BT DTJD

⎤⎦,
and let there exist a stable matrix Λ ∈ Rr×r such that⎡⎣ A 0 B

−CTJC −AT −CTJD
DTJC BT DTJD

⎤⎦⎡⎣L1

L2

L3

⎤⎦ =

⎡⎣ In 0 0
0 In 0
0 0 0

⎤⎦⎡⎣L1

L2

L3

⎤⎦Λ.

Theorem 3 (cf. [7, 23]). Given a G(s) ∈ RLp×m
∞ (s), let be its stabilizable and

detectable realization, i.e.,

rank [−sI + A B] = rank

[
−sI + A

C

]
= n ∀s ∈ C0 ∪ C+,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Then G(s) has a (J, J ′)-
lossless factorization if and only if the following conditions hold:

(i) G(s) is left invertible, i.e., (1) holds true.
(ii) There exists a nonsingular matrix D0 ∈ Rm×m such that DT

0 S32JS
T
32D0 = J ′.

(iii) r+n0∞ = n, matrix [L1 T12] is nonsingular, X := [L2 0][L1 T12]
−1 ≥ 0, and

the algebraic Riccati equation

Y AT + AY + Y CTJCY = 0(2)

has a solution Y ≥ 0 such that A + Y CTJC is stable.
(iv) ρ(XY ) < 1.
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Moreover, if the above conditions hold, then a (J, J ′)-lossless factorization is given by
the factors Θ(s) and Ξ(s):

Θ(s) =

⎡⎣ −sI + Λ 0 Z1

0 −sI + A Z2

CL1 + DL3 C −ST
32

⎤⎦D0,(3)

Ξ(s) = −(J ′)−1DT
0

[ −sI + A + Y CTJC B + Y CTJD

(S31X + S32JC)(I − Y X)−1 S32JD

]
,(4)

where

Z1 = −
[
Ir 0

] [
L1 − Y L2 T12

]−1
(ST

31 + Y CTJST
32),

Z2 = (I − Y X)−1Y (XST
31 + CTJST

32).

It is clear that Theorem 3 excludes all improper rational matrices. It is known that
the state-space representation can only be used to describe proper rational matrices,
while the descriptor-form representation can be used to describe any rational matrices.
In [24], the (J, J ′)-lossless factorization problem for general rational matrices has been
considered using the descriptor-form representation approach based on the concept of
J-lossless conjugation [36]. The elegant results in [24] are based on (i) a realization of

G(s) =
[ −sE + A B

C D

]
, which is in standard form (i.e., there do not exist nonsingular

matrices M and N and an integer r > 0 such that M(−sE + A)N =
[−sÊ + Â 0

0 Ir

]
)

and satisfies E2 = E; (ii) the generalized Lyapunov equation⎧⎪⎪⎨⎪⎪⎩
AY ET + EY AT + EY CTJCY ET = 0, E is singular,
AT + CTJCY ET − sET is nonsingular∀s ∈ C+, EY ET ≥ 0,
the null space of Y ET contains the eigenspace of
−sET + AT corresponding to the eigenvalues on C0 ∪ {∞};

(5)

and (iii) the existence of matrices Dπ ∈ Rm×m, K ∈ Rm×n and a (J, J ′)-lossless
matrix Dc satisfying [

C̃ D
]

= Dc

[
K Dπ

]
, C̃ is known.(6)

Theoretically, for any realization of G(s), we can always find a new realization, which is
in the standard form and satisfies E2 = E. However, the computation of a realization
of G(s) ∈ Rp×m(s), which is in standard form and satisfies E2 = E, is very ill-
conditioned [37, 42] and cannot be obtained in a numerically reliable manner. This
issue is easy to understand; for instance, let us consider a very simple example. Let
G(s) be of the form

G(s) =

⎡⎢⎢⎣
−sE11 + A11 A12 A13 B1

A21 0 0 B2

0 0 A33 B3

C1 C2 C3 D

⎤⎥⎥⎦, E11 and A33 are nonsingular.

Then, in order to get a realization of G(s), which is in standard form, we have to
compute A−1

33 . However, it is well known that the computation of A−1
33 is numerically

unstable and will contain a large error if A33 is ill-conditioned. This implies that the
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computation of a realization of a given rational matrix G(s), which is in standard
form, is a difficult task in general and should be avoided if possible. Furthermore,
the generalized Lyapunov equation (5) is very difficult to solve, and it is not clear
under what conditions there exist Dπ, K, and a (J, J ′)-lossless matrix Dc satisfying
(6) because of the requirement that Dc be (J, J ′)-lossless. Thus, the computation of
matrices Dπ ∈ Rm×m, K ∈ Rm×n, and a (J, J ′)-lossless matrix Dc has to be studied
further.

Although the (J, J ′)-lossless factorization has been studied by many researchers,
up to now there is still a lack of numerically reliable methods for solving it with
general rational matrices. In this paper we will develop a numerically reliable method
to verify the solvability and construct a solution for the (J, J ′)-lossless factorization
problem of general rational matrices. Our idea can be outlined as follows:

• For any rational matrix G(s) ∈ Rp×m(s), G(s) has a minimal realization of

the descriptor-form G(s) =
[ −sE + A B

C 0

]
with E,A ∈ Rn×n, B ∈ Rn×m,

and C ∈ Rp×n, i.e.,

rank[αE + βA B] =

[
αE + βA

C

]
= n ∀(α, β) ∈ C2\{(0, 0)}.

Such a minimal realization can always be obtained from any given realization
of G(s) by using the well-known controllability–observability staircase form
algorithm [25, 26, 42], which is numerically backward stable.

• G(s) can be factored as

G(s) =

[
−sE + A + BF B

C 0

] [
−sE + A B

−F I

]
∀F ∈ Rm×n.

We can choose F so that G1(s) :=
[ −sE + A + BF B

C 0

]
is proper, G2(s) :=[ −sE + A B

−F I

]
, and G−1

2 (s) has neither zeros nor poles in C+;

• By applying Theorem 3 to G1(s) we can get necessary and sufficient solvability
conditions and a desired solution for the (J, J ′)-lossless factorization of G(s).
We will show that the solvability conditions and the constructed solution in
this way are independent of the parameter matrix F .

2. Main results. In this section we will present numerically verifiable necessary
and sufficient solvability conditions and establish a numerically reliable algorithm for
solving the (J, J ′)-lossless factorization problem of general rational matrices.

The main result in this section is based on the following factorization.
Theorem 4. Given a rational matrix G(s) ∈ Rp×m(s), let

G(s) =

[
−sE + A B

C 0

]
, E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,(7)

be its minimal realization. There exist nonnegative integers n1, n2, and n3 with
n1 + n2 + n3 = n, and orthogonal matrices P,Q,U ∈ Rn×n, W ∈ Rm×m, and V ∈
R(n1+n3)×(n1+n3), with U and V being partitioned as

U =

[n1 + n2 n3

U11 U12

U21 U22

]
}n1 + n2

}n3
, V =

[ n3 n1

V11 V12

V21 V22

]
}n3

}n1
,

rank(U11) = n1 + n2, rank(V11) = n3
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such that⎡⎣U11 0 U12

0 I 0
U21 0 U22

⎤⎦⎡⎣P 0 0
0 I 0
0 0 P

⎤⎦⎡⎣−sE + A B −sE + A
C 0 C

−sE + A B 0

⎤⎦

×

⎡⎣Q 0 0
0 W 0
0 0 Q

⎤⎦
⎡⎢⎢⎢⎢⎣
In1+n2 0 0 0 0

0 V11 0 V12 0
0 0 Im 0 0
0 V21 0 V22 0
0 0 0 0 I

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

n1 n2 n3 n3 m− n3 n

−sE11 + A11 −sE12 + A12 A13 0 B12 �
0 −sE22 + A22 A23 0 B22 �
0 A32 A33 B31 0 �
C1 C2 C3 0 0 �
� � � � � �

⎤⎥⎥⎥⎥⎦
}n1

}n2

}n3

}p
}n

,(8)

where � denotes the subblock, which we are not interested in, and

rank(E11) = n1, rank(E22) = n2, rank(B31) = n3,(9)

rank

[
−sE22 + A22 A23

A32 A33

]
= n2 + n3 ∀s ∈ C.(10)

Proof. The factorization (8) with properties (9) and (10) is constructed in the
appendix.

The numerical procedure in the appendix for computing the factorization (8) needs
only O(n3 + m3) flops. Furthermore,

⎡⎣U11 0 U12

0 I 0
U21 0 U22

⎤⎦⎡⎣P 0 0
0 I 0
0 0 P

⎤⎦ and

⎡⎣Q 0 0
0 W 0
0 0 Q

⎤⎦
⎡⎢⎢⎢⎢⎣
In1+n2 0 0 0 0

0 V11 0 V12 0
0 0 Im 0 0
0 V21 0 V22 0
0 0 0 0 I

⎤⎥⎥⎥⎥⎦
are orthogonal, and thus the computation of the factorization (8) is numerically back-
ward stable [12].

Corollary 5. With respect to factorization (8),

G(s) =

⎡⎢⎢⎣
−sE11 + A11 −sE12 + A12 A13 0 B12

0 −sE22 + A22 A23 0 B22

0 A32 A33 B31 0
C1 C2 C3 0 0

⎤⎥⎥⎦WT .(11)

Proof. First, a direct calculation yields that⎡⎣P 0 0
0 I 0
0 0 P

⎤⎦⎡⎣−sE + A B −sE + A
C 0 C

−sE + A B 0

⎤⎦⎡⎣Q 0 0
0 W 0
0 0 Q

⎤⎦
=

⎡⎣P (−sE + A)Q PBW P (−sE + A)Q
CQ 0 CQ

P (−sE + A)Q PBW 0

⎤⎦.(12)
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Next, since U and V are orthogonal, we have from (8) and using (12) that⎡⎣P (−sE + A)Q PBW P (−sE + A)Q
CQ 0 CQ

P (−sE + A)Q PBW 0

⎤⎦[
In1

0

]

=

⎡⎣UT
11 0 UT

21

0 I 0
UT

12 0 UT
22

⎤⎦
⎡⎢⎢⎢⎢⎣
−sE11 + A11

0
0
C1

�

⎤⎥⎥⎥⎥⎦.

Note that n = n1 + n2 + n3, and thus,

[0 In3 ] P (−sE + A)Q

[
In1

0

]

= [0n3×(n1+n2) In3 0]

⎡⎣P (−sE + A)Q PBW P (−sE + A)Q
CQ 0 CQ

P (−sE + A)Q PBW 0

⎤⎦[
In1

0

]

= [0n3×(n1+n2) In3
0]

⎡⎣UT
11 0 UT

21

0 I 0
UT

12 0 UT
22

⎤⎦
⎡⎢⎢⎢⎢⎣
−sE11 + A11

0
0
C1

�

⎤⎥⎥⎥⎥⎦= 0.(13)

Then we have from factorization (8), using (12), and equality n = n1 + n2 + n3 that⎡⎣U11 0 0 0 U12

0 In3 0 0 0
0 0 Ip 0 0

⎤⎦⎡⎣P (−sE + A)Q PBW P (−sE + A)Q
CQ 0 CQ

P (−sE + A)Q PBW 0

⎤⎦

×

⎡⎢⎢⎢⎢⎣
In1+n2 0 0

0 V11 0
0 0 Im
0 V21 0
0 0 0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
−sE11 + A11 −sE12 + A12 A13 0 B12

0 −sE22 + A22 A23 0 B22

0 A32 A33 B31 0
C1 C2 C3 0 0

⎤⎥⎥⎦,

which give, along with the facts[
[U11 0]P (−sE + A)Q + [0 U12]P (−sE + A)Q

[0 In3
]P (−sE + A)Q

]
=

[
U11 U12

0 I

]
P (−sE + A)Q,

[
[U11 0]PBW + [0 U12]PBW

[0 In3 ]PBW

]
=

[
U11 U12

0 I

]
PBW,

CQ

[
In1+n2 0

0 V11

]
+ CQ

[
0 V21

0 0

]
= CQ

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦ (since V21 ∈ Rn1×n3),
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that[
U11 U12

0 I

]
P (−sE + A)Q

[
In1+n2

0
0 V11

]
+

[
U11 0
0 I

]
P (−sE + A)Q

[
0 V21

0 0

]

=

⎡⎣−sE11 + A11 −sE12 + A12 A13

0 −sE22 + A22 A23

0 A32 A33

⎤⎦(14)

and [
U11 U12

0 I

]
PBW =

⎡⎣ 0 B12

0 B22

B31 0

⎤⎦, CQ

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦ = [C1 C2 C3].(15)

Because (13) means that

[0 U12] P (−sE + A)Q

[
V21

0

]
= U12 [0 In3 ] P (−sE + A)Q

[
In1

0

]
V21 = 0,

thus,[
U11 0
0 I

]
P (−sE + A)Q

[
0 V21

0 0

]
=

[
U11 U12

0 I

]
P (−sE + A)Q

[
0 V21

0 0

]
,

and hence we obtain, using (14) and the equality[
In1+n2 0

0 V11

]
+

[
0 V21

0 0

]
=

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦ (since V21 ∈ Rn1×n3),

that

(16)[
U11 U12

0 I

]
P (−sE + A)Q

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦=

⎡⎣−sE11 + A11 −sE12 + A12 A13

0 −sE22 + A22 A23

0 A32 A33

⎤⎦.
Obviously, (15) and (16) can be combined into the following compact form:

(17)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
U11 U12

0 I

]
P (−sE + A)Q

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦=

⎡⎣−sE11 + A11 −sE12 + A12 A13

0 −sE22 + A22 A23

0 A32 A33

⎤⎦,
[
U11 U12

0 I

]
PBW =

⎡⎣ 0 B12

0 B22

B31 0

⎤⎦, CQ

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦ = [C1 C2 C3] .

Hence, Corollary 5 follows.
Realization (11) is computed by a numerically backward stable manner in the

sense that the factorization (8) is numerically backward stable. In the following, we
show that the computation of realization (11) is numerically forward stable.
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Let us denote the computed X using finite precision arithmetic by X̄, as opposed
to exact arithmetic, and denote the machine precision by ε. Let

P (−sE + A)Q = −sE(1) + A(1),

P (−sE + A)Q

⎡⎣V22 0 V21

0 I 0
V12 0 V11

⎤⎦ = −sE(2) + A(2),

[
U11 U12

U21 U22

]
P (−sE + A)Q = −sE(3) + A(3),

[
U11 U12

U21 U22

]
P (−sE + A)Q

⎡⎣V22 0 V21

0 I 0
V12 0 V11

⎤⎦ = −sE(4) + A(4),

[
U11 U12

0 I

]
P (−sE + A)Q

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦ = −sE + A

and

P̄ (−sE + A)Q̄ = −sĒ(1)+ Ā(1) =: −s(E(1)+ ΔE(1)) + (A(1)+ ΔA(1)),

P̄ (−sE + A)Q̄

⎡⎣V̄22 0 V̄21

0 I 0
V̄12 0 V̄11

⎤⎦=−sĒ(2)+ Ā(2) =:−s(E(2)+ ΔE(2)) + (A(2)+ ΔA(2)),

[
Ū11 Ū12

Ū21 Ū22

]
P̄ (−sE + A)Q̄ = −sĒ(3)+ Ā(3) =: −s(E(3)+ ΔE(3)) + (A(3)+ ΔA(3)),

[
Ū11 Ū12

Ū21 Ū22

]
P̄ (−sE + A)Q̄

⎡⎣ V̄22 0 V̄21

0 I 0
V̄12 0 V̄11

⎤⎦ = −sĒ(4) + Ā(4)

=: −s(E(4)+ ΔE(4))+(A(4) + ΔA(4)),[
Ū11 Ū12

0 I

]
P̄ (−sE + A)Q̄

⎡⎣ I 0 V̄21

0 I 0
0 0 V̄11

⎤⎦ = −sĒ + Ā

=: −s(E + ΔE) + (A + ΔA).

Then we have

− sE + A

=

⎡⎢⎢⎢⎣
[In1+n2

0] (−sE(3) + A(3))

[
In1+n2

0

]
[In1+n2

0] (−sE(4) + A(4))

[
0
In3

]
[0 In3 ] (−sE(1) + A(1))

[
In1+n2

0

]
[0 In3 ] (−sE(2) + A(2))

[
In3

0

]
⎤⎥⎥⎥⎦

and

− sΔE + ΔA

=

⎡⎢⎢⎢⎣
[In1+n2

0] (−sΔE(3)+ΔA(3))

[
In1+n2

0

]
[In1+n2

0] (−sΔE(4)+ ΔA(4))

[
0
In3

]
[0 In3

] (−sΔE(1) + ΔA(1))

[
In1+n2

0

]
[0 In3

] (−sΔE(2) + ΔA(2))

[
In3

0

]
⎤⎥⎥⎥⎦.
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Since we have from [12] that

‖ΔE(i)‖2 ≈ ε‖E‖2, ‖ΔA(i)‖2 ≈ ε‖A‖2, i = 1, 2, 3, 4,

we thus have

‖ΔE‖2 ≈ ε‖E‖2, ‖ΔA‖2 ≈ ε‖A‖2.(18)

Similarly, if we denote

[
U11 U12

0 I

]
PBW = B, CQ

⎡⎣ I 0 V21

0 I 0
0 0 V11

⎤⎦ = C

and

[
Ū11 Ū12

0 I

]
P̄BW̄ = B̄ =: B + ΔB, CQ̄

⎡⎣ I 0 V̄21

0 I 0
0 0 V̄11

⎤⎦ = C̄ =: C + ΔC,

then we also have

‖ΔB‖2 ≈ ε‖B‖2, ‖ΔC‖2 ≈ ε‖C‖2.(19)

Therefore, we have from (17), (18), and (19) that the computation of realization (11)
is numerically forward stable [12].

We can now conclude that the importance of the factorization (8) is that it pro-
vides a numerically reliable way, with complexity O(n3 +m3), to compute realization
(11) of G(s).

The following considerations are necessary preliminaries for Theorem 6 below.
Assume that G(s) ∈ Rp×m(s), with a minimal realization (7), is left invertible,

or equivalently,

max
s∈C

rank

[
−sE + A B

C 0

]
= n + m.(20)

Then we have, using (17) and the nonsingularity of B31, that

max
s∈C

rank

⎡⎣−sE11 + A11 −sE12 + A12 A13 B12

0 −sE22 + A22 A23 B22

C1 C2 C3 0

⎤⎦= max
s∈C

rank

[
−sE + A B

C 0

]
− n3

= (n + m) − n3 = n1 + n2 + n3 + (m− n3).(21)

Therefore, the generalized lower triangular form [25, 42] of the pencil

⎡⎣−sE11 + A11 −sE12 + A12 A13 B12

0 −sE22 + A22 A23 B22

C1 C2 C3 0

⎤⎦
is of the form
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S

⎡⎣−sE11 + A11 −sE12 + A12 A13 B12

0 −sE22 + A22 A23 B22

C1 C2 C3 0

⎤⎦ T

=

⎡⎢⎢⎣
n1 + n2 − n0∞ n0∞ n3 m− n3

−sEnf + Anf 0 0 0
−sE10 + A10 −sE11 + A11 A12 A13

−sE20 + A20 A21 A22 A23

−sE30 + A30 A31 A32 A33

⎤⎥⎥⎦ }n0∞
}n3

}m− n3

,(22)

where S and T are orthogonal, Enf is of full column rank, E11 is nonsingular, and

rank(−sEnf + Anf ) = n1 + n2 − n0∞ ∀s ∈ C0,

rank

⎡⎣−sE11 + A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦ = n0∞ + m ∀s ∈ C\C0.

We partition S and T into

S =

⎡⎢⎢⎣
n1 n2 p

S11 S12 S13

S21 S22 S23

S31 S32 S33

S41 S42 S43

⎤⎥⎥⎦ }n0∞
}n3

}m− n3

,

T =

⎡⎢⎢⎣
n1 + n2 − n0∞ n0∞ n3 m− n3

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎤⎥⎥⎦
}n1

}n2

}n3

}m− n3

.(23)

Obviously, factorization (22) has isolated the zeros of G(s) on C0 and at infinity to⎡⎣−sE11 + A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦.
Let the columns of full column rank matrix [LT

1 LT
2 LT

3 LT
4 LT

5 LT
6 ]T with

L1, L3 ∈ Rn1×r, L2, L4 ∈ Rn2×r, L5 ∈ Rn3×r, and L6 ∈ R(m−n3)×r span the stable
eigenspace of the pencil

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−sE11 + A11 −sE12 + A12 0 0 A13 B12

0 −sE22 + A22 0 0 A23 B22

−CT
1 JC1 −CT

1 JC2 −(sE11 + A11)
T 0 −CT

1 JC3 0

−CT
2 JC1 −CT

2 JC2 −(sE12 + A12)
T −(sE22 + A22)

T −CT
2 JC3 0

CT
3 JC1 CT

3 JC2 AT
13 AT

23 CT
3 JC3 0

0 0 BT
12 BT

22 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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which gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 A13 B12

0 A22 0 0 A23 B22

−CT
1 JC1 −CT

1 JC2 −AT
11 0 −CT

1 JC3 0

−CT
2 JC1 −CT

2 JC2 −AT
12 −AT

22 −CT
2 JC3 0

CT
3 JC1 CT

3 JC2 AT
13 AT

23 CT
3 JC3 0

0 0 BT
12 BT

22 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
L1

L2

L3

L4

L5

L6

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
E11 E12 0 0 0 0
0 E22 0 0 0 0
0 0 ET

11 0 0 0
0 0 ET

12 ET
22 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
L1

L2

L3

L4

L5

L6

⎤⎥⎥⎥⎥⎥⎥⎦Δ,(24)

where Δ ∈ Rr×r is stable.
Now we are ready to present our main result.
Theorem 6. Given G(s) ∈ Rp×m(s) with a minimal realization (7), assume that

factorization (8) and eigenfactorizations (22) and (24) have been determined. Then
G(s) has a (J, J ′)-lossless factorization if and only if the following conditions hold:

(a) G(s) is left invertible; i.e., property (20) holds.
(b) There exists a nonsingular matrix D0 ∈ Rm×m such that

DT
0

[
S33

S43

]
J
[
ST

33 ST
43

]
D0 = J ′.(25)

(c) We have

r + n0∞ = n1 + n2,

[
L1 T12

L2 T22

]
is nonsingular,(26)

[
E11L1 + E12L2 E11T12 + E12T22

E22L2 E22T22

]T [
L3 0
L4 0

]
≥ 0,(27)

and the algebraic Riccati equation

E11Y11A
T
11 + A11Y11E

T
11 + E11Y11C

T
1 JC1Y11E

T
11 = 0(28)

has a solution Y11 ≥ 0 such that the pencil −sE11 + A11 + E11Y11C
T
1 JC1 is

stable.
(d) We have

ρ

([
L1 T12

L2 T22

]
,

[
Y11E

T
11L3 0

0 0

])
< 1.(29)

Furthermore, in the case when conditions (a), (b), (c), and (d) hold, if we define the
following two QR factorizations:

Ŵ
[
ST

21

ST
22

]
=

[
0

RŴ

]
, ŴŴT = I, rank(RŴ) = n0∞,(30)
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W̃

⎛⎝[
In1 0 0
0 Ir 0

]⎡⎣ E11Y11E
T
11L3

E11L1 + E12L2

E22L2

⎤⎦⎞⎠ =

[
0

RW̃

]
,

W̃W̃T = I, rank(RW̃) = r,(31)

and partition

[
W̃ 0
0 I

] [
I 0

0 Ŵ

]⎡⎣ I 0 0
I I 0
0 0 In2

⎤⎦ =:

[ n1 n1 + n2

W11 W12

W21 W22

]
}n1

}n1 + n2
,(32)

then a (J, J ′)-lossless factorization of G(s) is given by the factors Θ(s) and Ξ(s),

Θ(s) =

⎡⎢⎢⎣
−sEΘ + AΘ 0 Z1

0 W11(−sE11 + A11) Z2

C1L1 + C2L2 + C3L5 C1 −
[
S33

S43

]T
⎤⎥⎥⎦D0,(33)

Ξ(s) = −(J ′)−1DT
0

[
sEΞ + AΞ BΞ

CΞ 0

]
WT ,(34)

where

−sEΘ + AΘ = [Ir 0] Ŵ
[
E11 E12

0 E22

] [
L1 − Y11E

T
11L3

L2

]
(−sI + Δ),

Z1 = −[Ir 0] Ŵ
([

S31 S32

S41 S42

]T
+

[
E11Y11C

T
1

0

]
J

[
S33

S43

]T)
,

Z2 = −W12

[
S31 S32

S41 S42

]T
+

(
W11 −W12

[
In1

0

])
E11Y11C

T
1 J

[
S33

S43

]T
,

−sEΞ + AΞ =

⎛⎝⎡⎣−sE11 + A11 −sE12 + A12 A13

0 −sE22 + A22 A23

0 A32 A33

⎤⎦
+

⎡⎣E11Y11C
T
1 J

0
0

⎤⎦ [C1 C2 C3]

⎞⎠⎡⎣L1 − Y11E
T
11L3 T12 0

L2 T22 0
0 0 I

⎤⎦,
BΞ =

⎡⎣ 0 B12

0 B21

B31 0

⎤⎦ ,

CΞ =

[
S31 S32 S33J
S41 S42 S43J

]⎡⎣ L3 0 0
L4 0 0

C1L1 + C2L2 C1T12 + C2T22 C3

⎤⎦.
Proof. The proof is given in section 3.
Theorem 6 leads to the following algorithm for solving the (J, J ′)-lossless factor-

ization problem.
Algorithm 1.

Input: G(s) ∈ Rp×m(s) with a minimal realization (7).
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Output: A (J, J ′)-lossless factorization G(s) = Θ(s)Ξ(s) of G(s) if possible.

Step 1. Compute the maxs∈C rank
[
−sE + A B

C 0

]
using the generalized lower tri-

angular form [25, 42] of the pencil
[
−sE + A B

C 0

]
. If it equals n + m, continue the

process. Otherwise, stop.
Step 2. Compute factorization (8) and the eigenfactorizations (22) and (24).
Step 3. Solve the algebraic Riccati equation (28).
Step 4. Verify conditions (25), (26), (27), and (29). If these conditions hold,

continue. Otherwise, stop.
Step 5. Compute QR factorizations (30) and (31) and then do the partitioning

(32).
Step 6. Compute the factors Θ(s) and Ξ(s) by (33) and (34). Output Θ(s) and

Ξ(s) and then stop.
We comment on Algorithm 1 as follows:
• The basis of Algorithm 1 is factorization (8), whose computation is numeri-

cally backward stable.
• Steps 1, 2, 4, and 5 are all implemented by only orthogonal transformations,

which are numerically backward stable [12].
• The algebraic Riccati equation (28) in Step 3 can be solved by MATLAB

code care.m, which is known to be numerically reliable.
• J ′ is symmetric and its inverse in Step 6 can be computed by SVDs or QR

factorizations [12], which are numerically reliable. Moreover, its computation
has no effect on Steps 1–5. Here we emphasize that it is almost impossible to
avoid the computation of (J ′)−1 in the (J, J ′)-lossless factorization problem.

Therefore, Algorithm 1 can be implemented in a numerically reliable manner.
In the following we give an example, produced by MATLAB, to illustrate Algo-

rithm 1.
Example 1. Consider G(s) ∈ R3×2(s) of the form

G(s) =:

[
−sE + A B

C 0

]
,

where

E =

⎡⎢⎢⎣
−0.79648662531102 −0.34408628966218 −0.92919020476514 −0.86759340177264
−1.59637666711651 −0.94742772442409 −1.88152958422816 −1.64655996556517
−1.15895570567892 −0.61226050785142 −1.39417360448597 −1.19527660654597
−0.73210108350959 −0.49401721140691 −0.89220026767141 −0.71378640906087

⎤⎥⎥⎦ ,

A =

⎡⎢⎢⎣
−0.54614732946469 −0.33335809799803 −0.58359526918812 −0.51254534118206
−0.41339349292044 −0.33309306657012 −0.67775758611413 −0.19305827569214
−0.17411088650387 −0.13421301361811 −0.36658641418862 0.02806619555373

0.02762027911712 −0.02883001314100 −0.17294923202402 0.19154703875993

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
0.09377433103503 0.57046350715079
0.21622307574552 0.25020142641665
0.21193192933125 0.26835035557552
0.09482924580770 −0.22040923528986

⎤⎥⎥⎦ ,

C =

⎡⎣ −1.42431328897985 −2.68997314918496 −0.51966015469511 −2.34686842451761
0.36818972326874 −1.72243610987038 2.02945944128574 −1.02577475830025

−3.36933791418090 −2.94407864412045 −3.90940468898360 −3.24308590192695

⎤⎦ .
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G(s) is not proper and not stable (it has poles at 0.99992821324864, 1.0000025,
0740078, and ∞), and G(s) has zeros at 0 and ∞. Let

J =

⎡⎣ 1 0 0
0 −1 0
0 0 −1

⎤⎦, J ′ =

[
−1 0
0 −1

]
.

We aim at solving the (J, J ′)-lossless factorization problem using Algorithm 1.
First, we have that

max
s∈C

[
−sE + A B

C 0

]
= 6 = n + m.

Then we compute factorization (8) and eigenfactorizations (22) and (24) to get

n1 = 2, n2 = n3 = 1, n0∞ = 2, r = 1.

Next, we solve the algebraic Riccati equation (28) to get Y11. We have verified that
conditions (25), (26), (27), and (29) hold. Hence, the (J, J ′)-lossless factorization
problem is solvable. Finally, we obtain the factor Θ(s) and Ξ(s) as follows:

Θ(s) =

[
−sE1 + A1 B1

C1 D1

]
, Ξ(s) =

[
−sE2 + A2 B2

C2 0

]
,

where

E1 =

⎡⎣ 1 0 0
0 0.01774809157525 −0.06358913345474
0 −0.00797313544766 −0.10278316529096

⎤⎦,
A1 =

⎡⎣−1.00024697137514 0 0
0 0.01774668569757 −0.06358649788333
0 −0.00797309297453 −0.10278354338532

⎤⎦,
B1 =

⎡⎣ 0.00057439346062 0.00329848142888
0.07316225222884 0.03930299095489
0.14590579936467 0.28566107869004

⎤⎦,
D1 =

⎡⎣−0.00043278110916 1.73218301798980
−0.57776923753157 1.63292687247408

0.81620027901348 1.15499257009050

⎤⎦,
C1 =

⎡⎣ 0.00001056932855 −0.72504644099477 0.40237228536648
0.00000747363261 −1.09338239540910 1.45479511894656
0.00000528467535 0.09618079240102 −1.25264068782599

⎤⎦
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and

E2 =

⎡⎢⎢⎣
0.01774809157525 −0.06358913345474 0.47848254444975 0

−0.00797313544766 −0.10278316529096 0.10775627253774 0
0 0 −0.26584884230443 0
0 0 0 0

⎤⎥⎥⎦,

A2 =

⎡⎢⎢⎣
−0.01774720011926 0.06358729062381 −0.14556383589018 0.00308271113730

0.00797077340375 0.10278851884865 −1.90110351010103 0.02210167323039
0 0 −0.39065207241599 0.00592368556175
0 0 0.22044279058618 0

⎤⎥⎥⎦,

B2 =

⎡⎢⎢⎣
0 0.04378720103054
0 −0.52343364403428
0 −0.17552423949623

−0.03645315939670 0

⎤⎥⎥⎦,
C2 =

[
0.70991171521262 −1.86276740788912 5.43175549553726 −0.16061664495765

−0.41841225671249 0.23180092585230 1.89204730143784 0.11350319804946

]
.

3. Proof of Theorem 6. In this section we always assume that factorization
(8) and eigenfactorizations (22) and (24) have been determined. Our purpose here is
to prove Theorem 6. For this, we need two supporting lemmas.

Lemma 7. (i) Given factorization (8), there exist matrices K ∈ Rn3×n2 and

[ n2 n3

F12 F13

F22 0

]
}n3

}m− n3

such that {
A32 + B31F12 = B31K, A33 + B31F13 = −B31,

the pencil − sE22 + A22 + A23K + B22F22 is stable.
(35)

(ii) The following equality holds:

G(s) = G1(s)G2(s),

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1(s) =

⎡⎣ −sE11 + A11 −sE12 + A12 + A13K + B12F22 A13 B12

0 −sE22 + A22 + A23K + B22F22 A23 B22

C1 C2 + C3K C3 0

⎤⎦
=:

[
−sΘ + Φ Ψ

Π D

]
,

G2(s) =

⎡⎢⎢⎣
−sE22 + A22 A23 0 B22

A32 A33 B31 0
−F12 −F13 I 0
−F22 0 0 I

⎤⎥⎥⎦WT ,

(36)

and G2(s) and G−1
2 (s) have neither zeros nor poles in C+.

(iii) G(s) has a (J, J ′)-lossless factorization if and only if G1(s) has a (J, J ′)-
lossless factorization. Moreover, G(s) = Θ(s)Ξ(s) is a (J, J ′)-lossless factorization
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of G(s) if and only if G1(s) = Θ(s)Ξ̂(s) with Ξ̂(s) = Ξ(s)G−1
2 (s) is a (J, J ′)-lossless

factorization of G1(s).
Proof. The minimality of realization (7) implies that

rank [−sE + A B] = n ∀s ∈ C,

which, along with (17) gives

rank [−sE22 + A22 A23 B22] = n2 ∀s ∈ C,

and thus there exist matrices K and F22 such that the pencil −sE22 +A22 +A23K +
B22F22 is stable [42]. Since B31 is nonsingular, the existence of matrices F12 and F13

is obvious. Parts (ii) and (iii) follow directly from a simple verification.
Lemma 8. Let Θ, Φ, Ψ, and Π be the same as those defined in (36). Then Y ≥ 0

satisfies

Y(ΦΘ−1)T + (ΦΘ−1)Y + Y(ΠΘ−1)TJ(ΠΘ−1)Y = 0,(37)

and the matrix ΦΘ−1 + Y(ΠΘ−1)TJ(ΠΘ−1) is stable if and only if

Y =

[
E11Y11E

T
11 0

0 0

]
,

where Y11 ≥ 0 satisfies (28) and the pencil −sE11 + A11 + E11Y11C
T
1 JC1 is stable.

Proof. It is easy to see that ΦΘ−1 and (ΠΘ−1)TJ(ΠΘ−1) are of the forms

ΦΘ−1 =

[
H11 H12

0 H22

]
, (ΠΘ−1)TJ(ΠΘ−1) =

[
Π11 Π12

ΠT
12 Π22

]
,

where

H11 = A11E
−1
11 , H22 = (A22 + A23K + B22F22)E

−1
22 ,

H12 = (A12 + A13K + B12F22)E
−1
22 −A11E

−1
11 E12E

−1
22 ,

Π11 = (C1E
−1
11 )TJ(C1E

−1
11 ), Π12 = (C1E

−1
11 )T {(C2 + C3K)E−1

22 − C1E
−1
11 E12E

−1
22 },

Π22 = {(C2 + C3K)E−1
22 − C1E

−1
11 E12E

−1
22 }TJ(C1E

−1
11 )T

{(C2 + C3K)E−1
22 − C1E

−1
11 E12E

−1
22 }.

Since

[
(ΦΘ−1)T (ΠΘ−1)TJ(ΠΘ−1)

0 −(ΦΘ−1)

]
=

⎡⎢⎢⎢⎣
HT

11 0 Π11 Π12

HT
12 HT

22 ΠT
12 Π22

0 0 −H11 −H12

0 0 0 −H22

⎤⎥⎥⎥⎦,
and the stability of the pencil −sE22+A22+A23K+B22F22 implies that HT

22 is stable
and −H22 is antistable, thus the stable eigendecomposition of the matrix[

(ΦΘ−1)T (ΠΘ−1)TJ(ΠΘ−1)
0 −(ΦΘ−1)

]
is of the form
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[
(ΦΘ−1)T (ΠΘ−1)TJ(ΠΘ−1)

0 −(ΦΘ−1)

]⎡⎢⎢⎣
X11 0
X21 I
X31 0
0 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
X11 0
X21 I
X31 0
0 0

⎤⎥⎥⎦[
Ω11 0
Ω21 HT

22

]
,(38)

where the numbers of rows of X11,X21, and X31 are n1, n2, and n1, respectively, and
Ω11 is stable. It is well known [18] that

Y ≥ 0 is the solution of the Lyapunov equation (37) such that

ΦΘ−1 + Y(ΠΘ−1)TJ(ΠΘ−1) is stable

⇐⇒ Y =

[
X31 0
0 0

] [
X11 0
X21 I

]−1

=

[
Ŷ11 0
0 0

]
≥ 0, H11 + Ŷ11Π11 is stable,

⇐⇒ Ŷ11 ≥ 0, H11 + Ŷ11Π11 is stable,(39)

where

Ŷ11 := X31X−1
11 .

Note that

H11 + Ŷ11Π11 = A11E
−1
11 + Ŷ11(C1E

−1
11 )TJ(C1E

−1
11 )

and[
(A11E

−1
11 )T (C1E

−1
11 )TJ(C1E

−1
11 )

0 −(A11E
−1
11 )

] [
X11

X31

]
=

[
HT

11 Π11

0 −H11

] [
X11

X31

]
=

[
X11

X31

]
Ω11,

and thus we have from [18] that Ŷ11 ≥ 0 and H11 + Ŷ11Π11 is stable if and only if{
Ŷ11(A11E

−1
11 )T + (A11E

−1
11 )Ŷ11 + Ŷ11(C1E

−1
11 )TJ(C1E

−1
11 )Ŷ11 = 0,

Ŷ11 ≥ 0, A11E
−1
11 + Ŷ11(C1E

−1
11 )TJ(C1E

−1
11 ) is stable.

(40)

A simple calculation yields that Ŷ11 satisfies (40) if and only if Ŷ11 = E11Y11E
T
11,

Y11 ≥ 0, (28) is satisfied, and the pencil −sE11 + A11 + E11Y11C
T
1 JC1 is stable.

Hence, Lemma 8 follows directly from (39).
We are now ready to prove Theorem 6.
Proof. We prove Theorem 6 by the following four arguments.
Argument 1. Since S and T are orthogonal, we have from (22) that

⎡⎣E11 E12 0 0
0 E22 0 0
0 0 0 0

⎤⎦
⎡⎢⎢⎣
T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎤⎥⎥⎦

=

⎡⎣ST
11 ST

21 ST
31 ST

41

ST
12 ST

22 ST
32 ST

42

ST
13 ST

23 ST
33 ST

43

⎤⎦
⎡⎢⎢⎣
Enf 0 0 0
E10 E11 0 0
E20 0 0 0
E30 0 0 0

⎤⎥⎥⎦,
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and thus [
E11 E12

0 E22

] [
T13 T14

T23 T24

]
= 0, ST

23E11 = 0.

Because
[E11 E12

0 E22

]
and E11 are nonsingular, thus[

T13 T14

T23 T24

]
= 0, S23 = 0.(41)

Note that
[
T11 T12

T21 T22

]
is square and⎡⎢⎢⎣

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎤⎥⎥⎦
is orthogonal. Thus (41) yields that[

T31 T32

T41 T42

]
= 0.(42)

Therefore, the orthogonal matrices S and T in (22) are of the forms

S =

⎡⎢⎢⎣
n1 n2 p

S11 S12 S13

S21 S22 0
S31 S32 S33

S41 S42 S43

⎤⎥⎥⎦ }n0∞
}n3

}m− n3

,

T =

⎡⎢⎢⎣
n1 + n2 − n0∞ n0∞ n3 m− n3

T11 T12 0 0
T21 T22 0 0
0 0 T33 T34

0 0 T43 T44

⎤⎥⎥⎦
}n1

}n2

}n3

}m− n3

.(43)

Moreover, we have from (22), (23), and (24) that

[
−sΘ + Φ Ψ

Π D

]⎡⎢⎢⎣
In1 0 0 0
0 In2 0 0
0 −K I 0
0 −F22 0 I

⎤⎥⎥⎦=

⎡⎣−sE11 + A11 −sE12 + A12 A13 B12

0 −sE22 + A22 A23 B22

C1 C2 C3 0

⎤⎦,

M

⎡⎣−sΘ + Φ 0 Ψ
−ΠTJΠ −sΘT − ΦT −ΠTJD
DTJΠ ΨT DTJD

⎤⎦N

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−sE11 + A11 −sE12 + A12 0 0 A13 B12

0 −sE22 + A22 0 0 A23 B22

−CT
1 JC1 −CT

1 JC2 −(sE11 + A11)T 0 −CT
1 JC3 0

−CT
2 JC1 −CT

2 JC2 −(sE12 + A12)T −(sE22 + A22)T −CT
2 JC3 0

CT
3 JC1 CT

3 JC2 AT
13 AT

23 CT
3 JC3 0

0 0 BT
12 BT

22 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where

M =

⎡⎢⎢⎢⎢⎢⎢⎣
In1

0 0 0 0 0
0 In2

0 0 0 0
0 0 In1 0 0 0
0 0 0 In2

KT FT
22

0 0 0 0 I 0
0 0 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦, N =

⎡⎢⎢⎢⎢⎢⎢⎣
In1

0 0 0 0 0
0 In2

0 0 0 0
0 0 In1 0 0 0
0 0 0 In2 0 0
0 −K 0 0 I 0
0 −F22 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦.

Hence, ⎡⎢⎢⎣
S11 S12 S13

S21 S22 0
S31 S32 S33

S41 S42 S43

⎤⎥⎥⎦[
−sI + ΦΘ−1 Ψ

ΠΘ−1 D

]

×

⎡⎢⎢⎣
E11T11 + E12T21 E11T12 + E12T22 0 0

E22T21 E22T22 0 0
−KT21 −KT22 T33 T34

−F22T21 −F22T22 T43 T44

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−sEnf + Anf 0 0 0
−sE10 + A10 −sE11 + A11 A12 A13

−sE20 + A20 A21 A22 A23

−sE30 + A30 A31 A32 A33

⎤⎥⎥⎦,
the columns of ⎡⎢⎢⎢⎢⎢⎢⎣

E11L1 + E12L2

E22L2

L3

L4

L5 −KL2

L6 − F22L2

⎤⎥⎥⎥⎥⎥⎥⎦
span the stable eigenspace of the pencil⎡⎣ −sI + ΦΘ−1 0 Ψ

−(ΠΘ−1)TJ(ΠΘ−1) −sI − (ΦΘ−1)T −(ΠΘ−1)TJD
DTJ(ΠΘ−1) ΨT DTJD

⎤⎦,
and

⎡⎣ ΦΘ−1 0 Ψ
−(ΠΘ−1)TJ(ΠΘ−1) −(ΦΘ−1)T −(ΠΘ−1)TJD

DTJ(ΠΘ−1) ΨT DTJD

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
E11L1 + E12L2

E22L2

L3

L4

L5 −KL2

L6 − F22L2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎣ I 0 0
0 I 0
0 0 0

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
E11L1 + E12L2

E22L2

L3

L4

L5 −KL2

L6 − F22L2

⎤⎥⎥⎥⎥⎥⎥⎦Δ.
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Argument 2. Note that G1(s) =
[ −sI + ΦΘ−1 Ψ

ΠΘ−1 D
]
, so the minimality of realiza-

tion (7) and the stability of the pencil −sE22 + A22 + A23K + B22F22 give that

rank
[
−sI + ΦΘ−1 Ψ

]
= rank

[
−sI + ΦΘ−1

ΠΘ−1

]
= n1 + n2 ∀s ∈ C0 ∪ C+.

Thus, we have from Lemma 7(iii) and Theorem 3 that G(s) has a (J, J ′)-lossless
factorization if and only if G1(s) has a (J, J ′)-lossless factorization, or equivalently,

• the conditions in (a), (b) hold, r + n0∞ = n1 + n2;

• [E11L1 + E12L2 E11T12 + E12T22

E22L2 E22T22

]
is nonsingular;

• X :=
[ L3 0
L4 0

][E11L1 + E12L2 E11T12 + E12T22

E22L2 E22T22

]−1 ≥ 0;

• the Lyapunov equation (37) has a solution Y ≥ 0 such that the matrix ΦΘ−1+
Y(ΠΘ−1)TJ(ΠΘ−1) is stable, and furthermore, ρ(XY) < 1.

Argument 3. Since[
E11L1 + E12L2 E11T12 + E12T22

E22L2 E22T22

]
is nonsingular ⇔

[
L1 T12

L2 T22

]
is nonsingular,

X ≥ 0 ⇔
[
E11L1 + E12L2 E11T12 + E12T22

E22L2 E22T22

]T [
L3 0
L4 0

]
≥ 0,

and Lemma 8 yields that

ρ(XY) < 1 ⇔ ρ

([
L1 T12

L2 T22

]
,

[
Y11E

T
11L3 0

0 0

])
< 1,

thus G(s) has a (J, J ′)-lossless factorization if and only if conditions (a), (b), (c), and
(d) hold.

Argument 4. Under the conditions in (a)–(d), according to Lemma 7(iii), Lemma
8, and Theorem 3, factors Θ(s) and Ξ(s) are given by

Θ(s)

=

⎡⎢⎢⎢⎢⎣
−sI + Δ 0 Z1

0 −sI + ΦΘ−1 Z2

ΠΘ−1

[
E11L1 + E12L2

E22L2

]
+ D

[
L5 −KL2

L6 − F22L2

]
ΠΘ−1 −

[
S33

S43

]T
⎤⎥⎥⎥⎥⎦D0

=

⎡⎢⎢⎢⎢⎣
−sI + Δ 0 Z1

0 −sΘ + Φ Z2

ΠΘ−1

[
E11L1 + E12L2

E22L2

]
+ D

[
L5 −KL2

L6 − F22L2

]
Π −

[
S33

S43

]T
⎤⎥⎥⎥⎥⎦D0,
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Ξ(s)

= −(J ′)−1DT
0

⎡⎣ −sI + ΦΘ−1 + Y(ΠΘ−1)T J(ΠΘ−1) Ψ + Y(ΠΘ−1)T JD([
S31 S32

S41 S42

]
X +

[
S33

S43

]
JΠΘ−1

)
(I − YX )−1

[
S33

S43

]
JD

⎤⎦G2(s)

= −(J ′)−1DT
0

⎡⎣ −sΘ + Φ + Y(ΠΘ−1)T JΠ Ψ + Y(ΠΘ−1)T JD([
S31 S32

S41 S42

]
X +

[
S33

S43

]
JΠΘ−1

)
(I − YX )−1Θ

[
S33

S43

]
JD

⎤⎦G2(s),

where

ΠΘ−1

[
E11L1 + E12L2

E22L2

]
+ D

[
L5 −KL2

L6 − F22L2

]
= C1L1 + C2L2 + C3L5,

Z1 = −
[
Ir 0

]([E11L1 + E12L2 E11T12 + E12T22

E22L2 E22T22

]
− Y

[
L3 0
L4 0

])−1

×
([

S31 S32

S41 S42

]T
+ Y(ΠΘ−1)TJ

[
S33

S43

]T)

= −
[
Ir 0

]([E11 E12

0 E22

] [
L1 − Y11E

T
11L3 T12

L2 T22

])−1

×
([

S31 S32

S41 S42

]T
+

[
E11Y11C

T
1

0

]
J

[
S33

S43

]T)
,

Z2 = (I − YX )−1Y
(
X

[
S31 S32

S41 S42

]T
+ (ΠΘ−1)TJ

[
S33

S43

]T)

=

[
I
0

]{
[E11Y11E

T
11L3 0]

[
E11L1 + E12L2 − E11Y11E

T
11L3 E11T12 + E12T22

E22L2 E22T22

]−1

×
([

S31 S32

S41 S42

]T
+

[
E11Y11C

T
1

0

]
J

[
S33

S43

]T)
+ E11Y11C

T
1 J

[
S33

S43

]T}
,

([
S31 S32

S41 S42

]
X +

[
S33

S43

]
JΠΘ−1

)
(I − YX )−1Θ

=

[
S31 S32 S33J
S41 S42 S43J

]⎛⎝⎡⎣ L3 0
L4 0

C1L1 + C2L2 C1T12 + C2T22

⎤⎦
×
[
L1 − Y11E

T
11L3 T12

L2 T22

]−1

+

⎡⎣ 0 0
0 0
0 C3K

⎤⎦⎞⎠
=

[
Π1 Π2 + Π3K

]
.
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In the above,
[
Π1 Π2 Π3

]
is defined by

[
Π1 Π2 Π3

]
= CΞ

⎡⎣L1 − Y11E
T
11L3 T12 0

L2 T22 0
0 0 I

⎤⎦−1

.

Note that (22) with (43) together gives that[
E11 E12

0 E22

] [
T12

T22

]
=

[
ST

21

ST
22

]
E11, Ŵ

([
E11 E12

0 E22

] [
T12

T22

])
=

[
0

RŴE11

]
,

which implies that[
−sI + Δ Z1

C1L1 + C2L2 + C3L3 0

]
=

[
−sEΘ + AΘ Z1

C1L1 + C2L2 + C3L3 0

]
.

Furthermore, we have from (30), (31), and (32) that

[
W11 W12

W21 W22

]⎡⎣ E11Y11E
T
11L3 0

E11L1 + E12L2 − E11Y11E
T
11L3 E11T12 + E12T22

E22L2 E22T22

⎤⎦ =

[
0
Σ

]

with

Σ ∈ R(n1+n2)×(n1+n2), rank(Σ) = n1 + n2,

which yields [3, 11, 43] that

[
E11Y11E

T
11L3 0

][E11L1 + E12L2 − E11Y11E
T
11L3 E11T12 + E12T22

E22L2 E22T22

]−1

= −W−1
11 W12,

and consequently, Z2 =
[W−1

11 Z2

0

]
. Hence, we have that

Θ(s) =

⎡⎢⎢⎢⎢⎢⎢⎣
−sEΘ + AΘ 0 Z1

0 −sΘ + Φ

[
W−1

11 Z2

0

]

C1L1 + C2L2 + C3L5 Π −
[
S33

S43

]T

⎤⎥⎥⎥⎥⎥⎥⎦D0

=

⎡⎢⎢⎢⎢⎢⎢⎣
−sEΘ + AΘ 0 0 Z1

0 −sE11 + A11 −sE12 + A12 + A13K + B12F22 W−1
11 Z2

0 0 −sE22 + A22 + A23K + B22F22 0

C1L1 + C2L2 + C3L5 C1 C2 + C3K −
[
S33

S43

]T

⎤⎥⎥⎥⎥⎥⎥⎦D0

=

⎡⎢⎢⎢⎢⎣
−sEΘ + AΘ 0 Z1

0 W11(−sE11 + A11) Z2

C1L1 + C2L2 + C3L5 C1 −
[
S33

S43

]T
⎤⎥⎥⎥⎥⎦D0,
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an
d

Ξ
(s

)
=

−
(J

′ )
−

1
D

T 0

×

⎡ ⎣−
sE

1
1

+
A

1
1

+
E

1
1
Y 1

1
C

T 1
J
C

1
−
sE

1
2

+
A

1
2

+
A

1
3
K

+
B

1
2
F

2
2

+
E

1
1
Y 1

1
C

T 1
J
(C

2
+
C

3
K

)
A

1
3

+
E

1
1
Y 1

1
C

T 1
J
C

3
B

1
2

0
−
sE

2
2

+
A

2
2

+
A

2
3
K

+
B

2
2
F

2
2

A
2
3

B
2
2

Π
1

Π
2

+
Π

3
K

Π
3

0

⎤ ⎦ G 2
(s

)

=
−

(J
′ )
−

1
D

T 0

×

⎡ ⎢ ⎢ ⎣−
sE

1
1

+
A

1
1

+
E

1
1
Y 1

1
C

T 1
J
C

1
−
sE

1
2

+
A

1
2

+
B

1
2
F

2
2

+
E

1
1
Y 1

1
C

T 1
J
C

2
A

1
3

+
E

1
1
Y 1

1
C

T 1
J
C

3
0

B
1
2

0
−
sE

2
2

+
A

2
2

+
B

2
2
F

2
2

A
2
3

0
B

2
2

0
A

3
2

+
B

3
1
F

1
2

A
3
3

+
B

3
1
F

1
3

B
3
1

0
Π

1
Π

2
Π

3
0

0

⎤ ⎥ ⎥ ⎦G 2
(s

)

(s
in

ce
A

3
2

+
B

3
1
F

1
2

=
B

3
1
K
,
A

3
3

+
B

3
1
F

1
3

=
−
B

3
1
)

=
−

(J
′ )
−

1
D

T 0

⎡ ⎢ ⎢ ⎣−
sE

1
1

+
A

1
1

+
E

1
1
Y 1

1
C

T 1
J
C

1
−
sE

1
2

+
A

1
2

+
E

1
1
Y 1

1
C

T 1
J
C

2
A

1
3

+
E

1
1
Y 1

1
C

T 1
J
C

3
0

B
1
2

0
−
sE

2
2

+
A

2
2

A
2
3

0
B

2
2

0
A

3
2

A
3
3

B
3
1

0
Π

1
Π

2
Π

3
0

0

⎤ ⎥ ⎥ ⎦W
T

=
−

(J
′ )
−

1
D

T 0

[ −
sE

Ξ
+
A

Ξ
B

Ξ

C
Ξ

0

] W
T
.
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4. Conclusions. We have obtained necessary and sufficient solvability condi-
tions and developed a numerical algorithm based on a generalized eigenvalue approach
for the (J, J ′)-lossless factorization of any general rational matrix G(s) ∈ Rp×m(s).
Our algorithm consists of factorization (8), eigenfactorizations (22) and (24), and the
algebraic Riccati equation (28). Thus, the (J, J ′)-lossless factorization can be com-
puted in a numerically reliable manner. A numerical example has also been given to
illustrate the proposed algorithm.

Appendix. We construct factorization (8) by the following numerical procedure.
Step 1. Compute the generalized upper triangular form [25, 42] of the pencil

−sE + A to get orthogonal matrices P and Q such that

P (−sE + A)Q =:

⎡⎢⎣
n1 n2 n3

−sE
(1)
11 + A

(1)
11 −sE

(1)
12 + A

(1)
12 −sE

(1)
13 + A

(1)
13

0 −sE
(1)
22 + A

(1)
22 A

(1)
23

0 A32 A
(1)
33

⎤⎥⎦ }n1

}n2

}n3

,(44)

where E
(1)
11 and E

(1)
22 are nonsingular and

rank

[
−sE

(1)
22 + A

(1)
22 A

(1)
23

A32 A
(1)
33

]
= n2 + n3 ∀s ∈ C.

Define

PB =:

⎡⎢⎣B
(1)
1

B
(1)
2

B
(1)
3

⎤⎥⎦ }n1

}n2

}n3

, CQ =:
[ n1 n2 n3

C1 C2 C
(1)
3

]
.

The minimality of realization (7) gives that

rank (B
(1)
3 ) = n3.

Step 2. Compute the QR factorization of (B
(1)
3 )T to get orthogonal matrix W

such that

B
(1)
3 W =:

[ n3 m− n3

B31 0
]
, rank(B31) = n3.(45)

Define

[
B

(1)
1

B
(1)
2

]
W =:

[ n3 m− n3

B
(2)
11 B

(2)
12

B
(2)
21 B

(2)
22

]
}n1

}n2
.

Step 3. Compute QR factorizations to get orthogonal matrices Ũ , Û , and V with
partitioning

Ũ =

[ n1 n3

Ũ11 Ũ12

Ũ21 Ũ22

]
}n1

}n3
, Û =

[ n2 n3

Û11 Û12

Û21 Û22

]
}n2

}n3
, V =

[ n3 n1

V11 V12

V21 V22

]
}n3

}n1
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such that

Û

[
B

(2)
21

B31

]
=:

[
0

R̂B

]
, Ũ

[
B

(2)
11

R̂B

]
=:

[
0

R̃B

]
,

[
E

(1)
13 E

(1)
11

]
V =:

[
0 RE

]
,(46)

where R̃B , R̂B , and RE are nonsingular. Since E
(1)
11 and B31 are nonsingular, we have

that Ũ11, Û11, and V11 are nonsingular [1, 3, 11, 43].
Step 4. Define

[n1 + n2 n3

U11 U12

U21 U22

]
}n1 + n2

}n3
:= U =

⎡⎣ Ũ11 0 Ũ12

0 I 0

Ũ21 0 Ũ22

⎤⎦[
I 0

0 Û

]

=

⎡⎣ Ũ11 Ũ12Û21 Ũ12Û22

0 Û11 Û12

Ũ21 Ũ22Û21 Ũ22Û22

⎤⎦ .

Then orthogonal matrices P, Q, U, V , and W above give factorization (8) with[
−sE11 + A11 −sE12 + A12 −sE

(4)
13 + A

(4)
13 B12

0 −sE22 + A22 A
(4)
23 B22

]

=
[
U11 U12

] ⎡⎢⎣−sE
(1)
11 + A

(1)
11 −sE

(1)
12 + A

(1)
12 −sE13 + A

(1)
13 B

(2)
12

0 −sE
(1)
22 + A

(1)
22 A

(1)
23 B

(2)
22

0 A32 A
(1)
33 0

⎤⎥⎦
and ⎡⎢⎢⎣

A13

A23

A33

C3

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
A

(4)
13 A11

A
(4)
23 0

A
(1)
33 0

C
(1)
3 C1

⎤⎥⎥⎥⎦
[
V11

V21

]
.

A direct calculation yields that properties (9), (10), and (11) hold.
The above procedures involves only the generalized upper triangular form (44)

and four QR factorizations in (45) and (46). Hence, it needs only O(n3+m3) flops [5].
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1. Introduction. Let Ω be a bounded domain in R2 with a smooth boundary
∂Ω, and let QT = Ω × (0, T ). In this paper, we consider an optimal control problem
for the system

∂tu− div(μ(θ)∇u) = f in QT ,(1.1)

∂tθ − Δθ = μ(θ)|∇u|2 in QT .(1.2)

Here u : QT → R, θ : QT → R are the unknowns and f : QT → R, μ : R → R are
given. The function f will be the control of our optimal control problem. We assume
that μ is a function of class C1 satisfying the following assumption: there are positive
constants μ0, μ1, and μ2 such that

0 < μ0 ≤ μ(s) ≤ μ1, |μ′(s)| ≤ μ2 ∀s ∈ R.(1.3)

In this paper we study the following initial-boundary value problem for the system
(1.1)–(1.2):

u|∂Ω = 0, u|t=0 = u0,(1.4)

θ|∂Ω = 0, θ|t=0 = θ0.(1.5)

The main difficulty of the problem under consideration arises from the right-hand
side of (1.2), which has the quadratic growth with respect to the gradient of unknown
function u. Formally speaking, this means that our system belongs to the class of
systems having the strong nonlinearity. Indeed, assuming that μ is smooth, we can
introduce a new unknown vector function U = (u, θ) and get for it the system of type

∂tU − a(U)ΔU = b(U,∇U),(1.6)
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where function b has quadratic growth with respect to ∇U :

|b(z, F )| ≤ C(1 + |F |2).(1.7)

For the case of the scalar elliptic and parabolic equations having strong nonlinearities,
the existence and regularity theory (based on the Leray–Schauder theory and a priori
estimates in the smooth classes of functions) was developed by Ladyzhenskaya and
Uraltseva [17] and Ladyzhenskaya, Solonnikov, and Uraltseva [18]. In contrast with
the scalar case, there is no general existence and regularity theory for systems of types
(1.6) and (1.7) and, moreover, examples show that without additional assumptions
(such as special structure, etc.) such theories cannot be established; see, for instance,
[10].

Existence of the weak solutions to the system (1.1)–(1.2) was proved in [21], where
the mathematical treatment of this system appears, apparently for the first time.
Unfortunately, the class of weak solutions considered in [21] does not provide Gâteaux
differentiability of the nonlinear operator corresponding to the system (1.1)–(1.2). To
study the optimal control problem for this system, we have to work with the class of
strong solutions. The regularity theorem requires additional assumptions on f , which
can be provided only by the appropriate choice of the cost functional of our problem.
On the other hand, a carelessly chosen cost functional leads to the more complex form
of the optimality system, which is unpleasant from the point of view of applications.
So, to study an optimal control problem for the system (1.1)–(1.2), it is necessary to
find the balance between the assumptions of f , which provide the regularity of our
optimal solution and the form of the cost functional which, at least in principle, allows
us to produce some reasonable numeric calculations. In our work, we suggest a form
of the cost functional that satisfies these two requirements.

Regularity of weak solutions to the system (1.1)–(1.2) for the stationary case was
studied, for example, in [5]. The complete regularity theory in the “elliptic-parabolic”
case, i.e., the case when, in (1.1), the term containing the time derivative of u is
absent, was developed in [2]. For the parabolic case, regularity of weak solutions to
the system (1.1)–(1.2) was studied by Rodrigues in [21]. He studied the only special
case, where the function μ is close to a constant (in the sense that μ1 − μ0 � 1).
In the present work, we get rid of this restriction and prove the regularity of weak
solutions of (1.1)–(1.2), from which Gâteaux differentiability of the nonlinear operator
(1.1)–(1.2) on the functional class of strong solutions follows. This allows us to study
the optimal control problem and derive the optimality system for our optimal control
problem. We believe that our regularity theorem for the parabolic system (1.1)–(1.2)
is one of the results of our work which is of independent interest.

The system (1.1)–(1.2) arises in many applications. For example, nonlinearities in
(1.1) and (1.2) are typical for the description of thermistors, i.e., in studying the heat
transfer in the resistor device whose resistance μ(θ) depends on the temperature θ,
and the volume heating is given by the Joule–Lentz law; see, for instance, [2, 5, 6, 7,
8, 13, 21] and references therein.

In our work, we explore the motivation of the system (1.1)–(1.2), which is bor-
rowed from the paper [21]. Namely, in [21] it was shown that the system (1.1)–(1.2)
describes eddy currents induced by a unidirectional external magnetic field of the form

H(x1, x2, x3, t) = u(x1, x2, t)�e3,(1.8)

where �e3 is a unit vector in the x3-direction; see [21] for more details. Our problem is
to find a control f such that the magnetic field of the form (1.8) and the temperature
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field θ close to the given fields exist. We remark that in [21] the right-hand side f of
(1.1) arises after reduction of the nonhomogeneous boundary conditions for u to the
homogeneous conditions. So, in the physical case, f is the only time-dependent func-
tion, and hence the optimality system (2.14)–(2.16) obtained in Theorem 2.4 consists
of a system of PDEs for the Lagrange multipliers and a second order ODE for f ; see
Remark 2.4 below. But for the sake of generality we also consider f depending on
both time and spatial variables.

Note also that (1.1)–(1.2) can be considered also as a system modelling a unidi-
rectional Poiseuille-type flow of a homogeneous incompressible Newtonian fluid whose
viscosity is the temperature-dependent function; see [21] for more information. As we
see, in most applications the system (1.1)–(1.2) arises in the two-dimensional case
(Ω ⊂ R2).

2. Notation and main results. We use the following notation for functional
spaces:

• Lp(Ω), Lp(QT ) are the usual Lebesgue spaces with the notation

‖f‖p,Ω ≡ ‖f‖Lp(Ω), ‖f‖p,QT
≡ ‖f‖Lp(QT );

• W k
p (Ω) is the usual Sobolev space (or Slobodetskii–Sobolev space in the case

of noninteger k); see, for instance, [18, Chap. II, sections 2–3] for the defini-
tions;

• W̊ k
p (Ω), k > 1 − 1

p , is the subspace of functions from W k
p (Ω) having zero

traces on the boundary;
• W−k

p (Ω) = (W̊ k
p′(Ω))∗, 1

p + 1
p′ = 1, p ≥ 1;

• Lr,s(QT ) ≡ Ls(0, T ;Lr(Ω)), ‖f‖Lr,s(QT ) ≡ (
∫ T

0
‖f(·, t)‖sr,Ω dt)1/s;

• W 1,0
p (QT ) ≡ Lp(0, T ;W 1

p (Ω)) = {u ∈ Lp(QT ) : ∇u ∈ Lp(QT )},
‖u‖W 1,0

p (QT ) ≡ ‖u‖p,QT
+ ‖∇u‖p,QT

;

• W 2,1
p (QT ) = {u ∈ W 1,0

p (QT ) : ∇2u, ∂tu ∈ Lp(QT )},
‖u‖W 2,1

p (QT ) ≡ ‖u‖W 1,0
p (QT ) + ‖∇2u‖p,QT

+ ‖∂tu‖p,QT
.

Let the functions U,Θ : QT → R and initial data u0, θ0 : Ω → R be given and assume
that

U,Θ ∈ L2(QT ).(2.1)

Let us introduce the cost functional

J(u, θ, f) :=
1

2
‖u− U‖2

2,QT
+

1

2
‖θ − Θ‖2

2,QT
+

β1

2
‖f‖2q0

2q0,QT
+

β2

2
‖∂tf‖2

2,QT
(2.2)

and suppose

q0 > 1, β1 > 0, β2 ≥ 0(2.3)

(without loss of generality, we can consider q0 ≤ 3
2 ). Dealing with the system

(1.1)–(1.2) we shall focus on the strong solutions (i.e., those for which both (1.1)
and (1.2) hold a.e. in QT ). Hence, we must assume some regularity of the initial data
as well as compatibility conditions between initial and boundary data. For the sake
of simplicity we consider the initial data satisfying the following restrictions:

u0, θ0 ∈ C2(Ω̄), u0|∂Ω = θ0|∂Ω = 0.(2.4)
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Denote V := {u ∈ W 1,0
2 (QT ) : ∂tu ∈ L2(0, T ;W−1

2 (Ω))}. Our optimal control
problem is then the following.

Problem P. Find (û, θ̂, f̂) ∈ V ×W 2,1
1 (QT )×L2(QT ), which minimize J(u, θ, f)

among all the functions (u, θ, f) satisfying (1.1) in the sense of distributions, (1.2) a.e.
in QT , and satisfying also (1.4) and (1.5) in the sense of traces.

Remark 2.1. In the case of β2 > 0 we require also ∂tf ∈ L2(QT ).
Our principal results are the following theorems.
Theorem 2.1 (existence of the optimal solution). Assume that the conditions

(1.3), (2.1), (2.3), and (2.4) hold. Then there is a number q > 1 depending only on μ0,

μ1, q0, and QT such that there is at least one optimal solution (û, θ̂, f̂) of Problem P
belonging to the spaces

û ∈ C([0, T ];L2(Ω)) ∩W 1,0
2q (QT ), ∂tû ∈ L2(0, T ;W−1

2 (Ω)),

θ̂ ∈ W 2,1
q (QT ), f̂ ∈ L2q0(QT ),

and satisfying (1.1) in the sense of distributions, (1.2) a.e. in QT , and (1.4)–(1.5) in
the sense of traces. Moreover, if

β2 > 0,(2.5)

we also have

∂tf̂ ∈ L2(QT ).(2.6)

Remark 2.2. Theorem 2.1 remains true in the multidimensional case Ω ⊂ Rn,
n ≥ 2.

Theorem 2.2 (regularity of the optimal solution). Assume that the conditions

(1.3) and (2.3) hold and let (û, θ̂, f̂) be an optimal solution obtained in Theorem 2.1.
Then there is α > 0 such that

û ∈ Cα,α/2(Q̄T ),(2.7)

the following inclusion holds:

û, θ̂ ∈ W 1,0
4 (QT ),(2.8)

and, moreover,

û, θ̂ ∈ W 2,1
2 (QT ).(2.9)

Finally, if we assume the condition (2.5) holds, then

∂tû, ∂tθ̂ ∈ L∞(0, T ;L2(Ω)) ∩W 1,0
2 (QT ),(2.10)

θ̂ ∈ C1/4(Q̄T ),(2.11)

and

θ̂ ∈ W 2,1
2q0

(QT ), û ∈ W 2,1
2q0

(QT ).(2.12)

Now, we consider the nonlinear operator

(u, θ) → F (u, θ) =

(
∂tu− div(μ(θ)∇u), γ0u− u0

∂tθ − Δθ − μ(θ)|∇u|2, γ0θ − θ0

)
,
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where γ0 is the usual trace operator γ0u = u|t=0. We also introduce the Banach
spaces

W = {u ∈ W 2,1
2q (QT ) : u|ST

= 0},
V = {f ∈ L2q(QT ) : ∂tf ∈ L2(QT )},

H = L2q(QT ) × W̊
2−1/q
2q (Ω),

where ST := ∂Ω × (0, T ).
Theorem 2.3 (Gâteaux differentiability). Assume conditions (1.3) and (2.4)

hold and function μ is of class C2. Suppose also q > 1. Then the transformation F
is Gâteaux differentiable as a map

F : W ×W → H×H
and its derivative is

δF (u, θ)(w, e) =

(
∂tw − div(μ(θ)∇w) − div(μ′(θ)e∇u), γ0w

∂te− Δe− μ′(θ)e|∇u|2 − 2μ(θ)∇u · ∇w, γ0e

)
.

Moreover, if (û, θ̂, f̂) is an optimal solution of Problem P satisfying (2.12) and q ∈
(1, q0), then

image of δF (û, θ̂) = H×H.(2.13)

Theorem 2.4 (optimality system). Assume that all conditions of Theorems 2.2

and 2.3 hold and let (û, θ̂, f̂) be a solution of Problem P satisfying (2.12). Then there
are functions (p̂, ê) ∈ W 2,1

2 (QT ) ×W 2,1
2 (QT ) satisfying the system

∂tp̂ + div(μ(θ̂)∇p̂) − div(2μ(θ̂)ê∇û) = û− U, p̂|t=T = 0, p̂|∂Ω = 0,(2.14)

∂tê + Δê− μ′(θ̂)∇û · ∇p̂ + μ′(θ̂)|∇û|2ê = θ̂ − Θ, ê|t=T = 0, ê|∂Ω = 0,(2.15)

−β2
∂2f̂

∂t2
+ 2q0β1|f̂ |2q0−2f̂ = p̂,

∂f̂

∂t

∣∣∣∣
t=0

=
∂f̂

∂t

∣∣∣∣
t=T

= 0.(2.16)

Remark 2.3. Instead of the Neumann conditions it is possible to get in (2.16)
some other boundary conditions. For instance, to get in (2.16) the homogeneous
Dirichlet boundary conditions, one should look in Problem P for the minimum of J
among all f ∈ V such that f |t=0 = f |t=T = 0.

Remark 2.4. All results of our paper remain true if we consider the prob-
lem of minimization of the cost functional (2.2) (with β2 > 0) among all functions
f ∈ W 1

2 (0, T ), which depend only on t and do not depend on the spatial variables.
This case corresponds to the physically reasonable boundary conditions for the mag-
netic field. In this case we must put V = W 1

2 (0, T ) and the relation (2.16) must be
substituted with the ODE

−β2
d2f̂

dt2
+ 2q0β1|f̂ |2q0−2f̂ = [p̂]Ω,

∂f̂

∂t

∣∣∣∣
t=0

=
∂f̂

∂t

∣∣∣∣
t=T

= 0,(2.17)

where

[p̂]Ω(t) ≡
∫

Ω

p̂(x, t) dx.

Moreover, in this case we can put q0 = 1 in (2.2) (and hence obtain the linear equation
in (2.17)). All improvements that one should put into the proof of Theorem 2.4 to
cover this case are obvious.
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3. Proof of Theorem 2.1. Before we prove Theorem 2.1 let us formulate here
one lemma on solutions of the linear parabolic systems with measurable coefficients.
We are going to use it later.

Lemma 3.1 (higher integrability of solutions to parabolic equations). Assume
QT = Ω × (0, T ), Ω ⊂ Rn, is a bounded domain with a boundary of class C1, and a
matrix A(x, t) = (Aij(x, t)) satisfies the conditions

∃ ν0 > 0 such that Aij(x, t)ξiξj ≥ ν0|ξ|2 ∀ξ ∈ Rn,

Aij ∈ L∞(QT ), Aij = Aji.
(3.1)

Assume also f ∈ L2q0(QT ), u0 ∈ W 1
2q0(Ω) for some q0 > 1 and let u ∈ C([0, T ];L2(Ω))

∩W 1,0
2 (QT ) be a weak solution to the equation

∂tu− div(A(x, t)∇u) = f in QT ,

u|∂Ω = 0, u|t=0 = u0.
(3.2)

Then there is a constant q > 1 depending only on n, q0, ν0, ‖A‖∞,QT
, and QT such

that u ∈ W 1,0
2q (QT ), and the estimate

‖∇u‖2q,QT
≤ C(‖f‖2q,QT

+ ‖u0‖W 1
2q(Ω))

holds.
Lemma 3.1 is proved in [3, Thm. 2.2, p. 272]. For the case of the homogeneous

initial data see also [4, Thm. 3.III].
Now we turn to the proof of Theorem 2.1. Let (um, θm, fm) ∈ V × W 2,1

2 (QT )
× L2q0(QT ) be a sequence minimizing J(u, θ, f). Obviously, {fm} is bounded in
L2q0(QT ). We also have the energy estimate

sup
t

‖um‖2
2,Ω + ‖∇um‖2

2,QT
≤ C‖fm‖2

2,QT
(3.3)

and the following higher integrability of the first spatial gradient of u (see Lemma 3.1
above): there is q > 1 such that

‖∇um‖2q,QT
≤ C(‖fm‖2q,QT

+ ‖u0‖W 1
2q(Ω)).(3.4)

From the heat equation (1.2) we get

‖θm‖W 2,1
q (QT ) ≤ const. does not depend on m.(3.5)

Moreover, from (1.1) we obtain that {∂tum} is bounded in L2(0, T ;W−1
2 (Ω)). Hence

{um} is compact in L2(QT ) and we can extract subsequences {um}, {θm}, and {fm}
such that

um ⇀ û in W 1,0
2q (QT ),

∂tu
m ⇀ ∂tû in L2(0, T ;W−1

2 (Ω)),

θm ⇀ θ̂ in W 2,1
q (QT ),

fm ⇀ f̂ in L2q0(QT ),

um → û in L2(QT ),

um → û a.e. in QT ,

θm → θ̂ a.e. in QT ,

(3.6)
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and (û, θ̂) satisfy (1.4) and (1.5). Convergences (3.6) make it possible to pass to the
limit in the first equation, (1.1). So we have∫

QT

(−û∂tw + μ(θ̂)∇û · ∇w) dxdt =

∫
QT

f̂w dxdt ∀w ∈ C1
0 (QT ).

As we lack strong convergence for ∇um, we cannot pass directly to the limit in the
second equation, (1.2). Instead, we use the representation

μ(θm)|∇um|2 = div(μ(θm)um∇um) + fmum − 1

2
∂t|um|2 in D′(QT ),(3.7)

which follows from (1.1). Hence

c

∫
QT

(−θm∂tη + ∇θm · ∇η) dxdt

=

∫
QT

μ(θm)um∇um · ∇η dxdt +

∫
QT

(
fmumη +

1

2
|um|2∂tη

)
dxdt ∀η ∈ C1

0 (QT ).

Passing to the limit in this equation, we obtain the same identity for û, θ̂, and f̂ .
Then using for û the relation (3.7) again, we obtain the identity∫

QT

(−θ̂∂tη + ∇θ̂ · ∇η) dxdt =

∫
QT

μ(θ̂)|∇û|2η dxdt ∀η ∈ C1
0 (QT ).

Hence (û, θ̂) also satisfy (1.2). As J is lower semicontinuous with respect to the

weak convergence, we obtain that (û, θ̂, f̂) is a solution of Problem P. In the case of
β2 > 0 we also have the boundedness of {∂tfm} in L2(QT ), and hence (2.6) holds.
Theorem 2.1 is proved.

4. Proofs of Theorems 2.2 and 2.3. In this section we study regularity of
weak solutions obtained in Theorem 2.1. Our approach is very close to the method
used in [2] for investigation of the thermistor system in the “semistationary” case,
i.e., the system (1.1)–(1.2) in the case when the term ∂tu in the left-hand side of
(1.1) is absent. Roughly speaking, our method differs from the approach of [2] only
in the use of an additional Step 4 shown below. This step involves so-called “weak
coercive estimates” for the spatial gradient of a solution to the heat equation by
the appropriate negative norm of the right-hand side. Both the method in [2] and
our method follow the general methodology developed in [17, 18], so here we only
briefly sketch the proof of Theorem 2.2, assuming the solution is sufficiently smooth
and deriving only a priori estimates for it. These estimates can be easily justified
(when it is necessary) with the help of appropriate approximations. But to make our
presentation more intelligible we skip technical details in our proof and refer readers
to [17, 18] for the formal justification.

Step 1. To get (2.7) we use the following lemma from [18, Chap. III, Thms. 7.1
and 10.1].

Lemma 4.1 (De Giorgi–Nash–Ladyzhenskaya–Uraltseva theorem). Assume QT =
Ω × (0, T ), Ω ⊂ Rn, is a bounded domain with a boundary of class C1, and let
f ∈ Ls,r(QT ), u0 ∈ Cα0(Ω̄) for some α0 > 0, u0|∂Ω = 0, and

1

r
+

n

2s
< 1.(4.1)
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Assume (3.1) holds and let u ∈ W 1,0
2 (QT ) be a weak solution of (3.2). Then there is

α > 0 such that u ∈ Cα,α/2(Q̄T ) and

‖u‖Cα,α/2(Q̄T ) ≤ C(‖f‖Ls,r(QT ) + ‖u0‖Cα(Ω̄)).(4.2)

Boundedness and Hölder continuity of solutions of the scalar equations with mea-
surable coefficients were proved first by De Giorgi for elliptic equations and by Nash
for homogeneous parabolic equations; see [9, 20] and [12, 15]. The nonhomogeneous
parabolic analogue of the De Giorgi–Nash theorem we use here was proved by La-
dyzhenskaya and Uraltseva. We note that from the inclusion f̂ ∈ L2q0(QT ) we obtain
that (4.1) holds for u = û, n = 2, r = 1

2q0
, s = 1

2q0
.

Step 2. For any function u ∈ Cα,α/2(Q̄T ) ∩ L2(0, T ; W̊ 1
2 ∩W 2

2 (Ω)) the following
inequality holds; see [18, Chap. V, eqs. (3.15) and (4.6)]:

‖∇u‖4
4,Ωρ(x0)×(0,T ) ≤ C‖u‖2

Cα, α
2 (Q̄T )

ρ2α

{
‖∇2u‖2

2,Ω2ρ×(0,T ) +
1

ρ2
‖∇u‖2

2,Ω2ρ×(0,T )

}
,

where Ωρ(x0) = Ω ∩ Bρ(x0) and x0 ∈ Ω̄ is arbitrary. The proof of this relation is
based on a simple integration-by-parts trick,∫

Ω

ζ2|∇u|4 dx−
∫

Ω

div(ζ2|∇u|2∇u)(u(x) − u(x0)) dx,

where x0 ∈ Ω̄ and ζ ∈ C∞
0 (B2ρ(x0)) is a cut-off function; see [18] for details.

From the assumption of the smoothness of ∂Ω, the existence of numbers N0, ρ0

follows such that for any ρ ≤ ρ0 there is a finite covering of Ω by the sets of type
Ωρ(xi), xi ∈ Ω̄, such that the total number of intersections of different Ω2ρ(xi) does
not increase N0. Hence we have the estimate

‖∇u‖4
4,QT

≤ C‖u‖2
Cα,α/2(Q̄T )ρ

2α

{
‖∇2u‖2

2,QT
+

1

ρ2
‖∇u‖2

2,QT

}
.(4.3)

This inequality is valid for any ρ < ρ0, where ρ0 depends only on curvature of ∂Ω,
and C does not depend on ρ.

Step 3. Let (u, θ, f) satisfy (1.1), (1.2), (1.4), and (1.5). From (1.1), taking into
account (1.3), we can estimate the second derivatives of u:

sup
t∈(0,T )

‖∇u‖2
2,Ω + ‖∇2u‖2

2,QT
≤ C(‖∇u‖4

4,QT
+ ‖∇θ‖4

4,QT
) + Cf,u0 .(4.4)

Step 4. To estimate ‖∇θ‖4,QT
by ‖∇u‖4,QT

we take advantage of the special
structure (3.7) of the term μ(θ)|∇u|2. From (1.2) we have

∂tθ − Δθ = div(μ(θ)u∇u) + fu− u∂tu,

θ|∂Ω = 0, θ|t=0 = θ0.

Denote v := θ + 1
2u

2, G := (μ(θ) + 1)u∇u, g := fu, v0 ≡ θ0 + 1
2u

2
0. Hence

∂tv − Δv = divG + g,

v|∂Ω = 0, v|t=0 = v0.
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We split v = v(1) + v(2), where v(1) and v(2) are solutions of problems

∂tv
(1) − Δv(1) = g,

v(1)|∂Ω = 0, v(1)|t=0 = v0,
(4.5)

∂tv
(2) − Δv(2) = divG,

v(2)|∂Ω = 0, v(2)|t=0 = 0,
(4.6)

respectively. For v(1) the well-known estimate

‖v(1)‖W 2,1
2 (QT ) ≤ C(‖g‖2,QT

+ ‖v0‖W 1
2 (Ω))(4.7)

holds, provided the corresponding compatibility condition v0|∂Ω = 0 for initial and
boundary data holds. Using two-dimensional parabolic imbedding W 2,1

2 (QT ) ↪→
W 1,0

4 (QT ) (see [18, Chap. II, Lem. 3.3]) we arrive at the estimate

‖∇v(1)‖4,QT
≤ ‖v(1)‖W 2,1

2 (QT ) ≤ C
(
‖g‖2,QT

+ ‖v0‖W 1
2 (Ω)

)
≤ C

(
‖u‖∞,QT

‖f‖2,QT
+ ‖u2

0‖W 1
2 (Ω) + ‖θ0‖W 1

2 (Ω)

)
.

It is well known (see [14]) that for any G ∈ L4(QT ; R2) the problem (4.6) has the

unique solution belonging to the class v(2) ∈ W
1,1/2
4 (QT ) and, moreover, the estimate

‖∇v(2)‖4,QT
≤ C‖G‖4,QT

≤ C‖u‖∞,QT
‖∇u‖4,QT

(4.8)

holds. In [14] the analogous problem was studied for the much more difficult case
of the Stokes operator. For solutions of the heat equation, the estimate (4.8) can be
justified by the simple duplication of all considerations from [14] with the obvious
change of hydrodynamical potentials for heat potentials. Note that in our case no
convexity condition on Ω is necessary.

Remark 4.1. Note that (4.8) also can be obtained by interpolation of the corre-
sponding L2 − L2 and L∞ − BMO estimates; see [12, Chap. IV, Thm. 4.6] or [19,
Chap. VII, section 2, Thm. 7.2]. Precisely, the following two estimates hold:

‖∇v(2)‖L2(QT ) ≤ C‖G‖L2(QT ), ‖∇v(2)‖BMO(QT ) ≤ C‖G‖L∞(QT ).

The first estimate is obvious, and the proof of the second one is actually contained
in [19, Chap. VII]; also see arguments there in the proof of Theorem 7.17 in sections
3–5.

So, we get

‖∇θ‖4,QT
≤ ‖∇v‖4,QT

+

∥∥∥∥1

2
∇u2

∥∥∥∥
4,QT

≤ ‖∇v(1)‖4,QT
+ ‖∇v(2)‖4,QT

+

∥∥∥∥1

2
∇u2

∥∥∥∥
4,QT

≤ C‖u‖∞,QT
(‖∇u‖4,QT

+ ‖f‖2,QT
) + C‖u2

0‖W 1
2 (Ω) + C‖θ0‖W 1

2 (Ω)

or taking into account (4.2)

‖∇θ‖4,QT
≤ Cf,u0,θ0‖∇u‖4,QT

+ C ′
f,u0,θ0 .(4.9)
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Step 5. Gathering (4.2), (4.3), (4.4), and (4.9) together we obtain the estimate

‖∇u‖4
4,QT

≤ Cf,u0,θ0ρ
2α

{
‖∇u‖4

4,QT
+

1

ρ2
‖∇u‖2

2,QT

}
+ C ′

f,u0,θ0 ,

which is true for any ρ < ρ0. Choosing ρ2α < (1/2Cf,u0,θ0) we get the inclusion (2.8)

for uû. The inclusion (2.8) for θ̂ follows from (4.9).

Step 6. From (2.8) we obtain that the right-hand side of the heat equation (1.2)
belongs to L2(QT ), and hence θ ∈ W 2,1

2 (QT ). The inclusion u ∈ W 2,1
2 (QT ) follows

from (4.4). So, (2.9) is proved.

Step 7. Assume conditions (2.6) hold. Differentiating (1.1)–(1.2) with respect
to t, multiplying them by ∂tu, ∂tθ, respectively, and integrating over Ω using the
two-dimensional multiplicative inequality (see [16]),

‖v‖4
4,Ω ≤ C‖v‖2

2,Ω‖∇v‖2
2,Ω ∀v ∈ W̊ 1

2 (Ω),(4.10)

and after routine calculations we arrive at the inequality

d

dt

(
‖∂tu‖2

2,Ω + ‖∂tθ‖2
2,Ω

)
+ ‖∂t∇u‖2

2,Ω + ‖∂t∇θ‖2
2,Ω

≤ C‖∇u‖4
4,Ω

(
‖∂tu‖2

2,Ω + ‖∂tθ‖2
2,Ω

)
+ Cf,u0,θ0 .

Applying the Gronwall lemma we obtain (2.10).

Step 8. From (2.10) and (4.10) we get ∂tθ ∈ L4(QT ), which together with (2.8)
and the Sobolev imbedding theorem W 1

4 (QT ) ↪→ C1/4(Q̄T ) (as QT ⊂ R3) provides
the inclusion (2.11). Moreover, ∂t∇u,∇2u ∈ L2(QT ), and by the three-dimensional
Sobolev imbedding theorem W 1

2 (QT ) ↪→ L6(QT ) we also have ∇u ∈ L6(QT ). This
means that the right-hand side of the heat equation (1.2) belongs to L3(QT ) and, due
to the coercive estimates for the heat operator, we obtain θ ∈ W 2,1

3 (QT ). As q0 ≤ 3
2 ,

the inclusion (2.12) for θ is proved. The same inclusion for u follows now from the
assumption f ∈ L2q0(QT ) and the usual coercive estimates for parabolic equations
with smooth coefficients; see [18, Chap. IV, Thm. 9.1] (see also Lemma 4.2 below;
here in our case s = 2q0 and r = 4q0

2−q0
> s). Therefore, Theorem 2.2 is proved.

Now we turn to the proof of Theorem 2.3. Assume n = 2 and q ∈ (1, 2). The
two-dimensional parabolic imbedding theorems (see [18, Chap. II, Lem. 3.3]) provide
the estimates

‖v‖W 1,0
4q

2−q

(QT ) ≤ C‖v‖W 2,1
2q (QT ), v ∈ W 2,1

2q (QT ),(4.11)

and

‖v‖Cλ,λ/2(Q̄T ) ≤ C‖v‖W 2,1
2q (QT ), v ∈ W 2,1

2q (QT ).(4.12)

From (4.11) and (1.3) inclusions μ′(θ)∇θ ·∇u, |∇u|2 ∈ L
2q

2−q (QT ) ⊂ L2q(QT ) for q > 1
follow, and hence F really maps W×W into H×H. By the definition of the Gâteaux
derivative of F ,

δF (u, θ)(w, e) ≡ d

ds
F (u + sw, θ + se)

∣∣∣∣
s=0

,
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and hence for all u, θ, w, e ∈ W,

δF (u, θ)(w, e) =

(
∂tw − div(μ(θ)∇w) − div(μ′(θ)e∇u), γ0w

∂te− Δe− μ′(θ)e|∇u|2 − 2μ(θ)∇u · ∇w, γ0e

)
.

Because of (1.3), (4.11), (4.12), and continuity of μ′′, it is easy to see that for each
given (u, θ) ∈ W × W the operator δF (u, θ) is linear and bounded as a map from
W ×W into H×H. Indeed, for example,

δuF1(u, θ)(w, e) ≡ ∂tw − div(μ(θ)∇w) − div(μ′(θ)e∇u)

= ∂tw − μ(θ)Δw − μ′(θ)∇θ · ∇w

− μ′(θ)eΔu− μ′(θ)∇e∇u− μ′′(θ)e∇θ · ∇u.

Hence

‖δuF1(u, θ)(w, e)‖2q,QT
≤ ‖∂tw‖2q,QT

+ μ1‖Δw‖2q,QT
+ μ2‖∇θ · ∇w‖2q,QT

+ μ2‖eΔu‖2q,QT
+ μ2‖∇e · ∇u‖2q,QT

(4.13)

+ ‖μ′′(θ)‖∞,QT
‖e∇θ · ∇u‖2q,QT

.

Using the Hölder inequality and (4.11)–(4.12) we get

‖e∇θ · ∇u‖2q,QT
≤ ‖e‖∞,QT

‖∇θ · ∇u‖2q,QT

≤ ‖e‖∞,QT
‖∇θ‖ 4q

2−q ,QT
‖∇u‖4,QT

≤ C‖θ‖W‖u‖W‖e‖W

and similar relations for all other terms in the right-hand side of (4.13). From the
continuity of μ′′ and (4.12), existence of the nondecreasing majorants F1,F2 follows
such that

‖μ′′(θ)‖∞,QT
≤ F1(‖θ‖C(Q̄T )) ≤ F2(‖θ‖W).

Hence we obtain the final majorant F such that

‖δF (u, θ)(w, e)‖H×H ≤ F(‖u‖W , ‖θ‖W)(‖w‖W + ‖e‖W).

So the first part of Theorem 2.3 is proved.
Let us prove (2.13), i.e., for any given (g, a) and (h, b) ∈ H the system

∂tw − div(μ(θ̂)∇w) − div(μ′(θ̂)e∇û) = g,

∂te− Δe− μ′(θ̂)e|∇û|2 − 2μ(θ̂)∇û · ∇w = h,

w|∂Ω = 0, w|t=0 = a,

e|∂Ω = 0, e|t=0 = b

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭(4.14)

is uniquely solvable on W×W. This statement follows directly from properties (2.12)

of the optimal solution (û, θ̂) and the following lemma on solutions to the linear
parabolic systems we have already used several times (see [18, Thm. 9.1 of Chap. IV
and Thm. 10.4 of Chap. VII]; see also [22]).

Lemma 4.2 (coercive estimate for linear parabolic systems). Assume QT =
Ω × (0, T ), Ω ⊂ Rn, is a bounded domain with a boundary of class C2, and assume
also

Aijkl ∈ C(Q̄T ), bijk ∈ Lr(QT ), cij ∈ Lr/2(QT )



OPTIMAL CONTROL FOR TWO-DIMENSIONAL THERMISTOR SYSTEM 279

with

r > n + 2,(4.15)

and A satisfying the strong ellipticity condition

∃ν0 > 0 : Aijkl(x)BijBkl ≥ ν0|B|2 ∀B ∈ Mn×n,

AijklAklij = Ajikl = Aijlk.

Then for any s ∈ (1, r), s �= 3
2 , and for arbitrary functions f ∈ Ls(QT ; RN ), u0 ∈

W̊
2−2/s
s (Ω; RN ) there is a unique solution u ∈ W 2,1

s (QT ; RN ) of the problem

∂tui −Aijkl(x)uk,jl + bijk(x)uj,k + cij(x)uj = fi(x),

u|t=0 = u0, u|∂Ω = 0.

Moreover, the estimate

‖u‖W 2,1
s (QT ) ≤ C

(
‖f‖s,QT

+ ‖u0‖
W

2− 2
s

s (Ω)

)
holds for some constant C depending only on n, Ω, T , ν0, and norms of the coeffi-
cients.

Indeed, we can rewrite the system (4.14) in the form

∂tw − μ(θ̂)Δw − μ′(θ̂)∇θ̂ · ∇w − μ′(θ̂)eΔû

− μ′(θ̂)∇e · ∇û− μ′′(θ̂)e∇θ̂ · ∇û = g,

∂te− Δe− μ′(θ̂)e|∇û|2 − 2μ(θ̂)∇û · ∇w = h,

w|∂Ω = 0, w|t=0 = a,

e|∂Ω = 0, e|t=0 = b.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Due to (2.11) and (2.12), it is easy to see that its coefficients

μ′(θ̂)∇θ̂, μ′(θ̂)∇û, μ(θ̂)∇û ∈ L4q0(QT ),(4.16)

μ′(θ̂)Δû, μ′′(θ̂)∇θ̂ · ∇û, μ′(θ̂)|∇û|2 ∈ L2q0(QT )(4.17)

satisfy conditions (4.15) with n = 2, r = 4q0. Moreover, due to (2.11) the coefficient

μ(θ̂(·)) is Hölder continuous. Hence the system (4.14) is uniquely solvable on W ×W
for any data in H × H as q ∈ (1, q0). The statement (2.13) and Theorem 2.3 are
proved.

5. Proof of Theorem 2.4. We consider our cost functional J as a map

J : W ×W × V → R,

and (1.1)–(1.2) as a restriction

F∗(u, θ, f) = 0, F∗ : W ×W × V → H×H,

where

F∗(u, θ, f) =

(
∂tu− div(μ(θ)∇u) − f, γ0u− u0

∂tθ − Δθ − μ(θ)|∇u|2, γ0θ − θ0

)
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(note that F∗ differs from the map F in section 2 only by the additional argument f).
Hence

δF∗(u, θ, f)(w, η, h) =

(
∂tw − div(μ(θ)∇w) − div(μ′(θ)η∇u) − h, γ0w
∂tη − Δη − μ′(θ)η|∇u|2 − 2μ(θ)∇u · ∇w, γ0η

)
.

Let us show that

image of δF∗ = H×H.(5.1)

Let (g, a), (d, b) ∈ H be arbitrary. To find (w, e, h) ∈ W ×W × V such that

δF∗(u, θ, f)(w, e, h) =

(
g, a
d, b

)
it is enough to take h ≡ 0 and use the property (2.13) of δF . For any ((p, a), (e, b)) ∈
H′ ×H′ consider Lagrangian

L(u, θ, f, p, e, a, b) ≡ J(u, θ, f) +

〈
F∗(u, θ, f),

(
p, a
e, b

)〉
,

where 〈·, ·〉 is a duality relation between H and H′.
From Theorem 2.3 and (5.1) it follows that J and F∗ satisfy all conditions of

Theorem 2.1.5 of [11]; see also [1, Chap. III, section 3.2, Thm. 3.2.2]. Hence if

(û, θ̂, f̂) is an optimal solution of Problem P, then there are Lagrange multipliers

((p̂, â), (ê, b̂)) ∈ H′ ×H′ satisfying

δ(u,θ,f)L(û, θ̂, f̂ , p̂, ê, â, b̂)(w, η, h) = 0 ∀(w, η, h) ∈ W ×W × V,

where δ(u,θ,f)L is the Gâteaux derivative of L with respect to (u, θ, f). The last
relation is equivalent to the following system:∫

QT
((û− U)w + (θ̂ − Θ)η + 2q0β1|f̂ |2q0−2f̂h + β2∂tf̂∂th) dz

+
∫
QT

(∂tw − div(μ(θ̂)∇w) − div(μ′(θ̂)η∇u) − h)p̂ dz

+
∫
QT

(∂tη − Δη − 2μ(θ̂)∇û · ∇w − μ′(θ̂)η|∇û|2)ê dz

+ 〈γ0w, â〉 + 〈γ0η, b̂〉 = 0 ∀(w, η, h) ∈ W ×W × V,

or equivalently

c
∫
QT

((û− U)w + ∂twp̂− div(μ(θ̂)∇w)p̂− 2μ(θ̂)∇û · ∇wê) dxdt

+
∫
QT

((θ̂ − Θ)η − div(μ′(θ̂)η∇û)p̂ + ∂tηê− Δηê− μ′(θ̂)η|∇û|2ê) dxdt

+
∫
QT

(2q0β1|f̂ |2q0−2f̂h + β2∂tf̂∂th− p̂h)dxdt + 〈γ0w, â〉 + 〈γ0η, b̂〉
= 0 ∀(w, η, h) ∈ W ×W × V.

(5.2)

Define functions (p, e) ∈ W 2,1
2 (QT )×W 2,1

2 (QT ) as a solution to the following system:

∂tp + div(μ(θ̂)∇p) − div(2μ(θ̂)e∇û) = û− U,

∂te + Δe− μ′(θ̂)∇û · ∇p + μ′(θ̂)|∇û|2e = θ̂ − Θ,

p|∂Ω = 0, e|∂Ω = 0, p|t=T = 0, e|t=T = 0.

⎫⎪⎬⎪⎭(5.3)
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Existence and uniqueness of solutions to this backward parabolic system follow from
Lemma 4.2, and conditions (2.1) and inclusions (4.17) and (4.16) hold for the coeffi-
cients of the system (5.3). Taking h ≡ 0 in (5.2), multiplying (5.3) by (w, η) ∈ W×W,
integrating by parts, and taking a difference with (5.2), we arrive at the identity∫

QT
(∂tw − div(μ(θ̂)∇w) − div(μ′(θ̂)η∇û))(p− p̂) dxdt

+
∫
QT

(∂tη − Δη − μ′(θ̂)η|∇û|2 − 2μ(θ̂)∇û · ∇w)(e− ê) dxdt

+ 〈γ0w, γ0p̂− â〉 + 〈γ0η, γ0ê− b̂〉 = 0 ∀(w, η) ∈ W ×W.

(5.4)

Take in (5.4) the test functions (w, η) ∈ W ×W satisfying the system

∂tw − div(μ(θ̂)∇w) − div(μ′(θ̂)η∇û) sign(p− p̂),

∂tη − Δη − μ′(θ̂)η|∇û|2 − 2μ(θ̂)∇û · ∇w = sign(e− ê),

γ0w = 0, γ0η = 0.

Note that the right-hand sides of this system belong to L∞(QT ), and hence existence

of the solution to this system in the class W 2,1
2q (QT ) × W 2,1

2q (QT ) follows for q < q0
from Lemma 4.2 and conditions (4.17) and (4.16). Then from (5.4) the identities

p = p̂, e = ê follow, and hence inclusions p̂, θ̂ ∈ W 2,1
2 (QT ) hold. From (5.4) we also

get â = γ0p̂, b̂ = γ0ê. Finally, taking in (5.2) w = η = 0 we get a relation∫
QT

(2q0β1|f̂ |2q0−2f̂h + β2∂tf̂∂th− p̂h)dxdt = 0 ∀h ∈ V,

which is the weak form of (2.16). Theorem 2.4 is proved.
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STABILITY OF STOCHASTIC APPROXIMATION UNDER
VERIFIABLE CONDITIONS∗

CHRISTOPHE ANDRIEU† , ÉRIC MOULINES‡ , AND PIERRE PRIOURET§

Abstract. In this paper we address the problem of the stability and convergence of the stochastic
approximation procedure

θn+1 = θn + γn+1[h(θn) + ξn+1].

The stability of such sequences {θn} is known to heavily rely on the behavior of the mean field h at
the boundary of the parameter set and the magnitude of the stepsizes used. The conditions typically
required to ensure convergence, and in particular the boundedness or stability of {θn}, are either too
difficult to check in practice or not satisfied at all. This is the case even for very simple models. The
most popular technique for circumventing the stability problem consists of constraining {θn} to a
compact subset K in the parameter space. This is obviously not a satisfactory solution, as the choice
of K is a delicate one. In this paper we first prove a “deterministic” stability result, which relies
on simple conditions on the sequences {ξn} and {γn}. We then propose and analyze an algorithm
based on projections on adaptive truncation sets, which ensures that the aforementioned conditions
required for stability are satisfied. We focus in particular on the case where {ξn} is a so-called
Markov state-dependent noise. We establish both the stability and convergence with probability 1
(w.p. 1) of the algorithm under a set of simple and verifiable assumptions. We illustrate our results
with an example related to adaptive Markov chain Monte Carlo algorithms.

Key words. stochastic approximation, state-dependent noise, randomly varying truncation,
adaptive Markov chain Monte Carlo
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1. Introduction. In many contexts it is of interest to find the roots of possibly
nonlinear equations of the form

h(θ) = 0, θ ∈ Θ,(1.1)

for some mapping h : Θ → Rnθ , where Θ ⊂ Rnθ for some integer nθ. Most of the
methods for solving the previous equation are iterative, i.e., produce a sequence of
iterates {θn, n ≥ 0}, which eventually converges to the set of solutions of (1.1),

S := {θ ∈ Θ, h(θ) = 0} .(1.2)

Stochastic approximation (SA) is a class of algorithms for solving (1.1) in the situation
where only noisy measurements of h are available. In its simplest form, the Robbins–
Monro algorithm produces a sequence {θn, n ≥ 0} defined recursively as

θ0 ∈ Θ, θn+1 = θn + γn+1ζn+1, n ≥ 1,(1.3)

∗Received by the editors November 6, 2002; accepted for publication (in revised form) August 4,
2004; published electronically July 18, 2005.

http://www.siam.org/journals/sicon/44-1/41726.html
†University of Bristol, School of Mathematics, University Walk, BS8 1TW, UK (c.andrieu@

bris.ac.uk).
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where {γn, n ≥ 1} is a sequence of stepsizes satisfying standard conditions (say, γn ↓ 0
and

∑
n≥1 γn = ∞) and, for any n ≥ 1, ζn is a noisy measurement of h(θn). It is

useful to introduce the sequence {ξn, n ≥ 1} defined as

ζn+1 = h(θn) + ξn+1,(1.4)

which will be referred to as the noise sequence. Convergence of SA has been stud-
ied under various sets of assumptions for the mean field h and the noise sequence
{ξn, n ≥ 1} since the early work of [22]; see also [5], [17], [23], [16], and the references
therein. Essentially, convergence of the SA sequence can be established toward an
attractive subset provided the sequence {θn, n ≥ 0} is with probability 1 (w.p. 1) in a
compact subset of Θ and is w.p. 1 infinitely often in the domain of attraction of this
attractive subset. Showing in practice that {θn, n ≥ 0} satisfies these boundedness
and recurrence conditions proves to be a difficult task. The available results hold
under conditions which are still restrictive, despite recent advances (see [1], [7], [6],
and references therein). This major drawback has motivated the design of modified
Robbins–Monro recursions. Probably the most widely used method in practice con-
sists of constraining the sequence {θn, n ≥ 0} to some compact set K ⊂ Θ by means
of a reprojection onto K. This method has been thoroughly investigated in [23] (see
also [8] and the references therein). Although relatively easy to implement, and ap-
propriate when constraints about the system considered are available a priori, this
approach becomes impractical and questionable in many situations.

Our contributions toward solving the stability and convergence problems are
twofold. First we establish and prove in section 2 a general result of stability, The-
orem 2.2, for deterministic sequences of the form given by (1.3)–(1.4). This key
deterministic result assumes the existence of a global Lyapunov function for the mean
field h and mild general assumptions about the noise and stepsize sequences. In con-
trast with previous results, the conditions required on the growth of the Lyapunov
functions and the mean field h when θ approaches the boundaries of the parameter
set Θ are minimal. As a consequence the result is applicable to quite general settings.
We then show that, under the conditions that guarantee stability, the convergence of
the deterministic sequence (1.3)–(1.4) is ensured (see Theorem 2.3).

Our second contribution here consists of proposing an SA algorithm (section 3)
for which the aforementioned noise and stepsize conditions are satisfied w.p. 1. There
are many different applications of stochastic approximations which imply markedly
different types of assumptions on the noise sequence {ξn}. Whereas our deterministic
stability and convergence results mentioned above can be applied quite generally, we
focus in this paper on the subtle Markov state-dependent noise (see [23, Chapter 6,
section 6.6] and section 3 in this paper) for which the availability of algorithms, whose
convergence can be established under general but nevertheless verifiable assumptions,
is still missing. The proposed algorithm is a modification of the classical Robbins–
Monro procedure described in (1.3)–(1.4), based on truncations on adaptive truncation
sets, in the spirit of the seminal works [11] and [10].

The convergence of SA with adaptive truncation sets has been considered under
various conditions on the noise sequence {ξn}. These include state-independent noise
conditions (see, for example, [12, section 2.4, pp. 42–44]) but also state-dependent
martingale differences [30], [14], [9], [12, section 2.5, pp. 49–57] or state-dependent φ-
mixing processes [9], [12, section 2.5, p. 49]. However, the application of this strategy
to the Markovian state-dependent case requires even more care, and it is therefore
not surprising to find that the results on the topic are scarce and have been obtained
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under conditions that are more stringent than those considered in the present paper;
see [31], [13] and, for the special case of ARMAX models, see [12, Chapter 6]. As we
shall see, our procedure differs in some respects from the original procedure proposed
in [11] and [10] and offers additional degrees of freedom. Our technique of proof for the
stability relies on a novel approach and offers as a byproduct an explicit bound for the
tail probability of the number of reprojections, which is found to be super-exponential
under mild technical conditions.

In order to illustrate our findings and their applicability, we propose (see section 7)
to analyze the convergence of an adaptive Markov chain Monte Carlo (MCMC) al-
gorithm recently proposed in [19] and analyzed under more stringent conditions than
those considered here. Other examples can be found in [2].

2. Key deterministic results. In this section we establish both stability and
convergence results for deterministic recursions of the type described in (1.3)–(1.4).
Before stating our first assumptions, some definitions and notation are needed. Let
d be a positive integer. An element v of Rd is denoted by its column vector v and
its transpose is denoted by vT. For elements v, w of Rd, we denote by 〈v, w〉 their
inner product, so that |v| =

√
〈v, v〉 denotes the norm of v. Our first assumption

is the existence of a global Lyapunov function w for the mean field h. Denoting
WM := {θ ∈ Θ, w(θ) ≤ M} ⊂ Θ we assume the following:

(A1) Θ is an open subset of Rnθ , h : Θ → Rnθ is continuous, and there exists a
continuously differentiable function w : Θ → [0,∞) such that
(i) there exists M0 > 0 such that

L :=
{
θ ∈ Θ,

〈
∇w(θ), h(θ)

〉
= 0

}
⊂ {θ ∈ Θ, w(θ) < M0} ;

(ii) there exists M1 ∈ (M0,∞] such that WM1
is a compact set;

(iii) for any θ ∈ Θ \ L, 〈∇w(θ)h(θ)〉 < 0;
(iv) the closure of w(L) has an empty interior.

If h is a gradient field, i.e., h = −∇J for some lower bounded real valued and dif-
ferentiable function θ �→ J(θ), then the choice w = J is appropriate, provided that
J is continuously differentiable. Note that, in situations where the set of stationary
points cannot be characterized explicitly, one might use Sard’s theorem from differ-
ential geometry in order to check (A1)(iv). Indeed, Sard’s theorem states that if w is
nθ-times continuously differentiable, then w({∇w = 0}) has an empty interior.

Our approach to proving our stability and convergence results can be decomposed
into two distinct steps. In the first step (this section), we establish deterministic
conditions on a noise sequence {ξn} and a stepsize sequence {ρn}, upon which a
deterministic sequence {θn} defined as

θ0 ∈ Θ θn+1 = θn + ρn+1[h(θn) + ξn+1] for n ≥ 0,(2.1)

has the following properties: (i) It remains in a compact subset of Θ (see Theorem 2.2)
and (ii) it converges to L (Theorem 2.3) provided that {θn} remains in a compact
subset of Θ. In a second step—which is probabilistic in nature and depends on how
the noise is generated—we develop a general algorithm for the case where {ξn} follows
a Markovian state-dependent dynamic, which allows one to show that the required
condition on {ξn} is satisfied w.p. 1 (sections 3–6).

Before proving Theorems 2.2 and 2.3 we prove in the following lemma a funda-
mental contraction property of the Lyapunov function w. This result is the crux of
both the proof of stability and the proof of convergence.
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Lemma 2.1. Assume (A1). Then
(i) Let K ⊂ Θ be a compact subset such that 0 < infθ∈K |〈∇w, h〉|. For any

0 < δ < infθ∈K |〈∇w, h〉|, there exist λ > 0 and β > 0 such that, for any ρ, 0 ≤ ρ ≤ λ,
ζ, |ζ| ≤ β, and θ ∈ K, w(θ + ρh(θ) + ρζ) ≤ w(θ) − ρδ.

(ii) For any M ∈ (M0,M1] (where M0 is defined in (A1)(i) and M1 is defined in
(A1)(ii)), there exist λ > 0 and β > 0 such that, for any ρ, 0 ≤ ρ ≤ λ, ζ, |ζ| ≤ β, and
θ ∈ WM , θ + ρh(θ) + ρζ ∈ WM .

Proof. We first prove (i).For any 0 < δ < infθ∈K |〈∇w, h〉|, there exist λ > 0 and
β > 0 such that, for all ρ, 0 ≤ ρ ≤ λ, ζ, |ζ| ≤ β, and t, 0 ≤ t ≤ 1, we have for all
θ ∈ K, θ + ρth(θ) + ρtζ ∈ Θ and∣∣∣〈∇w(θ), h(θ)

〉
−

〈
∇w(θ + ρth(θ) + ρtζ), h(θ) + ζ

〉∣∣∣ ≤ inf
θ∈K

|
〈
∇w, h

〉
| − δ.

Then for any ρ, 0 ≤ ρ ≤ λ, and ζ, |ζ| ≤ β,

w(θ + ρh(θ) + ρζ) − w(θ) = ρ
〈
∇w(θ), h(θ)

〉
+ ρ

∫ 1

0

(〈
∇w(θ + tρh(θ) + tρζ), h(θ) + ζ

〉
−

〈
∇w(θ), h(θ)

〉)
dt

≤ −ρ inf
θ∈K

|
〈
∇w, h

〉
| + ρ

(
inf
θ∈K

|
〈
∇w, h

〉
| − δ

)
= −ρδ.

We now prove (ii). Consider M ′ ∈ (M0,M). Since WM ′ is compact and w continuous,
there exists λ0 > 0 and β0 > 0 such that, for all 0 ≤ ρ ≤ λ0, |ζ| ≤ β0, and θ ∈ WM ′ ,
θ + ρh(θ) + ρζ ∈ WM . We can apply (i) to the set K = {θ ∈ Θ,M ′ ≤ w(θ) ≤ M} to
show that there exists λ1, β1 such that, for all ρ, 0 ≤ ρ ≤ λ1, ζ, |ζ| ≤ β1, and θ ∈ K,
w(θ + ρh(θ) + ρζ) ≤ w(θ) ≤ M , showing that θ + ρh(θ) + ρζ ∈ WM .

2.1. Boundedness. In this section, we show that, under (A1) and mild addi-
tional conditions on {ξn} and {ρn}, the sequence defined in (2.1) remains in a compact
subset of Θ.

Theorem 2.2. Assume (A1). For any M ∈ (M0,M1] there exist δ0 > 0 and
λ0 > 0 such that, for all n ≥ 1, all θ0 ∈ WM0 , all sequences {ρk} of nonnegative
integers, and all sequences {ξk} of nθ-dimensional vectors satisfying

sup
1≤k≤n

ρk ≤ λ0 and sup
1≤k≤n

∣∣∣∣∣∣
k∑

j=1

ρjξj

∣∣∣∣∣∣ ≤ δ0,

we have for k ∈ {1, . . . , n}, w(θk) ≤ M , where θk = θk−1 + ρkh(θk−1) + ρkξk.
Proof. Let M ′ be such that M ′ ∈ (M0,M). Lemma 2.1 shows that there exists

λ0 > 0, β0 > 0 such that, for all θ, ρ, and ζ satisfying w(θ) ≤ M ′, 0 ≤ ρ ≤ λ0, and
|ζ| ≤ β0,

w(θ + ρh(θ) + ρζ) ≤ M ′.(2.2)

By continuity of h and w there exists δ0 ∈ (0, β0] such that for all (θ, θ̄) ∈ Θ × Θ
satisfying w(θ) ≤ M and |θ − θ̄| ≤ δ0, we have

|h(θ̄) − h(θ)| ≤ β0 and |w(θ̄) − w(θ)| ≤ M −M ′.(2.3)
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We will now prove by induction that, for all k ∈ {1, . . . , n}, w(θ̄k) ≤ M ′, and w(θk) ≤
M , where the sequence {θ̄k} is defined recursively as θ̄0 = θ0 and for all k ∈ {1, . . . , n},

θ̄k = θ̄k−1 + ρkh(θk−1).

Under the stated assumptions w(θ0) = w(θ̄0) ≤ M0 and since 0 ≤ ρ1 ≤ λ0 and
|θ1 − θ̄1| = |ρ1ξ1| ≤ δ0, on the one hand Lemma 2.1 shows that w(θ̄1) = w(θ̄0 +
ρ1h(θ̄0)) ≤ M ′ and on the other hand w(θ1) = w(θ0 + ρ1h(θ0) + ρ1ξ1) ≤ M , which
proves the result for n = 1. Assume now that the result holds up to 1 ≤ k ≤ n − 1
for n > 1. By construction, for j ∈ {1, . . . , k}, θj − θ̄j = θj−1 − θ̄j−1 + ρjξj , which
implies that

θj − θ̄j =

j∑
i=1

ρiξi.(2.4)

Under the stated assumptions and (2.3), for j ∈ {1, . . . , k}, |θj − θ̄j | ≤ δ0 and |h(θj)−
h(θ̄j)| ≤ β0. On the other hand,

θ̄k+1 = θ̄k + ρk+1h(θk) = θ̄k + ρk+1h(θ̄k) + ρk+1

(
h(θk) − h(θ̄k)

)
.

Since 0 ≤ ρk+1 ≤ λ0 and w(θ̄k) ≤ M ′, Lemma 2.1 shows that w(θ̄k+1) ≤ M ′. Using
again that |θk+1 − θ̄k+1| ≤ δ0, (2.3) implies that w(θk+1) ≤ M , which concludes the
proof.

2.2. Convergence. Theorem 2.2 provides us with conditions on {ξn} and {ρn}
upon which a sequence as defined in (2.1) stays within a compact subset of Θ. In
the next theorem we show that, whenever {θk} stays in a compact subset of Θ,
under mild additional assumptions it converges to L. The key result of this section
is the following theorem, adapted here from [14, Theorem 2] (see [12] for a similar
result). This theorem states that whenever {θi} stays in a compact subset of Θ, under
mild additional assumptions it converges to L. For an integer d and A a subset of
Rd, we define d(x,A) = inf{y ∈ A, |x − y|}. For any set A ⊂ Θ and any δ > 0,
we define Aδ := {θ ∈ Θ, d(θ,A) ≤ δ}; for any function φ : Θ → R, we define
‖|φ‖|A := supθ∈A |φ(θ)|.

Theorem 2.3. Assume (A1). Let K be a compact subset of Θ such that L∩K �= ∅.
Let {ρk} be a monotone nonincreasing sequence of positive numbers such that ρ0 ≤ λ0

(where λ0 is given in Theorem 2.2),

∞∑
k=1

ρk = ∞, and lim
k→∞

ρk = 0.

Let {ξn} be a sequence in Rnθ satisfying lim supk→∞ supl≥k |
∑l

i=k ρiξi| = 0. Assume
that the sequence defined by θk = θk−1 + ρkh(θk−1) + ρkξk is such that {θk} ⊂ K.
Then, lim supk→∞ d(θk,L ∩ K) = 0.

We preface the proof of this theorem with two lemmas. Lemmas 2.4 and 2.5 are
proved under the assumptions of Theorem 2.3.

Lemma 2.4. Let N ⊂ Θ be an open neighborhood of L ∩ K. There exist positive
constants δ, ε, and λ (depending only on the sets N and K) such that for any δ′ ∈
(0, δ], λ′ ∈ (0, λ], and η > 0, one can find an integer N and a sequence {θ̄j}j≥N

satisfying

sup
j≥N

|θj − θ̄j | ≤ δ′, sup
j≥N

ρj ≤ λ′, and sup
j≥N

|w(θj) − w(θ̄j)| ≤ η,(2.5)

w(θ̄j) ≤ w(θ̄j−1) − ρjε + (η + ρjε) 1lN (θ̄j−1) for j ≥ N + 1.(2.6)
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Proof. Let us choose δ0 > 0 such that the compact set Kδ0 ⊂ Θ. The set Kδ0 \N
is compact and supKδ0

\N 〈∇w, h〉 < 0. By Lemma 2.1, for any ε > 0 such that

supθ∈Kδ0
\N 〈∇w(θ), h(θ)〉 < −ε, one may choose λ > 0 and β > 0 small enough so

that for any ρ ∈ [0, λ], |ζ| ≤ β, and θ ∈ Kδ0 \ N ,

w(θ + ρh(θ) + ρζ) ≤ w(θ) − ρε.(2.7)

Using the uniform continuity of continuous functions on compact sets, for any η > 0
one may choose δ ∈ (0, λ‖h‖K] small enough so that for all (θ, θ̄) ∈ Kδ0×Kδ0 satisfying
|θ − θ̄| ≤ δ ≤ λ‖h‖K,

|h(θ) − h(θ̄)| ≤ β and |w(θ) − w(θ̄)| ≤ η.(2.8)

Under the stated conditions for all δ′ ∈ (0, δ] and λ′ ∈ (0, λ] there exists an integer N
such that for any n ≥ N + 1, ρn ≤ λ′ and

∣∣∑n
k=N+1 ρkξk

∣∣ ≤ δ′. Define recursively for

j ≥ N the sequence {θ̄j}j≥N as θ̄N := θN and for j ≥ N + 1,

θ̄j = θ̄j−1 + ρjh(θj−1).(2.9)

By construction, for j ≥ N+1, θ̄j−θj =
∑j

i=N+1 ρiξi which implies that supj≥N |θ̄j−
θj | ≤ δ′. On the other hand, for j ≥ N + 1,

θ̄j = θ̄j−1 + ρjh(θ̄j−1) + ρj
(
h(θj−1) − h(θ̄j−1)

)
,(2.10)

and since |θ̄j−1 − θj−1| ≤ δ′ ≤ δ, (2.8) shows that |h(θj−1) − h(θ̄j−1)| ≤ β. Thus,
(2.7) implies that, whenever θ̄j−1 ∈ Kδ \N , w(θ̄j) ≤ w(θ̄j−1)−ρjε. Now (2.8) implies
that |w(θ̄j)−w(θ̄j−1)| ≤ η for any θ̄j−1 ∈ Kδ and |w(θj)−w(θ̄j)| ≤ η for any θj ∈ K,
which concludes the proof.

Lemma 2.5. Let ε be real constants, n be an integer, and let −∞ < a1 < b1 <
· · · < an < bn < ∞ be real numbers. Let {uj} be a bounded real sequence such that,
for any η > 0, there exists an integer J such that for all j ≥ J ,

uj ≤ uj−1 − ρjε + (η + ρjε)1lA(uj−1) A =

n⋃
i=1

[ai, bi].(2.11)

Then, the limit points of the sequence {uj} are included in A.
Proof. As {uj} is bounded, it has at least one limit point from the Bolzano–

Weierstrass theorem. Let us denote by ǎ one of these limit points; since {uj} is
bounded and satisfies (2.11), ǎ ≥ a1. Now let us proceed by contradiction and assume
that there exists l ∈ {1, 2, . . . , n} such that ǎ ∈ (bl, al+1), with the convention that
an+1 = ∞. For any ε > 0 sufficiently small [ǎ− ε, ǎ+ ε] ⊂ Ac. Now, for any integer j
and any set B ⊂ R, we define

τB(j) = inf{k ≥ j : uk ∈ B},

with the convention inf ∅ = ∞. Since
∑∞

k=1 ρk = ∞ and {uk}k≥0 is bounded, (2.11)
implies that for any η > 0 and j ≥ J , σ(j) := τA(j) < ∞. Note also that for
k = j, . . . , σ(j), uk ≤ uj . Since ǎ ∈ (bl, al+1) is a limit point, for any integer j,
κ(j) := τ(bl,∞)(j) < ∞. Let η > 0 be such that, for any j ≥ J , 0 < η < (ǎ− ε− bl)/2.
Then for j ≥ J , uκ[σ(j)] < (ǎ − ε + bl)/2 and for k = κ[σ(j)], . . . , κ(σ(κ[σ(j)])) − 1,
uk ≤ uκ[σ(j)], which implies that for any i ≥ κ(σ(J)), ui ≤ (ǎ − ε + bl)/2, which
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contradicts the fact that ǎ is a limit point. Now using the same type of argument, one
can show that if an accumulation point ǎ ∈ [ak, bk] for some k ∈ 1, . . . , n− 1, then
there cannot be any accumulation point in [al, bl] for n ≥ l > k. As a consequence
there cannot be an accumulation point in an interval other than [ak, bk].

Proof of Theorem 2.3. We first prove that limj→∞ w(θj) exists. For any α > 0,
define the set [w(L ∩ K)]α := {x ∈ R : d(x,w(L ∩ K)) ≤ α}. Since ‖|w‖|K < ∞,
[w(L ∩ K)]α is a finite union of disjoint intervals of length at least equal to 2α.
By Lemma 2.4, there exist positive constants δ, ε, λ such that for any δ′ ∈ (0, δ],
λ′ ∈ (0, λ], and η > 0, one may find an integer N and a sequence {θ̄j}j≥N such that

sup
j≥N

|θj − θ̄j | ≤ δ′ and sup
j≥N

|w(θj) − w(θ̄j)| ≤ η

and

w(θ̄j) ≤ w(θ̄j−1) − ρjε + (η + ρjε)1l[w(L∩K)]α(w(θ̄j−1)) for any j ≥ N + 1,

where we have chosen N = w−1(int([w(L∩K)]α)) and used 1lN (θ) ≤ 1l[w(L∩K)]α(w(θ)).
By Lemma 2.5, the limit points of the sequence {w(θ̄j)} are in [w(L∩K)]α and, since
supj≥N |θj − θ̄j | ≤ δ′, the limit points of the sequence {w(θj)}j≥0 are in [w(L∩K)]α′

for α′ = α + η. Since α and η can be chosen arbitrarily small, this implies that the
limit points of the sequence {w(θj)}j≥0 are included in

⋂
α>0[w(L ∩ K)]α. Because

L∩K is a compact subset of Rnθ and w is continuous, w(L∩K) is a compact subset
of R, which implies that w(L ∩ K) =

⋂
α>0[w(L ∩ K)]α. Thus, the limit points of

{w(θj)} belong to the set w(L ∩ K).
On the other hand, lim supj→∞ |w(θj)−w(θj−1)| = 0, which implies that the set

of limit points of {w(θj)} is an interval. Because w(L) has an empty interior, the
only intervals included in w(L ∩ K) are isolated points, which shows that the limit
limj→∞ w(θj) exists.

We now prove that lim supj→∞ d(θj ,L ∩ K) = 0. Let N ⊂ K be an arbitrary
neighborhood of L ∩ K. From Lemma 2.4 there exist constants δ > 0, ε > 0, λ > 0
such that for any δ′ ∈ (0, δ], λ′ ∈ (0, λ], and η > 0 one may find an integer N and a
sequence {θ̄j}j≥N such that

sup
j≥N

|θj − θ̄j | ≤ δ′, sup
j≥N

ρj ≤ λ′, and sup
j≥N

|w(θj) − w(θ̄j)| ≤ η

and

w(θ̄j) ≤ w(θ̄j−1) − ρjε + (η + ρjε)1lN (θ̄j−1) for any j ≥ N + 1.

For j ≥ N , define τ(j) := inf
{
k ≥ 0, θ̄k+j ∈ N

}
. For any integer p, define τp(j) :=

τ(j) ∧ p, where a ∧ b = min(a, b). We have

w(θ̄j+τp(j)) − w(θ̄j) =

j+τp(j)∑
i=j+1

{
w(θ̄i) − w(θ̄i−1)

}
≤ −ε

j+τp(j)∑
i=j+1

ρi,(2.12)

with the convention that, for any sequence {ai} and any integer l,
∑l

i=l+1 ai = 0.
Therefore,

w(θj+τp(j)) − w(θj) = w(θj+τp(j)) − w(θ̄j+τp(j)) + w(θ̄j+τp(j)) − w(θ̄j) + w(θ̄j) − w(θj)

≤ 2η − ε

j+τp(j)∑
i=j+1

ρi.
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Since {w(θj)} converges, for any ε′ > 0 there exists N ′ > N such that, for all j ≥ N ′,

−ε′ < w(θj+τp(j)) − w(θj) ≤ 2η − ε

j+τp(j)∑
i=j+1

ρi.(2.13)

This implies that, for all j ≥ N ′ and all integer p ≥ 0,

j+τp(j)∑
i=j+1

ρi ≤ C(ε′, η) := ε−1 (ε′ + 2η) .(2.14)

Since
∑j+τ(j)

i=j+1 ρi = limp→∞
∑j+τp(j)

i=j+1 ρi and
∑∞

i=1 ρi = ∞, the previous relation im-

plies that, for all j ≥ N ′, τ(j) < ∞, and
∑j+τ(j)

i=j+1 ρi ≤ C(ε′, η). For any integer p,

θj+p − θj =
∑j+p

i=j+1 ρih(θi−1) +
∑j+p

i=j+1 ρiξi, which implies that

|θj+p − θj | ≤ ‖h‖K
j+p∑

i=j+1

ρi +

∣∣∣∣∣∣
j+p∑

i=j+1

ρiξi

∣∣∣∣∣∣ .
Applying this inequality for j ≥ N ′ and p = τ(j) and using that, by definition,
θ̄j+τ(j) ∈ N ,

d(θj ,N ) ≤ |θ̄j+τ(j) − θj+τ(j)| + |θj+τ(j) − θj | ≤ δ′ + ‖|h‖|K C(ε′, η) +

∣∣∣∣∣∣
j+τ(j)∑
i=j+1

ρiξi

∣∣∣∣∣∣ .
Since η, δ′, and ε′ can be chosen arbitrarily small, and lim supk→∞ supl≥k |

∑l
i=k ρiξi| =

0, the latter inequality shows that limj→∞ d(θj ,N ) = 0. Since N is arbitrary, we thus
have limj→∞ d(θj ,L ∩ K) = 0.

Note that the boundedness is here one of the required assumptions. It is therefore
natural to try to apply Theorem 2.2. This is what motivates the next section, where
we describe a modification of the stochastic approximation algorithm, which ensures
that the conditions of Theorem 2.2 are satisfied. We consider here the Markov state-
dependent noise, as it covers many applications of interest, encompasses the exogenous
scenario and, as we shall see, leads to general and verifiable conditions.

3. Markov state-dependent noise. In this section, we describe our stochastic
approximation procedure with adaptive truncation sets and introduce the relevant
notation required in the Markovian state-dependent noise scenario (see [23, section 6.6,
p. 159] for a detailed description and numerous examples). We first introduce a version
without truncations of the algorithm in this setting (subsection 3.2) and describe
our adaptive procedure in terms of this plain algorithm in subsection 3.1. This will
prove extremely useful when proving that our procedure is stable in section 4 and
particularly in section 5.

It is assumed hereafter that the state-space X and the parameter space Θ are
equipped with a countably generated σ-field, B(X), and B(Θ) (and measurability will
always be defined w.r.t. these σ-fields).

3.1. Nonhomogeneous chain. Let ρ = {ρn} be a monotone nonincreasing
sequence with ρ0 ≤ 1, define the product space X̄ := X∪ {xc}× Θ̄ := Θ∪ {θc}, where
θc �∈ Θ and xc �∈ X are two arbitrary cemetery points, and define the nonhomogeneous
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Markov chain {Y ρ
n := (Xn, θn)} on X̄ × Θ̄ as follows. Set θ0 = θ ∈ Θ, X0 = x ∈ X,

and for n ≥ 0,

θn+1 =

{
θn + ρn+1H(θn, Xn+1) and Xn+1 ∼ Pθn(Xn, ·) if θn ∈ Θ,
θc and Xn+1 = xc if θn �∈ Θ,

(3.1)

where it is assumed that the family of Markov transition probabilities {Pθ, θ ∈ Θ}
and the field H satisfy the following conditions:

(A2) For any θ ∈ Θ, the Markov kernel Pθ has a single stationary distribution
πθ, πθPθ = πθ. In addition H : Θ × X → Θ is measurable for all θ ∈ Θ,∫
X
|H(θ, x)|πθ(dx) < ∞.

The existence and uniqueness of the invariant distribution can be guaranteed under
classical irreducibility and recurrence conditions (see, e.g., [25, Chapters 9, 10]). We
denote by h(θ) :=

∫
X
H(θ, x)πθ(dx) the mean-field associated to this stochastic ap-

proximation procedure and define the noise sequence {ξn = H(θn−1, Xn)− h(θn−1)}.
Following [5], we will often write Hθ(x) as an equivalent expression for H(θ, x), hθ for
h(θ), etc.

We denote by F = {Fn, n ≥ 0} the natural filtration of this Markov chain, with
Fn := σ((Xl, θl), l ∈ {0, . . . , n}) and P

ρ
x,θ the probability measure on the canonical

space
(
(X × Θ)N, (B(X) ⊗ B(Θ))⊗N

)
generated by the nonhomogeneous Markov chain

{Y ρ
n } started from the initial conditions (X0, θ0) = (x, θ) ∈ X × Θ and using the

sequence ρ. Finally, it will be useful in what follows to introduce {Qρn
}, the sequence

of transition probabilities that generates the inhomogeneous Markov chain {Y ρ
n },

where for ρ ≥ 0, Qρ is defined for any (x, θ) ∈ X × Θ, A ∈ B(X̄), and B ∈ B(Θ̄),

Qρ(x, θ;A×B) =

∫
A

Pθ(x, dy)1l{θ + ρH(θ, y) ∈ B}

+ δθc(B)

∫
A

Pθ(x, dy)1l{θ + ρH(θ, y) /∈ Θ} .

3.2. Homogeneous chain. Let {Kq, q ≥ 0} be a sequence of compact subsets
of Θ such that ⋃

q≥0

Kq = Θ, and Kq ⊂ int(Kq+1), q ≥ 0,(3.2)

where int(A) denotes the interior of set A. Let γ = {γk} and ε = {εk} be two
monotone nonincreasing sequences of positive numbers and let K be a subset of X.
Let Φ : X×Θ → K×K0 be a measurable function and φ : Z+ → Z be a function such
that φ(k) > −k for any k. Our stochastic approximation algorithm with adaptive
truncation sets is defined as a homogeneous Markov chain on Z := X×Θ×N×N×N,

{Zn := (Xn, θn, κn, ςn, νn)} ∈ ZN,(3.3)

with the following transition at iteration n + 1:
• If νn = 0, then draw (Xn+1, θn+1) ∼ Qγςn

(Φ(Xn, θn); ·); otherwise draw
(Xn+1, θn+1) ∼ Qγςn

(Xn, θn; ·).
• If |θn+1 − θn| ≤ εςn and θn+1 ∈ Kκn

, then set κn+1 = κn, ςn+1 = ςn + 1, and
νn+1 = νn + 1; otherwise, set νn+1 = 0, κn+1 = κn + 1, ςn+1 = ςn + φ(νn).

In other words, κ, ς, and ν are counters: κ is the index of the current active truncation
set; ν counts the number of iterations since the last reinitialization; ς is the current
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index in the sequences {γn} and {εn}, and therefore defines the current proposal
kernel Qγ . The event {νn = 0} means that a reinitialization occurs and the condition
on φ ensures that the algorithm is reinitialized with a value for γςn smaller than
that used the last time such an event occurred. This algorithm is reminiscent of the
algorithm with adaptive truncation sets proposed in [11], [10]. When the current
iterate wanders outside the active truncation set or when the difference between two
successive values of the parameter is larger than a time-dependent threshold, then
the algorithm is reinitialized with a smaller initial value of the stepsize and a larger
truncation set. Various choices for the function φ can be considered. For example,
the choice φ(k) = 1 for all k ∈ N coincides with the procedure proposed in [10]: in
this case ςn = n. Another sensible choice consists of setting φ(k) = 1−k for all k ∈ N,
in which case the number of iterations between two successive reinitializations is not
taken into account.

The intuitive motivation for this modification of the original stochastic approxi-
mation recursion lies in Theorem 2.2. Indeed, in order to ensure the stability of the
algorithm it is required that the stepsizes not be too large and that the average effect
of the noise be small in order for the drift h(θ) to dominate, and confine the recur-
sion to a compact set. The reprojections act as a drastic drift toward the center of Θ
when {θn} grows too rapidly and allow one to reinitialize the algorithm with a smaller
stepsize and weaker noise inside a “ring” of the type {θ ∈ Θ : w(θ) ∈ (M0,M1]} (M0

and M1 are defined in (A1)) where the drift is strictly positive. The fact that M0

and M1 are unknown a priori is the reason for the adaptive truncations, which ensure
that one eventually selects Kq large enough in order to have L ∩ Kq �= ∅. As we
shall see, the limitation imposed on the increments of the sequence {θn} is required in
order to ensure some type of homogeneity of the chain {ξn}, and therefore ergodicity
properties of the noise sequence {ξn}.

In light of this heuristic, one can naturally propose many variations on this theme.
We suggest here two possible extensions. First, one can suggest other strategies in
order to adapt the magnitude of the stepsizes. Let {γn,l, n ≥ 0, l ≥ 0} be an array
of stepsizes. Then, when a reprojection occurs, instead of jumping forward in a
unique sequence of stepsizes, it is possible to simply change the sequence of stepsizes
from, say, l to l + 1. Another interesting variant of the proposed scheme consists of
reinitializing the algorithm when |θn− θn−1| > εςn−1 without changing the truncation
set. In either case the proof of convergence follows using the same types of arguments
as those presented in this paper.

We now introduce some further notation and briefly state our main result. For μ
a probability on Z, we denote P̄μ (resp., Ēμ) the probability (resp., the expectation)
on the canonical space (ZN,B(Z)⊗N) associated to the Markov chain {Zn} with initial
distribution μ. For z ∈ Z we set P̄z := P̄δz , Ēz := Ēδz and for (x, θ) ∈ X × Θ,

P̄x,θ := P̄x,θ,0,0,0 and Ēx,θ := Ēx,θ,0,0,0.(3.4)

This probability measure depends upon the deterministic sequences γ = {γn} and
ε = {εn}; this will be implicit hereafter in order to alleviate notation. We define
recursively {Tn, n ≥ 0} the sequence of successive reinitialization times

Tn+1 = inf {k ≥ Tn + 1, νk = 0} , with T0 = 0,(3.5)

where, by convention, inf{∅} = ∞. The following results hold under (A1), some regu-
larity conditions on the family of transition probabilities {Pθ, θ ∈ Θ}, and conditions
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on the sequences γ and ε:

inf
(x,θ)∈K×K0

P̄x,θ

(
sup
n≥0

κn < ∞
)

= inf
(x,θ)∈K×K0

P̄x,θ

( ∞⋃
n=0

{Tn = ∞}
)

= 1;

i.e., the number of reinitializations of the procedure described above is finite P̄x,θ-
a.s. for every (x, θ) ∈ K × K0. Convergence will then follow using Theorem 2.3, for
example.

4. Bound on P̄x,θ(Tn < ∞). In this section we establish in Proposition 4.2
a bound on P̄x,θ(Tn < ∞) in terms of the fluctuations of the noise sequence of the
algorithm between successive reinitializations. Let K be a compact subset of Θ and
let ε = {εn} be a nonincreasing sequence of positive numbers. We introduce

σ(K, ε) = σ(K)∧ν(ε), σ(K) = inf{k ≥ 1, θk �∈ K}, ν(ε) = inf{k ≥ 1, |θk−θk−1| ≥ εk},

and for a sequence a = {ak} and an integer l, we define a←l = {a←l
k } as a←l

k = ak+l.
We now prove the following lemma, which relates the expectation of the homogeneous
Markov chain {Zn}, defined in subsection 3.2, to the expectation of a nonhomogeneous
Markov chain {Y ρ

n }, defined in subsection 3.1, for a particular ρ.
Lemma 4.1. For any m ≥ 1, for any nonnegative measurable function Ψm :

(X × Θ)m → R+, for any integers p and q, for any x, θ ∈ X × Θ,

Ēx,θ,p,q,0

[
Ψm(X1, θ1, . . . , Xm, θm)1l{T1≥m}

]
= E

γ←q

Φ(x,θ)

[
Ψm(X1, θ1, . . . , Xm, θm)1l{σ(Kp,ε←q)≥m}

]
.

(4.1)

Proof. We proceed by induction. Let Ψ1 : X×Θ → R+. We notice that 1l{T1≥1}=
1. This, combined with the definition of Ēx,θ,p,q,0, leads to

Ēx,θ,p,q,0[Ψ1(X1, θ1)1l{T1≥1}] = Qγq
(Φ(x, θ); Ψ1),(4.2)

and by definition,

E
γ←q

Φ(x,θ)[Ψ1(X1, θ1)1l{σ(Kp,ε←q)≥1}] = Qγq (Φ(x, θ); Ψ1).(4.3)

Now assume that the property is true for some m ≥ 1. It is sufficient to prove the
induction for functions Ψm+1 of the form

Ψm+1(x1, θ1, . . . , xm+1, θm+1) = ψm+1(xm+1, θm+1)Ψm(x1, θ1, . . . , xm, θm),(4.4)

with ψm+1 : X×Θ → R+. In order to alleviate notation we will often write Ψm (resp.,
ψm) for Ψm(x1, θ1, . . . , xm, θm) (resp., ψm(xm, θm)) in what follows. Consider

(4.5) Ēx,θ,p,q,0[Ψm+1(X1, θ1, . . . , Xm+1, θm+1)1l{T1≥m+1}]

= Ēx,θ,p,q,0[ψm+1Ψm1l{T1≥m}1l{θm∈Kκm}1l{|θm−θm−1|<εςm}].

Now, by definition of the stopping time T1, we have

1l{θm∈Kκm}1l{|θm−θm−1|<εςm}1l{T1≥m} = 1l{θm∈Kκ0
}1l{|θm−θm−1|<ες0+m}1l{T1≥m}

= 1l{θm∈Kκ0}1l{|θm−θm−1|<ες0+m}1l{σ(Kκ0 ,ε
←ς0 )≥m},
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from which we may deduce, using the induction assumption, that

Ēx,θ,p,q,0[Ψm+11l{T1≥m+1}]

= Ēx,θ,p,q,0

[
Ēx,θ,p,q,0[ψm+1|Xm, θm, κm, ςm, νm]

·1l{θm∈Kκm}1l{|θm−θm−1|<εςm}Ψm1l{T1≥m}
]

= Ēx,θ,p,q,0

[
Qγq+m+1

(Xm, θm;ψm+1)1l{θm∈Kp}1l{|θm−θm−1|<εq+m}Ψm1l{T1≥m}
]

= E
γ←q

Φ(x,θ)

[
Qγq+m+1(Xm, θm;ψm+1)1l{θm∈Kp}1l{|θm−θm−1|<εq+m}Ψm1l{σ(Kp,ε←q)≥m}

]
= E

γ←q

Φ(x,θ)

[
Qγq+m+1(Xm, θm;ψm+1)Ψm1l{σ(Kp,ε←q)≥m+1}

]
= E

γ←q

Φ(x,θ)

[
Ψm+11l{σ(Kp,ε←q)≥m+1}

]
,

which concludes the proof.
Define, for any compact set K ⊂ Θ, ε = {εk}, ρ = {ρk}, and 1 ≤ l ≤ n, the

partial sum

Sl,n(ε,ρ,K) := 1l{σ(K,ε)≥n}

n∑
k=l

ρk(H(θk−1, Xk) − h(θk−1)),(4.6)

and for any δ ≥ 0 and any M ∈ (M0,M1],

A(δ, ε,M,ρ) := sup
θ∈K0

sup
x∈K

{
P

ρ
Φ(x,θ)

[
sup
k≥1

|S1,k(ε,ρ,WM )| > δ

]
+ P

ρ
Φ(x,θ)[ν(ε) < σ(WM )]

}
,

(4.7)

where K0 is defined in (3.2) and WM , M0, and M1 are defined in (A1).
Proposition 4.2. Assume (A1) and that K0 ⊂ WM0 (where M0 is defined in

(A1)). Then for any M ∈ (M0,M1] there exist an integer n0 and a constant δ0 > 0
such that, for any n > n0, we have

sup
(x,θ)∈K×K0

P̄x,θ[Tn < ∞] ≤
n−1∏
l=n0

sup
q≥l

A(δ0, ε
←q,M,γ←q),

where Tn is defined in (3.5).
Proof. By Theorem 2.2, for any M ∈ (M0,M1] there exist constants δ0 > 0

and λ0 > 0 such that, for all θ0 ∈ WM0 (where M0 is defined in (A1)), all integer
m ≥ 1, all sequences {ρk} of nonnegative real numbers, and all sequences {ξk} of

nθ-dimensional vectors satisfying sup1≤k≤m ρk ≤ λ0 and sup1≤k≤m

∣∣∣∑k
j=1 ρjξj

∣∣∣ ≤ δ0,

we have sup1≤k≤m w(θk) ≤ M , where θk = θk−1 + ρkh(θk) + ρkξk.
Now, choose n0 such that WM ⊂ Kn0 and γn0 ≤ λ0, where λ0 is given in Theo-

rem 2.2. The existence of such a n0 follows from (i) for all M ∈ (M0,M1], the level
set WM is compact and

⋃∞
p=0 Kp is an increasing covering of Θ, and (ii) γp ↓ 0 as

p → ∞. We notice that for any l ≥ 0,

Tl+1 = Tl + T1 ◦ τTl ,(4.8)

where τ denotes the shift operator on the canonical space associated to the chain
{Zn}. Consequently, by the strong Markov property,

P̄x,θ[Tl+1 < ∞] = Ēx,θ

[
1l{Tl<∞}P̄ZTl

(T1 < ∞)
]
.(4.9)
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Using Lemma 4.1, we have

P̄ZTl
{T1 < ∞}1l{Tl<∞} = C(XTl

, θTl
, l, ςTl

)1l{Tl<∞},

where, for any x, θ ∈ X × Θ and any integers p and q,

C(x, θ, p, q) = P
γ←q

Φ(x,θ) (σ(Kp, ε
←q) < ∞) .

Now, for p ≥ n0, we have WM ⊂ Kn0 ⊂ Kp, showing that for any x, θ ∈ X × Θ and
integers p, q ≥ n0,

C(x, θ, p, q) ≤ P
γ←q

Φ(x,θ) [σ(WM ) ∧ ν(ε←q) < ∞]

≤ P
γ←q

Φ(x,θ) [σ(WM ) < ∞, σ(WM ) ≤ ν(ε←q)]+P
γ←q

Φ(x,θ) [ν(ε←q) < σ(WM )] .

By Theorem 2.2, for any integer m ≥ 0 and any integer q ≥ n0, we have

{σ(WM ) = m,m ≤ ν(ε←q)} ⊂
{

sup
k∈{1,...,m}

|S1,k(ε
←q,γ←q,WM )| > δ0

}
,

which implies that for any x, θ ∈ X × Θ, any l ≥ n0, and any q ≥ n0

C(x, θ, l, q) ≤ P
γ←q

Φ(x,θ)

(
sup
k≥1

|S1,k(ε
←q,γ←q,WM )| > δ0

)
+ P

γ←q

Φ(x,θ)(ν(ε←q)

< σ(WM )) ≤ A(δ0, ε
←q,M,γ←q).

Combining the results above, we have, noting that ςTl
≥ l,

P̄ZTl
[T1 < ∞] 1l{Tl<∞} ≤ A(δ0, ε

←ςTl ,M,γ←ςTl )1l{Tl<∞}

≤ sup
q≥l

A(δ0, ε
←q,M,γ←q)1l{Tl<∞};

the proof now follows from a straightforward backward induction using (4.9) for l =
n0, . . . , n− 1 and n > n0.

Corollary 4.3. Assume (A1) and that K0 ⊂ WM0 (where M0 is defined in
(A1)). Then for any M ∈ (M0,M1] and n ≥ n0, there exists a constant C < ∞ such
that for any m ≥ n,

P̄x,θ

[
sup
k≥1

κk ≥ m

]
≤ C

(
sup
q≥n

A(δ0, ε
←q,M,γ←q)

)m

,

where {κk} is the counter corresponding to the number of reinitializations defined in
(3.3).

Proof. We have {
sup
k≥1

κk ≥ m

}
⊂ {Tm < ∞},

and consequently,
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P̄x,θ

(
sup
k≥1

κk ≥ m

)
≤ P̄x,θ (Tm < ∞) ≤

m−1∏
l=n0

sup
q≥l

A(δ0, ε
←q,M,γ←q)

≤
n−1∏
l=n0

sup
q≥n0

A(δ0, ε
←q,M,γ←q)

m−1∏
l=n

sup
q≥n

A(δ0, ε
←q,M,γ←q)

≤ C

(
sup
q≥n

A(δ0, ε
←q,M,γ←q)

)m

.

(4.10)

In the next section we derive conditions on the family of Markov kernels
{Pθ, θ ∈ Θ} and on the sequences ε = {εk} and γ = {γk}, which ensure that
supq≥n A(δ0, ε

←q,M,γ←q) < 1 for n large enough. It should be emphasized here
that this involves studying only the fluctuations of the canonical “interprojections”
processes, i.e., {Y ρ

n } for ρ = γ←ςT0 ,γ←ςT1 ,γ←ςT2 , . . . .

5. Control of the fluctuations. Our aim now is to find a bound for A(δ, ε,M,ρ)
defined in (4.7), which requires the following conditions to hold. Define, for V : X →
[1,∞) and g : X → Rnθ , the norm

‖g‖V = sup
x∈X

|g(x)|
V (x)

.(5.1)

Consider the following assumptions:
(A3) For any θ ∈ Θ, the Poisson equation g − Pθg = Hθ − πθ(Hθ) has a solution

gθ. There exist a function W : X → [1,∞] such that {x ∈ X,W (x) < ∞} �= ∅,
constants α ∈ (0, 1], p ≥ 2 such that for any compact subset K ⊂ Θ,
(i) the following holds:

sup
θ∈K

‖Hθ‖W < ∞,(5.2)

sup
θ∈K

(‖gθ‖W + ‖Pθgθ‖W ) < ∞,(5.3)

sup
(θ,θ′)∈K

|θ − θ′|−α {‖gθ − gθ′‖W + ‖Pθgθ − Pθ′gθ′‖W } < ∞.(5.4)

(ii) there exist constants {Ck, k ≥ 0} such that, for any k ∈ N, for any
sequence ρ = {ρk}, and for any x ∈ X,

sup
θ∈K

E
ρ
x,θ[W

p(Xk)1l{σ(K)≥k}] ≤ CkW
p(x).(5.5)

(iii) there exist ε > 0 and a constant C such that for any sequence ρ = {ρk}
and for any x ∈ X,

sup
θ∈K

E
ρ
x,θ[W

p(Xk)1l{σ(K)∧νε≥k}] ≤ CW p(x),(5.6)

where

νε = inf{k ≥ 1, |θk − θk−1| > ε}.(5.7)

Assumption (A3) states the existence and the regularity of the solutions of Pois-
son’s equation for the family of transition kernels {Pθ, θ ∈ Θ}. The conditions stated
above are nonprimitive; a set of more tractable conditions implying (A3) is given in
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section 6. Poisson’s equation has proven to be fundamental in the analysis of additive
functionals of Markov chains, in particular for establishing limit theorems such as
the (functional) central limit theorem (see, e.g., [5], [26], [25, Chapter 17], [18], [16]);
the existence of solutions to Poisson’s equation is well established for geometrically
ergodic Markov chains (see [26], [25, Chapter 17]); it has been more recently proven
under assumptions weaker than geometric ergodicity (see [18, Theorem 2.3]); the reg-
ularity of the solution of Poisson’s equation has been studied, under various ergodicity
and regularity conditions on the mapping θ �→ Pθ, in [5], [4]. We stress here that the
function W is global but that the bounds in (5.2), (5.3), (5.4), (5.5), and (5.6) depend
on the particular compact K under consideration. We have the following.

Lemma 5.1. Assume (A3). Let K be a compact subset of Θ and s ∈ N. There
exists a constant C such that for any sequence ε = {εk} satisfying 0 < εk ≤ ε for all
k ≥ s (where ε is defined in (A3)(iii)), for any sequence ρ = {ρk} and for any x ∈ X,

sup
θ∈K

sup
k≥0

E
ρ
x,θ

[
W p(Xk)1l{σ(K,ε)≥k}

]
≤ CW p(x).

Proof. Under (A3), there exists a constant C such that, for any sequence ρ = {ρk}
and any x ∈ X, we have

sup
θ∈K

E
ρ
x,θ[W

p(Xk)1l{σ(K)∧νε≥k}] ≤ CW p(x),

where νε is defined in (5.7). For any sequence ε = {εk} such that εk ≤ ε for any k ≥ s,

E
ρ
x,θ[W

p(Xk+s)1l{σ(K)∧ν(ε)≥k+s}]

= E
ρ
x,θ

[
E

ρ←s

Xs,θs
[W p(Xk)1l{σ(K)∧ν(ε←s)≥k}1l{σ(K)∧ν(ε)≥s}]

]
≤ E

ρ
x,θ

[
sup
θ∈K

E
ρ←s

Xs,θ
[W p(Xk)1l{σ(K)∧νε≥k}1l{σ(K)≥s}]

]
≤ CE

ρ
x,θ[W

p(Xs)1l{σ(K)≥s}],

and the proof is concluded by (A3).
Proposition 5.2. Assume (A3). Let K be a compact subset of Θ and let ρ =

{ρk} and ε = {εk} be two nonincreasing sequences of positive numbers such that
limk→∞ εk = 0. Then, for p as defined in (A3),

1. there exists a constant C such that, for any (x, θ) ∈ X×K, any integer l, and
any δ > 0

P
ρ
x,θ

(
sup
n≥l

|Sl,n(ε,ρ,K)| ≥ δ

)
≤ Cδ−p

⎧⎨⎩
( ∞∑

k=l

ρ2
k

)p/2

+

( ∞∑
k=l

ρkε
α
k

)p
⎫⎬⎭W p(x).

(5.8)

2. there exists a constant C such that, for any (x, θ) ∈ X ×K,

P
ρ
x,θ (ν(ε) < σ(K)) ≤ C

{ ∞∑
k=1

(ε−1
k ρk)

p

}
W p(x).(5.9)

The proof is in Appendix A. We finally need a condition on the stepsize sequences,
which will ensure that A(δ, ε←q,M,ρ←q) → 0 when q → ∞.
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(A4) The sequences γ = {γk} and ε = {εk} are nonincreasing, positive and satisfy∑∞
k=0 γk = ∞, limk→∞ εk = 0, and

∞∑
k=1

{
γ2
k + γkε

α
k + (ε−1

k γk)
p
}
< ∞,

where p and α are defined in (A3).
For instance, we may assume that

∑
k≥0 γk = ∞ and

∑∞
k=0 γ

δ
k < ∞ for some 1 < δ ≤

p(1+α)/(p+α). Then, (A4) is verified by setting εk = Cγη
k for some constant C and

some η such that

δ − 1

α
≤ η ≤ p− δ

p
.

It is now straightforward to establish the following results.
Proposition 5.3. Assume (A3) and (A4). Then, for any subset K ⊂ X such that

supx∈K W (x) < ∞, any M ∈ (M0,M1], and any δ > 0, we have limk→∞ A(δ, ε←k,
M,γ←k) = 0, where A(δ, ε,M,ρ) is given by (4.7).

We may now summarize the discussion above to obtain the following stability
result.

Theorem 5.4. Assume (A1)–(A4). Then, for any subset K ⊂ X such that
supx∈K W (x) < ∞, K0 ⊂ WM0 (where M0 is defined in (A1)) and any ρ ∈ (0, 1),
there exists a constant C < ∞ such that, for all (x, θ) ∈ X × Θ,

P̄x,θ

[
sup
n≥1

κn ≥ k

]
≤ Cρk.

Hence, under the stated conditions, the tail probability of the number of reini-
tializations decreases faster than any exponential and supn≥1 κn is finite P̄x,θ-a.s.
Combining this result with Theorem 2.3, it is possible to obtain the following global
convergence result.

Theorem 5.5. Assume (A1)–(A4). Let K ⊂ X be such that supx∈K W (x) < ∞
and that K0 ⊂ WM0

(where M0 is defined in (A1)), and let {Zn} be as defined by
(3.3). Then, for all (x, θ) ∈ X × Θ, we have limk→∞ d(θk,L) = 0, P̄x,θ-a.s.

Proof. Define, for k ≥ 1,

Bk = lim sup
l→∞

sup
Tk−1+l≤n

∣∣∣∣∣∣1l{n<Tk}

n∑
j=Tk−1+l

γςj (H(θj−1, Xj) − h(θj−1))

∣∣∣∣∣∣ 1l{Tk−1<∞},

where ςj and Tk are defined in section 3. We first show that, for any k and any δ > 0,
P̄x,θ(|Bk| ≥ δ) = 0 for all (x, θ) ∈ X × Θ. We have, by the strong Markov property
and (4.6) that for l ≥ 1

P̄x,θ

⎛⎝ sup
Tk−1+l≤n

∣∣∣∣∣∣1l{n<Tk}

n∑
j=Tk−1+l

γςj (H(θj−1, Xj) − h(θj−1))

∣∣∣∣∣∣ 1l{Tk−1<∞} ≥ δ

⎞⎠
≤ Ēx,θ

{
Cl(XTk−1

, θTk−1
, δ,Kk−1, ςTk−1

)1l{Tk−1<∞}
}
,

where for any x, θ ∈ X × Θ, any δ > 0, any set K ⊂ Θ, and any integer q,

Cl(x, θ, δ,K, q) = P
γ←q

Φ(x,θ)

(
sup
n≥l

|Sl,n(ε←q,γ←q,K)| ≥ δ

)
.
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By Proposition 5.2, for any compact subset K, there exists a constant C such that,
for all q ≥ 0,

sup
(x,θ)∈X×Θ

Cl(x, θ, δ,K, q) ≤ Cδ−p

⎧⎪⎨⎪⎩
⎛⎝ ∞∑

j=l

γ2
j

⎞⎠p/2

+

⎛⎝ ∞∑
j=l

γjε
α
j

⎞⎠p
⎫⎪⎬⎪⎭ ,

which implies that, for all k ≥ 0, P̄x,θ(|Bk| ≥ δ) = 0. Corollary 4.3 and Proposition 5.3
show that, for all (x, θ) ∈ K × K0, κ = supk κk < ∞ P̄x,θ-a.s. Set, for k ≥ 0,
θ̄k = θk+Tκ−1 , γ̄k = γk+ςTκ−1

and

ξk = H(θ̄k−1, Xk+Tκ−1) − h(θ̄k−1), k ≥ 1.

Then, θ̄k = θ̄k−1 + γ̄kh(θ̄k−1) + γ̄kξk and, since Tκ = ∞, for all (x, θ) ∈ K ×K0,

lim sup
l→∞

sup
n≥l

∣∣∣∣∣
n∑

k=l

γ̄kξk

∣∣∣∣∣ = Bκ = 0, P̄x,θ-a.s.

The proof follows from Theorem 2.3.

6. Drift conditions. In this section, we give conditions which imply (A3) in
terms of a minorization of the Markov kernel on a small set and a drift condition
toward this small set (see [25] for definitions and main results). Denote, for V : X →
[1,∞), LV := {g : X → Rnθ , supx∈X ‖g‖V < ∞}, where ‖ · ‖V is defined in (5.1).

(DRI) For any θ ∈ Θ, Pθ is ψ-irreducible and aperiodic1. In addition there exist
a function V : X → [1,∞) and constants p ≥ 2 and β ∈ [0, 1] such that for
any compact subset K ⊂ Θ,

(DRI1) there exist an integer m, constants 0 < λ < 1, b, κ, δ > 0, and a
probability measure ν such that

sup
θ∈K

Pm
θ V p(x) ≤ λV p(x) + b1lC(x),(6.1)

sup
θ∈K

PθV
p(x) ≤ κV p(x) ∀x ∈ X,(6.2)

inf
θ∈K

Pm
θ (x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ B(X).(6.3)

(DRI2) there exists C such that, for all x ∈ X,

sup
θ∈K

|Hθ(x)| ≤ CV (x),

sup
(θ,θ′)∈K

|θ − θ′|−β |Hθ(x) −Hθ′(x)| ≤ CV (x).

(DRI3) there exists C such that, for all (θ, θ′) ∈ K ×K,

‖Pθg − Pθ′g‖V ≤ C ‖g‖V |θ − θ′|β ∀g ∈ LV ,(6.4)

‖Pθg − Pθ′g‖V p ≤ C ‖g‖V p |θ − θ′|β , ∀g ∈ LV p .(6.5)

1We use the standard terminology and notation introduced in [25, Chapters 4, 5].
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Assumption (DRI1) is classical in the Markov chain literature; it implies the existence
of a stationary distribution πθ for all θ ∈ Θ and V p-uniform ergodicity; i.e., for each
θ ∈ Θ there exist constants Cθ < ∞ and ρθ ∈ [0, 1) such that for any function f ∈ LV p

and any integer k > 0,

‖P k
θ f − πθ(f)‖V p ≤ Cθρ

k
θ‖f‖V p .

Note that the constants Cθ and ρθ may be bounded over the compact sets of Θ; i.e.,
for each K ⊂ Θ, there exists C̄ < ∞ and ρ̄ ∈ [0, 1) such that supθ∈K Cθ ≤ C̄ and
supθ∈K ρθ ≤ ρ̄. The regularity of the kernels θ → Pθ expressed in V and V p norms is
naturally less classical. The main result of this section follows.

Proposition 6.1. Assume (DRI). Then (A2) and (A3) are satisfied and for any
0 < α < β,

sup
(θ,θ′)∈K×K

|θ − θ′|−α |h(θ) − h(θ′)| < ∞.(6.6)

The proof is in Appendix B.

7. Controlled MCMC algorithm. Markov chain Monte Carlo (MCMC), in-
troduced in [24], is a popular computational method for generating samples from
virtually any distribution π defined on a space X ⊂ Rnx (for some integer nx). The
method consists of simulating an ergodic Markov chain {Xn, n ≥ 0} on X with transi-
tion probability P such that π is a stationary distribution for this chain, i.e., πP = π.
Let ψ be some π-integrable function ψ : X → Rnψ for some integer nψ. One can use
the samples produced by the Markov chain to estimate integrals

π (ψ) :=

∫
X

ψ (x)π (dx)

with estimators of the type

Sn(ψ) =
1

n

n∑
k=1

ψ(Xk).(7.1)

In general the transition probability P of the Markov chain depends on some tuning
parameter, say θ, defined on some space Θ ⊂ Rnθ for some integer nθ, and the
convergence properties of the Monte Carlo averages in (7.1) might highly depend on
a proper choice of this parameter.

We illustrate this here with the classical Metropolis–Hastings (MH) update, but it
should be stressed at this point that the results presented in this paper apply to much
more general settings. The MH algorithm requires the choice of a proposal distribution
q. In order to simplify the discussion, we will assume that π and q admit densities with
respect to the Lebesgue measure λLeb, denoted, with an abuse of notation, by π and
q hereafter. The role of the distribution q consists of proposing potential transitions
y for the Markov chain {Xn}. Given that the chain is currently at x, a candidate y
is accepted with probability α(x, y) defined as

α(x, y) =

{
1 ∧ π(y)

π(x)
q(y,x)
q(x,y) if π(x)q(x, y) > 0

1 otherwise,

where a ∧ b := min(a, b). Otherwise it is rejected and the Markov chain stays at its
current location x. The transition kernel P of this Markov chain takes the form for
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x,A ∈ X × B(X) of

P (x,A) =

∫
A

α(x, y)q(x, y)λLeb(dy) + 1lA(x)

∫
X

(1 − α(x, y))q(x, y)λLeb(dy).(7.2)

The Markov chain P is reversible with respect to π and therefore admits π as an
invariant distribution. Conditions on the proposal distribution q that guarantee irre-
ducibility and positive recurrence are mild and many satisfactory choices are possible.

7.1. Symmetric random walk MH. We focus here on the symmetric incre-
ments random-walk MH algorithm (SRWM), which corresponds to the case where
q(x, y) = q(x − y) for some symmetric probability density q. Other examples are
considered in [2]. The transition kernel of the SRWM algorithm is then given for
x,A ∈ X × B(X) by

(7.3) P SRW

q (x,A) =

∫
A−x

(
1 ∧ π(x + z)

π(x)

)
q(z)λLeb(dz)

+ 1lA(x)

∫
X−x

(
1 −

(
1 ∧ π(x + z)

π(x)

))
q(z)λLeb(dz), x ∈ X, A ∈ B(X),

where A− x := {z ∈ X, x+ z ∈ A}. A classical choice for the proposal distribution is
q = φ0,Γ, where φμ,Γ is the density of a multivariate normal distribution with mean
μ and covariance matrix Γ. We will later on refer to this algorithm as the N-SRWM.
It is well known that either too small or too large a covariance matrix will result in
highly positively correlated Markov chains and therefore estimators Sn(ψ) with large
variance. In practice this covariance matrix Γ is determined by trial and error using
several realizations of the Markov chain. This hand-tuning requires some expertise
and can be time consuming.

In order to circumvent this problem, in the context of the N-SRWM update
described above, the authors of [19] have proposed to “learn Γ on the fly.” Their
algorithm can be summarized as (see [19])

μn+1 = μn + γn+1(Xn+1 − μn), n ≥ 0,(7.4)

Γn+1 = Γn + γn+1((Xn+1 − μn)(Xn+1 − μn)T − Γn),

where
• Xn+1 is drawn from Pθn(Xn, ·), where for θ = (μ,Γ), Pθ := P SRW

φ0,λΓ
with λ > 0,

a constant scaling factor depending only on the dimension of the state-space
nx and kept constant across the iterations.

• γ = {γn} is a nonincreasing sequence of positive stepsizes such that
∑∞

n=1 γn =
∞ and

∑∞
n=1 γ

1+δ
n < ∞ for some δ > 0 ([19] suggests the choice γn = 1/n).

It was realized in [3] that such a scheme is a particular case of a more general frame-
work akin to stochastic control, combined with the use of the Robbins–Monro proce-
dure. More precisely, let θ = (μ,Γ) ∈ Θ, where Θ := Rnx × Cnx

+ and Cnx
+ is the cone

of positive nx × nx matrices; then

H(x; θ) = (x− μ, (x− μ)(x− μ)T − Γ)T.(7.5)

With this notation, the recursion in (7.4) may be written in the standard Robbins–
Monro form as

θn+1 = θn + γn+1H(Xn+1, θn), n ≥ 0,(7.6)
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with Xn+1 ∼ Pθn(Xn, ·). For the present example, assuming that
∫
X
|x|2π(dx) < ∞,

one can easily check that

h(θ) =

∫
X

H(x, θ)π(dx) = (μπ − μ, (μπ − μ)(μπ − μ)T + Γπ − Γ)T,(7.7)

with μπ and Γπ the mean and covariance of the target distribution. It is assumed in the
sequel that Γπ is positive definite. We now analyze the corresponding homogeneous
Markov chain {Zn, n ≥ 0} as defined in section 3, i.e., prove under mild conditions
on π that (A1)–(A3) are satisfied.

7.2. Condition (A1). In the algorithm described above the parameter esti-
mates μn and Γn take the form of maximum likelihood estimates under the i.i.d.
multivariate normal model. It therefore comes as no surprise if the appropriate Lya-
punov function is

w(μ,Γ) = −
∫

X

log

(
π(x)

φ0,Γ(x)

)
π(dx),(7.8)

the Kullback–Leibler divergence between the target density π and a normal density
φ0,Γ.

Proposition 7.1. Let h be as defined in (7.7) where π satisfies (M). Then (A1) is
satisfied with w as in (7.8). Furthermore L is reduced to a single point, θπ := (μπ,Γπ).

Proof. h is naturally continuous (and, as we shall see later, is in fact Lipschitz
continuous under (DRI) (or when (DRI) is assumed) since Proposition 6.1 holds under
(DRI). Now w is equal, up to multiplicative and additive constants, to

log detΓ + (μ− μπ)TΓ−1(μ− μπ) + Tr(Γ−1Γπ).(7.9)

Using straightforward algebra, one can show that there exists a constant C > 0 such
that

(7.10) C
〈
∇w(μ,Γ), h(μ,Γ)

〉
= −2(μ− μπ)TΓ−1(μ− μπ)

− Tr(Γ−1(Γ − Γπ)Γ−1(Γ − Γπ)) −
(
(μ− μπ)TΓ−1(μ− μπ)

)2
,

that is, 〈∇w(θ), h(θ)〉 ≤ 0 for any θ = (μ,Γ) ∈ Θ, with equality if and only if Γ = Γπ

and μ = μπ. As w(Θ) = [w(μπ,Γπ),∞) and w is continuous, any w(μπ,Γπ) <
M0 < M1 < ∞ satisfy (A1)(i) and (A1)(ii), and (A1)(iii) is automatically satisfied.
Now as the set of stationary points L is reduced to a single point, (A1)(iv) is also
satisfied.

7.3. Condition (A3). In order to check (A3) in this case, we check (DRI). The
geometric ergodicity of the random walk Metropolis–Hastings (RWMH) kernel has
been studied by [27] and refined in [21]; the regularity of the RWMH has, to the best
of our knowledge, not been considered in the literature. The geometric ergodicity of
the RWMH kernel mainly depends on the tail properties of the target distribution
π. We will therefore restrict our discussion to target distributions that satisfy the
following set of conditions. These are not minimal but are easy to check in practice
(see [21] for details).

(M) The probability density π has the following properties:
(i) It is bounded, bounded away from zero on every compact set, and con-

tinuously differentiable.
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(ii) It is superexponential, i.e.,

lim
|x|→+∞

〈
x

|x| ,∇ log π (x)

〉
= −∞.

(iii) The contours ∂A (x) = {y : π(y) = π(x)} are asymptotically regular, i.e.,

lim
|x|→+∞

sup

〈
x

|x| ,
∇π (x)

|∇π (x)|

〉
< 0.

Note that this condition implies the existence and finiteness of μπ and Γπ. We now
establish uniform minorization and drift conditions for P SRW

q defined in (7.3). Let

M(X) denote the set of probability densities w.r.t. the Lebesgue measure λLeb. Let
ε > 0 and δ > 0 and define the subset Kδ,ε ⊂ M(X),

Kδ,ε = {q ∈ M(X), q(z) = q(−z) and |z| ≤ ε ⇒ q(z) ≥ δ} .(7.11)

Proposition 7.2. Assume (M). For any η ∈ (0, 1), set W = π−η/(infX π−η).
Then,

1. any nonempty compact set C ⊂ X is a (1, δ)-small set for some δ > 0 and
some measure ν,

∀(x,A) ∈ C × B(X) inf
q∈Kδ,ε

P SRW

q (x,A) ≥ δν(A).(7.12)

2. furthermore, for any δ > 0 and ε > 0,

sup
q∈Kδ,ε

lim sup
|x|→+∞

P SRW
q W (x)

W (x)
< 1,(7.13)

sup
(x,q)∈X×Kδ,ε

P SRW
q W (x)

W (x)
< +∞.(7.14)

3. let q, q′ ∈ M(X) be two symmetric probability distributions. Then, for any
r ∈ [0, 1] and any g ∈ LW r we have

∥∥P SRW

q g − P SRW

q′ g
∥∥
W r ≤ 2 ‖g‖W r

∫
X

|q(z) − q′(z)|λLeb(dz).(7.15)

Proof. For any x ∈ X, define the acceptance region A(x) = {z ∈ X−x;π(x+ z) ≥
π(x)} and the rejection region R(x) = {z ∈ X − x;π(x + z) < π(x)}. From the
definition, (7.11) of Kδ,ε [27, Theorem 2.2] applies for any q ∈ Kδ,ε and we can conclude
that (7.12) is satisfied. Noting that the two sets A(x) and R(x) do not depend on the
proposal distribution q, and using the conclusion of the proof of Theorem 4.3 of [21],
we have

inf
q∈Kδ,ε

lim inf
|x|→+∞

∫
A(x)

q(z)λLeb(dz) > 0,

so that from the conclusion of the proof of Theorem 4.1 of [21],

sup
q∈Kδ,ε

lim sup
|x|→+∞

P SRW
q W (x)

W (x)
= 1 − inf

q∈Kδ,ε

lim inf
|x|→+∞

∫
A(x)

q(z)λLeb(dz) < 1,
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which proves (7.13). Finally, for any q ∈ Kδ,ε,

P SRW
q W (x)

W (x)
=

∫
A(x)

π(x + z)−η

π(x)−η
q(z)λLeb(dz)

+

∫
R(x)

(
1 − π(x + z)

π(x)
+

π(x + z)1−η

π(x)1−η

)
q(z)λLeb(dz)

≤ sup
0≤u≤1

(1 − u + u1−η),

which proves (7.14). Now notice that

P SRW

q g(x) − P SRW

q′ g(x) =

∫
X

α(x, x + z)(q(z) − q′(z))g(x + z)λLeb(dz)

+ g(x)

∫
X

α(x, x + z)(q′(z) − q(z))λLeb(dz).

We therefore focus, for r ∈ [0, 1] and g ∈ LW r , on the term∣∣∫
X
α(x, x + z)(q(z) − q′(z))g(x + z)λLeb(dz)

∣∣
‖g‖W r W r(x)

≤
∫
X
α(x, x + z)|q(z) − q′(z)|W r(x + z)λLeb(dz)

W r(x)

=

∫
A(x)

π(x + z)−rη

π(x)−rη
|q(z) − q′(z)|λLeb(dz)

+

∫
R(x)

π(x + z)1−rη

π(x)1−rη
|q(z) − q′(z)|λLeb(dz)

≤
∫

X

|q(z) − q′(z)|λLeb(dz).

We now conclude that for any x ∈ X and any g ∈ LW r ,

|P SRW
q g(x) − P SRW

q′ g(x)|
W r(x)

≤ 2 ‖g‖W r

∫
X

|q(z) − q′(z)|λLeb(dz).

One can specialize the regularity property (7.15) to the N-SRWM, where the
proposal distribution qθ is a zero-mean normal distribution with covariance matrix Γ,
and for simplicity we set qΓ := φ0,Γ.

Lemma 7.3. Let K be a convex compact subset of Cnx
+ and set W = π−η/(infX π−η)

for some η ∈ (0, 1). For any r ∈ [0, 1], any Γ,Γ′ ∈ K ×K, g ∈ LW r , we have∥∥∥P SRW

qΓ g − P SRW

qΓ′ g
∥∥∥
W r

≤ 2nx

λmin(K)
‖g‖W r |Γ − Γ′|,(7.16)

where λmin(K) is the minimum possible eigenvalue for matrices in K.
Proof. We have∫

X

|qΓ(z) − qΓ′(z)|dz =

∫
X

∣∣∣∣∫ 1

0

d

dv
qΓ+v(Γ′−Γ)(z)dv

∣∣∣∣ dz
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and let Γv = Γ + v(Γ′ − Γ), so that

d

dv
log qΓ+v(Γ′−Γ)(z) = −1

2
Tr

[
Γ−1
v (Γ′ − Γ) + Γ−1

v zzTΓ−1
v (Γ′ − Γ)

]
,

and consequently,

∫
X

∣∣∣∣∫ 1

0

d

dv
qΓ+v(Γ′−Γ)(z)dv

∣∣∣∣ dz ≤ nx

λmin(K)
|Γ′ − Γ|,

where we have used the inequality

|Tr[Γ−1
v zzTΓ−1

v (Γ′ − Γ)]| ≤ |Γ′ − Γ|Tr[Γ−1
v Γ−1

v zzT].

Corollary 7.4. For any compact subset K of Cnx
+ , there exists C < ∞ such that

∥∥∥P SRW

qΓ g − P SRW

qΓ′ g
∥∥∥
W r

≤ C ‖g‖W r |Γ − Γ′|.(7.17)

7.4. Convergence of the adaptive MCMC algorithm. The main result of
this section is the following.

Theorem 7.5. Let π ∈ M(X) satisfying (M). Let {Zn} be the homogeneous
Markov chain defined as in section 3, with H as in (7.5), Pθ := P SRW

φ0,λΓ
for some λ > 0

with θ = (μ,Γ) ∈ Θ = Rnx × Cnx
+ , K a compact set, and γ = {γn} and ε = {εn}

satisfying (A4). Then, (A1)–(A3) are satisfied for any K0 and θn → θπ w.p. 1, where
θπ := (μπ,Γπ) is the unique stationary point of {θn}.

Proof. (A1) is implied by Proposition 7.1. (A2) is satisfied by construction of Pθ

and from (M) and the definition of H in (7.5). Now we prove that (DRI) is satisfied.
Choose V p = W = π−η/ infX π−η for p ≥ 2 in Proposition 7.2; then (DRI1) and
(DRI3) are satisfied. Now (DRI2) is satisfied since, from (7.5),

|Hθ(x) −Hθ′(x)| ≤ |μ− μ′|{1 + |μ + μ′| + 2|x|} + |Γ − Γ′|,(7.18)

and ‖x‖W + ‖|x|2‖ < ∞ from (M). Theorem 5.5 now applies.
This result is an important step for the study of the asymptotic properties of

{Sn} in [2], in particular the proof that {Sn} satisfies a central limit theorem.

Appendix A. Proof of Proposition 5.2. Denote

D(ε,ρ,K, x) = sup
k≥1

sup
θ∈K

E
ρ
x,θ[W

p(Xk)1l{σ(K)∧ν(ε)≥k}].

We first consider the case l = 1. Denote

Tn =

n∑
k=1

ρk
(
gθk−1

(Xk) − Pθk−1
gθk−1

(Xk)
)

1l{σ(K)∧ν(ε)≥k},

Using 1l{σ(K)∧ν(ε)≥k} = 1l{σ(K)∧ν(ε)≥k+1}+1l{σ(K)∧ν(ε)=k}, we may write Tn =
∑5

i=1 T
(i)
n ,
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where

T (1)
n =

n∑
k=1

ρk
(
gθk−1

(Xk) − Pθk−1
gθk−1

(Xk−1)
)

1l{σ(K)∧ν(ε)≥k},(A.1)

T (2)
n =

n−1∑
k=1

ρk+1

(
Pθkgθk(Xk) − Pθk−1

gθk−1
(Xk)

)
1l{σ(K)∧ν(ε)≥k+1},(A.2)

T (3)
n =

n−1∑
k=1

(ρk+1 − ρk)Pθk−1
gθk−1

(Xk) 1l{σ(K)∧ν(ε)≥k+1},(A.3)

T (4)
n = ρ1Pθ0gθ0(X0) 1l{σ(K)∧ν(ε)≥1} − ρnPθn−1gθn−1(Xn) 1l{σ(K)∧ν(ε)≥n},(A.4)

T (5)
n = −

n−1∑
k=1

ρkPθk−1
gθk−1

(Xk) 1l{σ(K)∧ν(ε)=k}.(A.5)

We now evaluate bounds for T
(i)
n , i = 1, . . . , 4. In what follows, sequel C denotes a

constant which depends only upon the compact set K through the quantities defined
in the assumptions and whose value may change upon each appearance. We have

sup
θ∈K

E
ρ
θ,x

[
sup
n≥0

∣∣∣T (1)
n

∣∣∣p] ≤ C

( ∞∑
k=0

ρ2
k

)p/2

sup
θ∈K

sup
k

E
ρ
x,θ

[
W p(Xk)1l{σ(K)∧ν(ε)≥k}

]
,

(A.6)

sup
θ∈K

E
ρ
θ,x

[
sup
n≥0

∣∣∣T (2)
n

∣∣∣p] ≤ C

( ∞∑
k=1

ρkε
α
k

)p

sup
θ∈K

sup
k

E
ρ
x,θ

[
W p(Xk)1l{σ(K)∧ν(ε)≥k}

]
,

(A.7)

sup
θ∈K

E
ρ
θ,x

[
sup
n≥0

∣∣∣T (3)
n

∣∣∣p] ≤ Cρp1 sup
θ∈K

sup
k

E
ρ
x,θ

[
W p(Xk)1l{σ(K)∧ν(ε)≥k}

]
,

(A.8)

sup
θ∈K

E
ρ
θ,x

[
sup
n≥0

∣∣∣T (4)
n

∣∣∣p] ≤ C

( ∞∑
k=1

ρ2
k

)p/2

sup
θ∈K

sup
k

E
ρ
x,θ

[
W p(Xk)1l{σ(K)∧ν(ε)≥k}

]
.

(A.9)

The proof of these inequalities can be adapted from [5, Part II, section 3.2]; see also
[4, Chapter 6, Lemmas 6.2–6.4].

Proof of (A.6). Under (A3),

sup
θ∈K

E
ρ
x,θ

[
(|gθk(Xk+1)|p + |Pθkgθk(Xk+1)|p)1l{σ(K)∧ν(ε)≥k+1}

]
≤ CD(ε,ρ,K, x).

Since

E
ρ
x,θ

[
(gθk(Xk+1) − Pθkgθk(Xk))1l{σ(K)∧ν(ε)≥k+1}

∣∣ Fk]

= (Pθkgθk(Xk) − Pθkgθk(Xk)) 1l{σ(K)∧ν(ε)≥(k+1)} = 0,
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T
(1)
n is an (Rd-valued) martingale. Using the Burkholder inequality [20, Theorem 2.10],

we have

E
ρ
x,θ

[∣∣∣T (1)
n

∣∣∣p] ≤ CpE
ρ
x,θ

(
n−1∑
k=0

ρ2
k+1|gθk(Xk+1) − Pθkgθk(Xk)|21l{σ(K)∧ν(ε)≥k+1}

)p/2

,

(A.10)

where Cp is a universal constant. Using Minkowski’s inequality, supθ∈K(‖gθ‖V +
‖Pθgθ‖V ) < ∞, and (A3), we have

E
ρ
x,θ

[∣∣∣T (1)
n

∣∣∣p] ≤ C

( ∞∑
k=1

ρ2
k

)p/2

D(ε,ρ,K, x).

Since T
(1)
n is a martingale in Lp, then |T (1)

n | is a nonnegative submartingale in Lp and
Doob’s Lp inequality implies that

E
ρ
x,θ

[
sup
n≥1

∣∣∣T (1)
n

∣∣∣p] ≤ C

( ∞∑
k=1

ρ2
k

)p/2

D(ε,ρ,K, x),

which concludes the proof of (A.6).
Proof of (A.7). Under (A3), we have

sup
n≥1

∣∣∣∣∣
n−1∑
k=1

ρk+1

(
Pθkgθk(Xk) − Pθk−1

gθk−1
(Xk)

)
1l{σ(K)∧ν(ε)≥k+1}

∣∣∣∣∣
≤ C

∞∑
k=0

ρk+1W (Xk) |θk − θk−1|α 1l{σ(K)∧ν(ε)≥k+1},

≤ C

∞∑
k=0

ρk+1ε
α
k W (Xk) 1l{σ(K)∧ν(ε)≥k+1}.

We conclude the proof by applying Minkowski’s inequality.
Proof of (A.8). Under (A3),

sup
n≥1

∣∣∣∣∣
n−1∑
k=1

(ρk+1 − ρk)Pθk−1
gθk−1

(Xk) 1l{σ(K)∧ν(ε)≥k+1}

∣∣∣∣∣
≤ C

∞∑
k=1

(ρk − ρk+1)W (Xk)1l{σ(K)∧ν(ε)≥k+1},

and the proof follows from Minkowski’s inequality.
Proof of (A.9). Under (A3),

sup
n≥1

∣∣ρ1Pθ0gθ0(X0)1l{σ(K)∧ν(ε)≥1} − ρnPθn−1
gθn−1

(Xn)1l{σ(K)∧ν(ε)≥n}
∣∣p

≤ C

(
ρp1W

p(X0) 1l{σ(K)∧ν(ε)≥1} + sup
n≥1

ρpnW
p(Xn)1l{σ(K)∧ν(ε)≥n}

)
≤ C

∞∑
k=1

ρpkW
p(Xk)1l{σ(K)∧ν(ε)≥k}.
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The proof follows from (A3) and the inequality
∑n

k=1 ρ
p
k ≤

(∑n
k=1 ρ

2
k

)p/2
for p ≥ 2.

Since T
(5)
n 1l{σ(K)∧ν(ε)≥n} = 0, we have

S1,n(ε,ρ,K) = Tn1l{σ(K)∧ν(ε)≥n} =

4∑
i=1

T (i)
n 1l{σ(K)∧ν(ε)≥n}.

The Markov inequality and Lemma 5.1 imply that

P
ρ
x,θ

(
sup
n≥1

|S1,n(ε,ρ,K)| ≥ δ

)
≤ Cδ−p

⎧⎨⎩
( ∞∑

k=1

ρ2
k

)p/2

+

( ∞∑
k=1

ρkε
α
k

)p
⎫⎬⎭W p(x).

(A.11)

The proof for all l then follows from the Markov property: for all (x, θ) ∈ X ×K,

P
ρ
x,θ

(
sup
n≥1

|Sl+1,n(ε,ρ,K)| ≥ δ

)
= E

ρ
x,θ

(
P

ρ←l

Xl,θl

(
sup
n≥1

|S1,n(ε←l,ρ←l,K)| ≥ δ

)
1l{σ(K)∧ν(ε)≥l}

)
≤ E

ρ
x,θ

(
sup
θ∈K

P
ρ←l

Xl,θ

(
sup
n≥1

|S1,n(ε←l,ρ←l,K)| ≥ δ

)
1l{σ(K)∧ν(ε)≥l}

)
.

Since the sequence ε is nonincreasing, there exists an integer s such that for all l and
all k ≥ s, ε←l

k ≤ ε, for all k ≥ s (where ε is defined in (A3)) and Lemma 5.1 shows
that there exists a constant C such that for any l, for any x ∈ X, and any monotone
nonincreasing sequence ρ,

sup
θ∈K

sup
k≥0

E
ρ←l

x,θ [W p(Xk)1l{σ(K)∧ν(ε←l)≥k}] ≤ CW p(x).

The proof follows from (A.11).
It remains to bound P

ρ
x,θ(ν(ε) < σ(K)) ≤ P

ρ
x,θ(ν(ε) ≤ σ(K)).

P
ρ
x,θ(ν(ε) ≤ σ(K)) =

∞∑
k=1

P
ρ
x,θ(ν(ε) = k, σ(K) ≥ k)

=

∞∑
k=1

P
ρ
x,θ

(
|H(θk−1, Xk)| ≥ εkρ

−1
k , σ(K) ≥ k, ν(ε) = k

)
≤ C

∞∑
k=1

(ε−1
k ρk)

p sup
k≥0

sup
θ∈K

E
ρ
x,θ[W

p(Xk)1l{σ(K)∧ν(ε)≥k}].

The proof follows from Lemma 5.1.

Appendix B. Proof of Proposition 6.1. The following proposition is a
partial restatement of [25, Theorem 2.3].

Proposition B.1. Suppose that P is irreducible and aperiodic and that Pm(x, ·) ≥
1lC(x)δν(·) for a set C ∈ B(X), some integer m and δ > 0 and that there is a drift to
C in the sense that, for some λ < 1, b, and a function V : X → [1,∞),

PV (x) ≤ λV (x) ∀x �∈ C and sup
x∈C

(V (x) + PV (x)) ≤ b.(B.1)
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Then, there exist constants K and ρ < 1, depending only upon m, δ, λ, b, such that,
for all x ∈ X and all g ∈ LV ,

‖P kg − π(g)‖V ≤ Kρn ‖g‖V .(B.2)

In addition, u =
∑

n≥0(P
kg − π(g)) is a solution of the Poisson equation u − Pu =

g − π(g).
We state [25, Theorem 2.3] in the strongly aperiodic case, i.e., where C is a (1, δ)

small set. Explicit but intricate expressions for K and ρ (in terms of the constants
m, δ, λ, b) are given in this reference. Partial extensions to the general aperiodic
case are considered in [25, Theorem 2.4], based on splitting and regeneration tech-
niques. Sharper and simpler bounds have been recently obtained in [15] using coupling
technique. This result extends to V -norm results obtained earlier for the total varia-
tion distance by [29] (see also [28]). These results have been derived in the strongly
aperiodic case; extensions to the general aperiodic case can be considered in the same
framework.

Proposition B.2. Assume (DRI1)–(DRI3). Then, there exist a constant C and
ρ < 1 such that, for all g ∈ LV q , with q = 1 or q = p and any k ≥ 0,

sup
θ∈K

‖P k
θ g − πθ(g)‖V q ≤ Cρk‖g‖V q ,(B.3)

sup
(θ,θ′)∈K×K

|θ − θ′|−β‖P k
θ g − P k

θ′g‖V q ≤ C‖g‖V q .(B.4)

Proof. Equation (B.3) follows from Proposition B.1. To prove (B.4) write, for all
(θ, θ′) ∈ Θ × Θ, all n ∈ N, and all g ∈ LV q ,

Pn
θ g(x) − Pn

θ′g(x) =

n−1∑
j=0

P j
θ (Pθ − Pθ′)Pn−j−1

θ′ g(x)

=

n−1∑
j=0

P j
θ (Pθ − Pθ′)(Pn−j−1

θ′ g(x) − πθ′(g)).

Equation (B.3) shows that there exists a constant C such that, for any l ≥ 0,

sup
θ∈K

‖P l
θg − πθ(g)‖V q ≤ C‖g‖V q ρl and sup

j≥0
sup
θ∈K

‖P j
θ V

q‖V q < ∞.

Under assumption (DRI3) we thus have, for any l ≥ 0,

‖(Pθ−P ′
θ)(P

l
θ′g(x)−πθ′(g))‖V q ≤ C|θ−θ′|β‖(P l

θ′g(x)−πθ′(g))‖V q ≤ C|θ−θ′|β‖g‖V qρl,

which concludes the proof.
Proof of Proposition 6.1. Under (DRI1), Pθ is positive recurrent and admits a

single stationary measure πθ, which verifies supθ∈K πθ(V
p) < ∞, which implies that

supθ∈K |h(θ)| < ∞.
Proof of (6.6). Let x0 ∈ X and k ∈ N. Write h(θ) − h(θ′) = A(θ, θ′) + B(θ, θ′) +

C(θ, θ′), where

A(θ, θ′) =
(
h(θ) − P k

θ Hθ(x0)
)

+
(
P k
θ′Hθ′(x0) − h(θ′)

)
,(B.5)

B(θ, θ′) = P k
θ Hθ(x0) − P k

θ′Hθ(x0),(B.6)

C(θ, θ′) = P k
θ′Hθ(x0) − P k

θ′Hθ′(x0).(B.7)
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Propositions B.1 and B.2 show that there exist constants C and ρ < 1 such that, for
all (θ, θ′) ∈ K ×K,

|A(θ, θ′)| ≤ C ρk sup
θ∈K

‖Hθ‖V V (x0),

|B(θ, θ′)| ≤ C sup
θ∈K

‖Hθ‖V |θ − θ′|β V (x0),

|C(θ, θ′)| ≤
∫

X

P k
θ′(x0, dy)|Hθ(y) −Hθ′(y)| ≤ C|θ − θ′|β

∫
X

P k
θ′(x0, dy)V (y)

≤ C|θ − θ′|β V (x0).

Hence, there exists a constant C such that, for all (θ, θ′) ∈ K ×K,

|h(θ) − h(θ′)| ≤ C V (x0) (ρk + |θ − θ′|β).(B.8)

The proof is concluded by setting k = [β log |θ − θ′|/ log(ρ)] (where [x] is the integer
part of x) if |θ − θ′| ≤ δ < 1 and k = 1 otherwise.

Proof of (5.4). Using (6.6) and Propositions B.1 and B.2, there exists a constant
C such that, for all (θ, θ′) ∈ K, we have

|(P k
θ Hθ(x) − h(θ)) − (P k

θ′(x)Hθ′(x) − h(θ′))|

≤ |P k
θ Hθ(x) − P k

θ Hθ′(x)| + |P k
θ Hθ′(x) − P k

θ′Hθ′(x)| + |h(θ) − h(θ′)|

≤ C|θ − θ′|βV (x).

On the other hand, by Proposition B.1, there exist constants ρ < 1 and C such that,
for all (θ, θ′) ∈ K ×K,

|(P k
θ Hθ(x) − h(θ)) − (P k

θ′Hθ′(x) − h(θ′))| ≤ CρkV (x).

Hence, for any s and N ≥ s, we have

|P s
θ gθ(x) − P s

θ′gθ′(x)| ≤
∞∑
k=s

|(P k
θ Hθ(x) − h(θ)) − (P k

θ′(x) − h(θ′))|

≤ CV (x)

{
N |θ − θ′|β +

ρN+s

1 − ρ

}
.

The proof follows by setting N = [β log |θ − θ′|/ log ρ] for |θ − θ′| ≤ δ < 1, θ �= θ′,
N = s otherwise, and using the fact that for any 0 < α < β, |θ − θ′|β log |θ − θ′|
= o(|θ − θ′|α).

Proof of (5.6). Let ρ = {ρk, k ≥ 0} be a nonincreasing sequence of positive
numbers and let K be a compact subset of Θ. (DRI1) and (6.2) shows that, for all
k ≥ 0, l ≥ 0, and all x ∈ X,

sup
θ∈K

E
ρ
x,θ

[
V p(Xk+l)1l{σ(K)≥k+l} | Fk

]
≤ κlV p(Xk)1l{σ(K)≥k}.(B.9)

We will show that there exist constants ε > 0, 0 < ρ < 1, and C such that, for all k,

E
ρ
x,θ

[
V p(Xk+m)1l{σ(K)∧νε≥k+m} | Fk

]
≤ ρV p(Xk)1l{σ(K)∧νε≥k} + C.(B.10)

For n ∈ N, write n = um + v, where v ∈ {0, . . . ,m− 1}. Equation (B.10) shows that

E
ρ
x,θ

[
V p(Xum+v)1l{σ(K)∧νε≥um+v}

]
≤ ρuE

ρ
x,θ[V

p(Xv)1l{σ(K)∧νε≥v}] +
C

1 − ρ
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and the proof follows from (B.9). It remains to prove (B.10). We repeatedly use the
following lemma adapted from [5, Lemma 3, p. 292].

Lemma B.3. Assume (DRI). Let ψ : Θ × X → R be a function verifying
supθ∈K ‖ψθ‖V p < ∞. Then, for any ε > 0 and for any l ≥ 1 there exists a con-
stant C such that, for all k ≥ 0,

E
ρ
x,θ

[
ψθk(Xk+l)1l{σ(K)∧νε≥k+l} | Fk

]
≤ E

ρ
x,θ

[
Pθkψθk(Xk+l−1)1l{σ(K)∧νε≥k+l−1} | Fk

]
+ Cκlεα sup

θ∈K
‖ψθ‖V p V p(Xk)1l{σ(K)∧νε≥k}.

Proof.

E
ρ
x,θ

[
ψ(θk, Xk+l)1l{σ(K)∧νε≥k+l} | Fk

]
= E

ρ
x,θ

[
Pθk+l−1

ψθk(Xk+l−1)1l{σ(K)∧νε≥k+l} | Fk

]
= E

ρ
x,θ

[
Pθkψθk(Xk+l−1)1l{σ(K)∧νε≥k+l} | Fk

]
+ Rl,

where

Rl = E
ρ
x,θ

[
(Pθk+l−1

− Pθk)ψθk(Xk+l−1)1l{σ(K)∧νε≥k+l} | Fk

]
.

Under (DRI3), there exists a constant C such that for all x ∈ X,

|(Pθk+l−1
− Pθk)ψθk(x)1l{σ(K)∧νε≥k+l} |≤ C sup

θ∈K
‖ψθ‖V p V p(x)(lε)α1l{σ(K)∧νε≥k+l}.

Finally, (DRI1) implies that

E
ρ
x,θ

[
V p(Xk+l−1)1l{σ(K)∧νε≥k+l} | Fk

]
≤ κlV p(Xk)1l{σ(K)∧νε≥k},

which implies

|Rl| ≤ Cκl (lε)α sup
θ∈K

‖ψθ‖V p V p(Xk)1l{σ(K)∧νε≥k}.

Using repeatedly the lemma above, we may write

E
ρ
x,θ

[
V p(Xk+m)1l{σ(K)∧νε≥k+m} | Fk

]
≤ E

ρ
x,θ

[
PθkV

p(Xk+m−1)1l{σ(K)∧νε≥k+m−1} | Fk

]
+CmεαV p(Xk)1l{σ(K)∧νε≥k}

≤ E
ρ
x,θ

[
P 2
θk
V p(Xk+m−2)1l{σ(K)∧νε≥k+m−2} | Fk

]
+ (Cm + Cm−1κ)εαV p(Xk)1l{σ(K)∧νε≥k}

...

≤ Pm
θk
V p(Xk)1l{σ(K)∧νε≥k} +

(
m−1∑
i=0

Cm−iκ
i

)
εαV p(Xk)1l{σ(K)∧νε≥k}.

The proof follows from (DRI) for ε sufficiently small.
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A STUDY ON THE SPECTRUM OF THE SAMPLED-DATA
TRANSFER OPERATOR WITH APPLICATION TO ROBUST

EXPONENTIAL STABILITY PROBLEMS∗

TOMOMICHI HAGIWARA†

Abstract. This paper begins by studying some spectral properties of the transfer operators
of sampled-data systems described by applying the lifting technique. Through a “nonasymptotic”
characterization of the transfer operator, its spectrum is determined in terms of finite-dimensional
eigenvalue problems. Then, it is shown that a close connection with such eigenvalue problems
and the exponential stability condition can be exploited to study the robust internal (exponential)
stability problem of sampled-data systems. Since the transfer operator is relevant to input-output
characteristics, the relationship between input-output stability and internal stability is also discussed
in the context of sampled-data systems.

Key words. sampled-data system, spectral analysis, robust stability, L2-stability, exponential
stability
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1. Introduction. The widespread use of digital controllers has stimulated the
study of sampled-data systems with their intersample behavior taken into account,
and a lot of important results have been obtained since the late 1980s. Among them
are the studies on the H∞ control problem [1, 2, 3, 4] and robust stability problem
[5, 6, 7, 8, 9] of sampled-data systems, as well as the continuous-time lifting technique
[1, 2, 10] and the frequency response theory [11, 12]. In the studies of the H∞ control
and robust stability problems, L2-stability [13], L2-induced norm [14], and H∞ norm
[15] of sampled-data systems play important roles, and these notions can be dealt with
also in the frequency domain with the transfer operator [1, 2, 10, 11, 15] of sampled-
data systems. Also, another frequency-domain study has been conducted in [16, 17]
by introducing the notion of positive-real sampled-data systems, and some phase
properties of sampled-data systems were discussed. This study has been extended
in [18, 19], which lead to the positive-realness approach (or the passivity approach)
to the robust stability analysis of sampled-data systems. Transfer operators play an
important role also in such an approach.

Thus, it is important to study the properties of the transfer operators so that
the scope of the frequency-domain studies of sampled-data systems can be extended
further. In this paper, we focus on the spectrum of transfer operators, and clarify some
useful spectral properties. More specifically, we show that the spectrum of the transfer
operator can be characterized by means of finite-dimensional eigenvalue problems.
Then, it is demonstrated that such spectral analysis is indeed useful in the study
of sampled-data systems by applying it to the robust internal (exponential) stability
analysis of sampled-data systems. Furthermore, since the transfer operator is relevant

∗Received by the editors October 26, 2003; accepted for publication (in revised form) January 15,
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to the input-output characteristics, we apply the results of the spectral analysis to
relate (robust) L2-stability and (robust) internal stability in the context of sampled-
data systems. The consequent result is not surprising, but to the best knowledge of the
author, studies relating robust L2-stability and robust internal stability in the context
of sampled-data systems are rare, with the study by the author and a colleague in [9]
being an exception. Nevertheless, that study in [9] is limited to the case of additive
and multiplicative perturbations, unfortunately, and it is quite hard to extend it to the
general case. The present paper shows that our spectral analysis provides a simple
and rigorous proof to relate these two stability notions. Here, it would be worth
mentioning that a similar problem of relating L2-stability and exponential stability
has been studied, e.g., in [20, 21] for a class of (ordinary type of) infinite-dimensional
systems, but those studies do not cover the present setting nor do our developments
here follow similar techniques to those employed therein.

The contents of this paper are as follows. In section 2, we review the notion of the
transfer operator Ĝ(z) of sampled-data systems with a slight but crucial extension
(i.e., its nonasymptotic characterization). This characterization allows us to introduce
some appropriate nonzero initial states to the study of the mapping defined by the
transfer operator, and makes it fairly easy to carry out the following discussions (e.g.,
the derivations of Theorem 5 and Proposition 7). In section 3, we study the spectral
properties of the transfer operators, and show that they are nearly as amenable as
those of compact normal operators, even though the transfer operators are generally
noncompact and nonnormal. Based on these properties, we further show that the
spectrum of the transfer operator Ĝ(z) can be characterized with finite-dimensional

eigenvalue problems for each z such that Ĝ(z) is well-defined. Section 4 applies the
spectral study in section 3 to the study of robust internal (exponential) stability of
sampled-data systems against perturbations. More specifically, subsection 4.1 stud-
ies the case where the perturbations are identities up to a real scalar constant, and
the basic result for this case is applied in subsection 4.2 to the study of robust in-
ternal stability of sampled-data systems with general perturbations. In particular,
we give a rigorous proof to the equivalence of robust L2-stability and robust inter-
nal stability when the nominal sampled-data system and perturbations are internally
stable; roughly speaking, we show that whatever robust internal stability/robust per-
formance problems we may consider in the sampled-data setting, the conditions in
the L2-stability context are enough to guarantee the robust stability/performance in
the internal stability context, provided that the perturbations belong to the class
of internally stable finite-dimensional LTI (linear time-invariant) or h-periodic sys-
tems (where h is the sampling period). Section 5 concludes the paper with some
remarks.

We use the following notation in this paper: λ(·) denotes the set of the eigenvalues
of a finite-dimensional matrix, while σ(·) denotes the spectrum of an operator. σle(·),
σre(·), and σe(·) denote the left essential, right essential, and essential spectrum,
respectively, [22]. Furthermore, whenever we refer to internal stability in what follows,
it means exponential stability.

2. Transfer operators of sampled-data systems. In this paper, we deal with
the sampled-data system Σ0 shown in Figure 1, where P denotes the continuous-
time generalized plant, Ψ the discrete-time controller, H the zero-order hold, and
S the ideal sampler. Solid lines represent continuous-time (vector) signals, while
dashed lines discrete-time (vector) signals. The underlying sampling period will be
denoted by h. We assume that the state-space representations of P and Ψ are given,
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Fig. 1. Open-loop sampled-data system Σ0.
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Fig. 2. Closed-loop sampled-data system ΣΔ.

respectively, by

dx

dt
= Ax + B1w + B2u

z = C1x + D11w + D12u(1)

y = C2x

and

ξk+1 = AΨξk + BΨyk

uk = CΨξk + DΨyk,(2)

where yk = y(kh) and u(t) = uk (kh ≤ t < (k + 1)h). In the following arguments,
we assume that Σ0 is internally (exponentially) stable [13, 23]. For lack of better
terminologies, we call Σ0 an open-loop sampled-data system, while if w is given as
w = Δz with some causal mapping Δ, then we call the resulting system a closed-loop
sampled-data system, which we denote by ΣΔ. Also, the corresponding input-output
mapping from [pT , qT ]T to [fT , zT ]T in Figure 2 will be denoted by GΔ in the
following, when it is well-defined. If GΔ maps L2 into L2, and if its L2-induced norm
is bounded, then GΔ is said to be L2-stable. In subsection 2.1, we review the lifted
description and transfer operator [1, 2, 10, 11, 15] of the open-loop sampled-data
system Σ0. Then, in subsection 2.2, a slightly different interpretation of the transfer
operators of sampled-data systems is given.
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2.1. Lifted description and transfer operators of sampled-data systems.
With a slight abuse of notation, the Hilbert space of square integrable vector functions
over the time interval [0, h) with the standard inner product will be denoted by K,
whatever the dimension of the vector may be. The Euclidean space with dimension
dim(x) will be denoted by Fx. We also define Fu and Fξ in a similar way, and we
further define F := Fx ⊕ Fξ. Now, introduce the following matrices Ad, Bd2, and
Cd2, and the operators B1, C1, D11, and D12:

Ad := exp(Ah), Bd2 :=

∫ h

0

exp(Aσ)B2dσ, Cd2 := C2(3)

B1 : K � w �→
∫ h

0

exp (A(h− σ))B1w(σ)dσ ∈ Fx(4)

C1 : Fx � x �→ z ∈ K, z(θ) = C1 exp (Aθ)x(5)

D11 : K � w �→ z ∈ K, z(θ) =

∫ θ

0

C1 exp (A(θ − σ))B1w(σ)dσ + D11w(θ)(6)

D12 : Fu � u �→ z ∈ K, z(θ) =

∫ θ

0

C1 exp (A(θ − σ))B2dσ u + D12u.(7)

Then, the lifted description of the sampled-data system Σ0 is given by

χk+1 = Aχk + Bŵk, ẑk = Cχk + Dŵk,(8)

where χk := [x(kh)T , ξTk ]T , and the associated transfer operator Ĝ(z) is defined by

Ĝ(z) := C(zI −A)−1B + D,(9)

where

A :=

[
Ad + Bd2DΨCd2 Bd2CΨ

BΨCd2 AΨ

]
: F → F , B :=

[
B1

0

]
: K → F

C :=
[
C1 D12

] [ I 0
DΨCd2 CΨ

]
: F → K, D := D11 : K → K.(10)

In (8) above, ŵ and ẑ denote, respectively, the lifted representations of w and z (see
the subsequent subsection for details). Note that A is a finite-dimensional matrix,

and that Ĝ(z) takes a value on the class of linear bounded operators on K for each z

unless z is an eigenvalue of A. The importance of Ĝ(z) lies in that it captures all the
intersample behavior (i.e., the aliasing phenomena) in Σ0 [1, 2, 10, 15, 11].

In the following, we assume dim(w) = dim(z) so that D11 is square, unless other-
wise stated explicitly. Also, with a slight abuse of notation1, the operator of multipli-
cation by the matrix D11 that maps w(·) ∈ K to z(·) = D11w(·) ∈ K is also denoted
by D11. Then, the operator D11 given in (6), known as the compression operator, can
be rewritten as D11 = D110+D11 with an obvious definition of D110, and accordingly,
D can also be rewritten as D = D0 +D11. Then, D0 is compact, so that D (and thus

Ĝ(z)) is compact if and only if D11 = 0 (see, e.g., [11]).

1It will be clear from the context whether D11 refers to the operator of multiplication or the
underlying matrix. However, it would be worthwhile mentioning that whenever we refer to σle(D11),
σre(D11), and σe(D11), we are talking about D11 viewed as an operator, because otherwise these
spectra are always empty.
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2.2. Nonasymptotic input-output relations about EMP-signals. In this
subsection, we aim at giving a “nonasymptotic” characterization of the transfer op-
erator Ĝ(z). That interpretation is not surprising and only a slight modification of
the well known “asymptotic” interpretation of the transfer operator, and is largely a
review of the preliminary part of the arguments in [24], but does play an important
role in the subsequent arguments. As such, we review somewhat detailed descriptions
for this interpretation. To this end, let us begin by reviewing the lifting technique
used in the derivation of the lifted description of sampled-data systems. Given a (vec-
tor) signal w over the nonnegative time interval [0,∞), the lifting operation of w is
defined as

w �→ {ŵk}∞k=0,(11)

where ŵk is given by

ŵk(θ) = w(kh + θ) (0 ≤ θ < h, k = 0, 1, 2, · · ·).(12)

The signal w is called an EMP-signal of characteristic multiplier ζ [25] if its lifted
representation satisfies

ŵk(θ) = ŵ0(θ)ζ
k (0 ≤ θ < h)(13)

for some ŵ0 ∈ K and a complex number ζ, where EMP stands for “exponentially
modulated periodic.” In this case, let us denote the “initial function” ŵ0 of the EMP-
signal w by ŵ0 = INI(w). Conversely, let us denote by w = EMP(ŵ0) the operation
of constructing an EMP-signal w from the initial function ŵ0 according to (13) and
then (12). Note in these notations that we suppress the underlying characteristic
multiplier ζ for simplicity, and that INI(w)(θ) is nothing but w(θ) for 0 ≤ θ < h.

It is a fact [11] that the output z of Σ0 to the EMP-signal w = EMP(ŵ0) with
characteristic multiplier ζ 	∈ λ(A) tends to some EMP-signal z� of the same char-
acteristic multiplier ζ and that the initial function ẑ0 = INI(z�) of the asymptotic
response z� is given by

ẑ0 = Ĝ(ζ)ŵ0.(14)

Note carefully that ẑ0(θ) (0 ≤ θ < h) in (14) is generally different from the actual
response z(t) (0 ≤ t < h) of Σ0 for the zero initial state (given by z = Dŵ0), because
the actual response z is not exactly an EMP-signal over the entire nonnegative time
interval but it just tends to the EMP signal z� as t goes to infinity.

However, given any ŵ0 ∈ K, let us take ẑ0 given by (14) for ζ 	∈ λ(A), and let
us construct the EMP-signals w = EMP(ŵ0) and z = EMP(ẑ0) with characteristic
multiplier ζ. Then, it is easy to show that there exists an appropriate initial state
χ0 of Σ0 (to be more precise, χ0 is given by (ζI − A)−1Bŵ0) such that this EMP-
signal input w together with the initial state χ0 yields exactly the above-constructed
EMP-signal output z over the entire nonnegative time interval [0,∞). Conversely, it
is also easy to show that if under some initial state χ0, the output z of Σ0 to some
EMP-signal input w with characteristic multiplier ζ is exactly an EMP-signal with
the same characteristic multiplier over the whole nonnegative time interval [0,∞),
then ŵ0 = INI(w) and ẑ0 = INI(z) are related by (14).

Now, let us introduce the following definition.
Definition 1. The EMP-signals w and z with the same characteristic multiplier

are said to be consistent with the sampled-data system Σ0 if there exists an initial state
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χ0 of Σ0 such that the input w yields exactly the output z over the entire nonnegative
time interval [0,∞).

Then, the above arguments can be summarized as follows.
Lemma 2. Suppose that ζ 	∈ λ(A). The relation (14) holds if and only if the

EMP-signals w = EMP(ŵ0) and z = EMP(ẑ0) with characteristic multiplier ζ are
consistent with the sampled-data system Σ0.

3. Characterization of the spectrum of the transfer operator. The pur-
pose of this section is to give a method for determining the spectrum of Ĝ(ζ) for
ζ 	∈ λ(A). To give such a method, it is helpful to begin by studying some spectral

properties of Ĝ(ζ). This is done in subsection 3.1, while in subsection 3.2 we give a

method to determine σ(Ĝ(ζ)).

3.1. Preliminary considerations on the spectrum. Let λ(D11) denote the
set of the eigenvalues of the matrix D11. Then, it is easy to show that

σle(Ĝ(ζ)) = σre(Ĝ(ζ)) = σe(Ĝ(ζ)) = σle(D11)

= σre(D11) = σe(D11) = σ(D11) = λ(D11)(15)

(see, e.g., [22], in particular Proposition XI.4.2, and [26], in particular Corollary
XXIII.2.5). Since the essential spectrum is a subset of the spectrum, it follows that

λ(D11) is a subset of σ(Ĝ(ζ)) for any ζ 	∈ λ(A). Hence, to find all the points in the

spectrum of Ĝ(ζ), it is enough for us to construct a method to check if γ 	∈ λ(D11)

is a point in the spectrum of Ĝ(ζ). Thus, we assume γ 	∈ λ(D11) without loss of
generality.

Since D = D0 + D11, we have

γI − Ĝ(ζ) = (γI −D11)(I − Ĝγ(ζ)),(16)

where

Ĝγ(z) := (γI −D11)
−1

(
C(zI −A)−1B + D0

)
.(17)

Hence, by (16), it is obvious that γI − Ĝ(ζ) is invertible if and only if I − Ĝγ(ζ)

is. Since Ĝγ(ζ) is a compact operator because D0 is, it follows that γ 	∈ λ(D11) is a

point in the spectrum of Ĝ(ζ) if and only if Ĝγ(ζ) has an eigenvalue at 1. This is
an important step for the following discussion, while the following result will also be
useful.

Lemma 3. If γ1 ∈ ∂σ(Ĝ(ζ)) and γ1 	∈ λ(D11), then γ1 is an isolated point of

σ(Ĝ(ζ)).
Proof. By (15), the assertion follows immediately from Theorem XI.6.8 of

[22].
Now, we are in a position to show the following result.
Theorem 4. σ(Ĝ(ζ)) \σe(Ĝ(ζ)) coincides with σp(Ĝ(ζ)) \σe(Ĝ(ζ)), where σp(·)

denotes the point spectrum (i.e., the set of the eigenvalues of an operator). Further-

more, every γ ∈ σp(Ĝ(ζ)) \ σe(Ĝ(ζ)) is an isolated point of σ(Ĝ(ζ)), and has finite
multiplicity.

Remark 3.1. The above assertion is well known for a compact operator and also
for a normal operator ([22, Proposition XI.4.6]), but Ĝ(ζ) is generally noncompact
and nonnormal. It is not hard to see that the assertion in particular implies that the
accumulation points of σ(Ĝ(ζ)) can exist only at σe(Ĝ(ζ)) = λ(D11), which consists
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of finitely many points, and that σ(Ĝ(ζ)) \ σe(Ĝ(ζ)) (and thus σ(Ĝ(ζ)), too) is a
countable set. Hence, this proposition suggests that the properties of the spectrum
of Ĝ(ζ) are almost as amenable as that of a compact normal operator.

Proof of Theorem 4. Since σe(Ĝ(ζ)) = λ(D11), for the first assertion it is enough

to show that γ 	∈ λ(D11) belongs to σ(Ĝ(ζ)) only if it is an eigenvalue of Ĝ(ζ). To

show this, suppose that γ 	∈ λ(D11) is a point in σ(Ĝ(ζ)). Then, by the arguments

preceding Lemma 3, Ĝγ(ζ) has an eigenvalue at 1. This implies that there exists

some nonzero ŵ ∈ K such that (I − Ĝγ(ζ))ŵ = 0. Hence, it follows from (16) that

(γI − Ĝ(ζ))ŵ = 0, which implies that γ is an eigenvalue of Ĝ(ζ). This completes the
proof for the first assertion.

As for the second assertion, it is a direct consequence from [22, Corollary XI.2.4]

that γ ∈ σp(Ĝ(ζ)) \ σe(Ĝ(ζ)) (which we abbreviate as σp \ σe in what follows) has

finite multiplicity, since for γ 	∈ λ(D11) = σe(Ĝ(ζ)), γI−Ĝ(ζ) is Fredholm [22]. Thus,

it remains only to show that every γ ∈ σp \ σe is an isolated point of σ(Ĝ(ζ)). Let

γ ∈ σp \ σe. If γ ∈ ∂σ(Ĝ(ζ)), then the assertion follows immediately from Lemma 3.

If γ 	∈ ∂σ(Ĝ(ζ)), on the other hand, then γ ∈ σ(Ĝ(ζ)) is an interior point of σ(Ĝ(ζ)),

and thus there exists some ε-neighborhood of γ contained in σ(Ĝ(ζ)). This, together

with the compactness of σ(Ĝ(ζ)) means that we can take some number γ1 such that

γ1 ∈ ∂σ(Ĝ(ζ)) and at the same time γ1 is not an isolated point of σ(Ĝ(ζ)), where
such γ1 can always be taken so that γ1 	∈ λ(D11) since λ(D11) is only a finite set.

This contradicts Lemma 3, and hence γ 	∈ ∂σ(Ĝ(ζ)) cannot occur. This completes
the proof.

3.2. Reduction to a finite-dimensional eigenvalue problem. Theorem 4
tells us that in essence we have only to find the eigenvalues of the operator Ĝ(ζ) to
determine its spectrum. The purpose of this subsection is to give a result with which
we can characterize the eigenvalues of Ĝ(ζ) through a finite-dimensional eigenvalue
problem, and this is facilitated by the “nonasymptotic” characterization of the transfer
operator.

To this end, let us consider the closed-loop sampled-data system Σ1/γ (i.e., ΣΔ

with Δ set to 1
γ I in Figure 2), where γ is a nonzero complex number. Let ζ 	∈ λ(A),

and suppose that the responses of w and z in this closed-loop sampled-data system
under the input p = 0, q = 0 and some appropriate initial state χ0 = [x(0)T , ξT0 ]T

are exactly EMP-signals of characteristic multiplier ζ over the entire nonnegative
time interval. Then, it follows from Lemma 2 that (14) holds for ŵ0 = INI(w) and
ẑ0 = INI(z). On the other hand, from Figure 2 (recall that Δ = 1

γ I), it is obvious

that ŵ0 = 1
γ ẑ0. Hence we are led to

(γI − Ĝ(ζ))ŵ0 = 0.(18)

Thus, we can conclude that γ is an eigenvalue of Ĝ(ζ) if ŵ0 	= 0. This suggests that we
can determine the eigenvalues of the transfer operator of the open-loop sampled-data
system Σ0 by considering the responses of the closed-loop sampled-data system Σ1/γ .

Now, when q = 0, the continuous-time part of Σ1/γ is described by

dx

dt
= Aγx + B1γp + B2γu, z = C1γx + D11γp + D12γu, y = C2x,(19)
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where

Aγ :=A+B1(γI−D11)
−1C1, B1γ := γB1(γI−D11)

−1, B2γ :=B2+B1(γI−D11)
−1D12,

C1γ := γ(γI−D11)
−1C1, D11γ := γ(γI−D11)

−1D11, D12γ := γ(γI−D11)
−1D12.

(20)

Hence, by also letting p = 0, the lifted description of this closed-loop “autonomous”
sampled-data system Σ1/γ (i.e., without an external input) is given by

χk+1 = Aγχk, ẑk = Cγχk,(21)

where Aγ and Cγ are, respectively, given by A and C in (10) with A, B2, C1, and D12

replaced by Aγ , B2γ , C1γ , and D12γ in (20), respectively. Note that Aγ is nothing
but the state transition matrix of the “discrete-time equivalent” of Σ1/γ .

We are in a position to state the following theorem.
Theorem 5. Given a complex number γ 	∈ λ(D11) and a complex number ζ 	∈

λ(A), the operator Ĝ(ζ) has an eigenvalue at γ if and only if ζI−Aγ is not invertible.
Proof. We first establish the assertion assuming γ 	= 0. Let us first prove the

sufficiency. Suppose that ζI −Aγ is not invertible.
Then, by the first equation in (21), the system Σ1/γ has a nontrivial solution of

the form

χk = χ0ζ
k(22)

for some nonzero initial state χ0. Hence, by the second equation in (21), we can see
that z is an EMP-signal with characteristic multiplier ζ. Since w = 1

γ z, it follows that

w is also an EMP-signal with the same characteristic multiplier (carefully note that
w and z could be both zero at this stage of our discussion). Thus, by the arguments
preceding this theorem, we are led to (18). Therefore, it remains only to show that
ŵ0 	= 0. To show this, suppose the contrary. Then, w = 0 so that Σ1/γ is essentially
nothing but Σ0 with w = 0. Then, the existence of the nontrivial solution (22)
contradicts the assumption that ζ 	∈ λ(A).

To prove the necessity, suppose that Ĝ(ζ)ŵ0 = γŵ0 for some ŵ0 	= 0. Then,
letting ẑ0 := γŵ0, Lemma 2 implies that the EMP-signals w = EMP(ŵ0) and z =
EMP(ẑ0) = γw with characteristic multiplier ζ are consistent with the open-loop
sampled-data system Σ0, so that these two EMP-signals can be represented as the
responses of w and z in the closed-loop autonomous (i.e., p = 0, q = 0) system Σ1/γ

for some appropriate initial state χ0. Furthermore, since w 	= 0 is an EMP-signal, it
follows readily that the discrete-time signal ŵk(θ) is represented as ŵ0(θ)ζ

k, which
is not identically zero as a sequence in k at least for some θ ∈ [0, h) (note that
the “sampling” of ŵk(·) at θ is well defined since the signal w is well behaved as a
response of the autonomous sampled-data system Σ1/γ). Thus, from a basic property
of discrete-time systems, it must be true that ζ is an eigenvalue of the transition
matrix of the discrete-time equivalent of Σ1/γ viewed at every sampling period h,
which is given by Aγ . This completes the proof for the case of γ 	= 0.

Finally, let us consider the case of γ = 0 (note that D11 is invertible in this case by

the assumption γ 	∈ λ(D11)). In this case, it is enough to consider Ĝ(ζ) + αI (α 	= 0)
and study the condition for it to have an eigenvalue at α. Noting that considering
Ĝ(ζ) + αI instead of Ĝ(ζ) is nothing but replacing D11 with D11 + αI (for which
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α 	∈ λ(D11 + αI)), and observing the form of Aγ and B2γ given in (20), it is easy to
see that the statement is valid even when γ = 0.

Summarizing the arguments in this section, it follows that Theorems 4 and 5,
together with (15), give a method to determine the spectrum of Ĝ(ζ) for each ζ 	∈
λ(A). That is, every point in λ(D11) belongs to σ(Ĝ(ζ)), and the remaining points
in the spectrum can be found by searching for γ such that ζI −Aγ is not invertible2.

Since the spectral radius of Ĝ(ζ) is no larger than ‖Ĝ(ζ)‖, it is enough to consider

the disk {γ : |γ| ≤ ‖Ĝ(ζ)‖} in such a search. An easily computable upper bound

for ‖Ĝ(ζ)‖ can be obtained by an obvious extension of Theorem 1 of [27] (i.e., this
theorem holds even if |ζ| 	= 1) when D11 = 0; if D11 	= 0, a simple upper bound is
obtained from a triangle inequality in which the upper bound is increased by ‖D11‖.
These considerations give a basis for the numerical computation of σ(Ĝ(ζ)), but we
do not pursue numerical studies in this paper. Instead, we advance our study to
demonstrate the importance of our spectral analysis for theoretical studies such as
the stability and robust stability problems of sampled-data systems.

Remark 3.2. We point out that most of the discussions in this section carries
over, without essential difficulties, to the case where the generalized plant P is a
finite-dimensional linear continuous-time h-periodic (FDLCP) system and Δ is an
internally stable FDLCP system, where h is the sampling period; the only nontrivial
point will be the treatment of the essential spectrum. However, it is not hard to see
that (15) still holds with λ(D11) replaced by

λ[0,h](D11) := {λ | the set of t ∈ [0, h] such that |det(λI −D11(t))| < γ has

nonzero measure whenever γ > 0} ,(23)

which follows from section XXIII.2 of [26]. Thus, the arguments in this section still
apply mutatis mutandis. The only point that requires some more careful arguments
will be the isolatedness assertion in Theorem 4, since σe(Ĝ(ζ)) = λ[0,h](D11) can now
form a closed curve; thus the arguments in the proof of Theorem 4 are not enough
to establish the isolatedness of some eigenvalues within the essential spectrum radius.
Fortunately, however, the isolatedness property is not relevant for Theorem 5, which
will be used as a major tool in the following section which demonstrates the usefulness
of the spectral analysis in this section.

4. Application to robust internal stability problems. In [16, 17], the
positive-realness notion was introduced to sampled-data systems and some phase
properties of sampled-data systems were also addressed. A more advanced study on
the positive-realness of sampled-data systems was pursued, and the positive-realness
gap index ρmin was introduced in [18, 19]. It was also shown in [19] that this index
plays an important role in the positive-realness approach (or the passivity approach)
to the stability analysis of sampled-data systems. In this section, we first review the
above-mentioned study in [19] briefly, and then show that our study in the preceding
sections has an important application to such or more general stability and robust
stability analysis.

In subsection 4.1, we deal with the gain margin analysis problem of sampled-
data systems and derive some useful results by applying the spectral analysis in the

2It would be possible to determine the multiplicity of γ as an eigenvalue of Ĝ(ζ) by considering
the geometric multiplicity of ζ as an eigenvalue of ζI −Aγ , if we introduce some sort of controllabil-
ity/observability conditions. However, we do not pursue this direction in this paper.
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preceding section (in particular, Theorem 5). Then, such results will be applied in
subsection 4.2 to give a result about robust stability of sampled-data systems.

4.1. Gain margin analysis for internal stability in the sampled-data
context. The transfer operator Ĝ(z) of the internally stable sampled-data system
Σ0 is said to be strongly positive-real [19] if there exists a positive number ε such that

Ĝ(z) + Ĝ(z)∗ ≥ εI (∀|z| ≥ 1).(24)

The transfer operator Ĝ(z) is not strongly positive-real, in general, but we can consider
the following number:

ρmin := inf
ρ>0

{
Ĝ(z) + ρI is strongly positive-real

}
≥ 0.(25)

This number is called the positive-realness gap index for Σ0, and plays an important
role in the stability analysis as shown in [19]; one important result shown about this
index is that for k > 0, the (negative feedback) closed-loop sampled-data system Σ−k

(i.e., ΣΔ with Δ set to −kI), or to be more precise, the input-output mapping G−k

is L2-stable if 0 < k < kPR
max, where

kPR
max := 1/ρmin.(26)

By a suitable construction of the generalized plant P , this “gain margin analysis
problem” in the context of sampled-data control can represent a sort of stability-
radius analysis problem with respect to the uncertainties in the physical parameters
of the plant, and as such, to compute kPR

max is quite important. In [19], an efficient
finite-dimensional state-space method for the computation of ρmin and thus kPR

max

was given. Furthermore, an iterative procedure was given to compute the number
kmax(≥ kPR

max), which is defined as the largest k̄ such that Σ−k (k > 0) is internally
stable for all k < k̄. However, in the derivation of that procedure, the following
result was used without proof ; we now give its proof by applying the spectral analysis
results in the preceding section so that the procedure for computing kmax given in
[19] is validated rigorously.

Proposition 6. If Σ0 is internally stable, then Σ−k is internally stable for all
k ∈ (0, kPR

max).
Proof. Now, suppose the contrary. Then, by the definition of internal stability

[13, 23], there exists some k� ∈ (0, kPR
max) such that the state transition matrix of Σ−k�

has an eigenvalue on or outside the unit circle, say at ζ�. Therefore, it follows from
the definition of Aγ that if we put −ρ� := −1/k�, then ζ�I − A−ρ� is not invertible
where |ζ�| ≥ 1. Here, note that

ρ� > ρmin ≥ 0(27)

since 0 < k� < kPR
max by the assumption. Thus, by the properties of strongly positive-

real transfer operators [19], we have D11 +DT
11 + 2ρ�I > 0. This in particular implies

that −ρ� 	∈ λ(D11). Summarizing the above arguments and applying Theorem 5, we

are led to the conclusion that Ĝ(ζ�) has an eigenvalue at −ρ�. This in particular

implies that Ĝ(ζ�) + Ĝ(ζ�)∗ + 2ρ�I 	> 0. Since |ζ�| ≥ 1, it follows that Ĝ(z) + ρ�I
is not a strongly positive-real transfer operator, and hence ρ� ≤ ρmin. This clearly
contradicts (27). Hence, we have established that Σ−k is internally stable for all
k ∈ (0, kPR

max).
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It would be worthwhile mentioning that the above proposition can be extended
to Σk (k > 0) by considering −Ĝ(z) instead and redefining ρmin and thus kPR

max

accordingly.
Next, we claim Proposition 7 given below, which plays a crucial role in the robust

stability analysis in the following subsection.
Proposition 7. Suppose that Σ0 is internally stable. Then, for each fixed k, Σk

is internally stable if and only if Gk is L2-stable.
Remark 4.1. This proposition does not say that an (open-loop) sampled-data

system is internally stable if and only if it is L2-stable, an assertion (the sufficiency
part) that is obviously false; note that this proposition deals only with such (closed-
loop) sampled-data systems that can arise from an internally stable sampled-data
system. Note also that the condition 1/k 	∈ λ(D11), which is the well-posedness
condition of Σk and at the same time the well-definedness condition for Gk, is implicit
in the proposition. To be more precise, if we say that Σk is internally stable or L2-
stable, it in particular means that 1/k 	∈ λ(D11). Further, note that this proposition
shows in particular that kmax,L2

= kmax, where kmax,L2
denotes the largest number k̄

such that Gk is L2-stable whenever 0 < k < k̄, while kmax has been defined similarly
but in terms of internal stability. It should be stressed, however, that the assertion
of the above proposition holds even if k > kmax, as long as Σk or Gk is stable for
such k.

Proof of Proposition 7. Let us begin with the necessity part. It is not hard
to see by the inspection of the procedure for computing kmax given in [19] that the
set of k for which Σk is internally stable is a subset of those k for which Σk is L2-
stable3. Hence, the necessity assertion follows immediately. (Instead of this proof

that is based on the transfer operator Ĝ(z) and the spectral analysis results in the
preceding section as a whole, an alternative proof is also possible in which we use
the well-known fact that an internally stable sampled-data system is L2-stable under
mild conditions [13, 23].)

To show the sufficiency part, we assume that Σk is not internally stable for some
k (i.e., ζI − Aγ with γ := 1/k is not invertible for some |ζ| ≥ 1), and show that Gk

is not L2-stable. Here, it is enough to assume 1/k 	∈ λ(D11), because otherwise Gk is
not L2-stable as stated in Remark 4.1.

Since ζ 	∈ λ(A) by the internal stability assumption of Σ0, it follows from Theo-

rem 5 that Ĝ(ζ)ŵ0 = γŵ0 for some ŵ0 	= 0. Hence by Lemma 2, there exists an ap-
propriate initial state χ0 = χ� of Σ0 such that w = EMP(ŵ0) and z = γEMP(ŵ0) are
consistent with Σ0 (the corresponding characteristic multiplier for the EMP signals is
ζ throughout the proof). Now, let us denote by z� the response of z in Σ0 when its ini-
tial state is χ0 = χ� and its input is w = 0. Note that z� ∈ L2 by the internal stability
of Σ0, which is well known, e.g., in the context of sampled-data H2 problem [23]. Also,
by linearity, it follows immediately that Σ0 yields the response z = γEMP(ŵ0) − z�

when the initial state is χ0 = 0 and the input is w = EMP(ŵ0). Hence, it is easy to
see that ΣΔ with Δ = (1/γ)I yields f = w = EMP(ŵ0), z = γEMP(ŵ0) − z�, and
e = γEMP(ŵ0) when the initial state is χ0 = 0 and the inputs are p = 0 ∈ L2 and

3In a sense, a direct application of the arguments in [19] is limited only to k ∈ [0, kmax]. However,
if Σk is internally stable for some k = k� �∈ [0, kmax], then we can readily introduce a modified
generalized plant Pk� such that Σk can be viewed as Σ�

k′ (and thus Σk� can be viewed as the open-
loop sampled-data system Σ�

0 ), where k′ = k− k� and Σ�
k denotes Σk with P replaced by Pk� (this

idea of introducing a modified generalized plant is quite similar to that employed in the procedure
for computing kmax; see [19] for details). Hence, we can repeat the same arguments on Σ�

k , which
implies that the assertion can be established even for those k around k� �∈ [0, kmax].
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q = z� ∈ L2. Noting that none of these f , w, z, and e belong to L2 since |ζ| ≥ 1, we
can conclude that Gk is not L2-stable.

Remark 4.2. Even though it can be seen that Proposition 6 is implied by Proposi-
tion 7, it should be noted that the independent proof of Proposition 6 is indispensable.
This is because in the proof of Proposition 7, we have referred to the procedure for
computing kmax stated in [19], which in turn has been validated rigorously by the
very proof of Proposition 6.

4.2. Robust internal stability of sampled-data systems. Now, we are in
a position to demonstrate the significance of Proposition 7, not merely in justifying
the arguments of [19] about the computation of kmax through Proposition 6. More
specifically, we give the following theorem about robust stability of the sampled-data
system ΣΔ, which clarifies the relationship between robust L2-stability and robust
internal (exponential) stability.

Theorem 8. Consider the closed-loop sampled-data system ΣΔ shown in Fig-
ure 2, where we assume that D11 is possibly nonsquare and Δ ∈ Δ for some set Δ of
(possibly nonsquare) finite-dimensional linear time-invariant (FDLTI) internally sta-
ble systems, and suppose that Σ0 is internally stable. Then, ΣΔ is internally stable
for all Δ ∈ Δ if and only if GΔ is L2-stable for all Δ ∈ Δ.

Proof. The assertion is almost just a direct consequence from Proposition 7, but
we need some careful arguments.

Let us begin with the sufficiency proof. Consider the (series-connected) open-loop
sampled-data system Σ0Δ, and observe that it can be represented as the open-loop
sampled-data system shown in Figure 1 with the generalized plant P replaced by
PΔ := P diag[Δ, I] (for which the “D11 matrix” is square and thus the preceding
arguments apply). Also, by the internal stability assumptions, Σ0Δ is internally
stable. Thus, this reformation corresponds to replacing Σ0 and Δ by Σ0Δ and 1,
respectively, if we interpret it in the closed-loop sampled-data system in Figure 2; let
us denote by G′

Δ the corresponding input-output mapping of thus reformed closed-
loop sampled-data system. Since GΔ is L2-stable for each Δ ∈ Δ, it is straightforward
to show that G′

Δ is also L2-stable for each Δ ∈ Δ. Thus, applying Proposition 7 with
k = 1 leads to the assertion.

To show the necessity, we also consider the closed-loop sampled-data system ΣΔ

with Σ0 and Δ replaced by ΔΣ0 and 1, respectively, and denote by G′′
Δ the corre-

sponding input-output mapping. Applying Proposition 7 with k = 1, it follows readily
that both G′

Δ and G′′
Δ are L2-stable. In view of the linearity of Σ0 and Δ (and thus

the mapping GΔ), it is not hard to show that L2-stability of G′
Δ and G′′

Δ implies that
of GΔ.

This completes the proof.
Remark 4.3. If we recall Remark 3.2, it is not hard to see that Proposition 7 and

Theorem 8 still hold even when P (and/or Δ) is a finite-dimensional linear continuous-
time h-periodic system. Also, concerning Figure 2, a typical interpretation is that P22

(the subsystem from u to y) denotes the nominal plant, while the perturbed (actual)
plant is represented by the upper LFT (linear fractional transformation) Fu(P,Δ) =:
P22Δ. Since uncontrollable/unobservable modes do not affect internal (exponential)
stability if and only if they are stable, this theorem in particular says that

(i) any robust stability condition such as the small-gain condition in particular
guarantees that no unstable pole/zero cancellations can occur within P22Δ,
irrespectively of Δ belonging to the perturbation set Δ that the condition
takes care of,
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and it is obvious that

(ii) the discrete-time controller Ψ internally (exponentially) stabilizes any sta-
bilizable detectable plants whose minimal realization coincides with that of
P22Δ for some Δ in the corresponding Δ.

In particular, (ii) implies that Ψ could internally stabilize also a lower-order plant
than the generalized plant (because of stable pole/zero cancellations via Δ), even
though this might not be necessarily clear in the above arguments where we treated
Δ in such a way that it has an independent state from the nominal plant.

One important perturbation set Δ is the set of norm-bounded LTI perturbations,
for which the small-gain condition can be very conservative [6, 8]. To get around
such conservatism, a necessary and sufficient condition has been derived [6, 8] in
the L2-stability context. The above theorem guarantees that such a necessary and
sufficient condition is indeed necessary and sufficient for robust internal stability; this
has already been shown for special perturbations (i.e., additive and multiplicative
perturbations), including the case of unstable perturbations [9]. The above theorem
in particular extends the previous results to the case of general perturbation structures
but with stable perturbations.

To state the importance of this theorem more generally and precisely, we can
rephrase it in the following way: whatever allowable perturbation sets/structures we
may consider (for example, LTI/h-periodic perturbations, full-block/block-diagonal
structures, real-parametric/dynamical perturbations, norm-bounded/unbounded per-
turbations, connected/nonconnected perturbation sets, convex/nonconvex perturba-
tions with respect to the origin4, and so on, as well as their arbitrary combinations),
considering robust L2-stability is enough to ensure robust internal stability; once a
condition for robust L2-stability under such FDLTI stable perturbations is established
somehow, the condition automatically guarantees robust internal stability. It would
also be worth stressing that the theorem applies even to such cases where some part
of the perturbations are fictitious and introduced just for the robust performance
analysis/synthesis (so that they do not affect internal stability) while the remaining
part of the perturbations does represent the plant uncertainty, as in the main loop
theorem. Robust internal stability is obviously guaranteed by robust L2-stability even
in such cases with robust performance taken into consideration.

5. Conclusion. In this paper, we first gave a nonasymptotic characterization of
the transfer operator Ĝ(z) of sampled-data systems, so that some appropriate nonzero

initial states can be introduced into the study of the transfer operator Ĝ(z). Based
on such a characterization, we then studied the spectral properties of the transfer
operator Ĝ(z). More specifically, it was shown that the properties of the spectrum

of Ĝ(z) are nearly as amenable as those of compact normal operators, in spite of the

generally noncompact and nonnormal nature of Ĝ(z), and that the spectrum can be
characterized with finite-dimensional eigenvalue problems. Exploiting a close relation
with the eigenvalue problems and the condition for internal stability of sampled-data
systems, we further extended our arguments on the spectral analysis of Ĝ(z) to the
robust internal stability analysis of sampled-data systems. To summarize the results
very concisely, what we have shown is that robust L2-stability and robust internal
(exponential) stability are equivalent irrespective of the perturbation structures/sets
to be considered, if the nominal sampled-data system is internally stable, if the

4We say here that Δ is convex with respect to the origin if Δ ∈ Δ implies kΔ ∈ Δ for all
k ∈ [0, 1].
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perturbations are either finite-dimensional LTI or h-periodic, and if the perturba-
tions are internally stable. Although we confined our input-output stability notion to
L2-stability in this paper, it is not hard to see that Proposition 7 and thus Theorem 8
hold even if L2-stability is replaced by Lp-stability, where 1 ≤ p < ∞. Hence, a
solid theoretical basis is established for the robust stabilization/performance design
for sampled-data systems even when it is carried out only under such input-output
stability conditions as in [6]. Finally, it will be worthwhile mentioning that all the
results in section 4 can be specialized to the continuous-time setting without any
changes (since a continuous-time system can always be embedded into the class of
sampled-data systems), and can readily be generalized to the discrete-time setting.
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1. Introduction.

1.1. Presentation. A powerful method for analyzing stochastic approximations
or recursive stochastic algorithms is the so-called ODE (ordinary differential equation)
method, which allows us to describe the limit behavior of the algorithm in terms of
the asymptotics of a certain ODE,

dx

dt
= F (x),

obtained by suitable averaging.
This method was introduced by Ljung [24] and extensively studied thereafter (see,

e.g., the books by Kushner and Yin [23] or Duflo [14] for a comprehensive introduc-
tion and further references). However, until recently most works in this direction
have assumed the simplest dynamics for F , for example, that F is linear or given by
the gradient of a cost function. While this type of assumption makes perfect sense in
engineering applications (where algorithms are often designed to minimize a cost func-
tion), there are several situations, including models of learning or adaptive behavior
in games, for which F may have more complicated dynamics.

In a series of papers Benäım [2, 3] and Benäım and Hirsch [5] have demonstrated
that the asymptotic behavior of stochastic approximation processes can be described
with a great deal of generality beyond gradients and other simple dynamics. One
of their key results is that the limit sets of the process are almost surely compact
connected attractor free (or internally chain transitive in the sense of Conley [13]) for
the deterministic flow induced by F .
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Chevaleret, 75013 Paris, France (sorin@math.jussieu.fr).

328



STOCHASTIC APPROXIMATION, DIFFERENTIAL INCLUSIONS 329

The purpose of this paper is to show that such a dynamical system approach easily
extends to the situation where the mean ODE is replaced by a differential inclusion.
This is strongly motivated by certain problems arising in economics and game theory.
In particular, the results here allow us to give a simple and unified presentation of
Blackwell’s approachability theorem, Smale’s results on the prisoner’s dilemma, and
convergence of fictitious play in potential games. Many other applications1 will be
considered in a forthcoming paper, by Benäım, Hofbauer, and Sorin [7], the present
one being mainly devoted to theoretical issues.

The organization of the paper is as follows. Part 1 introduces the different no-
tions of solutions, perturbed solutions, and stochastic approximations associated with
a differential inclusion. Part 2 is devoted to the presentation of two classes of ex-
amples. Part 3 is a general study of the dynamical system defined by a differential
inclusion. The main result (Theorem 3.6) on the limit set of a perturbed solution
being internally chain transitive is stated. Then related notions—invariant and at-
tracting sets, attractors, and Lyapunov functions—are analyzed. Part 4 contains the
proof of the limit set theorem. Finally, Part 5 applies the previous results to two
adaptive processes in game theory: approachability and fictitious play.

1.2. The differential inclusion. Let F denote a set-valued function mapping
each point x ∈ Rm to a set F (x) ⊂ Rm. We suppose throughout that the following
holds.

Hypothesis 1.1 (standing assumptions on F ).

(i) F is a closed set-valued map. That is,

Graph(F ) = {(x, y) : y ∈ F (x)}

is a closed subset of Rm × Rm.
(ii) F (x) is a nonempty compact convex subset of Rm for all x ∈ Rm.
(iii) There exists c > 0 such that for all x ∈ Rm

sup
z∈F (x)

‖z‖ ≤ c(1 + ‖x‖),

where ‖ · ‖ denotes any norm on Rm.
Definition I. A solution for the differential inclusion

dx

dt
∈ F (x)(I)

with initial point x ∈ Rm is an absolutely continuous mapping x : R → Rm such that
x(0) = x and

dx(t)

dt
∈ F (x(t))

for almost every t ∈ R.
Under the above assumptions, it is well known (see Aubin and Cellina [1, Chap-

ter 2.1] or Clarke et al. [12, Chapter 4.1]) that (I) admits (typically nonunique) solu-
tions through every initial point.

1As pointed out to us by an anonymous referee, applications to resource sharing may be consid-
ered as in Buche and Kushner [11], where the dynamics are given by a differential inclusion. Possible
applications to engineering include dry friction; see, e.g., Kunze [22].
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Remark 1.2. Suppose that a differential inclusion is given on a compact convex
set C ⊂ Rm, of the form F (x) = Φ(x) − x, such that Φ(x) ⊂ C for all x ∈ C and Φ
satisfies Hypothesis 1.1(i) and (ii), with Rm replaced by C. Then we can extend it
to a differential inclusion defined on the whole space Rm: For x ∈ Rm let P (x) ∈ C
denote the unique point in C closest to x, and define F (x) = Φ(P (x)) − x. Then F
satisfies Hypothesis 1.1.

1.3. Perturbed solutions. The main object of this paper is paths which are
obtained as certain (deterministic or random) perturbations of solutions of (I).

Definition II. A continuous function y : R+ = [0,∞) → Rm will be called a
perturbed solution to (I) (we also say a perturbed solution to F ) if it satisfies the
following set of conditions (II):

(i) y is absolutely continuous.
(ii) There exists a locally integrable function t �→ U(t) such that

(a)

lim
t→∞

sup
0≤v≤T

∥∥∥∥∫ t+v

t

U(s) ds

∥∥∥∥ = 0

for all T > 0; and

(b) dy(t)
dt − U(t) ∈ F δ(t)(y(t)) for almost every t > 0, for some function

δ : [0,∞) → R with δ(t) → 0 as t → ∞. Here F δ(x) := {y ∈ Rm : ∃z :
‖z − x‖ < δ, d(y, F (z)) < δ} and d(y, C) = infc∈C ‖y − c‖.

The purpose of this paper is to investigate the long-term behavior of y and to
describe its limit set

L(y) =
⋂
t≥0

{y(s) : s ≥ t}

in terms of the dynamics induced by F .

1.4. Stochastic approximations. As will be shown here, a natural class of
perturbed solutions to F arises from certain stochastic approximation processes.

Definition III. A discrete time process {xn}n∈N living in Rm is a solution for
(III) if it verifies a recursion of the form

xn+1 − xn − γn+1Un+1 ∈ γn+1F (xn),(III)

where the characteristics γ and U satisfy
• {γn}n≥1 is a sequence of nonnegative numbers such that∑

n

γn = ∞, lim
n→∞

γn = 0;

• Un ∈ Rm are (deterministic or random) perturbations.
To such a process is naturally associated a continuous time process as follows.

Definition IV. Set

τ0 = 0 and τn =

n∑
i=1

γi for n ≥ 1,

and define the continuous time affine interpolated process w : R+ → Rm by

w(τn + s) = xn + s
xn+1 − xn

τn+1 − τn
, s ∈ [0, γn+1).(IV)
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1.5. From interpolated process to perturbed solutions. The next result
gives sufficient conditions on the characteristics of the discrete process (III) for its
interpolation (IV) to be a perturbed solution (II). If (Ui) are random variables, as-
sumptions (i) and (ii) below have to be understood with probability one.

Proposition 1.3. Assume that the following hold:
(i) For all T > 0

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

γi+1Ui+1

∥∥∥∥∥ : k = n + 1, . . . ,m(τn + T )

}
= 0,

where

m(t) = sup{k ≥ 0 : t ≥ τk};(1.1)

(ii) supn ‖xn‖ = M < ∞.
Then the interpolated process w is a perturbed solution of F .

Proof. Let U, γ : R+ → Rm denote the continuous time processes defined by

U(τn + s) = Un+1, γ(τn + s) = γn+1

for all n ∈ N, 0 ≤ s < γn+1.
Then, for any t,

w(t) ∈ xm(t) + (t− τm(t))[U(t) + F (xm(t))];

hence

ẇ(t) ∈ U(t) + F (xm(t)).

Let us set δ(t) = ‖w(t) − xm(t)‖. Then obviously

F (xm(t)) ⊂ F δ(t)(w(t)).

In addition,

δ(t) ≤ γm(t)+1[‖Um(t)+1‖ + c(1 + M)]

hence goes to 0, using hypothesis (i) of the statement of the proposition. It remains
to check condition (ii)(a) of (II), but one has

∥∥∥∥∫ t+v

t

U(s)ds

∥∥∥∥ ≤ γm(t)+1‖Um(t)+1‖ +

∥∥∥∥∥∥
m(t+v)−1∑
�=m(t)+1

γ�+1U�+1

∥∥∥∥∥∥
+ γm(t+v)+1‖Um(t+v)+1‖,

and the result follows from condition (i).

Sufficient conditions. Let (Ω,F , P ) be a probability space and {Fn}n≥0 a
filtration of F (i.e., a nondecreasing sequence of sub-σ-algebras of F). We say that
a stochastic process {xn} given by (III) satisfies the Robbins–Monro condition with
martingale difference noise (Kushner and Yin [23]) if its characteristics satisfy the
following:
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(i) {γn} is a deterministic sequence.
(ii) {Un} is adapted to {Fn}. That is, Un is measurable with respect to Fn for

each n ≥ 0.
(iii) E(Un+1 | Fn) = 0.
The next proposition is a classical estimate for stochastic approximation pro-

cesses. Note that F does not appear. We refer the reader to (Benäım [3, Propositions
4.2 and 4.4]) for a proof and further references.

Proposition 1.4. Let {xn} given by (III) be a Robbins–Monro equation with
martingale difference noise process. Suppose that one of the following condition holds:

(i) For some q ≥ 2

sup
n

E(‖Un‖q) < ∞

and ∑
n

γ1+q/2
n < ∞.

(ii) There exists a positive number Γ such that for all θ ∈ Rm

E(exp(〈θ, Un+1〉) | Fn) ≤ exp

(
Γ

2
‖θ‖2

)
and ∑

n

e−c/γn < ∞

for each c > 0.
Then assumption (i) of Proposition 1.3 holds with probability 1.

Remark 1.5. Typical applications are
(i) Un uniformly bounded in L2 and γn = 1

n ,
(ii) Un uniformly bounded and γn = o( 1

logn ).

2. Examples.

2.1. A multistage decision making model. Let A and B be measurable
spaces, respectively called the action space and the states of nature; E ⊂ Rm a convex
compact set called the outcomes space; and H : A × B → E a measurable function,
called the outcome function.

At discrete times n = 1, 2 . . . a decision maker (DM) chooses an action an from
A and observes an outcome H(an, bn). We suppose the following.

(A) The sequence {an, bn}n≥0 is a random process defined on some probability
space (Ω,F , P ) and adapted to some filtration {Fn}. Here Fn has to be understood
as the history of the process until time n.

(B) Given the history Fn, DM and nature act independently:

P((an+1, bn+1) ∈ da× db | Fn) = P(an+1 ∈ da | Fn)P(bn+1 ∈ db | Fn)

for any measurable sets da ⊂ A and db ⊂ B.
(C) DM keeps track of only the cumulative average of the past outcomes,

xn =
1

n

n∑
i=1

H(ai, bi),(2.1)
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and his decisions are based on this average. That is,

P(an+1 ∈ da | Fn) = Qxn
(da),

where Qx(·) is a probability measure over A for each x ∈ E, and x ∈ E �→ Qx(da) ∈
[0, 1] is measurable for each measurable set da ⊂ A. The family Q = {Qx}x∈E is
called a strategy for DM.

Assumption (C) can be justified by considerations of limited memory and bounded
rationality. It is partially motivated by Smale’s approach to the prisoner’s dilemma
[27] (see also Benäım and Hirsch [4, 5]), Blackwell’s approachability theory ([8]; see
also Sorin [28]), as well as fictitious play (Brown [10], Robinson [26]) and stochastic
fictitious play (Benäım and Hirsch [6], Fudenberg and Levine [15], Hofbauer and
Sandholm [20]) in game theory (see the examples below).

For each x ∈ E let

C(x) =

{∫
A×B

H(a, b)Qx(da)ν(db) : ν ∈ P(B)

}
,

where P(B) denotes the set of probability measures over B. Then clearly

E(H(an+1, bn+1) | Fn) ∈ C(xn) ⊂ C(xn),

where C denote the smallest closed set-valued extension of C with convex values.
More precisely, the graph of C is the intersection of all closed subsets G ⊂ E ×E for
which the fiber Gx = {y ∈ E : (x, y) ∈ G} is convex and contains C(x).

For x ∈ Rm let P (x) denote the unique point in E closest to x. Extend C as in
Remark 1.2 to a set-valued map on Rm by setting

Ĉ(x) = C(P (x)).

Then the map

F (x) = −x + C(P (x)) = −x + Ĉ(x)(2.2)

clearly satisfies Hypothesis 1.1, and {xn} verifies the recursion

xn+1 − xn =
1

n + 1
(−xn + H(an+1, bn+1)),

which can be rewritten as (see (III))

xn+1 − xn ∈ γn+1[F (xn) + Un+1]

with γn = 1
n and Un+1 = H(an+1, bn+1) −

∫
A
H(a, bn+1)Qxn

(da). Hence, the condi-
tions of Proposition 1.4 are satisfied and one deduces the following claim.

Proposition 2.1. The affine continuous time interpolated process (IV) of the
process {xn} given by (2.1) is almost surely a perturbed solution of F defined by (2.2).

Example 2.2 (Blackwell’s approachability theory). A set Λ ⊂ E is said to be
approachable if there exists a strategy Q such that xn → Λ almost surely. Blackwell [8]
gives conditions ensuring approachability. We will show in section 5.1 how Blackwell’s
results can be partially derived from our main results and generalized (Corollary 5.2)
in certain directions.
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2.2. Learning in games. The preceding formalism is well suited to analyzing
certain models of learning in games.

Consider the situation where m players are playing a game over and over. Let
Ai (for i ∈ I = {1, . . . ,m}) be a finite set representing the actions (pure strategies)
available to player i, and let Xi be the finite dimensional simplex of probabilities over
Ai (the set of mixed strategies for player i). For i ∈ I we let A−i and X−i respectively
denote the actions and mixed strategies available to the opponents of i. The payoff
function to player i is given by a function U i : Ai × A−i → R. As usual, we extend
U i to a function (still denoted U i) on Xi ×X−i, by multilinearity.

Example 2.3 (fictitious and stochastic fictitious play). Consider the game from
the viewpoint of player i so that the DM is player i, and “nature” is given by the
other players. In fictitious or stochastic fictitious play the outcome space is the space
Xi × X−i of mixed strategies, and the outcome function is the “identity” function
H : Ai × A−i → Xi × X−i mapping every profile of actions a to the corresponding
profile of mixed strategy δa.

Let

BRi(x−i) = Argmax
ai∈Ai

U i(ai, x−i) ⊂ Ai

be the set of best actions that i can play in response to x−i.
Both classical fictitious play (Brown [10], Robinson [26]) and stochastic fictitious

play (Benäım and Hirsch [6], Fudenberg and Levine [15], Hofbauer and Sandholm [20])
assume that the strategy of player i, Qi = {Qi

x}, can be written as

Qi
x(ai) = qi(ai, x−i),

where qi : Ai ×X−i → [0, 1] is such that one of the following assumptions holds:
fictitious play assumption: ∑

ai∈BRi(x−i)

qi(ai, x−i) = 1,

or stochastic fictitious play assumption, qi is smooth in x−i and∑
ai∈BRi(x−i)

qi(ai, x−i) ≥ 1 − δ

for some 0 < δ  1.
In this framework, if a� denotes the profile of actions at stage �, one has

xn =
1

n

n∑
�=1

a�

and

xn+1 − xn =
1

n + 1
(an+1 − xn).

Thus for each i

E(xi
n+1 − xi

n | Fn) ∈ 1

n + 1
(BR

i
(x−i

n ) − xi
n),
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where BR
i
(x−i) ⊂ Xi is the convex hull of BRi(x−i) for the standard fictitious play,

and BR
i
(x−i) =

∑
ai∈Ai qi(ai, x−i)δai for the stochastic fictitious play.

Thus the set-valued map F defined in (2.2) is given as

F i(x) = −x + BR
i
(x−i) ×X−i.

Observe that if a subset J ⊂ I of players plays a fictitious (or stochastic fictitious)
play strategy, then F i has to be replaced by

F J(x) =
⋂
i∈J

F i(x).

In particular, if all players play a fictitious play strategy, the differential inclusion
induced by F is the best-response differential inclusion (Gilboa and Matsui [16], Hof-
bauer [19], Hofbauer and Sorin [21]), while if all play a stochastic fictitious play, F is a
smooth best-response vector field (Benäım and Hirsch [6], Fudenberg and Levine [15],
Hofbauer and Sandholm [20]).

Example 2.4 (Smale approach to the prisoner’s dilemma). We still consider the
game from the viewpoint of player i, so that the DM is player i and nature the other
players, but we take for H the payoff vector function

H : Ai × A−i → E,

a → U(a) = (U1(a), . . . , Um(a)),

where E ⊂ Rm is the convex hull of the payoff vectors {U(a)}.
This setting fits exactly with Smale’s approach to the prisoner’s dilemma [27]

later revisited by Benäım and Hirsch [4]. Details will be given in section 5.2, where
Smale’s approach will be reinterpreted in the framework of approachability.

3. Set-valued dynamical systems.

3.1. Properties of the trajectories of (I). Let C0(R,Rm) denote the space
of continuous paths {z : R → Rm} equipped with the topology of uniform convergence
on compact intervals. This is a complete metric space for the distance D defined by

D(x, z) =

∞∑
k=1

1

2k
min(‖x − z‖[−k,k], 1),

where ‖ · ‖[−k,k] stands for the supremum norm on C0([−k, k],Rm).
Given a set M ⊂ Rm, we let SM ⊂ C0(R,Rm) denote the set of all solutions

to (I) with initial conditions x ∈ M (SM =
⋃

x∈MSx), and SM,M ⊂ SM the subset
consisting of solutions x that remain in M (i.e., x(R) ⊂ M).

Lemma 3.1. Assume M compact. Then SM is a nonempty compact set and
SM,M is a compact (possibly empty) set.

Proof. The first assertion follows from Aubin and Cellina [1, section 2.2, Theo-
rem 1, p. 104]. The second easily follows from the first.

3.2. Set-valued dynamical system induced by (I). The differential inclu-
sion (I) induces a set-valued dynamical system {Φt}t∈R defined by

Φt(x) = {x(t) : x is a solution to (I) with x(0) = x}.

The family Φ = {Φt}t∈R enjoys the following properties:
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(a) Φ0(x) = {x};
(b) Φt(Φs(x)) = Φt+s(x) for all t, s ≥ 0;
(c) y ∈ Φt(x) ⇒ x ∈ Φ−t(y) for all x, y ∈ Rm, t ∈ R;
(d) (x, t) �→ Φt(x) is a closed set-valued map with compact values (i.e., Φt(x) is

a compact set for each t and x).
Properties (a), (b), (c) are immediate to verify, and property (d) easily follows from
Lemma 3.1.

For subsets T ⊂ R and A ⊂ Rm we will define

ΦT (A) =
⋃
t∈T

⋃
x∈A

Φt(x).

Invariant sets.

Definition V. A set A ⊂ Rm is said to be
(i) strongly invariant (for Φ) if A = Φt(A) for all t ∈ R;
(ii) quasi-invariant if A ⊂ Φt(A) for all t ∈ R;
(iii) semi-invariant if Φt(A) ⊂ A for all t ∈ R;
(iv) invariant (for F ) if for all x ∈ A there exists a solution x to (I) with x(0) = x

and such that x(R) ⊂ A.
We call a set A strongly positive invariant if Φt(A) ⊂ A for all t > 0.
At first glance (at least for those used to ordinary differential equations) the

good notion might seem to be the one defined by strong invariance. However, this
notion is too strong for differential inclusions, as shown by the simple example below
(Example 3.2), and the main notions that will really be needed here are invariance
and strong positive invariance. We have included the definition of quasi invariance
mainly because some of our later results may be related to a paper by Bronstein
and Kopanskii [9] making use of this notion.2 Observe, however, that by Lemma 3.3
below, quasi invariance coincides with invariance for compact sets.

Example 3.2. (a) Let F be the set-valued map defined on R by F (x) = − sgn(x)
if x �= 0 and F (0) = [−1, 1]. Then Φt(0) = {0} for t ≥ 0, and Φt(0) = [t,−t] for t < 0.
Hence {0} is invariant and strongly positively invariant but is not strongly invariant.

(b) Let now F (x) = x for x < 0, F (x) = 1 for x > 0, and F (0) = [0, 1]. Then
Φt(0) = {0} for t ≤ 0, and Φt(0) = [0, t] for t ≥ 0. Hence {0} is invariant but not
strongly positively invariant.

Lemma 3.3. Every invariant set is quasi-invariant. Every compact quasi-invariant
set is invariant.

Proof. Suppose that A is invariant. Let x ∈ A and x be a solution to (I) with
x(0) = x and x(R) ⊂ A. For all t ∈ R we have x ∈ Φt(x(−t)). Hence A is quasi-
invariant.

Conversely suppose that A is quasi-invariant and compact. Choose x ∈ A and
fix N ∈ N. Then for every p ∈ N there exists, by quasi invariance and by gluing
pieces of solutions together, a solution xp,N to (I) such that xp,N (0) = x and for

all q ∈ {−2p, . . . , 2p}, xp,N ( qN2p ) ∈ A. By Lemma 3.1, the sequence {xp,N}p∈N is
relatively compact in C0([−N,N ],Rm). Let xN be a limit point of this sequence.
Then for each dyadic point t = qN

2p , where q ∈ {−2p, . . . , 2p}, xN (t) ∈ A. Continuity

of xN implies xN ([−N,N ]) ⊂ A. Now let x be a limit point of the sequence {xN}N∈N

in C0(R,Rm). Then x(R) ⊂ A and x is a solution to (I).

2Invariant sets in Bronstein and Kopanskii [9] coincide with what we define here as strongly
invariant sets.
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Remark 3.4. A invariant together with strong positive invariance implies Φt(A) =
A for t > 0.

3.3. Chain-recurrence and the limit set theorem. Given a set A ⊂ Rm

and x, y ∈ A, we write x ↪→A y if for every ε > 0 and T > 0 there exists an integer
n ∈ N, solutions x1, . . . ,xn to (I), and real numbers t1, t2, . . . , tn greater than T such
that

(a) xi(s) ∈ A for all 0 ≤ s ≤ ti and for all i = 1, . . . , n,
(b) ‖xi(ti) − xi+1(0)‖ ≤ ε for all i = 1, . . . , n− 1,
(c) ‖x1(0) − x‖ ≤ ε and ‖xn(tn) − y‖ ≤ ε.

The sequence (x1, . . . ,xn) is called an (ε, T ) chain (in A from x to y) for F .
Definition VI. A set A ⊂ Rm is said to be internally chain transitive, provided

that A is compact and x ↪→A y for all x, y ∈ A.
Lemma 3.5. An internally chain transitive set is invariant.
Proof. Let A be such a set and x ∈ A. Let (x1, . . . ,xn) be an (ε, T ) chain

from x to x. Set yε,T (t) = x1(t) for 0 ≤ t ≤ T and zε,T (t) = xn(tn + t) for
−T ≤ t ≤ 0. By Lemma 3.1 we can extract from (y1/p,T )p∈N and (z1/p,T )p∈N some
subsequences converging, respectively, to yT and zT , where yT and zT are solutions to
(I), yT (0) = x = zT (0), yT ([0, T ]) ⊂ A, and zT ([−T, 0]) ⊂ A. The map wT (t) = yT (t)
for t ≥ 0 and wT (t) = zT (t) for t ≤ 0 is then a solution to (I) with initial condition
x and such that wT ([−T, T ]) ⊂ A. By Lemma 3.1, again we extract from (wT )T≥0

a subsequence converging to a solution w whose range lies in A and with initial
condition x.

This notion of recurrence due to Conley [13] for classical dynamical systems is
well suited to the description of the asymptotic behavior of a perturbed solution to
(I), as shown by the following theorem.

Theorem 3.6. Let y be a bounded perturbed solution to (I). Then, the limit set
of y,

L(y) =
⋂
t≥0

{y(s) : s ≥ t},

is internally chain transitive.
This theorem is the set-valued version of the limit set theorem proved by Benäım [2]

for stochastic approximation and Benäım and Hirsch [5] for asymptotic pseudotrajec-
tories of a flow. We will deduce it from the more general results of section 4.

3.4. Limit sets. The set

ωΦ(x) :=
⋂
t≥0

Φ[t,∞)(x)

is the ω-limit set of a point x ∈ Rm. Note that ωΦ(x) contains the limit sets L(x) of
all solutions x with x(0) = x but is in general larger than the union of these.

In contrast to the limit set of a solution, the ω-limit set of a point need not be
internally chain transitive.

Example 3.7. Let F be the set-valued map defined on R by F (x) = 1 − x for
x > 0 and F (0) = [0, 1] and F (x) = −x for x < 0. Then for every solution x, one has
limt→∞ x(t) = 0 or 1. But ωΦ(0) = [0, 1] is not internally chain transitive.

More generally one defines

ωΦ(Y ) :=
⋂
t≥0

Φ[t,∞)(Y ).
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Definition VII. A set Y is forward precompact if Φ[t,∞)(Y ) is compact for some
t > 0.

Lemma 3.8. (i) ωΦ(Y ) is the set of points p ∈ Rm such that

p = lim
n→∞

yn(tn)

for some sequence {yn} of solutions to (I) with initial conditions yn(0) ∈ Y and some
sequence {tn} ∈ R with tn → ∞.

(ii) ωΦ(Y ) is a closed invariant (possibly empty) set. If Y is forward precompact,
then ωΦ(Y ) is nonempty and compact.

Proof. Point (i) is easily seen from the definition.
(ii) Let p = limn→∞ yn(tn) ∈ ωΦ(Y ). Set zn(s) = yn(tn + s) for all s ∈ R. By

Lemma 3.1 we may extract from (zn)n≥0 a subsequence converging to some solution
z with z(0) = p and z(s) = limnk→∞ ynk

(tnk
+ s) ∈ ωΦ(Y ). This proves invariance.

The rest is clear.
Note that the limit set ωΦ(Y ) is in general not strongly positively invariant (e.g.,

in Example 3.7 for x < 0, ωΦ(x) = {0}).
3.5. Attracting sets and attractors. For applications it is useful to charac-

terize L(y) in terms of certain compact invariant sets for Φ, namely, the attractors,
as defined below.

Given a closed invariant set L, the induced set-valued dynamical system ΦL is
the family of (set-valued) mappings ΦL = {ΦL

t }t∈R defined on L by

ΦL
t (x) = {x(t) : x is a solution to (I) with x(0) = x and x(R) ⊂ L}.

Note that L is strongly invariant for ΦL.
Definition VIII. A compact set A ⊂ L is called an attracting set for ΦL, pro-

vided that there is a neighborhood U of A in L (i.e., for the induced topology) with the
property that for every ε > 0 there exists tε > 0 such that

ΦL
t (U) ⊂ Nε(A)

for all t ≥ tε. Or, equivalently, ΦL
[tε,∞)(U) ⊂ Nε(A). Here Nε(A) stands for the

ε-neighborhood of A.
If, additionally, A is invariant, then A is called an attractor for ΦL.
The set U is called a fundamental neighborhood of A for ΦL. If A �= L and

A �= ∅, then A is called a proper attracting set (or proper attractor) for ΦL.
Furthermore, an attracting set (respectively, attractor) for Φ is an attracting set

(respectively, attractor) for ΦL with L = Rm.
Example 3.9. Let F be the set-valued map from Example 3.2(a), i.e., defined on

R by F (x) = − sgn(x) if x �= 0 and F (0) = [−1, 1]. Then {0} is an attractor and
every compact set A ⊂ R with 0 ∈ A is an attracting set.

Proposition 3.10. Let A be a nonempty compact subset of L, and U a neigh-
borhood of A in L. Then the following hold:

(i) A is an attracting set for ΦL with fundamental neighborhood U if and only
if U is forward precompact and ωΦL(U) ⊂ A. In this case ωΦL(U) is an attractor.

(ii) A is an attractor for ΦL with fundamental neighborhood U if and only if U
is forward precompact and ωΦL(U) = A.

Proof. (i) If A is an attracting set for ΦL with fundamental neighborhood U , then

ωΦL(U) ⊂
⋂

ε>0N
ε(A) ⊂ A. Conversely, for t large enough Vt = ΦL

[t,∞)(U) defines a
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decreasing family of compact sets converging to ωΦL(U) ⊂ A. Hence for any ε > 0
there exists tε with Vtε ⊂ Nε(A) and A is an attracting set. In particular, ωΦL(U)
itself is an attracting set, invariant by Lemma 3.8(ii).

(ii) If A = ωΦL(U), then A is an attractor by (i). Conversely, if A is an attractor
with fundamental neighborhood U , then ωΦ(U) ⊂ A by (i). Let x ∈ A. Since A
is invariant, there exists a solution y to (I) with y(0) = x and y(R) ⊂ A. Set
yn(t) = y(t−n). Then yn(n) = x, proving that x ∈ ωΦL(U) (by Lemma 3.8(i)).

Proposition 3.11. Every attractor is strongly positively invariant. (Example
3.2(a) provides an attractor that is not strongly invariant.)

Proof. By invariance, A ⊂ ΦL
T (A) for all T > 0. Hence, given t > 0,

ΦL
t (A) ⊂ ΦL

t+T (A) ⊂ ΦL
t+T (U) ⊂ ΦL

[t+T,∞)(U)

for all T > 0. Thus ΦL
t (A) ⊂ Nε(A) for all ε > 0, and hence ΦL

t (A) ⊂ A for all
t > 0.

Remark 3.12. In the family of attracting sets A with a given fundamental neigh-
borhood U , there exists a minimal one, which is in addition invariant, strongly posi-
tively invariant, and independent of the set U used to define the family. It is also the
largest positively quasi-invariant set included in U .

Any attractor A ⊂ L can be written as A = ωΦL(U) for some U . Hence any
fundamental neighborhood uniquely determines the attractor A. This implies, as in
Conley [13], that ΦL can have at most countably many attractors.

3.6. Attractors and stability.

Definition IX. A set A ⊂ L is asymptotically stable for ΦL if it satisfies the
following three conditions:

(i) A is invariant.
(ii) A is Lyapunov stable; i.e., for every neighborhood U of A there exists a

neighborhood V of A such that Φ[0,∞)(V ) ⊂ U .
(iii) A is attractive; i.e., there is a neighborhood U of A such that for every

x ∈ U : ωΦ(x) ⊂ A.
Alternatively, instead of (iii) one could ask for the following weaker requirement:

(iii′) There is a neighborhood U of A such that for every solution x with x(0) ∈ U
one has L(x) ⊂ A.
We show now that for compact sets the concepts of attractor and asymptotic stability
are equivalent. The proof of Corollary 3.18 below shows that it makes no difference
whether one uses (iii) or (iii′) in the definition of asymptotic stability.

We start with an upper bound for entry times.
Lemma 3.13. Let V be an open set and K compact such that for all solutions x

with x(0) ∈ K there is t > 0 with x(t) ∈ V . Then there exists T > 0 such that for
every solution x with x(0) ∈ K there is t ∈ [0, T ] with x(t) ∈ V .

Proof. Suppose that there is no such upper bound T for the entry times into V .
Then for each n ∈ N there is xn(0) = xn ∈ K and a solution xn such that xn(t) /∈ V
for 0 ≤ t ≤ n. Since K is compact, we can assume that xn → x ∈ K. And by
Lemma 3.1 a subsequence of xn converges to a solution x with x(0) = x and x(t) /∈ V
for all t > 0.

Lemma 3.14. If a closed set A is Lyapunov stable, then it is strongly positively
invariant.

Proof. A is the intersection of a family of strongly positively invariant neighbor-
hoods.
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Lemma 3.15. If a compact set A satisfies (ii) and (iii′), it is attracting.

Proof. Let B be a compact neighborhood of A, included in the fundamental
neighborhood U , and let W be a neighborhood of A. A being Lyapunov stable, there
exists an open neighborhood V of A with ΦL

[0,∞)(V ) ⊂ W . For any x ∈ B and any

solution x with x(0) = x, there exists t > 0 with x(t) ∈ V . Applying Lemma 3.13
implies ΦL

T (B) ⊂ ΦL
[0,T ](V ); hence ΦL

[T,∞)(B) ⊂ W and A is attracting.

Lemma 3.16. If the set A is attracting and strongly positively invariant, then it
is Lyapunov stable.

Proof. Let A be attracting with fundamental neighborhood U , and V be any other
(open) neighborhood of A. Then by definition there is T > 0 such that ΦL

[T,∞)(U) ⊂ V .

A being strongly positively invariant, ΦL
[0,T ](A) ⊂ A. Upper semicontinuity gives an

ε > 0 such that ΦL
[0,T ](N

ε(A)) ⊂ V and Nε(A) ⊂ U . Hence ΦL
[0,∞)(N

ε(A)) ⊂ V ,
which shows Lyapunov stability.

Corollary 3.17. For a compact set A, properties (ii) and (iii′) of Definition IX,
together, are equivalent to attracting and strong positive invariance.

Corollary 3.18. A compact set A is an attractor if and only if it is asymptot-
ically stable.

We conclude with a simple useful condition ensuring that an open set contains
an attractor.

Proposition 3.19. Let U be an open set with compact closure. Suppose that
ΦT (U) ⊂ U for some T > 0. Then U is a fundamental neighborhood of some attractor
A.

Proof. Since Φ has a closed graph, ΦT (U) is compact. Therefore ΦT (U) ⊂
V ⊂ V ⊂ U for some open set V . By upper semicontinuity of ΦT (which follows
from property (d) of a set-valued dynamical system) there exists ε > 0 such that
Φt(U) ⊂ V for T −ε ≤ t ≤ T +ε. Let t0 = T (T +1)/ε. For all t ≥ t0 write t = kT + r
with k ∈ N and r < T . Hence t = k(T + r/k) with 0 ≤ r/k < ε. Thus

Φt(U) = ΦT+r/k ◦ · · · ◦ ΦT+r/k(U) ⊂ V.

Hence ωΦ(U) =
⋂

t≥t0
Φ[t,∞)(U) ⊂ V ⊂ U is an attractor with fundamental neigh-

borhood U .

3.7. Chain transitivity and attractors.

Proposition 3.20. Let L be internally chain transitive. Then L has no proper
attracting set for ΦL.

Proof. Let A ⊂ L be an attracting set. By definition, there exists a neighborhood
U of A, and for all ε > 0 a number tε such that ΦL

t (U) ⊂ Nε(A) for all t > tε.
Assume A �= L and choose ε small enough so that N2ε(A) ⊂ U and there exists
y ∈ L \ N2ε(A). Then, for T ≥ tε and x ∈ A, there is no (ε, T ) chain from x to y.
In fact, x1(0) ∈ N2ε(A), and hence x1(t1) ∈ Nε(A); by induction, xi(ti) ∈ Nε(A) so
that xi+1(0) ∈ N2ε(A) as well. Thus we arrive at a contradiction.

Remark 3.21. This last proposition can also be deduced from Bronstein and
Kopanskii [9, Theorem 1] combined with Lemma 3.1. Also the converse is true.

Recall that an attracting set (respectively, attractor) for Φ is an attracting set
(respectively, attractor) for ΦL with L = Rm.

Lemma 3.22. Let A be an attracting set for Φ and L a closed invariant set.
Assume A ∩ L �= ∅. Then A ∩ L is an attracting set for ΦL.

Proof. The proof follows from the definitions.
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If A is a set, then

B(A) = {x ∈ Rm : ωΦ(x) ⊂ A}

denotes its basin of attraction.
Theorem 3.23. Let A be an attracting set for Φ and L an internally chain

transitive set. Assume L ∩B(A) �= ∅. Then L ⊂ A.
Proof. Suppose L ∩B(A) �= ∅. Then there exists a solution x to (I) with x(0) =

x ∈ B(A) and x(R) ⊂ L. Hence d(x(t), A) → 0 when t → ∞, proving that L meets
A. Proposition 3.20 and Lemma 3.22 imply that L ⊂ A.

A global attractor for Φ is an attractor whose basin of attraction consists of all
Rm. If a global attractor exists, then it is unique and coincides with the maximal
compact invariant set of Φ. The following corollary is an immediate consequence of
Theorem 3.23 or even more easily of Lemma 3.5.

Corollary 3.24. Suppose Φ has a global attractor A. Then every internally
chain transitive set lies in A.

3.8. Lyapunov functions.
Proposition 3.25. Let Λ be a compact set, U ⊂ Rm be a bounded open neigh-

borhood of Λ, and V : U → [0,∞[. Let the following hold:
(i) For all t ≥ 0, Φt(U) ⊂ U (i.e., U is strongly positively invariant);
(ii) V −1(0) = Λ;
(iii) V is continuous and for all x ∈ U \ Λ, y ∈ Φt(x) and t > 0, V (y) < V (x);
(iv) V is upper semicontinuous, and for all x ∈ U \ Λ, y ∈ Φt(x), and t > 0,

V (y) < V (x).
(A) Under (i), (ii), and (iii), Λ is a Lyapunov stable attracting set, and there

exists an attractor contained in Λ whose basin contains U , and with V −1([0, r)) as
fundamental neighborhoods for small r > 0.

(B) Under (i), (ii), and (iv), there exists an attractor contained in Λ whose basin
contains U .

Proof. For the proof of (A), let r > 0 and Ur = {x ∈ U : V (x) < r}. Then
{Ur}r>0 is a nested family of compact neighborhoods of Λ with

⋂
r>0Ur = Λ. Thus

for r > 0 small enough, Ur ⊂ U . Moreover, Φt(Ur) ⊂ Ur for t > 0 by our hypotheses
on U and V . Proposition 3.19 then implies the result.

For (B), let A = ωΦ(U), which is closed and invariant (by Lemma 3.8) and hence
compact, since it is included in U . Let α = maxy∈A V (y) be reached at x, since
V is upper semicontinuous. By invariance there exists a solution x and t > 0 with
z = x(0) ∈ A and x(t) = x. This contradicts (iv) unless α = 0 and A ⊂ Λ. Thus U is
a neighborhood of A, which is an attractor included in Λ.

Remark 3.26. Given any attractor A, there exists a function V such that Propo-
sition 3.25(iv) holds for Λ = A. Take V (x) = max{d(y,A)g(t), y ∈ Φt(x), t ≥ 0},
where d > g(t) > c > 0 is any continuous strictly increasing function.

Let Λ be any subset of Rm. A continuous function V : Rm → R is called a
Lyapunov function for Λ if V (y) < V (x) for all x ∈ Rm \ Λ, y ∈ Φt(x), t > 0, and
V (y) ≤ V (x) for all x ∈ Λ, y ∈ Φt(x), and t ≥ 0. Note that for each solution x, V is
constant along its limit set L(x).

The following result is similar to Benäım [3, Proposition 6.4].
Proposition 3.27. Suppose that V is a Lyapunov function for Λ. Assume that

V (Λ) has empty interior. Then every internally chain transitive set L is contained in
Λ and V | L is constant.
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Proof. Let

v = inf{V (y) : y ∈ L}.

Since L is compact and V is continuous, v = V (x) for some point x ∈ L. Since L is
invariant, there exists a solution x with x(t) ∈ L and x(0) = x. Then v = V (x) >
V (x(t)), and thus is impossible for t > 0. Since x(t) ∈ Φt(x), we conclude x ∈ Λ.

Thus v belongs to the range V (Λ). Since V (Λ) contains no interval, there is a
sequence vn /∈ V (Λ) decreasing to v. The sets Ln = {x ∈ L : V (x) < vn} satisfy
Φt(Ln) ⊂ Ln for t > 0. In fact, either x ∈ Λ ∩ Ln and V (y) ≤ V (x) < vn or
V (y) < V (x) ≤ vn, for any y ∈ Φt(x), t > 0.

Thus, using Propositions 3.19 and 3.20, one obtains L =
⋂

n Ln = {x ∈ L :
V (x) = v}. Hence V is constant on L. L being invariant, this implies, as above,
L ⊂ Λ.

Corollary 3.28. Let V and Λ be as in Proposition 3.27. Suppose furthermore
that V is Cm and Λ is contained in the critical points set of V . Then every internally
chain transitive set lies in Λ and V | L is constant.

Proof. By Sard’s theorem (Hirsch [18, p. 69]), V (Λ) has empty interior and
Proposition 3.27 applies.

4. The limit set theorem.

4.1. Asymptotic pseudotrajectories for set-valued dynamics. The trans-
lation flow Θ : C0(R,Rm) × R → C0(R,Rm) is the flow defined by

Θt(x)(s) = x(s + t).

A continuous function z : R+→Rm is an asymptotic pseudotrajectory (APT) for Φ if

lim
t→∞

D(Θt(z), Sz(t)) = 0(4.1)

(or limt→∞ D(Θt(z), S) = 0, where S =
⋃

x∈RmSx denotes the set of all solutions of
(I)).

Alternatively, for all T

lim
t→∞

inf
x∈Sz(t)

sup
0≤s≤T

‖z(t + s) − x(s)‖ = 0.

In other words, for each fixed T , the curve

[0, T ] → Rm : s → z(t + s)

shadows some Φ trajectory of the point z(t) over the interval [0, T ] with arbitrary
accuracy for sufficiently large t. Hence z has a forward trajectory under Θ attracted
by S. As usual, one extends z to R by letting z(t) = z(0) for t < 0.

The next result is a natural extension of Benäım and Hirsch [4], [5, Theorem 7.2].
Theorem 4.1 (characterization of APT). Assume z is bounded. Then there is

equivalence between the following statements:
(i) z is an APT for Φ.
(ii) z is uniformly continuous, and any limit point of {Θt(z)} is in S.

In both cases the set {Θt(z); t ≥ 0} is relatively compact.
Proof. By hypothesis, K = {z(t); t ≥ 0} is compact.
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For any ε > 0, there exists η > 0 such that ‖z − x‖ < ε/2, for any x ∈ K, any
z ∈ Φs(x), and any |s| < η, using property (d) of the dynamical system.

z being an APT, there exists T such that t > T implies

d(z(t + s),Φs(z(t))) <
ε

2
∀|s| < η;

hence

‖z(t + s) − z(t)‖ ≤ ε

and z is uniformly continuous. Clearly any limit point belongs to S by the condition
(4.1) above.

Conversely, if z is uniformly continuous, then the family of functions {Θt(z); t ≥
T} is equicontinuous and hence (K being compact) relatively compact by Ascoli’s
theorem. Since any limit point belongs to S, property (4.1) follows.

4.2. Perturbed solutions are APTs.
Theorem 4.2. Any bounded solution y of (II) is an APT of (I).
Proof. Let us prove that y satisfies Theorem 4.1(ii). Set v(t) = ẏ(t) − U(t) ∈

F δ(t)(y(t)). Then,

y(t + s) − y(t) =

∫ s

0

v(t + τ)dτ +

∫ t+s

t

U(τ)dτ.(4.2)

By assumption (iii) of (II), the second integral goes to 0 as t → ∞. The boundedness
of y, y(R) ⊂ M , M compact (combined with the fact that F has linear growth)
implies boundedness of v and shows that y is uniformly continuous. Thus the family
Θt(y) is equicontinuous, and hence relatively compact. Let z = limtn→∞ Θtn(y) be
a limit point. Set t = tn in (4.2) and define vn(s) = v(tn + s). Then, using the
assumption (iii) on U , the second term in the right-hand side of this equality goes to
zero uniformly on compact intervals when n → ∞. Hence

z(s) − z(0) = lim
n→∞

∫ s

0

vn(τ)dτ.

Since (vn) is uniformly bounded, it is bounded in L2[0, s], and by the Banach–
Alaoglu theorem, a subsequence of vn will converge weakly in L2[0, s] (or weak* in
L∞[0, s]) to some function v with v(t) ∈ F (z(t)), for almost every t, since vn(t) ∈
F δ(t+tn)(y(t + tn)) for every t. Here we use (ii) and that F is upper semicontinuous
with convex values. In fact, by Mazur’s theorem, a convex combination of {vm,m ≥ n}
converges almost surely to v and limm→∞ Co(

⋃
n≥m F δ(t+tn)(y(t + tn))) ⊂ F (z(t)).

Hence z(s) − z(0) =
∫ s

0
v(τ)dτ , proving that z is a solution of (I) and hence z ∈

SM,M .

4.3. APTs are internally chain transitive.
Theorem 4.3. Let z be a bounded APT of (I). Then L(z) is internally chain

transitive.
Proof. The set {Θt(z) : t ≥ 0} is relatively compact, and hence the ω-limit set of

z for the flow Θ,

ωΘ(z) =
⋂
t≥0

{Θs(z) : s ≥ t},

is internally chain transitive. (By standard properties of ω-limit sets of bounded
semiorbits, ωΘ(z) is a nonempty, compact, internally chain transitive set invariant
under Θ; see Conley [13]; a short proof is also in Benäım [3, Corollary 5.6].) By
property (4.1), ωΘ(z) ⊂ S, the set of all solutions of (I).
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Let Π : (C0(R,Rm),D) → (Rm, ‖ · ‖) be the projection map defined by Π(z) =
z(0). One has Π(ωΘ(z)) = L(z). In fact if p = limn→∞ z(tn), let w be a limit point
of Θtn(z). Then w ∈ ωΘ(z) and Π(w) = p.

It then easily follows that L(z) is nonempty compact and invariant under Φ since
ωΘ(z) ⊂ S. Since Π has Lipschitz constant 1, Π maps every (ε, T ) chain for Θ to an
(ε, T ) chain for Φ. This proves that L(z) is internally chain transitive for Φ.

5. Applications.

5.1. Approachability. An application of Proposition 3.25 is the following re-
sult, which can be seen as a continuous asymptotic deterministic version of Blackwell’s
approachability theorem [8]. Note that one has no property on uniform speed of con-
vergence.

Given a compact set Λ ∈ Rm and x ∈ Rm, we let ΠΛ(x) = {y ∈ Λ : d2(x,Λ) =
‖x− y‖2 = 〈x− y, x− y〉}.

Corollary 5.1. Let Λ ⊂ Rm be a compact set, r > 0, and U = {x ∈ Rm :
d(x,Λ) < r}. Suppose that for all x ∈ U \ Λ there exists y ∈ ΠΛ(x) such that the
affine hyperplane orthogonal to [x, y] at y separates x from x + F (x). That is,

〈x− y, x− y + v〉 ≤ 0(5.1)

for all v ∈ F (x). Then Λ contains an attractor for (I) with fundamental neighborhood
U .

Proof. Set V (x) = d(x,Λ). To apply Proposition 3.25 it suffices to verify condition
(iii) of Proposition 3.25. Condition (i) will follow, and condition (ii) is clearly true.

Let x be a solution to (I) with initial condition x ∈ U \ Λ. Set τ = inf{t > 0 :
x(t) ∈ Λ} ≤ ∞, g(t) = V (x(t)), and let I ⊂ [0, τ [ be the set of 0 ≤ t < τ such that
g′(t) and ẋ(t) exist and ẋ(t) ∈ F (x(t)). For all t ∈ I and y ∈ ΠΛ(x(t))

g(t + h) − g(t) ≤ ‖x(t + h) − y‖ − ‖x(t) − y‖
= ‖x(t) + ẋ(t)h− y‖ − ‖x(t) − y‖ + |h|ε(h),

where limh→0 ε(h) = 0. Hence

g′(t) ≤ 1

‖x(t) − y‖〈x(t) − y, ẋ(t)〉

= −g(t) +
1

‖x(t) − y‖〈x(t) − y,x(t) − y + ẋ(t)〉.

Thus, ẋ ∈ F (x) and (5.1) imply g′(t) ≤ −g(t) for all t ∈ I. Since g and x are absolutely
continuous, I has full measure in [0, τ [. Hence g(t) ≤ e−tg(0) for all t < τ . Therefore
V (x(t)) < V (x) for all 0 < t < τ , which shows (iii). Finally, V (x(t)) ≤ e−tV (x)
shows that the sets V −1[0, r′) (with 0 < r′ ≤ r) are fundamental neighborhoods of
the attractor in Λ.

In particular, if any point of E has a unique projection on Λ (for example, Λ
convex), then C = C, and one recovers exactly Blackwell’s sufficient condition for
approachability.

Corollary 5.2 (Blackwell’s approachability theorem). Consider the decision
making process described in section 2.1, Example 2.2. Let Λ ⊂ E be a compact set.
Assume that there exists a strategy Q such that for all x ∈ E\Λ there exists y ∈ ΠΛ(x)
such that the hyperplane orthogonal to [x, y] through y separates x from C(x). Then
Λ is approachable.
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Proof. Let L(xn) denote the limit set of {xn}. By Corollary 5.1, Λ is an attractor
with fundamental neighborhood E, hence a global attractor. Thus Theorem 3.6 with
Proposition 2.1 and Corollary 3.24 imply that L(xn) is almost surely contained in
Λ.

5.2. Smale’s approach to the prisoner’s dilemma. We develop here Ex-
ample 2.4. Consider a 2 × 2 prisoner’s dilemma game. Each player has two possible
actions: cooperate (play C) or defect (play D). If both cooperate, each receives α; if
both defect, each receives λ; if one cooperates and the other defects, the cooperator
receives β and the defector γ. We suppose that γ > α > λ > β, as is usual with a
prisoner’s dilemma game. We furthermore assume that

γ − α < α− β,

so that the outcome space E is the convex quadrilateral whose vertices are the payoff
vectors

CD = (β, γ), CC = (α, α), DC = (γ, β), DD = (λ, λ);

see the figure below.

 DD

 DC

 CC

 CD

Λ

The outcome space E

Let δ be a nonnegative parameter. Adapting Smale [27] and Benäım and Hirsch [4, 5],
a δ-good strategy for player 1 is a strategy Q1 = {Q1

x} (as defined in section 2.1)
enjoying the following features:

Q1
x(play C) = 1 if x1 > x2

and

Q1
x(play C) = 0 if x1 < x2 − δ.

The following result reinterprets the results of Smale [27] and Benäım and Hirsch
[4, 5] in the framework of approachability. It also provides some generalization (see
Remark 5.4 below).
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Theorem 5.3. (i) Suppose that player 1 plays a δ-good strategy. Then the set

Λ = {x ∈ E : x2 − δ ≤ x1 ≤ x2}

is approachable.
(ii) Suppose that both players play a δ-good strategy and that at least one of them is

continuous (meaning that the corresponding function x → Qi
x(play C) is continuous).

Then

lim
n→∞

xn = CC

almost surely.
Proof. (i) Let x ∈ E \ Λ. If x1 > x2, then

C(x) = C(x) = [CC,CD],

and the line {u ∈ R2 : u1 = u2} separates x from C(x). Similarly if x1 < x2 − δ, then

C(x) = C(x) = [DD,DC],

which is separated from x by the line {u ∈ R2 : u1 = u2 − δ}. Assertion (i) then
follows from Corollary 5.2.

(ii) If both play a δ-good strategy, then (i) and its analogue for player 2 imply
that the diagonal

Δ = {x ∈ E : x1 = x2}

is approachable. Thus L(xn) ⊂ Δ. Also (by Proposition 2.1, Theorem 3.6, and
Lemma 3.5) L(xn) is invariant under the differential inclusion induced by

F (x) = −x + C(x),

where C(x) = C1(x) ∩ C2(x) and Ci(x) is the convex set associated with Qi (the
strategy of player i). Suppose that one player, say 1, plays a continuous strategy.
Then C(x) ⊂ C1(x) = C1(x) and for all x ∈ Δ, C1(x) = [CD,CC]. Now, there is
only one subset of Δ which is invariant under ẋ ∈ −x + [CD,CC]; this is the point
CC. This proves that L(xn) = CC.

Remark 5.4. (i) In contrast to Smale [27] and Benäım and Hirsch [4, 5], observe
that assertion (i) makes no hypothesis on player 2’s behavior. In particular, it is
unnecessary to assume that player 2 has a strategy of the form defined by section 2.1.

(ii) The regularity assumptions (on strategies) are much weaker than in Benäım
and Hirsch [4, 5].

(iii) A 0-good strategy makes the diagonal Δ approachable. However, if both
players play a 0-good strategy, then C(x) = E for all x ∈ Δ, and we are unable to
predict the long-term behavior of {xn} on Δ.

5.3. Fictitious play in potential games. Here we generalize the result of
Monderer and Shapley [25]. They prove convergence of the classical discrete fictitious
play process, as defined in Example 2.3, for n-linear payoff functions. Harris [17]
studies the best-response dynamics in this case but does not derive convergence of
fictitious play from it. Our limit set theorem provides the right tool for doing this,
even in the following, more general setting.
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Let Xi, i = 1, . . . , n, be compact convex subsets of Euclidean spaces and U :
X1 × · · · ×Xn → R be a C1 function which is concave in each variable. U is inter-
preted as the common payoff function for the n players. We write x = (xi, x−i) and
define BRi(x−i) := Argmaxxi∈Xi U(x) the set of maximizers. Then x �→ BR(x) =
(BR1(x−1), . . . , BRn(x−n)) is upper semicontinuous (by Berge’s maximum theorem,
since U is continuous) with nonempty compact convex values. Consider the best
response dynamics

ẋ ∈ BR(x) − x.(5.2)

Its constant solutions x(t) ≡ x̂ are precisely the Nash equilibria x̂ ∈ BR(x̂); i.e.,
U(x̂) ≥ U(xi, x̂−i) for all i and xi ∈ Xi. Along a solution x(t) of (5.2), let u(t) =
U(x(t)). Then for almost all t > 0,

u̇(t) =
n∑

i=1

∂U

∂xi
(x(t))ẋi(t)(5.3)

≥
n∑

i=1

[U(xi(t) + ẋi(t),x−i(t)) − U(x(t))](5.4)

=

n∑
i=1

[
max
yi∈Xi

U(yi,x−i(t)) − U(x(t))

]
≥ 0,(5.5)

where from (5.3) to (5.4) we use the concavity of U in xi, and (5.5) follows from
(5.2) and the definition of BRi. Since the function t �→ u(t) is locally Lipschitz, this
shows that it is weakly increasing. It is constant in a time interval T , if and only if
xi(t) ∈ BRi(x−i(t)) for all t ∈ T and i = 1, . . . , n, i.e., if and only if x(t) is a Nash
equilibrium for t ∈ T (but x(t) may move in a component of the set of Nash equilibria
(NE) with constant U).

Theorem 5.5. The limit set of every solution of (5.2) is a connected subset of
NE, along which U is constant. If, furthermore, the set U(NE) contains no interval
in R, then the limit set of every fictitious play path is a connected subset of NE along
which U is constant.

Proof. The first statement follows from the above. The second statement follows
from Theorem 3.6 together with Proposition 3.27 with V = −U and Λ = NE.

Remark 5.6. The assumption that the set U(NE) contains no interval in R

follows via Corollary 3.28 if U is smooth enough (e.g., in the n-linear case) and if each
Xi has at most countably many faces, by applying Sard’s lemma to the interior of
each face.

Example 5.7 (2 × 2 coordination game). The global attractor of (5.2) consists
of three equilibria and two line segments connecting them. The internally chain
transitive sets are the three equilibria. Hence every fictitious play process converges
to one of these equilibria.

The case of (continuous concave-convex) two-person zero-sum games was treated
in Hofbauer and Sorin [21], where it is shown that the global attractor of (5.2) equals
the set of equilibria. In this case the full strength of Theorem 3.6 and the notion of
chain transitivity are not needed; the invariance of the limit set of a fictitious play
path implies that it is contained in the global attractor; compare Corollary 3.24.
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[3] M. Benäım, Dynamics of stochastic approximation algorithms, in Séminaire de Probabilités
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A SPILLOVER PHENOMENON IN THE OPTIMAL LOCATION OF
ACTUATORS∗

PASCAL HÉBRARD† AND ANTOINE HENROT‡

Abstract. In this paper, we are interested in finding the optimal location and shape of the
actuators in a stabilization problem. Namely, we consider the one-dimensional wave equation damped
by an internal feedback supported on a subdomain ω of given length. The criterion we want to
optimize represents the rate of decay of the total energy of the system. It theoretically involves all
the eigenmodes of the operator. From an engineering point of view, it seems more realistic to consider
only a finite number of modes, say the N first ones. In that context, we are able to prove existence
and uniqueness of an optimal domain ω∗

N : it is the better possible location for the actuators. We
characterize this optimal domain and we point out the following strange phenomenon (at least for
small lengths): the optimal domain ω∗

N which is the better one for the N first modes is actually the
worse one for the N + 1th mode. This looks like the well-known spillover phenomenon in control
theory. At last, we will give some possible extension and open problems in higher dimension.

Key words. damped wave equation, optimal location, spillover, stabilization
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1. Introduction. In control and stabilization problems the choice of the best
location (and shape) of the actuators is a very important and practical question.
Among criterion which can be studied, the rate of decay of the energy of the system
is an important one since it does not depend on the initial conditions. In the one-
dimensional problem that we are going to consider here (wave equation with internal
distributed control), it is known that this rate of decay is precisely the opposite of the
spectral abscissa of the corresponding operator (see [9]). Therefore, optimizing this
rate of decay consists in pushing all the eigenvalues as far as possible to the left in the
complex plane. Among works in this direction, we refer, e.g., to [8] where it is proved
that a constant damping is a local maximizer of the rate of decay [11], which shows
that the constant damping is not a global maximizer and [5] where they show that
we can achieve an arbitrarily large rate of decay by considering damping of the kind
a(x) = 1/(x+b) (see below for the mathematical model). In this work we will restrict
ourselves to a damping of the kind kχω(x) where k is a (small) positive constant and
χω is the characteristic function of a subdomain ω of the string which is our main
unknown.

In higher dimension, this spectral abscissa is also an important component of the
rate of decay, but we must also consider a geometric quantity describing the time each
high frequency (or waves with a little wave length) stays in the zone of control; see
[3], [18].

From an engineering point of view, it seems to be difficult (and perhaps useless) to
take into account an infinite number of modes. So, a more reasonable version of this
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†Dassault Systems and Institut Élie Cartan Nancy UMR 7502 UHP-CNRS-INRIA 54506

Vandoeuvre-les-Nancy, France (pascal hebrard@ds-fr.com).
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problem would be to consider only the N first modes. Indeed, the high frequencies are
not too much penalizing for the vibrating structure. The aim of this paper is to show
that if we choose the optimal domain, say ω∗

N , for the N first modes (we will prove
that it exists and is unique), this domain behaves very poorly for the first mode that
we have forgotten: the (N + 1)th mode! More precisely, ω∗

N generally concentrates
on the nodes of the (N +1)th mode, and therefore does not control it at all. Roughly
speaking, the best domain for the N first modes is the worse one for the (N + 1)th
mode! In this paper, we are able to prove this result for dampers with small support,
but actually we can observe numerically that, in general, the best damper for the N
first modes behaves very poorly for the N +1th mode; see Figure 5.1 and section 5.2.
Since the choice of N is generally arbitrary, it seems to be a very bad idea to look
for the optimal zone of control for the N first modes. It is, somehow, as if we push
the energy after the N first modes like in classical spillover phenomena, as described,
for example, in [2]. In our paper, we choose to consider a wave packet constituted
with all the low frequencies. In some sense, the phenomenon which occurs here seems
similar to the one due to different group velocity as described in [25]; see also [26]
for a survey, but in our case it is not only a question of low and high frequencies.
Indeed, we could have chosen other wave packets, in particular with different group
velocities. Actually, we can observe (at least numerically, we did not write proofs)
the same phenomenon for any choice of wave packets. For example, if we want to
damp at best the packet of eigenfrequencies λ1, λ4, λ5, the optimal domain we get
(which still exists and is unique) will mainly concentrate on the nodes of the second
eigenfunction φ2, which is the first frequency we have forgotten, and therefore will
be unable to damp correctly this eigenmode. Nevertheless, E. Zuazua claims in [26]
that controlling a discrete version of a continuous wave model is often a bad way
of controlling the continuous wave model itself. We have another illustration of this
phenomenon here.

The plan of this paper is the following. Section 2 deals with the mathematical
model which is used and fix the notations. In section 3 we prove existence and
uniqueness of the optimal domain and we characterize it. Section 4 is devoted to
describe and prove the kind of spillover phenomenon that we have just described
above. At last, in section 5, we will give some remarks and possible extensions to the
two-dimensional case.

2. The mathematical model. Let us now give the model and the notations
that we are going to use throughout this paper. We consider a string (a one-dimensional
model), but it is essentially for technical reasons. We will say a few words, in section 5,
about higher dimensional models, pointing out what has to be done to generalize our
results.

So, let us denote by Ω = (0, 1) the unit string that we suppose fixed at its ex-
tremities. We want to stabilize this string thanks to a damping acting only on a
subdomain ω. More precisely, we consider the following modelling. The displacement
u of the string in presence of viscous damping 2kχω (where χω denotes the charac-
teristic function of the subdomain ω of positive length), satisfies the damped wave
equation {

utt(x, t) − uxx(x, t) + 2kχω(x)ut(x, t) = 0, x ∈ (0, 1), t > 0
u(0, t) = u(1, t) = 0, t > 0

(2.1)

upon being set in motion by the initial disturbance

u(x, 0) = u0(x), ut(x, 0) = u1(x) ∀x ∈ [0, 1].(2.2)
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The energy of the string at time t is defined by

E(t) =

∫ 1

0

[
u2
x(x, t) + u2

t (x, t)
]
dx.

If ω has positive measure, this system is exponentially stable, i.e., its energy is known
to obey (see, e.g., [6], [9])

E(t) ≤ CE(0)e−2τt(2.3)

for some constants C > 0 and τ > 0 independent of the initial data. We define the
decay rate, as a function of k and ω, to be the largest such τ ,

τ(k, ω) = sup{τ ′ : ∃C(τ ′) > 0 s.t. E(t) ≤ CE(0)e−2τ ′t,
for every solution of (2.1) and (2.2)}.

Cox and Zuazua have shown in [9] that if χω is of bounded variation, i.e., ω is the
union of a finite number of intervals, then τ(k, ω) is equal to the opposite of the
spectral abscissa of the operator A:

τ(k, ω) = −μ = − sup{Re λ : λ ∈ sp(A)},

where A denotes the linear operator associated to (2.1):

A =

(
0 I
d2

dx2 −2kχω(x)

)
, D(A) = (H2(0, 1) ∩H1

0 (0, 1)) ×H1
0 (0, 1)(2.4)

and sp(A) its spectrum. Therefore, a natural question would be to look for k and ω
which minimize this spectral abscissa (or maximize τ(k, ω)).

In such a generality, looking for the maximizer of (k, ω) �→ τ(k, ω) is quite diffi-
cult. In [15], we explain (and we give justifications) how to simplify the problem by
considering, instead of the decay rate, the quantity

J(ω) = inf
n∈N∗

∫ 1

0

χω(x)φ2
n(x)dx,(2.5)

where N∗ stands for the set of positive integers and (φn)n∈N∗ denote the normalized
eigenfunctions for the problem without damping, i.e., φn =

√
2 sinnπx. Actually,

when k is not too large, we have τ(k, ω) 
 kJ(ω), since J(ω) is nothing else but the
derivative of τ with respect to k for k = 0. On the other hand, taking k large is not
interesting at all, due to the classical overdamping phenomenon described, e.g., in [9],
[12], [15]. Therefore, J(ω) gives a good approximation of the decay rate for small k.
We also refer to [13] for a similar analysis.

As explained in the Introduction, it seems more realistic, at least from an engi-
neering point of view, to take into consideration only a finite number of modes. It
means that it seems reasonable to replace the functional J by the simpler JN (where
N is a given integer), defined by

JN (ω) = min
1≤n≤N

∫ 1

0

χω(x)φ2
n(x)dx.(2.6)

Therefore, we are interested in solving the following problem:

Pω

{
Find ω∗ subset of ]0, 1[ of measure, l which maximizes

JN (ω) = min1≤n≤N 2
∫ 1

0
χω(x) sin2(nπx) dx.
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In what follows, for each integer k and each function a, we will denote by jk(a) the
quantity

jk(a) =

∫ 1

0

a(x)φ2
k(x)dx .

We could also wonder whether JN is a “good” approximation of J . Since it is proved
in [15] that J has no maximizer in the class of characteristic functions (except for
the particular case l = 0.5) while JN has always a (unique) maximizer in this class
(as proved below), it seems at first sight that it is not a good approximation. But,
it becomes a good one if we accept working in the convex set Al defined in (3.1).
Actually, we can prove the following proposition.

Proposition 2.1. Let us consider the functionals JN and J defined on the
convex set Al (defined in (3.1)), respectively, by JN (a) = min1≤n≤N jn(a) and J(a) =
infn∈N∗ jn(a). Then JN Γ-converge to J in the sense of De Giorgi. Moreover, let χω∗

N

be the sequence of maximizers of JN given by Theorem 3.1, then χω∗
N

converges (up
to a subsequence) weak-* to a maximizer of J and maxAl

J = limN→+∞ JN (χω∗
N

).

Proof. Since we are interested in a maximization problem, the definition of Γ-
convergence reads here; see, e.g., [10]:

(i) For all sequence an in Al, which converge weak-* to a, J(a) ≥ lim supJN (aN ).
(ii) There exists one sequence an in Al, which converge weak-* to a, such that J(a) ≤

lim inf JN (aN ).

For (i), let us fix ε > 0 and choose an integer k0 such that J(a) ≤ jk0(a) ≤ J(a) + ε.
For every integer N ≥ k0, we have

JN (aN ) ≤ jk0(aN ).(2.7)

Now, jk0(aN ) → jk0(a) when N → +∞, therefore taking the lim-sup in both sides
of (2.7) yields lim supJN (aN ) ≤ lim sup jk0(aN ) = jk0(a) ≤ J(a) + ε which gives (i)
since ε is arbitrary.

For (ii), it suffices to consider a constant sequence an = a since J(a) ≤ JN (a).

Now, the last two claims come directly from the classical theorem of De Giorgi
(see [10]) and the fact that the sequence χω∗

N
is precompact in Al.

The functional J may have several maxima but the characterization of ω∗
N which is

given below (Theorem 4.1) shows that χω∗
N

converges actually to the constant function
a(x) = l which is the more natural maximizer.

3. Existence, uniqueness, and characterization of the optimum. We be-
gin by proving the following existence and uniqueness result for the optimal domain.

Theorem 3.1. The problem Pω has a unique solution ω∗
N . This solution is a

union of at most N intervals. It is symmetric with respect to 1/2.

The proof of Theorem 3.1 will be done in several steps. First of all, we are going to
use some kind of relaxation of the problem by introducing the convex hull Al of the
set of characteristic functions. Existence of an optimum in this set will be obtained
easily. By characterization of this optimum thanks to the optimality conditions, we
will be able to prove that it is indeed an extreme point of Al, i.e., the characteristic
function of a subdomain. Uniqueness will then follow from the fact that the functional
J is concave.
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Step 1 (relaxation). The maximization problem is posed on the set of characteristic
functions

Ll =

{
a(x) ∈ L∞(0, 1), a(x) = 0 or 1 a.e.,

∫ 1

0

a(x) dx = l

}
.

This set is not very convenient for this maximization problem, since it is not closed for
the natural topology associated to the functional JN , namely the weak-star topology
on L∞(0, 1). Indeed, JN is clearly continuous for this topology. So, let us introduce
the convex hull of Ll,

Al =

{
a(x) ∈ L∞(0, 1), 0 ≤ a(x) ≤ 1,

∫ 1

0

a(x) dx = l

}
(3.1)

which is also the closure of Ll for the weak-star topology on L∞(0, 1). The set Al

is compact for this topology, while Ll coincides with the set of extreme points of Al;
see, e.g., [16]. Moreover, JN has a natural extension (always denoted by JN ) to Al

defined by

∀a ∈ Al, JN (a) = min
1≤n≤N

∫ 1

0

a(x)φ2
n(x)dx.(3.2)

It is clear that JN is continuous on Al for the weak-star topology. Therefore, JN
admits (at least) a maximum in Al.
Step 2 (optimality conditions). Let a∗ such a maximum, and let us denote by I(a∗)
the active index-set

I(a∗) = {k ∈ {1, 2, . . . , N}, such that jk(a
∗) = JN (a∗)}.

It is well known in nonsmooth analysis (see, e.g., [17]) that the subdifferential of JN
at a∗ is given by

∂JN (a∗) := co{∪∂jk(a∗), k ∈ I(a∗)},(3.3)

where co denotes the convex hull. Now, the jk being linear, they are equal to their
differential and the optimality condition reads

0 ∈ ∂JN (a∗) + λ0L0,(3.4)

where λ0 stands for a Lagrange multiplier taking into account the length constraint

and L0 is the linear form defined by < L0, h >=
∫ 1

0
h(x) dx. What yields, thanks to

(3.3) is ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃(λk) ∈ [0, 1], k ∈ I(a∗),

∑
λk = 1, ∃λ0 ∈ R such that

∀h ∈ L∞([0, 1]), h admissible,∑
k∈I(a∗)

λk

∫ 1

0

h(x)φ2
k(x) dx + λ0

∫ 1

0

h(x) dx = 0.
(3.5)

Step 3 (maxima are characteristic functions). Let us fix ε ∈ (0, 1/2). We are going
to prove that the set Aε = {x ∈ Ω | ε ≤ a∗(x) ≤ 1 − ε} has zero measure for every
ε > 0 which obviously implies that a∗ is a characteristic function. Let us assume, for
a contradiction, |Aε| > 0 and let us use the optimality conditions (3.5). We choose h
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with a support in Aε: it is clearly admissible (we refer, e.g., to [7], [4] for the complete
description of the cone of admissible functions for the set Al). This implies that∑

k∈I(a∗)

λkφ
2
k(x) + λ0 = 0, for almost every x ∈ Aε(3.6)

If Aε has positive measure, this equality can be extended to the whole interval by
analyticity of the eigenfunctions. But such an identity is impossible since the system
of functions

{1, φ2
1, . . . , φ

2
k} = {1, 2 sin2 n1πx, . . . , 2 sin2 nkπx} is linearly independent.(3.7)

Consequently, for all ε, Aε has zero measure which proves the desired result.
Step 4 (uniqueness and symmetry). JN is clearly a concave function as a minimum
of linear functions. Therefore, if it would exist two distinct maxima a∗1 and a∗2, all
the points in the segment [a∗1, a

∗
2] would also be maxima. But it is impossible since

we have proved in step 3 that all the maxima were extreme points of the convex
Al. Now, uniqueness implies symmetry of the minimizer with respect to 1/2 since
JN (a(x)) = JN (a(1 − x)).
Step 5 (at most N connected components). We recall that the maximum a∗ = χω∗

satisfies the optimality condition (3.5). Let us introduce

ΨΛ(x) = 2
∑

k∈I(a∗)

λk sin2(kπx).

The Lagrangian of the maximization problem can be written as

L(a, λ0,Λ) =

∫ 1

0

a(x)ΨΛ(x)dx + λ0

(∫ 1

0

a(x)dx− l

)
.

Now, for every admissible function h and every ε > 0 small enough, we have

L(χω∗ + εh, λ0,Λ) − L(χω∗ , λ0,Λ) ≤ 0

which can be rewritten, thanks to the linearity of L with respect to its first variable,

L(h, λ0,Λ) ≤ 0, for h admissible.

Now, we can choose as admissible h a function satisfying

∀x ∈ ω∗, h(x) ≤ 0
∀x ∈ ω∗c, h(x) ≥ 0∫ 1

0
h(x)dx = 0.

For such a choice we get,

∀x ∈ ω∗, ΨΛ + λ0 ≥ 0
∀x ∈ ω∗c, ΨΛ + λ0 ≤ 0.

(3.8)

By continuity of ψΛ, equations (3.8) imply that for all x ∈ ∂ω∗ ∩ (0, 1),

ψΛ(x) + λ0 = 0.(3.9)
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Now

ψΛ(x) =
∑

k∈I(a∗)

λk (1 − cos(2kπx)) = 1 −
∑

k∈I(a∗)

λkTk(cos 2πx),

where Tk is the kth Tchebyshev polynomial. Therefore, ψΛ(x) is a polynomial in
cos 2πx of degree less or equal to N and the equation ψΛ(x) + λ0 = 0 has at most
2N solutions in ]0, 1[. Consequently, ω∗ has at most N connected components unless
if ω∗ contains an interval of the kind [0, η] (and also [1 − η, 1] by symmetry). But
this last case cannot happen since, for every small β > 0 and for every integer n,∫ η
0
φn(x)dx <

∫ β+η

β
φn(x)dx.

The equation (3.9) shows that the optimal domain ω∗ is a level set of the function
ΨΛ but, of course, it remains to find the Lagrange multipliers Λ = (λk)k∈I(a∗) and

also to find I(a∗). The following theorem gives the answer to the second question and
also gives a practical way to determine ω∗ at least for small l.

Theorem 3.2. For each integer N , there exists a real lN ≤ 1 such that for
l ≤ lN , the optimal domain ω∗

N satisfies

j1(ω
∗
N ) = j2(ω

∗
N ) = · · · = jN (ω∗

N ).(3.10)

Remark 1. The relations (3.10) together with the description of ω∗
N as a sym-

metric union of at most N intervals yields a practical way to determine the optimum.
Indeed, let us assume for example that N = 2M is even. We write

ω∗
N =

M⋃
k=1

[ak − lk/2, ak + lk/2] ∪
M⋃
k=1

[1 − ak − lk/2, 1 − ak + lk/2],

then the relations (3.10) with the supplementary equality
∑M

k=1 lk = l/2 yields a
2M × 2M nonlinear system whose (unique) solution gives the desired domain. We
will use this remark later in section 4.

Remark 2. The relations (3.10) do not hold for any value of the constraint l as
it is shown by the following (numerical) example. Take N = 3 and l = 0.9 then the
optimal domain is

ω∗
3 = [0.0475707, 0.3417644] ∪ [0.3441937, 0.6558063] ∪ [0.6582356, 0.9524293]

which satisfies j1(ω
∗
3) > j2(ω

∗
3) = j3(ω

∗
3) and J3(ω

∗
3) = 0.987672 while for the best

domain satisfying j1 = j2 = j3, we have only J3(ω) = 0.987177. Actually, we can see
numerically that the constant lN decreases when N increases.

Proof of Theorem 3.2. The first idea consists of transposing the problem in finite
dimension thanks to the following trick. Let Kl

N be the subset of RN defined by

Kl
N = {X = (x1, x2, . . . , xN ), s.t. ∃a ∈ Al with xi = ji(a), i = 1, 2, . . . , N}.(3.11)

We will also write Kl
N = K when N and l are fixed, since no misunderstanding is

possible. The set K is obviously convex and compact, since it is the image of Al

by the linear (continuous) functional a �→ (j1(a), j2(a), . . . , jN (a)). We will give in
section 5 some supplementary properties of K.
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The first bissectrix Δ = {X ∈ RN , x1 = x2 = · · · = xN} meets K (take a = l a
constant: we have ji(a) = l for all i). Therefore, we can introduce the point X∗, the
furthest point of Δ ∩ K,

X∗ = (x∗, x∗, . . . , x∗) with x∗ = max{x such that X = (x, x, . . . , x) ∈ Δ ∩ K}.

Note that x∗ > l since a = l cannot be the maximizer of JN . The claim in Theorem 3.2
is equivalent to say that X∗ solves the maximization problem

G(X∗) = max
X∈K

G(X), where G(X) = min
1≤k≤N

{xk}.(3.12)

A geometrical interpretation of (3.12) consists in saying that there is no point of K
in the quadrant

Q = {X = (x1, x2, . . . , xN ) ∈ RN; xi > x∗, i = 1, 2, . . . , N}.

To prove Theorem 3.2, we argue by contradiction. We will prove that if Q∩K is not
empty, there exists a point of the bissectrix Δ in Q ∩ K (at least for l small enough)
which contradicts the fact that X∗ maximizes G on Δ ∩ K. For that purpose, we
introduce Xk to be the furthest point of K in the direction of xk (the kth coordinate).
Actually, we can determine Xk. Indeed, Xk is obtained by solving the maximization

problem: find a ∈ Al which maximizes
∫ 1

0
a(x) sin2 kπx dx. It follows from the proof

of Theorem 3.1 (steps 2, 3, 5, and, in particular relation (3.9)) that the maximizer is
a characteristic function χω∗

k
, level set of the function sin2 kπx. Therefore,

ω∗
k =

k−1⋃
j=0

[
2j + 1

2k
− l

2k
,
2j + 1

2k
+

l

2k

]
.

We can easily deduce the coordinates of Xk. For k = 1,

jm(ω∗
1) = l + (−1)m+1 sinmπl

mπ
(3.13)

while, for k ≥ 2,

jm(ω∗
k) = l −

k−1∑
j=0

1

mπ
sin

mπl

k
cos

2mπ(2j + 1)

2k
.

Using
∑k−1

j=0 cos mπ(2j+1)
k = 0 for m �= k, this yields

jm(ω∗
k) = l if m �= k and jk(ω

∗
k) = l +

1

π
sinπl.(3.14)

For simplicity, let us put the origin at X∗. In this case, to sum up the vertices of the
set K in the direction of the coordinate axis are the points

X1 =

⎛⎜⎜⎜⎜⎜⎝
h
β2

β3

...
βN

⎞⎟⎟⎟⎟⎟⎠ X2 =

⎛⎜⎜⎜⎜⎜⎝
−α
h
−α
...

−α

⎞⎟⎟⎟⎟⎟⎠ X3 =

⎛⎜⎜⎜⎜⎜⎝
−α
−α
h
−α
...

⎞⎟⎟⎟⎟⎟⎠ . . . XN =

⎛⎜⎜⎜⎜⎜⎝
−α
−α
...

−α
h

⎞⎟⎟⎟⎟⎟⎠,
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where

α = x∗ − l > 0,
h = l + sinπl

π − x∗ > 0,
and βi = l + (−1)i+1 sin iπl

iπ − x∗ , i = 2, . . . , N.
(3.15)

As explained above, let us assume (for a contradiction) that there is a point X0 =
(x0

1, . . . , x
0
N )T in Q∩K. We are looking for a point X, convex combination of X∗ = O,

X0, X1, X2, . . . , XN (which ensures that X will be in K) that we want to be in the
set Q and on the bissectrix Δ. Existence of such a point would lead to a contradiction
since X∗ maximizes G on Δ ∩ K. We write X as

X = (1 − s)O + tX0 +

N∑
i=1

λiXi,

where

0 < s ≤ 1, 0 ≤ t ≤ 1, 0 ≤ λi ≤ 1, t +

N∑
i=1

λi = s.(3.16)

Let us first express that X must belong to Δ. Writing x1 = x2, x1 = x3, etc. this
yields the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

tx0
1 + λ1h− λ2α = tx0

2 + λ1β2 + λ2h
tx0

1 + λ1h− λ3α = tx0
3 + λ1β3 + λ3h

...
tx0

1 + λ1h− λNα = tx0
N + λ1βN + λNh.

(3.17)

Summing these relations and using (3.16) gives

(N − 1)tx0
1 + (N − 1)λ1h− α(s− t− λ1) = t

N∑
i=2

x0
i + λ1

N∑
i=2

βi + h(s− t− λ1)

what can be written, thanks to (3.15) is

t

[(
Nx0

1 −
N∑
i=1

x0
i

)
+

sinπl

π

]
+ λ1

[
N∑
i=2

(h− βi) +
sinπl

π

]
=

sinπl

π
s.(3.18)

Let us introduce

Σ =

N∑
i=2

(h− βi) +
sinπl

π
= N

sinπl

π
+

N∑
i=2

(−1)i
sin iπl

iπ
.

From now on, we will assume l ≤ 1/(2N). Then, Σ is clearly positive. We get λ1

from (3.18),

λ1 =

(
sinπl

π
s− t

[(
Nx0

1 −
N∑
i=1

x0
i

)
+

sinπl

π

])
/Σ.(3.19)
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Replacing in each equation (3.17) gives the value of λk,

λk =
t(x0

1 − x0
k)

sinπl
π

+
λ1(h− βk)

sinπl
π

.(3.20)

We now use h − βk = sinπl
π + (−1)k sin kπl

kπ (see (3.15)) and we introduce normalized

coordinates: y0
k :=

x0
k

sinπl
π

. Therefore, (3.19) and (3.20) can be rewritten

λ1 =
sinπl
π

Σ

(
s− t− t

(
Ny0

1 −
N∑
i=1

y0
i

))

λk = t(y0
1 − y0

k) +
sinπl
π + (−1)k sin kπl

kπ

Σ

(
s− t− t

(
Ny0

1 −
N∑
i=1

y0
i

))
.

(3.21)

We also compute x1 (= x2 = · · · = xN ), and easily obtain

x1 = s

(
( sinπl

π )2

Σ
− α

)
+ t

(
x0

1 + α−
( sinπl

π )2

Σ
−

sinπl
π

Σ

(
Nx0

1 −
N∑
i=1

x0
i

))
.(3.22)

We recall that we want λ1 ≥ 0. So, we have the first necessary condition,

Q1 := s− t

(
1 + Ny0

1 −
N∑
i=1

y0
i

)
≥ 0.(3.23)

We will now express that every λk has also to be nonnegative. For that purpose, we
introduce the (nonpositive) number

−ξ := min
1≤k≤N

(y0
1 − y0

k),(3.24)

and we assume the second necessary condition,

ξt ≤
sinπl
π − sin 3πl

3π

Σ
Q1.(3.25)

Equation (3.24) together with (3.25) imply

∀k, t(y0
1 − y0

k) ≥ −ξt ≥
sin 3πl

3π − sinπl
π

Σ
Q1.

Therefore, from (3.20), it comes that

λk ≥
sin 3πl

3π + (−1)k sin kπl
kπ

Σ
Q1.(3.26)

For k = 2, 3, 4, it is clear that (3.26) with (3.23) imply λk ≥ 0. For higher values
of k, it is also true. Indeed, since x �→ sinx/x is decreasing for x < π/2, we have
sin(3πl)/(3π) ≥ sin(kπl)/(kπ) for 3 ≤ k ≤ N .

In conclusion, if we assume (3.23), (3.25), and l < 1/(2N), then λk ≥ 0, for all
k ≤ N . Let us set,

γ =
t

s
Y = 1 + Ny0

1 −
N∑
i=1

y0
i .
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Then (3.23) can be rewritten as 1− γY ≥ 0 and is obviously true for γ small enough.
In the same way, (3.25) is

ξγ ≤
sinπl
π − sin 3πl

3π

Σ
(1 − γY ),

which is also true for γ small since
sinπl

π
− sin 3πl

3π
> 0.

It remains to be checked whether x1, given by (3.22), is positive. With the
previous notations,

x1 = γ

(
x0

1 − Y
( sinπl

π )2

Σ
+ α

)
+

( sinπl
π )2

Σ
− α.

therefore if we are able to prove that
( sinπl

π )2

Σ
− α > 0, it will imply that x1 > 0 for

γ small enough.
Now, when l → 0

( sinπl
π )2

Σ
∼
{

l
N if N is odd
l

N+1 if N is even.
(3.27)

On the other hand, the proof of Theorem 4.1 shows that, when l → 0

x∗ ∼ j1

(
N⋃

k=1

[
k

N + 1
− l

2N
,

k

N + 1
+

l

2N

])
= l − 1

π
sin

πl

2N

N∑
k=1

cos
2kπ

N + 1
.

Since
∑N

k=1 cos 2kπ
N+1 = −1, this yields

α = x∗ − l ∼ 1

π
sin

πl

2N
∼ l

2N

and the result follows from the comparison with (3.27). This finishes the proof of
Theorem 3.2.

4. The spillover phenomenon. We are going to describe more precisely the
optimal domain ω∗

N when the length constraint l goes to zero. According to Theo-
rem 3.1, ω∗

N is symmetric and has, at most, N connected components. Therefore,
in the case N even we write N = 2K and there exists 0 < α1 < α2 < · · · < αK < 1/2

and l1, l2, . . . , lK ≥ 0 such that

ω∗
N =

(
K⋃
i=1

[αi − li/2, αi + li/2]

)⋃( K⋃
i=1

[1 − αi − li/2, 1 − αi + li/2]

)
in the case N odd we write N = 2K + 1 and there exists 0 < α1 < α2 < · · · < αK <

1/2 and l1, l2, . . . , lK+1 ≥ 0 such that

ω∗
N =

(
K⋃
i=1

[αi − li/2, αi + li/2]

)⋃
[1/2 − lK+1/2, 1/2 + lK+1/2] . . .

. . .
⋃( K⋃

i=1

[1 − αi − li/2, 1 − αi + li/2]

)
.

The main result of this section is the following theorem.
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Theorem 4.1. When l goes to 0, the optimal domain for the N first modes ω∗
N

concentrates around the nodes of the N + 1th eigenfunction.
More precisely,when l → 0+,

∀i, αi(l) →
i

N + 1
, li(l) ∼

l

N
.

For the sake of simplicity, we are going to prove this result in the case N = 2K even,
the case N odd is exactly similar. We now express that ω∗

N satisfies

j1(ω
∗
N ) = j2(ω

∗
N ) = · · · = jN (ω∗

N ).(4.1)

This yields⎧⎪⎪⎨⎪⎪⎩
K∑
i=1

[
1

nπ
sinnπli cos 2nπαi −

1

(n− 1)π
sin(n− 1)πli cos(2n− 2)παi

]
= 0

for n = 2, 3, . . . , N.

(4.2)

Asymptotically, when l goes to 0, the (αi)s and the (li)s are therefore solutions of the
linearized system (in a neighborhood of l = 0),

K∑
i=1

li(cos 2nπαi − cos(2n− 2)παi) = 0, for n = 2, 3, . . . , N.(4.3)

Now if (lp) is a sequence which tends to 0, after extracting a finite number of subse-
quence, we can write lpi = ti(lp).lp with ti(lp) ∈ [0, 1] converging to ti and ai(lp) which
converge to ai. The system (4.3) leads to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 sinπα1 sin 3πα1 + t2 sinπα2 sin 3πα2 + · · · + tK sinπαK sin 3παK = 0

t1 sinπα1 sin 5πα1 + t2 sinπα2 sin 5πα2 + · · · + tK sinπαK sin 5παK = 0
...

t1 sinπα1 sin(2k + 1)πα1 + t2 sinπα2 sin(2k + 1)πα2 + · · ·
+tK sinπαK sin(2k + 1)παK = 0

...

t1 sinπα1 sin(4K − 1)πα1 + t2 sinπα2 sin(4K − 1)πα2 + · · ·
+tK sinπαK sin(4K − 1)παK = 0,

(4.4)

where we have to add the supplementary equation

t1 + t2 + . . . tK = 1/2.(4.5)

This new system can be viewed as a (2K−1)× (2K−1) linear system with unknowns
t1, t2, . . . , tK . Of course these unknowns cannot all be equal to zero because of the
supplementary equation (4.5). Therefore the matrix A of system (4.4) must be of
rank less or equal to K − 1. It means that

all determinants K ×K extracted from A are equal to 0.(4.6)
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Let us denote by L1,L2, . . . ,L2K−1, the lines of the matrix A,

A =

⎛⎜⎜⎜⎝
sinπα1 sin 3πα1 . . . sinπαK sin 3παK

sinπα1 sin 5πα1 . . . sinπαK sin 5παK

...
...

sinπα1 sin(4K − 1)πα1 . . . sinπαK sin(4K − 1)παK

⎞⎟⎟⎟⎠
→ L1

→ L2

...
→ L2K−1.

(4.7)

Now, let us compute the following K ×K determinant:

D0 = det(LK + LK ,LK−1 + LK+1, . . . ,L1 + L2K−1).

According to (4.6), D0 = 0.
On the other hand, for k = 0, 1, . . . ,K − 1 and i = 1, 2, . . . ,K,

sin(2(K − k) + 1)παi + sin(2(K + k) + 1)παi = 2 sin(2K + 1)παi cos 2kπαi.

Therefore

D0 = 2K

(
K∏
i=1

sinπαi

)(
K∏
i=1

sin(2K + 1)παi

)
D′

0,

where D′
0 is the determinant,

D′
0 =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

cos 2πα1 cos 2πα2 . . . cos 2παK

...
...

...
cos 2(K − 1)πα1 cos 2(K − 1)πα2 . . . cos 2(K − 1)παK

∣∣∣∣∣∣∣∣∣.
This determinant D′

0 can be computed thanks to Tchebyshev polynomials Tk, al-
ready introduced (cos kx = Tk(cosx)) with Tk of degree k and highest degree term is
2k−1Xk, k ≥ 1. Since the family (Tk)0≤k≤K−1 is a basis of polynomial of degree less
than K − 1, we can write

D′
0 =

(
K−1∏
k=1

2k−1

)∣∣∣∣∣∣∣∣∣
1 1 . . . 1

cos 2πα1 cos 2πα2 . . . cos 2παK

...
...

...
cosK−1 2πα1 cosK−1 2πα2 . . . cosK−1 2παK

∣∣∣∣∣∣∣∣∣.
Now this last determinant is the so-called van der Mond determinant, so

D′
0 = 2

(K−1)(K−2)
2

∏
1≤i<j≤K

(cos 2παi − cos 2παj)

= 2
(K−1)(K−2)

2

∏
1≤i<j≤K

2(cos2 παi − cos2 παj)

= 2(K−1)2
∏

1≤i<j≤K

(cos2 παi − cos2 παj).

(4.8)

This last equality shows that D′
0 cannot vanish (we recall that the (αi) is an increasing

sequence with 0 < παi < π/2). Moreover, the product
∏K

i=1 sinπαi is not zero
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since, for all i, αi ∈ ]0, 1/2[. In conclusion, there exists p ∈ {1, 2, . . . ,K} such that
sin(2K+1)παp = 0, it means that there exists q ∈ {1, 2, . . . ,K} such that αp = q

2K+1 .
Let us now compute, in the same way, the following K ×K determinant:

D1 = det(LK + LK ,LK−1 + LK+1, . . . ,L2 + L2K−2,L1).

For the same reason as above, D1 = 0. Grouping the sin terms yields

D1 = 2K

(
K∏
i=1

sinπαi

)⎛⎝ ∏
i=1, 2 ,...,K ; i 	=p

sin(2K + 1)παi

⎞⎠D′
1,

where D′
1 is the determinant

D′
1 =

∣∣∣∣∣∣∣∣∣
1 . . . 0 . . . 1

cos 2πα1 . . . 0 . . . cos 2παK

...
...

...

cos 2(K − 1)πα1 . . . sin 3πq
2K+1 . . . cos 2(K − 1)παK

∣∣∣∣∣∣∣∣∣.
Developing D′

1 with respect to its pth column, it appears a K−1×K−1 determinant
similar to D′

0. This shows that D′
1 does not vanish. Therefore, there exists r �= p such

that sin(2K + 1)παr = 0, which means that there exists s ∈ {1, 2, . . . ,K} such that
αr = s

2K+1 .
By computing successively, using the same method as for D1, the determinants

D2, D3, . . . , DK−1, with

D2 = det(LK + LK , LK−1 + LK+1, . . . , L3 + L2K−3, L2, L1 + L2K−1)

D3 = det(LK + LK , LK−1 + LK+1, . . . , L3, L2 + L2K−2, L1 + L2K−1)

...

DK−1 = det(LK + LK , LK−1, LK−2 + LK+2 . . . ,L2 + L2K−2, L1 + L2K−1),

we can show that, for all 1 ≤ i ≤ K, there exists pi such that αi = piπ
2K+1 . Since the

sequence (αi) is increasing, we have

∀i ∈ {1, 2, . . . , K} αi =
iπ

2K + 1
.

Let us now show that the rank of the matrix A is exactly K − 1. For that purpose,
we compute the determinant D obtained from A by taking the K − 1 first lines and
removing the last column,

D =

[
K−1∏
i=1

sin
iπ

2K + 1

]
det

((
sin

(2i + 1)πj

2K + 1

)
1≤i, j≤K−1

)
.

Let us denote by Un Tchebyshev’s polynomial of second kind: sinnθ = sin θ Un(cos θ).
We then obtain

D =

[
K−1∏
i=1

sin
iπ

2K + 1

]
det

((
Uj

(
sin

(2i + 1)π

2K + 1

))
1≤i, j≤K−1

)
.
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Since Un has for first term 2nXn, n ≥ 1, we get

D = 2
(K−2)(K−3)

2

(
K−1∏
i=1

sin
iπ

2K + 1

)⎛⎝ ∏
1≤i<j≤K−1

(
cos

(2i + 1)π

2K + 1
− cos

(2j + 1)π

2K + 1

)⎞⎠.
This proves that D �= 0 and A has rank K − 1. Therefore, its kernel is of dimension
one.

Let us now show that (1, 1, . . . , 1)t belongs to the kernel of A. For that purpose,
we compute, for 1 ≤ k ≤ 2K − 1 the sum

Sk = 2

K∑
l=1

sin
lπ

2K + 1
sin

(2k + 1)lπ

2K + 1
=

K∑
l=1

[
cos

2lkπ

2K + 1
− cos

2l(k + 1)π

2K + 1

]
.

Using
∑K

l=1 cos lθ = cos (K+1)θ
2 .

sin Kθ
2

sin θ
2

, it comes that Sk = 0 if and only if

cos
(K + 1)kπ

2K + 1
sin

Kkπ

2K + 1
sin

(k + 1)π

2K + 1
= · · ·

· · · = cos
(K + 1)(k + 1)π

2K + 1
sin

K(k + 1)π

2K + 1
sin

kπ

2K + 1 .

This last equality is easy to check.
In conclusion, since (t1, t2, . . . , tK)t belongs to the kernel of A and t1 + t2 + · · ·+

tK = 1/2, we get t1 = t2 = · · · = tK = 1/(2K). Finally, for every subsequence
(lk) converging to 0, (ti(lk)) has a unique accumulation point; the whole sequence
ti(l) converges to that point 1/K. In the same way, the functions αi(l) converge to
i/(K + 1) when l goes to 0.

5. Comments.

5.1. Possible remedies. To avoid the spillover phenomenon which is described
here, we can imagine different possible strategies. The first one is obviously to take
into account all eigenmodes, possibly with different weights for each (e.g., weights
decreasing with the rank of the mode).

Another possibility could be inspired by the introduction of an artificial (numer-
ical) viscosity like in papers [23], [24]. For the one-dimensional wave equation, these
authors choose to introduce a semidiscrete term coming from −h2uxxt. This has the
great advantage to keep the decay properties of the discrete equation which are gener-
ally lost under the semidiscrete finite-differences scheme. It would be very interesting
to see what is the impact of this viscosity term in the context of our paper.

5.2. Larger values of l. It is essentially for technical reasons that the “spillover”
phenomenon is described in the case l → 0. Actually, this phenomenon holds for most
values of l. Figure 5.1 shows numerical results for N = 3. The left picture shows the
optimal domain ω∗

3 for each value of l. One obtains ω∗
3 as the intersection of the

vertical line x = l with the interior of the three peeks. The right picture shows in
boldface the graph of l �→ J3(ω

∗
3) and below, in medium, the graph of l �→ j4(ω

∗
3).

We see that, in any case (unless for l close to 1), ω∗
3 has a very poor behavior for the

fourth eigenmode. One can find more examples in [14].
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Fig. 5.1. Left: The optimal domain ω∗
3 (read vertically). Right: Graphs of J3(ω∗

3) (boldface)
and j4(ω∗

3)

5.3. More about the set K. For similar optimization problems, it is interesting
to have a more precise description of the set K which is introduced in (3.11). In
particular, a characterization of its boundary can be very useful. Let X be a point in
K. Then X belongs to ∂K if and only if there exists a unit vector n such that

∀Y ∈ K (Y −X,n) ≤ 0.

Writing n = (n1, n2, . . . , nN )T , X = (j1(a), . . . , jN (a))T and Y = (j1(b), . . . , jN (b))T ,
the latter reads

∀b ∈ Al

N∑
k=1

nkjk(b) ≤
N∑

k=1

nkjk(a).

In other terms, a is a maximizer of the functional b �→
∑N

k=1 nkjk(b). According to
the proof of Theorem 3.1, it follows that a is necessarily the characteristic function of
a set ω which is the union of at most N +1 intervals and is symmetric with respect to
1/2. The fact that we can have N + 1 intervals here is due to the fact that intervals
of the kind [0, η] or [1−η, 1] are allowed here (see step 5 in the proof of Theorem 3.1).
Figure 5.2 (left) shows the set K2 for l = 0.3. Its boundary is exactly the image of
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Fig. 5.2. Left: The set K2 for l = 0.3. Right: The set K3 for l = 0.9
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characteristic functions χω with ω as a symmetric (w.r.t. 1/2) set obtained as a union
of one, two, or three intervals (in this last case two of the three intervals must touch 0
and 1). Figure 5.2 (right) shows the set K3 for l = 0.9. Its boundary is obtained with
a symmetric union of one, two, three, or four intervals (in this last case two of the four
intervals must touch 0 and 1). This picture shows a case where the first bissectrix
does not cut the set K3 at the point which maximizes min(x1, x2, x3); see Remark 2.

5.4. Generalization to the two-dimensional case. The existence and unique-
ness part of Theorem 3.1 can be easily generalized to more general domains Ω in higher
dimension if the following property holds:⎧⎨⎩

Let ϕ1, ϕ2, . . . , ϕN be the (normalized) eigenfunctions of the Laplace
operator on Ω with Dirichlet boundary conditions on ∂Ω, then
ϕ2

1, ϕ
2
2, . . . , ϕ

2
N are linearly independent on ω.

(5.1)

Indeed, when we look at the proof of Theorem 3.1, we observe that it can easily be
adapted to any dimension, the only technical point being (3.7).

The property (5.1) is obviously true for rectangles in two dimensions or, more
generally, parallelepiped in N -dimension, but the authors do not know if it holds for
every domain (even for a disc). For a related result in one dimension, see [19]. In
this paper the authors prove that for a nonhomogeneous Sturm–Liouville eigenvalue
problem, it happens very frequently that the N first eigenfunctions, with N ≥ 3,
have linearly dependent squares on some nontrivial interval. A transposition of this
one-dimensional result to our case could lead to the following conjecture:
Open problem 1: Prove that for every domain Ω, there exists a domain Ω̃ close to
Ω such that the square of a given number of eigenfunctions of the Laplace–Dirichlet
operator on Ω̃ are linearly dependent. On the other hand, if the result (5.1) is wrong
for some domain Ω, one can also imagine some genericity result in the spirit of [20],
[21], [22] which could, for example, be stated like:
Open problem 2: Let Ω be an open set such that ϕ2

1, ϕ
2
2, . . . , ϕ

2
N are linearly de-

pendent. Then, prove that there exists arbitrary small deformations of its boundary
such that the square of the eigenfunctions of the perturbed domain become linearly
independent.

Following step 5 of the proof of Theorem 3.1, if (5.1) is true (and therefore a
unique optimal domain exists), this optimal domain can also be described as a level
set of some linear combination of ϕ2

1, ϕ
2
2, . . . , ϕ

2
N . Now, the other results of this paper,

Theorems 3.2 and 4.1, seem more difficult to prove in the two-dimensional case, even
if the authors believe that they are true.
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[18] G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical
Physics, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109.

[19] T. J. Mahar and B. E. Willner, Sturm-Liouville eigenvalue problems in which the squares of
the eigenfunctions are linearly dependent, Comm. Pure Appl. Math., 33 (1980), pp. 567–
578.

[20] A. M. Micheletti, Perturbazione dello spettro dell’operatore di Laplace, in relazione ad una
variazione del campo, Ann. Scuola Norm. Sup. Pisa, 3 26, (1972), pp. 151–169.

[21] J. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate
model, SIAM J. Control Optim., 39 (2000), pp. 1585–1614 (Addendum: 42 (2004),
pp. 1905–1910).

[22] J. Ortega and E. Zuazua, On a constrained approximate controllability problem for the heat
equation, J. Optim. Theory. Appl., 108 (2001), pp. 29–64 (Addendum: 118 (2003), pp. 183–
190).
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Abstract. This paper considers a class of optimization problems arising in wireless communica-
tion systems. We analyze the optimal control and the associated Hamilton–Jacobi–Bellman (HJB)
equations. It turns out that the value function is a unique viscosity solution of the HJB equation
in a certain function class. To deal with the fast growth condition of the value function in estab-
lishing uniqueness, we construct particular semiconvex/semiconcave approximations for the viscosity
sub/supersolutions, and obtain a maximum principle on unbounded domains. The localized enve-
lope function technique introduced in this paper permits an analysis of the uniqueness of viscosity
solutions defined on unbounded domains in cases with very general growth conditions when com-
bined with appropriate system dynamics. The optimization problem with state constraints is also
considered.
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1. Introduction. This paper is concerned with a class of optimization problems
arising in power control for wireless communication systems, and forms a mathemat-
ical foundation for the results in [7, 8]. We will first formulate a class of degenerate
stochastic control problems, which take the approach of regulating the state of a
controlled process where an exogenous random parameter process is involved in the
performance function, and then we use a communications application example to give
a background illustration for the general formulation.

The random parameter process and the controlled process are denoted by xt ∈ Rn

and pt ∈ Rn, t ∈ R+, respectively. Suppose that x is modeled by the stochastic
differential equation

dx = f(t, x)dt + σ(t, x)dw, t ≥ 0,(1.1)

where f and σ are the drift and diffusion coefficients, respectively; w is an n dimen-
sional standard Wiener process with covariance Ewtw

τ
t = tI; and the initial state x0

is independent of {wt, t ≥ 0} with finite exponential moment, i.e., Ee2|x0| < ∞.
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The process p is governed by the model

dp = g(t, x, p, u)dt, t ≥ 0,(1.2)

where the component gi(t, x, p, u), 1 ≤ i ≤ n, controls the size of the increment dpi
at the time instant t, u ∈ Rn, |ui| ≤ uimax, 1 ≤ i ≤ n. Without loss of generality we
set uimax = 1, and we shall write

x = [x1, . . . , xn]τ , p = [p1, . . . , pn]τ , u = [u1, . . . , un]τ .

In the regulation of p, we introduce the following cost function:

J = E

∫ T

0

[pτC(x)p + 2Dτ (x)p]dt,(1.3)

where T < ∞; C(x) and D(x) are an n×n positive definite matrix and an n×1 vector,
respectively; and the components of C(x) and D(x) are exponential functions of linear
combinations of xi, 1 ≤ i ≤ n. For simplicity, in this paper we take Cij(x) = cije

xi+xj ,
Di(x) = die

xi +si for 1 ≤ i, j ≤ n. This particular structure of the weight coefficients
indicates that in the cost function each pi is directly associated with the parameter
component xi for 1 ≤ i ≤ n. Specifically, an expansion of the cost integrand will
produce entries in the form of cij(e

xipi)(e
xjpj), die

xipi, sipi, 1 ≤ i, j ≤ n. Intuitively,
such a cost structure indicates that the relative weight of each pi is influenced only
by the process xi. The more general case of expressing the components of C(x) and
D(x) as exponential functions of general linear combinations of xi, 1 ≤ i ≤ n, can
be considered without further difficulty. We will give the complete optimal control
formulation in section 2, where the technical assumptions of weak coupling for the
dynamics (1.1)–(1.2) will be introduced.

1.1. The stochastic power control example. We now briefly describe the
motivating stochastic power control problem for lognormal fading channels. In an
urban environment, due to long distance transmission and reflections, the power at-
tenuations of wireless networks are described by lognormal random processes. Let
xi(t), 1 ≤ i ≤ n, denote the power attenuation (expressed in dBs and scaled to the
natural logarithm basis) at the instant t of the ith mobile user, and let αi(t) = exi(t)

denote the actual attenuation. Based upon the work in [1], the power attenuation
dynamics are given as a special form of (1.1):

dxi = −ai(xi + bi)dt + σidwi, t ≥ 0, 1 ≤ i ≤ n.(1.4)

In (1.4) the constants ai, bi, σi > 0, 1 ≤ i ≤ n. See [1] for a physical interpretation
of the parameters, and furthermore, an experimental justification of the lognormal
attenuation modeling may be found in the communications literature [5] using discrete
time measurements. In a network, at time t the ith mobile user sends its power pi(t),
and the received power at the base station is exi(t)pi(t). The mobile user has to adjust
its power pi in real time so that a certain communication quality of service (QoS) is
maintained. In [6, 7] the adjustment of the (sent) power vector p for the n users is
modeled by simply taking g(t, x, p, u) = u in (1.2), which is called the rate adjustment
model. Based upon the system signal-to-interference ratio (SIR) requirements, the
following averaged integrated performance function,

J = E

∫ T

0

{
n∑

i=1

[
exipi − μi

(
n∑

j=1

exjpj + η

)]2

+ λ

n∑
i=1

pi

}
dt,(1.5)
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was employed in [7, 8], where η > 0 is the system background noise intensity, λ ≥ 0,
and μi, 1 ≤ i ≤ n, is a set of positive numbers determined from the SIR requirements.
The resulting power control problem is to adjust u as a function of the system state
(x, p) so that the above performance function is minimized.

1.2. The main contents and organization. The analysis in this paper treats
a general class of performance functions that have an exponential growth rate with
respect to xi, 1 ≤ i ≤ n; hence this analysis covers the cost function in (1.5) and differs
from that appearing in most stochastic control problems in the literature, where linear
or polynomial growth conditions usually pertain [3, 12]. Two novel features of the class
of models (1.1)–(1.2) are (i) neither the drift nor the diffusion of the state subprocess
x is subject to control, and hence x may be regarded as an exogenous signal, and
(ii) further, the controlled state subprocess p has no diffusion part. Hence (1.1)–(1.2)
gives rise to degenerate stochastic control systems. Optimization of such systems
leads to degenerate Hamilton–Jacobi–Bellman (HJB) equations, which in general do
not admit classical solutions [4, 12].

This paper deals with the mathematical control theoretic questions arising from
the class of stochastic optimal control problems considered in [7, 8], where some ap-
proximation and numerical methods are proposed for implementation of the control
laws. For the resulting degenerate HJB equations, we adopt viscosity solutions and
show that the value function of the optimal control is a viscosity solution. To prove
uniqueness of the viscosity solution, we develop a localized semiconvex/semiconcave
approximation technique. Specifically, we introduce particular localized envelope
functions on the unbounded domain to generate semiconvex/semiconcave approxi-
mations on any compact set. Compared to previous works [4, 12], by use of the set
of envelope functions we can treat very rapid growth conditions, and we note that no
Lipschitz or Hölder-type continuity assumption is required for the function class in-
volved. It is worthwhile to note that the localized envelope functions may be applied
to generate local semiconvex/semiconcave approximations for viscosity solutions in
risk-sensitive stochastic control problems with degenerate diffusions in which the cost
involves an exponential function and usually has a very rapid growth.

We also consider the optimal control subject to state constraints, which leads
to the formulation of constrained viscosity solutions to the associated second order
HJB equations; this part is parallel to [11], where a first order HJB equation is
investigated. The paper is organized as follows: in section 2 we state the existence
and uniqueness of the optimal control and show that the value function is a viscosity
solution to a degenerate HJB equation; we then give two theorems as the main results
about the solution of the HJB equation. Section 3 is devoted to introducing a class
of semiconvex/semiconcave approximations for continuous functions; this technique
enables us to treat viscosity solutions with rapid growth. In section 4, we analyze
the HJB equation and prove a maximum principle by which it follows that the HJB
equation has a unique viscosity solution in a certain function class. Section 5 considers
the control problem subject to state constraints.

Finally, we remark that in the case when an additional control term is introduced
to the state subprocess x to give mathematically more general dynamics, one can
also derive an HJB equation for the corresponding optimal control problem, which
is interesting in its own right, and the semiconvex/semiconcave approximations and
uniqueness analysis procedure developed in sections 3 and 4 may still be carried out
under appropriate conditions. However, without further conditions for the dynamics
of x in the controlled case, in general the control problem needs to be formulated
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in a weak solution framework, and the resulting analysis is not in the scope of the
present paper.

2. The optimal control and HJB equations. We define

z =

(
x
p

)
, ψ =

(
f
g

)
, G =

(
σ

0n×n

)
.

We now write (1.1) and (1.2) together in the vector form

dz = ψdt + Gdw, t ≥ 0.(2.1)

In the following analysis we will denote the state variable by (x, p) or z, or in a
mixing form; as we do in section 4, we may also write the arguments for the functions
in (1.1)–(1.2) in a unified way in terms of (t, z). We write the integrand in (1.3) as
l(z) = l(x, p) = pτC(x)p + 2Dτ (x)p. For notational clarity, hereafter we use xt with
a real-valued subscript t to denote the value of the vector process x at time t, and
xi with an integer subscript i to denote the ith component of x; the interpretation of
the notation should be clear from the context. This convention also holds for other
vector processes involved in the analysis.

The admissible control set is specified as

U = {u(·) | ut is adapted to σ(zs, s ≤ t) and ut ∈ U
�
= [−1, 1]n ∀0 ≤ t ≤ T}.

As is stated in the introduction, the initial state vector is independent of the n × 1
Wiener process wt, t ≥ 0; we make the additional assumption that p has a determinis-
tic initial value p0 at t = 0. Then it is easily verified that σ(zs, s ≤ t) = σ(xs, s ≤ t).

Define L = {u(·) | u is adapted to σ(zs, s ≤ t), ut ∈ Rn and E
∫ T

0
|us|2ds < ∞}. If

we endow L with an inner product 〈u, u′〉 �
= E

∫ T

0
uτu′ds for u, u′ ∈ L, then L con-

stitutes a Hilbert space with the induced norm ‖u‖ = 〈u, u〉 1
2 ≥ 0, u ∈ L. Under this

norm, U is a bounded, closed, and convex subset of L. Finally, the cost associated
with the system (2.1) and a control u ∈ U is specified to be

J(s, z, u) = E

[∫ T

s

l(zt)dt|zs = z

]
, z ∈ R2n,(2.2)

where s ∈ [0, T ] is taken as the initial time of the system; further, we set the value
function

v(s, z) = inf
u∈U

J(s, z, u), z ∈ R2n,

and simply write J(0, z, u) as J(z, u). The following assumptions on the time interval
[0, T ] will be used in our further analysis.

(H1) In (1.1)–(1.2), f ∈ C([0, T ]×Rn,Rn), σ ∈ C([0, T ]×Rn,Rn×n), g ∈ C([0, T ]×
R3n,Rn) and f , σ, g satisfy a uniform Lipschitz condition; i.e., there exists a constant
C0 > 0 such that |f(t, x)−f(s, y)| ≤ C0(|t−s|+|x−y|), |σ(t, x)−σ(s, y)| ≤ C0(|t−s|+
|x−y|), |g(t, x, p, u)−g(s, x, q, u)| ≤ C0(|t−s|+|p−q|), and |g(t, x, p, u)−g(t, 0, p, u)| ≤
C0 for all t, s ∈ [0, T ], u ∈ U , and x, y, p, q ∈ Rn. In addition, there exists a constant
Cσ such that |σij(t, x)| ≤ Cσ for (t, x) ∈ [0, T ] × Rn and 1 ≤ i, j ≤ n.

(H2) For 1 ≤ i ≤ n, fi(x) can be written as fi(x) = −ai(t)xi + f0
i (t, x), where

ai(t) ≥ 0 for t ∈ [0, T ], and sup[0,T ]×Rn |f0
i (t, x)| ≤ Cf0 for a constant Cf0 > 0.
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Throughout this paper we assume that (H1) holds. (H2) is used in Theorems 2.5
and 2.6 for proving uniqueness of the viscosity solution. Clearly (H2) holds for the
lognormal fading channel model in the power control example.

Remark 1. Assumption (H1) ensures existence and uniqueness of the solution to
(2.1) for any fixed u ∈ U , where the Lipschitz condition with respect to t will be used
to obtain certain estimates in the proof of uniqueness of the viscosity solution. Here
σ is assumed to be bounded so as to lead to a finite cost for any initial state and
admissible control u.

From (H1)–(H2) it is seen that the system model has the following important
features: first, in the diffusion process x the evolution of xi does not receive strong
influence from the other state component xk, k 
= i, in the sense that the cross term
f0
i (t, x) is bounded by a constant; second, an arbitrary increase of x alone in the

function g(t, x, p, u) does not result in an unbounded increase in the magnitude of g,
and hence x imposes only a relatively weak impact on the evolution of p. Due to
the above features, we shall refer to the model (1.1)–(1.2) analyzed in this paper as
having weakly coupled dynamics, and (H2) will be conveniently referred to as the weak
coupling condition for x, which will be used to establish uniqueness of the viscosity
solution.

Proposition 2.1 (see [7, 8]). Assuming in the control model (1.2) that g(t, x, p, u)
is linear in p and u, i.e., that there exist continuous matrix functions At, Bt on [0, T ]
such that g(t, x, p, u) = Atp + Btu, then there exists an optimal control û ∈ U such
that J(x0, p0, û) = infu∈U J(x0, p0, u), where (x0, p0) is the initial state at time s = 0;
if, in addition, Bt is invertible for all t ∈ [0, T ], then the optimal control û is unique
and uniqueness holds in the following sense: if ũ ∈ U is another control such that
J(x0, p0, ũ) = J(x0, p0, û), then PΩ(ũs 
= ûs) > 0 only on a set of times s ∈ [0, T ] of
Lebesgue measure zero, where Ω is the underlying probability sample space.

Proposition 2.2. Assuming (H1)–(H2), the value function v is continuous on
[0, T ] × R2n and

|v(s, z)| ≤ C

[
1 +

n∑
i=1

e4zi +

2n∑
i=n+1

z4
i

]
,(2.3)

where C > 0 is a constant independent of (s, z).
Proof. The continuity of v can be established by use of (H1) and the continuous

dependence of the cost (2.2) on the initial condition for the system (2.1) when u ∈ U
is fixed. For an initial state zs = z and any fixed u ∈ U , using (H2), we express zi(t),
1 ≤ i ≤ n, in terms of zi|t=0 with a bounded term involving zk(s), 0 ≤ s ≤ t, k 
= i,
and get

sup
0≤t≤T

Ee4zi(t) ≤ C1

(
1 + e4zi|t=0

)
,

where C1 > 0. By use of the structure of C(x) and D(x) in the cost integrand l, we
obtain the estimates in a straightforward way,

|J(s, z, u)| ≤ E

∫ T

s

|l(zt)|dt ≤ E

∫ T

s

C2

[
1 +

n∑
i=1

e4zi(t) +

2n∑
i=n+1

z4
i (t)

]
dt

≤ C3

[
1 +

n∑
i=1

e4zi +

2n∑
i=n+1

z4
i

]
,

for constants C2, C3 independent of (s, z), and (2.3) follows.
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We see that in (2.1) the noise covariance matrix GGτ is not of full rank. In
general, under such a condition the corresponding stochastic optimal control problem
does not admit classical solutions due to the degenerate nature of the arising HJB
equations. Here we analyze viscosity solutions.

Definition 2.3. v(t, z) ∈ C([0, T ]× R2n) is called a viscosity subsolution to the
HJB equation

0 = −∂v

∂t
+ sup

u∈U

{
−∂τv

∂z
ψ

}
− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l,(2.4)

v|t=T = h(z), z ∈ R2n,

if v|t=T ≤ h, and for any ϕ(t, z) ∈ C1,2([0, T ] × R2n), whenever v − ϕ takes a local
maximum at (t, z) ∈ [0, T ) × R2n, we have

−∂ϕ

∂t
+ sup

u∈U

{
−∂τϕ

∂z
ψ

}
− 1

2
tr

(
∂2ϕ

∂z2
GGτ

)
− l ≤ 0, z ∈ R2n,(2.5)

at (t, z). Here v(t, z) ∈ C([0, T ] × R2n) is called a viscosity supersolution to (2.4) if
v|t=T ≥ h, and in (2.5) we have an opposite inequality at (t, z), whenever v−ϕ takes
a local minimum at (t, z) ∈ [0, T ) × R2n. Additionally, v(t, z) is called a viscosity
solution if it is both a viscosity subsolution and a viscosity supersolution.

Theorem 2.4. The value function v is a viscosity solution to the HJB equation

0 = −∂v

∂t
+ sup

u∈U

{
−∂τv

∂z
ψ

}
− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l,(2.6)

v(T, z) = 0.

Proof. The value function v is continuous (by Proposition 2.2) and satisfies the
boundary condition in (2.6). Now, for any ϕ(t, z) ∈ C1,2([0, T ]×R2n), suppose v−ϕ
has a local maximum at (s, z0), s < T . We denote by z(1), z(2) the first n and last n,
respectively, components of z. In the following proof, we assume that ϕ(t, z) = 0 for all

z(1) such that |z(1)−z
(1)
0 | ≥ C for a constant C > 0; otherwise we can multiply ϕ(t, z)

by a C∞ function ζ(z(1)) with compact support and ζ(z(1)) = 1 for |z(1) − z
(1)
0 | ≤ C

2 .
We take a constant control u ∈ [−1, 1] on [s, T ] to generate zu with initial state
zs = z0 and write Δ(t, z) = v(t, z)−ϕ(t, z). Since (s, z0) is a local maximum point of
Δ(t, z), we can find ε > 0 such that Δ(s1, z) ≤ Δ(s, z0) for |s1 − s|+ |z− z0| ≤ ε. For
s1 ∈ (s, T ], zs = z0, write 1Aε = 1(|s1−s|+|zs1−z0|≥ε). Then we get the lower bound
estimate

E[Δ(s, z0) − Δ(s1, zs1)]

= E[Δ(s, z0) − Δ(s1, zs1)](1 − 1Aε) + E[Δ(s, z0) − Δ(s1, zs1)]1Aε

≥ E[Δ(s, z0) − Δ(s1, zs1)]1Aε
�
= S0,

and using basic estimates for the change of the value function with respect to different
initial states (see, e.g., [12, 3] for standard techniques), it follows that

|S0| = O
(
Ee2|z(1)

s1
|1Aε

)
= O

(
Ee2|z(1)

s1
|1

(|z(1)
s1

−z
(1)
0 |≥ε/2)

)
(2.7)

= O(|s− s1|2)(2.8)
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when s1 ↓ s. Here we obtain (2.7) by the fact that z
(2)
s1 → z

(2)
0 uniformly as s1 ↓ s,

which follows from the Lipschitz and boundedness (w.r.t. increment in x) conditions

for g(t, x, p, u), and obtain the bound (2.8) using basic moment estimates for |z(1)
s1 −

z
(1)
0 |2. It follows from (2.8) that

lim
s1↓s

1

s1 − s
E[Δ(s, z0) − Δ(s1, zs1)] ≥ 0.(2.9)

However, for s1 ∈ (s, T ] we also have

1

s1 − s
E[Δ(s, z0) − Δ(s1, zs1)]

≤ 1

s1 − s
E

[∫ s1

s

l(zt)dt− ϕ(s, z0) + ϕ(s1, zs1)

]
(2.10)

→
[
l +

∂ϕ

∂s
+

∂τϕ

∂z
ψ

∣∣∣∣
u

+
1

2
tr

(
∂2ϕ

∂z2
GGτ

)]∣∣∣∣
(s,z0)

∀u ∈ U

as s1 ↓ s, where we get the inequality by the principle of optimality, and obtain (2.10)
by using Ito’s formula to express ϕ(s1, zs1) near (s, z0) and then taking expectations.
In the above, since v satisfies the growth condition in Proposition 2.2, ϕ(t, z) = 0 for

|z(1) − z
(1)
0 | ≥ C, all the expectations are finite. Therefore, for z ∈ R2n, by (2.9) and

(2.10),

∂ϕ

∂s
+ min

u∈U

{
∂τϕ

∂z
ψ

}
+

1

2
tr

(
∂2ϕ

∂z2
GGτ

)
+ l ≥ 0

at (s, z0). On the other hand, if v−ϕ has a local minimum at (s, z0), s < T , then for
any small ε > 0 we can choose sufficiently small s1 ∈ (s, T ] and find a control u ∈ U
generating zu such that

E{v(s, z0) − ϕ(s, z0) − v(s1, zs1) + ϕ(s1, zs1)}
(2.11)

≥ E

{∫ s1

s

l(zt)dt + ϕ(s1, zs1) − ϕ(s, z0)

}
− ε(s1 − s).

Similar to (2.8), we also have

E[Δ(s, z0) − Δ(s1, zs1)] ≤ O(|s− s1|2),

which, together with (2.11) and Ito’s formula, gives

∂ϕ

∂s
+ min

u∈U

{
∂τϕ

∂z
ψ

}
+

1

2
tr

(
∂2ϕ

∂z2
GGτ

)
+ l ≤ 0

at (s, z0), so that the value function v is a viscosity solution.
To analyze uniqueness of the viscosity solution, we introduce the function class G

such that each W ∈ G satisfies the following:
(i) W ∈ C([0, T ] × R2n), and
(ii) for any W ∈ G, there exist C, k1, k2 > 0 such that |W (t, z)|≤C[

∑n
i=1 e

k1|zi| +∑2n
i=1 |zi|k2 ].

Notice that in condition (ii), the constants C, k1, k2 may take a different set of
values for different W ∈ G. By Proposition 2.2 and Theorem 2.4 it follows that the
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value function v is a viscosity solution to the HJB equation (2.6) in the class G. We
now state the uniqueness result for the viscosity solutions.

Theorem 2.5. Assuming that (H1)–(H2) hold, there exists a unique viscosity
solution to (2.6) in the class G.

Here we state a general maximum principle on an unbounded domain for the HJB
equation (2.6). By considering two possibly distinct viscosity solutions v1 and v2 and
setting, respectively, (v1, v2) = (v, v) and (v2, v1) = (v, v) in Theorem 2.6, we obtain
Theorem 2.5 as a corollary. The proof of the maximum principle is postponed to
section 4.

Theorem 2.6. Assuming that (H1)–(H2) hold, if v, v ∈ G are the viscosity
subsolution and supersolution to (2.6), respectively, and sup∂∗Q0

(v − v) < ∞, then

sup
Q0

(v − v) = sup
∂∗Q0

(v − v),(2.12)

where Q0 = [0, T ] × R2n, ∂∗Q0 = {(T, z) : z ∈ R2n}.

3. Semiconvex and semiconcave approximations on compact sets. To
facilitate our analysis, write the Hamiltonian

H̃(t, z, u, ξ, V ) = −ξτψ(t, z, u) − 1

2
tr{V G(t, z)Gτ (t, z)} − l(z),(3.1)

H(t, z, ξ, V ) = sup
u∈U

H̃(t, z, u, ξ, V ),

where ξ ∈ R2n, V is a 2n×2n real symmetric matrix, and the other terms are defined
in section 2. Then the HJB equation (2.6) may be written as

0 = −vt + H(t, z, vz, vzz),(3.2)

v(T, z) = 0.(3.3)

Definition 3.1 (see [12]). A real value function ϕ(x) defined on a convex set
Q ⊂ Rm is said to be semiconvex on Q if there exists a constant C > 0 such that
ϕ(x) + C|x|2 is convex; ϕ(x) is semiconcave on Q if −ϕ(x) is semiconvex on Q.

Definition 3.2. A real value function ϕ(x) defined on a convex set Q ⊂ Rm is
said to be locally semiconvex on Q if for any y ∈ Q there exists a convex neighborhood
Ny (relative to Q) of y such that ϕ(x) is semiconvex on Ny.

Proposition 3.3. If ϕ(x) is locally semiconvex on a convex compact set Q, then
ϕ(x) is semiconvex on Q.

Proof. For any y ∈ Q, there exists a convex set Ny open relative to Q such
that y ∈ Ny and ϕ(x) is semiconvex on Ny. Thus there exists Cy > 0 such that
ϕ(x) + Cy|x|2 is convex on Ny. Since {Ny, y ∈ Q} is an open cover of Q, there
exists a finite subcover denoted by {Nyi , 1 ≤ i ≤ k}. Take C = max1≤i≤k Cyi , and

then obviously ϕ(x) + C|x|2 �
= ϕ̂(x) is convex on each Nyi , 1 ≤ i ≤ k. Now for any

x1, x2 ∈ Q, 0 ≤ λ ≤ 1, we prove that ϕ̂(λx1 + (1− λ)x2) ≤ λϕ̂(x1) + (1− λ)ϕ̂(x2). It
suffices to consider the case 0 < λ < 1. First, from the collection {Nyi , 1 ≤ i ≤ k} we

select open sets, without loss of generality, denoted as N �
= {Nyi , i = 1, . . . ,m ≤ k}
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such that L
�
= {x : x = αx1 + (1 − α)x2, 0 ≤ α ≤ 1} ⊂ ∪Nyi

∈NNyi
. For simplicity

we consider the case m = 2 and x1 ∈ Ny1
, x2 ∈ Ny2

. The general case may be
treated inductively. To avoid triviality, we assume that neither Ny1 nor Ny2 covers

L individually, and then we can find xa ∈ L, xa 
= xλ
�
= λx1 + (1 − λ)x2 such that

xa ∈ Ny1 ∩ Ny2 and xa = c1x1 + (1 − c1)x2, 0 < c1 < 1. Without loss of generality
we assume that xλ is between x1 and xa. Then we further choose xb ∈ Ny1 ∩ Ny2

such that xb = c2x1 + (1− c2)x2 and xb is between xa and x2. Now it is obvious that
0 < c2 < c1 < λ < 1. It is straightforward to verify that

xλ=
λ− c1
1 − c1

x1+
1 − λ

1 − c1
xa, xa=

c1 − c2
λ− c2

xλ+
λ− c1
λ− c2

xb, xb=
c2
c1

xa+
c1 − c2

c1
x2.

Hence we have

ϕ̂(xλ) ≤ λ− c1
1 − c1

ϕ̂(x1) +
1 − λ

1 − c1
ϕ̂(xa),

ϕ̂(xa) ≤
c1 − c2
λ− c2

ϕ̂(xλ) +
λ− c1
λ− c2

ϕ̂(xb),

ϕ̂(xb) ≤
c2
c1

ϕ̂(xa) +
c1 − c2

c1
ϕ̂(x2),

where we get the first two inequalities and the last one by the convexity of ϕ̂(x) on
Ny1

and Ny2 , respectively. By a simple transformation with the above inequalities to
eliminate ϕ̂(xa) and ϕ̂(xb), we get

ϕ̂(xλ) ≤ λϕ̂(x1) + (1 − λ)ϕ̂(x2).

By arbitrariness of x1, x2 in Q it follows that ϕ̂(x) is convex on Q. This completes
the proof.

We adopt the semiconvex/semiconcave approximation technique of [12, 2, 9,
10], but due to the highly nonlinear growth condition of the class G, we apply a
particular localized technique to construct envelope functions to generate semicon-
vex/semiconcave approximations on any bounded domain. For any W ∈ G, define the
upper/lower envelope functions with η ∈ (0, 1],

W η(t, z) = sup
(s,w)∈Bη(t,z)

{
W (s, w) − 1

2η2
(|t− s|2 + |z − w|2)

}
,(3.4)

Wη(t, z) = inf
(s,w)∈Bη(t,z)

{
W (s, w) +

1

2η2
(|t− s|2 + |z − w|2)

}
,(3.5)

where Bη(t, z) denotes the closed ball (relative to [0, T ] × R2n) centering (t, z) with
radius η. As will be shown in the following lemma, our construction above will
generate semiconvex/semiconcave approximations to a given continuous function on
a compact set for small η.

Lemma 3.4. For any fixed W ∈ G and compact convex set Q ⊂ [0, T ]×R2n, there
exists a positive constant ηQ ≤ 1 depending only on Q such that for all η ∈ (0, ηQ],
W η(t, z) is semiconvex on Q, and Wη(t, z) is semiconcave on Q.
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Proof. Since any fixed W ∈ G is uniformly continuous and bounded on any
compact set Q, there exists ηQ > 0 depending only on Q, so that for all positive
η ≤ ηQ and (t, z) ∈ Q,

W η(t, z) = sup
(s,w)∈Bη/2(t,z)

{
W (s, w) − 1

2η2
[|t− s|2 + |z − w|2]

}
.(3.6)

Indeed, we can find ηQ > 0 such that for all η ≤ ηQ, |W (s, w) − W (t, z)| ≤ 1
16 for

(s, w) ∈ Bη(t, z), where (t, z) ∈ Q. Then for any (s, w) satisfying η2

4 ≤ |s− t|2 + |w−
z|2 ≤ η2, we have

W (s, w) − 1

2η2
(|s− t|2 + |w − z|2) ≤ W (t, z) +

1

16
− 1

2η2

η2

4
< W (t, z),

and (3.6) follows. In the following we assume η ≤ ηQ. Next we show that for any

(t0, z0) ∈ Q, W η(t, z) is semiconvex on Bη/4(t0, z0) ∩ Q. It suffices to show that
W η(t, z) + 1

2η2 (t2 + |z|2) is convex on Bη/4(t0, z0) ∩Q. Denote

R(s, w, t, z) = W (s, w) − 1

2η2
(|t− s|2 + |z − w|2) +

1

2η2
(t2 + |z|2).

If (t1, z1), (t2, z2) ∈ Bη/4(t0, z0) ∩Q, we have (t2, z2) ∈ Bη/2(t1, z1). For any λ ∈ [0, 1],
we denote (tλ, zλ) = (λt1 + (1 − λ)t2, λz1 + (1 − λ)z2) ∈ Q. It is obvious that
Bη/2(tλ, zλ) ⊂ Bη(t1, z1) ∩Bη(t2, z2). Then it follows that

W η(tλ, zλ) +
1

2η2
[t2λ + |zλ|2]

= sup
(s,w)∈Bη(tλ,zλ)

R(s, w, tλ, zλ) = sup
(s,w)∈Bη/2(tλ,zλ)

R(s, w, tλ, zλ)

= sup
(s,w)∈Bη/2(tλ,zλ)

[λR(s, w, t1, z1) + (1 − λ)R(s, w, t2, z2)]

≤ sup
(s,w)∈Bη/2(tλ,zλ)

λR(s, w, t1, z1) + sup
(s,w)∈Bη/2(tλ,zλ)

(1 − λ)R(s, w, t2, z2)

≤ sup
(s,w)∈Bη(t1,z1)

λR(s, w, t1, z1) + sup
(s,w)∈Bη(t2,z2)

(1 − λ)R(s, w, t2, z2)

= λ

[
W η(t1, z1) +

1

2η2
(t21 + |z1|2)

]
+ (1 − λ)

[
W η(t2, z2) +

1

2η2
(t22 + |z2|2)

]
.

Thus W η(t, z) is semiconvex on Bη/4(t0, z0) ∩Q. Further, by Proposition 3.3, W η(t, z)
is semiconvex on Q. Similarly we can prove that Wη(t, z) is semiconcave on Q for
η ∈ (0, η̃Q], where η̃Q ≤ 1 depends only on Q. The lemma follows by taking ηQ =
min{ηQ, η̃Q}.

We use an example to illustrate the construction of the semiconvex approximation
to a given function.
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Fig. 3.1. Semiconvex approximation with η = 0.125. Top: the curves in a large range. Bottom:
the curves in the local region.

Example 1. Consider a continuous function W : R → R defined as follows:

W (x) =

{
(x− 1)3 + 1 for x ≤ 0,

−(x + 1)3 + 1 for x > 0.

We take 0 < η ≤ 0.125 and write

θ(x) = 1 − x +
1

6η2
−

√[
1 − x +

1

6η2

]2

− (1 − x)2, x ≤ 0.

It is evident that the upper envelope function W η(x) is even on R, and its value on
(−∞, 0] is determined by

W η(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W (x + η) − 1

2
for x ≤ 1 − η − 1√

3η
,

W (x + θ(x)) − θ2(x)

2η2
for 1 − η − 1√

3η
< x ≤ −3η2,

W (0) − x2

2η2
for − 3η2 < x ≤ 0,

(3.7)

where 0 ≤ θ(x) ≤ η ∧ |x| holds for 1 − η − 1√
3η

< x ≤ −3η2.

From Figure 3.1, it is seen that at x = 0 the first order derivative of W (x) has
a negative jump, which corresponds to a sharp turn at x = 0 on the function curve.
After the semiconvexifying procedure, the sharp turn at x = 0 vanishes, as shown by
the curve of W η(x).
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We give a lemma which is parallel to the one in [12]. But here we do not make
Lipschitz or Hölder-type continuity assumptions on W . For completeness we give the
details.

Lemma 3.5. For W ∈ G and η ∈ (0, 1], W η and Wη are equicontinuous (w.r.t. η)
on any compact set Q ⊂ [0, T ] × R2n and

W η(t, z) ≤ C

[
n∑

i=1

ek1|zi| +

2n∑
i=1

|zi|k2

]
,(3.8)

W η(t, z) = W (t0, z0) −
1

2η2
(|t− t0|2 + |z − z0|2)(3.9)

for some (t0, z0) ∈ Bη(t, z),

1

2η2
(|t− t0|2 + |z − z0|2) → 0 uniformly on Q as η → 0, and(3.10)

0 ≤ W η(t, z) −W (t, z) → 0 uniformly on Q as η → 0,(3.11)

where C, k1, k2 > 0 are constants independent of η. The estimates (3.8)–(3.10) also
hold when W η is replaced by Wη, and

0 ≤ W (t, z) −Wη(t, z) → 0 uniformly on Q as η → 0.(3.12)

Proof. Inequality (3.8) follows from the definition of G, and (3.9) is obvious.
Moreover, by (3.9) we have

1

2η2
(|t− t0|2 + |z − z0|2) = W (t0, z0) −W η(t, z) ≤ W (t0, z0) −W (t, z).(3.13)

Since |t− t0|+ |z−z0| → 0 as η → 0, by (3.13) and the uniform continuity of W on Q,
(3.10) follows. The estimate (3.11) follows from (3.9) and (3.10). The equicontinuity
of W η (w.r.t. η) on Q can be established by (3.11) and the continuous dependence
of W η on (η, t, z) ∈ [ε, 1] × Q for any 0 < ε ≤ 1. The case of Wη can be treated
similarly.

We define

Hη(t, z, ξ, V ) = inf
(s,w)∈Bη(t,z)

sup
u∈U

H̃(s, w, u, ξ, V ),(3.14)

Hη(t, z, ξ, V ) = sup
(s,w)∈Bη(t,z)

sup
u∈U

H̃(s, w, u, ξ, V ).(3.15)

Then it can be shown that Hη and Hη converge to H(t, z, ξ, V ) uniformly on any
compact subset of [0, T ] × R2n × R2n × S2n as η → 0, where S2n denotes the set of
2n × 2n real symmetric matrices. The following lemma can be proved by a method
similar to that in [4, 9, 10]; the proof is omitted here. Notice that the viscosity
sub/supersolution properties hold on a domain smaller than [0, T ] × R2n.

Lemma 3.6. If v (v, respectively) is a viscosity subsolution (supersolution, re-
spectively) to (3.2) on [0, T ] ×R2n, then vη (vη, respectively) is a viscosity subsolution
(supersolution, respectively) to HJB equation A (B, respectively) on [0, T − η]× R2n,
where the HJB equations A and B are given by

A :

{
−vt + Hη(t, z, vz, vzz) = 0,

v(T − η, z) = vη(T − η, z),
B :

{
−vt + Hη(t, z, vz, vzz) = 0,

v(T − η, z) = vη(T − η, z).

In the above, vη and vη are defined by (3.4)–(3.5).
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4. Proof of Theorem 2.6. In this section we give a proof of Theorem 2.6. We
note that certain technical but standard arguments are not included here for reasons
of economy of exposition; complete references to the detailed versions of these parts
of the proof are supplied at appropriate places in the text.

We follow the method in [12, 4], employing the particular structure of the system
dynamics, and will make necessary modifications. For the viscosity subsolution and
supersolution v, v ∈ G we prove that

sup
Q1

(v − v) = sup
∂∗Q0

(v − v)
�
= c0 for Q1 = [T1, T ] × R2n,(4.1)

where T1 = T − 1
4Δ , Δ = 25n(Cg +Cσ) + 10Cf0 , Cg is a finite constant such that for

g given in (1.2), |gi(t, x, p, u)| ≤ Cg(1 +
∑n

k=1 |pk|) for t ∈ [0, T ], x, p ∈ Rn, u ∈ U ,
1 ≤ i ≤ n, and Cσ, Cf0 are given in assumptions (H1)–(H2) introduced in section 2.
The maximum principle (2.12) follows by repeating the above procedure backward
with time. Our proof by contradiction starts with the observation that if (4.1) is not
true, there exists (t̂, ẑ) ∈ (T1, T ) × R2n such that

v(t̂, ẑ) − v(t̂, ẑ) = c+0 > c0.(4.2)

We break the proof into several steps: (1) we construct a comparison function Λ
depending on positive parameters α, β, ε, λ, and, based upon (4.2), Λ is used to induce
a certain interior maximum; (2) using the viscosity sub/supersolution conditions, we
get a set of inequalities at the interior maximum; and (3) we establish an inequality
relation between α and β by taking appropriate vanishing subsequences of ε, λ, η,
and this inequality relation is shown to lead to a contradiction. The weak coupling
condition (H2) for x is used to obtain estimates used in Step 3 below.

Step 1 (constructing a comparison function and the interior maximum). To avoid
introducing too many constants, we assume that v and v belong to the class G with
associated constants k1 = k2 = 4. The more general case can be treated in exactly
the same way. Now we define the comparison function

Λ(t, z, s, w) =
α(2μT − t− s)

2μT

{
n∑

i=1

[
e5
√

z2
i
+1 + e5

√
w2

i
+1

]
+

2n∑
i=1

(z6
i + w6

i )

}

− β(t + s) +
1

2ε
|t− s|2 +

1

2ε
|z − w|2 +

λ

t− T1
+

λ

s− T1
,

where α, β, ε, λ are all taken from (0, 1]; μ = 1 + 1
4TΔ ; z, w ∈ R2n; and t, s ∈ (T1, T ].

We write Φ(t, z, s, w) = vη(t, z) − vη(s, w) − Λ(t, z, s, w), where vη and vη are also
in G by Lemma 3.5. Noticing that Φ → −∞ as t ∧ s → T1 or |z| + |w| → ∞,
there exists (t0, z0, s0, w0) such that Φ(t0, z0, s0, w0) = supQ1×Q1

Φ(t, z, s, w). By
Φ(t0, z0, s0, w0) ≥ Φ(T, 0, T, 0), one can find a constant Cα depending only on α such
that (see Remark 2)

|z0| + |w0| +
1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 ≤ Cα and t0, s0 ∈

[
T1 +

λ

Cα
, T

]
.(4.3)

Combining 2Φ(t0, z0, s0, w0) ≥ Φ(t0, z0, t0, z0)+Φ(s0, w0, s0, w0), (4.3), and Lemma 3.5,
we get for fixed α > 0 (see Remark 3)

1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 → 0 uniformly as ε → 0.(4.4)
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In this section, we take β ∈ (0,
c+0 −c0

4T ). We further show that there exists α0 > 0 such
that for α < α0 and for sufficiently small r0 (which may depend upon α) and η ≤ r0,
ε ≤ r0, λ ≤ r0, the maximum of Φ on Q1 is attained at an interior point (t0, z0, s0, w0)
of the set

Qα =

{
(t, z, s, w) : T1 +

λ

2Cα
≤ t, s ≤ T − η, and |z|, |w| ≤ 2Cα

}
,(4.5)

where Cα is determined in (4.3).
We begin by observing that Φ(t0, z0, s0, w0) ≥ Φ(t̂, ẑ, t̂, ẑ) yields

vη(t̂, ẑ) − vη(t̂, ẑ) ≤ vη(t0, z0) − vη(s0, w0) − Λ(t0, z0, s0, w0) + Λ(t̂, ẑ, t̂, ẑ)

≤ vη(t0, z0) − vη(s0, w0) + 2βT +
2λ

t̂− T1

(4.6)

+ 2α

[
n∑

i=1

e5
√

ẑ2
i
+1 +

2n∑
i=1

ẑ6
i

]
.

Let Hβ stand for the assertion that there exists α0 such that when α ≤ α0 and
max{η, ε, λ} ≤ r0 for sufficiently small r0, (t0, z0, s0, w0) is an interior point of Qα

in (4.5).
If Hβ is not true, then there exists an arbitrarily small α ∈ (0, 1] such that for this

fixed α we can select η(k), ε(k), λ(k) → 0 for which the resulting (t
(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) 
∈

Int(Qα). By (4.3) it necessarily follows that t
(k)
0 ∨ s

(k)
0 ≥ T −η(k) → T and (4.4) gives

|t(k)
0 − s

(k)
0 | + |s(k)

0 − w
(k)
0 | → 0. It is also clear that (t

(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) is contained

in a compact set determined by α. Then by selecting an appropriate subsequence of

(t
(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) and taking the limit in (4.6) along this subsequence, we get

v(t̂, ẑ) − v(t̂, ẑ) ≤ v(T, zα) − v(T, zα) +
c+0 − c0

2
+ 2α

[
n∑

i=1

e5
√

ẑ2
i
+1 +

2n∑
i=1

ẑ6
i

]
(4.7)

≤ c+0 + c0
2

+ 2α

[
n∑

i=1

e5
√

ẑ2
i
+1 +

2n∑
i=1

ẑ6
i

]
,

where zα denotes the common limit of the selected subsequences of z
(k)
0 and w

(k)
0 .

Sending α → 0, we get v(t̂, ẑ)− v(t̂, ẑ) < c+0 , which contradicts (4.2); hence Hβ holds.
From the argument leading to (4.7) it is seen that α0 can be chosen independently
of β.

Step 2 (applying Ishii’s lemma). Hereafter, we assume that β <
c+0 −c0

4T , α < α0,
and max{η, ε, λ} ≤ r0 are always satisfied and thus Hβ holds. We assume Φ attains a
strict maximum at (t0, z0, s0, w0); otherwise we replace Λ by Λ+ |t− t0|2 + |s− s0|2 +
|z − z0|4 + |w − w0|4. Following the derivations in [12, 9, 4] and using the interior
maximum obtained in Step 1, the semiconvexity of vη, and the semiconcavity of vη
for η ≤ ηQα by Lemma 3.4, and by Lemma 3.6, we obtain the so-called Ishii’s lemma;
i.e., there exist 2n× 2n symmetric matrices Mk, k = 1, 2, such that

−Λt(t0, z0, s0, w0) + Hη(t0, z0,Λz(t0, z0, s0, w0),M1) ≤ 0,(4.8)

Λs(t0, z0, s0, w0) + Hη(s0, w0,−Λw(t0, z0, s0, w0),M2) ≥ 0,(4.9) (
M1 0
0 −M2

)
≤

(
Λzz Λzw

Λτ
zw Λww

) ∣∣∣
(t0,z0,s0,w0)

.(4.10)
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We note that it is important to have t0∨s0 < T−η in order to establish (4.8)–(4.9) by
Lemma 3.6 and an approximation procedure (see, e.g., [4] for the case of a bounded
domain). Now (4.8) and (4.9) yield

−Λt(t0, z0, s0, w0) − Λs(t0, z0, s0, w0)
(4.11)

≤ Hη(s0, w0,−Λw(t0, z0, s0, w0),M2) −Hη(t0, z0,Λz(t0, z0, s0, w0),M1).

Step 3 (estimates for LHS and RHS of (4.11)). The final stage in our deduction
of a contradiction from (4.2) involves estimates of the LHS and RHS of (4.11). The
estimates for both sides of (4.11) are taken at (t0, z0, s0, w0), but for brevity we omit
the subscript 0 for each variable. We have

LHS of (4.11) =
α

μT

[
n∑

i=1

(
e5
√

z2
i
+1 + e5

√
w2

i
+1

)
+

n∑
i=1

(z6
i + w6

i )

]

+ 2β +
λ

(t− T1)2
+

λ

(s− T1)2
(4.12)

≥ α

μT

[
n∑

i=1

(
e5
√

z2
i
+1 + e5

√
w2

i
+1

)
+

n∑
i=1

(z6
i + w6

i )

]
+ 2β

and

RHS of (4.11) = sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u)] − sup

u∈U
[−Λτ

z (t, z, s, w)ψ(t̂, ẑ, u)]

+
1

2
tr[G(t̂, ẑ)Gτ (t̂, ẑ)M1] −

1

2
tr[G(ŝ, ŵ)Gτ (ŝ, ŵ)M2] + l(ẑ) − l(ŵ)

≤ sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u) + Λτ

z (t, z, s, w)ψ(t̂, ẑ, u)]

+
1

2
tr[G(t̂, ẑ)Gτ (t̂, ẑ)M1] −

1

2
tr[G(ŝ, ŵ)Gτ (ŝ, ŵ)M2] − l(ẑ) − l(ŵ),

which, together with (4.10) and (3.14)–(3.15), leads to

RHS of (4.11) ≤ sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u) + Λτ

z (t, z, s, w)ψ(t̂, ẑ, u)]
(�
= A1

)
+

1

2ε
tr{[G(t̂, ẑ) −G(ŝ, ŵ)]τ [G(t̂, ẑ) −G(ŝ, ŵ)]}

(�
= A2

)
+

α(2μT − t− s)

2μT
(4.13)

×
n∑

i,k=1

1

2

[
σ2
ik(t̂, ẑ)(Γ

′′(zi) + 30z4
i )

+σ2
ik(ŝ, ŵ)(Γ′′(wi) + 30w4

i )
] (�

= A3

)
+ [l(ẑ) − l(ŵ)]

(�
= A4

)
= A1 + A2 + A3 + A4,

where Γ(r)
�
= e5

√
r2+1, Γ′′ = d2Γ

dr2 and (t̂0, ẑ0) ∈ Bη(t0, z0), (ŝ0, ŵ0) ∈ Bη(s0, w0).

Notice that the set Sη,ε = {(t0, z0), (t̂0, ẑ0), (s0, w0), (ŝ0, ŵ0)} is contained in a compact
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set Q∗
α determined by α. For 0 < ε ≤ 1 appearing in Λ(t, z, s, w), there exists ηε > 0

such that, for all 0 < η ≤ ηε,

RHS of (4.11) ≤ A0
1 + A0

2 + A0
3 + A0

4 + ε,(4.14)

where, again without writing the subscript 0 for (t0, z0, s0, w0), we define

A0
1 = sup

u∈U
[Λτ

w(t, z, s, w)ψ(s, w, u) + Λτ
z (t, z, s, w)ψ(t, z, u)],

A0
2 =

1

2ε
tr{[G(t, z) −G(s, w)]τ [G(t, z) −G(s, w)]},

A0
3 =

α(2μT − t− s)

2μT

n∑
i,k=1

1

2
[σ2

ik(t, z)(Γ
′′(zi) + 30z4

i ) + σ2
ik(s, w)(Γ′′(wi) + 30w4

i )],

A0
4 = l(z) − l(w).

Since Sη,ε is contained in Q∗
α and the diameter of Sη,ε tends to 0 as η, ε → 0, by taking

an appropriate sequence (η(k), ε(k), λ(k)) → 0 satisfying η(k) ≤ ηε(k) , we get convergent

sequences (t
(k)
0 , z

(k)
0 ), (t

(k)
0 , ẑ

(k)
0 ), (s

(k)
0 , w

(k)
0 ), (s

(k)
0 , ŵ

(k)
0 ) → (t̃, z̃) as k → ∞. In the

following we use the same C to denote different constants which are independent of
α. Now we have the three relations

lim sup
k→∞

LHS of (4.11)(η(k), ε(k), λ(k)) ≥ 2α

μT

[
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6
]

+ 2β,(4.15)

lim
k→∞

(A0
2 + A0

4)
(
η(k), ε(k), λ(k)

)
= 0,(4.16)

lim sup
k→∞

A0
3

(
η(k), ε(k), λ(k)

)
≤ nαCσ(μT − t̃)

μT

n∑
i=1

(
25e5

√
z̃2
i
+1 + 30|z̃i|4

)
,(4.17)

where (4.15) follows from (4.12), and (4.16) follows from the continuity of l(z), the
Lipschitz continuity of G(t, z) by assumption (H1), and (4.4). We proceed to ana-
lyze A0

1:

A0
1 ≤ sup

u∈U

2n∑
i=n+1

[Λzi(t, z, s, w)ψi(t, z, u) + Λwi
(t, z, s, w)ψi(s, w, u)]

+

n∑
i=1

[Λzi(t, z, s, w)fi(t, z) + Λwi(t, z, s, w)fi(s, w)]
�
= A0

11 + A0
12.

Then by (H1), (4.4), and recalling |gi(t, x, p, u)| ≤ Cg(1 +
∑n

k=1 |pk|) for t ∈ [0, T ],
u ∈ U , we have

lim sup
k→∞

A0
11

(
η(k), ε(k), λ(k)

)
≤ α(μT − t̃)

μT

2n∑
i=n+1

12Cg

[
2n|z̃i|6 + |z̃i|5

]
.(4.18)

Now we employ ai(t) ≥ 0 for t ∈ [0, T ] in the weak coupling condition (H2), and the
Lipschitz property of fi(t, z) = ai(t)zi + f0

i (t, z) by (H1) to obtain
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A0
12 =

α(2μT − t− s)

2μT

×
n∑

i=1

{[
5zi√
z2
i + 1

e5
√

z2
i
+1 + 6z5

i +
zi − wi

ε

]
[−ai(t)zi + f0

i (t, z)]

+

[
5wi√
w2

i + 1
e5
√

w2
i
+1 + 6w5

i +
wi − zi

ε

]
[−ai(s)wi + f0

i (s, w)]

}
(4.19)

≤ α(2μT − t− s)

2μT

n∑
i=1

{[
5zi√
z2
i + 1

e5
√

z2
i
+1 + 6z5

i

]
f0
i (t, z)

+

[
5wi√
w2

i + 1
e5
√

w2
i
+1 + 6w5

i

]
f0
i (s, w)

}

+O

(
|t− s|2

ε
+

|z − w|2
ε

)
.

Hence, invoking (4.4), it follows that

lim sup
k→∞

A0
12(η

(k), ε(k), λ(k)) ≤ αCf0(μT − t̃)

μT

n∑
i=1

[
10e5

√
z̃2
i
+1 + 12|z̃i|5

]
,(4.20)

which, together with (4.16)–(4.18), gives

lim sup
k→∞

RHS of (4.11) (η(k), ε(k), λ(k))

≤ [10Cf0 + 25n(Cσ + Cg)]α(μT − t̃)

μT

[
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6 + C

]
(4.21)

≤ α

2μT

[
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6 + C

]
,

where C is independent of α. Hence it follows from (4.11), (4.15), and (4.21) that

2β ≤ − 3α

2μT

{
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6
}

+ αC ≤ αC.(4.22)

We recall from Step 1 that β ≤ 1 can take a strictly positive value from the inter-

val (0,
c+0 −c0

4T ) and α ∈ (0, α0). Letting α → 0 in (4.22) yields β ≤ 0, which is a

contradiction to β ∈ (0,
c+0 −c0

4T ), and this completes the proof.

Remark 2. By Φ(t0, z0, s0, w0) ≥ Φ(T, 0, T, 0) and |v − v| = o([
∑n

i=1(e
5|zi| +

e5|wi|) +
∑2n

i=1(z
6
i + w6

i )]), there exist δα > 0, C > 0 such that

1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 +

λ

t0 − T1
+

λ

s0 − T1

+ δα

[
n∑

i=1

(
e
5
√

1+z2
0,i + e

5
√

1+w2
0,i

)
+

2n∑
i=1

(
z6
0,i + w6

0,i

)]
≤ C.

Then (4.3) follows readily.
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Remark 3. By expanding 2Φ(t0, z0, s0, w0) ≥ Φ(t0, z0, t0, z0) + Φ(s0, w0, s0, w0)
using all the individual terms, it can be shown that 1

2ε |t0 − s0|2 + 1
2ε |z0 − w0|2 is

dominated by a continuous function F (t0, z0, s0, w0), which goes to zero as |t0 − s0|+
|z0 − w0| → 0, which in turn follows from (4.3) when ε → 0.

Remark 4. The proof of the theorem is based upon the methods in [12, 9, 10, 2].
Since here we deal with the function class G with a highly nonlinear growth condi-
tion on an unbounded domain, a localized semiconvex/semiconcave approximation
technique is devised. The particular structure of the system dynamics also plays an
important role in the proof of uniqueness, and in general it is more difficult to obtain
uniqueness results under more general dynamics and the above fast growth condition.
It is seen that the weak coupling feature of the dynamics of the state subprocess x
is crucial for the above proof, and furthermore, when there exists an ai < 0 (see
assumption (H2)), the estimate (4.19) would not be valid.

5. Control with state constraints. In this section we consider the case when
the state subprocess p is subject to constraints; i.e., the trajectory of each pi must
be maintained to be in a certain range. We term this situation as optimization under
hard constraints. In [11] the author considered a deterministic model and obtained
a constrained viscosity solution formulation for a first order HJB equation. Now due
to the exogenous subprocess x, we come up with a second order HJB equation, and
we will develop a similar formulation. Suppose that u ∈ U , where U is a compact
convex set in Rn, and that p satisfies pi ∈ [0, P i], where P i is the upper bound. For
simplicity we take U = [−1, 1]n and P i = ∞. For any fixed initial value p0 ≥ 0 (i.e.,
each (p0)i ≥ 0), define the admissible control set

Up0 = {u(·) | u is adapted to σ(zs, s ≤ t), u(t) ∈ U,

and PΩ(pi(t) ≥ 0 for all 0 ≤ t ≤ T ) = 1, 1 ≤ i ≤ n}.

In this section we consider the simple case of

g(t, x, p, u) = u.

Under the admissible control set Up0 , we will use the notation of section 2, for which
the interpretation should be clear, and in the following we also use Up0 with any initial
time s ≤ T . It is evident that Up0 is a convex set. Under the norm ‖ · ‖ on L defined
in section 2, Up0 is also closed. Indeed, if ‖u(k)−u‖ → 0 as k → ∞, where u(k) ∈ Up0 ,
one can show that u will also generate positive p trajectories with probability 1 with
initial value p0. Thus u ∈ Up0 . As in the state unconstrained case, one can prove
existence and uniqueness of the optimal control. Write

Q0
T = [0, T ) × Rn × (0,∞)n, QT = [0, T ) × Rn × [0,∞)n,

QT = [0, T ] × Rn × [0,∞)n.

We consider the HJB equation

0 = −∂v

∂t
+ sup

u∈U

{
−∂τv

∂z
ψ

}
− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l,(5.1)

v|t=T = 0,

where (t, z) = (t, x, p) ∈ QT .
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Definition 5.1. v(t, z) ∈ C(QT ) is called a constrained viscosity solution to
(5.1) if (i) v|t=T = 0 and, for any ϕ(t, z) ∈ C1,2(QT ), whenever v − ϕ takes a local
maximum at (t, z) ∈ Q0

T , we have

−∂ϕ

∂t
+ sup

u∈U

{
−∂τϕ

∂z
ψ

}
− 1

2
tr

(
∂2ϕ

∂z2
GGτ

)
− l ≤ 0, z ∈ R2n,(5.2)

at (t, z), and (ii) for any ϕ(t, z) ∈ C1,2(QT ), whenever v − ϕ takes a local minimum
at (t, z) ∈ QT , in (5.2) we have an opposite inequality at (t, z). In short, we term the
constrained viscosity solution v(t, z) ∈ C(QT ) as a viscosity subsolution on Q0

T and a
viscosity supersolution on QT .

Remark 5. Conditions (i) and (ii) hold on Q0
T and QT , respectively. Here we give

a heuristic interpretation on how the state constraints are captured by condition (ii).
Suppose that v − ϕ attains a minimum at (t, x, p), where v is the value function and
satisfies (5.1) at (t, x, p) with classical derivatives, i.e.,

0 = −∂v

∂t
+

{
−∂τv

∂z
ψ

}∣∣∣∣
u=û

− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l.(5.3)

In addition, we assume that û is admissible w.r.t. (x, p). Here t ∈ [0, T ) and p lies on
the boundary of [0,∞)n. By the necessary condition for a minimum, at (t, x, p), we
have

vt − ϕt ≥ 0, vxi − ϕxi = 0, vxixi
− ϕxixi

≥ 0, 1 ≤ i ≤ n,(5.4)

where the first inequality becomes equality when t ∈ (0, T ). Since p is on the boundary
of [0, T )n, we can find an index set I such that pi = 0 when i ∈ I, and pi > 0 when
i ∈ {1, . . . , n}\I. Again, by the minimum property at (t, x, p) we get

vpi − ϕpi ≥ 0 for i ∈ I, vpi − ϕpi = 0 for i ∈ {1, . . . , n}\I(5.5)

at (t, x, p). Since we assume that û is admissible w.r.t. (x, p), then we have ûi ≥ 0 for
i ∈ I, and therefore by (5.5), at (t, x, p)

(vp − ϕp)
τ û ≥ 0.(5.6)

Now by (5.4) and (5.6) we see that

−∂ϕ

∂t
+

{
−∂τϕ

∂z
ψ

}∣∣∣∣
u=û

− 1

2
tr

(
∂2ϕ

∂z2
GGτ

)
− l ≥ 0,

and then condition (ii) holds at (t, x, p).

As in section 2, we also define the set U = {u(·)|u is adapted to σ(zs, s ≤ t) and
u(t) ∈ U, t ≤ T}.

Lemma 5.2. For any initial pair (s0, x0, p0) with each (p0)i ≥ 0, and any u ∈ U ,
there exists ũ ∈ Up0 such that

PΩ

{∫ T

s0

|ũ− u|ds ≤ 4ε

}
= 1,(5.7)
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where with probability 1 and for all 1 ≤ i ≤ n, the constant ε > 0 satisfies

sup
t∈[s0,T ]

max{−pi(t, s0, p0, u), 0} ≤ ε,(5.8)

and p(t, s0, p0, u) denotes the value of p at t with initial condition (s0, p0) and con-
trol u.

Proof. We need only to modify each component ui of u in the following way.
Define τ0

i = s0, and for k ≥ 1,

τki = inf{t > τk−1
i , pi(t, s0, p0, ũ) = 0},(5.9)

τki = T if pi(t, τ
k−1
i + ε, pi(τ

k−1
i + ε), u) > 0 ∀t ≥ τk−1

i + ε,(5.10)

ũi(t) = 1 on [τk−1
i , τk−1

i + ε),(5.11)

ũi(t) = ui(t) on [τk−1
i + ε, τki ).(5.12)

Then it is obvious that ũ ∈ Up0 . Suppose that (5.7) is not true, and then there exist
i and a set A0 with PΩ(A0) > 0 such that on A0

∫ T

s0

|ũi − ui|ds > 4ε.(5.13)

For any fixed ω ∈ A0, if τk0
i is the last stopping time defined by (5.9) and (5.10), then

by (5.13) we can easily show that pi(τ
k0−1
i , s0, p0, u) < −2ε, which is a contradiction

to (5.8).
With Lemma 5.2, we can further show that the value function v(t, z) is contin-

uous on QT by a comparison method, as in the unconstrained case [3]. The details
are omitted here. The growth condition of Proposition 2.2 also holds in the state
constrained case.

Proposition 5.3. The value function v is a constrained viscosity solution to the
HJB equation (5.1).

Proof. We verify condition (i) first. For an initial condition pair (s, z) with z ∈ Q0
T

and any u ∈ U we construct control ũ = u on [s, s+ε] and ũ = 0 on (s+ε, T ]. We see
that when ε is sufficiently small, ũ is in the admissible control set w.r.t. (s, z) since
each pi ∈ [0,∞). All the remaining steps and the verification of condition (ii) can be
done as in Theorem 2.4.

REFERENCES

[1] C. D. Charalambous and N. Menemenlis, Stochastic models for long-term multipath fading
channels, in Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix,
AZ, 1999, IEEE Press, Piscataway, NJ, pp. 4947–4952.

[2] M. G. Crandall, H. Ishii, and P. L. Lions, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc., 27 (1992), pp. 1–67.

[3] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-
Verlag, New York, 1975.

[4] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,
Springer-Verlag, New York, 1993.

[5] M. Gudmundson, Correlation model for shadow fading in mobile radio systems, Electron.
Lett., 27 (1991), pp. 2145–2146.

[6] M. Huang, P. E. Caines, C. D. Charalambous, and R. P. Malhamé, Power control in
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Abstract. We consider an infinite horizon discounted cost minimization problem for a one-
dimensional stochastic differential equation model. The available control is an added bounded vari-
ation process. The cost structure involves a running cost function and a proportional cost for the
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pact interval. In both cases, the value function is a C2 function. For bounded cost functions, under
additional assumptions, we obtain a complex optimal strategy which turned out to be a mixture
of jumps and local-time-type processes. In this case, we show that the value function is only a C1

function and that it fails to be a C2 function. We also discuss a related variance control problem.
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1. Introduction. Consider a weak solution to the one-dimensional stochastic
differential equation

Xx(t) = x +

∫ t

0

μ(Xx(s−)) ds +

∫ t

0

σ(Xx(s−)) dW (s) + A(t),(1.1)

where x ∈ R, {W (t) : t ≥ 0} is a standard one-dimensional Brownian motion adapted
to a right-continuous filtration {Ft : t ≥ 0} on a probability space (Ω,F, P ). The
σ-algebra F0 contains all the P -null sets in F, and the Brownian increments W (t +
s) − W (t) are independent of Ft for all t and s ≥ 0. The control process A(·) is
{Ft}-adapted, right continuous with left limits, and of bounded variation on finite
intervals. Also A(0) = 0. Let |A|(·) be the total variation process of A(·), where
|A|(t) is the total variation of A(·) on [0, t]. We further assume that for each Xx(·),
there is an increasing sequence of stopping times (τn) with respect to {Ft} such that
limn→∞ τn = +∞ and

(i) Ex

∫ T∧τn

0

[|μ(Xx(s−))| + σ2(Xx(s−))] ds < ∞ for each T > 0 and(1.2)

(ii) lim
n→∞

Ex

[
|Xx(τn)|e−ατnI[τn<∞]

]
= 0,

where α > 0 is a constant which represents the discount rate in (1.3).
The first condition above helps us make sense of (1.1) and the second condition

will be used in the proof of the verification lemma in section 2. Similar conditions are
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assumed in the verification theorems of [11, Theorem 4.1, p. 322], [21], and [35], all of

which address similar singular control problems. If Ex

∫ T

0
[|μ(Xx(s−))|+σ2(Xx(s−))]

ds < ∞ for each T > 0, then the choice τn ≡ +∞ a.s. for all n, satisfies (1.2).
The cost functional associated with (1.1) is given by

J(x,A) = Ex

∫ ∞

0

e−αt[C(Xx(t)) dt + d|A|(t)],(1.3)

where C(·) is a nonnegative running cost function with the additional properties
described below, and α > 0 is a constant which represents the discount factor.

We intend to minimize J(x,A) over all available state processes satisfying (1.1),
(1.2), and to find an optimal control A(·) to achieve the minimum value. We make
the following assumptions on the functions μ(·), σ(·), and C(·) throughout this paper.
Here μ′, σ′, and C ′ denote the first derivatives of μ, σ, and C, respectively.

(i) The functions μ and σ are continuously differentiable on R,(1.4)

inf
R

(α− μ′(y)) > 0, inf
R

σ(y) > 0, and xμ(x) < 0 for all x �= 0.

(ii)

∫ 0

−∞

μ(x) − x

σ2(x)
dx =

∫ ∞

0

x− μ(x)

σ2(x)
dx = +∞.

(1.5)

(iii) The cost function C is continuously differentiable on R,(1.6)

decreasing on (−∞, 0), increasing on (0,+∞), and it satisfies

either lim inf
|x|→∞

C(x)

|x| > 0 or lim sup
|x|→∞

C(x)

|x| < ∞.

If C(0) = r �= 0, we could introduce a new running cost function C̃(x) = C(x)−r and
define the functional J̃(x,A) as similar to (1.3). Then J(x,A) = J̃(x,A)+ r

α by (1.3),

and hence the value functions V and Ṽ defined as in (1.8) below are also related by
V (x) = Ṽ (x) + r

α . Therefore, without loss of generality, we assume C(0) = 0.
The assumption xμ(x) < 0 for all x �= 0 in (1.4) guarantees that the ordinary

differential equation ẋ = μ(x) has a unique stable equilibrium point at the origin.
This corresponds to (1.1) with the processes A(·) and σ(·) being identically zero.
Hence, Xx(·) in (1.1) can be considered as a random perturbation of a stable dynam-
ical system. We will provide two motivating examples from finance and operations
research at the end of this section. In each example, the corresponding state process
is a stochastic perturbation of a stable dynamical system.

Note that the diffusion coefficient σ(·) is allowed to be unbounded subject to
the assumptions (1.4) and (1.5). Under assumptions (1.4)–(1.6), our main objectives
here are to obtain sufficient conditions in terms of the functions μ, σ, and C for the
following.

(i) Optimality of the zero control and the C2 regularity of the corresponding
value function.

(ii) Optimality of a reflected diffusion process in a compact interval and the C2

regularity of the value function.
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(iii) To illustrate the lack of C2 regularity for the value function for a class of
bounded cost functions regardless of the smoothness of μ, σ, and C, and to
obtain an optimal policy.

(iv) To generalize the results in (i) and (ii) for a related variance control problem.
In cases (i), (ii), and (iv), the value function is a C2 solution to the Hamilton–Jacobi–
Bellman (HJB) equation (1.9), while in case (iii), it fails to be a C2 function but
it is a C1 solution to the HJB equation (1.9). In (iv), we consider the problem of
controlling the bounded variation process as well as the diffusion coefficient of (1.1).
Our assumptions in (iv) guarantee the convexity of the value function, and hence it is
optimal to choose the minimum diffusion coefficient. We generalize the results of [14],
[21], and [35] to nonsymmetric diffusions and to a large class of nonsymmetric cost
functions without the convexity assumption. In addition, we allow the cost functions
to be of slow growth such as C(x) ∼ |x|α with 0 < α < 1, C(x) ∼ log |x| for large |x|
as well as bounded cost functions. Here we employ the connection between stochastic
control and optimal stopping, which is a known theme in optimal control theory. We
refer to [3], [4], [5], [7], [15], [16], [27], and [35] for this approach. The articles [5],
[15], and [16] consider the case of Brownian motion with an added bounded variation
control process. The work of [5] considers the case of a diffusion process and their
drift and diffusion coefficients are allowed to be time dependent, but the drift term
is linear and the diffusion is independent of the space variable. The running cost
function is a symmetric convex function in [5], [13], [15], and [16]. A control problem
with a quite general cost function with a different cost structure was considered in [3].

For a given x in R, we call ((Ω,F, P ), (Ft),W (·), Xx(·), A(·)) an admissible con-
trol system if (i) Xx(·) is a weak solution to (1.1), and (ii) Xx(·) satisfies (1.2) and
J(x,A) < +∞, where J is given in (1.3). To define the value function for the control
problem, we first introduce

A(x) = {A(·) : A(·) is a bounded variation process in (1.1) with a(1.7)
corresponding admissible state process Xx(·)}.

For each x in R, using a reflecting diffusion on an interval containing the point x,
one could obtain a control process A(·) so that the corresponding J(x,A) is finite.
Hence A(x) is nonempty and the value function is finite for all x. The value function
is defined by

V (x) = inf
A∈A(x)

J(x,A).(1.8)

The formal HJB equation for the value function is given by

min

{
1

2
σ2(x)V ′′(x) + μ(x)V ′(x) − αV (x) + C(x), 1 − |V ′(x)|

}
= 0 a.s. on R.

(1.9)

We show that under our assumptions, this value function is the minimal solution
to (1.9).

The paper is organized as follows. In section 2, we establish several verification
results. They will be used to sort out our optimal strategies. Some auxiliary results
will be proved in section 3. In section 4, we show that when α−μ′(x) ≥ |C ′(x)| for all
x, then A(·) being identically zero is an optimal strategy and that the value function
is a C2 solution to (1.9). In section 5, when (1 + ε)(α− μ′(x)) < |C ′(x)| for large |x|,
for some ε > 0, we show that the value function is C2 and the optimal state process
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is a reflecting diffusion on a finite interval which contains the origin. Our approach
in both sections 4 and 5 is to first observe that the value function can be completely
determined by its first derivative and then to obtain this derivative function. In
sections 4 and 5, we generalize the results of [35] to a large class of cost functions and
to general diffusions, while section 6 is completely new. In section 5, we develop the
idea of using a family of optimal stopping problems to obtain the derivative of the
value function. In section 6, we consider the situation of bounded cost functions. If
α − μ′(x) ≥ |C ′(x)|, then the results in section 4 remain valid and the zero control
is optimal. Under additional symmetry assumptions, we obtain a complex optimal
strategy which involves a possible jump at a stopping time followed by a local-time-
type control when |C ′(x)| is larger than α−μ′(x) in a large compact interval. In this
case, the value function is a C1 solution to (1.9) and it is C2 everywhere except at
two points. When μ is identically zero and σ is a constant, an example of a similar
optimal process is given in Example 4.3, Chapter VIII of [11]. In section 7, we control
the diffusion coefficient in addition to the bounded variation process. We observe that

the monotonicity of the function h(x) = C′(x)
α−μ′(x) implies the convexity of the value

function related to the sections 4 and 5. Hence the choice of the minimal diffusion
coefficient is optimal.

We intend to consider the ergodic control problem and Abelian limit relations
between the value functions in a future work; see [34] for a related article. The articles
[9] and [31] discuss issues related to the regularity of the value function in higher
dimensions. The existence of an optimal Markovian control for related stochastic
control problems was established in [20]. Next we describe two motivating examples
from finance and operations research.

Example 1 (foreign exchange rates). We consider the currency exchange rate that
governs the transactions between two countries. We assume that the economies of the
two countries are stable and therefore the exchange rate fluctuates around a stable
equilibrium point. In the presence of uncertainty, it is a common practice to model
the currency exchange rate using stochastic differential equations (see Chapter 7 of
[26] and also [8], [12], [18], and [25]). We consider the problem of a central bank in
one of these countries which would like to keep the exchange rate as close as possible
to a given target level through minimal intervention.

In several models (see [12], [18]), the exchange rate is assumed to take values
in an exogenously given target interval which is called the “target band.” To keep
the exchange rates within the target band, the central bank may intervene while the
exchange rate is still inside the band and there is empirical evidence to support this
fact [6]. In [13], impulse control methods were used to find an optimal target zone.
An exchange rate model with constant σ and discrete intervention times is considered
in [25]. They derive an optimal target band in a specific example with a symmetric
running cost function C(·). Also we refer the reader to [24] and [32] for related work.
It is typically the responsibility of the central bank to have a monetary policy to
guarantee the exchange rate to take values in the target band. The central bank may
intervene in the foreign exchange market by adjusting the money supply, controlling
the flow of foreign capitals via local interest rate adjustments, and by buying and
selling large amounts of the foreign currency. These procedures imply a cost for the
central bank and this cost increases with the level of intervention.

In our model, there is no exogenous target band for the exchange rate, but we
consider a target value or a benchmark. There will be two types of costs involved:
there is a running cost associated with the deviation of the exchange rate from the
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target value and a cost for the intervention of the central bank which is proportional
to the change in the interest rate. Our exchange rate model is described by (1.1). Here
Xx(t) represents the value of one unit of foreign currency in domestic currency units
at time t ≥ 0 and Xx(0) = x. The bounded variation control process A(·) in (1.1)
represents the changes in the exchange rate due to the central bank interventions. We
assume that the underlying cost of these interventions is proportional to the changes
in the exchange rate and is represented by the total variation process. Without loss
of generality, we consider the target level for the exchange rate to be at the origin,
since if the target level were at ρ > 0 we could consider Xx(t) − ρ, which satisfies
an equation similar to (1.1). The running cost function C(·) which satisfies (1.6)
represents the cost due to the deviation of the exchange rate from the target. Notice
that C has its absolute minimum at the target point. If there is no uncertainty, then
the exchange rate should have a stable equilibrium point at the target level since we
assume that μ and σ satisfy (1.4) and (1.5).

Our objective here is to find an optimal intervention policy A(·) of the central
bank which minimizes the infinite horizon total cost J(x,A) of (1.3), where α > 0
is a constant discount factor. We would also like to derive conditions on μ, σ, and
C which imply the existence of an optimal target band [a∗, b∗] and also to obtain
conditions which guarantee the nonexistence of an optimal target band. In [8], the
authors address a similar problem for the geometric Brownian motion with C(x) = x2

but allow the cost due to each intervention to have a fixed cost and a proportional cost.
They also obtain an explicit expression for the value function. Our results are of more
qualitative nature. In section 4, under assumptions (1.4)–(1.6) and (4.2), we guarantee
the nonexistence of an optimal target band and show that it is optimal for the central
bank not to intervene at all to minimize the cost functional J(x,A). Our results in
section 5 prove the existence of an optimal target band [a∗, b∗] under assumptions
(1.4)–(1.6) and (5.1)–(5.2). In Theorem 5.4, we derive an optimal intervention policy.

Example 2 (capacity change under uncertainty). Capacity change is the process
of adding new facilities or deleting available facilities over time to satisfy a demand.
Let d(t) be the demand at time t and e(t) be the available capacity at time t. We
let d(·) and e(·) be random processes. At time t, if e(t) < d(t), then a shortage cost
will be paid. If e(t) > d(t), then an overcapacity cost will be paid. Let Xx(t) =
d(t) − e(t) for t ≥ 0 and Xx(0) = x. Xx(·) represents the “undercapacity” process
and notice that Xx(t) may take negative values. We introduce the penalty function
C by letting C(y) be the penalty paid per unit time if Xx(t) = y. If |Xx(t)| is
large, we expect that the corresponding penalty is also large and hence C satisfies the
assumptions in (1.6) and C(0) = 0. Since the “overcapacity” and “undercapacity”
penalty rates could be different, the function C(·) need not be symmetric. When a
project is undertaken, the decision maker is provided with an initial fund and also
an emergency fund. Initial funds are used by day-to-day control of the project to
change the capacity e(·) continuously to match the demand process d(·), by using
the future forecasts of the demand. Therefore, it is assumed that these changes are
made so that the capacity process e(·) remain absolutely continuous with respect
to t. However, uncertain future demands, significant forecasting errors or any other
defects may result in critical shortages or unwanted gross surpluses of the capacity.
Therefore, the Xx(·) process may deviate significantly from the origin. To correct
these situations, the controller may use the emergency funds to provide or delete the
additional capacity. These corrections are costly and the corresponding changes in
capacity are represented by a bounded variation process A(·) which may allow jumps
or nonabsolutely continuous changes with respect to t. It is assumed that the cost of



394 ANANDA WEERASINGHE

change of capacity is proportional to the amount changed. Thus, the total variation
|A|(t) represents the costs due to these emergency capacity changes during [0, t]. The
decision maker would like to choose the A(·) process which minimizes the infinite
horizon discounted cost J(x,A) ≡ Ex

∫∞
0

e−αt[C(Xx(t)) dt + d|A|(t)], where α > 0 is
a constant discount factor.

The condition xμ(x) < 0 for x �= 0 in (1.4) implies the stability of the system
when there is no uncertainty or when perfect forecasting is available. With the above
model, when μ, σ, and C are known to the decision maker, there are several issues of
interest. The results in this paper will address the following issues.

1. Under what conditions should the controller rule out using emergency funds
at all? We will provide an answer in section 4.

2. In general, what is the qualitative nature of the optimal strategies? Sections 4,
5, and 6 yield answers to this question.

3. When large losses are covered by an insurance, the cost function C(·) can
be considered a bounded function satisfying (1.6) and thus lim|x|→∞ C(x) is
finite. What are the available optimal strategies? We answer this question in
section 6.

In a celebrated paper [22], Manne specified the demand as a Wiener process with a
drift and used the regenerative behavior of Xx(·) to conclude that the optimal capacity
can be found by considering an equivalent deterministic problem with a modified
discount rate. In [10], Davis et al. considered the demand as a Poisson process
with a similar infinite horizon cost functional related to a piecewise-deterministic
Markov process. They developed algorithms to approximate the optimal strategy. In
conclusion, they point out the importance as well as the difficulty of developing results
of qualitative nature for optimal policies. Our results address this need when Xx(·)
is modeled by (1.1). In [30], Ryan employs the geometric Brownian motion for the
demand process and uses option pricing formulas to derive infinite horizon discounted
cost. For a survey article on capacity expansion review, a list of references, and for
new directions, we refer the reader to [33].

2. A verification lemma. The results in this section will enable us to obtain
a lower bound for the value function. It is closely related to Theorem 2.1 of [21],
Lemma 3.1 of [35], and also to the general verification theorems in Chapter 8 of [11].
We first establish the verification lemma under the assumption lim inf |x|→∞

C(x)
|x| > 0

and then we generalize it to the case lim sup|x|→∞
C(x)
|x| < ∞. We relabel these as-

sumptions in (1.6). Let us assume

either (i) lim inf
|x|→∞

C(x)

|x| > 0(2.1)

or (ii) lim sup
|x|→∞

C(x)

|x| < ∞.(2.2)

Lemma 2.1. Assume (2.1). Let Q(x) be a twice continuously differentiable
function satisfying the HJB equation (1.9). Then V (x) ≥ Q(x) for all x, where V (x)
is the value function given in (1.8).

Proof. The proof is essentially the same as the proof of Lemma 3.1(a) of [35] with
the following observations. First, by (2.1), there exist two constants C0 and C1 so
that C1 > 0 and C(x) ≥ C0 + C1|x| for all x. Second, we can use the sequence (τn)
given in (1.2) in the proof of Lemma 3.1 in [35] and follow the proof there.
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Remark. The above lemma remains valid if Q is a C2 function which satisfies

Min

{
1

2
σ2(x)Q′′(x) + μ(x)Q′(x) − αQ(x) + C(x), 1 − |Q′(x)|

}
≥ 0 for all x.

(2.3)

Corollary 2.2. Assume (2.2). Let Q(x) be a twice continuously differentiable
function which satisfies the HJB equation (1.9). Then V (x) ≥ Q(x) for all x, where
V is the value function given in (1.8).

Proof. Let C(x) satisfy (2.2). Consider any process Xx(·) which satisfies (1.1)
and (1.2) and has corresponding J(x,A) < ∞. Then Ex

∫∞
0

e−αt d|A|(t) is finite. By
(2.2) we have C(x) < K0 + K1|x| for all x, for some constants K0 and K1 > 0. We
approximate C(x) by a sequence of C2 functions {CN} such that

(i) CN (0) = 0, CN is increasing on [0,∞), and decreasing on (−∞, 0);

(ii) C0(x) ≥ CN (x) ≥ C(x) and limN→∞ CN (x) = C(x) for all x;

(iii) CN (x) ≤ K0 + K1|x| for all x and CN (x) = K0 + K1|x| for |x| ≥ N + 1.
Next, we estimate Ex[CN (Xx(T ))] by applying Itô’s lemma to CN (Xx(T ∧τk)), where
(τk) is as in (1.2), and using the following facts:

(a) supR(|C ′
N (x)| + |C ′′

N (x)|) < DN , where DN is a positive constant;
(b) μ(x)C ′

N (x) ≤ 0 for all x and C ′′
N (x) = 0 when |x| ≥ N + 1; and

(c) Ex

∫ T∧τk
0

|C ′′
N (Xx(t))|σ2(Xx(t)) dt ≤ DN (max|x|≤N+1 σ

2(x))T.
Thus, we obtain Ex[CN (Xx(T ∧ τk)] ≤ CN (x) + BN (T + E|A|(T )), where BN is
a constant which depends only on N . Together with Ex

∫∞
0

e−αt d|A|(t) < ∞, we
conclude

Ex

∫ ∞

0

e−αtC(Xx(t)) dt ≤ Ex

[∫ ∞

0

e−αtCN (Xx(t)) dt

]
≤ Ex

[∫ ∞

0

e−αtC0(Xx(t)) dt

]
< +∞.

But limN→∞ CN (x) =C(x) for all x, and consequently limN→∞ Ex

∫∞
0

e−αtCN (Xx(t))

dt = Ex

∫∞
0

e−αtC(Xx(t)) dt. We let JN (x,A) ≡ Ex

∫∞
0

e−αt(CN (Xx(t))dt+d|A|(t)).
Then each JN (x,A) is finite and limN→∞ JN (x,A) = J(x,A). Since CN (x) ≥ C(x),
it follows that Q also satisfies Min{ 1

2σ
2(x)Q′′(x) + μ(x)Q′(x) − αQ(x) + CN (x),

1 − |Q′(x)|} ≥ 0 for all x. Thus, by Lemma 2.1 and the remark in (2.3), we ob-
tain JN (x,A) ≥ Q(x). Now letting N tend to infinity, we obtain J(x,A) ≥ Q(x) for
all x. Hence the result.

The following result will be used in section 6.
Proposition 2.3. Assume (2.1) or (2.2). Let Q be a bounded continuously differ-

entiable function on R which is also twice continuously differentiable everywhere except
on a finite set {b1, b2, . . . , bN}. Also, assume that the limits, limx→b−j

Q′′(x), limx→b+j

Q′′(x) exist and are finite for each j = 1, 2, . . . , N , and that Q satisfies the HJB equa-
tion (1.9) everywhere except on the set {b1, b2, . . . , bN}. Then V (x) ≥ Q(x) for all x,
where V is the value function in (1.8).

Proof. Let Xx(·) be any admissible process which satisfies (1.1) and (1.2) and
has corresponding J(x,A) in (1.3) finite. Hence Ex

∫∞
0

e−αt d|A|(t) and Ex[|A|(T )]

for any T > 0 are finite. Next, consider the open set Gn =
⋃N

i=1

(
bi − 1

n , bi + 1
n

)
. We

can approximate Q by a sequence of C2 functions {Qn} so that Q(x) ≡ Qn(x) for
all x in R \ Gn, limn→∞ Q′′

n(x) = Q′′(x) for all x �= b1, b2, . . . , bN , and |Q′′
n(x)| ≤ M1
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for all x in G1, where M1 > 0 is a constant independent of n. By (1.9), we have
|Q′(x)| ≤ 1 for all x. Thus |Q′

n(x)| ≤ 1 + ρn, where ρn is a positive constant and
limn→∞ ρn = 0. Therefore, since Q is bounded, we can find a constant M2 > 0

independent of n, so that |Qn(x)| < M2 for all n. Next, observe that σ2(x)
2 Q′′

n(x) +
μ(x)Q′

n(x)−αQn(x) +C(x) ≥ 0 for all x in R \Gn, since Qn ≡ Q on R \Gn. On the

other hand, |σ
2(x)
2 Q′′

n(x) +μ(x)Q′
n(x)−αQn(x)| < M3 for all x in Gn, where M3 > 0

is a constant independent of n. Using these estimates, Itô’s lemma and following the
computation in the proof of Lemma 3.1 in [35], we obtain

Ex

[
e−α(T∧τk)|Qn(Xx(T ∧ τk))|

]
+ J(x,A) ≥ Q(x) + εn(x, T, τk),(2.4)

where εn(x, T, τk) =−ρnEx

∫ T∧τk
0

e−αs d|A|(s)−M3Ex

∫ T∧τk
0

e−αsIGn(Xx(s−)) ds.
Therefore, by (2.4), we have

M2Ex

(
e−α(T∧τk)

)
+ J(x,A) ≥ Q(x) − ρnEx

∫ T

0

e−αs d|A|(s)(2.5)

−M3Ex

∫ T

0

e−αsIGn(Xx(s−)) ds.

Since
∫ t

0
σ(Xx(s−) dW (s) is a continuous local Martingale and infR σ(x) > 0, it follows

that Ex

∫ T

0
I{bii=1,...,N}(Xx(s−)) ds = 0 (see p. 225, Example 7.10 of [17]). Hence

limn→∞ Ex

∫ T

0
e−αsIGn

(Xx(s−)) ds = 0. Now letting n tend to infinity in (2.5), we

obtain M2Ex(e−α(T∧τk)) + J(x,A) ≥ Q(x). Next, we let (τk) tend to infinity and
then T tend to infinity to obtain J(x,A) ≥ Q(x) for all x. This completes the
proof.

3. An auxiliary result. Let σ(·) and μ(·) satisfy assumptions (1.4) and (1.5),
and σ′(·) be the derivative of σ(·). We consider a weak solution of

dY (t) = [σ(Y (t))σ′(Y (t)) + μ(Y (t))] dt + σ(Y (t)) dW (t),(3.1)

Y (0) = x,

where {W (t) : t ≥ 0} is a Brownian motion on some probability space (Ω,F, P )
equipped with a Brownian filtration {Ft}. Let τ∞ be the explosion time for {Y (t) :
t ≥ 0}. If σ′(x) is a bounded function, then τ∞ ≡ +∞ a.s. by Khasminski’s criteria
for nonexplosion [29, p. 297], and the following proposition is obvious. But we need
it for the general case.

Proposition 3.1. Assume (1.4) and (1.5). Let {Y (t) : t ≥ 0} be a weak solution
of (3.1). Then ∫ τ∞

0

(α− μ′(Y (s))) ds = +∞ a.s. in P.(3.2)

To prove (3.2) we need the following technical lemma.
Lemma 3.2. Let u be the solution to the differential equation

σ2(x)

2
u′′(x) + (σ(x)σ′(x) + μ(x))u′(x) − (α− μ′(x))u(x) = 0(3.3)

with the boundary conditions u(0) = 1 and u′(0) = 0. Then u(x) ≥ 1 for all x, u is
increasing on (0,+∞), decreasing on (−∞, 0), and limx→−∞ u(x) = limx→+∞ u(x) =
+∞.



BOUNDED VARIATION CONTROL 397

Proof. This proof is elementary and we sketch the basic steps. First, observe
that u′′(0) > 0. Thus u has a strictly convex local minimum at the origin. Second,
by (3.3), u cannot have any positive local maxima nor any negative local minima.
By integrating (3.3), we obtain u′(x) > 0 for x > 0 and u′(x) < 0 for x < 0 and the

estimate u′(x) > 2
σ2(x) (αx−μ(x)) for x > 0. Hence u(x) > 1+2

∫ x

0
αr−μ(r)

σ2(r) dr. Using

(1.5), it follows that limx→+∞ u(x) = +∞. A similar proof yields limx→−∞ u(x) =
+∞. This completes the proof.

Proof of Proposition 3.1. By Lemma 3.2, for n > 1, we can find αn < 0 < βn

such that u(αn) = u(βn) = n, αn decreasing to −∞ and βn increasing to +∞. For
the process {Y (t)} in (3.1) with Y (0) = x, let n0 > 1 so that αn0

< x < βn0 . For
each n ≥ n0 we define the stopping time τn by

τn = inf{t ≥ 0;Y (t) /∈ (αn, βn)}(3.4)

= +∞ if the above set is empty.

Thus limn→∞ τn = τ∞ a.s., where τ∞ is the explosion time of the process {Y (t)} in
(3.1).

For each x in [αn, βn], we introduce the function Hn by Hn(x) = u(x)
n . Then

Hn satisfies (3.3) on [αn, βn] with Hn(αn) = Hn(βn) = 1, 1
n ≤ Hn(x) < 1 for all

x in (αn, βn) and H ′
n, H

′′
n are bounded on [αn, βn]. Next, we apply Itô’s lemma to

Hn(Y (t))e−
R t
0
γ(Y (s)) ds, where γ(Y (t)) = (α− μ′(Y (t))), and we obtain

Ex

[
Hn(Y (T ∧ τn))e−

RT∧τn
0

γ(Y (t)) dt
]

= Hn(x).

Hence, by letting T tend to infinity,

Ex

[
e−

R τn
0

γ(Y (t)) dtI[τn<∞]

]
≤ Hn(x) =

u(x)

n
.

By letting τn increase to τ∞ as n tends to infinity, we obtain

Ex

[
e−

R τ∞
0

γ(Y (t)) dtI[τ∞<∞]

]
= 0

and hence (3.2) follows. This completes the proof.

4. Optimality of the zero control. Consider a weak solution of

Zx(t) = x +

∫ t

0

μ(Zx(s)) ds +

∫ t

0

σ(Zx(s)) dW (s)(4.1)

corresponding to (1.1), where the process A(·) is identically zero. Our goal in this
section is to furnish the conditions on μ(·), σ(·), and C(·) under which {Zx(t) : t ≥ 0}
is an optimal process for (1.8). Here we extend the results in section 4 of [35] for a
larger class of cost functions and for general diffusions. Throughout this section, in
addition to (1.4), (1.5), and (1.6), we also assume

α− μ′(x) ≥ |C ′(x)| for all x.(4.2)

Introduce a sequence of stopping times {τn} for each n > |x| by

τn = inf{t ≥ 0 : |Zx(t)| ≥ n}(4.3)

= +∞ if the above set is empty.
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Proposition 4.1. Assume (1.4) and (1.5). Then a weak solution {Zx(t) : t ≥ 0}
to (4.1) exists and satisfies

lim
N→∞

Ex

[
|Zx(τN )|e−ατN I[τN<∞]

]
= 0.(4.4)

Therefore, Zx(t) is finite for each t > 0 and satisfies the admissibility condition
(1.2) with respect to {τN} which is defined in (4.3).

Proof. The existence of a weak solution to (4.1) follows from the assumptions
(1.4) and (1.5). We need to establish (4.4). Let H0 be the solution of

σ2(x)

2
H ′′

0 (x)+μ(x)H ′
0(x) − αH0(x) = 0 for all x, and(4.5)

H0(0) = 1, H ′
0(0) = 0.

Following the proof of the Proposition 4.1 of [35], we can establish limx→+∞ H ′
0(x) =

+∞ and limx→−∞ H ′
0(x) = −∞. Using L’Hôpital rule, we conclude limx→−∞

H0(x)
x =

−∞ and limx→+∞
H0(x)

x = +∞. Itô’s lemma implies that H0(Zx(t∧ τn))e−α(t∧τn) is

a positive martingale, and we obtain Ex[|Zx(τn)|e−ατnI[τn<∞]] ≤ nH0(x)
Min{H0(n),H0(−n)}

(see Proposition 4.1 of [35]). Consequently, limN→∞ Ex[|Zx(τN )|e−ατN I[τN<∞]] = 0.
This also shows τ∞, the explosion time for {Zx(t) : t ≥ 0} is infinite a.s. To verify

the admissibility condition (1.2), we observe Ex[
∫ T∧τN
0

(|μ(Zx(s)) |+σ2(Zx(s))) ds] ≤
T · max[−N,N ](|μ(x)| + σ2(x)) < ∞. Hence both conditions in (1.2) are satisfied and
the proposition follows.

Remarks.
1. Using (1.5), one can directly verify Khasminski’s criteria for nonexplosion for

{Zx(t)} (see [29, p. 297]).
2. Using Itô’s lemma for H0(Zx(T ∧ τn)), we can derive Ex [H0(Zx(T ))] ≤

H0(x)eαT and thus Ex|Zx(T )| is finite for each T > 0.
Our next step is to obtain a function W∞ on R which satisfies the following

conditions (4.6) and (4.7) everywhere on R:

σ2(x)

2
W ′′

∞(x) + (σ(x)σ′(x) + μ(x))W ′
∞(x) − (α− μ′(x))W∞(x) + C ′(x) = 0(4.6)

and

|W∞(x)| ≤ 1 for all x.(4.7)

Once we find a solution W∞, we will be able to show that W∞ is the derivative
of the value function V (x) and the process in (4.1) is optimal. To obtain a solution of
(4.6) and (4.7), we employ the process {Y (t) : t ≥ 0} defined in (3.1). Let αn < 0 < βn

be the constants introduced in the proof of Proposition 3.1. Introduce the function
Wn which satisfies

σ2(x)

2
W ′′

n (x) + (σ(x)σ′(x) + μ(x))W ′
n(x) − (α− μ′(x))Wn(x) + C ′(x) = 0(4.8)

on (αn, βn),

Wn(αn) = −1 and Wn(βn) = +1.(4.9)

We extend Wn to R so that Wn satisfies (4.8) everywhere. The following lemma
will lead to our main theorem.

Lemma 4.2. Assume (1.4), (1.5), (1.6), and (4.2). Let Wn be as defined above.
Then the following conclusions hold.
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(i) |Wn(x)| ≤ 1 on (αn, βn) and limn→∞ Wn(x) exists for every x.
(ii) Let W∞(x) = limn→∞ Wn(x) for each x in R. Then W∞ satisfies (4.6) and

(4.7). Furthermore, W∞ has the stochastic representation

W∞(x) = Ex

[∫ τ∞

0

e−
R t
0
γ(Y (s)) dsC ′(Y (t)) dt

]
for all x,(4.10)

where τ∞ is the explosion time of the process {Y (t)) : t ≥ 0} as in Propo-
sition 3.1, and γ(y) = α− μ′(y) for all y.

Proof. If W ′
n(z) = 0 for some z in (αn, βn), then

σ2(z)

2
W ′′

n (z) = (α− μ′(z))

(
Wn(z) − C ′(z)

α− μ′(z)

)
.

Hence, by (4.2), if Wn(z) > 1, then z is necessarily a local minimum and if Wn(z) <
−1, then z is necessarily a local maximum. But Wn(αn) = −1 and Wn(βn) = 1.
Therefore, it follows that |Wn(x)| ≤ 1 on (αn, βn). Next we apply Itô’s lemma to

Wn(Y (T ∧ τn))e−
RT∧τn
0

γ(Y (s)) ds, where τn’s are defined in (3.4) and obtain

Ex

[
Wn(Y (T ∧ τn))e−

RT∧τn
0

γ(Y (s)) ds
]

(4.11)

= Wn(x) − Ex

∫ T∧τn

0

e−
R t
0
γ(Y (s)) dsC ′(Y (t)) dt.

Using (4.2), we have

Ex

[∫ τ∞

0

e−
R t
0
γ(Y (s)) ds|C ′(Y (s))| ds

]
≤ Ex

[∫ τ∞

0

e−
R t
0
γ(Y (s)) dsγ(Y (t)) dt

]
≤ 1

(4.12)

and |Wn(x)| ≤ 1 on [αn, βn]. Thus by letting T tend to infinity in (4.11) we obtain∣∣∣∣Wn(x) − Ex

∫ τn

0

e−
R t
0
γ(Y (s)) dsC ′(Y (t)) dt

∣∣∣∣ ≤ Ex

[
e−

R τn
0

γ(Y (s)) ds
]
.(4.13)

By (4.12) we also have

lim
n→∞

Ex

∫ τn

0

e−
R t
0
γ(Y (s)) dsC ′(Y (t)) dt = Ex

∫ τ∞

0

e−
R t
0
γ(Y (s)) dsC ′(Y (t)) dt.(4.14)

By letting n tend to infinity, the right-hand side of (4.13) becomes zero by
Proposition 3.1. Hence by (4.13) and (4.14) we conclude that W∞(x) ≡ limn→∞ Wn(x)
exists, W∞(x) has the representation (4.10) and |W∞(x)| ≤ 1 for all x by (4.12). It
remains to verify that W∞ also satisfies (4.6).

We fix a large interval [−M,M ] and consider n > n0, where [−M,M ] ⊆ [αn0 , βn0 ].
By integrating (4.8) twice, we obtain

Wn(x) = Wn(0) − 2

∫ x

0

C(r) + μ(r)Wn(r)

σ2(r)
dr + σ2(0)W ′

n(0)

∫ x

0

1

σ2(r)
dr

+ 2α

∫ x

0

1

σ2(y)

∫ y

0

Wn(u) du dy for any x in [−M,M ].
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Since |Wn(x)| ≤ 1, limn→∞ Wn(x) = W∞(x) and |W∞(x)| ≤ 1 for all x, it follows
from the above equation that limn→∞ W ′

n(0) = λ0 exists and is finite. Also W∞
satisfies

W∞(x) = W∞(0) − 2

∫ x

0

C(r) + μ(r)W∞(r)

σ2(r)
dr + λ0σ

2(0)

∫ x

0

1

σ2(r)
dr

+ 2α

∫ x

0

1

σ2(y)

∫ y

0

W∞(u) du dy for any x in [−M,M ].

By differentiating this equation twice, we see that W∞ satisfies (4.6) as desired
and W ′

∞(0) = λ0. This completes the lemma.

Next we construct a function F (x) so that F ′(x) ≡ W∞(x), αF (0) = σ2(0)
2 W ′

∞(0)
and F will satisfy the HJB equation (1.9). Let

F (x) =
σ2(0)

2α
W ′

∞(0) +

∫ x

0

W∞(r) dr for all x in R.(4.15)

We claim that F satisfies

σ2(x)

2
F ′′(x) + μ(x)F ′(x) − αF (x) + C(x) ≡ 0 for all x in R.(4.16)

Since F ′(x) ≡ W∞(x), clearly (4.16) holds at x = 0. Also W∞ satisfies (4.6), thus
the derivative of the left-hand side of (4.16) is equal to zero. Therefore, (4.16) holds
for all x. Next we prove the main theorem in this section.

Theorem 4.3. Assume (1.4), (1.5), (1.6), and (4.2). Let F be defined by (4.15).
Then F (x) = V (x) for all x, where V is the value function given in (1.8). Moreover,
the process {Zx(t)} defined by (4.1) is an optimal process for each x.

Proof. By (4.16) and Lemma 4.2, F is a C2 function which satisfies the HJB
equation (1.9) and by the verification results in section 2, it follows that F (x) ≤ V (x)
for all x. But {Zx(t) : t ≥ 0} in (4.1) is an admissible process as described in the
Proposition 4.1. Applying Itô’s lemma to F (Zx(T ∧τn))e−α(T∧τn), where (τn) is given
in (4.3), and using the Proposition 4.1, we obtain F (x) = Ex

∫∞
0

e−αtC(Zx(t)) dt.
Thus F (x) ≥ V (x) and consequently, F (x) ≡ V (x) for all x. Hence, the process
{Zx(t) : t ≥ 0} is optimal.

5. A bounded optimal process.

5.1. Reflecting diffusion processes. In addition to (1.4), (1.5), and (1.6) we
assume the following conditions in this section.

(5.1) (i) There exist two points θ0 < β0 such that |C ′(x)| < (α − μ′(x)) for all x in
(θ0, β0) and |C ′(x)| > (α− μ′(x)) outside the interval [θ0, β0].

(5.2)(ii) There is a ε0 > 0 and a large M > 0 so that |C ′(x)| > (1 + ε0)(α − μ′(x))
when |x| > M .

Remarks.
1. By (1.6), since C ′(0) = 0, it follows that θ0 < 0 < β0, C

′(x)+ (α−μ′(x)) < 0
for x < θ0 and C ′(x) − (α− μ′(x)) > 0 for x > β0.

2. Clearly lim|x|→∞ C(x) = +∞.
Under these assumptions, our candidate for an optimal process comes from a class

of diffusion processes with reflection barriers at the points a and b, where a < 0 < b.
Therefore, for each a < 0 < b, we consider a weak solution of

Xx(t) = x +

∫ t

0

μ(Xx(s)) ds +

∫ t

0

σ(Xx(s)) dW (s) + K(t),(5.3)
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where {W (t) : t ≥ 0} is a Brownian motion and the bounded variation process K(t)
is given by

dK(t) = dLa(t) − dLb(t) for t > 0 and(5.4)

d|K|(t) = dLa(t) + dLb(t) for t > 0.

Here La and Lb are the local time processes of {Xx(t) : t ≥ 0} at the points a and b,
respectively. If the initial point x is outside [a, b], then there will be an initial jump
from x to the nearest point of the set {a, b}. Hence, in this case we let Xx(0−) = x
and |K|(0) is equal to the distance from x to {a, b}. Since Xx(·) satisfies assumption
(1.2), it is an admissible process. The cost functional related to Xx(·) is given by

Vab(x) = Ex

∫ ∞

0

e−αt(C(Xx(t)) dt + d|K|(t)).(5.5)

Using Itô’s lemma, it is easy to verify that Vab satisfies the differential equation

σ2(x)

2
V ′′
ab(x) + μ(x)V ′

ab(x) − αVab(x) + C(x) = 0 for a < x < b,(5.6)

V ′
ab(x) = −1 for x ≤ a and V ′

ab(x) = 1 for x ≥ b.(5.7)

Our aim here is to find a pair of points a∗ < b∗ such that Va∗b∗ is twice continu-
ously differentiable and satisfies (5.6), (5.7), and, in addition to that, Va∗b∗ satisfies
|V ′

a∗b∗(x)| ≤ 1 for all x. Thus if we let W (x) = V ′
a∗b∗(x), it should satisfy

σ2(x)

2
W ′′(x) + (σ(x)σ′(x) + μ(x))W ′(x) − (α− μ′(x))W (x) + C ′(x) = 0(5.8)

for a∗ < x < b∗

and

W (a∗) = −1, |W (x)| < 1 on (a∗, b∗), and W (b∗) = 1.(5.9)

For Va∗b∗ to be twice continuously differentiable, W has to satisfy an additional
requirement

W ′(a∗) = W ′(b∗) = 0.(5.10)

Once we have the existence of a∗ and b∗, it follows that a∗ < 0 < b∗ by
(5.8)–(5.10). Our approach here is first to derive such a function W together with an
interval [a∗, b∗] and then to construct Va∗b∗ and to show that it is a C2 solution to the
HJB equation (1.9). As a first step, we need to obtain a C1 solution to (5.8), (5.9),
and (5.10). For this, we consider a class of optimal stopping problems.

5.2. A class of optimal stopping problems. Let {Y (t) : t ≥ 0} be a weak
solution to (3.1) with Y (0) = x as described in section 3, and let τ∞ be the explosion
time for {Y (t) : t ≥ 0}. We introduce the function ψ(x) by

ψ(x) = C ′(x) − (α− μ′(x)) for all x.(5.11)

By assumption (5.1) (see also the remark after (5.1)), there is a point β0 > 0 so
that ψ(β0) = 0 and

ψ(x) > 0 for all x > β0.(5.12)
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For each p < β0 and x ≥ p, introduce the stopping problem

Rp(x) = inf
0≤τ≤τ∞

Ex

[∫ τ∧τp

0

e−
R t
0
γ(Y (s)) dsψ(Y (t)) dt

]
,(5.13)

where

γ(x) = α− μ′(x)(5.14)

and

τp = inf{t ≥ 0 : Y (t) ≤ p}(5.15)

= +∞ if the above set is empty.

For each p < q, introduce

Rpq(x) = Ex

∫ τpq

0

e−
R t
0
γ(Y (s)) dsψ(Y (t)) dt(5.16)

for each x in [p, q], where τpq = Min{τp, τq}. Using Itô’s lemma, one can verify that
Rpq satisfies

1

2
σ2(x)R′′

pq(x) + (σ(x)σ′(x) + μ(x))R′
pq(x) − (α− μ′(x))Rpq(x) + ψ(x) = 0(5.17)

for all x in (p, q)

and

Rpq(p) = Rpq(q) = 0.(5.18)

We extend Rpq to R so that it is a C2 function which satisfies (5.17) everywhere.
Using (5.12) and (5.17) we observe the following fact which will be used in the next
few lemmas:

for any p < q,Rpq cannot have negative local minima on (β0,+∞).(5.19)

The next result contains the technical work necessary for finding a solution of (5.8)–
(5.10).

Lemma 5.1. Assume (5.1) and (5.2). Then
(i) for each p < β0, there exists a unique point ηp > β0 such that Rpηp , the

solution of (5.17) and (5.18) with q = ηp, also satisfies Rpηp(x) < 0 for all x
in (p, ηp), R

′
pηp

(ηp) = 0, and R′′
pηp

(ηp) < 0;
(ii) Rpηp is increasing on (β0, ηp) and decreasing on (ηp,∞), and Rpηp(x) < 0 on

the set (p,∞)\{ηp};
(iii) if p1 < p2 < β0, then β0 < ηp2 < ηp1 and Rp1ηp1

(x) < Rp2ηp2
(x) in [p2, ηp2 ];

(iv) as a function of p, ηp is a continuous strictly decreasing function on the
interval (−∞, β0);

(v) if a < β0, then limp→a Rpηp(x) = Raηa(x) for all x in (a, ηa).
Proof. Let p < β0 and q = β0 in (5.17) and (5.18). Since ψ < 0 on (p, β0), by

Theorems 3 and 4 and the corollary in the pp. 6–7 of [28], we conclude

Rpβ0(x) < 0 for all x in (p, β0), R′
pβ0

(p) < 0, and R′
pβ0

(β0) > 0.(5.20)
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Next, for each p < β0, we pick a point qp > β0 so that
∫ qp
p

ψ(x) dx = 0. We claim
that for each q > qp,

sup
[p,q]

Rpq(x) > 0.(5.21)

Suppose (5.21) is false. Then there is a q > qp so that sup[p,q] Rpq ≤ 0. Hence
R′

pq(p) ≤ 0, R′
pq(q) ≥ 0 and by integrating (5.17), we have

σ2(q)

2
R′

pq(q) −
σ2(p)

2
R′

pq(p) +

∫ q

p

ψ(x) dx = α

∫ q

p

Rpq(x) dx.(5.22)

Next,
∫ q

p
ψ(x) dx > 0 since q > qp > β0. Thus the left-hand side of (5.22) is

strictly positive. But the right-hand side of (5.22) is negative, since Rpq(x) ≤ 0 on
[p, q]. This is a contradiction and it proves (5.21).

For each p < β0, we consider the set G defined by G = {q : q > p and Rpq(x) <
0 in (p, q)}. By (5.20), β0 is in G and thus G is nonempty. By (5.21), qp is an upper
bound for G. Thus supG exists and is finite. We let ηp = supG. We intend to show
that ηp is in G and R′

pηp
(ηp) = 0, similar to Lemma 4.3 in [27]. Clearly, Rpηp

(x) ≤ 0
for all x in (p, ηp). Suppose that Rpηp(x0) = 0 for some x0 in (p, ηp). Then Rpηp

(x0)
is a local maximum and by (5.17) we have ψ(x0) ≥ 0. Therefore, x0 ≥ β0 and Rpηp

will necessarily have a local minimum on (x0, ηp). This contradicts (5.19). Hence
Rpηp(x) < 0 for all x in (p, ηp) and this implies that ηp is in G and R′

pηp
(ηp) ≥ 0. Now

suppose R′
pηp

(ηp) > 0. Then Rpηp is strictly increasing on an interval [ηp − ε, ηp + ε].
Let y0 = Rpηp(ηp + ε) > 0 and D(x) be the solution to the homogeneous equation
σ2(x)

2 D′′(x) + (σ(x)σ′(x) + μ(x))D′(x) − (α− μ′(x))D(x) = 0 for all x in (p, ηp + ε)
with the boundary conditions D(p) = 0 and D(ηp + ε) = y0 > 0. Using the corollary
to Theorem 4 in page 7 of [28], we conclude that D(x) > 0 for all x > p. Now the
uniqueness theorem for solutions to (5.17) (Theorem 7, page 13 of [28]) implies that
Rpηp+ε(x) = Rpηp(x)−D(x), Rpηp+ε(x) < 0 for all x in (p, ηp+ε) and hence ηp+ε is in
G. This is a contradiction and thus R′

pηp
(ηp) = 0. Using this together with ψ(ηp) > 0

yields R′′
pηp

(ηp) < 0. Therefore, ηp satisfies all the conditions in part (i) of the lemma.
To obtain the uniqueness of ηp, suppose η̃p is another such point. Then η̃p is also

in G and hence η̃p < ηp. Consider the solution Rpη̃p of (5.17). Since η̃p is in G, we have
R′′

pη̃p
(η̃p) < 0 and hence ψ(η̃p) ≥ 0. Consequently, η̃p ≥ β0, but η̃p �= β0 by (5.20).

Hence η̃p > β0, Rpη̃p
has a local maximum at x = η̃p and by (5.19), Rpη̃p

is decreasing
on (η̃p,∞). Therefore, Rpηp

and Rpη̃p
meet at a point z in (η̃p, ηp). Now, by the

uniqueness theorem for solutions to (5.17) on [p, z], it follows that Rpηp(x) = Rpη̃p
(x)

for all x in [p, z]. Hence Rpηp(η̃p) = 0 and this is a contradiction, since ηp is in G.
Consequently, ηp = η̃p and part (i) follows.

Since Rpηp
(ηp) = R′

pηp
(ηp) = 0, Rpηp

has a strict local maximum at x = ηp by
(5.17) and by applying (5.19), part (ii) follows.

To prove part (iii), let p1 < p2 < β0 and suppose that ηp1
≤ ηp2

. If ηp1
= ηp2

,
since Rpiηpi

(ηpi
) = R′

piηpi
(ηpi

) = 0 for i = 1, 2, by the uniqueness of solutions to (5.17)

it follows that p1 = p2. Hence ηp1 �= ηp2 and we have p1 < p2 < β0 < ηp1 < ηp2 .
Since Rp1ηp1

(p2) < 0 and Rp2ηp2
(ηp1

) < 0, there is a point c1 such that p2 < c1 < ηp1

and Rp1ηp1
(c1) = Rp2ηp2

(c1). By part (ii), we can conclude Rp1ηp1
(ηp2

) < 0 and
Rp2ηp2

(ηp1) < 0 and this implies the existence of a point c2 so that ηp1 < c2 < ηp2 and
Rp1ηp1

(c2) = Rp2ηp2
(c2). Hence, Rp1ηp1

and Rp2ηp2
are identical by the uniqueness

of solutions to (5.17) (see Theorem 7, page 13 of [28]) and thus p1 = p2. This is
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a contradiction. Hence ηp2
< ηp1

, thus by part (i) and again by the uniqueness of
solutions to (5.17), we conclude Rp1ηp1

(x) < Rp2ηp2
(x) for all x in [p2, ηp2 ]. This

proves part (iii).
To prove part (iv), it remains to show ηp is continuous as a function of p for

p < β0. Let a be a point so that a < β0, and (pn) be any increasing sequence so that
limn pn = a. Thus pn < a < β0. By part (iii), the sequence (ηpn) is decreasing and
ηpn > ηa for each n. Thus limn ηpn ≥ ηa. Now suppose that limn ηpn > ηa. Then
we can pick a point q so that limn ηpn > q > ηa and consider a solution R(x) to
(5.17) with the initial condition R(q) = R′(q) = 0. Since ψ(q) > 0, by (5.17) we have
R′′(q) < 0, and R has a strict local maximum at x = q. Since R satisfies (5.17), we
can also conclude that R has no local minima in (β0,∞) and it is increasing on [β0, q]
and decreasing on [q,+∞). For each n, Rpnηpn

(q) < 0 and thus R meets Rpnηpn
at

some point in (q, ηpn). But R cannot be identically equal to Rpnηpn
and hence by

applying the uniqueness theorem (Theorem 7, page 13 of [28]) we can conclude that
R(x) > Rpnηpn

(x) for each x in [pn, q] and thus R(pn) > 0. Consequently, R(a) ≥ 0.
With a similar argument, R and Raηa meet at a point in (ηa, q) and R(ηa) < 0.
Consequently, R(x) < Raηa(x) for all x in [a, ηa]. This yields R(a) < 0, which is a
contradiction. Therefore, limn ηpn = ηa. A very similar proof can be given to show
that if (pn) is a decreasing sequence satisfying pn < β0 for all n and limn pn = a, then
limn ηpn = ηa. Hence, part (iv) follows.

To prove part (v), we will show the following: if (pn) is a monotone sequence with
limn→∞ pn = a, then limn Rpnηpn

(x) = Raηa(x) for each x in [a, ηa]. First, consider
an increasing sequence (pn) so that limn→∞ pn = a. For each x in [a, ηa], Rpnηpn

(x)
has the stochastic representation (5.16), since [a, ηa] ⊆ [pn, ηpn ]. In (5.16), we relabel
the stopping time τpnηpn

by τn for simplicity. Clearly, (τn) is decreasing and τn > τaηa

for all n. Ex[τn] is given by formula (5.55) in page 343 of [17] with a = pn and b = ηpn

(see also (5.59) in page 344 of [17]). By letting n tend to infinity there, we obtain
limn→∞ Ex[τn] = Ex[τaηa ]. Thus limn→∞ τn = τa,ηa a.s. Now again using (5.16) and
the dominated convergence theorem, we obtain limn→∞ Rpnηpn

(x) = Raηa(x) for each
x in (a, ηa). Next, if (pn) is a decreasing sequence so that limn→∞ pn = a and pn < β0

for all n, consider (5.16) to represent Rpnηpn
(x) and Raηa

(x). Notice that τpnηpn
is

increasing to τaηa
as n tends to infinity. Hence we apply the dominated convergence

theorem to (5.16) and conclude that limn→∞ Rpnηpn
(x) = Raηa(x) for all x in (a, ηa).

This completes the proof.
The next lemma derives an optimal stopping policy for the optimal stopping

problem (5.13).
Lemma 5.2. Fix p < β0. Consider Rp(x) defined in (5.13) for each x ≥ p. Let

the function Rpηp and the point ηp be as in Lemma 5.1. Then

(i) Rp(x) =

{
Rpηp(x) for p ≤ x ≤ ηp,
0 for x > ηp.

(ii) The stopping rule τ∗ given by τ∗ =

{
min{τp, τηp} when p ≤ x ≤ ηp,
0 when x > ηp

is optimal for the stopping problem (5.13).
Proof. Let

R(x) =

{
Rpηp(x) for x ≤ ηp,
0 for x > ηp.
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We observe that R(x) is a C1 function on (p,+∞), which is C2 everywhere except at
x = ηp. By Lemma 5.1, R′′(η−p ) < 0. Clearly, R′′(η+

p ) = 0. Let Y (0) = x > p and

apply Itô’s lemma (see [17, p. 219]) to R(Y (t))e−
R t
0
γ(Y (s)) ds to obtain

Ex

[
R(Y (T ∧ τ ∧ τpn))e−

RT∧τ∧τpn
0 γ(Y (s)) ds

]
= R(x)

−Ex

[ ∫ T∧τ∧τpn

0

e−
R t
0
γ(Y (s)) dsψ(Y (t)) dt

]
,

where τpn = τp ∧ τn, n > ηp is a large integer, and τ is any stopping time such that
τ ≤ τ∞ a.s. Since R(·) is nonpositive and bounded below on [p,+∞), by letting T
and n tend to infinity, we obtain Ex[

∫ τ∧τp
0

e−
R t
0
γ(Y (s)) dsψ(Y (t)) dt] ≥ R(x). Hence

by (5.13), Rp(x) ≥ R(x) for all x ≥ p. Let us define the stopping time τ∗ as in
the statement of Lemma 5.2(ii). Then, following the above calculations, we obtain
R(x) = Ex[

∫ τ∗∧τp
0

e−
R t
0
γ(Y (s)) dsψ(Y (t)) dt] for x ≥ p. Consequently, Rp(x) ≡ R(x)

for all x ≥ p. This completes the proof.
Lemma 5.3. Consider the function H(·) defined by H(p) = minx≥p Rp(x) for each

p < β0. Then
(i) H(·) is continuous and increasing on (−∞, β0), and

(ii) lim
p→β0

H(p) = 0 and lim
p→−∞

H(p) < −2.(5.23)

Proof. By the previous lemma, H(p) = min[p,ηp] Rp(x) and H(p) < 0 for each p <
β0. Moreover, by parts (ii) and (iii) of Lemma 5.1, it follows that H(p) is increasing
on (−∞, β0). But H(p) = min[p,β0] Rp(x). Since ψ > 0 on (β0,+∞), inf [p,ηp] ψ(x) =

inf [p,β0] ψ(x). Therefore, by (5.13) and (5.16), it easily follows that 1
α inf [p,β0] ψ(x) <

H(p) < 0. Hence limp→β0 H(p) = 0. Next, we show that H(p) is continuous on
(−∞, β0). Let a < β0, and we pick two points b and c so that b < a < c < β0.
For each p in [b, c], consider the function Rpηp of Lemma 5.1 and we introduce the
function Qp(x) defined on [b, ηb] by

Qp(x) =

{
Rpηp

(x) for b ≤ x ≤ ηp,

0 for ηp ≤ x ≤ ηb.

Each Qp is a C1 function on [b, ηb]. If b < p1 < p2 < c, then Rp1ηp1
and Rp2ηp2

meet at some point on (ηp2 , ηp1) as observed in the proof of part (iii) of Lemma 5.1.
Therefore, Rp1ηp1

(x) < Rp2ηp2
(x) for all x in [b, ηp2 ]. Consequently, we have H(b) ≤

Qp(x) ≤ max[b,ηb] Qc(x) for all x in [b, ηp] and for all p in [b, c]. Thus we can obtain
a constant M1 > 0 so that supb≤p≤c supb≤x≤ηb

|Qp(x)| < M1. Next by integrating
(5.17), we obtain

σ2(x)

2
Q′

p(x) =

∫ ηp

x

ψ(u) du− μ(x)Qp(x) − α

∫ ηp

x

Qp(u) du for b ≤ x ≤ ηp,

and Q′
p(x) = 0 for x ≥ ηp. Thus using the estimate for |Qp(x)|, we can find a

constant M2 > 0 so that supb≤p≤c supb≤x≤ηb
|Q′

p(x)| ≤ M2. Hence for each x, y in
[b, ηb], we have |Qp(x) − Qp(y)| ≤ M2|x − y| and in particular |Qp(x)| ≤ M2|x − p|.
This in turn yields that limp→a Qp(a) = 0. Now let (pn) be a sequence in (b, c)
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so that limn pn = a. Then H(pn) = Qpn
(xn) for some xn in [pn, β0] by Lemma

5.1(ii). Thus b ≤ pn ≤ xn ≤ β0. Let y be a limit point of (xn). Then a ≤ y ≤ β0 and
|Qpn(xn)−Qa(y)| ≤ |Qpn(xn)−Qpn(y)|+ |Qpn(y)−Qa(y)|. But |Qpn(xn)−Qpn(y)| ≤
M2|xn − y| and thus limn→∞ |Qpn(xn) −Qpn(y)| = 0.

By part (v) of Lemma 5.1, and since limp→a Qp(a) = 0 we have limn→∞ |Qpn(y)−
Qa(y)| = 0. Therefore, limn→∞ Qpn

(xn) = Qa(y) and, consequently, limn→∞ H(pn) =
Qa(y) ≥ H(a). On the other hand, H(a) = Qa(x0) for some x0 in [a, β0] and thus
H(a) = limn→∞ Qpn

(x0) ≥ limn→∞ H(pn). Hence H(·) is continuous at p = a for
each a < β0.

It remains to verify that limp→−∞ H(p) < −2. We pick r0 < −M , where M is in
(5.2). Then ψ(x) < −(2 + ε0)γ(x) for all x < r0. Let p < r0 and Rp(x) be given by
(5.13). For any p < r0, we obtain

Rp(x) ≤ Ex

∫ τp∧τr0

0

e−
R t
0
γ(Y (s)) dsψ(Y (t)) dt for all x in (p, r0).

Hence, we derive

Rp(x) < −(2 + ε0) + (2 + ε0)Ex

[
e−

R τp∧τr0
0 γ(Y (s)) ds

]
for p < x < r0.

Since H(p) ≤ Rp(x) and H is increasing on (−∞, β0), we obtain

lim
p→−∞

H(p) ≤ −(2 + ε0) + (2 + ε0) lim
p→−∞

Ex

[
e−

R τp∧τr0
0 γ(Y (s)) ds

]
(5.24)

for any x < r0, provided that the limit on right-hand side exists. Let τ∞ be the
explosion time for {Y (t) : t ≥ 0} as in Proposition 3.1, then it follows that

lim
p→−∞

Ex

[
e−

R τp∧τr0
0 γ(Y (s)) ds

]
= Ex

[
e−

R τ∞∧τr0
0 γ(Y (s)) ds

]
(5.25)

= Ex

[
e−

R τr0
0 γ(Y (s)) dsI[τr0<τ∞]

]
.

In the last equality we have used Proposition 3.1.

We let P (x) = Ex[e−
R τr0
0 γ(Y (s)) dsI[τr0<τ∞]]. We claim that limx→−∞ P (x) = 0.

For each N > |x|, we define PN (x) = Ex[e−
R τr0
0 γ(Y (s)) dsI[τr0<τ−N ]], where τ−N is

defined by (5.15). By Itô’s lemma, one can verify that

σ2(x)

2
P ′′
N (x) + (σ(x)σ′(x) + μ(x))P ′

N (x) − (α− μ′(x))PN (x) = 0(5.26)

on (−N, r0) and PN (−N) = 0, PN (r0) = 1.

Observe that, PN (x) > 0 on (−N, r0) and by (5.26), it cannot have positive local
maxima. Hence PN is increasing on (−N, r0). Since the solutions to (5.26) cannot
intersect twice, it follows that PN (y) �= PN ′(y) when N �= N ′ and y < r0. Therefore,
for a fixed x < r0, as N tends to infinity, {PN (x)} is increasing and bounded above by
1. Let P∞(x) = limN→∞ PN (x). Then P∞ also satisfies the same differential equation
on (−∞, r0) and P∞(r0) = 1. It is clear that P∞(x) ≡ P (x). Hence P (x) satisfies
(5.26) on (−∞, r0) and we obtain

σ2(r0)

2
P ′(r0) + μ(r0) =

σ2(x)

2
P ′(x) + μ(x)P (x) + α

∫ r0

x

P (u) du.(5.27)
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Since P is increasing on (−∞, r0), we let limx→−∞ P (x) = δ ≥ 0. If δ > 0, then
the right-hand side of (5.27) tends to infinity as x tend to −∞. This leads to a
contradiction.

Hence limx→−∞ P (x) = 0. Using this in (5.24), we obtain limp→−∞ H(p) ≤
−(2 + ε0). This completes the proof of Lemma 5.3.

Our next proposition finds the two points a∗, b∗ and a function W which satisfies
(5.8)–(5.10).

Proposition 5.4. There exists two points a∗, b∗ and a function W defined on
[a∗, b∗] satisfying (5.8), (5.9), and (5.10). Furthermore, [θ0, β0] ⊆ [a∗, b∗] and thus
[a∗, b∗] contains the origin. The function W can be extended to R so that W (x) = −1
for x ≤ a∗ and W (x) = 1 for x ≥ b∗. Then W is continuously differentiable on R

and it is C2 everywhere except at the points a∗ and b∗.
Proof. By Lemma 5.3, H(p) = −2 for some p = p∗ and we consider the corre-

sponding function Rp∗(x). Let a∗ be a point where Rp∗ achieves its absolute min-
imum. Then we have p∗ < a∗ < β0 by Lemma 5.1 and Rp∗ηp∗ (a∗) = −2. We let
b∗ = ηp∗ . Then p∗ < a∗ < β0 < b∗. Evaluating (5.17) at x = a∗ for Rp∗ηp∗, we obtain
C ′(a∗) + (α − μ′(a∗)) ≤ 0 and thus p∗ < a∗ ≤ θ0 < β0 < b∗. Next we claim this
absolute minimum point a∗ is unique. For this, assume that a1 < a2 are two points of
absolute minimum, and hence Rp∗ηp∗ (ai) = −2, and p∗ < a1 < a2 ≤ θ0. Then there
will be a point of local maximum at x = d in (a1, a2) and evaluating (5.17) at x = d
we obtain C ′(d) > −(α − μ′(d)). Consequently, C ′(d) + (α − μ′(d)) > 0 and hence
d > θ0. This is a contradiction since d < a2 ≤ θ0. Therefore, the absolute minimum
point x = a∗ is unique.

Next, we let W (x) = Rp∗ηp∗ (x)+1 on [a∗, b∗]. We extend W to R by W (x) = −1
for x ≤ a∗ and W (x) = +1 for x ≥ b∗. Also W (a∗) = −1, W ′(a∗) = 0, and
W ′′(a∗+) ≥ 0. Using (5.17), it follows that W satisfies (5.8) and W (b∗) = 1. By the
uniqueness of the absolute minimum point x = a∗ and by Lemma 5.1, it follows that
−1 < W (x) < 1 on (a∗, b∗), W (b∗) = 1, W ′(b∗) = 0, and W ′′(b∗−) ≤ 0. Furthermore,
W is continuously differentiable and C2 everywhere except at the points a∗ and b∗.
This completes the proof.

Next, we define the function V ∗(x) on R by

V ∗(x) =
C(a∗) − μ(a∗)

α
+

∫ x

a∗
W (r) dr.(5.28)

In the next theorem, we show that V ∗ is indeed the value function.
Theorem 5.5. Assume (5.1) and (5.2). Let a∗ and b∗ be the points described

in Proposition 5.4. Consider the reflecting diffusion process X∗
x(·) on [a∗, b∗] defined

by (5.3) and (5.4). Then {X∗
x(t) : t ≥ 0} is an optimal process and the function V ∗

defined in (5.28) is the value function.
Proof. Let {X∗

x(t) : t ≥ 0} be the reflecting diffusion on [a∗, b∗] satisfying (5.3)
and (5.4). Clearly, it is an admissible process which satisfies (1.2). The function V ∗

satisfies (5.6) and (5.7) and thus it is the pay-off function for {X∗
x(t) : t ≥ 0}. Hence,

we have V ∗(x) ≥ V (x) for all x, where V is the value function given in (1.8).
To show that V ∗(x) ≤ V (x) we will use the verification lemma. By Proposition

5.4, |V ∗′
(x)| < 1 on (a∗, b∗) and |V ∗′

(x)| = 1 outside (a∗, b∗). Also V ∗ satisfies (5.6)

on (a∗, b∗). Let I(x) = σ2(x)
2 V ∗′′

(x) + μ(x)V ∗′
(x) − αV ∗(x) + C(x) for each x. It

remains to verify that I(x) ≥ 0 outside (a∗, b∗). When x < a∗, by (5.28) we have
I(x) =

∫ x

a∗ [C
′(u) + (α − μ′(u))] du. But C ′(u) + (α − μ′(u)) < 0 on (−∞, a∗) since

a∗ ≤ θ0 as in Proposition 5.4. Thus, I(x) > 0 for x < a∗. Similarly, for x > b∗,
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I(x) =
∫ x

b∗ [C
′(u) − (α − μ′(u))] du > 0 since b∗ > β0 as described in the proof

of Proposition 5.4. Consequently, V ∗ satisfies the HJB equation (1.9) and V ∗ is a
C2 function. Then by the verification lemma, V ∗(x) ≤ V (x) for all x. Therefore,
V ∗(x) = V (x) for all x and {X∗

x(t) : t ≥ 0} is an optimal process. This completes the
proof.

6. Bounded cost functions. The purpose of this section is to identify a new
optimal strategy for a class of bounded cost functions and also to show that the value
function is a C1 function but it fails to be a C2 function regardless of the smoothness
of μ(·), σ(·), and C(·).

Consider a bounded cost function C(·) which satisfies the basic assumption (1.6).
Let ‖C‖∞ = supR |C(x)| and using A(t) ≡ 0 for all t in (1.1) and in (1.3), we obtain

0 < V (x) ≤ J(x, 0) = E

∫ ∞

0

e−αtC(Xx(t)) dt ≤ ‖C‖∞
α

,(6.1)

where V (·) is the value function defined in (1.8). Therefore, if the value function is
a C1 solution of the HJB equation (1.9), then the set {x : |V ′(x)| = 1} should have
finite Lebesgue measure and with the structure of our cost function, we expect the
jump set {x : |V ′(x)| = 1} to be bounded. If the condition |C ′(x)| ≤ α− μ′(x) holds
for all x, then our results in section 4 remain valid, the set {x : |V ′(x)| = 1} is empty,
and the zero control policy is an optimal strategy. But in the other cases, we cannot
apply the results in section 5 since assumptions (5.1) and (5.2) imply that C(·) is
unbounded.

In this section, we develop an interesting new optimal strategy when |C ′(x)|−(α−
μ′(x)) take large positive values on a large compact set. In addition to (1.4)–(1.6),
we make the following assumptions.

(i) Assume μ(·) is an odd function and σ(·) and C(·) are even functions(6.2)

and limx→+∞ C(x) is finite.

(ii) Let h(x) = C′(x)
α−μ′(x) . There exists two points β0 and δ0 such that(6.3)

0 < β0 < δ0, 0 < h(x) < 1 on (0, β0) ∪ (δ0,∞) and h(x) > 1 on

(β0, δ0). Also h is decreasing on the interval (δ0,∞).

(iii) There exist two points p0 and q0 which satisfy β0 < p0 < q0 < δ0,

C(p0) > αp0 − μ(p0) +

(
1 + 2

∫ β0

0
C(r)
σ2(r) dr

)
∫ β0

0
2

σ2(r) dr
(6.4)

and ∫ q0

p0

2

σ2(x)

∫ x

p0

ψ(u) du dx > 1,(6.5)

where ψ(x) = C ′(x) − (α− μ′(x)) as in section 5.
With assumption (6.2), the value function will be an even function. By (6.3), we

observe that |C ′(x)| > α−μ′(x) on (−δ0,−β0)∪(β0, δ0). The technical conditions (6.4)
and (6.5) guarantee that the interval (β0, δ0) is quite large and also the function ψ(x)
takes large positive values on (β0, δ0). We intend to prove the existence of a feedback-
type optimal strategy related to two points a∗ and b∗ so that 0 < β0 < a∗ < b∗ as
described below.
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(a) If the initial point x is in [−a∗, a∗], then our optimal state process is a reflect-
ing diffusion on [−a∗, a∗] with instantaneous reflections at ±a∗ and satisfies
(5.3) and (5.4) with a = −a∗ and b = a∗.

(b) If the initial point x is in (a∗, b∗], our optimal process will be an initial jump
to a∗ and thereafter follows the reflecting diffusion described in (a). Similarly,
if x is in [−b∗,−a∗), then there will be an initial jump to −a∗.

(6.6) (c) If the initial position x is in (b∗,+∞), zero control will be used (i.e., A(t) ≡ 0)
until the state process reaches b∗ and then jumps to a∗. Thereafter, it follows
the reflecting diffusion on [−a∗, a∗]. Similarly, if x is in (−∞,−b∗), use zero
control until the state process reaches −b∗, then jump to −a∗ and follow the
reflecting diffusion on [−a∗, a∗].

Remarks.
1. If the initial point is in (−∞,−b∗) ∪ (b∗,+∞), then the state process

satisfies (4.1) up to the entrance time to the interval [−b∗, b∗] and has in-
finite explosion time as noticed in Proposition 4.1.

2. When μ is identically zero and σ is a constant, an example of an optimal
control problem with a bounded cost function and an optimal policy similar
to that above was given in Example 4.3, Chapter VIII of [11].

Lemma 6.1. For each r > β0, there is a unique bounded solution Wr(·) to the
boundary value problem

σ2(x)

2
W ′′

r (x) + (σ(x)σ′(x) + μ(x))W ′
r(x) − (α− μ′(x))Wr(x) + C ′(x) = 0(6.7)

for all x ≥ r, and

Wr(r) = 1, lim
x→∞

Wr(x) = 0.(6.8)

Furthermore, Wr(·) satisfies the following conditions.
(i) 0 < Wr(x) ≤ Mr for all x ≥ r, where Mr = max{1, sup[r,∞) h(x)} and h is

as in (6.3).
(ii) There is a point ηr > δ0 such that Wr(·) is decreasing on [ηr,∞).
(iii) Wr(x) and its derivative W ′

r(x) are jointly continuous with respect to (r, x)
on the set {(r, x) : β0 < r < x}.

(iv) Let p0 and q0 be as in (6.5). Then there exists a unique point b0 such that
p0 ≤ b0 < δ0, and the corresponding function Wb0 satisfies W ′

b0
(b0) = 0 in

addition to (6.7) and (6.8) above.
Proof. We sketch the proof since it mostly depends on elementary calculus. We

fix r > β0. To obtain a solution Wr satisfying (6.7) and (6.8), we consider a sequence
{WN} as follows. For each N > r, let WN be the solution of the differential equation
(6.7) on (r,N) with the boundary conditions WN (r) = 1, WN (N) = 0. Let Mr =
max{1, sup[r,∞) h(x)}. Using (6.7) and by elementary calculus, WN (x) − Mr has
no positive local maxima on (r,N). Similarly, WN has no negative local minima
on (r,N). Thus, 0 ≤ WN (x) ≤ Mr on [r,N ]. If r < N1 < N2, it follows that
0 ≤ WN1(x) < WN2(x) ≤ Mr for all x in (r,N1]. Hence, for a fixed x, {WN (x)} is
an increasing sequence in N and the limit Wr(x) = limN→∞ WN (x) exists. Thus,
0 < Wr(x) ≤ Mr for all x ≥ r, Wr(r) = 1. Wr also satisfies (6.7) and this can be
verified as in the proof of Lemma 4.2(ii). This yields part (i).

Next we derive part (ii) and use it to obtain limx→∞ Wr(x) = 0. First, we show
that Wr has no local minima on (δ0,∞). Suppose that Wr has a local minimum at z0,
where z0 > δ0, then we can find a large enough N so that WN has a local minimum
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at y1, a local maximum at y2, δ0 < y1 < y2 < N and WN (y1) < WN (y2). Since WN

satisfies (6.7), we obtain that h(y1) ≤ WN (y1) and WN (y2) ≤ h(y2). This implies
h(y1) < h(y2) and it contradicts (6.3). Thus, Wr has no local minima on (δ0,+∞)
and we deduce that there is a point ηr ≥ δ0 so that Wr is monotone on [ηr,+∞).
Hence, the limit L ≡ limx→+∞ Wr(x) exists and 0 ≤ L ≤ Mr. Our next step is to show
that L ≤ 1. Suppose that L > 1. Then we can find a large N so that WN has a local
maximum at a point z1 > ηr and WN (z1) > 1. Using (6.7) for WN at z1 we obtain
C ′(z1) > (α−μ′(z1)) and this contradicts z1 > ηr > δ0. Hence, L ≤ 1. Next, we show
that Wr is decreasing on [ηr,+∞). We already know that it is monotone on [ηr,+∞).
Suppose that Wr is increasing on [ηr,+∞). Since L ≤ 1 and Wr(r) = 1, there is a
point ξ > r such that Wr(ξ) = inf [r,+∞) Wr(x). Clearly Wr(ξ) < 1, and we let
r1 = inf{a ≥ r : Wr(x) < 1 on (a, ξ)}. Thus r1 ≥ r, Wr1(x) ≡ Wr(x) for x ≥ r1 and

W ′
r(r1) ≤ 0. Integrating (6.7), we obtain μ(ξ)Wr(ξ) +C(ξ) = σ2(r1)

2 W ′
r(r1) + μ(r1) +

C(r1)+α
∫ ξ

r1
Wr(u) du. This yields

∫ ξ

r1
ψ(u) du < 0, where ψ is as in (6.5). Since β0 <

r ≤ r1, this implies that ξ > δ0. This is a contradiction since Wr cannot have local
minima on (δ0,+∞). Thus Wr is decreasing on [ηr,+∞) and part (ii) follows. To show
that limx→+∞ Wr(x) = 0, we integrate (6.7) and use W ′

r(x) ≤ 0 on [ηr,+∞) to obtain

‖C‖∞ ≥ C(x) ≥ (σ
2(r)
2 W ′

r(r) + μ(r) + C(r)) + α
∫ x

r
Wr(u) du. Thus

∫ +∞
r

Wr(u) du is
convergent and limx→+∞ Wr(x) = 0. Hence, Wr satisfies (6.7) and (6.8).

To show the uniqueness of the solution to (6.7) and (6.8), let r > β0 be fixed.
Assume W1 and W2 are two solutions of (6.7) and (6.8). Introduce U(x) = W1(x) −
W2(x). Then U(r) = 0, limx→∞ U(x) = 0 and U is a bounded solution of the
homogeneous, differential equation associated with (6.7). By elementary calculus, U
is identically zero and W1(x) = W2(x) for all x ≥ r.

To prove (iii), take (r, x) so that β0 < r < x. Pick r1 and r2 so that β0 <
r2 < r1 < r and the solutions Wr1(x) and Wr2(x) are not identical to each other on
[r1,∞). Let U(x) = Wr1(x) − Wr2(x). Then U is not identically zero on [r1,∞)
and is a solution of the homogeneous differential equation associated with (6.7).
Furthermore, limx→∞ U(x) = 0. By an argument similar to the uniqueness proof
above, U(x) �= 0 for all x ≥ r1. Observe that for any r > r1 fixed, the unique solu-
tion of (6.7) and (6.8) can be written as Wr(x) = Wr1(x) + (

1−Wr1 (r)

U(r) )U(x) and thus
W ′

r(x) = W ′
r1(x) + (

1−Wr1
(r)

U(r) )U ′(x) for all x ≥ r. Hence Wr(x) and W ′
r(x) are jointly

continuous in (r, x).

To obtain part (iv), let p0 and q0 be as in (6.5). If W ′
p0

(p0) = 0, then we can
take b∗0 = p0 and the proof is complete. Thus, let us consider W ′

p0
(p0) �= 0. We claim

W ′
p0

(p0) > 0. Suppose not; then W ′
p0

(p0) < 0. This yields Wp0(x) < 1 for all x > p0,
otherwise there will be a local minima at x = ξ so that ξ > p0 and Wp0(ξ) < 1. By
evaluating (6.7) at x = ξ we obtain h(ξ) < 1, where h is as in (6.3). Therefore, ξ > δ0,
but by the proof of part (ii) above, Wp0 cannot have any local minima on (δ0,∞).
Consequently, Wp0(x) < 1 for all x > p0. Next, we integrate (6.7) and use the above

facts to obtain σ2(x)
2 W ′

p0
(x)+μ(x)+C(x) < σ2(p0)

2 W ′
p0

(p0)+μ(p0)+C(p0)+α
∫ x

p0
Wp0

(u) du for all x > p0 and consequently σ2(x)
2 W ′

p0
(x) +

∫ x

po
ψ(u) du < σ2(p0)

2 W ′
p0

(p0) < 0.
Hence Wp0(q0) +

∫ q0
p0

2
σ2(x)

∫ p0

x
ψ(u) du dx ≤ 1 and by part (i), Wp0(q0) > 0. Thus,

we obtain
∫ q0
p0

2
σ2(x)

∫ p0

x
ψ(u) du dx < 1 and this contradicts (6.5). Therefore, we con-

clude that W ′
p0

(p0) > 0. Since limx→∞ Wp0(x) = 0, it follows that there is a point
r0 > p0 such that Wp0(r0) = 1 and Wp0(x) < 1 for all x > r0. Hence, by the
uniqueness of solutions to (6.7) and (6.8), Wp0(x) ≡ Wr0(x) for all x ≥ r0. Now
following an argument similar to the proof of Lemma 5.1 and using parts (i)–(iii), we
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let b0 = sup{r : r ∈ [p0, r0] and W ′
r(r) > 0}, and obtain W ′

b0
(b0) = 0. Since h(x) < 1

for x > δ0, using the proofs of parts (i)–(iii), one can show that W ′
r(r) < 0 for r ≥ δ0

and thus b0 < δ0 as claimed in part (iv).

To prove the uniqueness of b0, assume that b̃0 also satisfies part (iv). Without
loss of generality, let b̃0 < b0. Then β0 < p0 ≤ b̃0 < b0 < δ0. Next, we extend the
corresponding functions Wb0 and Wb̃0

to (β0,∞) as the solutions of (6.7) on (β0,∞).
Then Wb0 has a local maxima at x = b0. If x = x1 is a local minimum for Wb0 ,
then by (6.7) we obtain ψ(x1) < 0. Thus by (6.3), Wb0 cannot have local minima on
[β0, δ0]. Similarly, Wb̃0

has a local maximum at b̃0 and no local minima on [β0, δ0].

Hence, Wb0 is increasing on [b̃0, b0], Wb̃0
is decreasing on [b̃0, b0] and consequently Wb0

and Wb̃0
meet at a point z in (b̃0, b0). Now let U(x) = Wb0(x) −Wb̃0

(x) on (β0,∞).
U(x) is a solution of the homogeneous equation associated with (6.7), U(z) = 0 and
limx→∞ U(x) = 0. Therefore, as in the proof of the uniqueness of solution of (6.7) and
(6.8), U(x) is identically zero on (β0,∞) and this leads to b̃0 = b0. This completes
the proof.

Lemma 6.2. There exist a point a∗ such that β0 < a∗ < δ0 and a continuously
differentiable function Ua∗ defined on [0, a∗] satisfying the following conditions.

(i) Ua∗ satisfies the differential equation (6.7) on (0, a∗).
(ii) Ua∗(0) = 0, Ua∗(a∗) = 1, U ′

a∗(a∗) = 0, and 0 < Ua∗(x) < 1 on (0, a∗).

Proof. For each p > 0, let Up be the solution of (6.7) on [0, p] with Up(0) = 0 and
Up(p) = 1. Using (6.7), it follows that if Up has a local minimum at a point z in (0, p),
then Up(z) > 0. Hence, Up(x) > 0 on (0, p). Also, if Up has a local maximum at a
point z and Up(z) ≥ 1, then C ′(z) ≥ (α−μ′(z)) and thus z ≥ β0. Therefore, for each
p < β0, 0 < Up(x) < 1 on (0, p) and U ′

p(p) ≥ 0. Suppose U ′
p(p) = 0. Then, we extend

Up to [0, β0] as a solution of (6.7) and evaluate it at x = p. But p < β0, therefore,
ψ(p) < 0 and U ′′

p (p) > 0. Since Up(p) = 1, this contradicts the fact 0 < Up(x) < 1 for
0 < x < p. Hence, U ′

p(p) > 0. Now consider Uβ0(x). If U ′
β0

(β0) = 0, then we can take
a∗ = β0, and we are done. Otherwise U ′

β0
(β0) > 0 and 0 < Uβ0(x) < 1 on (0, β0).

First, we estimate U ′
β0

(0). By integrating (6.7) and using μ(x)Uβ0
(x) < 0 on (0, β0),

we obtain U ′
β0

(x) +
2C(x)

σ2(x)
>

σ2(0)

σ2(x)
U ′

β0
(0) for 0 < x < β0 and thus

1 + 2

∫ β0

0

C(u)

σ2(u)
du > σ2(0)U ′

β0
(0)

∫ β0

0

1

σ2(r)
dr.(6.9)

We use (6.9) to show U ′
p0

(p0) < 0, where p0 is given in (6.4) and p0 > β0. Consider
Up0

(x) on [0, p0] and suppose that sup[0,p0] Up0(x) ≤ 1. Then Up0(x) ≤ 1 < Uβ0(x)
for some x in (β0, p0), since U ′

β0
(β0) > 0 and Uβ0(β0) = 1. Hence, Uβ0 and Up0 are

two different solutions of (6.7). But Uβ0(0) = Up0
(0) = 0, hence by the uniqueness of

solutions to (6.7), Uβ0
(x) �= Up0

(x) for all x > 0 and U ′
β0

(0) �= U ′
p0

(0). Consequently,
we have 0 < Up0(x) < Uβ0(x) for 0 < x < β0 and also U ′

p0
(0) < U ′

β0
(0). By integrating

(6.7) for Up0 , we obtain σ2(p0)
2 U ′

p0
(p0) + μ(p0) + C(p0) = σ2(0)

2 U ′
p0

(0) + α
∫ p0

0
Up0(r) dr

and hence σ2(p0)
2 U ′

p0
(p0) <

σ2(0)
2 U ′

β0
(0) + αp0 − μ(p0) − C(p0). Using (6.4) and (6.9),

we obtain

σ2(p0)

2
U ′
p0

(p0) <

[
1 + 2

∫ β0

0
C(u)
σ2(u) du

]
∫ β0

0
2

σ2(r) dr
+ αp0 − μ(p0) − C(p0) < 0.

This contradicts the fact sup[0,p0] Up0(x) ≤ 1. Thus sup[a,p0] Up0(x) > 1. Now as
similar to the proof of Lemma 5.1, we take a∗ = sup{p : 0 < p ≤ p0 and Up(x) < 1
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on (0, p)}. Thus Ua∗ satisfies (6.7) on (0, a∗), Ua∗(0) = 0, Ua∗(a∗) = 1, U ′
a∗(a∗) = 0,

and β0 ≤ a∗ < p0 < δ0. This completes the proof.
Lemma 6.3. Let Wr be the solution of (6.7) and (6.8) as described in Lemma 6.1.

Introduce the function G(·) by G(r) = σ2(r)
2 W ′

r(r) +
∫ r

a∗ ψ(u) du for all r ≥ a∗, where
a∗ is given in Lemma 6.2.

Then there is a point b∗ such that G(b∗) = 0 and b∗ > b0, where b0 is given in
Lemma 6.1(iv). Furthermore, Wb∗ satisfies parts (i)–(iii) of Lemma 6.1, 0 < Wb∗(x) <
1 on (b∗,+∞), and Wb∗ is decreasing on [b∗,+∞).

Proof. The function G is continuous on [a∗,∞) since W ′
r(x) is jointly continuous in

(r, x) as shown in Lemma 6.1. By the same lemma, G(b0) > 0 since β0 < a∗ < b0 < δ0.
Furthermore, by (6.3),

∫∞
δ0

ψ(u) du = −∞ and thus there is a point b1 > δ0 such that∫ b1
a∗ ψ(u) du = 0 and

∫ x

a∗ ψ(u) du > 0 for a∗ < x < b1. By the proof of part (iv) of
Lemma 6.1, W ′

r(r) < 0 for all r > δ0 and therefore G(b1) < 0. Since G is continuous,
there is a point b∗ such that b1 > b∗ > b0 and G(b∗) = 0.

We consider Wb∗ on [b∗,+∞). Since W ′
b∗(b

∗)+
∫ b∗

a∗ ψ(u) du = 0 and
∫ b∗

a∗ ψ(u) du >
0, we obtain W ′

b∗(b
∗) < 0. But Wb∗(b

∗) = 1 and limx→∞ Wb∗(x) = 0. Let us show
that Wb∗ is decreasing on [b∗,+∞). Suppose not; then there exist a local minimum at
a point x = ξ1 and a local maximum at x = ξ2 so that ξ2 > ξ1 and Wb∗(ξ2) > Wb∗(ξ1).

Using (6.7), we obtain C′(ξ1)
(α−μ′(ξ1))

≤ Wb∗(ξ1) < Wb∗(ξ2) ≤ C′(ξ2)
(α−μ′(ξ2)

. Hence, h(ξ1) <

h(ξ2). Also by integrating (6.7), we obtain C(ξ1) + μ(ξ1) < μ(ξ1)Wb∗(ξ1) + C(ξ1) =
σ2(b∗)

2 W ′
b∗(b

∗)+μ(b∗)+C(b∗)+
∫ ξ1
b∗ αWb∗(u) du < C(b∗)+μ(b∗)+α(ξ1−b∗). Therefore,∫ ξ1

b∗ ψ(u) du < 0 and hence ξ1 > δ0, where δ0 is given in (6.3). Thus δ0 < ξ1 < ξ2 and
we have h(ξ1) < h(ξ2). By (6.3), this is a contradiction. Hence Wb∗ is decreasing on
(b∗,+∞), limx→∞ Wb∗(x) = 0 and W ′

b∗(b
∗) < 0. This completes the proof.

Lemma 6.4. There exists two points 0 < a∗ < b∗ and a continuous function W
on [0,∞) such that

(i) β0 < a∗ < p0 < b∗, W (0) = 0, W (x) = 1 on [a∗, b∗];
(ii) W is C1 everywhere except at x = b∗, W satisfies (6.7) on (0, a∗)∪ (b∗,+∞),

W ′(a∗) = 0, and 0 < W (x) < 1 on (0, a∗)∪(b∗,+∞); also the limits W ′(b∗−)
and W ′(b∗+) exist and are finite;

(iii) let

P (x) =
1

2
(σ2(x)W ′(x) − σ2(0)W ′(0)) + μ(x)W (x) + C(x)(6.10)

−α

∫ x

0

W (u) du for x �= b∗;

then P (x) ≥ 0 for all x > 0, and x �= b∗; furthermore, P (b∗−) and P (b∗+)
are finite, P (b∗−) > 0 and P (b∗+) = 0.

Proof. Let the points a∗ and b∗ and the corresponding functions Ua∗ and Wb∗ be
as described in Lemmas 6.2 and 6.3. Introduce the function W by

W (x) = Ua∗(x)I[0,a∗](x) + I(a∗,b∗)(x) + Wb∗(x)I[b∗,∞)(x),

where IA represents the indicator function of the set A. Then parts (i) and (ii) follows
from Lemmas 6.2 and 6.3. Notice that W ′(b∗−) = 0 and W ′(b∗+) = W ′

b∗(b
∗+) < 0.

It remains to verify part (iii).
Observe that P ′(x) = 0 on (0, a∗) ∪ (b∗,+∞). Since P (0) = 0, and using

part (ii), we obtain P (x) = 0 on [0, a∗]. Also P (a∗) = 0 and this implies
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that C(a∗) + μ(a∗) = σ2(0)
2 W ′(0) + α

∫ a∗

0
W (u) du. Using this together with the

fact W (x) = 1 on [a∗, b∗] and (6.10), we obtain P (x) = C(x) + μ(x) − α(x − a∗) −
(C(a∗) + μ(a∗)) =

∫ x

a∗
ψ(u) du for a∗ ≤ x < b∗. But

∫ x

a∗ ψ(u) du > 0 for a∗ < x < b∗

from the proof of Lemma 6.3. Hence P (x) > 0 on [a∗, b∗) and P (b∗−) > 0. On the
set (b∗,+∞), P ′(x) = 0, since Wb∗ satisfies (6.7). By a computation similar to above,
we obtain

P (b∗+) =
σ2(b∗)

2
W ′

b∗(b
∗) + C(b∗) + μ(b∗)

−
(
σ2(0)

2
W ′(0) + α

∫ a∗

0

W (u) du

)
− α(b∗ − a∗)

=
σ2(b∗)

2
W ′

b∗(b
∗) + C(b∗) + μ(b∗) − (C(a∗) + μ(a∗)) − α(b∗ − a∗)

=
σ2(b∗)

2
W ′

b∗(b
∗) +

∫ b∗

a∗
ψ(u) du.

Thus P (b∗+) = 0 by using Lemma 6.3 and consequently P (x) = 0 for all x > b∗. This
completes the proof.

We construct an even function F (·) on R by

F (x) =

⎧⎨⎩
σ2(0)

2α
W ′(0) +

∫ x

0

W (u) du for x ≥ 0,

F (−x) for x < 0,
(6.11)

where W is given in Lemma 6.4. Next, we describe the main theorem of this section.
Theorem 6.5. Assume (1.4)–(1.6) and (6.2)–(6.5). Let F be the function defined

in (6.11). Then
(i) F is a bounded C1-function which is C2 everywhere except at x = ±b∗ and F

satisfies the HJB equation (1.9) everywhere except at the points x = ±b∗;
(ii) F (x) = V (x) for all x, where V is the value function given in (1.8); let

0 < a∗ < b∗ be as in Lemma 6.4, then the strategy described in (6.6) is
optimal.

Proof. For part (i), we use Lemma 6.4. For x ≥ 0, F ′(x) = W (x) by (6.11) and,
therefore, 0 < F ′(x) ≤ 1, F is C1 on [0,∞) and C2 everywhere except at x = b∗.
Furthermore, 1

2σ
2(x)F ′′(x) + μ(x)F ′(x) − αF (x) + C(x) = P (x), where P (·) is given

in Lemma 6.4 and P (x) ≥ 0, P (x) = 0 on [0, a∗] ∪ (b∗,∞), and F ′(x) = 1 on [a∗, b∗].
Therefore, F satisfies (1.9) on [0,∞). By the proof of Lemma 6.1,

∫∞
0

W (u) du is
convergent, and hence F is bounded on [0,∞). Since F is an even function, part (i)
follows.

For part (ii), we can apply Proposition 2.3 in section 2 to conclude that F (x) ≤
V (x) for all x, where V is the value function in (1.8). To prove F ≥ V , we begin with
the strategy (6.6) with a∗ and b∗ as in Lemma 6.4. If the initial point x is in [−a∗, a∗],
then the strategy in (6.6) yields a reflecting diffusion on [−a∗, a∗] which satisfies (5.3)
and (5.4). Since F satisfies (5.6) and (5.7) on [−a∗, a∗], F can be represented by
(5.5) with respect to the reflecting diffusion on [−a∗, a∗] and F (x) ≥ V (x) for all
x in [−a∗, a∗]. If x is in [a∗, b∗], then there is an initial jump to a∗ and thereafter
it follows a reflecting diffusion on [−a∗, a∗]. Since W (x) = 1 on [a∗, b∗], we have
F (x) = F (a∗) + (x − a∗) and F (x) ≥ V (x) on [a∗, b∗]. Similarly, F (x) ≥ V (x) on
[−b∗,−a∗]. If x > b∗, our candidate {X∗

x(t) : t ≥ 0} for an optimal process satisfies
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(4.1) up to the first entrance time τb∗ of [−b∗, b∗] and at the time τb∗ it will jump
to a∗ using the control process A(·) in (1.1). Thereafter, it remains in [−a∗, a∗] as
a reflecting diffusion satisfying (5.3) and (5.4). The process X∗

x(·) is admissible with
respect to the stopping times {τn} defined is (4.3) and the explosion time of X∗

x(·)
is infinity, as verified in Proposition 4.1. Also Px[τb∗ < ∞] = 1, and this can be
established by standard methods (see [17, p. 345]). To verify that the pay-off from
X∗

x(·) is indeed F (x), we apply Itô’s lemma to F (X∗
x(t))e−αt and obtain

F (x) = F (b∗)Ex(e−ατb∗ ) + Ex

[ ∫ τb∗

0

e−αtC(X∗
x(t)) dt

]
(6.12)

= F (a∗)Ex(e−ατb∗ ) + Ex

[ ∫ τb∗

0

e−αt(C(X∗
x(t)) dt + d|A∗|(t))

]
,

where {A∗(t)} is the bounded variation control process associated with X∗
x(·) as in

(1.1), and A∗ satisfies A∗(t) = 0, 0 ≤ t < τb∗ , A
∗(τb∗) = −(b∗ − a∗), and for t > τb∗ ,

A∗(t) = A∗(τb∗) +L−a∗(t)−La∗(t), where L−a∗ and La∗ are the local time processes
at −a∗, and a∗ is as described in (5.4). Since F (a∗) can be represented by (5.5),
(6.12) leads to F (x) = Ex

∫∞
0

e−αt(C(X∗
x(t)) dt + d|A∗|(t)). Hence, F (x) ≥ V (x) for

all x ≥ b∗. Similar argument works when x < −b∗. Consequently, F (x) = V (x) for
all x and the strategy described in (6.6) is optimal. This completes the proof.

Next, we give an explicit example which satisfies all our assumptions.
Example 6.6. Let μ(x) = −θx and σ(x) = σ0, where θ and σ0 are positive

constants. Hence the zero-control in (1.1) yields on Ornstein–Uhlenbeck process. To
construct a twice continuously differentiable even cost function C(·), we introduce two
points p0 > 0 and q0 > 0 by p0 = 3

2 (α+ θ) + σ0√
α+ θ

and q0 = p0 + σ0√
α+θ

.
We take C(x) = x2 on [0, q0]. On [q0,+∞], we construct C(x) so that C(·) is

C2 on [0,∞), C ′(x) is increasing on [0, q0 + 1], C ′(x) is nonnegative and decreasing
on [q0 + 1,∞), and

∫∞
q0

C ′(u) du is finite. We extend C(x) to R as an even function

and consequently C(·) is a bounded cost function. Assumption (6.2) is obvious. In

(6.3), h(x) = C′(x)
(α+ θ) for x > 0, β0 = (α+ θ)

2 , and δ0 > q0 + 1. Thus (6.3) is also
satisfied. Let p0 and q0 be as introduced above. Condition (6.4) can be reduced to

(p0 − (α+ θ)
2 )2 >

σ2
0

(α+ θ) + (α+ θ)2

3 and it is satisfied by our choice of p0. Condition

(6.5) can be reduced to 1
3 (q3

0 + 2p3
0) >

σ2
0

2 + p2
0q0 + (α+θ)

2 (q0 − p0)
2 and this inequality

is also satisfied by our choice of p0 and q0.
Hence, there exist two points a∗ > 0 and b∗ > 0 and an optimal strategy of the

type described in (6.6). Moreover, the value function fails to be C2 at the points ±b∗.

7. Variance control. Here we allow the controller to control the diffusion co-
efficient in addition to the bounded variation control process. We assume that the
controlled state process is a weak solution of the stochastic differential equation

Xx(t) = x +

∫ t

0

μ(Xx(s−)) ds +

∫ t

0

u(s) dW (s) + dA(x),(7.1)

where x is in R, {W (t) : t ≥ 0} is the Brownian motion adapted to a right continuous
filtration {Ft : t ≥ 0} on a probability space {Ft} and the bounded variation control
process A(·) is {Ft}-adapted and satisfies all the conditions described below (1.1)
in section 1. In addition, the process {u(t) : t ≥ 0} is {Ft}-adapted, and for each
t > 0, u(t) belongs to a control set D(Xx(t−)), where D(y) ⊆ (0,∞) for each y, and
the collection of control sets D = {D(y) : y is in R} is a priori known to the controller.
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A process Xx(·) is admissible if it satisfies (7.1), u(t) belongs to D(Xx(t−)) for
each t > 0, and if there exists an increasing sequence of stopping times {τn} such that
limn→∞ τn = +∞ and

(i) Ex

∫ T∧τn

0

[|μ(Xx(s−))| + (u(s))2] ds < ∞ for each T > 0 and(7.2)

(ii) lim
n→∞

Ex

[
|Xx(τn)|e−ατnI[τn<∞]

]
= 0.

The control problem addressed in this section is to minimize the function

J(x, u,A) = Ex

∫ ∞

0

e−αt[C(Xx(t)) dt + d|A|(t)](7.3)

over all available state processes Xx(·) satisfying (7.1) and (7.2). The cost function
C(·) satisfies assumption (1.6).

Analogous to section 1, we call ((Ω,F, P ), {Ft},W (·), Xx(·), u(·), A(·)) an
admissible control system if (i) Xx(·) is a weak solution to (7.1) which also
satisfies (7.2) with respect to control processes u(·), A(·), and (ii) J(x, u,A) described
in (7.3) is finite. We let

Σ(x) = {(u(·), A(·)) : there exists an admissible state process Xx(·) which satisfies

(7.1) corresponding to control processes u(·) and A(·)}.

The value function V (·) is defined by

V (x) = inf
Σ(x)

J(x, u,A).(7.4)

The key to the derivation of the optimal strategies in this section is the function
σ(·) defined by

σ(y) = inf{u : u ∈ D(y)}.(7.5)

We make the following assumptions on the collection of control sets D:
(7.6) (i) for each y, σ(y) belongs to D(y);
(7.7)(ii) the function σ(·) satisfies conditions (1.4) and (1.5).

In contrast to many articles in stochastic control, the control sets D(y) need not
be bounded. We assume condition (1.6) related to the cost function C(·). We need
the following additional assumption in this section:

the function h(x) =
C ′(x)

α− μ′(x)
is monotone increasing on R.(7.8)

Condition (7.8) guarantees the convexity of the value function, and hence the use
of minimal variance is optimal. The HJB equation related to this problem is given by

min

{
inf

u∈D(x)

u2

2
V ′′(x) + μ(x)V ′(x) − αV (x) + C(x), 1 − |V ′(x)|

}
= 0.(7.9)

Our next lemma will extend the verification results of section 2.
Lemma 7.1. Let σ(·) be defined by (7.5) and let the functions μ, σ, and C satisfy

(1.4)–(1.6) and (7.5)–(7.7). Let Q be a twice continuously differentiable function which
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satisfies the HJB equation (7.9) with Q′′(x) ≥ 0 for all x. Then Q(x) ≤ V (x) for all
x, where V is the value function given by (7.4).

Proof. Since Q′′ ≥ 0, observe that infu∈D(x)
u2

2 Q′′(x) = σ2(x)
2 Q′′(x), where σ(·) is

given in (7.5). Since Q satisfies (7.9), it also satisfies (1.9) with the diffusion coefficient
σ(·). For any admissible process Xx(·) with controls u(·) and A(·), we observe that

u(t)2

2
Q′′(Xx(t−)) ≥ σ2(Xx(t−))

2
Q′′(Xx(t−)) for all t ≥ 0.(7.10)

Using (7.10) in the proofs of Lemma 2.1 and Corollary 2.2, the conclusion
follows.

Remark. If σ(·) is as in (7.5) and Q is a C2 function which satisfies (1.9) and
Q′′(x) ≥ 0 for all x, then Q also satisfies (7.9).

Next, we describe the main theorem of this section.
Theorem 7.2. Assume the same conditions as in Lemma 7.1. Then the following

holds.
(i) If (4.2) holds, then the process Zx(·) of (4.1) is optimal for the variance control

problem (7.4).
(ii) If (5.1) and (5.2) holds, then the reflecting diffusion process X∗

x(·) described
in the Theorem 5.5 is optimal for (7.4).

Proof. To prove part (i) we use the proof of Theorem 4.3. With the aid of Lemma
7.1, it suffices to show that F ′′(x) ≥ 0 for all x, where F is given in (4.15). This will
follow if we prove W∞ in (4.15) is increasing. Suppose not, then there exist z1 < z2 so
that W∞(z1) > W∞(z2). Hence, we can find large n, so that Wn has a local maximum
at ξ1 and a local minimum at ξ2, ξ1 < ξ2, Wn(ξ1) > Wn(ξ2), and Wn satisfies (4.8).
Using (4.8), it follows that h(ξ1) ≥ Wn(ξ1) > Wn(ξ2) > h(ξ2). This contradicts (7.8).
Hence part (i) follows.

For part (ii), we follow the proof of Theorem 5.5. Again it suffices to show that
the function W described in Proposition 5.4 is monotone increasing on [a∗, b∗]. This
can be proved similarly to part (i). Thus V ∗ given in (5.28) satisfies the assumptions
of Lemma 7.1, and the process X∗

x(·) described in Theorem 5.5 is optimal for the
variance control problem. This completes the proof.
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1. Introduction. The theory of coprime factorizations of linear signal operators
is well known to be a significant tool in the study of robustness of stability for linear
feedback systems and has been extensively studied (see [5, 16, 20]). Perturbations to
normalized coprime factors form a good description of physically realistic deviations
from nominal models, since they allow a unified treatment of both low and high
frequency uncertainties [8]. In the linear theory, it is well known that the graph
topology is the appropriate topological description for studying robustness of stability
and that coprime factor perturbations can be used to induce the graph topology.
Furthermore, the graph topology is metrizable, and both the gap metric [3, 21] and
the graph metric [20] provide suitable metrizations, the former being more suitable for
calculations by standard H∞ optimizations, (although both metrics are topologically
equivalent) [5, 16, 21]. There is thus a rich set of equivalences between the notions of
coprime factorizations, gap/graph metrics and topologies and their attendant robust
stability theorems. Moreover, this framework is a cornerstone of modern robust linear
control theory.

Given the richness and importance of this framework in the linear setting, it is
natural to seek extensions to the nonlinear case, and to alternative signal spaces.
Indeed, by adopting a notion of stability corresponding to the existence of a linear
gain (typically either in an L2 or L∞ setting), a number of authors have previously
considered a nonlinear theory of coprime factorization. Here we highlight three con-
tributions of particular relevance to the context of this paper. In [18], Verma defined
a notion of coprime factorization for nonlinear mappings and presented a stability
result for a nonlinear system. In [2], Anderson, James, and Limebeer generalized
the linear theory of normalized coprime factor robustness optimization to the case of
affine input nonlinear systems and presented an optimal robustness margin. In [10],
a new definition of “normalized” was introduced for left representation for the graph
of a nonlinear system and different gap metrics were studied. Many further pointers
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to a growing literature on nonlinear coprime factorization can be found in the mono-
graph [14] and the references therein.

On the other hand, the gap metric has also been generalized into a nonlinear
setting in a fundamental contribution by Georgiou and Smith, [7]. In further recent
papers [1, 22, 10], generalizations of Vinnicombe’s ν-gap metric [21] to nonlinear
operators have been considered (for linear systems the ν gap is always smaller than
the gap and has sharper properties; however, the nonlinear theory does not as yet
reflect these extra properties).

The purpose of this paper is three-fold.

1. To further extend the existing robust stability theory by replacing the re-
strictive requirement of the existence of an induced gain by the weaker requirement
of the existence of a gain function; see also [7].

2. To provide the topological descriptions underpinning the convergence and
robust stability notions in both the case of linear gain and gain function stability;
in particular to provide a topological characterization of nonlinear gap topologies in
terms of coprime factor perturbations.

3. To establish links between the nonlinear graph topologies, the recent results
on the nonlinear gap metric [7], and other metrizations (e.g., graph metrics [20], and
Georgiou-type formulae [4]).

In the context of the first and second items, directly related work of which the
authors are aware can be found in [17], where a sufficient condition for the existence of
coprime factorization of nonlinear mappings was given in the sense of IOS; we will
show much more of the theory for linear gains can be extended to this more general
setting. In [7], robustness of stability results was given in a gain function setting using
a generalization of the gap metric. Interestingly, whilst the results in the gain function
setting given in [7] implicitly define a notion of plant convergence, the underlying
topology is not explicit. In particular, in contrast to the case of the linear gain,
a metric was not defined, hence a topology cannot be automatically induced. One
contribution of this paper is to provide the underlying topology, and to provide explicit
metrizations. In the case of stability of nonlinear operators defined via a linear gain,
we show that the graph metric naturally generalizes and induces the graph topology.
In the more general case of gain function stability, we only show that the gap topology
is stronger than the (weighted) graph topology. The converse relationship remains
open. However, we do establish many other relationships and equivalences between a
variety of gap and graph metrics and topologies.

An outline of this paper is as follows. Section 2 is devoted to the preliminaries,
in particular known results on coprime factorization for nonlinear systems are briefly
reviewed. The main results are arranged in three sections. In section 3, we define
pointwise and weighted graph topologies and study the associated convergence over a
general subset of signal operators admitting coprime factorizations. In section 4, we
study the metrizability of the weighted graph topology. Seven gap metrics are consid-
ered. Equivalences and other relationships between the metrics and their associated
topologies (including equivalence to the weighted graph topology) are presented. Fi-
nally in section 5, we apply the graph topologies to study the robust stability of nonlin-
ear feedback systems. A summary and discussion of future work is given in section 6.

2. Background on coprime factorization. The material in this section is
mostly directly based on (and straightforward generalizations of) work of previous
authors [7, 17, 18, 19]. However, we need to present this material within the language
of this paper and for completeness.
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We let U , Y be two signal spaces, respectively, representing the input and output
signal spaces. These could be the spaces L∞

n := L∞(R+,R
n), L∞,e

n , Lp
n, Lp,e

n , lp, or
even a general set on which a truncation can be defined and for which any truncated
domain is a normed linear space and supτ>0 ‖Tτx‖ < ∞ implies x ∈ Us. In particular,
for one-dimensional continuous domains, we define the truncation operator and the
truncated norm for a signal u, say u ∈ L∞,e

n , by

(Tτu)(t) =

{
u(t), t ≤ τ

0, t > τ
, ‖u‖τ = ‖Tτu‖,

where norm of a normed space X is denoted by ‖ · ‖X or ‖ · ‖ if the usage is unam-
biguous. Note, however, that the notion of truncation and all the material in this
paper equally apply to signal spaces with discrete domains, e.g., L∞(Z+,R

n), and
to multidimensional domains, e.g., L∞(Rm

+ ,Rn), under a suitably modified notion of
truncation. Let Us, Ys be the auxiliary normed subspaces which consist of all bounded
signals in U , Y, respectively. In the case where U (resp., Y) is a normed space, Us = U
(resp., Ys = Y). Typically, U , Y are taken to be extended spaces (e.g., L∞,e

n ), and
Us, Ys are their nonextended subspaces (e.g., L∞

n ).
The identity operator on any space Y is denoted by IY or I if the usage is clear.

Given a matrix operator (A,B), let (A,B)� be its transpose, that is (A,B)� =
(
A
B

)
.

We also let K∞ denote the set of functions ω : [0,∞) → [0,∞) which are continuous,
strictly increasing, and ω(0) = 0, ω(∞) = ∞.

Any signal operator P : Dom(P ) → Y is assumed to be causal and its domain is
denoted by

Dom(P ) = {u ∈ Us : Pu ∈ Ys}.

It is worthwhile to observe that unstable plant operators P̂ are often thought of as
operators U → Y for suitably large signal spaces U , Y. We will only have to be
interested in the relation between elements in Dom(P ) and Ys so do not consider the
definition of P on the wider signal spaces. However, it should be noted that under
extra assumptions such as causal extendibility [6] and for appropriate choices of signal
space, the operator P : Dom(P ) → Ys uniquely extends to an operator P̂ : U → Y,
hence the topologies we will define on sets of operators P : Dom(P ) → Ys can be
thought of as topologies on sets of operators P̂ : U → Y.

Linear gains of operators P : Dom(P ) → Y are defined by

‖P‖ := sup

{
‖Pu‖
‖u‖ : u ∈ Dom(P ) with ‖u‖ �= 0

}
.

If P is causal, one can prove that

‖P‖ = sup

{
‖Pu‖τ
‖u‖τ

: τ > 0, u ∈ Dom(P ) with ‖u‖τ �= 0

}
which is used in [7] as the definition of linear gain. When P is a linear operator,
‖P‖ is the induced operator norm of P . In the nonlinear setting, in contrast to linear
systems, it is often the case that Dom(P ) = Us and yet no linear gain exists. Therefore
a weaker notion of stability is adopted, namely that of the existence of a gain function.
The gain function of an operator P is defined by

γ(P )(r) := sup{‖Pu‖τ : τ > 0, u ∈ Dom(P ) with ‖u‖τ ≤ r} for r ≥ 0.
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In the case where P is causal, we also have

γ(P )(r) = sup{‖Pu‖ : u ∈ Dom(P ), ‖u‖ ≤ r} for r ≥ 0.

We summarize elementary properties of the linear gain ‖P‖ and the gain function
γ(P ) in the following lemma.

Lemma 2.1. The linear gain and gain function have the following properties:
1. γ(P )(0) = 0, if P (0) = 0,
2. γ(P )(r1) ≤ γ(P )(r2), if r1 ≤ r2,
3. For any two well-defined operators P1, P2 and any r > 0, λ ∈ R, we have

‖λP1‖ = 0 ⇐⇒ P1 = 0, γ(P1) = 0 ⇐⇒ P1 = 0,

‖λP1‖ ≤ |λ|‖P1‖, γ(λP1)(r) ≤ |λ|γ(P1)(r),

‖P1 + P2‖ ≤ ‖P1‖ + ‖P2‖, γ(P1 + P2)(r) ≤ γ(P1)(r) + γ(P2)(r),

‖P1P2‖ ≤ ‖P1‖‖P2‖, γ(P1P2)(r) ≤ γ(P1)(γ(P2)(r)).

4. γ(P )(r) ≤ r‖P‖ for all r > 0. In particular, if P is linear and bounded, then
γ(P )(r) = r‖P‖.

Definition 2.2. A signal operator P is said to be
(i) gain stable if ‖P‖ < ∞,
(ii) (gf)-stable if γ(P )(r) < ∞ for each r ≥ 0.

We remark that gain stability implies (gf)-stability and both imply P (Dom(P )) ⊂
Ys. In fact, a stable operator P maps bounded subsets of Us into bounded subsets of
Ys (compare to [19]). As a shorthand, in the rest of this paper, a stable operator is
taken to mean that the operator is stable in the sense of (gf)-stability unless specified
otherwise.

Definition 2.3. A causal operator P : Dom(P ) ⊂ Us → Y is said to admit a
(right) coprime factorization if and only if there exist causal stable operators N : Us →
Ys and D : Us → Us such that

(i) D is causally invertible with Dom(D−1) = Dom(P ),
(ii) P = ND−1,
(iii) there exists a causal stable mapping L : Us×Ys→Us such that L(D,N)�= I.

In that case, we also say that P admits the coprime factorization (N,D) and we
write P = ND−1. For convenience, we call L the associated operator to this coprime
factorization. The set of all coprime factorizations of P is denoted by rcf(P ).

In this definition, and henceforth, an operator D : Us → Us is said to be invertible
with inverse D−1 if D−1 : Dom(D−1) ⊂ Us → Us is a well-defined operator and
DD−1|Dom(D−1) = I, D−1D|Us = I. Equivalently, D is required to be both left and
right invertible.

Definition 2.4. Suppose (N,D) is a coprime factorization of P . If

‖(D,N)�u‖ = ‖u‖ for all u ∈ U ,

we say that (N,D) is a normalized right coprime factorization of P . The set of all
normalized right coprime factorizations is denoted by nrcf(P ).

Definitions 2.3 and 2.4 are generalizations of the coprime factorization and nor-
malized coprime factorization for linear operators (see [20]) to the nonlinear case, as
considered previously by various authors. Definition 2.3 is given by Verma and Hunt
in [19] (see also [12, 18]) where the stability is in the sense of “bounded input im-
plies bounded output” (resp., linear gain) between normed spaces. Sontag [17] also
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defined the concept in which L is required to be of the form (B,A) with A : Y → U ,
B : U → U . Others using this Bezout identity to define coprime factorizations for
nonlinear systems include Hammer [9], James, Smith, and Vinnicombe [10], Moore
and Irlichet [11], etc. Whilst the Bezout identity BN + AD = I always appears in
the linear case, the more general form of L is less restrictive in the nonlinear setting.
Generalizations of normalized coprime factorization, including those for specific signal
operators, can be found in [2, 10, 13, 14, 15] and the references therein.

Existence and construction of (normalized) coprime factorizations for certain
classes of nonlinear systems have been considered previously. For example, in [2,
10, 13, 15], normalized coprime factorizations for stabilizable nonlinear affine systems

x′ = f(x) + g(x)u, y = C(x)

were constructed; Sontag [17] proved that, in the sense of IOS, if the above system with
C = I is smoothly input to stay stable by a controller of the form u = k(x) + v, then
its input to state mapping P : u �→ x admits a coprime factorization with L = (I, A),
where −A is the memoryless operator induced by the smooth state feedback controller
u = k(x), N is the input to state mapping v �→ x of the closed-loop system, and
D = I −AN . Similar existence results were obtained by Verma and Hunt [19], in the
sense of (gf)-stability, for the causal I/O mapping of the system

x′(t) = f(x(t), u(t), t), x(0) = x0, y(t) = h(x(t), u(t), t)

in the case when U , Y are Lp spaces. Other references to the state space construction
of coprime factors can be found in [14] and the references therein.

The following two results can be found in [18] where the notion of stability is in
the sense of a finite linear gain. However, the proofs remain valid in the context of
(gf)-stability, hence we omit the proofs.

Proposition 2.5. Suppose P admits coprime right factorization (N,D). Then

Graph(P ) := {(u, Pu)� : u ∈ Dom(P )} = {(Du,Nu)� : u ∈ Us}.

Proof. See [18].
Proposition 2.6. (N,D), (N1, D1) ∈ rcf(P ) if and only if there exists a causally

stable operator U on Us, where U−1 exists, is stable, and is such that N = N1U ,
D = D1U .

Proof. See [18].
If the coprime factorizations in Proposition 2.6 are also normalized, then we also

have the following proposition.
Proposition 2.7. If (N,D), (N1, D1) ∈ nrcf, then the operator U in Proposi-

tion 2.6 is such that ‖Uu‖ = ‖U−1u‖ = ‖u‖ for all u ∈ Us.
Proof. Let u ∈ Us. By Proposition 2.6 and the definition of normalized co-

prime factorization, we see ‖U−1u‖ = ‖(D,N)�U−1u‖ = ‖(D1, N1)
�UU−1u‖ =

‖(D1, N1)
�u‖ = ‖u‖ and, similarly, ‖Uu‖ = ‖(D1, N1)

�Uu‖ = ‖(D,N)�U−1Uu‖ =
‖(D,N)�u‖ = ‖u‖. This proves the proposition.

3. Graph topologies. In this section, we will study graph topologies on the set
of certain signal operators having coprime factorizations. As in the linear case, we
will show that the graph topologies play a natural role in the theory of closed loop
robust stability.

In practice, the signal spaces, operators, and associated coprime factorizations
concerned are constrained to lie within certain classes for different control problems.
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For example, one may only be interested in the case when U = L∞,e
n , Y = L∞,e

m ,
and where all operators considered lie in the subset of I/O operators of all affine
(nonlinear) systems.

Here we list some particular categories that will be considered in this paper.

• Category nor : U ,Y are general signal spaces as assumed and all operators
considered are those that admit normalized coprime factorizations in the sense defined
in the last section.

• Category ω with ω ∈ K∞ : U ,Y are general signal spaces and all operators F

considered are such that rcf(F ) �= ∅ and supr>0
γ((N,D)�)(ω(r))

r < ∞ for all (N,D) ∈
rcf(F ).

• Category L : U , Y are both the frequency domain Hardy spaces H2 (see [20]),
operators are the real rational p × q transfer function matrices, and the associated
coprime factorizations are those linear factorizations over RH∞

1 as in [20] or [21].

Since F ≡ 0 has normalized coprime factorization (0, I), we see that each category is
nonempty.

The graph topologies will be defined on a general category although in the next
section we mainly consider Nnor(U ,Y) and Nω(U ,Y). So we use Γ to represent the
category concerned and write

NΓ(U ,Y) :=

{
P : Dom(P ) ⊂ U → Y :

P and the associated rcfs
N,D are within category Γ

}
.

Correspondingly, we have notations Nnor(U ,Y), Nω(U ,Y), and NL(H2,H2) =: NL.
For example

Nnor(U ,Y) := {P : Dom(P ) ⊂ U → Y and nrcf(P ) �= ∅}.

Nω(U ,Y) :=

⎧⎨⎩P : Dom(P ) ⊂ U → Y :

rcf(P ) �= ∅ and for all (N,D) ∈ rcf(P ),

sup
r>0

γ((N,D)�)(ω(r))

r
< ∞

⎫⎬⎭ .

A graph topology for NL, denoted by TL, has been defined in [20] by the following
local base for P ∈ RH∞:

N (N,D; ε) = {N1D
−1
1 : ‖(N1 −N,D1 −D)�‖∞ < ε, N,D,N1, D1 ∈ RH∞}(3.1)

with ε > 0, (N,D) ∈ rcf(P ), and (N1, D1) ∈ rcf(N1D
−1
1 ), respectively. We will show

that our L2 topologies for NL are the same as TL.

For notational ease in what follows, any pairs N , D or Nk, Dk are always assumed
to be coprime factorizations of P = ND−1 and Pk = NkD

−1
k , respectively, and P

and Pk are taken to be well-defined operators from Dom(P ) → Ys, Dom(Pk) → Ys,
respectively.

1H2 is the space of Fourier transforms of signals in L2(R+,Rn) endowed with the norm

‖x‖2
2 := 1

2π

∫∞
−∞ x∗(jω)x(jω)dω. By Parseval’s theorem, it is isometrically isomorphic to L2(R+,Rn)

and therefore the two notations are not distinguished. RH∞ is the space of rational trans-
fer functions of stable linear, time-invariant, continuous time systems endowed with the norm
‖P‖∞ := supω∈R σ̄[P (jω)], where σ̄ denotes the maximum singular value. Equivalently, ‖P‖∞ :=
sup{‖Pu‖H2

/‖u‖H2
: u ∈ H2, u �= 0}. So by Paserval’s theorem, the H∞-norm in the frequency

domain corresponds to the induced L2 norm in the time domain.
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3.1. Pointwise graph topology. Let � be the vector space of all functions
from R+ to R. For any open subset Ω ⊂ R and a finite subset {t1, . . . , tn} ⊂ R+, let

V(t1, . . . , tn; Ω) = {f ∈ � : f(ti) ∈ Ω}.

It can be proved that {V(t1, . . . , tn; Ω) : ti ∈ R+, n > 0, Ω ⊂ R, Ω open} forms a
subbase for a topology on �. Moreover, the family of subsets

�0 = {V(t1, . . . , tn; ε) := V(t1, . . . , tn; (−ε, ε)) : ε > 0, ti ∈ R+, n > 0}

is a base for the neighborhood of f(t) ≡ 0 in � under such a topology.
For each P ∈ NΓ(U ,Y) with coprime factorization (N,D) and each V ∈ �0, we

define

O(N,D;V ) = {P1 = N1D
−1
1 ∈ NΓ(U ,Y) : γ((D −D1, N −N1)

�) ∈ V }.

Obviously, P = ND−1 ∈ O(N,D;V ) for each V ∈ �0. Moreover, we have the
following proposition.

Proposition 3.1. If ND−1 ∈ O(N1, D1;V1) ∩ O(N2, D2;V2), then there exist
V ∈ �0 such that O(N,D;V ) ⊂ O(N1, V1) ∩O(N2, D2;V2).

Proof. We may suppose V1 = V(t1, . . . , tn; ε1), V2 = V(s1, . . . , sm; ε2) with ti > 0,
sj > 0, εk > 0 (i = 1, . . . , n, j = 1, . . . ,m, k = 1, 2). Then ε1 − γ((D − D1, N −
N1)

�)(ti) and ε2 − γ((D − D2, N − N2)
�)(sj) are all positive numbers. Let ε > 0

such that

ε < min

{
ε1 − γ((D −D1, N −N1)

�)(ti), i = 1, . . . , n,
ε2 − γ((D −D2, N −N2)

�)(sj), j = 1, . . . ,m

}
.

If ÑD̃−1 ∈ O(N,D;V ) with V = V(t1, . . . , tn, s1, . . . , sm; ε), then

γ((D̃ −D1, Ñ −N1)
�)(ti) ≤ γ((D̃ −D, Ñ −N)�)(ti) + γ((D −D1, N −N1)

�)(ti)

< ε1 − γ((D −D1, N −N1)
�)(ti)

+ γ((D −D1, N −N1)
�)(ti) = ε1

for all i = 1, . . . , n. This gives ÑD̃−1 ∈ O(N1, D1;V1). Similarly, we can show
ÑD̃−1 ∈ O(N2, D2;V2). Therefore, ÑD̃−1 ∈ O(N1, D1;V1) ∩ O(N2, D2;V2) which
means O(N,D;V ) ⊂ O(N1, D1;V1) ∩O(N2, D2;V2).

From the above result, it follows that a topology on NΓ(U ,Y) can be uniquely
determined by the base B, where

B = {O(N,D;V ) : ND−1 ∈ NΓ(U ,Y), V ∈ �0},

and {O(N,D;V ) : ND−1 = P, V ∈ �0} a local base of P . We denote this topology
by T and call it the pointwise (graph) topology (see the preceding footnote). The
following proposition provides an alternative base for this topology.

Proposition 3.2. Let Q+ be the set of all positive rational numbers and

O′(N,D; r, ε) = {N1D
−1
1 ∈ NΓ(U ,Y) : γ((D −D1, N −N1)

�)(r) < ε}.

Then a base for the pointwise graph topology T is the family of subsets

B′ = {O′(N,D; r, ε) : ND−1 ∈ NΓ(U ,Y), r, ε ∈ Q+}.
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Proof. Obviously B′ ⊂ B. Suppose O(N,D;V ) ∈ B with V = V(t1, . . . , tn; ε).
Let r, ε1 ∈ Q such that r > max{t1, . . . , tn) and ε1 < ε. Then for each N1D

−1
1 ∈

O′(N,D; r, ε1), from Lemma 2.1 (2.), it follows that

γ((D1 −D,N1 −N)�)(ti) ≤ γ((D1 −D,N1 −N)�)(t) < ε1 < ε

for all i = 1, . . . , n. This means N1D
−1
1 ∈ O(N,D;V ) and therefore O′(N,D; r, ε) ⊂

O(N,D;V ). Hence B and B′ are equivalent.
If we restrict our consideration to NL, from Lemma 2.1 (4.) and (3.1), we see

O′(N,D; r, ε) = {N1D
−1
1 : γ((D −D1, N −N1)

�)(r) < ε, N,D,N1, D1 ∈ RH∞}

=
{
N1D

−1
1 : ‖(D −D1, N −N1)

�‖ <
ε

r
=: ε1, N,D,N1, D1 ∈ RH∞

}
= N (N,D; ε1),

hence we have the following corollary.
Corollary 3.3. The pointwise graph topology T in the category L is the same

as the graph topology TL.
Now we begin to consider the convergence of sequences under the pointwise topol-

ogy. The following result shows that any convergent sequence has only one limit.
Proposition 3.4. The pointwise graph topology T is Hausdorff. Therefore, the

limit point of a convergent sequence is unique.
Proof. Let P1 �= P2 be two distinct plants. Then there exist (N1, D1) ∈ rcf(P1),

(N2, D2) ∈ rcf(P2) with (D1, N1)
� �= (D2, N2)

�. This shows

ε := γ((D1 −D2, N1 −N2)
�)(r) > 0 for some r > 0.

Consider the neighborhoods O(N1, D1; r, ε/3) of P1 and O(N2, D2; r, ε/3) of P2. If
there exists P = ND−1 ∈ O(N1, D1; r, ε/3) ∩O(N2, D2; r, ε/3), since

γ((N1 −N2, D1 −D2)
�)(r) ≤ γ((N1 −N,D1 −D)�)(r)

+ γ((N2 −N,D2 −D)�)(r),

we see γ((N1 −N2, D1 −D2)
�)(r) < ε. This is a contradiction. Hence we have that

O(N1, D1; r, ε/3) ∩O(N2, D2; r, ε/3) = ∅, which proves the proposition.

Suppose {Pn} ⊂ NΓ(U ,Y) is a sequence. We let Pn
T−→ P denote the convergence

of the sequence {Pn}n≥1 to P under the graph topology T . From Proposition 3.2, we

see that Pn
T−→ P means that, for any r > 0, ε > 0 and each coprime factorization

ND−1 of P , there exist n0 > 0 and coprime factorization NnD
−1
n of Pn such that

NnD
−1
n ∈ O(N,D; r, ε) for all n ≥ n0. Necessary and sufficient conditions for this

convergence are given below.
Theorem 3.5. The following statements are equivalent.

(i) Pn
T−→ P .

(ii) For each (N,D) ∈ rcf(P ), there exists (Nn, Dn) ∈ rcf(Pn) such that

γ((Dn −D,Nn −N)�)(r) → 0 for each r > 0.

(iii) There exists (N,D) ∈ rcf(P ) and, for each n, there exists (Nn, Dn) ∈
rcf(Pn) such that

γ((Dn −D,Nn −N)�)(r) → 0 for all r > 0.
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Proof. (ii)⇒(i) and (ii)⇒(iii) are immmediate; we need only to prove (i)⇒(ii) and
(iii)⇒(ii).

(i)⇒(ii). Let r > 0 and P = ND−1 be given. According to the assumptions,
for each ε > 0 and n > 0, there exists coprime factorization Nn,εD

−1
n,ε of Pn and

nε > 0 such that Nn,εD
−1
n,ε ∈ O(N,D; r, ε) for all n ≥ nε. Let ε = 1, 1/2, . . . , 1/2k, ·,

respectively, to obtain the corresponding integers nk := n1/2k . Define

Nn = Nn,1/2k and Dn = Dn,1/2k for nk ≤ n < nk+1.

Then NnD
−1
n is a coprime factorization of Pn and NnD

−1
n ∈ O(N,D; r, 1/2k) for

n ≥ nk. Hence γ((Dn −D,Nn −N)�)(r) → 0.
(iii)⇒(ii). Suppose (Ñ , D̃) is an arbitrary coprime factorization of P . Then by

Proposition 2.6, there exists stable operator U with Ñ = NU , D̃ = DU . Moreover,
(Ñn, D̃n) := (NnU,DnU) is a coprime factorization of Pn due to the same proposition.
Using Lemma 2.1, we have

γ((D̃n − D̃, Ñn − Ñ)�)(r) ≤ γ((Dn −D,Nn −N)�)(γ(U)(r)).

The stability of U and the assumption ensure γ((D̃n−D̃, Ñn−Ñ)�)(r) → 0 as n → ∞
and, therefore, (ii) has been established. This completes the proof.

Because the continuity of a mapping from a first-countable topological space to
another topological space can be described by the convergence of sequences, we have
the following corollary.

Corollary 3.6. Let Λ be a first-countable topological space, Pλ : Λ → NΓ(U ,Y).
Then λ �→ Pλ is continuous at λ = λ0 under the pointwise graph topology T if and
only if there exist coprime factorizations Pλ0 = N0D

−1
0 and Pλ = NλD

−1
λ for each

λ ∈ Λ such that

γ((D0 −Dλ, N0 −Nλ)�)(r) → 0 for all r ≥ 0 as λ → λ0.

3.2. Weighted graph topology. In this section, we consider another topology
on the set NΓ(U ,Y), which will be related to a given function ω ∈ K∞ and a weighted
gain ‖ · ‖ω defined by

‖P‖ω = sup
r>0

γ(P)(ω(r))

r
for any signal operator P.

It is straightforward to prove that ‖ · ‖ω is a norm. Moreover, if ω(r) ≥ c1r with
c1 > 0 for all r > 0, then ‖P‖ω ≥ c1‖P‖. If P0 = 0, c2 > 0, and ω(r) ≤ c2r for all
r > 0, then ‖P‖ω ≤ c2‖P‖.

Let

Σ = {P : U → U × Y with ‖P‖ω < ∞},

It can be seen from the basic properties of γ that Σ is a linear space and therefore
(Σ, ‖ · ‖ω) is a normed space. The norm induces a corresponding topology on Σ, of
which a local base of open ball neighborhoods of P ≡ 0 is denoted by B.

For each P ∈ NΓ(U ,Y) with coprime factorization P = ND−1 and each V ∈ B,
we denote by

Oω(N,D;V ) = {N1D
−1
1 ∈ NΓ(U ,Y) : (D −D1, N −N1)

� ∈ V }.
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Obviously, P = ND−1 ∈ Oω(N,D;V ) for each V ∈ B. Moreover, we have the
following proposition.

Proposition 3.7. If ND−1 ∈ Oω(N1, D1;V1)∩Oω(N2, D2;V2), then there exist
V ∈ B such that Oω(N,D;V ) ⊂ Oω(N1, V1) ∩Oω(N2, D2;V2).

Proof. We may suppose that Vi = {P ∈ Σ : ‖P‖ω < εi} with εi > 0, i = 1, 2. Let

αi = sup
r>0

γ((D −Di, N −Ni)
�)(ω(r))

r
, i = 1, 2

and let ε be a positive number such that ε < min{ε1 − α1, ε2 − α2}. Then for each
ÑD̃−1 ∈ Oω(N,D; ε) and each r > 0, from the third property of γ, it follows that

γ((D̃ −Di, Ñ −Ni)
�)(ω(r))

r
≤ γ((D̃ −D, Ñ −N)�)(ω(r))

r

+
γ((D −Di, N −Ni)

�)(ω(r))

r
< ε + αi, i = 1, 2.

Hence

sup
r>0

γ((D̃ −Di, Ñ −Ni)
�)(ω(r))

r
≤ ε + αi < εi − αi + αi = εi, i = 1, 2.

This implies ÑD̃−1 ∈ Oω(N1, D1; ε1) ∩Oω(N2, D2; ε2) and, therefore, Oω(N,D; ε) ⊂
Oω(N1, D1; ε1) ∩Oω(N2, D2; ε2).

Let

Bω = {Oω(N,D;V ) : ND−1 ∈ NΓ(U ,Y), V ∈ B}.

From the above result, it follows that a topology on NΓ(U ,Y) can be uniquely deter-
mined with Bω as its base. We denote this topology by Tω and call it the weighted
(graph) topology related to function ω. Obviously, Tω has a countable local base.

If P ∈ Σ is linear and ω(t) ≡ t, then from Lemma 2.1 (4.), we see that ‖P‖ω =
‖P‖. Therefore, if we restrict attention to NL, then for each P = ND−1 ∈ RH∞ and
V = {P : H2 → H2 ×H2, ‖P‖ω < ε}, we have

Oω(N,D;V ) = {N1D
−1
1 : ‖(N1 −N,D1 −D)�‖ < ε, N,D,N1, D1 ∈ RH∞}

and Oω(N,D;V ) = N (N,D; ε). This fact yields the following corollary.
Corollary 3.8. For ω(t) ≡ t and NΓ(U ,Y) = NL, the weighted graph topology

Tω is the same as the graph topology TL defined for NL(U ,Y).
From Proposition 3.7, we see that a sequence of operators {Pn}n≥1 converging to

P under this graph topology, denoted by Pn
Tω−→ P , means that, for any ε > 0 and

each coprime factorization ND−1 of P , there exist n0 > 0 and coprime factorization
NnD

−1
n of Pn such that ‖(Dn −D,Nn −N)�‖ω < ε for all n ≥ n0.

Using a method similar to the one used in Proposition 3.4, we can also prove that
the weighted topology is a Hausdorff topology. So a convergent sequence has a unique
limit.

Theorem 3.9. Pn
Tω−→ P if and only if for each coprime factorization ND−1 of

P , there exists coprime factorization NnD
−1
n of Pn such that

sup
r>0

γ((Dn −D,Nn −N)�)(ω(r))

r
→ 0.
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Proof. The proof is omitted for brevity as it follows the same reasoning as used
in the first part proof for Theorem 3.5.

Two immediate corollaries are as follows.
Corollary 3.10. If Pn

Tω−→ P , then Pn → P under the pointwise graph topol-
ogy T .

Corollary 3.11. Let Λ be a first-countable topological space, Pλ : Λ → NΓ(U ,Y).
Then λ �→ Pλ is continuous at λ = λ0 under a weighted graph topology Tω if and only
if for each coprime factorization Pλ0

= N0D
−1
0 , there exist coprime factorization

Pλ = NλD
−1
λ for each λ ∈ Λ such that

γ((D0 −Dλ, N0 −Nλ)�)(r) → 0 for all r ≥ 0 as λ → λ0.

To conclude this section, we observe that given two functions ω1, ω2 ∈ K∞, each
generates a weighted graph topology Tω1

, Tω2
. If ω1(r) ≤ ω2(r) for all r ∈ R+, then

‖P‖ω1 ≤ ‖P‖ω2 for all P : U → U × Y. Therefore

Oω2(N,D;V ) ⊂ Oω1(N,D;V ) for all ND−1 ∈ NΓ(U ,Y), V ∈ B.

This implies the following comparison theorem.
Theorem 3.12. Suppose ω1, ω2 ∈ K∞ satisfying ω1(r) ≤ ω2(r) for all r > 0.

Then Tω2
is stronger than Tω1

(i.e., any sequence converging under Tω2
will converge

under Tω1). Additionally, Tcω1
and Tω1 are equivalent for any c > 0 (i.e., they induce

the same convergence).
In particular we have the following corollary.
Corollary 3.13. The linear gain induces a graph topology (denoted by Tlg) on

NΓ(U ,Y). If c1r ≤ ω(r) ≤ c2r for all r ≥ 0, then Tω and Tlg are equivalent.
Hence it can be seen that the weighted graph topologies inherit the partial order

given by the natural partial order on the weights.

4. Metrizability. The question addressed in this section is simply whether the
nonlinear graph topologies introduced earlier can be sensibly metrized. In the linear
case it is well known that the answer is affirmative. We will show that useful metrics
can also be given for the weighted nonlinear graph topology. We will introduce a
number of metrics on specific subsets of N(U ,Y) and prove that some of them induce
the weighted graph topology.

Throughout this section, we suppose ω ∈ K∞ is a given function, ‖ · ‖ω is the
weighted gain, and U , Y, Us, Ys are defined as before. Every signal operator P (say)
is assumed to be causal and P (0) = 0.

4.1. The metric formulas. We define

Q = {Q : Us → Us is stable and Q−1 exists and is also stable},
Q∗ = {Q : Us → Us is stable and Q−1 exists (bijective)},
Qs = {Q : Us → Us is stable and surjective}.

The subsets of signal operators we will consider are Nω(U ,Y) and Nnor(U ,Y) as
defined in the last section. Recall that

Nω(U ,Y) = {P ∈ N(U ,Y) : ‖(D,N)�‖ω < ∞ for all (N,D) ∈ rcf(P )},
Nnor(U ,Y) = {P ∈ Nω(U ,Y) : nrcf(P ) �= ∅}.
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We now define seven functionals over the above sets:

d1(P1, P2) = max{	d1(P1, P2), 	d1(P2, P1)}, for P1, P2 ∈ Nω(U ,Y),

where 	d1(P1, P2) := sup
(N1,D1)∈rcf(P1)

inf
(N2,D2)∈rcf(P2)

‖(D1 −D2, N1 −N2)
�‖ω;

d2(P1, P2) = max{ 	d2(P1, P2), 	d2(P2, P1)} for P1, P2 ∈ Nnor(U ,Y),

where 	d2(P1, P2) = inf
Q∈Q
‖Q‖≤1

‖(D1 −D2Q,N1 −N2Q)�‖ω, (Ni, Di) ∈ nrcf(Pi), i = 1, 2;

d3(P1, P2) = max{ 	d3(P1, P2), 	d3(P2, P1)} for P1, P2 ∈ Nnor(U ,Y),

where 	d3(P1, P2) = inf
Q∈Q∗

‖Q‖≤1

‖(D1 −D2Q,N1 −N2Q)�‖ω, (Ni, Di) ∈ nrcf(Pi), i = 1, 2;

d4(P1, P2) = log(1 + max{	d4(P1, P2), 	d4(P2, P1)}) for any P1, P2 : U → Y,

where 	d4(P1, P2) =

⎧⎪⎨⎪⎩inf

{
‖I − Φ‖ω :

Φ is a surjective mapping from

Graph(P1) to Graph(P2), Φ(0) = 0

}
,

∞ if no such operator Φ exists;

d5(P1, P2) = log(1 + max{	d5(P1, P2), 	d5(P2, P1)}) for any P1, P2 : U → Y,

where 	d5(P1, P2) =

⎧⎪⎨⎪⎩inf

{
‖I − Φ‖ω :

Φ is a bijective mapping from

Graph(P1) to Graph(P2), Φ(0) = 0

}
,

∞ if no such operator Φ exists;

d6(P1, P2) = log(1 + max{ 	d6(P1, P2), 	d6(P2, P1)}) for P1, P2 ∈ Nnor(U ,Y),

where 	d6(P1, P2) = inf
Q∈Q∗

‖(D1 −D2Q,N1 −N2Q)�‖ω, (Ni, Di) ∈ nrcf(Pi), i = 1, 2;

d7(P1, P2) = log(1 + max{ 	d7(P1, P2), 	d7(P2, P1)}) for P1, P2 ∈ Nnor(U ,Y),

where 	d7(P1, P2) = inf
Q∈Qs

‖(D1 −D2Q,N1 −N2Q)�‖ω, (Ni, Di) ∈ nrcf(Pi), i = 1, 2.

Notice, when ω is the identity d3 is closely related to the graph metric studied
in [20] for finite dimensional linear systems, while d5 is the gap metric defined in [7]

where 	d5 is extensively exploited for the robustness of stability of nonlinear systems.
In most cases, 	d5 can be replaced by 	d4 as later shown in Lemma 5.1 . The functionals
d6 and d7 are closely related to the Georgiou formula for the gap metric [4].

We will prove that d1, . . . , d7 are metrics on suitable sets of signal operators and
show relations between all seven functionals d1, . . . , d7 and their induced topologies.

The results developed in this section are as follows:
1. The weighted topology Tω on Nnor(U ,Y) can be metrized by graph metrics

d2, d3 provided cr ≤ ω(r);
2. The weighted graph topology can also be metrized by Georgiou and Smith’s

gap metrics d4, d5 provided r ≤ ω(r);

3. The graph metrics 	d2, 	d3 and gap metric 	d5 are equivalent to each other.
Therefore, the graph metrics give rise to the same robust stability margin as the gap
metric [7];

4. The gap metrics d4 and d5 can be equivalently expressed by the Georgiou-
type formulae, d7 and d6, respectively.
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The following diagrams show the relations among the discussed topologies and (gap)
metrics that will be established.

d1 ≥ d6, d2 ≥ d3 ≥ d6 = d5 ≥ d4 = d7

Diagram 1: Metric relations.

Td1

P4.1
≥ Tω

T4.4
= Td2

T4.7
= Td3

T4.4
= Td5

P4.6
= Td6

P4.6
≥ Td4

P4.6
= Td7

Tω
C3.10
≥ T

Diagram 2: Topological relations.

Here, the letters “T,” “P,” and “C” represent “Theorem,” “Proposition,” and “Corol-
lary,” respectively, and Tdi means the topology induced by di.

4.2. The gap metric d1. The first result is the following proposition.

Proposition 4.1.d1(·, ·) is a metric on Nω(U ,Y), whose topology, Td1
, is stron-

ger than the weighted graph topology Tω.

Proof. From Lemma 2.1 and the definition of d1, it follows that to prove d1 is a
metric we need only to verify d1(P1, P2) = 0 implies P1 = P2.

In fact d1(P1, P2) = 0 implies that for each (N1, D1) ∈ rcf(P1),

inf
(N2,D2)∈rcf(P2)

‖(D1 −D2, N1 −N2)
�‖ω = 0.

So there exists a sequence {(N2,n, D2,n)} ⊂ rcf(P2) with ‖(D1−D2,n, N1−N2,n)�‖ω →
0 as n → ∞, from which it follows that, for each r > 0, γ((D1 − D2,n, N1 −
N2,n)�)(r) → 0 as n → ∞. By Theorem 3.5, Pn

T−→ P and therefore P2 = P1.

Now we suppose Pn ∈ Nω(U ,Y) with d1(Pn, P ) → 0 as n → ∞. Then

sup
(N,D)∈rcf(P )

inf
(Nn,Dn)∈rcf(Pn)

‖(D −Dn, N −Nn)�‖ω → 0.

So, for each ND−1 ∈ rcf(P ), inf(Nn,Dn)∈rcf(Pn) ‖(D − Dn, N − Nn)�‖ω → 0 and

therefore there exists NnD
−1
n ∈ rcf(Pn) such that ‖(Dn − D,Nn − N)�‖ω → 0 as

n → ∞. This proves Pn
Tω−→ P and hence Td1 is stronger than Tω.

4.3. The graph metrics d2 and d3. In this subsection, we will show that
both d2 and d3 are well-defined metrics on Nnor(U ,Y) and the topologies induced are
equivalent to the weighted graph topology Tω provided ω(r) ≥ cr with c > 0.

Proposition 4.2. d2(·, ·) is a metric defined on Nnor(U ,Y).

Proof. First, we need to prove d2 is well-defined, that is, d2(P1, P2) is indepen-
dent of the choice of normalized coprime factorizations and is finite for all P1, P2 ∈
Nnor(U ,Y). So let Pi ∈ Nnor(U ,Y), (Ni, Di), (N̂i, D̂i) ∈ nrcf(Pi), i = 1, 2. By Propo-
sitions 2.6 and 2.7, there exist Qi ∈ Q (i = 1, 2) with ‖Qiu‖ = ‖Q−1

i u‖ = ‖u‖ (for all

u ∈ Us) such that D̂i = DiQi, N̂i = NiQi. Notice, for every stable operator A

‖AQ1‖ω ≤ sup
r>0

γ(A)(γ(Q1)(ω(r)))

r
= sup

r>0

γ(A)(ω(r))

r
= ‖A‖ω,(4.1)
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so we have

inf
Q∈Q
‖Q‖≤1

‖(D̂1 − D̂2Q, N̂1 − N̂2Q)�‖ω = inf
Q∈Q
‖Q‖≤1

‖(D1Q1 −D2Q2Q,N1Q1 −N2Q2Q)�‖ω

≤ inf
Q̂∈Q̂
‖Q̂‖≤1

‖(D1 −D2Q̂,N1 −N2Q̂)�‖ω.

Replacing Qi by Q−1
i , we see that the opposite inequality is also true and, therefore

inf
Q̂∈Q
‖Q̂‖≤1

‖(D1 −D2Q̂,N1 −N2Q̂)�‖ω = inf
Q∈Q
‖Q‖≤1

‖(D̂1 − D̂2Q, N̂1 − N̂2Q)�‖ω.

This shows the value of 	d2(P1, P2) is independent of the choice of normalized coprime

factorizations. Similarly, we can prove 	d2(P2, P1) is independent of the choice of
normalized coprime factorizations and hence so is d2. Also, for any Q ∈ Q with
‖Q‖ ≤ 1, we have

‖(D1 −D2Q,N1 −N2Q)�‖ω ≤ ‖(D1, N1)
�‖ω + ‖(D2, N2)

�‖ω ≤ 2 < ∞.

Hence d2 is well-defined.
Next we prove d2 is a metric.
Obviously, d2 is symmetric and d2(P, P ) = 0 for any P ∈ Nnor(U ,Y). Conversely,

suppose d2(P1, P2) = 0 with P = N1D
−1
1 , P2 = N2D

−1
2 . Then for all n > 0, there

exist Qn ∈ Q such that ‖(D1 −D2Qn, N1 − N2Qn)�‖ω → 0 as n → ∞, from which
we have

γ((D1 −D2Qn, N1 −N2Qn)�)(r) → 0 for all r > 0 as n → ∞.

By Proposition 2.6, (N2Qn, D2Qn) is also a coprime factorization of Pn ≡ P2 for each

n. From Theorem 3.5, it follows that P2 = Pn
T−→ P1 in N(U ,Y), which implies

P1 = P2 since the pointwise graph topology is Hausdorff.
To prove the triangle inequality, we suppose NiD

−1
i are normalized coprime fac-

torizations for Pi with i = 1, 2, 3. Then for each ε > 0, there exists Q1, Q2 ∈ Q with
‖Q1‖ ≤ 1, ‖Q2‖ ≤ 1 such that

‖(D1 −D3Q1, N1 −N3Q1)
�‖ω ≤ 	d2(P1, P3) + ε,

‖(D3 −D2Q2, N3 −N2Q2)
�‖ω ≤ 	d2(P3, P2) + ε.

Since Q2Q1 ∈ Q, ‖Q2Q1‖ ≤ 1 and by using (4.1), we have

	d2(P1, P2) ≤ ‖(D1 −D2Q2Q1, N1 −N2Q2Q1)
�‖ω

≤ ‖(D1 −D3Q1, N1 −N3Q1)
� + (D3Q1 −D2Q2Q1, N3Q1 −N2Q2Q1)

�‖ω
≤ 	d2(P1, P3) + ε + ‖(D3 −D2Q2, N3 −N2Q2)

�Q1‖ω
≤ 	d2(P1, P3) + 	d2(P3, P2) + 2ε ≤ d2(P1, P3) + d2(P3, P2) + 2ε.

Since ε is arbitrary, we see that 	d2(P1, P2) ≤ d2(P1, P3)+d2(P3, P2). By changing the
order of P1, P2 on the left-hand side (they are arbitrary) and noticing that the right-

hand side is symmetric, we have 	d2(P2, P1) ≤ d2(P1, P3)+d2(P3, P2). This proves the
triangle inequality and completes the proof.
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Proposition 4.3. Suppose c > 0 and cr ≤ w(r) for all r ≥ 0. Then d3 is a
metric which is topologically equivalent to d2 on Nnor(U ,Y).

Proof. The proof for the well-definedness and the triangle inequality for d3 is
exactly the same as in Proposition 4.2.

Suppose d3(P1, P2) = 0. Hence there exists a sequence {Qn} ⊂ Q∗ satisfying

‖(D1 −D2Qn, N1 −N2Qn)�‖ω → 0 as n → ∞,(4.2)

and therefore there exists n0 > 0 such that

sup
‖u‖≤ω(r)

‖(D1 −D2Qn, N1 −N2Qn)�u‖ <
c

2
r for all r > 0, n ≥ n0.

For any u ∈ Us, let r = ‖u‖/c. Then ‖u‖ ≤ cr ≤ ω(r) and therefore,

‖(D1 −D2Qn, N1 −N2Qn)�u‖ <
c

2

‖u‖
c

=
1

2
‖u‖ for all u ∈ Us, n ≥ n0.

Since (N1, D1), (N2, D2) are normalized coprime factorizations, we see that

‖Qnu‖ = ‖(D2, N2)
�Qnu‖

≥ ‖(D1, N1)
�u‖ − ‖(D1 −D2Qn, N1 −N2Qn)�u‖

≥ ‖u‖ − 1

2
‖u‖ =

1

2
‖u‖ for all u ∈ Us, n ≥ n0.

This means that ‖Q−1
n ‖ ≤ 2 and Q−1

n is stable for all n > n0. By Proposition 2.6, for
all n > n0, (N2Qn, D2Qn) is a coprime factorization of P2. Also from (4.2), we see
that

γ((D1 −D2Qn, N1 −N2Qn)�)(r) → 0 for all r > 0, as n → ∞.

From Theorem 3.5, it follows that P2 ≡ Pn
T−→ P1 in N(U ,Y), which implies P1 = P2.

Hence d3 is a well-defined metric on Nnor(U ,Y).
To prove the equivalence between d2 and d3, we first notice that d3 ≤ d2. This

yields that convergence under d2 implies convergence under d3. On the other hand, let
Pn, P ∈ Nnor(U ,Y) with (N,D) ∈ nrcf(P ), (Nn, Dn) ∈ nrcf(Pn), and d3(Pn, P ) → 0

as n → ∞. Then 	d3(P, Pn) → 0 which means

inf
Q∈Q∗

‖(D −DnQn, N −NnQn)�‖ω → 0 as n → ∞.

This shows that for each ε ∈ (0, c/2], there exists nε > 0 such that

‖(D −DnQn, N −NnQn)�‖ω < ε for all n ≥ nε.(4.3)

Without loss of generality, we may suppose that nε1 ≤ nε2 if ε1 > ε2. By letting
ε = c/2, we see that there exists 0 < n0 ≤ nε such that for each n ≥ n0 there is
Qn ∈ Q∗ satisfying

sup
‖u‖≤ω(t)

‖(D −DnQn, N −NnQn)�u‖ ≤ c

2
r for all r > 0, n ≥ n0.

Using the same method as used in the first part (just replace (N1, D1) by (N,D) and
(N2, D2) by (Nn, Dn), respectively), we can prove that Q−1

n is stable for n ≥ n0. So
from (4.3), it follows that

	d2(P, Pn) ≤ ‖(D −DnQn, N −NnQn)�‖ω < ε for all n ≥ nε
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and therefore 	d2(P, Pn) → 0 as n → ∞. Similarly, 	d2(Pn, P ) → 0 and therefore
d2(Pn, P ) → 0 as n → ∞. This completes the proof.

Theorem 4.4. Suppose c > 0 and cr ≤ w(r) for all r ≥ 0. Then the topol-
ogy induced by either d2 or d3 is equivalent to the weighted graph topology Tω on
Nnor(U ,Y).

Proof. By Proposition 4.3, we only need to show d3(Pn, P ) → 0 if and only if

Pn
Tω−→ P , for any Pn, P ∈ Nnor(U ,Y).
First, suppose d3(Pn, P ) → 0. Then for every normalized coprime factorization

P = ND−1, Pn = NnD
−1
n , there exist Qn ∈ Q∗ such that

‖(D −DnQn, N −NnQn)�‖ω → 0 as n → ∞.(4.4)

Let (N̂ , D̂) be an arbitrary coprime factorization of P . By Proposition 2.6, there
exists stable operator Q on Us, with Q−1 also stable, such that D̂ = DQ, N̂ = NQ,
from which we see that

‖Q‖ω = ‖(D,N)�Q‖ω = ‖(D̂, N̂)�‖ω < ∞.

Write D̂n = DnQnQ, N̂n = NnQnQ. Then from (4.4), it follows that

‖(D̂ − D̂n, N̂ − N̂n)�‖ω = ‖(D −DnQn, N −NnQn)�Q‖ω
≤ ‖(D −DnQn, N −NnQn)�‖‖Q‖ω

=
1

c
‖(D −DnQn, N −NnQn)�‖ω‖Q‖ω → 0 as n → ∞.

Using the same method as used in Proposition 4.3, we can prove that (N̂n, D̂n) is
a coprime factorization of Pn for all large n. Hence from Theorem 3.9, we see that

Pn
Tω−→ P .

Secondly, suppose Pn, P ∈ Nnor(U ,Y) with Pn
Tω−→ P . Let (N,D) be a normalized

coprime factorization of P . Then there exist coprime factorizations NnD
−1
n of Pn with

‖(D −Dn, N − Nn)�‖ω → 0 as n → ∞. Therefore, {‖(Dn, Nn)�‖} is bounded and
‖(D −Dn, N −Nn)�‖ → 0. Hence

‖(Dn, Nn)�‖ → ‖(D,N)�‖ = 1 as n → ∞(4.5)

and for each ε > 0, there exists nε > 0 such that

‖(D −Dn, N −Nn)�u‖ ≤ ε‖u‖ for all u ∈ Us, n > nε.(4.6)

Let N̂nD̂
−1
n be a normalized coprime factorization of Pn. Then there exists stable

operator Un on Us, where U−1
n exists and is stable, such that Dn = D̂nUn, Nn =

N̂nUn. Since ‖Unu‖ = ‖(D̂n, N̂n)�Unu‖ = ‖(Dn, Nn)�u‖ for any u ∈ Us, we see
{‖Un‖ω} is bounded and from (4.5) it follows that

‖Un‖ = ‖(D̂n, N̂n)�Un‖ = ‖(Dn, Nn)�‖ → 1 as n → ∞.

From (4.6), it follows that for each u ∈ Us and each n > nε that

‖Unu‖ = ‖(Dn, Nn)�u‖ ≥ ‖(D,N)�u‖ − ‖(Dn −D,Nn −N)�u‖ ≥ (1 − ε)‖u‖,

which implies that ‖U−1
n u‖ ≤ 1

1−ε‖u‖ and therefore ‖U−1
n ‖ ≤ 1

1−ε . Since ‖U−1
n ‖ ≥

1/‖Un‖, we see ‖U−1
n ‖ → 1 as n → ∞.
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Let Qnu = Unu/‖Un‖ for each u ∈ Us. Then ‖Qn‖ ≤ 1 and since Q−1
n =

U−1
n · ‖Un‖ exists and is stable, we have Qn ∈ Q∗. Also

‖(D̂nUn − D̂nQn, N̂nUn − N̂nQn)�‖ω
= ‖(D̂n, N̂n)�(Un −Qn)‖ω

= ‖(Un −Qn)‖ω =
|‖Un‖ − 1|

‖Un‖
‖Un‖ω → 0,

which implies

	d3(P, Pn) ≤ ‖(D − D̂nQn, N − N̂nQn)�‖ω
≤ ‖(D − D̂nUn, N − N̂nUn)�‖ω

+ ‖(D̂nUn − D̂nQn, N̂nUn − N̂nQn)�‖ω → 0 as n → ∞.

Similarly, for Q̃nu = U−1
n u/‖U−1

n ‖, we can prove

	d3(Pn, P ) ≤ ‖(D̂n −DQ̃n, N̂n −NQ̃n)�‖ω → 0 as n → ∞.

This shows d3(Pn, P ) → 0 and completes the proof.
We remark that the first part of the proof shows, in the case cr ≤ ω(r), that

Pn
Tω−→ P in Nnor(U ,Y) if and only if there exist normalized coprime factorization

(N,D) of P and coprime factorizations (Nn, Dn) of Pn such that ‖(D − Dn, N −
Nn)�‖ω → 0 as n → ∞.

In the case of ω(r) = r and stability is taken to be in the sense of linear gain, the
above theorem shows that the graph topology induced by the linear gain is metrizable.

4.4. The gap metrics d4, d5, d6, and d7. In this subsection, we present
the metric properties of d4, . . . , d7 over the subset Nnor(U ,Y). In particular, the
equivalence between the weighted graph topology and the topologies induced by either
d5 or d6 will be established.

Using the same method as used in [7], we can prove that d4, d5 are pseudometrics
on the set of signal operators from U to Y provided ω(r) ≥ r for all r > 0. Here
pseudometric means that d4(P1, P2) = 0 (resp., d5(P1, P2) = 0) does not necessarily
imply P1 = P2 unless extra conditions are imposed. Moreover, as in [7], they are
only “generalized” pseudometrics, which means that possibly (say) d5(P1, P2) = ∞
for some P1, P2. The following comparison results show that they both become well-
defined metrics if restricted to Nnor(U ,Y) (no extra condition required).

We first give a key lemma.
Lemma 4.5. Suppose Pi ∈ Nnor(U ,Y) with (Di, Ni) ∈ nrcf(Pi), i = 1, 2. Then

there exists a mapping Φ : Graph(P1) → Graph(P2) if and only if there exists a
mapping Q : Us → Us such that

Φ

(
D1

N1

)
u =

(
D2

N2

)
Qu for all u ∈ Us.(4.7)

Moreover,
(i) Φ is surjective if and only if Q is surjective;
(ii) ‖Q‖ = ‖Φ‖ and γ(Φ)(r) = γ(Q)(r) for any r > 0 (so Φ is stable if and only

if Q is stable);
(iii) Φ is injective if and only if Q is injective;
(iv) ‖Q−1‖ = ‖Φ−1‖ =: ‖Φ−1|M2‖ and γ(Φ−1)(r) = γ(Q−1)(r) for any r > 0;
(v) Φ is causal if and only if Q is causal, and Φ0 = 0 if and only if Q0 = 0.
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Proof. Write Mi = Graph(Pi) for i = 1, 2.

Let Φ : M1 → M2 be a given mapping. Then, for any u ∈ Us, by Proposition 2.5,
Φ(D1, N1)

�u ∈ M2 and therefore there exists vu ∈ Us such that Φ(D1, N1)
�u =

(D2, N2)
�vu. Since (D2, N2)

� is left invertible, such a point vu is unique. This yields
that the mapping Qu = vu is well defined on Us and satisfies (4.7).

Conversely, let Q be a given mapping on Us. For any w ∈ M1, let Φw =
(D2, N2)

�QL1w, where L1 is the left inverse of (D1, N1)
� which is stable by the

definition of the coprime factorization. Then, obviously, Φ is a well-defined mapping
from M1 to M2 satisfying (4.7).

Now we prove the other claims.
(i) First, we suppose Φ : M1 → M2 is given and surjective. Since (D1, N1)

� :
Us → M1 is surjective, for any v ∈ Us there exists u ∈ Us with Φ(D1, N1)

�u =
(D2, N2)

�v. The left invertibility of (D2, N2)
� and (4.7) show Qu = v. Therefore, Q

is surjective.

If Q is surjective on Us, then for any w ∈ M2, the surjectivity of (D2, N2)
�

implies the existence of u ∈ Us such that (D2, N2)
�Qu = w. Hence Φ(D1, N1)

�u = w
which shows that Φ is surjective.

(ii) From (4.7), we see that

‖Qu‖ =

∥∥∥∥(D2

N2

)
Qu

∥∥∥∥ =

∥∥∥∥Φ

(
D1

N1

)
u

∥∥∥∥ for all u ∈ Us.(4.8)

Since ‖u‖ = ‖(D1, N1)
�u‖, M1 = (D1, N1)

�Us, the conclusions follow.

(iii) From (4.7) and the left invertibility of (Di, Ni)
� (i = 1, 2), it follows that

Φ is injective ⇔ Φw1 = Φw2 implies w1 = w2 for any w1, w2 ∈ M1

⇔ Φ

(
D1

N1

)
u1 = Φ

(
D1

N1

)
u2 implies u1 = u2 for any u1, u2 ∈ Us

⇔
(
D2

N2

)
Qu1 =

(
D2

N2

)
Qu2 implies u1 = u2 for any u1, u2 ∈ Us

⇔ Qu1 = Qu2 implies u1 = u2 for any u1, u2 ∈ Us

⇔ Q is injective.

(iv) Since ‖w‖ ≤ ‖Φ−1‖‖Φw‖ for any w ∈ M1, we have

‖u‖ =

∥∥∥∥(D1

N1

)
u

∥∥∥∥ ≤ ‖Φ−1‖
∥∥∥∥Φ

(
D1

N1

)
u

∥∥∥∥ = ‖Φ−1‖
∥∥∥∥(D2

N2

)
Qu

∥∥∥∥ = ‖Φ−1‖‖Qu‖

for any u ∈ Us. So ‖Q−1‖ ≤ ‖Φ−1‖. Similarly, for any w = (D1, N1)
�u ∈ M1,∥∥∥∥(D1

N1

)
u

∥∥∥∥ = ‖u‖ ≤ ‖Q−1‖‖Qu‖ = ‖Q−1‖
∥∥∥∥(D2

N2

)
Qu

∥∥∥∥ = ‖Q−1‖
∥∥∥∥Φ

(
D1

N1

)
u

∥∥∥∥
which gives the reverse inequality. Hence ‖Q−1‖ = ‖Φ−1‖.

For any r > 0, (4.8) and the surjectivity of Φ, (Di, Ni)
�, and Q yield

γ(Q−1)(r) = sup
‖Qv‖≤r

‖v‖ = sup
‖Φ(D1,N1)�v‖≤r

∥∥∥∥(D1

N1

)
v

∥∥∥∥ = sup
‖w‖≤r

‖Φ−1w‖ = γ(Φ−1)(r).
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(v) Let L1, L2 be the associated operators to (D1, N1)
�, (D2, N2)

�, respectively.
By applying L2 to (4.7), we have Qu = L2Φ(D1, N1)

�. By the definition of Φ,
Φw = (D2, N2)

�QL1. So, the conclusions follow from the preassumptions on signal
operators. This completes the proof.

Proposition 4.6.
	d5(P1, P2) = 	d6(P1, P2), 	d4(P1, P2) = 	d7(P1, P2) for Pi ∈

Nnor(U ,Y), i = 1, 2.
Proof. Let Q be a given stable bijective mapping on Us. Then there exists a

stable and bijective map Φ : M1 → M2 satisfying (4.7), for which

‖Φ − I‖ω = ‖(D1, N1)
� − (D2, N2)

�Q‖ω.(4.9)

Therefore, 	d5(P1, P2) ≤ ‖(D1, N1)
� − (D2, N2)

�Q‖ω and 	d5(P1, P2) ≤ 	d6(P1, P2) as
Q is arbitrary.

Since Φ1(D1, N1)
�u = (D2, N2)

�u is a bijective operator from M1 to M2 and
‖Φ1 − I‖ω < ∞, we have

	d5(P1, P2) = inf{‖Φ − I‖ω : Φ : M1 → M2 bijective ‖Φ − I‖ω < ∞}.

Notice that ‖Φ− I‖ω < ∞ implies the stability of Φ. So, given any bijective map Φ :
M1 → M2 with ‖Φ−I‖ω < ∞, by Lemma 4.5, there exists a stable, bijective mapping

Q on Us satisfying (4.7) and, therefore, (4.9). Hence 	d6(P1, P2) ≤ ‖Φ − I‖ω which

indicates that 	d6(P1, P2) ≤ 	d5(P1, P2). This proves that 	d6(P1, P2) = 	d5(P1, P2). The

equality 	d4(P1, P2) = 	d7(P1, P2) can be proved similarly.
Theorem 4.7. d5, d6 are well-defined metrics on Nnor(U ,Y) and the graph

topology Tω is equivalent to the topology induced by either d5 or d6, provided r ≤ ω(r)
for all r ≥ 0.

Proof. Using the same methods as in Propositions 4.2 and 4.3, we see that d6 is
well-defined and d6(P1, P2) = 0 if and only if P1 = P2 on Nnor(U ,Y). By Proposi-
tion 4.6, d5 satisfies the same property.

To prove the triangle inequality for d5, we suppose P1, P2, P3 ∈ Nnor(U ,Y) and
Φ1 : Graph(P1) → Graph(P2),Φi : Graph(P2) → Graph(P3) are bijective mappings.
Then Φ := Φ2Φ1 is a bijective mapping from Graph(P1) to Graph(P3) and Φ − I =
(Φ2 − I)Φ1 − I. So

‖Φ − I‖ω ≤ ‖Φ2 − I‖‖Φ1‖ω + ‖Φ1 − I‖ω
≤ ‖Φ2 − I‖ω‖Φ1‖ω + ‖Φ1 − I‖ω
≤ ‖Φ2 − I‖ω(‖Φ1 − I‖ω) + 1 + ‖Φ1 − I‖ω

and therefore

d̂5(P1, P3) ≤ d̂5(P1, P2) + d̂5(P2, P3).

This means that d5 satisfies the triangle inequality. Hence d5 is a well-defined metric
on Nnor(U ,Y) and so is d6 because of Proposition 4.6.

Since d6 ≤ d3 and by Theorem 4.4, the convergence of the sequence under Tω
implies the convergence under d6. Conversely, if d6(P, Pn) → 0 as n → ∞, then by
using the same method as in Theorem 4.4 (see the Theorem’s remark), we can prove

that Pn
Tω−→ P . This shows the equivalence between Tω and the topology induced by

either d6 or d5.
Proposition 4.6 and Theorem 4.7 suggest that the two metrics d3 and d6 might

be equivalent (we already know that d6 ≤ d3). In fact, Georgiou [4] has proved
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d3(P1, P2) ≤ 2d6(P1, P2) in the linear setting. In the nonlinear setting and in the case
where (D2, N2)

� is incrementally stable, are where

‖(D2, N2)
�‖� := sup

{
‖(D2, N2)

�u1 − (D2, N2)
�u2‖τ

‖u1 − u2‖τ
: τ > 0, u1, u2 ∈ Us

}
< ∞;

this claim can be proved by exactly the same technique as in [4].
Finally, we consider the relationship between d1 and d6. For (Ni, Di) ∈ rcf(Pi),

i = 1, 2, by Proposition 2.6, we have that

inf
Q∈Q

∥∥∥∥(D1

N1

)
−
(
D2

N2

)
Q

∥∥∥∥
ω

= inf
(Ñ2,D̃2)∈rcf(P2)

∥∥∥∥(D1

N1

)
−
(
D̃2

Ñ2

)∥∥∥∥
ω

≤ 	d1(P1, P2).

This gives a direct relation between d1 and d6 as below.
Proposition 4.8. For Pi ∈ Nnor(U ,Y) with (Di, Ni) ∈ nrcf(Pi), i = 1, 2,

	d1(P1, P2) ≥ 	d6(P1, P2) and therefore d1(P1, P2) ≥ d6(P1, P2).

5. Robustness of stability of nonlinear feedback systems. The importance
of graph topology in the linear case is well known. In this section, we will show that
it may also play a significant role in the nonlinear case by considering the system
described by the configuration of Figure 5.1.

u0

u1 y1

P

C y0
u2 y2

−

+

+

−

Fig. 5.1. Standard feedback configuration.

In this configuration, ui ∈ U , yi ∈ Y for i = 0, 1, 2, and both the plant P and
compensator C are, in general, causal and nonlinear. We suppose all systems in this
section are well-posed, that is, for each (u0, y0)

� ∈ Us×Ys, there exist unique signals
u1, u2 ∈ U and y1, y2 ∈ Y such that

u0 = u1 + u2, y0 = y1 + y2, y1 = Pu1, u2 = Cy2,

and the feedback operator

HP,C : Ws → W ×W :

(
u0

y0

)
�→

((
u1

y1

)
,

(
u2

y2

))
is causal. Here, Ws = Us × Ys,W = U × Y. The feedback stability of this system is
the requirement that HP,C is stable in a suitable sense. We are concerned with the
following robustness problem: when is HPλ,C stable given that HP,C is stable and Pλ

is a perturbation to P?
In [7], this problem has been studied using a gap metric. Particularly, in the case

where the linear gain is considered, it is proved that if HP,C is gain stable and Pλ

is close enough to P in the sense of gap metric, then HPλ,C is gain stable. Similar
results are also given when HP,C is (gf)-stable with superlinear growth. However, in
the (gf)-stability case, the notion of convergence was not made explicit as no topology
was indicated. In this paper, we consider the robustness of (gf)-stability when the
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convergence of Pλ to P is in the sense of any of the two graph topologies defined in
the previous sections.

We suppose Λ is a topological space and for each λ ∈ Λ, Pλ is a perturbation to the
nominal plant P = Pλ0 . Define M = Graph(P ), Mλ = Graph(Pλ), N = Graph(C),
and let ΠM//N be the parallel projection which maps (u0, y0)

� to (u1, y1)
� and

ΠN//M = I−ΠM//N . It is known that HP,C is (gf)-stable (resp., gain stable) if and
only if ΠM//N is (gf)-stable (resp., gain stable); see [7].

A signal operator F : U → Y is said to be causally extendable if, for each u ∈ U ,
y = Fu and for each τ > 0, there exists uτ ∈ Dom(F ) such that Tτ (u, y)

� = Tτ (uτ ,
yτ )

� with yτ = Fuτ . Henceforth, we suppose that P , C and each Pλ are causally
extendable.

Lemma 5.1. Suppose Φ is a surjective mapping from M to Mλ. Then, for any
z ∈ Ws and any τ > 0, there exists xτ ∈ Ws such that

Tτz = Tτxτ + Tτ (Φ − I)ΠM//NTτxτ and TτΠMλ//N z = TτΦΠM//NTτxτ .

Proof. Let HPλ,Cz = (z1, z2) with z1 = (u1, Pλu1)
�, z2 = (Cy2, y2)

� for some
u1 ∈ U , y2 ∈ Y. Then z = z1 + z2 and ΠMλ//N z = z1. By the causal extendability,
for each τ > 0, there exist zτ1 ∈ Mλ, zτ2 ∈ N such that Tτz1 = Tτz

τ
1 , Tτz2 = Tτz

τ
2 .

Since Φ is surjective from M to Mλ, there exists zτ3 ∈ M with Φzτ3 = zτ1 . Write
xτ = zτ3 + zτ2 . Then xτ ∈ Ws and ΠM//Nxτ = zτ3 , ΠN//Mxτ = zτ2 . Hence

Tτz = Tτz1 + Tτz2 = Tτz
τ
1 + Tτz

τ
2 = TτΦzτ3 + Tτz

τ
2

= TτΦΠM//Nxτ + TτΠN//Mxτ = TτΦΠM//NTτxτ + TτΠN//MTτxτ

= Tτ (Φ − I)ΠM//NTτxτ + Tτxτ

and

TτΠMλ//N z = Tτz1 = TτΦzτ3 = TτΦΠM//Nxτ = TτΦΠM//NTτxτ .

For our main results, we will always require that the nominal plant satisfies a
k-coercive condition as stated below; note that this assumption will not be imposed
on the perturbed plant Pλ.

Definition 5.2. A signal operator P : U → Y is said to be k-coercive, with
k ∈ K∞, if P has a coprime factorization (N,D) such that

‖(D,N)�u‖ ≥ k(‖u‖) for all u ∈ Us.(5.1)

Notice that P is k-coercive if and only if

‖Lw‖ ≤ k−1(‖w‖) for all w ∈ Graph(P ),(5.2)

where L is the associated operator of (N,D). Hence any operator P with coprime
factors is γ(L)−1-coercive, where L is the associated operator of a coprime factoriza-
tion, since (5.2) always holds with k−1(r) = γ(L)(r). It is of interest to observe that
a linear operator with coprime factors is always k-coercive with k(r) = cr, c > 0.
Also note that if P has a normalized coprime factorization, then P is 1-coercive and
therefore c-coercive for any c > 0.

In the case when k(r) = cr is linear, (5.2) is required by James, Smith, and
Vinnicombe [10] in their definition of (right) coprime factorization, while (5.1) is



GRAPH TOPOLOGIES, GAP METRICS, AND ROBUST STABILITY 439

required by Verma [18] in one of his definitions and exploited for the stability of
another system in the sense of linear gain.

Proposition 5.3. Suppose that the nominal plant P is k-coercive and λ �→ Pλ

is continuous at λ0 under a weighted topology Tω with w ∈ K∞. Then, for each λ,
there exists a surjective mapping Φλ : M → Mλ such that

sup
r>0

γ(I − Φλ)(k(ω(r)))

r
→ 0, as λ → λ0.(5.3)

Proof. Let ND−1 be the coprime factorization of P = Pλ0
satisfying the coercive

condition (5.1). From Corollary 3.11, it follows that Pλ has coprime factorization
NλD

−1
λ such that

sup
r>0

γ((D −Dλ, N −Nλ)�)(ω(r))

r
→ 0, as λ → λ0.(5.4)

For each λ > 0 and each u ∈ Us, let

Φλ((Du,Nu)�) = ((Dλu,Nλu)�).(5.5)

Φλ is a well-defined, causal, and surjective mapping from M to Mλ since Φλw =
((Dλ, Nλ)�Lw) with L the left inverse of (D,N)�.

Now let r > 0, (Du,Nu)� ∈ M with u ∈ Us, and ‖(Du,Nu)�‖ ≤ k(w(r)). From
(5.1), it follows that ‖u‖ ≤ w(r), which implies

‖((D −Dλ)u, (N −Nλ)u)�‖ ≤ sup
‖v‖≤w(r)

‖((D −Dλ)v, (N −Nλ)v)�‖.

Therefore

γ(I − Φλ)(k(w(r))) = sup
(Du,Nu)�∈ Dom(I−Φλ)

‖(Du,Nu)�‖≤k(w(r))

‖((D −Dλ)u, (N −Nλ)u)�‖

≤ sup
‖v‖≤w(r)

‖((D −Dλ)v, (N −Nλ)v)�‖(5.6)

= γ((D −Dλ, N −Nλ)�)(w(r)).

By (5.4), we see that (5.3) holds.

Remark. From (5.3), we see that ‖I − Φλ‖k◦ω → 0 which implies 	δ(P, Pλ) →
0 under a new weighted function ω1 = k ◦ ω. However, we cannot show whether
	δ(Pλ, P ) → 0 unless each Pλ is also k-coercive. Also notice here the l.a.c. assumption
was not imposed. So (5.3) does not imply Pλ → P under d4.

Similarly, for the pointwise continuity, we have the following proposition.
Proposition 5.4. Suppose that P is k-coercive and λ �→ Pλ is continuous at λ0

under the pointwise topology T . Then, the mapping Φλ : M → Mλ defined in (5.5)
is surjective and γ(I − Φλ)(r) → 0 for each r > 0, as λ → λ0.

Henceforth, we define the map Φλ to be as in Proposition 5.3 or 5.4 and give
robustness results under each graph topology. The following results follow as conse-
quences of Proposition 5.3 or 5.4 and the results of [7]; however, we give the entire
proofs for completeness. First, we consider the case when weighted topology is in-
volved.
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Theorem 5.5. Suppose P is k-coercive and HP,C is (gf)-stable. If λ �→ Pλ is
continuous at λ0 under a weighted topology Tω with ω ∈ K∞ and for all r > 0

γ(ΠM//N )(r) ≤ k(w(r)),(5.7)

then, for any n > 0, there exists a neighborhood Vn of λ0 such that HPλ,C is (gf)-
stable for λ ∈ Vn and

γ(ΠMλ//N )(r) ≤ γ(ΠM//N )

(
n + 1

n
r

)
+

1

n
r.

Proof. Let τ > 0, r > 0, and z ∈ W be given with ‖z‖τ ≤ r. By Proposition 5.3,
for each λ, there exists a surjective mapping Φλ : M → Mλ satisfying (5.3). From
Lemma 5.1, it follows that for each λ, there exists xτ

λ ∈ Ws such that

Tτx
τ
λ = Tτz − Tτ (Φλ − I)ΠM//NTτx

τ
λ, TτΠMλ//N z = TτΦλΠM//NTτx

τ
λ.(5.8)

By (5.3) and the properties of γ, there exists a neighborhood Vn of λ0 such that

γ(Φλ − I)(γ(ΠM//N )(‖xτ
λ‖τ ))

‖xτ
λ‖τ

≤ γ(Φλ − I)(k(w(‖xτ
λ‖τ )))

‖xτ
λ‖τ

<
1

n + 1

for all n > 0 and λ ∈ Vn. So, from (5.8), it follows that

‖xτ
λ‖τ ≤ ‖z‖τ + ‖(Φλ − I)ΠM//NTτx

τ
λ‖τ

≤ ‖z‖τ + γ(Φλ − I)(γ(ΠM//N )(‖xτ
λ‖τ ))

≤ ‖z‖τ +
1

n + 1
‖xτ

λ‖τ ,

which implies that ‖xτ
λ‖τ ≤ (n + 1)‖z‖τ/n ≤ (n + 1)r/n for all λ ∈ Vn. By (5.8), we

have

TτΠMλ//N z = TτΦλΠM//NTτx
τ
λ = TτΠM//NTτx

τ
λ + Tτ (Φλ − I)ΠM//NTτx

τ
λ

and therefore

‖ΠMλ//N z‖τ ≤ ‖ΠM//NTτx
τ
λ‖τ + ‖(Φλ − I)ΠM//NTτx

τ
λ‖τ

≤ γ(ΠM//N )

(
n + 1

n
r

)
+

1

n + 1
‖xλ‖τ ≤ γ(ΠM//N )

(
n + 1

n
r

)
+

1

n
r.

Since τ is arbitrary, γ(ΠMλ//N )(r) ≤ γ(ΠM//N )(n+1
n r)r+ 1

nr < ∞ for λ ∈ V0.
We remark that condition (5.7) can be replaced by the weaker condition

γ(ΠM//N )(r) ≤ k(cw(r)) with c > 0

since P is also kc-coercive due to the remark made after Definition 5.2. This claim
is also supported by Theorem 3.12 from which we see that λ �→ Pλ is also continuous
at λ0 under a weighted topology Tcω, so the ω in (5.7) can be replaced by cω. This
replacement gives a weaker bound for γ(ΠM//N )(r).

In the case of the pointwise topology, we have the following theorem.
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Theorem 5.6. Suppose that P is k-coercive, HP,C is (gf)-stable and λ �→ Pλ is
continuous at λ0 under the pointwise topology T . If, for each λ, Tτ (Φλ− I)ΠM//N is
continuous and compact as a mapping from any subset Sr = {w ∈ W : supτ>0 ‖w‖τ ≤
r} to W, then for each r > 0, there exists a neighborhood Vr of λ0 in Λ such that
γ(HPλ,C)(r) < ∞ for all λ ∈ Vr. Here Φλ is defined as in (5.5).

Proof. Let r > 0 and w ∈ W be given with ‖w‖τ ≤ r. Consider the operator

Aλ : Aλx = w + (Φλ − I)ΠM//Nx, x ∈ W.

Since HP,C is stable, γ(ΠM//N )(k) < ∞ for all k > 0. Using Proposition 5.3, we see
there exists a neighborhood Vr of λ0 such that

‖(Φλ − I)ΠM//Nx‖τ ≤ γ(Φλ − I)(γ(ΠM//N )(2r)) < r(5.9)

for all x ∈ S2r and λ ∈ Vr. This implies that ‖Aλx‖τ < ‖w‖τ +r < 2r for all x ∈ S2r.
Due to our assumption, we may suppose that Aλ is continuous and compact on S2r.
From Schauder’s fixed point theorem, it follows that there exists xλ ∈ S2r such that

xλ = w + (Φλ − I)ΠM//Nxn for λ ∈ Vr,

i.e.,

w = ΠN//Mxλ + ΦλΠM//Nxλ.

Since ΠN//Mxλ ∈ N , ΦλΠM//Nxλ ∈ Mλ, and the perturbed system is well-posed,
we have

ΠMλ//Nw = ΦλΠM//Nxλ = ΠM//Nxλ + (Φλ − I)ΠM//Nxλ

and therefore

‖ΠMλ//Nw‖τ = ‖ΠM//Nxλ‖τ + ‖(Φλ − I)ΠM//Nxλ‖τ
≤ γ(ΠM//N )(2r) + γ(Φλ − I)(γ(ΠM//N )(2r))

≤ γ(ΠM//N )(2r) + r.

Hence γ(ΠMλ//N )(r) ≤ γ(ΠM//N )(2r) + r < ∞ for λ ∈ Vr.
With the technical assumption of compactness of Tτ (Φλ − I)ΠM//N , this result

states the boundedness of HPλ,C(u0, y0)
� for ‖(u0, y0)

�‖ ≤ r and λ sufficiently close
to λ0. Obviously, if the neighborhood Vr for (5.9) is independent of r, that is, if

γ(Φλ − I)(γ(ΠM//N )(2r)) < r for all λ sufficiently close to λ0

hold for all (large) r, then HPλ,C would be (gf)-stable.

6. Conclusions. The main contributions of this paper are as follows. Natural
generalizations of the graph topology w.r.t. a gain function notion of stability for
nonlinear systems in a general normed signal space setting were defined. Convergence
in the graph topology was shown to have a natural application in robust stability
results. Various metrizations of the graph topologies were given; in particular it
was shown that the generalizations of the gap metric given by [7] and the natural
generalization of the graph metric both induce the graph topology when the stability
notion is that of an (unweighted) induced gain, subject to certain assumptions on
local asymptotic completeness and the existence of normalized coprime factorizations.
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Weaker results have been derived for the more general cases (including the weighted
case). Georgiou-type formulae [4] have been derived and are shown to be equivalent
to other alternative formulations of the gap metric.

There are many directions for future work. An important topic is the extension
of the above results to the ν-gap setting; in particular, the investigation of a coprime
factor characterization of the underlying induced topology of the nonlinear gener-
alizations of the ν-gap. A more fundamental area for future research concerns the
investigation of the continuity of the closed loop response w.r.t. gap perturbations
to the loop, probably involving greater regularity assumptions [7]. A final area of
worthy future study concerns the explicit study of the numerical computation of the
gap, possibly based on the Georgiou-type formulae, but with additional regularity
assumptions on the minimizer Q, perhaps allowed by greater regularity assumptions
on P and C. In this regard, nonlinear generalizations of the commutant lifting theory
may be the appropriate tool.
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CONSTRAINED STOCHASTIC LQ CONTROL WITH RANDOM
COEFFICIENTS, AND APPLICATION TO PORTFOLIO SELECTION∗
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Abstract. This paper is devoted to the study of a stochastic linear-quadratic (LQ) optimal
control problem where the control variable is constrained in a cone, and all the coefficients of the
problem are random processes. Employing Tanaka’s formula, optimal control and optimal cost are
explicitly obtained via solutions to two extended stochastic Riccati equations (ESREs). The ESREs,
introduced for the first time in this paper, are highly nonlinear backward stochastic differential
equations (BSDEs), whose solvability is proved based on a truncation function technique and Koby-
lanski’s results. The general results obtained are then applied to a mean-variance portfolio selection
problem for a financial market with random appreciation and volatility rates, and with short-selling
prohibited. Feasibility of the problem is characterized, and efficient portfolios and efficient frontier
are presented in closed forms.

Key words. stochastic LQ control, extended stochastic Riccati equation, backward stochastic
differential equation, mean-variance portfolio selection, efficient portfolio, efficient frontier
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1. Introduction. Linear-quadratic (LQ) optimal control is a problem where the
system dynamics are linear in state and control variables and the cost functional is
quadratic in the two variables. It is a classical yet fundamental problem in control
theory, pioneered by Kalman [11] (for deterministic control). Extension to stochastic
LQ control was first carried out by Wonham [25]. Bismut [3] performed a detailed
analysis for stochastic LQ control with random coefficients. With the joint effort of
many researchers in the last 40 years, there has been an enormously rich theory on
LQ control, deterministic and stochastic alike. Recently, starting with Chen, Li, and
Zhou [6], there has been emerging interest in the so-called indefinite stochastic LQ
control, where, quite contrary to the conventional belief, the cost weighting matrices
are allowed to be indefinite; see [7, 8, 1, 26]. This new theory turns out to be useful
in solving the continuous-time version of Markowitz’s Nobel-winning mean-variance
portfolio selection model; see [28, 14, 16, 18, 13, 17]. For systematic accounts of the
deterministic and stochastic LQ theory, refer to [2] and [27], respectively.

One of the elegant features of the LQ theory is that it is able to give in explicit
forms the optimal state feedback control and the optimal cost value through the
celebrated Riccati equation; hence the LQ control problem is completely solved. What
essentially enables this closed-form solution, besides the special LQ structure, is that
the control is not constrained. Specifically, since the control is unconstrained, the
feedback control constructed via the Riccati equation is automatically admissible.
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If, on the other hand, there are pointwise control constraints, then the whole LQ
approach would collapse.

One should acknowledge that LQ control with control constraints is a well-posed
problem which is important in both theory and applications. For example, in many
real applications the control variable is required to take only nonnegative values.
The mean-variance portfolio selection problem with no-shorting constraint, which
is to be tackled in this paper, is exactly one of such problems. There were some
attempts in attacking the deterministic LQ problems with positive controls; see for
example [23, 5, 9]. In these works, however, only some implicit necessary and sufficient
conditions for optimality were derived and some numerical schemes suggested, and
the special LQ structure was not fully taken advantage of and no explicit result was
obtained. On the other hand, to our best knowledge research on pointwise constrained
stochastic LQ control has been completely absent in the literature.

The main purpose of this paper is to tackle a stochastic LQ control problem where
the control variable is constrained in a cone (which, certainly, includes the nonnega-
tive orthant in a Euclidean space as a special case), and all the coefficient matrices of
the model are random. Moreover, the problem is allowed to be “singular” in the sense
that the control weighting matrix in the cost functional is possibly singular. However,
we are able to treat only the case when the state variable is scalar-valued, although it
is sufficient to cover many meaningful practical applications, in particular in financial
area where the one-dimensional wealth process is typically taken as the state. We aim
to obtain explicit solutions comparable to the classical unconstrained-control coun-
terpart. To this end, we introduce two equations termed extended stochastic Riccati
equations (ESREs). These two equations are highly nonlinear backward stochastic
differential equations (BSDEs), the solvability of which is interesting in its own right.
Based on a truncation function technique and a delicate result of Kobylanski [12], we
are able to prove the existence of solutions to the introduced ESREs. Then, applying
Tanaka’s formula and going through some detailed analysis, we obtain explicit opti-
mal feedback control as well as the optimal cost value in terms of the solutions to the
two ESREs.

The other purpose of the paper is to solve the continuous-time mean-variance
portfolio selection model with short selling prohibition and random market parame-
ters. Indeed, this is the very problem that motivated us to tackle the general con-
strained stochastic LQ problem. Notice that a mean-portfolio selection model with
no-shorting was solved in [16] using Hamilton–Jacobi–Bellman equation and viscosity
solution theory; however, among other additional assumptions all the market parame-
ters are assumed to be deterministic in [16]. The partial differential equation approach
there does not extend to the current case with random parameters. To overcome this
difficulty, we reformulate the problem so that it falls exactly into the general con-
strained LQ problem that has been solved. Hence, by applying the general results
obtained we are able to solve the portfolio selection problem, once again, explicitly
and completely.

There are a large number of papers devoted to applying stochastic control theory
for mean-variance efficient/hedging portfolio selection models; see, to name a few
recent ones, [14, 21, 13, 18, 17, 22, 4]. While some of these works are on more
general asset price models (such as semimartingale ones) and/or markets (including
incomplete markets), none of them deal with directly constrained portfolios. As a
result, the value functions there remain quadratic, which is no longer the case, as will
be demonstrated in this paper, with the conic constrained portfolios.
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The rest of the paper is organized as follows. In section 2 we formulate the con-
strained stochastic LQ model, and in section 3 we present some mathematical prelim-
inaries including Tanaka’s formula and the introduction of the two ESREs. Section 4
is devoted to the solvability of the ESREs in two common cases. Section 5 gives the
solution to the LQ problem. Application of the general results to a mean-variance
portfolio selection problem is presented in section 6. Finally, section 7 concludes the
paper with some remarks.

2. Problem formulation. We assume throughout that (Ω, F , {Ft}t≥0, P ) is a
given complete, filtered probability space and that W (·) is a k-dimensional standard
Brownian motion on this space with W (0) = 0. In addition, we assume that Ft is the
augmentation of σ{W (s) 0 ≤ s ≤ t} by all the P -null sets of F . When no confusion
would occur, we leave out P -a.s. for a statement that holds almost surely with respect
to P .

Throughout this paper, we denote by Rm the set of m-dimensional column vec-
tors, by Rm

+ the set of m-dimensional column vectors whose components are non-
negative, by Rm×n the set of m × n real matrices, and by Sn the set of symmet-
ric n × n real matrices. Therefore, Rm ≡ Rm×1. If M = (mij) ∈ Rm×n, we

denote its transpose by M ′, and its norm by |M | =
√∑

i,j m
2
ij . If M ∈ Sn is

positive (positive semi-) definite, we write M > (≥) 0. Suppose η : Ω → Rn is a
G-measurable random variable. We write η ∈ L2

G(Ω; Rn) if η is square integrable
(i.e., E|η|2 < ∞), and η ∈ L∞

G (Ω; Rn) if η is uniformly bounded. Consider now
the case when f : [0, T ] × Ω → Rn is an {Ft}t≥0-adapted process. If f(·) is square

integrable (i.e., E
∫ T

0
|f(t)|2 dt < ∞) we shall write f(·) ∈ L2

F (0, T ; Rn); if f(·) is
uniformly bounded (i.e., ess sup(t,ω)∈[0,T ]×Ω |f(t)| < ∞), then f(·) ∈ L∞

F (0, T ; Rn).

If f(·) has (P -a.s.) continuous sample paths and E supt∈[0, T ] |f(t)|2 < ∞ we write

f(·) ∈ L2
F (Ω; C(0, T ; Rn)). These definitions generalize in the obvious way to the

case when f(·) is Rn×m- or Sn-valued. In addition, we say that N ∈ L2
F (0, T ; Sn) is

positive (positive semi-) definite, which is sometimes denoted simply by N > (≥) 0,
if N(t, ω) > (≥) 0 for a.e. t ∈ [0, T ] and P -a.s., and say that N is uniformly posi-
tive definite if N ≥ cIn for a.e. t ∈ [0, T ] and P -a.s. with some given deterministic
constant c > 0, where In is the n-dimensional identity matrix.

Finally, for any real number we define x+ := max{x, 0} and x− := max{−x, 0}.
Consider the following linear stochastic differential equation (SDE):

{
dx(t) = [A(t)x(t) + B(t)u(t)] dt + [x(t)C(t)′ + u(t)′D(t)′] dW (t), t ∈ [0, T ],

x(0) = x0,

(2.1)

where A, B, C, and D are {Ft}t≥0-adapted processes (possibly matrix-valued), and
x0 ∈ R is a nonrandom scalar. Precise assumptions on these data will be specified
below. Let Γ ⊂ Rm be a given closed cone; i.e., Γ is closed, and if u ∈ Γ, then αu ∈ Γ
∀α ≥ 0. Typical examples of such a cone are Γ = Rm

+ , Γ = {u ∈ Rm Mu ≤ 0}, and
Γ = {u ∈ Rm Mu = 0}, where M ∈ Rn×m. The class of admissible controls is the
set

U :=
{
u(·) ∈ L2

F (0, T ; Rm) u(t) ∈ Γ, P − a.s., a.e. t ∈ [0, T ], and (2.1) has a

unique solution under u(·)
}
.
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If u(·) ∈ U and x(·) is the associated solution of (2.1), then we refer to (x(·), u(·)) as
an admissible pair.

Suppose that the cost functional is given by

J(x0, u(·)) := E
{∫ T

0

[
Q(t)x(t)2 + u(t)′R(t)u(t)

]
dt + Gx(T )2

}
.(2.2)

Throughout this paper, we shall assume the following:
Assumption (A1): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A, Q ∈ L∞
F (0, T ; R),

B ∈ L∞
F (0, T ; R1×m),

C ∈ L∞
F (0, T ; Rk),

D ∈ L∞
F (0, T ; Rk×m),

R ∈ L∞
F (0, T ; Sm),

G ∈ L∞
FT

(Ω; R).

Note that all the parameters involved may be random. Also, by standard SDE theory,
(2.1) admits a unique solution x(·) ∈ L2

F (Ω; C(0, T ; R)) for any u(·) ∈ L2
F (0, T ; Rm)

under Assumption (A1). The stochastic LQ problem associated with (2.1)–(2.2) is as
follows: {

Minimize J(x0, u(·)),
subject to (x(·), u(·)) admissible for (2.1).

(2.3)

The problem (2.3) is said to be finite (w.r.t. x0) if there exists some finite constant
K ∈ R such that

J(x0, u(·)) ≥ K ∀u(·) ∈ U ,

and solvable (w.r.t. x0) if there exists a control u∗(·) ∈ U such that

J(x0, u
∗(·)) ≤ J(x0, u(·)) ∀u(·) ∈ U .

In this case, the control u∗(·) is referred to as the optimal control (w.r.t. x0). We say
that (2.3) is uniquely solvable if it is solvable and the optimal control is unique. Note
that a finite LQ problem is not necessarily solvable.

3. Preliminaries. In this section we present some mathematical preliminaries
required in what follows, including in particular Tanaka’s formula which plays a crit-
ical technical role in the subsequent analysis.

Lemma 3.1 (Tanaka’s formula). Let X(t) be a continuous semimartingale. Then

dX+(t) = 1(X(t)>0)dX(t) + 1
2dL(t),

dX−(t) = −1(X(t)≤0)dX(t) + 1
2dL(t),

(3.1)

where L(·) is an increasing continuous process, called the local time of X(·) at 0,
satisfying ∫ t

0

|X(s)|dL(s) = 0, P − a.s..(3.2)

Proof. See, for example, [24, Chapter VI, Theorem 1.2, and Proposition 1.3].
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Next, define the following mappings:

H+(t, ω, v, P,Λ) := v′[R(t, ω) + PD(t, ω)′D(t, ω)]v
+2v′[B(t, ω)′P + D(t, ω)′PC(t, ω) + D(t, ω)′Λ],

H−(t, ω, v, P,Λ) := v′[R(t, ω) + PD(t, ω)′D(t, ω)]v
−2v′[B(t, ω)′P + D(t, ω)′PC(t, ω) + D(t, ω)′Λ],

(t, ω, v, P,Λ) ∈ [0, T ] × Ω × Rm × R × Rk,

(3.3)

and

H∗
+(t, ω, P,Λ) := infv∈Γ H+(t, ω, v, P,Λ),

H∗
−(t, ω, P,Λ) := infv∈Γ H−(t, ω, v, P,Λ), (t, ω, P,Λ) ∈ [0, T ] × Ω × R × Rk.

(3.4)

Remark 3.1. H∗
+(t, ω, P,Λ) and H∗

−(t, ω, P,Λ) have finite values if R(t, ω) +
PD(t, ω)′D(t, ω) > 0. Indeed, in this case, there exist C1(t, ω, P,Λ) > 0, C2(t, ω, P,Λ) >
0 such that

H+(t, ω, v, P,Λ) ≥ C1|v|2 − C2|v| = C1|v|
(
|v| − C2

C1

)
.

If |v| > C2

C1
, then H+ > 0. Recall that 0 ∈ Γ, hence infv∈Γ H+(t, ω, v, P,Λ) ≤ 0. These

facts imply that

H∗
+(t, ω, P,Λ) = inf

v∈Γ,|v|≤C2
C1

H+(t, ω, v, P,Λ) ≥ min
|v|≤C2

C1

H+(t, ω, v, P,Λ) > −∞.

Hence, infv∈Γ H+(t, ω, v, P,Λ) is finite. The same is true for H−.

Now we introduce the following two nonlinear backward stochastic differential
equations—BSDEs (the arguments t and ω are suppressed):

⎧⎪⎨⎪⎩
dP+ = −

{
(2A + C ′C)P+ + 2C ′Λ+ + Q + H∗

+(P+,Λ+)
}
dt + Λ′

+dW, t ∈ [0, T ],

P+(T ) = G,
R + P+D

′D > 0,

(3.5)

⎧⎪⎨⎪⎩
dP− = −

{
(2A + C ′C)P− + 2C ′Λ− + Q + H∗

−(P−,Λ−)
}
dt + Λ′

−dW, t ∈ [0, T ],

P−(T ) = G,
R + P−D

′D > 0.

(3.6)

The equations (3.5) and (3.6) are referred to as the ESREs. The following gives a
precise definition of their solutions.

Definition 3.1. A stochastic process (P+,Λ+) ∈ L2
F (Ω; C(0, T ; R))×L2

F (0, T ; Rk)
is called a solution to the ESRE (3.5) if it satisfies the first equation of (3.5) in the
Itô sense as well as the second (the terminal condition) and third (the positive def-
initeness) constraints of (3.5). A solution (P+,Λ+) of (3.5) is called bounded if
P+ ∈ L∞

F (0, T ; R), called positive (respectively, nonnegative) if P+(t) > 0 (respec-
tively, P+(t) ≥ 0) ∀ t ∈ [0, T ] and P -a.s., and called uniformly positive if P+(t) ≥ c
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∀ t ∈ [0, T ] and P -a.s. with some deterministic constant c > 0. Similar terms can be
defined for the other ESRE (3.6).

4. Existence of solution to the ESREs. As the existence of a solution to the
ESREs (3.5) and (3.6) is essential to solving the underlying stochastic LQ problem,
we devote this section to this issue. Note that the existence problem is interesting in
its own right from BSDE point of view, for both (3.5) and (3.6) are nonlinear BSDEs
that do not satisfy the standard assumptions for existence.

We will deal with the following two cases.

Standard case. Q ≥ 0, R > 0 with R−1 ∈ L∞
F (0, T ; Rm×m), and G ≥ 0.

Singular case. Q ≥ 0, R ≥ 0, G > 0 with G−1 ∈ L∞
F (0, T ; R), and D′D > 0 with

(D′D)−1 ∈ L∞
F (0, T ; Rm×m).

4.1. Standard case. In this subsection we solve the standard case.

Theorem 4.1. For the standard case, there exists a bounded, nonnegative solu-
tion (P+,Λ+) (respectively, (P−,Λ−)) to the ESRE (3.5) (respectively, (3.6)).

Proof. Let us first consider the following BSDE:{
dP1 = −

{
(2A + C ′C)P1 + 2C ′Λ1 + Q

}
dt + Λ′

1dW, t ∈ [0, T ],

P1(T ) = G.
(4.1)

This is a linear BSDE with bounded coefficients (by virtue of Assumption (A1)), and
with Q ≥ 0 and G ≥ 0. Hence there exists a unique, nonnegative bounded solution
(P1,Λ1). Denote by c1 > 0 an upper bound of P1. Now, consider the following BSDE:{

dP = −F1(t, P,Λ)dt + Λ′dW, t ∈ [0, T ],
P (T ) = G,

(4.2)

where the function F1 is defined by

F1(t, ω, P,Λ) := [2A(t, ω) + C(t, ω)′C(t, ω)]P + 2C(t, ω)′Λ + Q(t, ω)
+H∗

+(t, ω, P+,Λ)g1(P
+), (t, ω, P,Λ) ∈ [0, T ] × Ω × R × Rk

(recall that P+ denotes the positive part of P ), whereas g1 : R+ → [0, 1] is a
smooth truncation function satisfying g1(x) = 1 for x ∈ [0, c1], and g1(x) = 0 for
x ∈ [2c1,+∞).

The function F1 is continuous in (P,Λ). To see this, for a given n ∈ N (the set of
positive integers), if |P | ≤ n, |Λ| ≤ n, then by the assumption on R there exist two
constants C1 > 0 and C2(n) > 0, such that

H+(t, v, P+,Λ) ≥ C1|v|2 − C2(n)|v|.

Thus, for |P | ≤ n, |Λ| ≤ n, the argument in Remark 3.1 results in

H∗
+(t, P+,Λ) = min

v∈Γ,|v|≤C2(n)
C1

H+(t, v, P+,Λ).

This implies that F1 is continuous in (P,Λ).

On the other hand, there exists a C2 > 0 such that

H+(t, v, P+,Λ) ≥ C1|v|2 − C2(P
+ + |Λ|)|v|,
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which yields

0 ≥ H∗
+(t, P+,Λ) ≥ −C2

2 (P+ + |Λ|)2
4C1

.

Hence, F1 satisfies the hypothesis (H1) of Kobylanski [12] noting the role of the
truncation function g1. According to [12, Theorem 2.3], there is a bounded, maximal
solution (see [12, p. 565] for its definition) (P+,Λ+) to the BSDE (4.2). Now, as
H∗

+(t, P,Λ) ≤ 0 and (P1,Λ1) is the only, hence maximal, bounded solution to (4.1), we

get P+ ≤ P1 ≤ c1. Furthermore, G ≥ 0 and Q ≥ 0 and H∗
+(t, P+,Λ) ≥ −C2

2 (P++|Λ|)2
4C1

implies P+ ≥ 0, using the facts that (P+,Λ+) is the bounded, maximal solution
to (4.2) and that (0,0) is an obvious solution to (4.2) with G = 0, Q = 0, and

H∗
+(t, P+,Λ)g1(P

+) replaced by −C2
2 (P++|Λ|)2

4C1
g1(P

+). This proves that (P+,Λ+) is

a bounded nonnegative solution of the ESRE (3.5). The same argument concludes
also the existence of a solution to the ESRE (3.6).

4.2. Singular case. The singular case is the one that will be used in the financial
application in the second half of the paper.

Theorem 4.2. For the singular case, there exists a bounded, uniformly positive
solution (P+,Λ+) (respectively, (P−,Λ−)) to the ESRE (3.5) (respectively, (3.6)).

Proof. Let us first consider the following BSDE (the argument t is suppressed):⎧⎨⎩
dP2 = −[(2A + C ′C)P2 + 2C ′Λ2 + H∗(P2,Λ2)]dt + Λ′

2dW, t ∈ [0, T ],
P2(T ) = G,
P2 > 0,

(4.3)

where

H∗(t, P,Λ) := −[PB + (C ′P + Λ′)D]P−1(D′D)−1[B′P + D′(PC + Λ)].

This is a BSDE studied independently in [13] and [10], using different approaches.
The existence of its solution was proved in [13] with a rather involved proof, and was
proved in [10] with a short proof, nonetheless, for the case k = m. For completeness,
we will prove the existence of a solution to this BSDE using a simpler method in the
lemma following the end of the proof of this theorem. By this lemma, there exists
a unique bounded, uniformly positive solution (P2,Λ2). In particular, there exists a
constant c2 > 0 such that P2(t) ≥ c2 ∀t ∈ [0, T ], P -a.s..

Now, let us consider the following BSDE:{
dP = −F2(t, P,Λ)dt + Λ′dW, t ∈ [0, T ],
P (T ) = G,

(4.4)

where

F2(t, ω, P,Λ) := [2A(t, ω) + C(t, ω)′C(t, ω)]P + 2C(t, ω)′Λ + Q(t, ω)
+H∗

+(t, ω, P,Λ)g2(P
+), (t, ω, P,Λ) ∈ [0, T ] × Ω × R × Rk

with g2 : R+ → [0, 1] being another smooth truncation function satisfying g2(x) =
0 for x ∈ [0, 1

2c2], and g2(x) = 1 for x ∈ [c2,+∞). As with the proof for the
standard case we can show that the function F2 is continuous in (P,Λ) and satisfies
the assumption of [12]. Thus, there exists a bounded, maximal solution of the BSDE
(4.4), denoted as (P+,Λ+).
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Notice the following inequality:

H∗
+(t, P,Λ) ≥ infv∈Rm H+(t, v, P,Λ)

≥ infv∈Rm {v′PD(t)′D(t)v + 2v′[B(t)′P + D(t)′PC(t) + D(t)′Λ]}
= H∗(t, P,Λ).

Hence, noting Q ≥ 0, the maximal solution argument gives

P+(t) ≥ P2(t) ≥ c2, ∀t ∈ [0, T ].

This implies that (P+,Λ+) is actually a bounded, uniformly positive solution of the
ESRE (3.5). The same argument also leads to the existence of a solution to the ESRE
(3.6).

Lemma 4.1. Equation (4.3) has a bounded, uniformly positive solution (P2,Λ2).
Proof. Set

α := 2A + C ′C − (B + C ′D)(D′D)−1(B′ + D′C), β := 2C − 2D(D′D)−1(B′ + D′C).

Then, (4.3) can be rewritten as⎧⎨⎩
dP2 = −[αP2 + β′Λ2 − 1

P2
Λ′

2D(D′D)−1D′Λ2]dt + Λ′
2dW, t ∈ [0, T ],

P2(T ) = G,
P2 > 0.

(4.5)

Let c3 > 0 and c4 > 0 be two constants satisfying G ≥ c3 and |α| ≤ c4, and set

c2 := c3e
−c4T .

Now, consider the following BSDE:{
dP = −[αP+ + β′Λ − 1

P Λ′D(D′D)−1D′Λg2(P )]dt + Λ′dW, t ∈ [0, T ],
P (T ) = G,

(4.6)

where g2 is the truncation function defined in the proof of Theorem 4.2 corresponding
to the constant c2. According again to [12, Theorem 2.3], there exists a bounded,
maximal solution to this BSDE denoted as (P2,Λ2).

Finally, the following BSDE:

{
dP = −[−c4P

+ + β′Λ − 1
P Λ′D(D′D)−1D′Λg2(P )]dt + Λ′dW, t ∈ [0, T ],

P (T ) = c3,

(4.7)

has an obvious solution (c3e
−c4(T−t), 0). As (P2,Λ2) is a maximal solution to (4.6),

we deduce that P2(t) ≥ c3e
−c4(T−t) ≥ c3e

−c4T = c2. This implies that (P2,Λ2) is also
a bounded, uniformly positive solution to (4.5), hence to (4.3).

Remark 4.1. When there is no control constraint, i.e., when Γ = Rm, then

H∗
+(t, P,Λ) = H∗

−(t, P,Λ) = −[PB + (C ′P + Λ′)D](R + PD′D)−1[B′P + D′(PC + Λ)],

provided R + PD′D > 0. Hence both ESREs (3.5) and (3.6) reduce to the normal
stochastic Riccati equation
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dP = −
{

(2A + C ′C)P + 2C ′Λ + Q

− [PB + (C ′P + Λ′)D](R + PD′D)−1[B′P + D′(PC + Λ)]
}
dt

+ Λ′dW, t ∈ [0, T ],
P (T ) = G,
R + PD′D > 0.

(4.8)

The above equation has been studied in great detail in [13, 10]. Moreover, in [10] the
case when R is possibly indefinite was investigated.

Remark 4.2. The uniqueness of solutions to (3.5) and (3.6) will be proved in
the next section, interestingly, as a direct consequence of the solution to the LQ
problem. It should be noted that in [12], the uniqueness of solutions is proved under
the additional assumption that the generator (i.e., the drift coefficient) is differentiable
which is not satisfied here.

5. Solution to the LQ problem. In this section we give explicit solution to
the LQ problem (2.1)–(2.2) in terms of the solutions to the two ESREs, for both the
standard and singular cases defined in the previous section.

First, when R + PD′D > 0, define

ξ+(t, ω, P,Λ) := argminv∈ΓH+(t, ω, v, P,Λ),
ξ−(t, ω, P,Λ) := argminv∈ΓH−(t, ω, v, P,Λ), (t, ω, P,Λ) ∈ [0, T ] × Ω × R × Rk.

(5.1)

Note that the minimizers above are achievable due to a similar argument in Remark 3.1
and the assumption that Γ is closed.

Theorem 5.1. In both the standard and singular cases, let (P+, Λ+)
∈ L2

F (Ω; C(0, T ; R))×L2
F (0, T ; Rk) and (P−, Λ−) ∈ L2

F (Ω; C(0, T ; R))×L2
F (0, T ; Rk)

be bounded, nonnegative (in the standard case) or bounded, uniformly positive (in the
singular case) solutions to the ESREs (3.5) and (3.6), respectively. Then the state
feedback control,

u∗(t) = ξ+(t, P+(t),Λ+(t))x+(t) + ξ−(t, P−(t),Λ−(t))x−(t),(5.2)

is optimal for the problem (2.1)–(2.2). Moreover, in this case the optimal cost is

J∗(x0) := inf
u(·)∈U

J(x0, u(·)) = P+(0)(x+
0 )2 + P−(0)(x−

0 )2.(5.3)

Proof. First note that Theorems 4.1 and 4.2 ensure that (3.5) and (3.6) admit
bounded, nonnegative (in the standard case) or bounded, uniformly positive (in the
singular case) solutions (P+, Λ+) ∈ L2

F (Ω; C(0, T ; R))×L2
F (0, T ; Rk) and (P−, Λ−) ∈

L2
F (Ω; C(0, T ; R))×L2

F (0, T ; Rk), respectively. Let x(·) be the solution of (2.1) under
an arbitrary given admissible control u(·). By Tanaka’s formula (Lemma 3.1), we
obtain

dx+(t) = 1(x(t)>0)[A(t)x(t) + B(t)u(t)]dt + 1(x(t)>0)[x(t)C(t)′ + u(t)′D(t)′]dW (t)

+
1

2
dL(t),

(5.4)

where L(·) is the local time of x(·) at 0 as specified in Lemma 3.1. Applying Ito’s
formula to the above, we get



CONSTRAINED STOCHASTIC LQ CONTROL AND APPLICATION 453

dx+(t)2

= 2x+(t)
{

1(x(t)>0)[A(t)x(t) + B(t)u(t)]dt + 1(x(t)>0)[x(t)C(t)′ + u(t)′D(t)′]dW (t)

+ 1
2dL(t)

}
+ 1(x(t)>0)[x(t)C(t)′ + u(t)′D(t)′][C(t)x(t) + D(t)u(t)]dt

=
{

2A(t)x+(t)2 + 2u(t)′B(t)′x+(t) + 1(x(t)>0)[x(t)C(t)′ + u(t)′D(t)′][C(t)x(t)

+D(t)u(t)]
}
dt + 2x+(t)[x(t)C(t)′ + u(t)′D(t)′]dW (t),

(5.5)

where we have used the fact that x+(t)dL(t) = 0 by virtue of (3.2). Using Ito’s
formula again to (3.5) and (5.5), and writing

Θ+(t) := −
{
[2A(t) + C(t)′C(t)]P+(t) + 2C(t)′Λ+(t) + Q(t) + H∗

+(t, P+(t),Λ+(t))
}
,

(5.6)

we have (after some reorganization)

d[P+(t)x+(t)2]

=
{
u(t)′[1(x(t)>0)P+(t)D(t)′D(t)]u(t) + 2u(t)′[P+(t)B(t)′ + P+(t)D(t)′C(t)

+D(t)′Λ+(t)]x+(t)

+[Θ+(t) + (2A(t) + C(t)′C(t))P+(t) + 2C(t)′Λ+(t)]x+(t)2
}
dt

+
{

2P+(t)x+(t)[x(t)C(t)′ + u(t)′D(t)′] + x+(t)2Λ+(t)′
}
dW (t).

(5.7)

Similarly, we can derive

d[P−(t)x−(t)2]

=
{
u(t)′[1(x(t)≤0)P−(t)D(t)′D(t)]u(t) − 2u(t)′[P−(t)B(t)′ + P−(t)D(t)′C(t)

+D(t)′Λ−(t)]x−(t)

+[Θ−(t) + (2A(t) + C(t)′C(t))P−(t) + 2C(t)′Λ−(t)]x−(t)2
}
dt

+
{
−2P−(t)x−(t)[x(t)C(t)′ + u(t)′D(t)′] + x−(t)2Λ−(t)′

}
dW (t),

(5.8)

where

Θ−(t) := −
{
[2A(t) + C(t)′C(t)]P−(t) + 2C(t)′Λ−(t) + Q(t) + H∗

−(t, P−(t),Λ−(t))
}
.

(5.9)

Next, we define, for n ≥ 1, the following stopping time τn:

τn := inf
{
t ≥ 0

∫ t

0

{
|2P+(s)x+(s)[x(s)C(s)′ + u(s)′D(s)′] + x+(s)2Λ+(s)′|2

}
ds

+
∫ t

0

{
| − 2P−(s)x−(s)[x(s)C(s)′ + u(s)′D(s)′] + x−(s)2Λ−(s)′|2

}
ds ≥ n

}
∧ T,

(5.10)

where inf ∅ := T . Obviously, τn, n ≥ 1, is an increasing sequence of stopping times
converging to T almost surely.
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Summing (5.7) and (5.8), taking integration from 0 to τn, and then taking expec-
tation, we have (t is suppressed)

E
{
P+(τn)x+(τn)2 + P−(τn)x−(τn)2

}
+ E

{∫ τn

0

[Q(t)x(t)2 + u(t)′R(t)u(t)]dt
}

= P+(0)(x+
0 )2 + P−(0)(x−

0 )2

+E

∫ τn

0

{
u′(R + 1(x(t)>0)P+D

′D + 1(x(t)≤0)P−D
′D)u

+2u′(P+B
′ + P+D

′C + D′Λ+)x+ − 2u′(P−B
′ + P−D

′C + D′Λ−)x−

+[Θ+ + (2A + C ′C)P+ + 2C ′Λ+ + Q](x+)2

+[Θ− + (2A + C ′C)P− + 2C ′Λ− + Q](x−)2
}
dt

= P+(0)(x+
0 )2 + P−(0)(x−

0 )2

+E

∫ τn

0

{
u′(R + 1(x(t)>0)P+D

′D + 1(x(t)≤0)P−D
′D)u

+2u′(P+B
′ + P+D

′C + D′Λ+)x+ − 2u′(P−B
′ + P−D

′C + D′Λ−)x−

−H∗
+(P+,Λ+)(x+)2 −H∗

−(P−,Λ−)(x−)2
}
dt.(5.11)

Let us now send n → ∞. Then by noting that x(·) ∈ L2
F (Ω; C(0, T ; R)) we get, from

the dominated convergence theorem, that,

J(x0, u(·)) = P+(0)(x+
0 )2 + P−(0)(x−

0 )2 + E

∫ T

0

ϕ(x(t), u(t))dt,(5.12)

where ϕ(x(t), u(t)) denotes the integrand on the right-hand side of (5.11).
Now, we are to show that ϕ(x(t), u(t)) ≥ 0 for any t ∈ [0, T ]. Indeed, if x(t) > 0

for some t, then set u(t) = x(t)v(t). Notice u(t) ∈ Γ if and only if v(t) ∈ Γ since Γ is
a cone. Then (again t is suppressed)

ϕ(x, u) = u′(R + P+D
′D)u + 2u′(P+B

′ + P+D
′C + D′Λ+)x−H∗

+(P+,Λ+)x2

= [v′(R + P+D
′D)v + 2v′(P+B

′ + P+D
′C + D′Λ+)]x2 −H∗

+(P+,Λ+)x2

≥ H∗
+(P+,Λ+)x2 −H∗

+(P+,Λ+)x2 = 0.

(5.13)

Moreover, the inequality becomes an equality when u∗(t) = x(t)v∗(t) =
x+(t)ξ+(t, P+(t),Λ+(t)) ∈ Γ. Next, if x(t) < 0 for some t, then put u(t) = −x(t)v(t).
In this case,

ϕ(x, u) = u′(R + P−D
′D)u + 2u′(P−B

′ + P−D
′C + D′Λ−)x−H∗

−(P−,Λ−)x2

= [v′(R + P+D
′D)v − 2v′(P−B

′ + P−D
′C + D′Λ−)]x2 −H∗

−(P−,Λ−)x2

≥ H∗
−(P−,Λ−)x2 −H∗

−(P−,Λ−)x2 = 0,

(5.14)

where the equality holds at u∗(t) = −x(t)v∗(t) = x−(t)ξ−(t, P−(t),Λ−(t)) ∈ Γ. Fi-
nally, when x(t) = 0, then ϕ(x, u) = u′(R + P−D

′D)u ≥ 0; here, the equality holds
at u∗(t) = 0.

The above analysis together with (5.12) shows that

J(x0, u(·)) ≥ P+(0)(x+
0 )2 + P−(0)(x−

0 )2 ∀u(·) ∈ U ,(5.15)
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whereas the equality is achieved when u∗(·) is defined by (5.2).
If we can prove that the control u∗(·) defined by (5.2) is in L2

F (0, T ; Rm), then the
proof of the theorem will be finished. To this end, first note that, as shown before,
there exist two constants C1 > 0 and C2 > 0, such that

H+(t, v, P,Λ) ≥ C1|v|2 − C2(|P | + |Λ|)v ≥ C1|v|[|v| −
C2

C1
(|P | + |Λ|)].(5.16)

Hence H+(t, v, P,Λ) > 0 if |v| > C2

C1
(|P | + |Λ|). From the definition of ξ+(t, P,Λ), it

follows that

|ξ+(t, P,Λ)| ≤ C2

C1
(|P | + |Λ|).(5.17)

The same is true for ξ−.
Now, under the feedback control (5.2), the system dynamics (2.1) read

⎧⎪⎪⎨⎪⎪⎩
dx(t) = [A(t)x(t) + B(t)ξ+(t, P+(t),Λ+(t))x+(t) + B(t)ξ−(t, P−(t),Λ−(t))x−(t)]dt

+[x(t)C(t)′ + x+(t)ξ+(t, P+(t),Λ+(t))′D(t)′

+x−(t)ξ−(t, P−(t),Λ−(t))′D(t)′]dW (t), t ∈ [0, T ],
x(0) = x0.

(5.18)

This equation has a unique continuous {Ft}t≥0-adapted solution; see the lemma fol-
lowing the end of the proof of this theorem. We denote this solution by x∗(·), and
hence u∗(t) = ξ+(t, P+(t),Λ+(t))x∗+(t) + ξ−(t, P−(t),Λ−(t))x∗−(t). The continuity
of x∗(·) along with (5.17) leads to∫ T

0

(|x∗(t)|2 + |u∗(t)|2)dt < +∞, P − a.s..(5.19)

Denote by τ∗n, n ≥ 1, the sequence of stopping times defined by (5.10) where the
state–control pair is taken as (x∗(·), u∗(·)). It follows from (5.19) that τ∗n → T as
n → +∞, P -a.s.. On the other hand, (5.11) yields

E
{
P+(τ∗n)x∗+(τ∗n)2 + P−(τ∗n)x∗−(τ∗n)2

}
+ E

∫ τ∗
n

0

[Q(t)x∗(t)2 + u∗(t)′R(t)u∗(t)]dt

= P+(0)(x+
0 )2 + P−(0)(x−

0 )2.

(5.20)

We are now in position to prove u∗(·) ∈ L2
F (0, T ; Rm). To do so, we will treat the

standard case and the singular case separately.
For the standard case, denote by c > 0 such that R ≥ cIm; then it follows from

(5.20) that

cE

∫ τ∗
n

0

|u∗(t)|2dt ≤ P+(0)(x+
0 )2 + P−(0)(x−

0 )2.(5.21)

This implies that u∗(·) ∈ L2
F (0, T ; Rm).

For the singular case, construct a sequence of stopping times as follows:

θn := inf

{
t ≥ 0

∫ t

0

(|x∗(s)|2 + |C(s)x∗(s) + D(s)u∗(s)|2)ds ≥ n

}
∧ T.
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Again θn increasingly converges to T a.s. due to (5.19). Rewrite (2.1) under u∗(·) as
a kind of BSDE with a random terminal time,

⎧⎨⎩
dx∗(t) = [(A−B(D′D)−1D′C)x∗(t) + B(D′D)−1D′z(t)]dt + z(t)′dW (t),
t ∈ [0, τ∗n ∧ θn],
x∗(τ∗n ∧ θn) = x∗(τ∗n ∧ θn),

(5.22)

where z(t) := C(t)x∗(t) + D(t)u∗(t). Theorem 4.2 provides that there is a constant
c > 0 such that for any t ∈ [0, T ], P+(t) ≥ c and P−(t) ≥ c. Thus, (5.20) with τ∗n
replaced by τ∗n ∧ θn leads to

cE[x∗(τ∗n ∧ θn)2] ≤ P+(0)(x+
0 )2 + P−(0)(x−

0 )2.

On the other hand, the standard estimate for the BSDE (5.22) states that, for a
constant c̃ > 0,

E

∫ τ∗
n∧θn

0

(|x∗(s)|2 + |z(s)|2)ds ≤ c̃E[x∗(τ∗n ∧ θn)2]

≤ c̃

c
[P+(0)(x+

0 )2 + P−(0)(x−
0 )2].

Appealing to Fatou’s lemma, we conclude that x∗(·) ∈ L2
F (0, T ; R) and z(·)

× L2
F (0, T ; Rk). This in turn implies u∗(·) ∈ L2

F (0, T ; Rm) as u∗(t) = [D(t)′D(t)]−1

D(t)′[z(t) − C(t)x∗(t)].
Lemma 5.1. Equation (5.18) has a unique continuous {Ft}t≥0-adapted solution.
Proof. Setting

B+(t) := B(t)ξ+(t, P+(t),Λ+(t)), B−(t) := B(t)ξ−(t, P−(t),Λ−(t)),
D+(t) := D(t)ξ+(t, P+(t),Λ+(t)), D−(t) := D(t)ξ−(t, P−(t),Λ−(t)),

then (5.18) becomes⎧⎨⎩
dx(t) = [A(t)x(t) + B+(t)x+(t) + B−(t)x−(t)]dt

+[x(t)C(t)′ + x+(t)D+(t)′ + x−(t)D−(t)′]dW (t), t ∈ [0, T ],
x(0) = x0.

(5.23)

Consider the following two linear SDEs:

{
dx+(t) = [A(t) + B+(t)]x+(t)dt + x+(t)[C(t) + D+(t)]′dW (t), t ∈ [0, T ],
x+(0) = x+

0 ,

(5.24)

and

{
dx−(t) = [A(t) −B−(t)]x−(t)dt + x−(t)[C(t) −D−(t)]′dW (t), t ∈ [0, T ],
x−(0) = x−

0 .

(5.25)

It is well known that both (5.24) and (5.25) have unique continuous {Ft}t≥0-adapted
solutions which can be represented explicitly as

x+(t) = x+
0 exp

{∫ t

0

[A(s) + B+(s)]ds +

∫ t

0

[C(s) + D+(s)]′dW (s)

− 1

2

∫ t

0

|C(s) + D+(s)|2ds
}
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and

x−(t) = x−
0 exp

{∫ t

0

[A(s) −B−(s)]ds +

∫ t

0

[C(s) −D−(s)]′dW (s)

− 1

2

∫ t

0

|C(s) −D−(s)|2ds
}
.

Define

x(t) := x+(t) − x−(t).

Since x+(t) ≥ 0, x−(t) ≥ 0, and x+(t)x−(t) = 0, we conclude that

x+(t) = x+(t), x−(t) = x−(t) ∀t ∈ [0, T ].

Subtracting (5.25) from (5.24) we get that x(·) is a continuous adapted solution of
(5.23).

Let us turn to the uniqueness of the solution. Suppose that x1(·) and x2(·) are
two continuous adapted solutions of (5.23). Put x̂(·) := x1(·) − x2(·). We apply a
linearization procedure as follows. Set

α+(t) :=
x+

1 (t) − x+
2 (t)

x1(t) − x2(t)
1{x1(t) 
=x2(t)}, α−(t) :=

x−
1 (t) − x−

2 (t)

x1(t) − x2(t)
1{x1(t) 
=x2(t)}.

Then x̂(·) is a continuous adapted solution of the following linear SDE:⎧⎨⎩
dx̂(t) = [A(t) + B+(t)α+(t) + B−(t)α−(t)]x̂(t)dt

+x̂(t)[C(t) + D+(t)α+(t) + D−(t)α−(t)]′dW (t), t ∈ [0, T ],
x̂(0) = 0.

(5.26)

Hence x̂(t) ≡ 0 via a similar representation as (5.24) or (5.25), and the uniqueness of
the solution is proved.

Let us conclude this section by noting that a byproduct of Theorem 5.1 is the
uniqueness of the solution to the ESREs (3.5) and (3.6). Indeed, consider an LQ
control problem in an interval [s, T ], with s ∈ [0, T ), where the system dynamics
is (2.1) with initial time s and initial state x(s) = xs ∈ L2

Fs
(Ω; R), and the cost

functional is

Js(xs, u(·)) := E

{∫ T

s

[
Q(t)x(t)2 + u(t)′R(t)u(t)

]
dt + Gx(T )2

∣∣∣Fs

}
.

Let (P+, Λ+) ∈ L2
F (Ω; C(0, T ; R))×L2

F (0, T ; Rk) and (P−, Λ−) ∈ L2
F (Ω; C(0, T ; R))×

L2
F (0, T ; Rk) be any bounded, nonnegative (in the standard case) or bounded, uni-

formly positive (in the singular case) solutions to (3.5) and (3.6), respectively. Then,
going through the same analysis as in the proof of Theorem 5.1 we deduce that the
optimal cost is

J∗
s (xs) := inf

u(·) admissible
Js(xs, u(·)) = P+(s)(x+

s )2 + P−(s)(x−
s )2.(5.27)

This proves the following uniqueness result.
Theorem 5.2. Each of the ESREs (3.5) and (3.6) admits at most one bounded,

nonnegative (in the standard case) or bounded, uniformly positive (in the singular
case) solution.
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6. Application to a mean-variance portfolio selection problem. Consider
a financial market with m + 1 securities, consisting of a bank account and m stocks.
The value of the bank account, S0(t), satisfies an ordinary differential equation,{

dS0(t) = r(t)S0(t) dt, t ∈ [0, T ],

S0(0) = s0 > 0,
(6.1)

where the interest rate r(t) > 0 is a deterministic, uniformly bounded, scalar-valued
function. The price of each of the stocks, S1(t), . . . , Sm(t), satisfies the SDE,⎧⎨⎩ dSi(t) = Si(t)

{
μi(t) dt +

∑m
j=1 σij(t) dW

j(t)
}
, t ∈ [0, T ],

Si(0) = si > 0,
(6.2)

where μi(t) > 0 and σi(t) = [σi1, . . . , σim(t)] are the appreciation rate and dispersion
(or volatility) rate of the ith stock. Here, μi(t) and σij(t) are scalar-valued, {Ft}t≥0-
adapted, uniformly bounded stochastic processes. Denoting

σ(t) :=

⎡⎢⎣ σ1(t)
...

σm(t)

⎤⎥⎦ ∈ Rm×m,(6.3)

we assume throughout that σ(t) is uniformly nondegenerate: that is, there exists a
deterministic δ > 0 such that

σ(t)σ(t)′ ≥ δ Im, ∀ t ∈ [0, T ], P − a.s..(6.4)

In particular, σ(t) must be nonsingular a.e. t ∈ [0, T ], P -a.s..
Suppose that the total wealth of an agent at time t ≥ 0 is denoted by x(t).

If transaction costs and consumption are ignored and share trading takes place in
continuous time, then we have⎧⎪⎪⎨⎪⎪⎩

dx(t) =
{
r(t)x(t) +

∑m
i=1[μi(t) − r(t)]ui(t)

}
dt

+
∑m

j=1

∑m
i=1 σij(t)ui(t) dW

j(t), t ∈ [0, T ],

x(0) = x0 > 0,

(6.5)

where ui(t) is the total market value of the agent’s wealth in the ith asset. We refer
to u(·) := (u1(·), . . . , um(·))′ as the portfolio of the agent. In our model, short-selling
of the stocks is not allowed; hence we have the following constraints on a portfolio
u(·) = (u1(·), . . . , um(·))′:

ui(t) ≥ 0 ∀t ∈ [0, T ], i = 1, . . . ,m.(6.6)

Note that u0(·) has been excluded from a portfolio since it is completely determined
by the allocation of stocks and the total wealth x(·). Moreover, we do allow u0(t) < 0,
meaning that the agent is borrowing the amount |u0(t)| from the bank at rate r(t).

Definition 6.1. A portfolio u(·) is said to be admissible if it is Rm-valued,

square-integrable (i.e., E
∫ T

0
|u(t)|2dt < +∞), {Ft}t≥0-adapted, and satisfies (6.6).

In this case, we refer to (x(·), u(·)) as an admissible (wealth–portfolio) pair.
In a mean-variance portfolio selection problem, an agent’s objective is to find an

admissible portfolio u(·) such that the expected terminal wealth satisfies Ex(T ) = z,
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for some z ≥ x0e
∫ T
0

r(s)ds, while the risk measured by the variance of the terminal
wealth

Var x(T ) := E[x(T ) − Ex(T )]2 = E[x(T )]2 − z2(6.7)

is minimized. The restriction of the targeted payoff z ≥ x0e
∫ T
0

r(s)ds is natural as the
latter can always be achieved by putting all the money in the bank. Mathematically,

it can be formulated as the following problem parameterized by z ≥ x0e
∫ T
0

r(s)ds:⎧⎨⎩
Minimize JMV(x0, u(·)) := E[x(T )]2 − z2,

subject to:
Ex(T ) = z,
(x(·), u(·)) is admissible for (6.5).

(6.8)

The above problem is called feasible if there is at least one portfolio satisfying
the constraints of (6.8). Finally, an optimal portfolio to (6.8) is called an efficient
portfolio corresponding to z, the corresponding (Var x(T ), z) is called an efficient

point, whereas the set of all the efficient points, with z ≥ x0e
∫ T
0

r(s)ds, is called an
efficient frontier.

Equation (6.5) can be rewritten as{
dx(t) = [r(t)x(t) + B(t)u(t)]dt + u(t)′σ(t)dW (t),
x(0) = x0,

(6.9)

where

B(t) := (μ1(t) − r(t), . . . , μm(t) − r(t)).(6.10)

Since the problem (6.8) involves a terminal constraint Ex(T ) = z, we first inves-

tigate conditions under which the problem is feasible for any z ∈ [x0e
∫ T
0

r(s)ds,+∞).
Theorem 6.1. The mean-variance problem (6.8) is feasible for every

z ∈ [x0e
∫ T
0

r(s)ds,+∞) if and only if

m∑
i=1

E

∫ T

0

[μi(t) − r(t)]+dt > 0.(6.11)

Proof. We first prove the “if” part. Define

Mi := {(t, ω) : μi(t, ω) > r(t)}, i = 1, 2, . . . ,m.

Condition (6.11) implies that at least one of the sets Mi has a nonzero measure (in
terms of the product of the Lebesgue measure and P ). Suppose Mi0 has a nonzero
measure. Construct a family of admissible portfolios uβ(·) := βu(·), where β ≥ 0 and
the components of u(·) are all zero except its i0th component which is defined to be

ui0(t, ω) :=

{
μi0(t, ω) − r(t), if (t, ω) ∈ Mi0 ,
0, if (t, ω) �∈ Mi0 .

(6.12)

Let xβ(·) be the wealth process corresponding to uβ(·). By linearity of the wealth

equation, we have xβ(t) = x0(t) + βx1(t), where x0(t) := x0e
∫ t
0
r(s)ds and x1(·) is the

solution to the following equation:{
dx1(t) = [r(t)x1(t) + B(t)u(t)]dt + u(t)′σ(t)dW (t),
x1(0) = 0.

(6.13)
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Therefore, problem (6.8) is feasible for every z ∈ [x0e
∫ T
0

r(s)ds,+∞) if there exists
β ≥ 0 such that z = Exβ(T ) ≡ x0(T ) + βEx1(T ). Equivalently, (6.8) is feasible for

every z ∈ [x0e
∫ T
0

r(s)ds,+∞) if Ex1(T ) > 0. However, applying Itô’s formula we get

d[e
∫ T
t

r(s)dsx1(t)] = e
∫ T
t

r(s)dsB(t)u(t)dt + {· · · }dW (t).

Integrating from 0 to T and taking expectation we obtain

Ex1(T ) = E

∫ T

0

e
∫ T
t

r(s)dsB(t)u(t)dt > 0,(6.14)

due to the way u(·) was constructed. Consequently, (6.8) is feasible if (6.11) holds.

Conversely, suppose that problem (6.8) is feasible for every z ∈ [x0e
∫ T
0

r(s)ds,+∞).
Then for each z, there is an admissible portfolio u(·) so that Ex(T ) = z. However, we
can always decompose x(t) = x0(t) + x1(t), where x1(·) satisfies (6.13). This leads to
Ex0(T ) +Ex1(T ) = z. Now, Ex0(T ) ≡ z0 is independent of u(·); thus it is necessary
that there is a u(·) with Ex1(T ) > 0. It follows then from (6.14) that (6.11) must be
valid.

Now we are going to solve the optimization problem (6.8) under the feasibility
assumption (6.11). To handle the constraint Ex(T ) = z we apply the Lagrange
multiplier technique. Define

J(x0, u(·), λ) := E
{
x(T )2 − z2 − 2λ[x(T ) − z]

}
= E

[
|x(T ) − λ|2] − (λ− z)2, λ ∈ R.

(6.15)

Since JMV(x0, u(·)) is strictly convex in u(·) and the constraint function Ex(T )−z
is affine in u(·), we can apply the well-known duality theorem (see, e.g., [19]). Based on
this theorem, we may first solve the following unconstrained problem parameterized
by the Lagrange multiplier λ ∈ R:{

Minimize J(x0, u(·), λ) := E
[
|x(T ) − λ|2] − (λ− z)2,

subject to: (x(·), u(·)) is admissible for (6.9).
(6.16)

This problem is exactly a singular case of the general LQ model solved in section 5,
with Q(t) = R(t) = 0 and Γ = Rm

+ . Thus we will apply the general result to the
problem. Let us first write down the specialization of the ESREs (3.5) and (3.6) as

⎧⎨⎩
dP+(t) = −[2r(t)P+(t) + H∗

+(t, P+(t),Λ+(t))]dt + Λ+(t)′dW (t), t ∈ [0, T ],
P+(T ) = 1,
P+(t) > 0,

(6.17)

⎧⎨⎩
dP−(t) = −[2r(t)P−(t) + H∗

−(t, P−(t),Λ−(t))]dt + Λ−(t)′dW (t), t ∈ [0, T ],
P−(T ) = 1,
P−(t) > 0,

(6.18)

where

H∗
+(t, P,Λ) := minv∈Rm

+
{v′Pσ(t)σ(t)′v + 2v′[B(t)′P + σ(t)Λ]} ,

H∗
−(t, P,Λ) := minv∈Rm

+
{v′Pσ(t)σ(t)′v − 2v′[B(t)′P + σ(t)Λ]} .(6.19)
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Also, define

ξ+(t, P,Λ) := argminv∈Rm
+
H+(t, v, P,Λ),

ξ−(t, P,Λ) := argminv∈Rm
+
H−(t, v, P,Λ), (t, P,Λ) ∈ [0, T ] × R × Rk.

(6.20)

Clearly, Theorems 4.2 and 5.2 apply to (6.17) and (6.18) ensuring that they admit
unique bounded, uniformly positive solutions.

Lemma 6.1. Assume that (6.11) holds, and let (P+, Λ+) ∈ L2
F (Ω; C(0, T ; R))×

L2
F (0, T ; Rm) and (P−, Λ−) ∈ L2

F (Ω; C(0, T ; R))×L2
F (0, T ; Rm) be the unique bound-

ed, uniformly positive solutions to the ESREs (6.17) and (6.18), respectively. Then it
must hold that

P+(0)e−2
∫ T
0

r(s)ds − 1 ≤ 0, and P−(0)e−2
∫ T
0

r(s)ds − 1 < 0.(6.21)

Proof. Define g(t) := P−(t)e−2
∫ T
t

r(s)ds. Then it is straightforward that

dg(t) = −e−2
∫ T
t

r(s)dsH∗
−(t, P−(t),Λ−(t))dt + e−2

∫ T
t

r(s)dsΛ−(t)′dW (t).

Integrating from 0 to T and taking expectation we have

1 − g(0) = −E

∫ T

0

e−2
∫ T
t

r(s)dsH∗
−(t, P−(t),Λ−(t))dt ≥ 0,(6.22)

since H∗
−(t, P−(t),Λ−(t)) ≤ 0 by its very definition. Hence P−(0)e−2

∫ T
0

r(s)ds ≡ g(0) ≤
1. Similarly, we can prove that P+(0)e−2

∫ T
0

r(s)ds − 1 ≤ 0.

It remains to prove the strict inequality P−(0)e−2
∫ T
0

r(s)ds − 1 < 0. In fact, if

P−(0)e−2
∫ T
0

r(s)ds − 1 = 0, then it follows from (6.22) that H∗
−(t, P−(t),Λ−(t)) = 0,

a.e. t ∈ [0, T ], P -a.s.. Thus we deduce, from the uniqueness of solution to the BSDE

(6.18), that P−(t) = e2
∫ T
t

r(s)ds, and Λ−(t) = 0. Consequently, H∗
−(t, P−(t), 0) = 0.

On the other hand,

H∗
−(t, P−(t), 0) = min

v∈Rm
+

P−(t)[v′σ(t)σ(t)′v − 2v′B(t)′]

≤ min
v∈Rm

+

K3[K4|v|2 − 2B(t)v],

for some constants K3 > 0 and K4 > 0. Notice that the minimum value on the right-
hand side of the above equation strictly negative whenever B(t, ω)+ :=
(B1(t, ω)+, . . . , Bm(t, ω)+) �= 0. In view of the assumption (6.11), the set of (t, ω) on
which B(t, ω)+ is nonzero has a nonzero measure. Thus we get a contradiction.

Remark 6.1. One does not have the strict inequality P+(0)e−2
∫ T
0

r(s)ds − 1 < 0
since no information about B(t, ω)− := (B1(t, ω)−, . . . , Bm(t, ω)−) is available. On

the other hand, the inequality P−(0)e−2
∫ T
0

r(s)ds − 1 < 0 is exactly what is required
in what follows.

Theorem 6.2. Let (P+, Λ+) ∈ L2
F (Ω; C(0, T ; R))×L2

F (0, T ; Rm) and (P−, Λ−)
∈ L2

F (Ω; C(0, T ; R)) × L2
F (0, T ; Rm) be the unique bounded, uniformly positive solu-

tions to the ESREs (6.17) and (6.18), respectively. Then the state feedback control

u∗(t) = ξ+(t, P+(t),Λ+(t))
(
x(t) − λe−

∫ T
t

r(s)ds
)+

+ ξ−(t, P−(t),Λ−(t))
(
x(t) − λe−

∫ T
t

r(s)ds
)−(6.23)
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is optimal for the problem (6.16). Moreover, in this case the optimal cost is

J∗(x0, λ) := infu(·)∈L2
F (0,T ;Rm

+ ) J(x0, u(·), λ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[P+(0)e−2

∫ T
0

r(s)ds − 1]λ2 − 2[x0P+(0)e−
∫ T
0

r(s)ds − z]λ + P+(0)x2
0 − z2,

if x0 > λe−
∫ T
0

r(s)ds,

[P−(0)e−2
∫ T
0

r(s)ds − 1]λ2 − 2[x0P−(0)e−
∫ T
0

r(s)ds − z]λ + P−(0)x2
0 − z2,

if x0 ≤ λe−
∫ T
0

r(s)ds.

(6.24)

Proof. Set

y(t) := x(t) − λe−
∫ T
t

r(s)ds.(6.25)

It turns out the wealth equation (6.9) in terms of y(·) has exactly the same form
except for the initial condition,{

dy(t) = [r(t)y(t) + B(t)u(t)]dt + u(t)′σ(t)dW (t),

y(0) = x0 − λe−
∫ T
0

r(s)ds,
(6.26)

whereas the cost function (6.15) can be written as

J(y0, u(·), λ) = Ey(T )2 − (λ− z)2.(6.27)

The above problem (6.26)–(6.27) is exactly a special case of the general problem we
have solved in section 5 (ignoring the constant term −(λ− z)2 in (6.27)). Hence the
optimal feedback control (6.23) follows from (5.2). Finally, the optimal cost is

J∗(x0, λ) = P+(0)[(x0 − λe−
∫ T
0

r(s)ds)+]2 + P−(0)[(x0 − λe−
∫ T
0

r(s)ds)−]2 − (λ− z)2

which equals the right-hand side of (6.24) after some simple manipulations.
Theorem 6.3 (efficient portfolios and efficient frontier). Assume that (6.11)

holds. Then the efficient portfolio corresponding to z ≥ x0e
∫ T
0

r(s)ds, as a feedback of
the wealth process, is

u∗(t) = ξ+(t, P+(t),Λ+(t))
(
x∗(t) − λ∗e−

∫ T
t

r(s)ds
)+

+ ξ−(t, P−(t),Λ−(t))
(
x∗(t) − λ∗e−

∫ T
t

r(s)ds
)−

,
(6.28)

where

λ∗ :=
z − x0P−(0)e−

∫ T
0

r(s)ds

1 − P−(0)e−2
∫ T
0

r(s)ds
.(6.29)

Moreover, the efficient frontier is

Var x∗(T ) =
P−(0)e−2

∫ T
0

r(s)ds

1 − P−(0)e−2
∫ T
0

r(s)ds

[
Ex∗(T ) − x0e

∫ T
0

r(s)ds
]2

, Ex∗(T ) ≥ x0e
∫ T
0

r(s)ds.

(6.30)

Proof. First note that λ∗ in (6.29) is well defined thanks to Lemma 6.1. Now, if

z = x0e
∫ T
0

r(s)ds, then it is straightforward that the corresponding efficient portfolio
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is u∗(t) ≡ 0, meaning that all the wealth is to be put in the bank account. The

resulting wealth process is x∗(t) = x0e
∫ t
0
r(s)ds. On the other hand, in this case the

associated λ∗ = x0e
∫ T
0

r(s)ds. Thus the portfolio given by (6.28) reduces to u∗(t) ≡ 0

with x∗(t) = x0e
∫ t
0
r(s)ds. This implies that (6.28) is indeed the efficient portfolio when

z = x0e
∫ T
0

r(s)ds.
So now we need only to prove the theorem for any fixed z > x0e

∫ T
0

r(s)ds. Applying
the duality theorem (see, e.g., [19, p. 224, Theorem 1]1) we have

J∗
MV(x0) := inf

u(·)∈L2
F (0,T ;Rm

+ )
JMV(x0, u(·)) = sup

λ∈R

inf
u(·)∈L2

F (0,T ;Rm
+ )

J(x0, u(·), λ) > −∞,
(6.31)

and the optimal feedback control for (6.8) is (6.28), due to Theorem 6.2, with λ
replaced by λ∗ which maximizes J∗(x0, λ) (= infu(·)∈L2

F (0,T ;Rm
+ ) J(x0, u(·), λ)) over

λ ∈ R.
If λ ∈ (−∞, x0e

∫ T
0

r(s)ds), then the expression (6.24) gives, taking into considera-

tion (6.21) and the fact that z ≥ x0e
∫ T
0

r(s)ds,

∂

∂λ
J∗(x0, λ) = 2[P+(0)e−2

∫ T
0

r(s)ds − 1]λ− 2[x0P+(0)e−
∫ T
0

r(s)ds − z]

≥ 2[P+(0)e−2
∫ T
0

r(s)ds − 1]x0e
∫ T
0

r(s)ds

−2[x0P+(0)e−
∫ T
0

r(s)ds − x0e
∫ T
0

r(s)ds]

= 0.

Hence,
sup
λ∈R

J∗(x0, λ) = sup
λ∈[x0e

∫T
0 r(s)ds,+∞)

J∗(x0, λ).

But for λ ∈ [x0e
∫ T
0

r(s)ds,+∞), it follows from (6.24) that J∗(x0, λ) is a quadratic
function in λ whose maximizer is given by (6.29) (noticing Lemma 6.1), whereas

J∗
MV(x0) = supλ∈R infu(·)∈L2

F (0,T ;Rm
+ ) J

∗(x0, λ)

= supλ∈R

{
[P−(0)e−2

∫ T
0

r(s)ds − 1]λ2 − 2[x0P−(0)e−
∫ T
0

r(s)ds − z] λ

+ P−(0)x2
0 − z2

}
= P−(0)e−2

∫T
t r(s)ds

1−P−(0)e−2
∫T
0 r(s)ds

[
z − x0e

∫ T
0

r(s)ds
]2

, z ≥ x0e
∫ T
0

r(s)ds.

(6.32)

This proves (6.30), noting that Ex∗(T ) = z.
Corollary 6.1. Assume that (6.11) holds. Then the efficient portfolio (6.28)

can be rewritten as

u∗(t) = ξ−(t, P−(t),Λ−(t))
(
λ∗e−

∫ T
t

r(s)ds − x∗(t)
)
.(6.33)

1To be precise, one should apply [19, p. 236, Problem 7] together with the proof of [19, p. 224,
Theorem 1] in our case, as there is an equality constraint in (6.8). To be able to use the result there,
one needs to check a condition posed in [19, p. 236, Problem 7], namely, 0 is an interior point of the

set T := {Ex(T ) − z
∣∣∣x(·) is the wealth process of an admissible portfolio u(·) with x(0) = x0}. In

view of Theorem 6.1 and the assumption (6.11), we have [x0e
∫T
0 r(s)ds − z,+∞) ⊂ T . Hence 0 is an

interior point of T because x0e
∫T
0 r(s)ds − z < 0.



464 YING HU AND XUN YU ZHOU

Proof. It suffices to prove that under the feedback policy (6.28) the corresponding
wealth trajectory x∗(·) satisfies

x∗(t) − λ∗e−
∫ T
t

r(s)ds ≤ 0.(6.34)

To this end, write y(t) := x∗(t)− λ∗e−
∫ T
t

r(s)ds. Then it is immediate from (6.9) that
y(·) follows

{
dy(t) = [r(t)y(t) + B+(t)y+(t) + B−(t)y−(t)]dt + [D+(t)y+(t) + D−(t)y−(t)]′dW (t),

y(0) = x0 − λ∗e−
∫ T
0

r(s)ds,

(6.35)

where

B+(t) := B(t)ξ+(t, P+(t),Λ+(t)), B−(t) := B(t)ξ−(t, P−(t),Λ−(t)),
D+(t) := σ(t)′ξ+(t, P+(t),Λ+(t)), D−(t) := σ(t)′ξ−(t, P−(t),Λ−(t)).

Note that y(0) = x0 − λ∗e−
∫ T
0

r(s)ds ≤ 0 by virtue of (6.29) and the fact that z ≥
x0e

∫ T
0

r(s)ds. Hence the proof of Lemma 5.1 yields that y+(t) = y(0)+ exp{· · · } = 0,
which proves that y(t) ≤ 0.

It is interesting to note that, as indicated by the preceding theorem and corollary,
after all only one of the two Riccati equations, (6.18) is necessary in the final solution
to the portfolio selection problem. This is essentially due to the fact that one is
only interested in the “nonsatiation portion” (i.e., that which corresponds to z ≥
x0e

∫ T
0

r(s)ds) of the entire variance-minimizing boundary. Because of this, the form of
the efficient portfolio (6.33) turns out to be strikingly similar to its shorting-permitted
counterpart [28]. In particular, if shorting is allowed, then the definition (6.20) should
be modified so that ξ−(t, P,Λ) is the minimum point of H−(t, v, P,Λ) over v ∈ Rm, or

ξ−(t, P,Λ) = (σ(t)σ(t)′)
−1 [

B(t)′ + σ(t) Λ
P

]
. Furthermore, if all the market coefficients

are deterministic, then Λ(t) ≡ 0 and the result of [28] is recovered.

Also, it follows from (6.34) that the wealth trajectory under the efficient portfolio
is capped almost surely at any time by the present value of a deterministic constant λ∗.

Finally, we remark that in the portfolio selection application the control (portfolio)
constraint is taken to be Γ = Rm

+ , for it has significant financial interpretation (no-
shorting). We can easily cope with other forms of constrained portfolio thanks to the
general results established in sections 4–5. An example is, in the case of two stocks,
Γ = {(u1, u2) ∈ R2|u1 ≤ 2u2}. Such a constraint can be interpreted as maintaining
certain weights on different stocks. Note that if we deal with a general portfolio
constraint, then explicit characterization of the feasibility such as (6.11) may no longer
be possible. However, it is still possible to obtain a certain implicit feasibility condition
based on the dual of the constraint cone, Γ. Details are left to the interested reader.

7. Concluding remarks. In this paper, we have solved explicitly a stochastic
LQ control problem where the control is constrained by a cone and all the coefficients
are random. The solution is heavily dependent on the two nonlinear BSDEs which
are introduced in this paper for the first time. The study on these two equations is
interesting from the point view of BSDE theory. A continuous-time mean-variance
portfolio selection problem has been then solved as a special case of the general con-
strained stochastic LQ model.
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A major assumption of the paper is that the state variable be one-dimensional.
Although this assumption is valid in many interesting applications including the fi-
nancial one, it is a very challenging open problem to obtain an explicit solution to a
multidimensional problem and study the possible associated BSDEs.
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REACTION-DIFFUSION SYSTEM∗
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Abstract. This paper is concerned with optimal boundary control of an instationary reaction-
diffusion system in three spatial dimensions. This problem involves a coupled nonlinear system of
parabolic differential equations with bilateral as well as integral control constraints. We include
the integral constraint in the cost by a penalty term whereas the bilateral control constraints are
handled explicitly. First- and second-order conditions for the optimization problem are analyzed. A
primal-dual active set strategy is utilized to compute optimal solutions numerically. The algorithm
is compared to a semismooth Newton method.

Key words. reaction-diffusion equations, optimal boundary control, bilateral and integral con-
trol constraints, primal-dual active set strategy, semismooth Newton methods
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1. Introduction. The subject matter of this paper is an optimal control problem
for a coupled system of semilinear parabolic reaction-diffusion equations. The equa-
tions model a chemical or biological process where the species involved are subject
to diffusion and reaction among each other. As an example, we consider the reaction
A+B → C which obeys the law of mass action. To simplify the discussion, we assume
that the backward reaction C → A+B is negligible and that the forward reaction pro-
ceeds with a constant (e.g., not temperature-dependent) rate. This leads to a coupled
semilinear parabolic system for the respective concentrations; see (2.3). We consider
the state equations in three spatial dimensions and prove existence and uniqueness of
solutions in W (0, T ). This is a nontrivial result, and from the analysis in [9] it follows
that higher order polynomial reaction terms do not admit solutions in W (0, T ), in
three space dimensions. Simplifications to the two- or even one-dimensional situation
are of course possible in a straightforward way.

The control function acts through the Neumann boundary values for one of the
reaction components on some subset of the two-dimensional boundary manifold. It is
natural to impose bilateral pointwise bounds on the control function: on one hand,
the substance can never be extracted through the boundary, i.e., the lower control
bound should be nonnegative. On the other hand, only a limited amount may be
added at any given time. In addition, we impose a constraint on the total amount of
control action. This scalar integral constraint (see (2.11)) is very much in contrast
with the usual pointwise bounds.

Optimality conditions for optimal control problems governed by semilinear para-
bolic equations together with mixed inequality constraints were considered theoret-
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ically in the literature. We refer, for instance, the reader to [5, 17, 30]. Note that
the theory presented in [27] cannot be applied directly to system (2.3) since the as-
sumptions for the semilinear part are not satisfied. Less attention is paid to the
numerical realization of the infinite-dimensional optimality systems. Let us mention,
for example, [22].

The integral constraint is included into the cost functional by a penalty term,
whereas the bilateral control constraints are treated explicitly by a primal-dual active
set strategy for nonlinear problems. The primal-dual active set method has proved to
be an efficient numerical tool in the context of diverse applications; see, for instance,
[1, 2, 12]. So far it was mainly investigated for linear-quadratic problems, which arise,
for example, as a subproblem within SQP or Newton methods (compare, e.g., [13, 14,
21, 34]). Ito and Kunisch studied the primal-dual active set algorithm for nonlinear
problems and bilateral control constraints in [19]. Utilizing the close relationship
between the primal-dual active set strategy and semismooth Newton methods, local
superlinear convergence was shown as well. Let us mention that the primal-dual
active set strategy for nonlinear problems was already applied numerically, combined
with SQP and nonlinear conjugate gradient methods in [8, 20] and [37], respectively.
Semismooth Newton methods for general purpose nonlinear finite-dimensional optimal
control problems are well studied; see, for instance, [24] and [7, section 7.5]. Much less
is known about such methods in infinite dimensions, and specifically in the context of
optimal control problems. Let us refer here, e.g., to [15, 16, 35]. We will compare the
primal-dual active set strategy with a semismooth Newton method in the numerical
test examples. Both utilize an inexact Newton method as an inner iteration. The
penalty term leads to a nonquadratic objective, which gives rise to an interesting
update step for the control constraint multiplier.

This paper is organized in the following manner. In section 2, the state equations
are analyzed and the optimal control problem is investigated. The integral control
constraint is treated using a penalization approach. Section 3 is devoted to the opti-
mality conditions for the penalized optimization problem. The primal-dual active set
algorithm and its relationship to a semismooth Newton method are discussed in sec-
tion 4. Numerical examples are presented in section 5 and we draw some conclusions
in the last section.

2. The problem formulation. The goal of this section is to introduce the
infinite-dimensional optimal control problem. The cost functional is of tracking type,
the equality constraints are given by a coupled nonlinear parabolic system, and the
inequality constraints are bilateral control constraints as well as an integral constraint
for the control. We study the state equations, propose the optimal control problem,
and prove existence of optimal controls. Finally we introduce the optimization prob-
lem with the penalized objective.

2.1. The state equations. Let Ω denote an open and bounded subset of R3

with a Lipschitz-continuous boundary Γ = ∂Ω such that Γ is decomposed into two
parts Γ = Γn ∪ Γc with Γn ∩ Γc = ∅. For terminal time T > 0 let Q = (0, T ) × Ω, let
Σ = (0, T ) × Γ, and let Σc = (0, T ) × Γc.

By L2(0, T ;H1(Ω)) we denote the space of all measurable functions ϕ : [0, T ] →
H1(Ω), which are square integrable, i.e.,

∫ T

0

‖ϕ(t)‖2
H1(Ω) dt < ∞,
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where ϕ(t) stands for the function ϕ(t, ·) considered as a function in Ω only. The
space W (0, T ) is defined by

W (0, T ) =
{
ϕ ∈ L2(0, T ;H1(Ω)) : ϕt ∈ L2(0, T ;H1(Ω)′)

}
.(2.1)

Here H1(Ω)′ denotes the dual space of H1(Ω). Recall that W (0, T ) is a Hilbert
space endowed with the common inner product and the induced norm; see, e.g., [6,
p. 286]. Since W (0, T ) is continuously embedded into C([0, T ];L2(Ω)), the space of all
continuous functions from [0, T ] into L2(Ω), there exists a constant CW > 0 satisfying

‖ϕ‖C([0,T ];L2(Ω)) ≤ CW ‖ϕ‖W (0,T ) for all ϕ ∈ W (0, T );(2.2)

see [6, p. 287].
Suppose that d1, d2, d3 and k1, k2, k3 are positive constants. Moreover, let α ∈

L∞(0, T ;L2(Γc)) denote a shape function with α ≥ 0 on Σc almost everywhere (a.e.).
We consider the following system of semilinear parabolic equations, where ci denotes
the concentration of the ith substance:

(c1)t(t, x) = d1Δc1(t, x) − k1c1(t, x)c2(t, x) for all (t, x) ∈ Q,(2.3a)

(c2)t(t, x) = d2Δc2(t, x) − k2c1(t, x)c2(t, x) for all (t, x) ∈ Q,(2.3b)

(c3)t(t, x) = d3Δc3(t, x) + k3c1(t, x)c2(t, x) for all (t, x) ∈ Q(2.3c)

together with the Neumann boundary conditions

d1
∂c1
∂n

(t, x) = 0 for all (t, x) ∈ Σ,(2.3d)

d2
∂c2
∂n

(t, x) = u(t)α(t, x) for all (t, x) ∈ Σc,(2.3e)

d2
∂c2
∂n

(t, x) = 0 for all (t, x) ∈ Σn = Σ \ Σc,(2.3f)

d3
∂c3
∂n

(t, x) = 0 for all (t, x) ∈ Σ(2.3g)

and the initial conditions

c1(0, x) = c10(x) for all x ∈ Ω,(2.3h)

c2(0, x) = c20(x) for all x ∈ Ω,(2.3i)

c3(0, x) = c30(x) for all x ∈ Ω,(2.3j)

where ci0 ∈ L2(Ω) for i = 1, 2, 3.
The control u ∈ L2(0, T ) enters the right-hand side of (2.3e) in the inhomogeneous

Neumann condition. For instance, the function α models a spray nozzle moving over
the control part Γc, and u(t) denotes the intensity of the spray.

Remark 2.1. The parabolic problem for c3, i.e., (2.3c) together with the Neumann
boundary condition (2.3g) and initial condition (2.3j) can be solved independently of
the problem for (c1, c2). Therefore, we will focus on the computation of c1 and c2
and, in particular, we are interested in weak solutions for c1 and c2.

Definition 2.2. The two functions c1 and c2 in W (0, T ) are called weak solu-
tions to systems (2.3a), (2.3b), (2.3d)–(2.3f), (2.3h), and (2.3i) provided the initial
conditions

c1(0) = c10 and c2(0) = c20 in L2(Ω)(2.4a)
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hold and

〈(c1)t(t), ϕ〉H1(Ω)′,H1(Ω) +

∫
Ω

d1 ∇c1(t) · ∇ϕ + k1c1(t)c2(t)ϕdx = 0,(2.4b)

〈(c2)t(t), ϕ〉H1(Ω)′,H1(Ω) +

∫
Ω

d2 ∇c2(t) · ∇ϕ + k2c1(t)c2(t)ϕdx

= u(t)

∫
Γc

α(t)ϕ dx
(2.4c)

for all ϕ ∈ H1(Ω) and almost all t ∈ [0, T ]. In (2.4b) and (2.4c), 〈· , ·〉H1(Ω)′,H1(Ω)

denotes the duality pairing between H1(Ω) and its dual H1(Ω)′.
The following theorem ensures that (2.4) possesses a unique solution. For a proof,

which is based on Leray–Schauder’s fixed point theorem and variational techniques,
we refer the reader to [9, Theorem 2.3].

Theorem 2.3. For every control u ∈ L2(0, T ), there exists a unique pair (c1, c2) ∈
W (0, T ) ×W (0, T ) satisfying (2.4). Moreover, the estimate

‖c1‖W (0,T ) + ‖c2‖W (0,T ) ≤ C
(
1 + ‖c10‖L2(Ω) + ‖c20‖L2(Ω) + ‖u‖L2(0,T )

)
(2.5)

holds for a constant C > 0.
Theorem 2.3 also implies the unique solvability of the partial differential equation

for the reaction product (2.3c), (2.3g), and (2.3j). This is formulated in the following
corollary, which is proved in [9, Corollary 2.4].

Corollary 2.4. Let c10, c20 ∈ L2(Ω) and u ∈ L2(0, T ) be given and let (c1, c2) ∈
W (0, T ) × W (0, T ) denote the solution pair to (2.4). Then there exists a unique
c3 ∈ W (0, T ) satisfying

c3(0) = c30 in L2(Ω)(2.6a)

and

〈(c3)t(t), ϕ〉H1(Ω)′,H1(Ω) +

∫
Ω

d3 ∇c3(t) · ∇ϕdx =

∫
Ω

k3c1(t)c2(t)ϕdx(2.6b)

for all ϕ ∈ H1(Ω) and almost all t ∈ [0, T ].
To write the state equations as a nonlinear operator equation, we introduce the

two Hilbert product spaces

X = W (0, T ) ×W (0, T ) × L2(0, T ),

Y = L2(0, T ;H1(Ω)) × L2(0, T ;H1(Ω)) × L2(Ω) × L2(Ω)

endowed with their product topology and identify

Y ′ ≡ L2(0, T ;H1(Ω)′) × L2(0, T ;H1(Ω)′) × L2(Ω) × L2(Ω).

Then we introduce the mapping e : X → Y ′ by

e(x) =

⎛⎜⎜⎝
e1(x)
e2(x)

c1(0) − c10
c2(0) − c20

⎞⎟⎟⎠ for x = (c1, c2, u) ∈ X,
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where the operators e1, e2 : X × L2(0, T ;H1(Ω)) → L2(0, T ;H1(Ω)′) involve the vari-
ational formulation of the partial differential equations for c1 and c2, respectively,
i.e.,

〈e1(x), ϕ〉L2(0,T ;H1(Ω)′),L2(0,T ;H1(Ω))

=

∫ T

0

(
〈(c1)t(t), ϕ(t)〉H1(Ω)′,H1(Ω) +

∫
Ω

d1∇c1 · ∇ϕ + k1c1c2ϕdx

)
dt

and

〈e2(x), ϕ〉L2(0,T ;H1(Ω)′),L2(0,T ;H1(Ω)) =

∫ T

0

(
〈(c2)t(t), ϕ(t)〉H1(Ω)′,H1(Ω) dt

+

∫
Ω

d2∇c2 · ∇ϕ + k2c1c2ϕ dx− u

∫
Γc

αϕdx

)
dt

for ϕ ∈ L2(0, T ;H1(Ω)). Now, (2.4) is equivalent to the operator equation e(x) = 0
in Y ′ for x = (c1, c2, u) ∈ X.

2.2. The optimal control problem. Our goal is to drive the reaction-diffusion
system from the given initial state near a desired terminal state. Hence, we introduce
the cost functional

J(c1, c2, u) =
1

2

∫
Ω

β1 |c1(T ) − c1T |2 + β2 |c2(T ) − c2T |2 dx +
γ

2

∫ T

0

|u− ud|2 dt,

where β1, β2 ≥ 0, β1 + β2, γ > 0, c1T , c2T ∈ L2(Ω) are given desired terminal states
and ud ∈ L2(0, T ) denotes some nominal (or expected) control.

The closed and bounded convex set of admissible control parameters involves an
integral constraint as well as bilateral control constraints:

Ūad =

{
u ∈ L2(0, T ) :

∫ T

0

u(t) dt ≤ uc and ua ≤ u ≤ ub in [0, T ]

}
⊂ L∞(0, T ),

where ua and ub are given functions in L∞(0, T ) satisfying ua ≤ ub in [0, T ] a.e., and
uc is a positive constant.

Furthermore, let us define the closed convex set

K̄ad = W (0, T ) ×W (0, T ) × Ūad.

The infinite-dimensional optimal control problem can be expressed as

minJ(x) such that (s.t.) x ∈ K̄ad and e(x) = 0.(P)

The following theorem guarantees that (P) has a solution.
Theorem 2.5. Problem (P) possesses at least one optimal control.
Proof. The claim follows by standard arguments: let {xn}∞n=1, x

n = (cn1 , c
n
2 , u

n),
be a minimizing sequence in K̄ad for the nonnegative cost J . Since J is radially un-
bounded, it follows from Theorem 2.3 that this sequence is bounded in X. Therefore,
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there exists an element x∗ = (c∗1, c
∗
2, u

∗) ∈ X such that

cn1 ⇀ c∗1 in W (0, T ) as n → ∞,(2.7)

cn2 ⇀ c∗2 in W (0, T ) as n → ∞,(2.8)

un ⇀ u∗ in L2(0, T ) as n → ∞.(2.9)

By assumption, α ∈ L∞(0, T ;L2(Γc)) holds. Recall that there exists a constant
K1 > 0 such that

‖ψ‖L2(Γc)
≤ K1‖ψ‖H1(Ω) for all ψ ∈ H1(Ω);

see, e.g., [6, p. 258]. Thus, for ϕ ∈ L2(0, T ;H1(Ω)), the mapping t �→
∫
Γc

α(t)ϕ(t) dx

belongs to L2(0, T ) and

lim
n→∞

∫ T

0

(
un(t) − u∗(t)

)(∫
Γc

α(t)ϕ(t) dx

)
dt = 0 for all ϕ ∈ L2(0, T ;H1(Ω)).

From (2.7) and (2.8), we find for i = 1, 2,

lim
n→∞

∫ T

0

〈
(cni − c∗i )t(t), ϕ(t)

〉
H1(Ω)′,H1(Ω)

dt = 0 for all ϕ ∈ L2(0, T ;H1(Ω))

and

lim
n→∞

∫ T

0

∫
Ω

di∇
(
cni − c∗i

)
(t) · ∇ϕ(t) dxdt = 0 for all ϕ ∈ L2(0, T ;H1(Ω)).

Next we consider the nonlinear terms. Using Hölder’s inequality we infer that for
ϕ ∈ L2(0, T ;H1(Ω)),∫ T

0

∫
Ω

(
cn1 c

n
2 − c∗1c

∗
2

)
ϕ dxdt =

∫ T

0

∫
Ω

[(
cn1 − c∗1

)
cn2 + c∗1

(
cn2 − c∗2

)]
ϕdxdt

≤
∫ T

0

‖cn1 (t) − c∗1(t)‖L3(Ω)‖cn2 (t)‖L2(Ω)‖ϕ(t)‖L6(Ω) dt

+

∫ T

0

‖c∗1(t)‖L2(Ω)‖cn2 (t) − c∗2(t)‖L3(Ω)‖ϕ(t)‖L6(Ω) dt

≤ ‖cn1 − c∗1‖L2(0,T ;L3(Ω))‖cn2‖C([0,T ];L2(Ω))‖ϕ‖L2(0,T ;L6(Ω))

+ ‖c∗1‖C([0,T ];L2(Ω))‖cn2 − c∗2‖L2(0,T ;L3(Ω))‖ϕ‖L2(0,T ;L6(Ω)).

(2.10)

Since W (0, T ) is continuously embedded into C([0, T ];L2(Ω)) and compactly into
L2(0, T ;L3(Ω)) (see, for instance, [33, p. 271]), the sequence ‖cni ‖C([0,T ];L2(Ω)) is
bounded and limn→∞ ‖cni − c∗i ‖L2(0,T ;L3(Ω)) = 0 for i = 1, 2. Thus, (2.10) yields

lim
n→∞

∫ T

0

∫
Ω

(
cn1 c

n
2 − c∗1c

∗
2

)
ϕ dxdt = 0 for all ϕ ∈ L2(0, T ;H1(Ω)).

Using ∫
Ω

(
cni (0) − c∗i (0)

)
ψ dx = 0 for all ψ ∈ L2(Ω) and i = 1, 2,

we have e(x∗) = 0 in Y ′. Since Ūad is bounded, closed, and convex, Ūad is weakly
closed. This implies that K̄ad is also weakly closed. As J is weakly lower semicontin-
uous, the claim follows.
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2.3. The penalized optimization problem. In (P), we have two different
types of inequality constraints for the control variable: a scalar integral constraint
and an infinite-dimensional box-constraint. To handle the integral constraint∫ T

0

u dt ≤ uc(2.11)

numerically, we introduce the penalized cost functional

Jε(x) = J(x) +
1

ε
I(u) for all x = (c1, c2, u) ∈ X and ε > 0,

where the mapping I : L2(0, T ) → R defined as

I(u) = g

(∫ T

0

u dt− uc

)
,

where we choose g = [ · ]3+ in R and [s]+ = max{0, s}, s ∈ R, denotes the positive part
function.

Remark 2.6. Of course, other choices for g are possible. To analyze second-order
conditions later on, we make use of the fact that g ∈ C2. Moreover, the property
g′′(s) ≥ 0 for all s ∈ R ensures coercivity of the cost functional Jε.

The goal of this section is to analyze the optimal control problem with the pe-
nalized cost. The bilateral control constraints are treated explicitly and enforced
numerically by primal-dual active set strategies; see sections 4 and 5. Lemma 2.7 is
proved in [9, Lemmas 2.7 and 2.8].

Lemma 2.7. The function g is twice differentiable and its second derivative is
Lipschitz-continuous. Moreover, the mapping I : L2(0, T ) → R is weakly continu-
ous. Moreover, I is twice continuously Fréchet-differentiable and its second Fréchet-
derivative is Lipschitz-continuous in L2(0, T ). In particular, the Fréchet-derivatives
of I at u ∈ L2(0, T ) are given by

∇I(u)δu = g′
(∫ T

0

u dt− uc

)∫ T

0

δu dt

and

∇2I(u)(δu, δ̃u) = g′′
(∫ T

0

u dt− uc

)∫ T

0

δu dt

∫ T

0

δ̃u dt.(2.12)

As the integral constraint is already included in the cost Jε by a penalty term,
we replace Ūad by

Uad = {u ∈ L2(0, T ) : ua ≤ u ≤ ub in [0, T ]} ⊂ L∞(0, T )

and set Kad = W (0, T )×W (0, T )×Uad. Now the penalized optimal control problem
has the form

minJε(x) s.t. x ∈ Kad and e(x) = 0.(Pε)

Utilizing Lemma 2.7, the next result can be proved analogously to Theorem 2.5.
Theorem 2.8. There exists at least one optimal solution to (Pε).
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Proof. Because of Lemma 2.7 the mapping I is weakly continuous, so that the
penalized cost functional Jε is weakly lower semicontinuous on X. Thus, the proof is
analogous to that of Theorem 2.5.

In the next proposition we turn to the question whether solutions of (Pε) con-
verges to a solution to (P) if ε tends to zero.

Proposition 2.9. Assume that {εn}∞n=0 ⊂ R is a sequence converging to zero
from above. Let {xn}∞n=0 denote a sequence of optimal solutions to (Pεn). Then there
exists at least one weak accumulation point x∗ ∈ X for {xn}∞n=0. That is, xn′ ⇀ x∗ in
X as n′ → ∞ for some subsequence {xn′}∞n′=0. In addition, every weak accumulation
point x∗ solves (P).

Proof. Since xn = (c1n, c2n, un) ∈ X solves (Pεn), the sequence {un}∞n=0 belongs
to Uad. Thus, ‖un‖L2(0,T ) is bounded by a constant which does not depend on n.
Because of the a priori bound (2.5), the family of pairs {(c1n, c2n)}∞n=0 is also bounded
in W (0, T )×W (0, T ). Since X is reflexive, there exists a subsequence in Kad, denoted
by {xn′}∞n′=0, and an element x∗ = (c∗1, c

∗
2, u

∗) ∈ X such that

xn′ ⇀ x∗ in X as n′ → ∞.(2.13)

Reasoning as in the proof of Theorem 2.5, we find that x∗ ∈ Kad and e(x∗) = 0 in Y ′.
Since xn′ solves (Pεn′ ), we have

Jεn′ (xn′) = J(xn′) +
1

εn′
I(un′) ≤ J(x) +

1

εn′
I(u) = J(x)(2.14)

for all x = (c1, c2, u) ∈ K̄ad. Hence,

0 ≤ I(un′) ≤ εn′
(
J(x) − J(xn′)

)
for all x ∈ K̄ad.(2.15)

Choosing x ∈ K̄ad arbitrarily and using the boundedness of xn′ and thus of J(xn′), we
obtain I(u∗) = 0 from passing to the limit in (2.15), applying Lemma 2.7. Thus, the
integral constraint (2.11) is satisfied for u∗; hence x∗ ∈ Kad holds. Finally, it follows
from weak lower semicontinuity of J and from (2.14) that

J(x∗) ≤ lim inf
n′→∞

J(xn′) ≤ lim inf
n′→∞

J(xn′) +
1

εn′
I(un′) ≤ J(x) for all x ∈ K̄ad

so that x∗ solves (P).

3. Optimality conditions. In section 2 we have introduced the optimal control
problem (Pε) and proved existence of optimal controls. This section is devoted to the
analysis of necessary and sufficient optimality conditions for (Pε).

3.1. Smoothness properties for J and e. We start by investigating differ-
entiability properties of the cost functional as well as of the mapping describing the
equality constraints. The proof of the following result is based on Lemma 2.7. For
more details we refer the reader to [9, Proposition 3.1].

Proposition 3.1. The penalized cost functional Jε and the mapping e are twice
continuously Fréchet-differentiable and their second Fréchet-derivatives are Lipschitz-
continuous on X.

The linear operator ∇(c1,c2)e(x) : W (0, T ) × W (0, T ) → Y ′ has the following
property.

Proposition 3.2. For all x ∈ X, the linearization ∇(c1,c2)e(x) is bijective.
Moreover, for all δx = (δc1, δc2, δu) ∈ N(∇e(x)), we have

‖δc1‖2
W (0,T ) + ‖δc2‖2

W (0,T ) ≤ CN ‖δu‖2
L2(0,T )(3.1)
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for all CN > 0, where N(∇e(x)) denotes the null space of the operator ∇e(x).
For a proof we refer the reader to [9, Proposition 3.2].
Remark 3.3. Proposition 3.2 implies the standard constraint qualification condi-

tion for x∗ (see [28], for example), which in our case has the form(
0
0

)
∈ int

{(
X

∇e(x∗)X

)
−
(

Kad − x∗

Y ′ − e(x∗)

)}

= int{X − (Kad − x∗)} × int{∇e(x∗)X},

(3.2)

where int S denotes the interior of a set S and e′(x∗) is the Fréchet-derivative of the
operator e at x∗. It follows from (3.2) that the set of Lagrange multipliers is nonempty
and bounded; see [25], for instance.

For every ε > 0, the Lagrange functional Lε : X × Y → R associated with (Pε) is
given by

Lε(x, p) = Jε(x) + 〈e(x), p〉Y ′,Y

for x = (c1, c2, u) ∈ X and p = (λ1, λ2, μ1, μ2) ∈ Y . From Proposition 3.1 we conclude
that Lε is twice continuously Fréchet-differentiable and its second Fréchet-derivative
is Lipschitz-continuous.

3.2. First-order necessary optimality conditions. This subsection is de-
voted to the presentation of the first-order necessary optimality conditions for (Pε).
Problem (Pε) is a nonconvex programming problem so that different local minima
might occur. Numerical methods will produce a local minimum close to their starting
point. Therefore, we do not direct our investigation to global solutions of (Pε). We
will assume that a fixed reference solution x̂ε = (ĉε1, ĉ

ε
2, û

ε) ∈ Kad is given satisfying
first- and second-order optimality conditions. Let us define the active sets at x̂ε by
Âε = Âε

− ∪ Âε
+, where

Âε
− = {t ∈ [0, T ] : ûε(t) = ua(t) a.e.} and Âε

+ = {t ∈ [0, T ] : ûε(t) = ub(t) a.e.}.

The corresponding inactive set at xε is given by Îε = [0, T ]\Âε. First-order necessary
optimality conditions are presented in the next theorem.

Theorem 3.4. Let x̂ε = (ĉε1, ĉ
ε
2, û

ε) ∈ Kad be a local solution to (Pε). Then

there exists a unique Lagrange multiplier p̂ε = (λ̂ε
1, λ̂

ε
2, μ̂

ε
1, μ̂

ε
2) ∈ W (0, T )×W (0, T )×

L2(Ω) × L2(Ω) � Y such that the pair (λ̂ε
1, λ̂

ε
2) is weak solutions to the adjoint (or

dual) equations

−(λ̂ε
1)t − d1Δλ̂ε

1 = −k1ĉ
ε
2λ̂

ε
1 − k2ĉ

ε
2λ̂

ε
2 in Q,(3.3a)

−(λ̂ε
2)t − d2Δλ̂ε

2 = −k1ĉ
ε
1λ̂

ε
1 − k2ĉ

ε
1λ̂

ε
2 in Q,(3.3b)

d1
∂λ̂ε

1

∂n
= 0 on Σ,(3.3c)

d2
∂λ̂ε

2

∂n
= 0 on Σ,(3.3d)

λ̂ε
1(T ) = −β1(ĉ

ε
1(T ) − c1T ) in Ω,(3.3e)

λ̂ε
2(T ) = −β2(ĉ

ε
2(T ) − c2T ) in Ω,(3.3f)
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and for i = 1, 2, we have

μ̂ε
i = λ̂ε

i (0) in Ω.(3.4)

Moreover, there is a Lagrange multiplier ξ̂ε ∈ L2(0, T ) associated with the bilateral
inequality constraint satisfying

ξ̂ε|Âε
−
≤ 0, ξ̂ε|Âε

+
≥ 0,(3.5)

and the optimality condition

γ(ûε(t) − ud(t)) +
1

ε
g′
(∫ T

0

ûε dt− uc

)
−
∫

Γc

α(t)λ̂ε
2(t) dx + ξ̂ε(t) = 0(3.6)

holds for almost all t ∈ [0, T ].

Proof. Because of Remark 3.3, there exists a Lagrange multiplier p̂ε=(λ̂ε
1, λ̂

ε
2, μ̂

ε
1, μ̂

ε
2)

∈ Y = [L2(0, T ;H1(Ω))]2 × [L2(Ω)]2 such that

∇(c1,c2)Lε(x̂
ε, p̂ε) = ∇(c1,c2)J(x̂ε) + ∇(c1,c2)e(x̂

ε)∗p̂ε

= 0 in W (0, T ) ×W (0, T ).
(3.7)

In (3.7) the operator ∇(c1,c2)e(x̂
ε)∗ denotes the adjoint of ∇(c1,c2)e(x̂

ε). By Propo-

sition 3.2, ∇(c1,c2)e(x̂
ε)∗ is injective, so p̂ε is unique. Next we prove that λ̂ε

1 and λ̂ε
2

are more regular than suggested by Y and belong to W (0, T ). Condition (3.7) is
equivalent to

0 = ∇(c1,c2)Lε(x̂
ε, p̂ε)(δc1, δc2)

=

∫
Ω

β1(ĉ
ε
1(T ) − c1T )δc1(T ) + β2(ĉ

ε
2(T ) − c2T )δc2(T ) dx

+

∫ T

0

〈(δc1)t(t), λ̂ε
1(t)〉H1(Ω)′,H1(Ω)dt

+

∫ T

0

∫
Ω

d1∇δc1 · ∇λ̂ε
1 + k1(δc1ĉ

ε
2 + ĉε1δc2)λ̂

ε
1 dxdt

+

∫ T

0

〈(δc2)t(t), λ̂ε
2(t)〉H1(Ω)′,H1(Ω)dt

+

∫ T

0

∫
Ω

d2∇δc2 · ∇λ̂ε
2 + k2(δc1ĉ

ε
2 + ĉε1δc2)λ̂

ε
2 dxdt

+

∫
Ω

δc1(0)μ̂ε
1 + δc2(0)μ̂ε

2 dx

(3.8)

for all (δc1, δc2) ∈ W (0, T ) × W (0, T ), in particular for δci(t) = χ(t)ϕ, where χ ∈
C∞

c (0, T ) and ϕ ∈ H1
0 (Ω). Here, C∞

c (0, T ) denotes the space of infinitely differentiable
functions on (0, T ) with compact support. We find∫ T

0

〈(δci)t(t), λ̂ε
i (t)〉H1(Ω)′,H1(Ω)dt =

〈∫ T

0

λ̂ε
i (t)χ̇(t) dt, ϕ

〉
L2(Ω)

= −
〈∫ T

0

(λ̂ε
i )t(t)χ(t) dt, ϕ

〉
H1(Ω)′,H1(Ω)
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for i = 1, 2, where (λ̂ε
i )t denotes the distributional derivative of λ̂ε

i with respect to t.
The remaining terms in (3.8) lead to∫ T

0

∫
Ω

d1∇δc1 · ∇λ̂ε
1 + k1(δc1ĉ

ε
2 + ĉε1δc2)λ̂

ε
1 dxdt

+

∫ T

0

∫
Ω

d2∇δc2 · ∇λ̂ε
2 + k2(δc1ĉ

ε
2 + ĉε1δc2)λ̂

ε
2 dxdt

=

〈∫ T

0

−d1Δλ̂ε
1 − d2Δλ̂ε

2 + (ĉε1 + ĉε2)
(
k1λ̂

ε
1 + k2λ̂

ε
2

)
χdt, ϕ

〉
H1(Ω)′,H1(Ω)

.

Inserting these expressions into (3.8) yields〈∫ T

0

(λ̂ε
1 + λ̂ε

2)tχdt, ϕ

〉
H1(Ω)′,H1(Ω)

=

〈∫ T

0

d1Δλ̂ε
1 + d2Δλ̂ε

2 − (ĉε1 + ĉε2)
(
k1λ̂

ε
1 + k2λ̂

ε
2

)
χdt, ϕ

〉
H1(Ω)′,H1(Ω)

for all χ ∈ C∞
c (0, T ) and ϕ ∈ H1

0 (Ω). Since

d1Δλ̂ε
1 + d2Δλ̂ε

2 − (ĉε1 + ĉε2)
(
k1λ̂

ε
1 + k2λ̂

ε
2

)
∈ L2(0, T ;H1(Ω))

holds and the set

{δc : δc(t) = χ(t)ϕ for χ ∈ C∞
c (0, T ) and ϕ ∈ H1

0 (Ω)}

is dense in L2(0, T ;H1(Ω)), we conclude that (λ̂ε
i )t ∈ L2(0, T ;H1(Ω)′) and conse-

quently λ̂ε
i ∈ W (0, T ) for i = 1, 2. Hence, (3.3a) and (3.3b) are proved. We notice

that for all δci ∈ W (0, T ), i = 1, 2, we have∫ T

0

〈(λ̂ε
i )t(t), δci(t)〉H1(Ω)′,H1(Ω) dt +

∫ T

0

〈(δci)t(t), λ̂ε
i (t)〉H1(Ω)′,H1(Ω) dt

=

∫ T

0

d

dt
〈λ̂ε

i (t), δci(t)〉L2(Ω) dt

= 〈λ̂ε
i (T ), δci(T )〉L2(Ω) − 〈λ̂ε

i (0), δci(0)〉L2(Ω).

(3.9)

Choosing appropriate test functions in W (0, T ), we infer from (3.3a), (3.3b), (3.8),
and (3.9) that (3.3c)–(3.3f) as well as (3.4) are satisfied. Because of optimality the
following optimality inequality holds:

∇uLε(x̂
ε, p̂ε)(u− ûε) ≥ 0 for all u ∈ Uad.

Setting

−〈ξ̂ε, u− ûε〉L2(0,T ) = ∇uLε(x̂
ε, p̂ε)(u− ûε)

=

〈
γ(ûε − ud) −

∫
Γc

αλ̂ε
2 dx, u− ûε

〉
L2(0,T )

+
1

ε
g′
(∫ T

0

ûε dt− uc

)∫ T

0

u− ûε dt

=

〈
γ(ûε − ud) +

1

ε
g′
(∫ T

0

ûε dt− uc

)
−
∫

Γc

αλ̂ε
2 dx, u− ûε

〉
L2(0,T )

(3.10)
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for all u ∈ U , we obtain (3.6). For the proof of (3.5) we refer the reader to [13].

Remark 3.5. From Remark 3.13, uniqueness of the Lagrange multiplier ξ̂ε will
follow later on.

The following corollary provides an a priori estimate for the Lagrange multipliers
λ̂ε

1 and λ̂ε
2 that will be used for the second-order optimality conditions; see section 3.3

and Theorem 3.15.
Corollary 3.6. There exists a constant Cλ > 0 such that

‖λ̂ε
1‖L2(0,T ;L4(Ω)) + ‖λ̂ε

2‖L2(0,T ;L4(Ω))

≤ Cλ

(
‖ĉε1(T ) − c1T ‖L2(Ω) + ‖ĉε2(T ) − c2T ‖L2(Ω)

)
.

(3.11)

For the proof we refer the reader to [9, Corollary 3.6].

3.3. Second-order optimality conditions. In section 3.2 we have investigated
the first-order necessary optimality conditions for (Pε). To ensure that a solution
(x̂ε, p̂ε) satisfying (2.4), x̂ε ∈ Kad, (3.3), and (3.6) indeed solves (Pε), we have to
guarantee second-order sufficient optimality. This is the focus of this section. In
order to introduce the critical cone in Definition 3.9, we recall the notions of tangent
and normal cones.

Definition 3.7. Let K be a convex subset of a Hilbert space Z and z ∈ K. The
set

TK(z) = {z̃ ∈ Z : there exists z(σ) = z + σz̃ + o(σ) ∈ K as σ ↘ 0}

is called the tangent cone at the point z. Moreover, the normal cone NK at the point
z is given by

NK(z) = {z̃ ∈ Z : 〈z̃, ẑ − z〉Z ≤ 0 for all ẑ ∈ K}.

In the case of z �∈ K these two cones are set equal to the empty set.
For K = Kad we have the following characterizations.
Lemma 3.8. Let x = (c1, c2, u) ∈ Kad.
(a) TKad

(x) = W (0, T ) ×W (0, T ) × TUad
(u), where

TUad
(u) = {ũ ∈ L2(0, T ) : ũ(t) ∈ T[ua(t),ub(t)](u(t)) for t ∈ [0, T ] a.e.},

where for a, b, s ∈ R with a ≤ b

T[a,b](s) =

⎧⎨⎩
R+ = {t ∈ R : t ≥ 0} if s = a,
R− = {t ∈ R : t ≤ 0} if s = b,
R otherwise.

(b) NKad
(x) = {0} × {0} ×NUad

(u), where

NUad
(u) = {ũ ∈ L2(0, T ) : ũ(t) ∈ N[ua(t),ub(t)](u(t)) for t ∈ [0, T ] a.e.}.

That is,

ũ(t) ∈

⎧⎨⎩
R+ = {t ∈ R : t ≥ 0} if u(t) = ua(t),
R− = {t ∈ R : t ≤ 0} if u(t) = ub(t),
R otherwise.
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(c) Moreover,

TUad
(ûε) ∩ {ξ̂ε}⊥

= {u ∈ L2(0, T ) : u ≥ 0 on Âε
−, u ≤ 0 on Âε

+, and u = 0 on Âε
±},

(3.12)

where ξ̂ε ∈ NUad
is the Lagrange multiplier introduced in Theorem 3.4. S⊥

denotes the orthogonal complement of a set S, and Âε
± = {t ∈ [0, T ] : ξ̂ε >

0 or ξ̂ε < 0 a.e.} ⊂ Âε.
Proof. The characterization of the tangent and normal cones is a classical result.

For a proof we refer the reader to [29]. What remains to show is (3.12). Because of

(3.10) we have ξ̂ε ∈ NUad
(ûε) satisfying ξ̂ε = 0 on the set [0, T ] \ Âε

±. Suppose that

t ∈ Âε
−. We conclude T[ua(t),ub(t)](û

ε(t)) = R+. Thus, u ∈ TUad
(ûε) implies u ≥ 0 on

Âε
− by part (a). Analogously, u ≤ 0 on Âε

+ holds. Hence,

TUad
(ûε) ∩ {ξ̂ε}⊥ = {ũ ∈ L2(0, T ) : ũ(t) ∈ T[ua(t),ub(t)](û

ε(t)) for t ∈ [0, T ] a.e.}

∩
{
u ∈ L2(0, T ) :

∫
Âε

±

ξ̂εu dt = 0

}
.

Since ξ̂ε > 0 and u ≥ 0 on Âε
− ∩ Âε

±, and ξ̂ε < 0 and u ≤ 0 on Âε
+ ∩ Âε

±, (3.12) holds,
which completes the proof.

Suppose that the point x̄ = (c̄1, c̄2, ū) ∈ X satisfies the first-order necessary
optimality conditions. By Proposition 3.2, there exist unique Lagrange multipliers
p̄ = (λ̄1, λ̄2, μ̄1, μ̄2) ∈ Y and ξ̄ ∈ NUad

satisfying the first-order necessary optimality
conditions

∇xLε(x̄, p̄) + (0, 0, ξ̄)T = 0, x̄ ∈ Kad and e(x̄) = 0.(3.13)

Now we introduce the critical cone at x̄.
Definition 3.9. The critical cone at x̄ is defined by

C(x̄) = {δx ∈ TKad
(x̄) ∩ {(0, 0, ξ̄)}⊥ : δx ∈ N(∇e(x̄))}.

The critical cone at x̄ is the set of directions of nonincrease of the cost that are
tangent to the feasible set {x ∈ Kad : e(x) = 0}. This is formulated in the next lemma.

Lemma 3.10. It follows that ∇Jε(x̄)δx = 0 for all δx ∈ C(x̄).
Proof. Let δx = (δc1, δc2, δu) ∈ C(x̄). From (3.13), δx ∈ N(∇e(x̄)) and δx ∈

{(0, 0, ξ̄)}⊥ we infer that

0 =
(
∇xLε(x̄, p̄) + (0, 0, ξ̄)T

)
δx = ∇Jε(x̄)δx,

which completes the proof.
Now we turn to the second-order necessary optimality conditions. Let δx =

(δc1, δc2, δu) ∈ X. We find

∇2
xLε(x̄, p̄)(δx, δx) =

∫
Ω

β1|δc1(T )|2 + β2|δc2(T )|2 dx

+
1

ε
∇2I(ū)(δu, δu) +

∫ T

0

γ|δu|2 dt

+

∫ T

0

∫
Ω

(2k1λ̄1 + 2k2λ̄2)δc1δc2 dxdt.

(3.14)
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In Theorem 2.8 we have denoted by x̂ε the local solution to (Pε). The associated

unique Lagrange multipliers are p̂ε and ξ̂ε; see Theorem 3.4.
Definition 3.11. The second-order necessary optimality conditions are defined

as

∇2
xLε(x̂

ε, p̂ε)(δx, δx) ≥ 0 for all δx ∈ C(x̂ε).(3.15)

Now let x̄ = x̂ε be a local solution to (Pε).
Theorem 3.12. The point (x̂ε, p̂ε) satisfies the second-order necessary optimality

condition (3.15).
Proof. We apply analogous arguments as in the proof of Theorem 2.7 in [4]. The

equality constraints can be written as

e(x̂ε) ∈ KY = {0} ⊂ Y,

where, of course, KY is a closed convex set. Thus, the result follows provided the
following strict semilinearized qualification condition

0 ∈ int {∇e(x̂ε)((Kad − x̂ε) ∩ {(0, 0, ξ̂ε)}⊥)} ⊂ Y(CQA)

holds. In our case, we have

(Kad − x̂ε) ∩ {(0, 0, ξ̂ε)}⊥ = W (0, T ) ×W (0, T ) ×
((
Uad − ûε

)
∩ {ξ̂ε}⊥

)
.

Let z ∈ Y be arbitrary, close enough to zero. Then (CQA) follows if there exists an

element δx = (δc1, δc2, δu) ∈ W (0, T ) ×W (0, T ) × (Uad − ûε) ∩ {ξ̂ε}⊥ satisfying

∇e(x̂ε)δx = z.(3.16)

Because of Proposition 3.2 the operator ∇(c1,c2)e(x̂
ε) is bijective. Thus, there exists

even a unique pair (δc1, δc2) ∈ W (0, T ) ×W (0, T ) such that

∇(c1,c2)e(x̂
ε)(δc1, δc2) = z −∇ue(x̂

ε)δu

for arbitrary δu ∈ L2(0, T ). This gives (3.16) so that the claim follows.
Remark 3.13. As is proved in [4], condition (CQA) implies uniqueness of the

Lagrange multipliers p̂ε and ξ̂ε.
Definition 3.14. Suppose that x̄ satisfies the first-order necessary optimality

conditions with the associated unique Lagrange multipliers p̄ ∈ Y and ξ̄ ∈ NUad
(ū). At

(x̄, p̄), the second-order sufficient optimality condition holds if there exists κ > 0 such
that

∇2
xLε(x̄, p̄)(δx, δx) ≥ κ‖δx‖2

X for all δx ∈ C(x̄).

Theorem 3.15. If ‖ĉε1(T )− c1T ‖L2(Ω) + ‖ĉε2(T )− c2T ‖L2(Ω) is sufficiently small,
then the second-order sufficient optimality condition is satisfied.

Proof. Let δx = (δc1, δc2, δu) ∈ C(x̂ε) \ {0}. Then, we have

∇2I(ûε)(δu, δu) = 6

[ ∫ T

0

ûε dt− uc

]
+

(∫ T

0

δu dt

)2

≥ 0.
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Recall Gagliardo–Nierenberg’s inequality (see, e.g., [32, p. 81]): for Ω ⊂ R3 there exists
a constant CGN > 0 such that

‖ϕ‖L4(Ω) ≤ CGN ‖ϕ‖3/4
H1(Ω)‖ϕ‖

1/4
L2(Ω) for all ϕ ∈ H1(Ω).

Hence, using Hölder’s and Gagliardo–Nierenberg’s inequality and (2.2) we find∫ T

0

∫
Ω

(
k1λ̂

ε
1 + k2λ̂

ε
2

)
δc1δc2 dxdt

≤
∫ T

0

(
k1 ‖λ̂ε

1(t)‖L4(Ω) + k2 ‖λ̂ε
2(t)‖L4(Ω)

)
‖δc1(t)‖L4(Ω)‖δc2(t)‖L2(Ω) dt

≤
∫ T

0

CGN

(
k1 ‖λ̂ε

1(t)‖L4(Ω) + k2 ‖λ̂ε
2(t)‖L4(Ω)

)
× ‖δc1(t)‖1/4

L2(Ω)‖δc1(t)‖
3/4
H1(Ω)‖δc2(t)‖L2(Ω) dt

≤ CGN

(
k1‖λ̂ε

1‖L2(0,T ;L4(Ω)) + k2 ‖λ̂ε
2‖L2(0,T ;L4(Ω))

)
× ‖δc1‖1/4

C([0,T ];L2(Ω))‖δc1‖
3/4
L2(0,T ;H1(Ω))‖δc2‖C([0,T ];L2(Ω))

≤ CGNC
5/4
W

(
k1‖λ̂ε

1‖L2(0,T ;L4(Ω)) + k2 ‖λ̂ε
2‖L2(0,T ;L4(Ω))

)
‖δc1‖W (0,T )‖δc2‖W (0,T ).

Thus, (3.1) and (3.14) yield

∇2
xLε(x̂

ε, p̂ε)(δx, δx)

≥ γ

2
‖δu‖2

L2(0,T ) +
γ

2C2
N

(
‖δc1‖2

W (0,T ) + ‖δc2‖2
W (0,T )

)
− 2C

5/4
GNC2

W

(
k1‖λ̂ε

1‖L2(0,T ;L4(Ω)) + k2‖λ̂ε
2‖L2(0,T ;L4(Ω))

)
‖δc1‖W (0,T )‖δc2‖W (0,T )

≥ γ

2
‖δu‖2

L2(0,T ) +
(
‖δc1‖2

W (0,T ) + ‖δc2‖2
W (0,T )

)
×
( γ

2C2
N

−K1

(
‖λ̂ε

1‖L2(0,T ;L4(Ω)) + ‖λ̂ε
2‖L2(0,T ;L4(Ω))

))
,

where we set K1 = max(k1, k2)C
5/4
GNC2

W > 0. Because of (3.11) we find

∇2
xLε(x̂

ε, p̂ε)(δx, δx)

≥ γ

2
‖δu‖2

L2(0,T ) +
(
‖δc1‖2

W (0,T ) + ‖δc2‖2
W (0,T )

)
×
( γ

2CN
−K2

(
‖ĉε1(T ) − c1T ‖L2(Ω) + ‖ĉε2(T ) − c2T ‖L2(Ω)

))
with the constant K2 = K1Cλ > 0. Now, for instance, if

‖ĉε1(T ) − c1T ‖L2(Ω) + ‖ĉε2(T ) − c2T ‖L2(Ω) ≤
γ

4K2CN

holds, the second-order sufficient optimality condition is satisfied for the coercivity
constant κ = γ min(1, 1/CN )/2.

Remark 3.16.

(1) Notice that smallness of the two terms ‖ĉεi (T ) − ciT ‖L2(Ω), i = 1, 2, ensures
that

∇2
xLε(x̂

ε, p̂ε)(δx, δx) ≥ κ ‖δx‖2
X for all δx ∈ N(∇e(x̂ε)).
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Since C(x̂ε) ⊂ N(∇e(x̂ε)) holds, the second-order sufficient optimality con-
dition is satisfied; see Definition 3.14.

(2) Arguing as in the proof of Theorem 4.12 in [36] it follows that the second-order
sufficient optimality condition is equivalent to the strong quadratic growth
condition, i.e., equivalent to the existence of two constants �, ζ > 0 such that

Jε(x) ≥ Jε(x̂
ε) + � ‖x− x̂ε‖2

X + o(‖x− x̂ε‖2
X) for all x ∈ Kζ(x̂

ε)

with Kζ(x̂
ε) = {x ∈ Kad : e(x) = 0 and ‖x− x̂ε‖X ≤ ζ}.

4. The primal-dual active set method. In this section, we describe the
primal-dual active set strategy for nonlinear problems and review convergence results.
For more details and for the proofs we refer the reader to [19].

Because of Theorem 2.3 we can define the solution operator

S : L2(0, T ) → W (0, T ) ×W (0, T )

by (c1, c2) = S(u) for u ∈ L2(0, T ), where the pair (c1, c2) ∈ W (0, T )×W (0, T ) is the
solution of (2.4). Introducing the reduced cost functional

Ĵε(u) = Jε(S(u), u),

problem (Pε) can be expressed as

min Ĵε(u) s.t. u ∈ Uad.(P̂ε)

Notice that (P̂ε) is a minimization problem with bilateral control constraints but with
no equality constraints. The gradient of Ĵε at a point ûε ∈ L2(0, T ) is given

∇Ĵε(û
ε) = γ(ûε − ud) +

1

ε
g′
(∫ T

0

ûε dt− uc

)
−
∫

Γc

αλ̂ε
2 dx ∈ L2(0, T ),(4.1)

where (λ̂ε
1, λ̂

ε
2) ∈ W (0, T ) × W (0, T ) solves (3.3) for the state pair (ĉε1, ĉ

ε
2), which in

turn is the solution of (2.4) for the control input ûε.
From Theorem 3.4 we derive that the first-order necessary optimality conditions

〈∇Ĵε(û
ε), u− ûε〉L2(0,T ) ≥ 0 for all u ∈ Uad

are equivalent to

γ(ûε − ud) +
1

ε
g′
(∫ T

0

ûε dt− uc

)
−
∫

Γc

αλ̂ε
2 dx + ξ̂ε = 0 in L2(0, T ),(4.2a)

where the Lagrange multiplier ξ̂ε ∈ NUad
(ûε) associated with the bilateral control

constraints satisfies

ξ̂ε = max
{
0, ξ̂ε + (ûε − ub)

}
+ min

{
0, ξ̂ε + (ûε − ua)

}
in L2(0, T ).(4.2b)

In (4.2b) the functions max and min are interpreted as pointwise a.e. operations. We
next specify the primal-dual active set method.

Algorithm 4.1 (primal-dual active set strategy).
(1) Choose (u0, ξ0) ∈ L2(0, T ) × L2(0, T ), σ > 0 and set k = 0.
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(2) Determine the active sets

Ak
− =

{
t ∈ [0, T ] : uk(t) +

ξk(t)

σ
< ua(t)

}
,

Ak
+ =

{
t ∈ [0, T ] : uk(t) +

ξk(t)

σ
> ub(t)

}
and set Ik = [0, T ] \ (Ak

− ∪Ak
+).

(3) If k ≥ 1 and Ak
+ = Ak−1

+ , Ak
− = Ak−1

− , then STOP.
(4) Solve for (c1, c2, u, λ1, λ2) ∈ W (0, T )×W (0, T )×L2(Ik)×W (0, T )×W (0, T )

the coupled nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c1)t = d1Δc1 − k1c1c2 in Q,

(c2)t = d2Δc2 − k2c1c2 in Q,

d1
∂c1
∂n = 0 on Σ,

d2
∂c2
∂n = uaα on Ak

− × Γc,

d2
∂c2
∂n = ubα on Ak

+ × Γc,

d2
∂c2
∂n = uα on Ik × Γc,

d2
∂c2
∂n = 0 on Σn,

c1(0) = c10 in Ω,

c2(0) = c20 in Ω,

−(λ1)t = d1Δλ1 − k1c2λ1 − k2c2λ2 in Q,

−(λ2)t = d2Δλ2 − k1c1λ1 − k2c1λ2 in Q,

d1
∂λ1

∂n = 0 on Σ,

d2
∂λ2

∂n = 0 on Σ,

λ1(T ) = −β1(c1(T ) − c1T ) in Ω,

λ2(T ) = −β2(c2(T ) − c2T ) in Ω,

γ(u− ud) =
∫
Γc

αλ2 dx− 1
ε g

′( ∫ T

0
ūk dt− uc

)
in Ik

(4.3)

with ūk = ua in Ak
−, ūk = ub in Ak

+, and ūk = u in Ik.

(5) Set (ck+1
1 , ck+1

2 , λk+1
1 , λk+1

2 ) = (c1, c2, λ1, λ2), u
k+1 = ua in Ak

−, uk+1 = ub in
Ak

+, and uk+1 = u in Ik and

ξk+1 =

∫
Γc

αλk+1
2 dx− 1

ε
g′
(∫ T

0

uk+1 dt− uc

)
− γ(uk+1 − ud) in [0, T ].

(4.4)

Set k = k + 1 and go back to step (2).
Remark 4.2.

(1) Notice that (4.3) are the first-order necessary optimality conditions for

min Ĵε(u) s.t. u = ua in Ak
− and u = ub in Ak

+,(P̂k
ε)

which is a minimization problem without any inequality constraints.
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(2) In section 5 we solve (4.3) using an inexact Newton method for (P̂k
ε). The

inexact Newton step is computed by applying the conjugate gradient (CG)
method with negative curvature test (see, e.g., [26, section 6.2]) to the Newton
system (restricted to the inactive set Ik)

∇2Ĵε(ui)|Ik δui|Ik = −∇Ĵε(ui)|Ik for i ≥ 0(4.5)

with zero initial guess δui ≡ 0 in Ak
− ∪ Ak

+ for all i. More precisely, if
R : L2(Ik) → L2(0, T ) is the linear extension-by-zero operator from the
inactive set Ik to (0, T ), then (4.5) reads

∇2Ĵε(ui)(Rδui|Ik , R ·) = −∇Ĵε(ui)(R ·) in L2(Ik) for i ≥ 0.(4.6)

To compute the right-hand side in (4.5) for a given current iterate ui we have
to solve the state and adjoint equations. For each CG step, the solutions of
one linearized state and one adjoint problem have to be computed.

(3) The strategy for choosing the current active sets Ak
− and Ak

+ is based on
convex analysis techniques (see [2, 18]). Because of the simple nature of the
box constraints in (P̂ε) this strategy is related to strategies already used in
[3, 11].

In the case of g ≡ 0, sufficient conditions for global convergence of Algorithm 4.1
were given in [19]. The proof is based theoretically on descent properties of the merit
function Φ : L2(0, T ) × L2(0, T ) → R defined as

Φ(u, ξ) = γ2

∫ T

0

([u− ua]
2
+ + [ub − u]2+) dt +

∫
A−(u)

[ξ]2− dt +

∫
A+(u)

[ξ]2+ dt,

where [x]+ = max{0, x} and [x]− = −min{0, x} denote the positive and negative part
functions, respectively, and A−(u) = {t ∈ [0, T ] : u ≤ ua}, A+(u) = {t ∈ [0, T ] : u ≥
ub}.

By expressing the primal-dual active set method as a partial semismooth Newton
algorithm for (4.2), sufficient conditions for superlinear convergence were also derived
in [19]. Since only the nonlinearity due to the max and min operations is linearized,
whereas u �→ S(u) is not, the method is called a partial semismooth Newton algo-
rithm. Next we specify the nonlinear equation, which is the starting point for proving
superlinear convergence of Algorithm 4.1. First notice that (4.2b) is equivalent to

ξ̂ε = max
{
0, ξ̂ε + σ(ûε − ub)

}
+ min

{
0, ξ̂ε + σ(ûε − ua)

}
for every σ > 0.(4.7)

Choosing σ = γ (an essential prerequisite in proving superlinear convergence) in (4.7)
we find

−ξ̂ε + max
{
0, ξ̂ε + γ(ûε − ub)

}
+ min

{
0, ξ̂ε + γ(ûε − ua)

}
= 0.(4.8)

Inserting the optimality condition (4.2a) into (4.8) we derive

0 = γ(ûε − ud) +
1

ε
g′
(∫ T

0

ûε dt− uc

)
−
∫

Γc

αλ̂ε
2 dx

+ max

{
0,

∫
Γc

αλ̂ε
2 dx− 1

ε
g′
(∫ T

0

ûε dt− uc

)
+ γ(ud − ub)

}

+ min

{
0,

∫
Γc

αλ̂ε
2 dx− 1

ε
g′
(∫ T

0

ûε dt− uc

)
− γ(ua − ud)

}
.

(4.9)
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Notice that

a− b + max{0, b− c} = a− c + max{0, c− b} for all a, b, c ∈ R.

Taking

a = γ(ûε − ud), b =

∫
Γc

αλ̂ε
2 dx− 1

ε
g′
(∫ T

0

ûε dt− uc

)
, c = γ(ub − ud)

we infer from (4.9) that (4.2) is equivalent to

F(ûε) = 0 in L2(0, T )(4.10)

with the nonlinear mapping F : L2(0, T ) → L2(0, T ) given by

F(u) = γ(u− ub)

+ max

{
0, γ(ub − ud) −

∫
Γc

αλ2 dx +
1

ε
g′
(∫ T

0

u dt− uc

)}

+ min

{
0,

∫
Γc

αλ2 dx− 1

ε
g′
(∫ T

0

u dt− uc

)
− γ(ua − ud)

}
for u ∈ L2(0, T ), where λ2 = λ2(u) depends on u via the nonlinear state and the
linear adjoint equations.

Remark 4.3. Note that F is generalized differentiable in the sense of [15]; see
also [35] for a related approach. This infinite-dimensional generalized differentiability
concept of the max and min functions requires a norm gap, which is guaranteed by the
smoothing properties of the mapping u �→ λ2(u): for each u ∈ L2(0, T ), the argument
under the max and min functions which depend on u is an element of L4(0, T ), which

can be seen as follows. First of all, g′(
∫ T

0
u dt − uc) is a scalar. Secondly, with

α ∈ L∞(0, T ;L2(Γc)), we have∫ T

0

∣∣∣∣∫
Γc

αλ2 dx

∣∣∣∣p dt ≤ ‖α‖pL∞(0,T ;L2(Γc))

∫ T

0

‖λ2(t)‖pL2(Γc)
dt.

As the trace operator is continuous from H1/2(Ω) to L2(Γc), there exists a constant
CT > 0 such that

‖ϕ‖L2(Γc)
≤ CT ‖ϕ‖X1/2(Ω) for all ϕ ∈ H1/2(Ω).

Furthermore, by the interpolation inequality ‖ϕ‖H1/2(Ω) ≤ CI‖ϕ‖1/2
H1(Ω)‖ϕ‖

1/2
L2(Ω) for

all ϕ ∈ H1(Ω) holds; see, e.g., [23]. Hence, we have∫ T

0

∣∣∣∣∫
Γc

αλ2 dx

∣∣∣∣p dt ≤ (CTCI)
p ‖α‖pC([0,T ];L2(Γc))

∫ T

0

‖λ2(t)‖p/2H1(Ω)‖λ2(t)‖p/2L2(Ω) dt.

Since λ2 is an element of W (0, T ), we can estimate the second term in the integral

on the right-hand side by ‖λ2‖p/2L∞(0,T ;L2(Ω)) and find that the right-hand side remains

finite for 1 ≤ p ≤ 4.
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Next we turn to the semismooth Newton method, which—in contrast to Algo-
rithm 4.1—also linearizes the mapping u �→ S(u). Moreover, in every iteration of the
semismooth Newton method, only one Newton step toward the solution of step (4) is
carried out. For details, we refer to [10]. Commonly, condition (4.2a) is linear in u
and λ (and y), so δuk does not appear in its linearization; see, for example, [19].

Finally, we mention that the choice of σ = γ is only of theoretical interest. In
the numerical implementation, usually σ is set to a larger value in order to prevent
optimization variables to jump from the upper to the lower bound (or vice versa) in
consecutive iterations; see [31].

5. Numerical examples. In this section, we describe the behavior of the primal-
dual and the semismooth Newton methods by means of some examples of our penal-
ized problem (Pε). All coding is done in MATLAB using routines from the FEM-

LAB 2.2 package concerning the finite element implementation. The given CPU times
were obtained on a standard 1700-MHz desktop PC. They include only the run time
for the core algorithm, excluding the generation of the mesh, precomputing integrals,
and incomplete Cholesky decompositions. The three-dimensional geometry of the
problem is given by the annular cylinder between the planes z = 0 and z = 0.5 with
inner radius 0.4 and outer radius 1.0 whose rotational axis is the z-axis (Figure 5.2).
The control boundary Γc is the upper annulus, and we use the control shape function

α(t, x) = exp(−5[(x− 0.7 cos(2πt))2 + (y − 0.7 sin(2πt))2]);(5.1)

see Figure 5.1. Note that α corresponds to a nozzle circling for t ∈ [0, 1] once around
in counterclockwise direction at a radius of 0.7. For fixed t, α is a function which
decays exponentially with the square of the distance from the current location of the
nozzle.

Fig. 5.1. Control shape function α(t, x) at t = 0.0, t = 0.25, and t = 0.5.

The “triangulation” of the domain Ω by tetrahedra is also shown in Figure 5.2. It
was created using an initial mesh obtained from meshinit(fem, “Hmax,” 0.4). As the
geometry suggests that much of the reaction will take place near the top surface Γc

of the annular cylinder, we refine this initial mesh near the top using the command
meshinit(fem, “Hexpr,” “0.4*(0.5 - z)+0.10,”. . . ). The final mesh consists of 1797
points and 7519 tetrahedra. In the time direction, we use T = 1 and partition the
interval into 100 subintervals of equal lengths. The values of the control u at the
interval endpoints serve as optimization variables. We use the semi-implicit Euler
time integration scheme for the state equations (2.3a)–(2.3b), where the nonlinearities
are treated as explicit terms, i.e., they are always taken from the previous time step.
In the adjoint equation, we use the same semi-implicit scheme, i.e., the right-hand side
terms in (3.3a)–(3.3b) are taken from the previously computed time step. The elliptic
problem which arises on each time level in the state and adjoint equations is solved



A PRIMAL-DUAL ACTIVE SET METHOD 487

Fig. 5.2. Domain Ω ⊂ R3 and its triangulation with tetrahedra.

using the conjugate gradient method with incomplete Cholesky preconditioning. Note
that the preconditioner needs to be computed only once since the coefficient matrices
are the same in each time step, provided the time step lengths are all identical.

The gradient of the reduced cost functional ∇Ĵε given in (4.1) is then assem-
bled using the precomputed expressions

∫
Γc

α(ti, x) dx. This strategy clearly follows
the paradigm of optimize-then-discretize. Consequently, on the discrete level, the
gradient and also the Hessian of the reduced cost functional are evaluated only to
a certain accuracy, which depends on the level of discretization. Hence, even if the
reduced Hessian system (4.5) was solved to full machine precision, the discrete so-
lution of (3.6) would in general only be found up to a residual whose size depends
on the level of discretization. For the discretization parameters given above, we used
‖∇Ĵε(u

n)|In‖L2(0,T ) ≤ 3× 10−3 as a termination criterion, which is evaluated by set-

ting to zero the components of ∇Ĵε(u
n) which correspond to either of the active sets

An
+ or An

−. Of course, coincidence of the active sets on two consecutive iterations is
also required for the algorithm to terminate.

5.1. Example 1. In the first example, we use the uniform control bounds

ua ≡ 1, ub ≡ 5.(5.2)

Controlling the second substance, we wish to steer the concentration of the first sub-
stance to zero at the terminal time T = 1, i.e., we choose

β1 = 1, β2 = 0, c1T ≡ 0.(5.3)

The control cost parameter is γ = 10−2, and the desired control is ud = 0.
The chemical reaction is governed by (2.3a)–(2.3b) with parameters

d1 = 0.15, d2 = 0.20, k1 = 1.0, k2 = 1.0.(5.4)

As initial concentrations, we use

c10 ≡ 1.0, c20 ≡ 0.0.(5.5)

The discrete optimal solution without integral constraint (2.11) yields∫ T

0

ûε(t) dt = 4.2415, Ĵε(û
ε) = 0.3186.(5.6)
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Table 5.1

Example 1 for ε = 1 solved with the primal-dual active set method.

n |An
+| |An

−| ‖∇Ĵε(un)|In‖ #CG ‖r‖ α

1 0 0 5.8320E–02 2 2.3835E–03 5.0000E–01
3.2408E–02 3 7.2951E–04 1.0000E+00
4.6224E–03 4 1.7267E–05 1.0000E+00
2.3110E–04

2 15 15 7.3888E–03 3 4.0316E–05 1.0000E+00
1.0929E–03

3 19 15 3.3424E–03 3 1.4936E–06 1.0000E+00
1.9500E–04

Run time: 527 s Objective: 0.3256∫ T

0
u(t) dt = 3.5803

In order for this constraint to become relevant, we choose uc = 3.5 and enforce it
using the penalization parameter ε = 1. Below, we also study the dependence on ε of
the solution and of the performance of the algorithms.

The numerical solution is obtained once using the primal-dual (Table 5.1) and
once using the semismooth Newton method (Table 5.2), from a feasible initial guess
u0 ≡ 3. In both cases, the reduced Hessian system (4.5) was solved using the conjugate
gradient method, although due to the use of an optimize-then-discretize strategy,
the matrix we obtain as an approximation to the reduced Hessian ∇2Ĵε(u

n) is only
approximately symmetric. The discrete analogue of (4.6) is

R�∇2Ĵε(ui)R δui|In = −R�∇Ĵε(ui) for i ≥ 0.(5.7)

This linear system of equations is of size 100 minus the cardinality of the active sets,
|An

+| and |An
−|. Here, R is derived from the identity matrix by canceling the columns

whose indices belong to either of the active sets. Our CG algorithm solves (5.7) by
evaluating ∇2Ĵε(ui) δui and then disregarding the active components. It also respects
the discrete L2(0, T )-inner product. As the solution of (5.7) required only a few CG
steps (Tables 5.1 and 5.2), no preconditioning was used here. Our CG method also
features a coercivity check: should a direction of negative curvature be encountered,
the CG iteration is terminated prematurely and we continue with the line search (see
below). Additionally, we refer the reader to [12] for modification techniques of the
Hessian matrix in the absence of sufficient coercivity.

The parameter σ which enters step (2) of Algorithm 4.1 (determining the active
sets) was chosen as σ = 102. To determine the active and inactive sets Ak

−, Ak
+,

and Ik, respectively, we check the corresponding inequalities pointwise at each time
gridpoint. The solution is shown in Figures 5.3 and 5.4. Recall that without penal-

ization, the optimal solution yielded an integral value of
∫ T

0
ûε(t) dt ≈ 4.24, while

with the penalization parameter ε = 1, we are down to
∫ T

0
ûε(t) dt ≈ 3.58 which only

marginally violates the bound of uc = 3.5.

The primal-dual algorithm. In order to achieve local quadratic convergence,
the conjugate gradient method inside the primal-dual algorithm for (4.5) was termi-
nated when ‖r‖ ≤ η · ‖∇Ĵε(u

n)‖, where r denotes the residual, ‖ · ‖ stands for the
L2-norm on [0, T ], and η = min{0.5, ‖∇Ĵε(u

n)‖}. Finally, an Armijo backtracking
line search was employed in the direction δun obtained from (4.5) with trial step
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Table 5.2

Example 1 for ε = 1 solved with the semismooth Newton method.

n |An
+| |An

−| ‖∇Ĵε(un)|In‖ #CG ‖r‖
1 0 0 5.8320E–02 4 6.8630E–05
2 15 8 5.4427E–01 3 9.1017E–05
3 22 12 2.3929E–01 2 8.3430E–05
4 19 13 6.4804E–02 2 6.0758E–05
5 19 14 1.3049E–02 1 8.9123E–05
6 19 14 1.2480E–03
7 18 14 1.2489E–03

Run time: 674 s Objective: 0.3256∫ T

0
u(t) dt = 3.5828
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Fig. 5.3. Example 1: optimal control u (left) and control constraint multiplier ξ for ε = 1.

lengths αk = 2−k, k = 0, 1, 2, etc. A step of length αk was accepted whenever
Ĵε(u

n + αkδu
n) ≤ Ĵε(u

n) + 10−4 · d
dα Ĵε(u

n + αδun)|α=0.

The semismooth Newton method. In the case of the semismooth Newton
method (Table 5.2), the reduced Hessian system (4.5) was also solved inexactly. Here,
the conjugate gradient iteration was terminated when ‖r‖ ≤ 3 × 10−4. That is, we
use a constant threshold here which does not depend on the progress in the outer
iteration.

Comparing the solutions. Both methods obtained the solution depicted in
Figures 5.3 and 5.4 within 15 CG iterations in the case of the primal-dual active
set method and 12 CG iterations in the case of the semismooth Newton method.
Note, however, that the final residual ‖∇Ĵε(u

n)|In‖ achieved in the primal-dual run is
smaller since the residual only scarcely falls short of the desired tolerance of 3×10−3 in
the next to last Newton step. The primal-dual and the semismooth Newton methods
appear equally well-suited for this problem. They proved to be robust with respect
to the choice of the initial guess.

Dependence on the penalty parameter ε. For our chosen γ = 10−2 and ε =
200 the terms in the cost functional involving the control variable and the penalized
integral constraint have the same weights. In the case of smaller values for ε > 0
(see our tests below) the penalization term becomes more significant. As mentioned
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Fig. 5.4. Example 1 for ε = 1: concentrations of substances 1 (left) and 2 (right) at times
t = 0.25, t = 0.50, t = 0.75, and t = 1.00.
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Fig. 5.5. Example 1: optimal control u for penalty parameters ε = 100, 10, 1, 0.1.

Table 5.3

Example 1 for various values of ε solved with both methods.

Primal-dual active set Semismooth Newton

ε
∫ T

0
u(t) dt #CG

∫ T

0
u(t) dt #CG

100 3.9811 8 3.9865 9
10 3.7203 12 3.7214 11
1 3.5803 15 3.5828 12

0.1 3.5281 18 3.5266 15
0.01 3.5086 21 3.5091 16

in Proposition 2.9, the solutions of the penalized problem (Pε) converge weakly to a
feasible solution for the problem with strict integral constraint (P) as ε ↘ 0. This
can be observed from Figure 5.5 and Table 5.3. One also notices that the problem
becomes numerically more challenging as ε approaches zero.

5.2. Example 2. The second example was designed to be numerically more chal-
lenging. Recall that in the first example, the integral constraint was chosen such that
it required a rather moderate modification of the optimal solution without integral
constraint. To obtain a contrasting situation, we now use γ = 10−3 as a weight for
the control cost and uc = 1.8 as a bound in the integral constraint. All other data
are taken over from Example 1, including ε = 1. Note that the smaller γ leads to
an increased control action, while the lowered integral constraint bound has the op-
posite effect. The optimal solution is depicted in Figure 5.6. It has been obtained
with the primal-dual active set method as described for Example 1. One immediately
observes that the active sets have an interesting structure in this example. In par-
ticular, when the control enters the lower bound for the first time, the constraint is
only very weakly active. That is, the corresponding multiplier is close to zero, which
makes proper identification of the active sets a challenge for both the primal-dual and
semismooth Newton methods.

Table 5.4 shows the convergence history of the primal-dual active set algorithm
again from an initial guess of u0 ≡ 3. The angle between the search direction and the
negative reduced objective’s gradient is also given. The step length in the line search
algorithm was always 1.
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Fig. 5.6. Example 2: optimal control u (left) and control constraint multiplier ξ for ε = 1.

Table 5.4

Example 2 with ε = 1 solved with the primal-dual active set method.

n |An
+| |An

−| ‖∇Ĵε(un)|In‖ #CG ‖r‖ Angle Objective Penalty

1 0 0 4.2473E+00 1 4.1407E–02 0.00◦ 6.0826E–01 2.2882E–01
1.0379E+00 1 4.4998E–02 0.00◦ 4.4013E–01 3.6003E–02
2.3973E–01 1 4.7176E–02 0.00◦ 4.2334E–01 9.0226E–03
5.8519E–02 6 2.3392E–03 52.52◦ 2.4420E–01 2.0718E–03
1.2424E–02 7 7.7037E–05 36.58◦ 2.2946E–01 1.2367E–03
2.2656E–03

2 52 21 5.3326E+00 1 1.5598E–02 0.00◦ 1.1638E+00 8.2217E–01
1.3115E+00 1 2.3360E–02 0.00◦ 5.1497E–01 1.1913E–01
3.0751E–01 1 2.7113E–02 0.00◦ 4.4900E–01 2.5718E–02
6.4022E–02 2 2.4967E–03 62.19◦ 3.8344E–01 7.5459E–03
8.0378E–03 5 5.4365E–06 61.35◦ 3.8051E–01 5.9262E–03
1.6748E–04

3 17 38 4.9186E+00 1 8.4897E–03 0.00◦ 8.2642E–01 4.9814E–01
1.2121E+00 1 9.4278E–03 0.00◦ 4.3181E–01 7.1600E–02
2.8619E–01 1 9.9664E–03 0.00◦ 3.9097E–01 1.4939E–02
5.7817E–02 2 2.7543E–03 76.73◦ 3.8068E–01 6.5030E–03
6.4547E–03 7 1.5756E–05 66.44◦ 3.7873E–01 5.5492E–03
5.4716E–05

4 18 35 7.0924E–01 1 5.0034E–03 0.00◦ 4.0114E–01 3.6886E–02
1.5946E–01 1 5.6519E–03 0.00◦ 3.8642E–01 1.0484E–02
2.7040E–02 3 5.5633E–04 76.80◦ 3.8303E–01 6.3845E–03
1.6097E–03

5 14 50 2.1543E–01 1 1.2975E–03 0.00◦ 3.8592E–01 1.3592E–02
4.0717E–02 1 1.3730E–03 0.00◦ 3.8428E–01 7.1675E–03
3.9585E–03 7 3.8834E–06 72.65◦ 3.8402E–01 6.5111E–03
3.7167E–05

6 15 52 3.5305E–02 1 6.8442E–04 0.00◦ 3.8416E–01 7.0777E–03
3.1016E–03 5 8.4937E–07 75.66◦ 3.8410E–01 6.5734E–03
2.8178E–05

7 15 53 6.0990E–03 2 2.2282E–05 49.47◦ 3.8410E–01 6.6022E–03
1.2872E–04

Run time: 2278 s Objective: 0.3841∫ T

0
u(t) dt = 1.9876
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We observe that significantly more outer iterations are necessary in order to deter-
mine the active sets. Also, in every first Newton step, the primal-dual method starts
over with a fairly large contribution of the penalty part I(u)/ε to the objective. The
first Newton steps taken all aim to reduce mainly this part of the objective. This can
be seen from the zero angle between the search direction and the negative objective
gradient. In other words, the reduced Hessian matrix is a multiple of the identity
matrix, being dominated by ∇2I(u)/ε (see (2.12)).
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Abstract. The single-agent multi-armed bandit problem can be solved by an agent that learns
the values of each action using reinforcement learning. However, the multi-agent version of the
problem, the iterated normal form game, presents a more complex challenge, since the rewards
available to each agent depend on the strategies of the others. We consider the behavior of value-
based learning agents in this situation, and show that such agents cannot generally play at a Nash
equilibrium, although if smooth best responses are used, a Nash distribution can be reached. We
introduce a particular value-based learning algorithm, which we call individual Q-learning, and use
stochastic approximation to study the asymptotic behavior, showing that strategies will converge to
Nash distribution almost surely in 2-player zero-sum games and 2-player partnership games. Player-
dependent learning rates are then considered, and it is shown that this extension converges in some
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1. Introduction. We will study value-based learning agents in the multi-agent
multi-armed bandit problem (more commonly known as an iterated normal form
game). These simple agents adapt in a very similar manner to the reinforcement
learning algorithm used by Sutton and Barto (1998) in the single-agent case. How-
ever, the multi-agent setting presents a significantly more complex problem, since the
rewards available to each agent depend on the strategies of all the other learners and
hence are not stationary.

In this paper we will show how to study the asymptotic behavior of these agents
using the ODE method of stochastic approximation. The resulting dynamical systems
can be analyzed to prove that convergence to equilibrium must occur for 2-player zero-
sum games and 2-player partnership games (Proposition 4.2). However, it is shown
that convergence does not occur for some specific games known to cause difficulties
for all learning algorithms; player-dependent learning rates are then introduced, and
convergence can then be proved to occur in a larger class of games (Proposition 5.4
and Corollary 5.6).

One of the best studied models of adaptation in iterated normal form games is
fictitious play (Brown (1951), Fudenberg and Levine (1998)). However, this paradigm
requires each player to know her own reward function, to observe the actions of
all players, and to calculate expected rewards from this information. While this
is realistic in some situations, it is clear that players of a game such as the stock
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market, or animals involved in evolutionary games (Maynard Smith (1982)), do not
know the relevant reward structures, while in potential applications of multi-agent
learning (e.g., Boyan and Littman (1994), Singh and Bertsekas (1997), Crites and
Barto (1998)) these requirements are also frequently not satisfied.

Therefore we study models of adaptation under which agents simply respond to
observations of the rewards they receive for playing actions, as in the simple and
successful approach used by Sutton and Barto (1998) to solve the single-agent multi-
armed bandit problem. Agents estimate the value of each action, and play a strategy
that is a simple function of these estimates; we will call such agents value-based learn-
ers. These learners take no account of the presence of other players of the game—the
only information used is the reward received for each action played. Recent neuro-
physiological data from rhesus monkeys trying to perform a repetitive task (Glimcher,
Dorris, and Bayer (2005)) suggests that value-based learning is actually employed in
nature, adding extra interest to our investigations.

Other current approaches to learning in games include actor-critic learning,
hypothesis-based learning, consistent learning, and alternative reinforcement learn-
ing models based on Roth and Erev (1995). Our value-based learning scheme com-
pares favorably with these in terms of simplicity, form of convergence, and structure,
respectively.

The Roth and Erev (1995) model of learning is the standard model of reinforce-
ment learning in the game theory community. However, it has the disadvantages that
it requires all rewards to be positive, and it uses rewards as “reinforcement signals”
instead of information about the values of actions, despite the fact that strategies
and values are “dimensionally different” quantities—strategies are probability distri-
butions whereas rewards are arbitrary real numbers (the same criticism can be made
of stimulus-response learning (Börgers and Sarin (1997))).

Actor-critic learning is a more sophisticated framework that explicitly links re-
wards and strategies. In this model, agents maintain separate value functions and
strategies and map the value function to strategy space in order to update the strat-
egy. It has been used in several recent approaches to learning in games (Borkar
(2001), Bowling and Veloso (2002), Leslie and Collins (2003)), but, in contrast with
the value-based approach considered in this paper, the extra complication involved in
separating the values and the strategies is unnecessary and overly sophisticated when
applied in a single-agent setting.

A different approach to the problem of learning in games has been to develop
consistent (Hannan (1957)) reinforcement learning procedures (Baños (1968), Meg-
gido (1980), Auer et al. (1995), Hart and Mas-Colell (2001)). Hart and Mas-Colell
(2000) show that the long-run average actions of players using a consistent algorithm
will converge to a correlated equilibrium of the game (Aumann (1974)) (as opposed
to a classical Nash equilibrium). However, it is often difficult to characterize the cor-
related equilibria (Fudenberg and Tirole (1991)), and the convergence is in the sense
of the average action played, instead of convergence of actual play as developed in
this paper.

An even more sophisticated framework is the hypothesis-testing formulation re-
cently proposed by Foster and Young (2003). Here the players formulate hypotheses
about opponent strategies and repeatedly test these hypotheses against observed play.
It is shown that play is close to a Nash equilibrium of the repeated game formulation
most of the time. However, the sophistication required from the players is greater
than for virtually all other algorithms in the literature, and the scheme is clearly not
applicable in the minimal information setting we consider here.
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It is appropriate to comment here on a recent result of Hart and Mas-Colell (2003)
showing that no “uncoupled” adaptive dynamics can converge to equilibrium in all
games. The dynamics we consider in this paper are certainly uncoupled, and indeed
the dynamics resulting from any system where players do not observe opponent payoffs
must necessarily be uncoupled. However, as we shall see later, convergence to Nash
distribution may be a more attainable goal than convergence to Nash equilibrium (see
section 2 for details). Furthermore, the player-dependent learning rates introduced in
section 5 are a further step away from the framework studied by Hart and Mas-Colell
(2003), thus allowing convergence to be proved for a larger class of games than has
been previously achieved.

This paper is therefore an analysis of a simple and intuitive learning procedure
applied in the setting of normal form games with minimal information available to
the players. In section 2 we discuss some difficulties faced by value-based learners in
games, and propose the use of smooth best responses (also known as softmax action
selection). This motivates our individual Q-learners, introduced in section 3, where
we show how to characterize their behavior using stochastic approximation (Benäım
(1999)). The behavior of these learners in 2-player games is analyzed in section 4,
where we show that strategy evolution is closely related to the smooth best response
dynamics (Hofbauer and Hopkins (2005)); this is the same dynamical system that
characterizes stochastic fictitious play (Benäım and Hirsch (1999)), despite the fact
that individual Q-learning uses significantly less information than stochastic fictitious
play. However, previous work (Leslie and Collins (2003)) suggests that convergence
to a fixed point can be proved to occur in a larger class of games if player-dependent
learning rates are used to break symmetry between the players; this is studied in sec-
tion 5. A problem with player-dependent learning rates is that the analytical methods
so far developed do not apply for all games; section 6 uses graphical representations
of games to investigate classes of games in which player-dependent learning rates can
be analyzed.

2. Value-based players in games. In this section we will introduce our nota-
tion and discuss some problems faced by value-based players of games. In particular,
we will show that value-based players cannot generally play at a Nash equilibrium,
but if smooth best responses are used, equilibrium play becomes possible (although
this will no longer be at the classical Nash equilibrium).

We start by introducing our notation and presenting a familiar example. A normal
form game consists of N players, where each player i ∈ {1, . . . , N} has a finite set Ai

of actions and a reward function ri : A1 × · · · × AN → R. When the game is played,
each player i ∈ {1, . . . , N} selects an action ai ∈ Ai and then receives a reward which
has expected value ri(a1, . . . , aN ); each player tries to maximize her expected reward.
A traditional 2-player example is rock-scissors-paper, where the action set for each
player is {Rock, Scissors, Paper}, and the reward functions are given in the payoff
matrix

Rock Scissors Paper
Rock

Scissors
Paper

⎛⎝ (0, 0) (1,−1) (−1, 1)
(−1, 1) (0, 0) (1,−1)
(1,−1) (−1, 1) (0, 0)

⎞⎠,
(2.1)

where player 1’s action determines the row, player 2’s action determines the column,
and an entry (x, y) means that player 1 receives reward x and player 2 receives reward
y. Note that this is a 2-player zero-sum game, where for any joint action (a1, a2) the
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rewards satisfy r1(a1, a2) + r2(a1, a2) = 0. We will also have occasion to consider
partnership games, where for any joint action the reward given to each player is
the same.

A mixed strategy for player i is an element πi ∈ Δi, where Δi is the set of prob-
ability distributions over the action space Ai; we will write πi(ai) for the probability
that player i selects action ai when using strategy πi. There are unique multilin-
ear extensions of the reward functions, also denoted ri, to the joint strategy space
Δ = Δ1 × · · · × ΔN , and in further abuse of notation we will write ri(ai, π−i) (resp.,
ri(πi, π−i)) for the expected reward that player i will receive if she plays action ai

(resp., strategy πi) and the other players select actions according to the opponent
mixed strategy π−i = (π1, . . . , πi−1, πi+1, . . . , πN ).

Nash (1950) defined the classical solution concept for normal form games by
observing that a rational player will not play a strategy πi that does not maximize
her expected reward given the opponent strategy π−i. Thus a Nash equilibrium is a
joint strategy π̃ ∈ Δ satisfying, for each i,

ri(π̃) ≥ ri(πi, π̃−i) for any πi ∈ Δi.

Nash (1950) showed that at least one Nash equilibrium exists for any normal form
game. In our rock-scissors-paper example, it is well known that there is a unique Nash
equilibrium where each player plays the mixed strategy (1/3, 1/3, 1/3), but in general
there can be many Nash equilibria of a game. The problem of equilibrium selection
(i.e., when faced with a game, how should players decide which Nash equilibrium
strategy to play when many might exist) can be seen as a motivating factor for the
study of learning in games (Fudenberg and Levine (1998)). An alternative perspective
is to consider the Nash equilibria of a game as the only points to which a sensible
learning procedure should converge—note that if only one player is present, then a
Nash equilibrium is simply the action which returns the highest expected reward.

However, value-based approaches, as used by Sutton and Barto (1998) in the
single-agent problem, encounter problems with Nash equilibria. At a Nash equilib-
rium, any action played by player i with positive probability will receive expected
reward maxai∈Ai ri(ai, π̃−i), yet the equilibrium strategy might well require these
maximizing actions to be played with specific and possibly unequal probabilities. For
example, consider the game with payoff matrix(

(2, 0) (0, 1)
(0, 2) (1, 0)

)
,

which has a unique equilibrium where π1 = (2/3, 1/3) and π2 = (1/3, 2/3). At
this equilibrium, both actions of both players get expected reward 2/3, yet player 1
must favor action 1, and player 2 must favor action 2. Thus play at an equilibrium
is not possible when the strategies played are restricted to be simple functions of
the expected rewards (unless these functions are asymmetric under reordering of the
actions).

A solution to this problem lies in using smooth best responses, which can also
be considered as arising from a Bayesian uncertainty about the rewards (Harsanyi
(1973)) and are closely related to the softmax exploration method of reinforcement
learning (Sutton and Barto (1998)). If player i has estimates Qi(ai) of the values
of actions ai ∈ Ai, then a smooth best response βi(Qi) ∈ Δi to these estimates is



INDIVIDUAL Q-LEARNING IN NORMAL FORM GAMES 499

given by

βi(Qi) = argmax
πi∈Δi

{ ∑
ai∈Ai

πi(ai)Qi(ai) + τvi(πi)

}
.

Here τ > 0 is a temperature parameter, and vi : Δi → R is a player-dependent
smoothing function, which is a smooth, strictly differentiably concave function such
that as πi approaches the boundary of Δi, the slope of vi becomes infinite (Fudenberg
and Levine (1998)). As the temperature parameter τ → 0, βi(Qi) approaches the
set of best responses (i.e., strategies that select only actions ai maximizing Qi(ai)).
However, while there may be many best responses (e.g., suppose all the Q values are
equal), the conditions on vi imply that there is a unique smooth best response given
τ and vi (Fudenberg and Levine (1998)).

A familiar example of a smooth best response is Boltzmann action selection.
Under this scheme, the smoothing functions are

vi(πi) = −
∑

ai∈Ai

πi(ai) log πi(ai),

resulting in the smooth best response function

βi(Qi)(ai) =
eQ

i(ai)/τ∑
bi∈Ai eQi(bi)/τ

.(2.2)

The use of smooth best responses means that, in general, Nash equilibria are no
longer fixed points in strategy space, and an alternative equilibrium concept must be
defined. (For example, consider a 1-player game with a unique optimal action; the
conditions on v1 mean that all actions are played with positive probability, which is
clearly not a Nash equilibrium.) Given a set of smooth best response functions, βi,
we define a Nash distribution to be a joint mixed strategy π ∈ Δ such that, for each i,

πi = βi(ri(·, π−i));(2.3)

i.e., each player plays a smooth best response to the rewards arising from opponent
play. Brouwer’s fixed point theorem shows that such distributions must exist; Govin-
dan, Reny, and Robson (2003) show that for small temperatures τ , the Nash equilibria
of a game are approximated by Nash distributions (the proof of Harsanyi (1973) is
insufficient in this case, because it relies on perturbations of the rewards having com-
pact support). Note that the Nash distributions depend on the smooth best response
functions βi (through the particular choices of τ and vi) as well as on the reward func-
tions ri—for the remainder of this paper we will assume that any particular player
uses a fixed smooth best response function for all time.

Thus we have shown that a value-based approach cannot result in Nash equi-
librium play in general games but can result in strategies that are close to a Nash
equilibrium if players use smooth best responses. In the next section we will introduce
a value-based learning algorithm incorporating this idea, which can therefore converge
to a Nash distribution.

3. Individual Q-learning. Sutton and Barto (1998) show that a simple rein-
forcement learning scheme can be used to estimate action values in a single-agent
task. The basic algorithm is given by

Qn+1(a) = Qn(a) + λn+1I{an=a} {Rn −Qn(a)} for each a ∈ A,(3.1)
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Table 1

Individual Q-learning.

Each player i selects an action ain using the strategy βi(Qi
n), receives reward Ri

n, and
then updates Qi

n according to

Qi
n+1(a

i) = Qi
n(ai) + λn+1I{ai

n=ai}
Ri

n −Qi
n(ain)

βi(Qi
n)(ain)

for each ai ∈ Ai,(3.2)

where {λn}n≥1 is a deterministic sequence of learning parameters satisfying∑
n≥1

λn = ∞,
∑
n≥1

(λn)2 < ∞.(3.3)

where an is the action selected at time n, and Rn is the subsequent reward. A similar
scheme appears to fit recent neurophysiological data measured from the brains of
rhesus monkeys learning to perform a repetitive task (Glimcher, Dorris, and Bayer
(2005)). In applying (3.1), actions are selected in such a way that each action is
played infinitely often, but as n → ∞ the probability of playing any action which
does not have a maximal Q value tends to 0. We will study an analogous system
in the equivalent multi-agent task; N players are faced with a normal form game,
which they play repeatedly, learning Q values by observing rewards. The algorithm
we study is given in Table 1.

This scheme was originally suggested by Fudenberg and Levine (1998); it will
be noticed that it is very similar to the standard reinforcement learning model (3.1).
The first difference is that a player’s strategy at any stage of the game is determined
by the algorithm (as opposed to the single-agent case, where there is no need to
be specific about action choices at any particular play). This is because the rewards
observed by a particular player depend crucially on the strategies of the other players,
so these strategies must be carefully specified. The second difference is that the reward
prediction error (Ri

n −Qi
n(ain)) (Sutton and Barto (1998)) is divided by βi(Qi

n)(ain),
the probability with which ain was selected. This can be viewed as compensating
for the fact that actions played with low probability do not receive frequent updates
of their Q values, so when they are played any reward prediction error must have
greater influence on the Q value than if frequent updates occur. Further, we will see
in section 4 that this division by βi(Qi

n)(ain) results in a system that is closely related
to the (well-studied) smooth best response dynamics (Hofbauer and Hopkins (2005)).

The conditions (3.3) on the learning parameters {λn}n≥1 mean that standard
theorems of stochastic approximation can be used (Benäım (1999)). The interested
reader may wish to consult Benäım and Hirsch (1999) for an introduction to the
ODE method of stochastic approximation in the context of game theory. Writing
Qn = (Q1

n, . . . , Q
N
n ), and writing β−i(Qn) for the opponent mixed strategies resulting

from the values Qn, note that for each i and ai

E[Qi
n+1(a

i) −Qi
n(ai) |Qn] = λn+1 × βi(Qi

n)(ai) × ri(ai, β−i(Qn)) −Qi
n(ai)

βi(Qi
n)(ai)

= λn+1

{
ri(ai, β−i(Qn)) −Qi

n(ai)
}
.

The following lemma follows immediately from the results of Benäım (1999).
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Lemma 3.1. The values Qn resulting from the individual Q-learning algorithm
(3.2) converge almost surely to a connected internally chain-recurrent set 1 of the flow
defined by the Q-learning ODE

d

dt
qit(a

i) = ri(ai, β−i(qt)) − qit(a
i) for each i and ai,(3.4)

provided that the Qn remain bounded for all n.
This assumption of boundedness could be dropped if we used either fixed trunca-

tion to a bounded space (Kushner and Yin (1997)) or randomly varying truncations
(Chen and Zhu (1986)); the former will change the differential equations to be studied
a little, while the latter will have no consequence on the analysis of the asymptotic
behavior. However, the purpose of this paper is not to investigate such issues, and
in the numerical experiments carried out there were no problems with values grow-
ing large. Therefore in the interests of space we will be content to keep this as an
assumption throughout the rest of the paper.

The first thing to notice about this algorithm is that convergence to a point can
occur only at Nash distribution values. This follows from what is essentially a law of
large numbers result, saying that convergence to a point can occur only if the expected
change at that point is zero. Thus such a point must satisfy Qi(ai) = ri(ai, β−i(Q)) for
each i and ai. However, if we write πi = βi(Qi), this translates to πi = βi(ri(·, π−i)),
which is precisely the definition of a Nash distribution (2.3). The learning algorithm
can therefore be applied blindly in any game, and if convergence occurs, a Nash
distribution must have been reached.

Our next step in analyzing this system is to consider whether the values of the
players are ever consistent with the structure of the game; for example, if in a zero-sum
game the values ever actually sum to zero. Writing

B = {(r1(·, π−1), . . . , rN (·, π−N )) : π ∈ Δ}

for the set of values that could arise from a joint mixed strategy, we call values Qn

asymptotically belief-based if the limit set of the values is contained in B.
Lemma 3.2. The values Qn resulting from the individual Q-learning algorithm

(3.2) are almost surely asymptotically belief-based, provided that the Qn remain bound-
ed for all time.

Proof. We will rewrite the Q-learning ODE (3.4) to show that B is a global
attractor of the resulting flow, which suffices to show that the values Qn resulting
from (3.2) are asymptotically belief-based (Benäım (1999)). Start by writing qt =
(q1

t (·), . . . , qNt (·)) and rt = (r1(·, β−1(qt)), . . . , r
N (·, β−N (qt))), so that

d

dt
qt = rt − qt.

This can be rewritten as

qt = e−tq0 + (1 − e−t)r̄t,

1The concept of a chain-recurrent set is central to the ODE method of stochastic approximation
and is developed fully in Benäım (1999). In the interests of space, this theory is therefore not repeated
here. Loosely, an internally chain-recurrent set of a flow is an invariant set of the flow such that
a trajectory starting at any point of the set can return to its start point without ever leaving the
set, when small “jumps” are allowed to be made. It will suffice to know that a connected internally
chain-recurrent set of a flow is an invariant set of the flow containing no proper attractors.
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where r̄t = (et − 1)−1
∫ t

0
esrs ds is a weighted average of rs, 0 ≤ s ≤ t. Since rs ∈ B

for all s, it follows immediately that r̄t ∈ B for all t. Therefore qt → B for any q0,
and B is a global attractor of the flow defined by (3.4).

As well as being interesting in itself, this is crucial to the analysis of the next sec-
tion, where we relate this value-based learning to the smooth best response dynamics,
usually considered to arise from models of learning in which players use significantly
more information on the structure of the game and observations of opponent play
than is necessary for individual Q-learning.

4. 2-player games. In this section we will relate the Q-learning ODE (3.4) to
the smooth best response dynamics in 2-player games, as suggested by Fudenberg
and Levine (1998). This will allow us to characterize the limiting behavior of the
individual Q-learning algorithm in certain classes of games.

The smooth best response (SBR) dynamics are defined by the ODE

d

dt
πi
t = βi(ri(·, π−i

t )) − πi
t for each i(4.1)

and have been shown to characterize stochastic fictitious play, in the same sense that
(3.4) characterizes individual Q-learning (Benäım and Hirsch (1999)). Fudenberg and
Levine (1998) observe that for 2-player games, if strategies evolve according to these
dynamics, the resultant rewards evolve according to the Q-learning ODE (3.4). This
will be used in the proof of Lemma 4.1, where we show that a connected internally
chain-recurrent set of the flow defined by the Q-learning ODE (3.4) corresponds to
a connected internally chain-recurrent set of the SBR dynamics. By Lemma 3.1,
this relates the limiting behavior of individual Q-learning with that of stochastic
fictitious play, despite the fact that individual Q-learners have no information on the
structure of the game and do not observe opponent play, both of which are necessary
for stochastic fictitious play.

Lemma 4.1. For 2-player games, any connected internally chain-recurrent set of
the Q-learning ODE (3.4) is of the form

r(C) := {(r1(·, π−1), . . . , rN (·, π−N )) : π ∈ C},

where C ⊂ Δ is a connected internally chain-recurrent set of the flow defined by the
SBR dynamics (4.1).

Proof. Let D denote an arbitrary connected internally chain-recurrent set of the
Q-learning ODE (3.4). Benäım (1999, Proposition 5.3) shows that a set is connected
internally chain-recurrent if and only if it is a compact invariant set admitting no
proper attractor. Therefore, since the set B of belief-based values is a global attractor
we must have D ⊂ B, and q ∈ D means that there exists π ∈ Δ such that qi(ai) =
ri(ai, π−i) for each i and ai.

However, suppose π evolves according to the SBR dynamics (4.1), so that

d

dt
ri(ai, π−i

t ) =
∑

a−i∈A−i

∂ri(ai, π−i)

∂π−i(a−i)

d

dt
π−i
t (a−i)

=
∑

a−i∈A−i

ri(ai, a−i){β−i(r−i(·, πi
t))(a

−i) − π−i
t (a−i)}

= ri(ai, β−i(r−i(·, πi
t))) − ri(ai, π−i

t ),

and the ri(ai, π−i) evolve according to the same ODE as the qi(ai). Note that this
calculation is valid only for 2-player games.
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Therefore trajectories of the Q-learning ODE (3.4) in B correspond to trajectories
of the SBR dynamics (4.1) in Δ, and the invariant set D of (3.4) must be of the form
r(C), where C ⊂ Δ is an invariant set of (4.1). Now since D admits no proper attractor,
it follows that C admits no proper attractor. C may consist of several connected
components, but any one of them will be a connected internally chain-recurrent set
of the flow defined by the SBR dynamics (4.1) with D = r(C).

This result allows us to characterize the limit set of the individual Q-learning
algorithm in terms of the chain-recurrent sets of the SBR dynamics. These chain-
recurrent sets are well studied, since they are the limit set of a stochastic fictitious play
process (Benäım and Hirsch (1999)), and in particular Hofbauer and Hopkins (2005)
provide Lyapunov functions for 2-player zero-sum games and 2-player partnership
games. This allows us to prove our first main proposition, which gives convergence
results for individual Q-learning in these situations.

Proposition 4.2. In either 2-player zero-sum games, or 2-player partnership
games with countably many Nash distributions (given the smooth best responses βi),
strategies of players using the individual Q-learning algorithm (3.2) will converge al-
most surely to a Nash distribution.

Proof. Lemma 3.1 shows that the Q values converge to a connected internally
chain-recurrent set of the Q-learning ODE (3.4). From Lemma 4.1 we know that this
is of the form r(C), where C ⊂ Δ is a connected internally chain-recurrent set of flow
defined by the SBR dynamics (4.1). In the games we consider, Hofbauer and Hopkins
(2005) provide Lyapunov functions for the set of Nash distributions under the SBR
dynamics, and this set is isolated (by assumption in the case of partnership games
and by a result of Hofbauer and Hopkins (2005) for zero-sum games). Therefore
Benäım (1999, Corollary 6.6) shows that we can assume C = {π̃} where π̃ is a Nash
distribution. Therefore Qi

n → ri(·, π̃−i) for each i, and so βi(Qi
n) → βi(ri(·, π̃−i)) by

continuity. But π̃ is a Nash distribution, so βi(ri(·, π̃−i)) = π̃i, and we have shown
that the strategies converge to a Nash distribution.

We illustrate this convergence with the rock-scissors-paper game (2.1). This is a
2-player zero-sum game, and therefore strategies converge to the unique Nash distri-
bution where all actions are played with probability 1/3 (this is the same as the Nash
equilibrium, although for general games the Nash equilibria and Nash distributions
do not coincide). In Figure 1 we see that despite erratic initial strategy shifts, the
strategy of player 1 appears to be converging to the Nash distribution.

However, this convergent behavior does not occur for all games. Two classic
examples of games that cause problems for learning algorithms are Shapley’s variant
of rock-scissors-paper (Shapley (1964)) and Jordan’s 3-player matching pennies game
(Jordan (1993)). In both of these games, the SBR dynamics (4.1) admit a unique
linearly unstable fixed point, and an asymptotically stable limit cycle, for certain
smooth best response functions βi (Cowan (1992), Benäım and Hirsch (1999)). We
shall not reproduce all of these results for the Q-learning ODE but will show that in
Shapley’s game, using Boltzmann action selection (2.2), a Hopf bifurcation occurs at
the unique Nash distribution as the temperature parameter tends to 0. This shows
that for sufficiently small τ the Nash distribution is linearly unstable and a periodic
orbit is an attractor. We use the symmetric formulation of Shapley’s game, with
payoff matrix ⎛⎝(0, 0) (1, 0) (0, 1)

(0, 1) (0, 0) (1, 0)
(1, 0) (0, 1) (0, 0)

⎞⎠,(4.2)
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Fig. 1. Strategies of player 1 in the rock-scissors-paper game (2.1) with Boltzmann action
selection (τ = 0.1) over 5×105 iterations of basic individual Q-learning (3.2) with λn = (n+100)−0.9.
The top diagram shows the entire learning run, whereas the bottom diagram omits the first 104

iterations, showing that strategies are converging to the unique Nash distribution.

and therefore, for i = 1, 2,

d

dt
Qi(R) = π−i(S) −Qi(R),

d

dt
Qi(S) = π−i(P ) −Qi(S),

d

dt
Qi(P ) = π−i(R) −Qi(P ).

The Jacobian for this system, evaluated at the unique Nash distribution where all Q
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values have the value 1/3, is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 −1
9τ

2
9τ

−1
9τ

0 −1 0 −1
9τ

−1
9τ

2
9τ

0 0 −1 2
9τ

−1
9τ

−1
9τ

−1
9τ

2
9τ

−1
9τ −1 0 0

−1
9τ

−1
9τ

2
9τ 0 −1 0

2
9τ

−1
9τ

−1
9τ 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which has eigenvalues

1

6τ
(1 − 6τ ±

√
3i),

1

6τ
(−1 − 6τ ±

√
3i), −1, −1.

As τ → 0, the real part of the first conjugate pair crosses the imaginary axis from
the negative half-plane to the positive half-plane, resulting in a Hopf bifurcation, so
for sufficiently small τ the fixed point is linearly unstable. Therefore by the results of
Pemantle (1990), convergence to this fixed point is a probability zero event; in Figure 2
we see that in fact play cycles, as it would under the SBR dynamics, and as implied by
the Hopf bifurcation. Previous work (Leslie and Collins (2003)) suggests that using
player-dependent learning rates helps to break the symmetry that allows this cycling
to occur. We will apply this idea to individual Q-learning in the next section.

5. Player-dependent learning rates. Returning to general N -player games,
Leslie and Collins (2003) introduce player-dependent learning rates (PDLR) to break
the symmetry that allows strategies to cycle under the SBR dynamics (4.1). Under
this paradigm, each player’s learning parameters decay to zero at different rates,
resulting in a process which is a stochastic approximation of a singularly perturbed
dynamical system. The algorithm we study is shown in Table 2; it is a simple extension
of individual Q-learning (3.2) which incorporates PDLR. In fact the only difference
between this and the individual Q-learning algorithm (3.2) is that each player uses
her own sequence of learning parameters {λi

n}n≥1.
Note that condition (5.2) is used for ease of exposition but is equivalent to the

condition that either λi
n/λ

j
n → 0 or λj

n/λ
i
n → 0 whenever i 	= j, since if this latter

condition is true we can assume that the players are indexed in such a way that (5.2)

is true. A suitable choice of learning parameters would be to choose λi
n = (n+C)−ρi

,
where the rate ρi ∈ (0.5, 1] is chosen differently for each player; indeed if players are
thought of as selecting their own learning rate ρi independently using any continuous
distribution on (0.5, 1], then the necessary conditions will be met with probability 1.

The more slowly a player’s learning parameters decrease to 0, the more “respon-
sive” that player will be, since greater emphasis is placed on recent observations when
estimating an action’s value. In contrast, players with more rapidly decreasing learn-
ing parameters are more “cautious,” since their value estimates take greater account of
the entire history of observed rewards. Condition (5.2) means that players with higher
indices i are more responsive (and hence less cautious) than those with lower indices.

As observed in Leslie and Collins (2003), in order to analyze an algorithm in-
corporating PDLR theoretically, we need to make an assumption about what would
happen to the more responsive players if the strategies of the i − 1 most cautious
players were fixed.
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Fig. 2. Strategies of player 1 in Shapley’s game (4.2) with Boltzmann action selection (τ = 0.1)
over 5 × 105 iterations of basic individual Q-learning (3.2) with λn = (n + 100)−0.9 (top) and of
individual Q-learning with PDLR (5.1), with λ1

n = (n+ 100)−0.9 and λ2
n = (n+ 100)−0.7 (bottom).

The first 1 × 104 iterations are omitted in each case. For basic individual Q-learning (3.2) the
strategies follow a limit cycle, while for individual Q-learning with PDLR (5.1) the strategies are
spiraling anticlockwise toward the unique Nash distribution.

Assumption 5.1. For each i ∈ {2, . . . , N} there exists a function q̃i : Δ1 × · · · ×
Δi−1 → R|Ai| such that, for arbitrary fixed (Q1, . . . , Qi−1), the ODE

d

dt
qit(a

i) = ri(ai, [π(<i), B(>i)[π(<i), βi(qit)]]) − qit(a
i) for each ai ∈ Ai

has the globally attracting fixed point q̃i(π(<i)), where

π(<i) = (β1(Q1), . . . , βi−1(Qi−1))
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Table 2

Individual Q-learning with PDLR.

Each player i selects an action ain using the strategy βi(Qi
n), receives reward Ri

n, and
then updates Qi

n according to

Qi
n+1(a

i) = Qi
n(ai) + λi

n+1I{ai
n=ai}

Ri
n −Qi

n(ain)

βi(Qi
n)(ain)

for each ai ∈ Ai,(5.1)

where for each i, {λi
n}n≥1 is a deterministic sequence of learning parameters satisfying

the conditions (3.3), and additionally

λi
n/λ

i+1
n −→ 0 as n −→ ∞.(5.2)

and B(>i) : Δ1 × · · · × Δi → Δi+1 × · · · × ΔN is defined recursively by

B(>(N−1))(π(<N)) = βN (q̃N (π(<N))),

B(>(i−1))(π(<i)) = (βi(q̃i(π(<i))), B(>i)[π(<i), βi(q̃i(π(<i)))]).

Although this looks technical, it can be expressed relatively simply: for any i, if
the values (and hence strategies) of players (1, . . . , i−1) were fixed, the strategies of the
more responsive players (i, . . . , N) would converge to a unique fixed point determined
by the functions q̃i and B(>i). This assumption is satisfied for any 2-player game: for
Q1 fixed, player 2 simply faces a multi-armed bandit problem. However, it is clearly
not always satisfied for general N -player games: in a 3-player partnership game, for Q1

fixed the other two players still face a partnership game, which might well have more
than one Nash distribution, and therefore more than one potential limit point for the
more responsive players. We will investigate when Assumption 5.1 is satisfied using a
graphical analysis in section 6, but in this section we will retain it as an assumption.

As with the basic individual Q-learning algorithm of section 3, it is immediate that
convergence of algorithm (5.1) to a fixed point can occur only at Nash distribution
values. Also analogously, we can prove the following lemma.

Lemma 5.2. Under Assumption 5.1, the values Q1
n resulting from individual

Q-learning with PDLR (5.1) converge almost surely to a connected internally chain-
recurrent set of the flow defined by the singularly perturbed Q-learning ODE

d

dt
q1
t (a

1) = r1(a1, B(>1)[β1(q1
t )]) − q1

t (a
1) for each a1 ∈ A1,(5.3)

provided that the Qn remain bounded for all time, where B(>1) is the function defined
in Assumption 5.1. Additionally,

‖Qi
n − ri(·, [β1(Q1

n), B>1[β1(Q1
n)]])‖∞ −→ 0

almost surely for each i > 1 as n −→ ∞.

Proof. This is immediate from the results of Leslie and Collins (2003) and As-
sumption 5.1.

Note that Lemma 5.2 tells us we can analyze the asymptotic behavior of the
algorithm as if the values of the remaining players have all converged to the fixed
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point determined by the current strategy of the most cautious player, despite the fact
that in reality all players adjust their values after every play of the game.

We will proceed to analyze the dynamical system (5.3) in two different ways: in
section 5.1 we proceed as in section 4 and relate (5.3) to the singularly perturbed
SBR dynamics (Leslie and Collins (2003)), while in section 5.2 we perform a direct
analysis in a more restricted class of games.

5.1. Relating the singularly perturbed Q-learning ODE to the singu-
larly perturbed SBR dynamics. Leslie and Collins (2003) study the singularly
perturbed SBR dynamics, defined by

d

dt
π1
t = β1[r1(·, B(>1)[π1

t ])] − π1
t .(5.4)

As in section 4, we will relate the singularly perturbed Q-learning ODE (5.3) to the
singularly perturbed SBR dynamics (5.4).

Lemma 5.3. Any connected internally chain-recurrent set of the singularly per-
turbed Q-learning ODE (5.3) is of the form

r1(C1) := {r1(·, B(>1)(π1)) : π1 ∈ C1},

where C1 ⊂ Δ1 is a connected internally chain-recurrent set of flow defined by the
singularly perturbed SBR dynamics (5.4), and B(>1) is the function defined in As-
sumption 5.1.

Proof. This lemma’s proof is identical to that of Lemma 4.1, and will not be
repeated here.

As in section 4 this enables us to use previous results (Leslie and Collins (2003)) on
more sophisticated forms of learning to prove convergence of the individual Q-learning
algorithm with PDLR (5.1) to Nash distribution in certain classes of games.

Proposition 5.4. The strategies of players using the individual Q-learning al-
gorithm with PDLR (5.1) will converge almost surely to a Nash distribution, provided
that the Qn remain bounded for all time, in the following games:

(i) 2-player zero-sum games,
(ii) 2-player partnership games,
(iii) Shapley’s game (4.2) (if Boltzmann action selection is used), and
(iv) the N -player matching pennies game (Leslie and Collins (2003)) (if the

smooth best responses are symmetric under a reordering of the actions).
Proof. Leslie and Collins (2003) show that Assumption 5.1 holds for these games.

The result therefore follows immediately from Lemmas 5.2 and 5.3 and the results
of Leslie and Collins (2003) on the connected internally chain-recurrent sets of the
singularly perturbed SBR dynamics.

Thus the individual Q-learning algorithm with PDLR (5.1) is proved to converge
in the same games as basic individual Q-learning (3.2). In addition, we have proved
that individual Q-learning with PDLR will converge in two games (Shapley’s game
and the N -player matching pennies game) for which most learning algorithms fail to
converge. Indeed the authors know of no adaptive algorithm that converges to either
Nash equilibrium or Nash distribution in these games without using PDLR.

We illustrate these results with some numerical experiments using Shapley’s game
(4.2). As observed in section 4, the basic individual Q-learning algorithm (3.2) will
cycle in this game. On the other hand, we have shown that the individual Q-learning
algorithm with PDLR (5.1) will converge to the unique Nash distribution values. This
is confirmed in Figure 2.
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5.2. Direct analysis of the singularly perturbed Q-learning ODE. We
now change our emphasis away from the SBR dynamics and instead analyze the
singularly perturbed Q-learning ODE (5.3) directly in games where player 1 has 2
actions. We show here that convergence to Nash distribution occurs if Boltzmann
action selection is used.

Proposition 5.5. Suppose player 1 has 2 actions and uses Boltzmann action
selection (2.2). Suppose further that the game and smooth best responses are such
that there are countably many Nash distributions. Then, under Assumption 5.1, the
strategies of players using the individual Q-learning algorithm with PDLR (5.1) con-
verge almost surely to a Nash distribution, provided that the Qn remain bounded for
all time.

Proof. By Lemma 5.2, the Q1 values converge to a connected internally chain-
recurrent set of the singularly perturbed Q-learning ODE (5.3). To ease notation, for
this proof we will write

πt(1) = β1(q1
t )(1) =

eq
1
t (1)/τ

eq
1
t (1)/τ + eq

1
t (2)/τ

= (1 + e{q
1
t (2)−q1

t (1)}/τ )−1 = 1 − πt(2),

r̂t(a) = r1(a,B>1[β1(q1
t )]), a = 1, 2.

Since β1(q1
t ) = (πt(1), 1−πt(1)), r̂t(a) is a function of the scalar variable πt(1), which

is in turn a function of q1
t (1) and q1

t (2). Hence

dr̂t(a)

dt
=

dr̂t(a)

dπt(1)

{
∂πt(1)

∂q1
t (1)

dq1
t (1)

dt
+

∂πt(1)

∂q1
t (2)

dq1
t (2)

dt

}
=

dr̂t(a)

dπt(1)
πt(1)πt(2)

d

dt

{
q1
t (1) − q1

t (2)
}
.

From this, it follows that

d2

dt2
{q1

t (1) − q1
t (2)} =

d

dt
{r̂t(1) − r̂t(2) − q1

t (1) + q1
t (2)}

=

[
πt(1)πt(2)

{
dr̂t(1)

dπt(1)
− dr̂t(2)

dπt(1)

}
− 1

]
d

dt
{q1

t (1) − q1
t (2)}.

Therefore d
dt{q1

t (1) − q1
t (2)} does not change sign, and {q1

t (1) − q1
t (2)} acts as a Lya-

punov function. The result follows from Benäım (1999, Corollary 6.6).
Note that Proposition 5.5 provides an independent proof of the convergence of the

individual Q-learning algorithm with PDLR (5.1) for the N -player matching pennies
game that does not rely on the smooth best responses being symmetric under a
reordering of the actions. Furthermore the following immediate corollary shows that
the result can be applied directly in a wide class of games.

Corollary 5.6. In a 2-player game where player 1 has 2 actions and uses
Boltzmann action selection (2.2), the strategies of players using the individual Q-
learning algorithm with PDLR (5.1) converge almost surely to a Nash distribution,
provided that the Qn remain bounded for all time.

Proof. As already noted, Assumption 5.1 holds automatically in 2-player games.
Hence this is immediate from Proposition 5.5.

This is comparable with a recent result (Berger (2005)) showing that fictitious
play approaches equilibrium in nondegenerate 2 × n games, although clearly more
information is required for the players in a fictitious play process.
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5.3. PDLR and Stackelberg equilibria. Here we discuss a point raised by
an anonymous referee, concerning the relationship between PDLR and Stackelberg
equilibria (equilibria in which one player selects her strategy first, in the knowledge
that the other player will play an optimal action in response). If players used indi-
vidual Q-learning with PDLR, it might be anticipated that a cautious player could
gain an advantage by initially selecting a strategy and then relying on the fact that
the responsive player will adapt quickly to this strategy. For example, in the battle
of the sexes game with payoff matrix(

(10, 1) (0, 0)
(0, 0) (1, 10)

)
,

player 1 could initially select row 1 with high probability, forcing a responsive player 2
to learn to play column 1; player 1 is acting as a Stackelberg leader.

However, in the minimal information situation we consider here, player 1 cannot
know in advance which strategy to select to achieve this effect, since the payoff matrix
is not known. In the battle of the sexes game, ignoring stochastic effects, if player 1’s
initial strategy has π1(2) > 1/11, then a responsive player 2 will play a strategy in
which π2(2) is very nearly 1; the cautious player 1 will then slowly increase π1(2) until
joint play reaches the Nash distribution where both players select action 2 with high
probability. (Note that this is actually the equilibrium that would have been selected
if player 2 was a Stackelberg leader.) Since π1(2) > 1/11 with high probability,
under reasonable assumptions about the initial Q values of the players, there is a high
probability that play will converge to a Nash distribution different from that suggested
by the Stackelberg theory. Thus the relationship between PDLR and Stackelberg
equilibria is much less clear than might be expected.

6. Graphical analysis. The results of section 5 on individual Q-learning with
PDLR rely on Assumption 5.1, which states that there is a unique limit point of the
strategies of the more responsive players for any fixed values of the more cautious
players (1, . . . , i− 1). Although we have observed that this is always true for 2-player
games, in this section we develop a graphical approach to analyzing when this is
satisfied in general N -player games, building on previous graphical representations of
games (Littman, Kearns, and Singh (2001), Koller and Milch (2003)).

Given a game, we construct a graph by taking a node for each player and drawing
a directed arc �ij if the actions of player i directly affect the rewards of player j. Thus
the graph of a (generic) 2-player game is given by

21

whereas the graph of the 3-player matching pennies game (Jordan (1993)), in which
the rewards of player i are affected only by the actions of player i + 1 (modulo 3), is
given by

1 2

3
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These graphs can be used to investigate Assumption 5.1 by removing node 1
(corresponding to the most cautious player) from the graph, then considering the
behavior of the other players. The intuition behind this is that the fixed strategy
of the most cautious player in Assumption 5.1 results in the other players facing a
reduced game. For example, in the 3-player matching pennies game, removal of node
1 (and connected arcs) results in the graph

2

3

Thus for fixed Q1, player 3’s rewards are not affected by any other player, so Q3
n

converges to unique values. But because of this, player 2’s values must also converge
to unique values, and so for fixed Q1, the values (Q2

n, Q
3
n) converge to a unique point,

as required by Assumption 5.1.
In fact, this example generalizes very simply. If, after removal of a node, a graph

has no directed cycle, then the players corresponding to nodes left in the graph will
converge to a unique fixed point.

Proposition 6.1. Suppose that a game is such that removal of node 1 from the
game graph results in a subgraph containing no directed cycles. Then Assumption 5.1
holds for this game.

Proof. If the subgraph remaining after removal of node 1 has no directed cycle,
then there exists at least one node with in-degree 0 (i.e., no arcs terminate at this
node). The values of a player associated with such a node do not depend on the
strategies of any other players (except perhaps the fixed strategy of player 1), and so
the Q values of that player will converge almost surely to a unique point. Since the
rewards, and hence strategies, of any player corresponding to a node with in-degree
0 are uniquely determined, given the fixed strategy of player 1, these nodes can be
removed from the graph. This again results in a graph with no directed cycles, and
we can proceed recursively to show that the rewards of all the players are uniquely
determined by the values of player 1, as required in Assumption 5.1.

From this proposition, it is immediate that Assumption 5.1 holds in games which
have a graph with no directed cycle even before removal of a node, and games with a
single directed cycle will clearly become acyclic if the node to be removed is part of
that cycle. Consider also games with a star graph:

1 2

34

N
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Here there is a distinguished player (the hub) connected to all others, but all non-
distinguished players are disconnected from each other. This graph will become
completely disconnected (and so obviously will have no directed cycle) if the node
corresponding to the distinguished player is removed. A game such as this could
have applications in computing, for example, where the distinguished player is a cen-
tral resource, such as a server or router, and the other nodes correspond to users of
the resource.

Although useful, this graphical approach is not sufficient in all situations. For
example, consider a 3-player game in which the rewards of players 2 and 3 always
sum to 0 for any fixed Q1. Thus, the graph after removal of node 1 is the same as
that of a 2-player game, and so (generically) contains a directed cycle. However, the
resulting game is a 2-player zero-sum game, in which the players converge to a unique
Nash distribution (Proposition 5.4 and Hofbauer and Hopkins (2005)). Therefore
Assumption 5.1 is satisfied, even though the conditions of Proposition 6.1 are not.

7. Conclusion. We have shown that value-based learning agents cannot gener-
ally converge to a Nash equilibrium of a game, but if smooth best responses are used,
a Nash distribution can be reached. Although Nash distributions are not generally the
same as Nash equilibria, they are close if the temperature parameter of the smooth
best responses is sufficiently small, and therefore we proposed that value-based learn-
ing agents should use smooth best responses to allow equilibrium play, even if this is
not a classical Nash equilibrium.

Our value-based learning algorithm, individual Q-learning (3.2), is very similar
to the simple and successful algorithm used by Sutton and Barto (1998) in the single-
agent multi-armed bandit problem. We showed that convergence to a point that is
not a Nash distribution is not possible and that the value estimates are asymptotically
belief-based. Further, by relating the limiting behavior of the individual Q-learning
algorithm to the SBR dynamics (a system previously used to characterize more sophis-
ticated models of learning), it was shown that strategies of players converge almost
surely to a Nash distribution for 2-player zero-sum games and 2-player partnership
games.

The nonconvergence of strategies for certain games motivates the introduction of
individual Q-learning with PDLR (5.1), resulting in cautious and responsive players.
This modified algorithm converges to Nash distribution for the same games as basic
individual Q-learning (3.2), and also for Shapley’s game and the N -player matching
pennies game. Moreover, convergence was shown to occur for any game in which
player 1, the most cautious, has only 2 actions.

Finally, since the results on PDLR rely on an assumption about the behavior of
the more responsive players if the values of player 1 were fixed, a simple graphical
method was introduced to help determine when this assumption holds.
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Abstract. This paper presents new filtering design procedures for discrete-time linear systems.
It provides a solution to the problem of linear filtering design, assuming that the filter is subject to
parametric uncertainty. The problem is relevant, since the proposed filter design incorporates real
world implementation constraints that are always present in practice. The transfer function and
the state space realization of the filter are simultaneously computed. The design procedure can also
handle plant parametric uncertainty. In this case, the plant parameters are assumed not to be exactly
known but belonging to a given convex and closed polyhedron. Robust performance is measured by
the H2 and H∞ norms of the transfer function from the noisy input to the filtering error. The results
are based on the determination of an upper bound on the performance objectives. All optimization
problems are linear with constraint sets given in the form of LMI (linear matrix inequalities). Global
optimal solutions to these problems can be readily computed. Numerical examples illustrate the
theory.
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1. Introduction. In the 1980s, a great deal of effort was dedicated to the study
of implementation issues of filters and controllers [1, 2, 3, 4]. The motivation was
to devise design techniques that would lead to filters and controllers that could per-
form well when implemented on a digital computer. The main objectives were (a) to
minimize the degradation of performance caused by computation of signals in a finite
precision computational architecture, and (b) to minimize the impact of truncation
and rounding on the coefficients of the filter or controller. These objectives were
addressed using many different techniques (see [1] for details). Among these tech-
niques, a popular approach to dealing with degradation of the signals was to model
rounding and truncation as noise [5], whereas rounding and truncation of the filter or
controller coefficients was addressed by studying the sensitivity of these parameters to
variations [1]. The great development of the computer industry in the 1990s brought
to the signal processing and control practitioner processors with more and more bits
of precision at very low cost, which somewhat dimmed the importance of the topic.
The fact that every few years the computer industry provides processors with longer
wordlength is used by some to justify the design of filters and controllers with little
or no regard to finite precision perturbation effects. In fact, for many simple systems,
this increase in wordlength means that the quantization effects can be practically ig-
nored. However, faster and more precise computers also provide the opportunity to
increase the complexity of the systems, in terms of both more sophisticated algorithms
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and number of devices. As observed in [6], this increased complexity will eventually
face limitations in bandwidth, that is, the speed at which the devices communicate,
reducing the sampling rates (relative to the available processor wordlength). In this
scenario, a careful analysis of perturbation effects on filters and controllers certainly
will be required. Also, in many consumer electronics products, inexpensive processors
(say, fixed point digital signal processors (DSPs)) are usually preferred. These proces-
sors often impose nontrivial wordlength limitations, and thus better design algorithms
are needed to deal with them. Some recent efforts along this line are reported in [7].

In fact, the importance of robustness to filter and control parametric perturba-
tions seems to have been rediscovered by the end of the 1990s with the paper [8]. This
work, despite the controversy it raised [9], showed that many robust control design
methods, which were targeted to deal with plant uncertainty, could be particularly
sensitive to parameter uncertainty on the controller. The authors use a series of nu-
merical examples to illustrate that a very small perturbation on the coefficients of
controllers could lead to a loss of stability of the closed-loop system [8]. Since then,
many authors have addressed the problem of robustness to parametric control or filter
perturbation under the label of fragility [10, 11, 12, 13, 14].

While many works on filter sensitivity are more concerned with the problem of
choosing an appropriate realization for a given filter transfer function [2, 3], many
works on fragility seem to focus more on the robustness of the filter transfer function
rather than its realization [12]. The approach developed in this paper blends these
two issues by simultaneously designing the optimal filter transfer function and its
realization. The strategy is to modify the filtering procedure introduced in [15] to take
into account robustness with respect to filter parametric variations. Variations of the
filter parameters are allowed inside a region specified by a quadratic matrix inequality.
The maximum allowed norm of the filter uncertainty is specified as a percentage of the
norm of the nominal filter parameters. The ability to specify the uncertainty in the
filter parameters relative to the size of the nominal filter is especially important when
the transfer function and the state space realization of the filter are to be designed
simultaneously. This model is also very appropriate to model perturbations on the
parameters coming from truncation on a floating-point computational architecture,
where rounding and truncation introduce errors relative to the size of the original
numbers.

In this paper, guaranteed cost functions are developed to provide upper bounds
on the maximum value of the H2 or H∞ norm of the uncertain transfer function from
an exogenous noise input to the filtering error on the filter uncertainty region. This
paper introduces and completely solves these H2 and H∞ guaranteed cost filtering
design problems. The design conditions are expressed as linear matrix inequalities
(LMIs), and hence numerical solutions can be readily computed [16]. In contrast to
[15, 17], the results specify not only the transfer function of the filter but also its
realization. Illustrative examples show the effectiveness of the proposed approach.
An interesting feature observed in the examples is that the filters designed by the
proposed technique have less round-off gain than the standard Kalman filter [2, 5],
although such a performance measure is not directly addressed in the optimization
process. The design procedures introduced in this paper admit straightforward ex-
tensions to simultaneously handle plant parameter uncertainty specified in terms of
convex bounded polyhedrons. These extensions can be derived to contemplate both
the quadratic stability [17] and the extended stability [18] approaches. In the for-
mer, a single quadratic Lyapunov function is used to evaluate the performance on the
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uncertainty region, while in the latter a parameter dependent Lyapunov function [19]
is built.

The notation is standard. Lowercase letters denote vectors while capital letters
represent matrices. The symbol (T ) is used to indicate the transpose of vectors and
matrices. If a symmetric matrix X is positive definite, this is indicated by X > 0.

2. Preliminary results on filtering. Consider the linear discrete-time time-
invariant system

x(k + 1) = Ax(k) + Bw(k),(1)

z(k) = Czx(k) + Dzw(k),(2)

y(k) = Cyx(k) + Dyw(k),(3)

where all matrices and vectors are assumed to have appropriate dimensions. The
optimal filtering problem consists of designing a linear filter

xf (k + 1) = Afxf (k) + Bfy(k),(4)

zf (k) = Cfxf (k) + Dfy(k),(5)

which makes use of the plant output y(k) to produce the filtered output zf (k), with
the objective of minimizing a norm of the transfer function from the noise input w(k)
to the filtering error e(k) := z(k) − zf (k). Collecting the filter parameters in the
matrix

F :=

[
Df Cf

Bf Af

]
,(6)

we can state the optimal filtering problem as the optimization problem

min
F

‖Hwe(z;F)‖p.(7)

The values of p = {2,∞} are the choices usually found in the literature. The next
lemmas revisit the solutions of the optimal filtering problems given in [17]. The
solution is given as LMI conditions formulated in terms of the transformed set of
filter parameters

K :=

[
R L
F Q

]
,(8)

defined with respect to the above partitioning.
Lemma 1 (H2 filtering). There exist a matrix K, partitioned as in (8), and

symmetric matrices Y , Z, W such that the LMI⎡⎢⎢⎢⎢⎣
Z • • • •
Z Y • • •

ATZ ATY + CT
y F

T + QT Z • •
ATZ ATY + CT

y F
T Z Y •

BTZ BTY + DT
y F

T 0 0 I

⎤⎥⎥⎥⎥⎦ > 0,(9)

⎡⎢⎢⎣
W • • •

CT
z − CT

y R
T − LT Z • •

CT
z − CT

y R
T Z Y •

DT
z −DT

y R
T 0 0 I

⎤⎥⎥⎦ > 0,(10)

trace(W ) < μ(11)
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have a feasible solution if and only if the filter

F =

[
I 0
0 V −1

]
K
[
I 0
0 Z−1U−1

]
,(12)

where U and V are nonsingular otherwise arbitrary matrices chosen to satisfy Y +
V UZ = Z, is such that

‖Hwe(z;F)‖2
2 < μ.(13)

Lemma 2 (H∞ filtering). There exist a matrix K, partitioned as in (8), and
symmetric matrices Y , Z such that the LMI

⎡⎢⎢⎢⎢⎢⎢⎣

Z • • • • •
Z Y • • • •

ATZ ATY + CT
y F

T + QT Z • • •
ATZ ATY + CT

y F
T Z Y • •

BTZ BTY + DT
y F

T 0 0 μI •
0 0 Cz −RCy − L Cz −RCy Dz −RDy μI

⎤⎥⎥⎥⎥⎥⎥⎦ > 0

(14)

have a feasible solution if and and only if the filter F given in (12) is such that

‖Hwe(z;F)‖∞ < μ.(15)

The above lemmas are generalizations of the results obtained in [17]. Here, the
assumptions that the filter(4)–(5) is strictly proper and that the matrix Dz is null
have been removed. There is virtually no change from the proofs presented in [15, 17]
to the ones required to prove Lemmas 1 and 2. These proofs are omitted for brevity
and the interested reader is referred to [15, 17] for more details. The constraints stated
in Lemmas 1 and 2 are all LMI, and hence solutions to the optimization problem (7)
can be obtained by minimizing the scalar μ subject to the given inequalities. The
resulting problems are convex and their global optimal solutions can be obtained via
convex programming techniques [16].

Once a solution to the inequalities stated in Lemmas 1 or 2 has been found,
the user is asked to pick an arbitrary nonsingular matrix U and then solve for V to
satisfy Y + V UZ = Z (or choose V and solve for U). This will produce the optimal
filter parameters F through (12). Notice that this is done a posteriori, and that this
arbitrary choice does not affect the optimality of the solution. In fact, it is possible
to show that the transfer function of the filter associated with the parameters (12) is
not affected by the choice of U and V (see [17] for details). The main role of these
matrices is to parameterize a particular state space realization of the filter, a fact that
will be explored in the next sections.

3. Problem statement. The main purpose of this paper is to derive conditions
for the design of filters subject to parametric perturbations. More specifically, it is as-
sumed that the parameters of the filter(4)–(5) are subject to an additive perturbation
of the form

F = F0 + ΔF .(16)

The symbol F0 denotes nominal filter parameters, and the unknown perturbation ΔF
is assumed to be in the set

FR(F0) :=
{
ΔF : ΔT

FR−1ΔF ≤ γ2FT
0 R−1F0

}
.(17)
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In contrast to the conventional norm bounded uncertainty model, where the right-
hand side of the inequality given in (17) is usually constant, the uncertainty set FR(F0)
relates the size of the parametric perturbation ΔF to the size of the nominal filter
parameters F0. These factors are weighted by the inverse of an arbitrary positive
definite matrix R. In this way, by setting the scalar 0 ≤ γ ≤ 1, the size of the pertur-
bation ΔF can be specified relative to the size of the nominal filter parameters F0,
which are yet to be determined. The inequality (17) can also be translated as a more
standard norm bound relation of the kind

ΔF ∈ FR(F0) ⇒ ‖ΔF‖R−1 ≤ γ‖F0‖R−1 ,(18)

where ‖ · ‖R denotes a weighted Frobenius or two norm. This inequality is evidence
that the norm of ΔF ∈ FR(F0) is limited to being a fraction of the norm of the
nominal filter F0. Another interpretation is obtained in terms of a norm bound on
the amplitude of the noise signal

wΔF (k) =

(
wy(k)
wxf

(k)

)
:= ΔF

(
y(k)
xf (k)

)
,(19)

for which

ΔF ∈ FR(F0) ⇒ ‖wΔF (k)‖R−1 ≤ γ

∥∥∥∥F0

(
y(k)
xf (k)

)∥∥∥∥
R−1

.(20)

The above interpretation relates the uncertainty set FR(F0) to the uncertainty models
considered in the recent work [20].

The weighting factor R plays an interesting role in the definition of FR(F0) and
can have a major impact on the reduction of the conservatism of the design conditions
to be derived. Roughly speaking, the matrix R can play the same role as a scaling
matrix 1 in robust H∞ analysis [21]. Using the LMI conditions to be derived in the next
section, one can simultaneously perform the design of both the filter parameters F
and the scaling matrix R. If desired, one can also set R to a constant value without
destroying the linearity of the design conditions. However, notice that, if the objective
of fixing R is to establish a certain fixed weight on (17–18) and (20), say, R = R̄,
then one can still use a scaling matrix R = λR̄, where λ is a positive scalar to be
determined. Leaving the scalar λ as a variable can be of much help in reducing
conservatism (see the numerical example in section 6).

Throughout the rest of this paper, the norm minimization problem defined in (7)
is replaced with

min
F0

ρp (F0) ,(21)

where the function ρp is a guaranteed cost function, that is, it satisfies the inequality

‖Hwe(z;F0 + ΔF )‖p ≤ ρp(F0) ∀ΔF ∈ FR(F0).(22)

In other words, the function ρp is an upper bound to the Hp norm of the uncertain
transfer function Hwe(z;F0 + ΔF ) that holds for all ΔF ∈ FR(F0).

1Notice that when R is a scalar it can be canceled on both sides of (17) and (18).
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4. Main result. We are not aware of any available design technique that can
effectively solve the filter design problems stated in the previous section, where the
filter parameter is subject to uncertainties ΔF ∈ FR(F0). In the following paragraphs
we will show that a much simpler design problem, that is, one that can be stated as
a set of LMI, can be obtained if uncertainties are introduced in the transformed set
of parameters K defined in (8). That is, we will consider the filter design problem,
where the transformed set of parameters K is perturbed as

K = K0 + ΔK, ΔK ∈ FW(K0),(23)

where the scaling W will be chosen to maintain equivalence between FR(F0) and
FW(K0). More specifically, W will be chosen to ensure that we can find the optimal
solution to problem (21)–(22) by solving an equivalent but simpler problem, where
the perturbations act on the transformed set of filter variables. This is made possible
due to the result in the following lemma.

Lemma 3. Let S and T be any square and nonsingular matrices of appropriate
dimensions. Then ΔF ∈ FR(F0) if and only if SΔFT ∈ FSRST (SF0T ).

Proof. The proof follows immediately from using the assumption that matrices S
and T are nonsingular and properly factorizing the variables and matrices appearing
in the definition of FR(F0).

Lemma 3 deserves two remarks. The first is that it makes explicit how the scal-
ing matrix W must be chosen to cope with the one to one change of variables in the
form K = SFT that will be used to parameterize the transformed set of filter pa-
rameters. Notice that the corresponding “transformed” scaling W = SRST depends
exclusively on S. Second, equivalence between FR(F0) and FW(K0) is achieved when
the change of variables is performed simultaneously on the nominal filter F0 and on
the parametric uncertainty ΔF . These properties enables us to determine a solution
to problem (21) by equivalently rewriting the inequality that defines the guaranteed
cost function (22) in the form

‖Hwe(z;K0 + ΔK)‖p ≤ ρp(K0) ∀ΔK ∈ FSRST (K0),(24)

which is expressed entirely in terms of the transformed variables (K0,ΔK) = (SF0T ,
SΔFT ). Notice that the assumption that S and T are nonsingular and square ma-
trices is naturally satisfied whenever the order of the filter is the same as the order of
the plant.

In the following lemma we develop an inequality associated with a perturbation
on the transformed set of parameters K. This inequality will be used to derive the
main result of this paper.

Lemma 4. If there exists a symmetric and positive definite matrix W such that[
Q + BK0C + CTKT

0 BT − BWBT γCTKT
0

γK0C W

]
> 0,(25)

then

Q + B (K0 + ΔK) C + CT (K0 + ΔK)
T BT > 0 ∀ΔK ∈ FW(K0).(26)

Proof. Applying the Schur complement on (25), one obtains that for all ΔK ∈
FW(K0),

Q + BK0C + CTKT
0 BT > BWBT + γ2CTKT

0 W−1K0C
> BWBT + CTΔT

KW−1ΔKC
> −BΔKC − CTΔT

KBT ,
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which recovers (26).
The condition stated in the above lemma is only sufficient. Yet it has been

extensively used in the filtering and control to characterize computable robustness
conditions as, for instance, in [12, 21]. However, notice that the scaling matrix W
enters the above condition linearly so that is can be freely optimized. This will help
reduce the conservatism of this condition.

The above two lemmas will be combined to show that the optimal solution to the
problem (21) subject to the transformed guaranteed cost function (24), for p = {2,∞},
can be formulated and solved in terms of LMI conditions. We first consider the case
when the multiplier R is a free optimization variable.

Theorem 1 (H2 filtering). If there exist matrices G and K0, partitioned as
in (8), and symmetric matrices Y , Z, W , E, H such that the LMI⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z • • • • • •
Z Y −H • • • • •

ATZ ATY + CT
y F

T + QT Z • • • •
ATZ ATY + CT

y F
T Z Y • • •

BTZ BTY + DT
y F

T 0 0 I • •
0 0 γRCy + γL γRCy γRDy E •
0 0 γFCy + γQ γFCy γFDy GT H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0,(27)

⎡⎢⎢⎢⎢⎢⎢⎣

W − E • • • • •
CT

z − CT
y R

T − LT Z • • • •
CT

z − CT
y R

T Z Y • • •
DT

z −DT
y R

T 0 0 I • •
0 γRCy + γL γRCy γRDy E •
0 γFCy + γQ γFCy γFDy GT H

⎤⎥⎥⎥⎥⎥⎥⎦ > 0,(28)

trace(W ) < μ(29)

have a feasible solution, then the nominal filter

F0 =

[
I 0
0 V −1

]
K0

[
I 0
0 Z−1U−1

]
,(30)

where U and V are nonsingular otherwise arbitrary matrices chosen to satisfy Y +
V UZ = Z, is such that

‖Hwe(z;F0 + ΔF )‖2
2 ≤ ρ2(F0) := μ ∀ΔF ∈ FR(F0),(31)

where FR(F0) is as defined in (17) with the scaling matrix

R :=

[
I 0
0 V −1

] [
E G
GT H

] [
I 0
0 V −T

]
.(32)

Proof. Defining

ΔK :=

[
ΔR ΔL

ΔF ΔQ

]
, S :=

[
I 0
0 V

]
, T :=

[
I 0
0 UZ

]
,

the nominal filter parameters (30) and their parametric perturbations can be recovered
from (K0, ΔK), for U , V , and Z nonsingular, by the formulas

F0 = S−1K0T −1, ΔF = S−1ΔKT −1.
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Hence, it is possible to conclude from the result of Lemma 3 that the constraint
ΔF ∈ FR(F0) can be replaced without loss of generality by ΔK ∈ FSRST (K0), as
indicated in (24).

With that in mind, it suffices to show that (27)–(29) guarantee robustness with
respect to all ΔK ∈ FSRST (K0). This can be done with the help of Lemma 4. Notice
that a perturbed version of (9), where K is replaced with K0 + ΔK, can be written
as (26) with

Q :=

⎡⎢⎢⎢⎢⎣
Z Z ZA ZA ZB
Z Y Y A Y A Y B

ATZT ATY T Z Z 0
ATZT ATY T Z Y 0
BTZ BTY 0 0 I

⎤⎥⎥⎥⎥⎦, B :=

⎡⎢⎢⎢⎢⎣
0 0
0 I
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎦, CT :=

⎡⎢⎢⎢⎢⎣
0 0
0 0
CT

y I

CT
y 0

DT
y 0

⎤⎥⎥⎥⎥⎦,

while a perturbed inequality (10) is in the form (26) with

Q :=

⎡⎢⎢⎣
W Cz Cz Dz

CT
z Z Z 0

CT
z Z Y 0

DT
z 0 0 I

⎤⎥⎥⎦, B :=

⎡⎢⎢⎣
I 0
0 0
0 0
0 0

⎤⎥⎥⎦, CT := −

⎡⎢⎢⎣
0 0
CT

y I

CT
y 0

DT
y 0

⎤⎥⎥⎦.
Therefore we can define the variables[

E G
GT H

]
:= SRST = W

to obtain both inequalities (27) and (28) directly from Lemma 4.
Theorem 2 (H∞ filtering). If there exist matrices G and K0, partitioned as

in (8), and symmetric matrices Y , Z, E, H such that the LMI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z • • • • • • •
Z Y −H • • • • • •

ATZ ATY + CT
y FT + QT Z • • • • •

ATZ ATY + CT
y FT Z Y • • • •

BTZ BTY + DT
y FT 0 0 μI • • •

0 G Cz −RCy − L Cz −RCy Dz −RDy μI − E • •
0 0 γRCy + γL γRCy γRDy 0 E •
0 0 γFCy + γQ γFCy γFDy 0 GT H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0,

(33)

has a feasible solution, then the nominal filter F0 given in (30) is such that

‖Hwe(z;F0 + ΔF )‖∞ ≤ ρ∞(F0) := μ ∀ΔF ∈ FR(F0),(34)

where FR(F0) is defined with the scaling matrix R given by (32).
Proof. This proof follows the same pattern as the proof of Theorem 1 and is thus

omitted.
The constraints stated in Theorems 1 and 2 are all LMI. The scalar μ can be

used to define the guaranteed cost function (22). The global optimal solution to the
guaranteed cost problem (21) can be obtained by minimizing the scalar μ subject to
the given LMI.

It is interesting to observe that under the assumption that the scaling matrix
R is a free variable, the filter provided by Theorem 1 shares with the one proposed
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in [17] the property that its state space realization is irrelevant as far as the upper
bound of the estimation error is concerned. As in Lemmas 1 and 2, the state space
parameterization of the optimal filter obtained in Theorems 1 and 2 can be arbitrarily
chosen by changing the matrices U and V . However, notice that, from (32), the choice
of V does affect the multiplier R. For instance, for the particular choice V = I, the
sets FR(F0) ≡ FSRST (K0). Due to the coupling condition (32), this property does
not remain valid when the scaling matrix is fixed. This special case is treated in detail
in the following paragraphs.

When R is a given constant matrix, the variable V , which is associated with
the choice of filter realization, becomes part of the optimization variables by the
relation (32). In general, the introduction of (32) in the form of a constraint in the
optimization design problem destroys the desired convexity properties. However, in
the important case when R is a given matrix with the block diagonal structure

R̄ =

[
R̄1 0
0 R̄2

]
,(35)

one can show that convexity is preserved, still leading to an LMI design problem.
In this case, which is possibly the most meaningful for modeling implementation
uncertainty, the following corollaries to Theorems 1 and 2 apply.

Corollary 3. Let R̄ be partitioned as in (35). If there exist a positive scalar λ,
matrix K0, partitioned as in (8), and symmetric matrices Y , Z, W , E, H such that
the LMI (27)–(29) with the additional linear constraints

E = λR̄1, G = 0,(36)

have a feasible solution, then the nominal filter F0 given in (30) with

V = λ−1/2H 1/2R̄−1/2
2

is such that ‖Hwe(z;F0 + ΔF )‖2
2 ≤ ρ2(F0) := μ for all ΔF ∈ FR̄(F0).

Corollary 4. Let R̄ be partitioned as in (35). If there exist a positive scalar λ,
matrix K0, partitioned as in (8), and symmetric matrices Y , Z, E, H such that the
LMI (33) with the additional linear constraints (36) has a feasible solution, then the

nominal filter F0 given in (30) with V = λ−1/2H 1/2R̄−1/2
2 is such that ‖Hwe(z;F0 +

ΔF )‖∞ ≤ ρ∞(F0) := μ for all ΔF ∈ FR̄(F0).
Proof. Corollaries 3 and 4 can be proved in the same way. If R = λR̄, given

in (35), then from (32) and (36) we have that

V −1HV −T = λR̄2,

which is satisfied by the choice of V = λ−1/2H 1/2R̄−1/2
2 . Also notice that FR̄(F0) =

Fλ̄R(F0).
In Corollaries 3 and 4, the matrix V (and, consequently, matrix U) is automati-

cally chosen by the optimization problem and cannot be picked by the designer, as in
Theorems 1 and 2. This implies that the state space realization of the optimal filter
is obtained as a result of the optimization procedure. In this sense, Theorems 1 and 2
simultaneously design the optimal filter transfer function and its realization. This
result is in accordance with the well-known fact that some realizations of the same
filter transfer function can be better than others for implementation [1, 2].

Also notice that, as in [17, 15], all of the above results can be shown to reduce
to the standard Kalman filter and to the central H∞ filter when γ = 0. In fact, with
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γ = 0 the scaling matrices E, G, and H can be set arbitrarily close to zero, reducing
these inequalities to the ones given in [17].

An interesting comment on the technical device used to prove Theorems 1 and 2
is that, to the authors’ knowledge, it is the first time that a filtering or control ro-
bustness property has been derived directly from the transformed inequalities given
in Lemmas 1 and 2. The robustness analysis was performed with respect to the trans-
formed set of filter parameters K instead of the actual filter parameters F . Working
with the transformed parameters K instead of F was the key that permitted us to
both incorporate and keep the scaling matrix R as an extra variable in the obtained
design inequalities.

5. Extension to plant parameter uncertainty. In this section the assump-
tion that the plant parameters are exactly known is relaxed. Following [17], the plant
parameters, collected in the matrix

M :=

⎡⎣A B
Cz Dz

Cy Dy

⎤⎦,(37)

are allowed to be unknown but to belong to the convex hull of N given extreme
matrices (see [22]). That is,

M ∈ M := co

⎧⎨⎩Mi :=

⎡⎣ Ai (B)i
(Cz)i (Dz)i
(Cy)i (Dy)i

⎤⎦, i = 1, . . . , N

⎫⎬⎭.(38)

The goal is to derive design procedures that enable one to take into account the
filter parameter uncertainty as well as the plant parameter uncertainty. This can be
done by defining guaranteed cost functions that satisfy the general inequality

‖Hwe(z;F0 + ΔF ,M)‖p ≤ ρp(F0) ∀ ΔF ∈ FR(F0) ∀ M ∈ M.(39)

In the case of plant parametric uncertainty, the uncertain transfer function Hwe(z;F0+
ΔF ,M) depends on both the filter perturbation ΔF and the uncertain plant pa-
rameters M. The guaranteed cost ρp provides an upper bound to the Hp norm of
Hwe(z;F0 + ΔF ,M), which holds for all ΔF ∈ FR(F0) and all M ∈ M. Follow-
ing [17, 22], a guaranteed cost function ρ2 can be built by generating N copies of
the LMI (27)–(29) whose plant parameters correspond to those of Mi, i = 1, . . . , N .
The same procedure can be applied to generate ρ∞ from appropriate versions of the
inequalities given in Theorem 2.

The rationale behind this procedure is that the LMI (27)–(29) and (33) are all
affine on the parameters of the uncertain matrix M. Therefore, a convex combination
of feasible inequalities (27)–(29) and (33) can be used to generate appropriate feasible
inequalities for each M ∈ M (see [17, 22]). It is also straightforward to generate
robust filtering conditions, which use a parameter dependent Lyapunov function to
test stability following the methods of [18, 19]. The derivation of these extensions and
the corresponding LMI conditions are left to the interested reader.

6. Numerical example. Consider the system in the form (1)–(3) with matrices⎡⎣ A B
Cz Dz

Cy Dy

⎤⎦ =

⎡⎢⎢⎣
0.8 0.9 1 0 0
0.3 −0.5 0 1 0
1 1 0 0 0
1 0 0 0 1

⎤⎥⎥⎦.
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Table 1

H2 filter transfer functions.

γ 0.01 0.05 0.1

Design I
0.63z(z + 0.91)

(z − 0.33)(z + 0.53)

0.86z(z + 0.74)

(z − 0.09)(z + 0.60)

0.62z(z + 0.70)

(z − 0.02)(z + 0.64)

Design II
0.73z(z + 0.85)

(z − 0.25)(z + 0.55)

1.01z(z + 0.68)

z(z + 0.68)

0.65z(z + 0.68)

z(z + 0.68)

Table 2

H2 filtering performance.

Nominal cost Guaranteed cost Round-off gain
γ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Kalman 1.36 1.36 1.36 — 13.74 13.74 13.74
Design I 1.36 1.75 3.26 1.56 3.61 5.63 10.88 1.14 0.07
Design II 1.39 1.94 3.29 1.68 3.67 5.65 7.00 0.00 0.00

In the next sections we will design filters F0 to minimize an upper bound to the
Hp norm, p = {2,∞}, of Hwe(z;F0 + ΔF ), where ΔF ∈ FR(F0) for the values of
γ = {0.01, 0.05, 0.1}.

6.1. H2 filtering. A standard stationary Kalman filter has been designed to
serve as a template for the H2 filtering design. The transfer function FK(z) of the
Kalman filter is given by

FK(z) =
0.58z(z + 0.96)

(z − 0.38)(z + 0.52)
.

The following two H2 filter design methods have been tried:
Design I: Minimize μ subject to the LMI (27)–(29) with a full variable scaling
R (Theorem 1).
Design II: Minimize μ subject to the LMI (27)–(29) and the linear con-
straint (36) with a fixed scaling R̄ = I (Corollary 3).

The transfer functions of Designs I and II are given in Table 1. These filters are
associated with the performance measures given in Table 2. In this table the “Nominal
cost” is the H2 norm of Hwe(z;F0), and the “Guaranteed cost” is the square root of
the value of μ obtained by solving the problems in Theorem 1 and Corollary 3. The
“Round-off gain” shown in the third column of Table 2 is a measure that has not been
directly optimized by solving the design problems of this paper. It was computed after
determining the minimal round-off gain realizations for the designed filters according
to [2, 5].

It is important to notice that the solution of the problems in Theorem 1 and
Corollary 3 implies the simultaneous design of a filter realization. Moreover, if one
is to use these results to compare performance with a given filter realization F , it is
necessary to impose an additional constraint relating F and K. As noted before, such a
relationship is nonlinear and destroys the convexity of the problem. For these reasons,
and to be able to compare our results with other techniques, we have arbitrarily chosen
V = I, in which case the relationship between F and K becomes linear. This is, in
a certain sense, equivalent to fixing the admissible filter realizations. Additionally,
it also implies FR(F0) ≡ FSRST (K0), which seems to be an appropriate choice for
comparing a given realization to one obtained by the methods proposed in this paper.
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Table 3

H∞ filter transfer functions.

γ 0.01 0.05 0.1

Design III
0.72(z + 1.09)

z + 0.24

1.16(z + 0.57)

z + 0.51

1.20(z + 0.13)

z + 0.13

Design IV
0.85(z + 0.93)

z + 0.36

1.11(z + 0.73)

z + 0.60

1.17(z + 0.70)

z + 0.65

Using this idea, we have computed guaranteed cost for the standard Kalman filter.
However, no results are shown in the table since the LMI in Theorem 1 and Corollary 3
become infeasible for γ = 3.3×10−4 and γ = 1.2×10−4, respectively. This is evidence
of the importance of allowing the optimization to freely tune the filter realization.

Also notice that the optimal round-off gain realizations of the filters produced
by Designs I and II have lower round-off gains than the optimal coordinates of the
Kalman filter, although this measure of performance has not been directly optimized.
This asserts the effectiveness of the uncertainty domain FR(F0) in producing non-
fragile filters.

It is interesting to try to interpret the effect of the parameter perturbation on
the performance measures and in the filter transfer functions. From Table 1, one
can notice that, as the parameter uncertainty increases, the filter transfer function
tends to a constant, with no dynamics. This trend can help explain why the round-
off gains have decreased accordingly in Table 2. This effect is even accentuated in
Design II, where the filter optimization has fewer parameters with which to play. It
seems interesting that, to maximize the performance in the presence of an increasing
implementation uncertainty, the designed filter has been made simpler by the design
procedure.

6.2. H∞ filtering. This time we have designed a standard H∞ filter to serve as
a template for the H∞ filtering design. The transfer function FH(z) of the standard
H∞ filter is given by

FH(z) =
0.76(z + 1.02)

(z + 0.29)
.

It is interesting to notice that the standard optimal H∞ filter design already presents
a pole-zero cancellation. In fact, this feature will be present in all designed filters. As
before, two H∞ filter design methods have been tried as follows:

Design III: Minimize μ subject to the LMI (33) with a full variable scaling
R (Theorem 2).
Design IV: Minimize μ subject to the LMI (33) and the linear constraint (36)
with a fixed scaling R̄ = I (Corollary 4).

The transfer functions of Designs III and IV are given in Table 3 and their performance
measures in Table 4. The guaranteed costs for the standard H∞ filter have been
computed by setting V = I and solving the design LMI for the given realization. The
costs in the first line corresponds to the case when the scaling R has been optimized,
whereas the costs in the second line have been obtained with R̄ = I.

The same trends observed in the H2 filter design appear in the H∞ design. Notice
especially the tendency to simplify the filter by reducing it to a constant scaling.
Interestingly enough, this tendency now appears more accentuated in Design III,



FILTERING WITH IMPLEMENTATION UNCERTAINTY 527

Table 4

H∞ filtering performance.

Nominal cost Guaranteed cost Round-off gain
γ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

1.96 5.19 11.64
H∞ 1.44 1.44 1.44 13.67 178.8 593.5 6.98 6.98 6.98

Design III 1.56 3.61 5.63 1.66 3.93 7.28 10.88 1.14 0.07
Design IV 1.68 3.67 5.65 1.75 4.89 7.82 7.00 0.00 0.00

Table 5

Actual H2 filtering performance for the example in section 6.1.

σ̄
γ 0.01 0.05 0.1

Kalman 1.36 1.55 2.13
Design II 1.42 2.05 3.59

where the scaling R has been allowed to be optimized. Notice again a significant
reduction in the round-off gain.

6.3. Estimating conservativeness. In the previous section, the performances
of the designed filters have been evaluated with respect to guaranteed cost functions,
which are upper bounds to the norm of the filtering error system. In this section
we attempt to access the filter performance by directly evaluating an estimate of the
actual error system norms. The idea is to estimate the conservativeness of the method
and to evaluate its practical usefulness. We restrict our attention to the case of H2

filtering design with R = I.
For each filter design F0, we randomly generate a number of perturbation matrices

ΔFj , j = 1, . . . ,M , in FR(F0). The following procedure was used in this generation:
1. Generate a square matrix Δj , with the same number of rows as in F0, where

all entries are normally distributed random real numbers with zero mean and
unitary variance.

2. Compute ΔF j = γ
‖Δj‖ΔjF0 and Fj = F0 + ΔF j .

3. If Fj is asymptotically stable, set σj = ‖Hwe(z;Fj)‖2; otherwise set σj = ∞.
All filter perturbations generated by the above procedure are guaranteed to be in
the boundary of the set FR(F0), and an estimate of the error system norm can be
computed as

σ̄ := max
j=1,... ,M

σj ≈ sup
ΔF∈FR(F0)

‖Hwe(z;F0 + ΔF )‖2.

Strictly speaking, σ̄ provides a lower bound to the error system norm, which serves as a
good approximation for the worst case norm as M becomes large. In our experiments
we have set M = 1000.

We start by evaluating the problem described in section 6.1. The results of the
above numerical experiment applied to the filters previously labelled Kalman and
Design II are shown in Table 5 for several values of γ. Note that the performance of
Design II is, as expected, always below the designed guaranteed cost but, surprisingly,
above the performance of the nominal Kalman filter design. We credit this apparently
surprising behavior to a relative insensitivity of this particular example to variations
on the filter parameters, rather than to an overconservativeness of our approach. We
try to support this claim in the following paragraphs.
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Table 6

Actual H2 filtering performance for the second example in section 6.3.

σ̄
γ 0.01 0.05 0.1

Kalman 1.30 ∞ ∞
Corollary 3 1.28 1.35 1.43

The previous example might leave the impression that the proposed design proce-
dure produces robust filters at the expense of sacrificing performance; this impression
is possibly due to the implicit conservativeness in the design inequalities. In order
to show that the proposed procedure can indeed lead to efficient robust designs, we
consider another simple example with

⎡⎣ A B
Cz Dz

Cy Dy

⎤⎦ =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0

−0.5 0.5 0.1 1 0
1 0 0 0 0

−0.5 0.25 0.5 0 1

⎤⎥⎥⎥⎥⎦.

For the above example, the Kalman filter has a nominal performance of ‖Hwe(z;F0)‖2 =
1.28. The results of the above numerical experiment applied to the Kalman filter for
several values of γ are shown in the first row of Table 6. These results show that the
Kalman filter is extremely sensitive to parameter variations: a relative perturbation of
size γ = 0.01 already implies some loss of performance but, more important, for higher
values of γ, the Kalman filter becomes unstable (indicated as an infinite cost). This
highly sensitive system seems to provide a better benchmark for our design method-
ology. After computing the robust filters using Corollary 3, we run the numerical
experiment and obtain the performance estimate shown in the second row of Table 6.
In this example, the design procedure not only produced a filter, which performs as
efficiently as the nominal Kalman filter for γ = 0.01, but also produced robust filters
for γ = 0.05 and γ = 0.1, which were able to withstand large parameter perturbations
without becoming unstable and without sacrificing too much performance.

In the above example, an aspect that might have contributed to the sensitivity of
the Kalman filter to parameter variations is the increased order of the filter. Generally
speaking, it seems natural to expect that state space realizations of filters become
more sensitive to parameter variations as the order of the filter (and the associated
matrix dimensions) increases. In order to verify this trend we modify the system used
in section 6.1 to augment its order. More specifically, we introduce a delay on the
measurement signal y(k). This produces the third order system

⎡⎣ A B
Cz Dz

Cy Dy

⎤⎦ =

⎡⎢⎢⎢⎢⎣
0.8 0.9 0 1 0 0
0.3 −0.5 0 0 1 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 1

⎤⎥⎥⎥⎥⎦.

Due to the introduction of the delay on the measurement, the Kalman filter now has
a nominal performance of ‖Hwe(z;F0)‖2 = 1.72.

Table 7 shows the results of the numerical experiment performed on both the
nominal Kalman filter design and the filters produced by Corollary 3. Note that now
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Table 7

Actual H2 filtering performance for the example in section 6.1 with a measurement delay.

σ̄
γ 0.01 0.05 0.1

Kalman 1.74 2.16 3.70
Corollary 3 1.75 2.15 3.62

the performances of the Kalman filter and the robust filter designed for γ = 0.01
are practically the same, whereas Corollary 3 produces filters that perform better
than the Kalman filter for values of γ greater than 0.05. These results agree with
the statement that we should expect the Kalman filter to become more sensitive to
parameter variations as the order of the filter increases, in which case the procedure
we have proposed provides an effective way to design robust filters.

Finally, note that the main source of conservatism in this design comes from
the fact that the guaranteed cost functions we have used evaluate performance with
respect to parameter perturbations ΔF ∈ FR(F0), which are allowed to vary with
time. Indeed, this explains the gap between the (time-varying) guaranteed cost values
in Table 2 and the (time-invariant) values of σ̄ in Table 5.

7. Conclusions. A new procedure has been proposed for designing filters which
are robust in the presence of perturbations on the filter parameters. The filters are
obtained by minimizing guaranteed H2 and H∞ cost functions developed by confining
the filter parametric uncertainty in a region defined by a quadratic inequality. The
size of this uncertainty region depends on the size of the filter parameters, and the
maximum allowed parametric perturbation is specified as a percentage of the size of
the filter gains. Both the transfer function and the realization of the robust filter are
simultaneously designed. The optimization problems to be solved have constraints
specified in terms of LMI, whose global optimal solutions can be determined using
convex programming. The numerical examples suggest that the proposed technique
may produce filters with reduced round-off noise gain, although this performance
measure is not directly optimized in the design process.
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1. Introduction. The Hankel norm approximation problem has received a lot
of attention, both in the mathematical and engineering literature (see Adamjan, Arov,
and Krĕın [1], Ball and Helton [4], Ball and Ran [7], Glover [19], and Doyle, Glover,
and Zhou [17]). Its importance in control theory is due to its connections with the
model reduction problem (see [19]).

In order to state the suboptimal Hankel norm approximation problem, we will
need a few preliminaries. First we recall the definition of the (frequency-domain)
Hankel operator corresponding to a symbol G ∈ L∞(iR,Cp×m) and the definition of
its singular values. Let C+ := {s ∈ C | Re(s) > 0} and C− := {s ∈ C | Re(s) < 0}.

Let H2(C+,C
k) denote the set of all analytic functions f : C+ → Ck such that

‖f‖2 := sup
ζ>0

(
1

2π

∫ ∞

−∞
‖f(ζ + iω)‖2dω

) 1
2

< ∞.

Analogously one defines H2(C−,C
k). For G ∈ L∞ (iR,Cp×m) we define the Hankel

operator with symbol G, denoted by HG, acting from H2 (C−,C
m) to H2 (C+,C

p), as
follows:

HGf = PH2(C+,Cp)(MGf) for f ∈ H2 (C−,C
m) ,

where MG is the multiplication map on L2(iR,Cm) induced by G, and PH2(C+,Cp)

is the orthogonal projection operator from L2(iR,Cp) onto H2(C+,C
p). The Hankel

operator is bounded, that is, HG ∈ L(H2(C−,C
m), H2(C+,C

p)).
Now we recall the notion of singular values of a bounded linear operator from a

Hilbert space H1 to a Hilbert space H2. For k ∈ {1, 2, . . . } the kth singular value
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(denoted by σk(H)) of an operator H ∈ L(H1,H2) is defined to be the distance with
respect to the norm in L(H1,H2) of H from the set of operators in L(H1,H2) of
rank at most k − 1. Thus σ1(H) = ‖H‖, and σ1(H) ≥ σ2(H) ≥ σ3(H) ≥ · · · ≥ 0.
For G ∈ L∞(iR,Cp×m), we refer to the singular values of HG simply as the Hankel
singular values of G.

Let H∞,k(C−,C
p×m) denote the set of all p×m matrix-valued functions K of a

complex variable defined in the open left half-plane such that K = Gf + F , where F
is an element in H∞(C−,C

p×m) and Gf is the transfer function of a finite-dimensional
system with order at most k, with all its poles in the open left half-plane. The set
H∞,k(C−,C

p×m) is a subset of L∞(iR,Cp×m).
We recall the following well-known result of Adamjan, Arov, and Krĕın [1],

adapted here to the right half-plane setting: If G ∈ L∞(iR,Cp×m), then

inf
K∈H∞,k(C−,Cp×m)

‖G(i·) + K(i·)‖∞ = σk+1(G).

We are now ready to give the statement of the suboptimal Hankel norm approximation
problem, which is also known as the Nehari–Takagi problem. The suboptimal Hankel
norm approximation problem is the following: Let G(i·) ∈ L∞(R,Cp×m). If σk+1 <
σ < σk, then find K ∈ H∞,k(C−,C

p×m) such that ‖G(i·) + K(i·)‖∞ ≤ σ. In fact,
the authors of [1], working with Schmidt pairs of the Hankel operator, also gave a
linear-fractional description for the set of all solutions of the suboptimal Hankel norm
approximation problem; later work of Ball and Helton [4] obtained such a linear-
fractional description, but via an indefinite-metric Beurling–Lax theorem combined
with some Krĕın-space projective geometry.

Now suppose that G is in fact the transfer function of some well-posed linear
system; that is, G is not simply an L∞ function, but it has the special form G(s) =
C(sI − A)−1B, where (A,B,C) are the generators of the system. Then by a state-
space solution to the suboptimal Hankel norm approximation problem we mean a
K given explicitly in terms of the A,B,C operators. For the case of rational G(s)
with system-generators (A,B,C) equal to finite matrices, a state-space solution of
the Hankel norm approximation problem has been obtained by Kung and Lin [29],
Glover [19], Ball and Ran [7], and Ball, Gohberg, and Rodman [3, Chapter 20].

In Curtain and Sasane [14, 13], state-space solutions to the suboptimal Han-
kel norm approximation problem were given for two classes of infinite-dimensional
state-linear systems, but under the assumption that A generates an exponentially
stable, strongly continuous semigroup. Recall that a semigroup {T (t)}t≥0 on a
Hilbert space X is said to be exponentially stable if there exist positive constants
M and ε such that

‖T (t)‖ ≤ Me−εt for all t ≥ 0.

However, there exists an important class of systems with a transfer function G ∈
H∞(C−,C

p×m) for which A does not generate an exponentially stable semigroup
(see, for example, Oostveen [33]), for example, if A is the generator of a strongly
stable semigroup, that is, a semigroup satisfying

T (t)x → 0 as t → ∞ for all x ∈ X.

Roughly speaking, the rate of convergence to zero is not uniform but depends on the
choice of the element in the Hilbert space. An elementary example of a semigroup
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which is strongly stable but not exponentially stable is given by etA on �2, where

A =

⎡⎢⎢⎢⎣
−1

− 1
2

− 1
3

. . .

⎤⎥⎥⎥⎦ ∈ L(�2).

In this article, we consider an even weaker notion of stability, the so-called nonexpo-
nentially stable semigroup, namely, a semigroup whose generator has a nonnegative
growth bound. Clearly this class encompasses both strongly stable semigroups and
(hence surely) exponentially stable semigroups; thus we emphasize that the prefix
“non” is really short for “not necessarily.”

Earlier work on the problem for infinite-dimensional systems includes the work of
Curtain and Ran [12], which handled the case of Pritchard–Salamon systems, and of
Glover, Curtain, and Partington [20], where approximating solutions to the optimal
Hankel norm approximation problem were obtained without assuming exponential
stability, but only for the case that the Hankel operator is nuclear, a rather strong
assumption. In this paper, we give solutions to the suboptimal Hankel norm approx-
imation problem for infinite-dimensional systems having a nonexponentially stable
semigroup. Our solution depends on a preliminary result which obtains the linear-
fractional parameterization of the set of all solutions in purely frequency-domain terms
via the solution Θ of a certain J-spectral factorization problem. The fact that Θ may
be unbounded in our general setting makes the analysis much more delicate. We give
three proofs of this key frequency-domain result in order to point out the close con-
nections with results already existing in the literature. The first proof shows how the
result can be reduced to the result of Adamjan, Arov, and Krĕın in [1]. The second
proof revisits the proof of Ball and Helton [4] with special care given to the details
required to handle the general case where Θ may be unbounded. The third proof
revisits the homotopy argument appearing in [3, 40]. The standard homotopy argu-
ment works well in case the coefficients of the linear-fractional parameterization and
the free parameter are continuous up to the boundary. We show how an approxima-
tion argument can be used to reduce the general case here to the classical situation,
at least for the proof that every admissible free parameter leads to a solution of the
Nehari–Takagi problem. The proof that any solution of the Nehari–Takagi problem
necessarily is of the linear-fractional form follows the ideas appearing in the second
proof.

The outline of the paper is as follows. In section 2, we give the key frequency-
domain result (the reduction of the parameterization of the set of all solutions of
the suboptimal Hankel norm approximation problem to solving a certain J-spectral
factorization problem), along with our three proofs of this result. In section 3 we use
this frequency-domain result to parameterize all solutions to the suboptimal Hankel
norm approximation problem for infinite-dimensional state-space systems for which
the generator is not necessarily exponentially stable. Finally in the last section, we
give state-space solutions for well-posed linear systems by applying the result in sec-
tion 3 to the associated reciprocal system.

2. The key frequency-domain result.
Theorem 2.1. Let G ∈ H∞(C+,C

p×m) and let HG : H2(C−,C
m) �→ H2(C+,C

p)
denote the corresponding Hankel operator, with the singular values σ1 ≥ σ2 ≥ · · · (≥
0). Suppose that σk > σ > σk+1. Then there exists a matrix function Λ: C− �→
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C(p+m)×(p+m), uniquely determined up to a (p + m) × (p + m)-matrix right constant

factor U satisfying U∗[ Ip 0
0 −Im

]
U =

[ Ip 0
0 −Im

]
, such that

S1. Λ(iω)∗
[ Ip 0

0 −Im

]
Λ(iω) =

[
Ip G(iω)
0 Im

]∗[ Ip 0

0 −σ2Im

][
Ip G(iω)
0 Im

]
for ω ∈ R;

S2. 1
·−1Λ ∈ H2(C−,C

(p+m)×(p+m));

S3. Λ is invertible (i.e., there exists a V : C− �→ C(p+m)×(p+m) such that Λ(s)V (s) =
Ip+m for s ∈ C−) and 1

·−1V ∈ H2(C−,C
(p+m)×(p+m)).

Define

Θ(iω)

(
=

[
Θ11(iω) Θ12(iω)
Θ21(iω) Θ22(iω)

])
=

[
Ip G(iω)
0 Im

]
V (iω) for ω ∈ R.

Then we have the following: K : C− �→ Cp×m such that K ∈ H∞,k(C−,C
p×m) and

‖G(i·) + K(i·)‖∞ ≤ σ if and only if

G(iω) + K(iω) = (Θ11(iω)Q(iω) + Θ12(iω))(Θ21(iω)Q(iω) + Θ22(iω))−1 for ω ∈ R

(2.1)

for some Q : C− �→ Cp×m such that Q ∈ H∞(C−,C
p×m) and ‖Q(i·)‖∞ ≤ 1.

For the application of Theorem 2.1 in section 3, we note that a sufficient condition
for the validity of S2 is the existence of a constant Λ(∞) ∈ C(p+m)×(p+m) such that
Λ − Λ(∞) ∈ H2(C−,C

(p+m)×(p+m)).
By using the transformation

f(s) �→ f̃(z) := f

(
1 − z

1 + z

)
and observing (via the Jacobi change-of-variable formula) that∫

T

|f̃(z)|2 |dz| =

∫
iR

|f(s)|2 |ds|
1 + |s|2 ,

we see that Theorem 2.1 is exactly equivalent to the following discrete-time version.
Here D denotes the unit disk, De denotes the exterior of the unit disk (including the
point at infinity), and T denotes the unit torus (equal to the boundary of D).

Theorem 2.2. Let G ∈ H∞(De) and let HG : H2(D,Cm) �→ H2(D,Cp)⊥ be the
associated Hankel operator, with singular values σ1 ≥ σ2 ≥ · · · (≥ 0). Suppose that
σk > σ > σk+1. Then there exists a unique matrix function Λ: D �→ C(p+m)×(p+m),
uniquely determined up to a (p+m)×(p+m)-matrix right constant factor U satisfying

U∗[ Ip 0
0 −Im

]
U =

[ Ip 0
0 −Im

]
, such that

S′1. Λ(ζ)∗
[ Ip 0

0 −Im

]
Λ(ζ) =

[
Ip G(ζ)
0 Im

]∗[ Ip 0

0 −σ2Im

][
Ip G(ζ)
0 Im

]
for ζ ∈ T;

S′2. Λ ∈ H2(D,C(p+m)×(p+m));
S′3. Λ is invertible (i.e., there exists a V : D �→ C(p+m)×(p+m) such that Λ(z)V (z) =

Ip+m for z ∈ D) and V ∈ H2(D,C(p+m)×(p+m)).
Define

Θ(ζ)

(
=

[
Θ11(ζ) Θ12(ζ)
Θ21(ζ) Θ22(ζ)

])
=

[
Ip G(ζ)
0 Im

]
V (ζ) for ζ ∈ T.(2.2)

Then we have the following: K : D �→ Cp×m is such that K ∈ H∞,k(D,Cp×m) and
‖(G + K)|T‖∞ ≤ σ if and only if

G(ζ) + K(ζ) = (Θ11(ζ)Q(ζ) + Θ12(ζ))(Θ21(ζ)Q(ζ) + Θ22(ζ))
−1 for ζ ∈ T(2.3)

for some Q : D �→ Cp×m such that Q ∈ H∞(D,Cp×m) and ‖Q‖∞ ≤ 1.
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We next indicate several proofs of Theorem 2.2 based on various different points
of view. We first need to lay out a few preliminaries.

2.1. Preliminaries. For p and m positive integers we let Cp×m be the space of
complex p×m matrices M with norm ‖M‖ equal to the induced operator norm:

‖M‖ = sup
x∈Cm : ‖x‖2≤1

‖Mx‖2,

where ‖x‖2 is the standard Euclidean 2-norm on Cm. The trace norm Tr(M) of a
p×m matrix M is defined by

Tr(M) = tr(M∗M)1/2,

where the trace tr(A) of an m×m matrix A is defined by

tr(A) =

p∑
k=1

〈Aek, ek〉,

where {e1, . . . , en} is any orthonormal basis for Cp—a good reference for the natural
infinite-dimensional setting for this material is [21, Chapter VII]. We let L∞(T,Cp×m)
denote the space of measurable p × m matrix-valued functions on the unit circle T

with finite essential supremum (supremum up to sets of measure zero) norm uniformly
bounded:

‖F‖∞ = ess-sup
ζ∈T

‖F (ζ)‖ < ∞.

We let L1(T,C
m×p) be the space of measurable m × p matrix-valued functions f on

T with integrable trace norm:

‖f‖1 =
1

2π

∫
T

Tr(f(ζ))|dζ|.

It is well known (see, e.g., [38, page 197]) that the Banach space L∞(T,Cp×m) can
be identified as the dual of the Banach space L1(T,C

m×p) under the duality pairing

[F, f ] =
1

2π

∫
T

tr(F (ζ)f(ζ)) d|ζ| for F ∈ L∞(T,Cp×m) and f ∈ L1(T,C
m×p).

Therefore, in addition to its norm topology, L∞(T,Cp×m) carries a weak-∗ topology
induced by its duality with respect to L1(T,C

p×m). We shall have use of the following
facts concerning this weak-∗ topology.

Proposition 2.3.

(1) A subspace S of L∞(T,Cp×m) is closed in the weak-∗ topology of L∞(T,Cp×m)
if and only if whenever {Fn}n=1,2,... is a sequence of elements of S converging
weak-∗ to F ∈ L∞(T,Cp×m), then in fact F ∈ S.

(2) Suppose that {Fn}n=1,2,... is a sequence of elements of L∞(T,Cp×m) converg-
ing pointwise boundedly to the element F ∈ L∞(T,Cp×m), i.e.,

lim
n→∞

Fn(ζ) = F (ζ) for almost all ζ ∈ T, and

‖Fn(ζ)‖ ≤ M for some M < ∞ for all n = 1, 2, . . . .

Then Fn converges to F in the weak-∗ topology of L∞(T,Cp×m).
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Proof. By the Krĕın–Šmulian theorem (see [42, Theorem 10.1, page 173]), a
subspace S of L∞(T,Cp×m) (or more generally, a convex subset) is weak-∗ closed if
and only if S ∩{F : ‖F‖∞ ≤ r} is weak-∗ closed for each r > 0. Since S is a subspace,
by homogeneity it suffices to consider only the case r = 1. As L∞(T,Cp×m) is the
dual of the separable space L1(T,C

m×p), it follows that the weak-∗ topology on the
unit ball of L∞(T,Cp×m) is metrizable (see [18, Theorem 102, page 174]). Hence, to
show that S is closed in the weak-∗ topology, it suffices to show that S is closed under
sequential weak-∗ limits as asserted. This proves part (1) of Proposition 2.3.

Suppose now that {Fn}n=1,2,... is a sequence of elements of L∞(T,Cp×m) con-
verging pointwise boundedly to F . To show that Fn converges to F in the weak-∗
topology, we must show that

lim
n→∞

[Fn, f ] = lim
n→∞

1

2π

∫
T

tr(Fn(ζ)f(ζ))|dζ| =
1

2π

∫
T

tr(F (ζ)f(ζ))|dζ|(2.4)

for each choice of f ∈ L1(T,C
m×p). Note that the assumptions imply that

lim
n→∞

tr(Fn(ζ)f(ζ)) = tr(Fn(ζ)f(ζ)) for almost all ζ ∈ T.

By the standard trace estimate

| tr(AB)| ≤ Tr(AB) ≤ ‖A‖Tr(B),

we have

| tr(Fn(ζ)f(ζ))| ≤ ‖Fn(ζ)‖Tr(f(ζ)) ≤ M Tr(f(ζ)),

where M Tr(f(·)) is integrable by the definition of f ∈ L1(T,C
p×m). It now follows

from the Lebesgue dominated convergence theorem (see, e.g., [37, Theorem 16, page
91]) that (2.4) follows as required. This completes the proof of part (2) of Proposition
2.3.

The subspace H∞(D,Cp×m) can be viewed as the subspace of L∞(D,Cp×m) con-
sisting of functions F ∈ L∞(T,Cp×m) such that the Fourier coefficients of negative
index vanish:

1

2π

∫
T

F (ζ)ζn|dζ| = 0 for n = −1,−2, . . . .

The subspace H∞(D,Cp×m) can also be viewed (via identification through nontangen-
tial-limit boundary values) as the space of analytic p×m matrix-valued functions on
the unit disk which are uniformly bounded there:

‖F‖∞ = sup
z∈D

‖F (z)‖ < ∞.

We define H∞,k(D,Cp×m) as consisting of all elements G of L∞(T,Cp×m) for which
the associated Hankel operator HG : H2(D,Cm) �→ H2(D,Cp)⊥ given by

HG : f �→ PH2(D,Cp)⊥MG|H2(D,Cm)

has rank equal to k. Here MG denotes the multiplication operator associated with G.
Equivalently, the Hankel matrix

[HG] =

⎡⎢⎢⎢⎣
g−1 g−2 g−3 . . .
g−2 g−3 g−4 . . .
g−3 g−4 g−5 . . .
...

...
...

⎤⎥⎥⎥⎦ : �2(Z+,C
m) �→ �2(Z+,C

p)
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based on the Fourier coefficients for G,

G(z) ∼
∞∑

n=−∞
gnz

n for z ∈ T,

has rank equal to k. In what follows we shall use the following result.
Proposition 2.4. For a given k ∈ {0, 1, 2, . . . }, the set⋃

k′ : k′≤k

H∞,k′(D,Cp×m)

is closed in the weak-∗ topology of L∞(T,Cp×m).
Proof. Let us suppose that Gn ∈ H∞,k′(D,Cp×m) for some k′ ≤ k for all

n = 1, 2, . . . , and that Gn converges to G ∈ L∞(T,Cp×m) in the weak-∗ topology.
By part (1) of Proposition 2.3, Proposition 2.4 follows if we are able to show that
necessarily the limit G is again in

⋃
k′ : k′≤k H∞,k′(D,Cp×m). For f ∈ H2(D,Cm) and

g ∈ H2(D,Cp)⊥ we then have

〈HGn
f, g〉H⊥

2
=

1

2π

∫
T

g(ζ)∗Gn(ζ)f(ζ)|dζ|

=
1

2π

∫
T

tr (Gn(ζ)f(ζ)g(ζ)∗) |dζ|.(2.5)

As f(ζ)g(ζ)∗ ∈ L1(T,C
m×p) and Gn converges weak-∗ to G by assumption, we con-

clude from (2.5) that

lim
n→∞

〈HGnf, g〉H⊥
2

=
1

2π

∫
T

tr (G(ζ)f(ζ)g(ζ)∗) |dζ|

= 〈HGf, g〉H⊥
2
,(2.6)

i.e., HGn converges to HG in the weak operator topology of L(H2(D,Cm), H2(D,Cp)⊥).
The fact that Gn ∈ H∞,k′(D,Cp×m) with k′ ≤ k means that

det[〈HGnej , f�〉H⊥
2

]j,l=1,...,k+1 = 0(2.7)

for all n = 1, 2, 3, . . . for any choice of k+1 linearly independent vectors {e1, . . . , ek+1}
in H2(D,Cm) and k + 1 linearly independent vectors {f1, . . . , fk+1} in H2(D,Cp)⊥.
Using (2.5) and taking limits in (2.7) then implies that

det[〈HGej , fl〉H⊥
2

]j,l=1,...,k+1 = 0(2.8)

for all such {e1, . . . , ek+1} and {f1, . . . , f+1}. This then implies that HG has rank at
most k, or, by definition, G ∈ H∞,k′(D,Cp×m) for some k′ ≤ k.

Sometimes it is of interest to focus on the “unit ball” of H∞,k(D,Cp×m), namely,
the set of functions G ∈ H∞,k(D,Cp×m) with ‖G‖∞ ≤ 1. This class is often given a
special name, namely, the generalized Schur class of index k, denoted as Sk(D,Cp×m).
The following result concerning the class Sk(D,Cp×m) originates in the work of Krĕın
and Langer (see [27, 28]).

Proposition 2.5. Let G ∈ L∞(T,Cp×m). Then the following are equivalent:
(1) G ∈ Sk(D,Cp×m).
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(2) G has a factorization G = F ·B−1, where F is in H∞(D,Cp×m) with ‖F‖∞ ≤
1 and B is an m × m Blaschke–Potapov product of degree k, and no such
representation G = f ′ · B′−1 is possible with B′ an m×m matrix Blaschke–
Potapov product of degree k′ < k.

(3) G has meromorphic continuation to D and, for any choice of vectors x1, . . . ,
xN ∈ Cp, points z1, . . . , zN ∈ ΩG (where ΩG ⊂ D is the domain of analyticity
for G), and N = 1, 2, 3, . . . , the Hermitian matrix[

x∗
i xj − x∗

iG(zi)G(zj)
∗xj

1 − zizj

]
(2.9)

has at most k negative eigenvalues, and there is at least one choice of x1, . . . ,
xN , z1, . . . , zN , and N for which (2.9) has exactly k negative eigenvalues.

We shall also need an asymptotic version of the maximum modulus theorem for
the generalized Schur class Sk(D,Cp×m) (with k < ∞).

Proposition 2.6. Suppose G is in the generalized Schur class Sk(D,Cp×m),
where k < ∞, and let s > 1. Then there exists an r < 1 so that

z ∈ D, r < |z| < 1 ⇒ z ∈ ΩG, and ‖G(z)‖ ≤ s.

Proof. Let G = F · B−1 be the Krĕın–Langer factorization G and suppose that
we are given a number s > 1. As F ∈ H∞(D,Cp×m) with ‖F‖∞ ≤ 1, we have
‖F (z)‖ ≤ 1 for all z ∈ D by the maximum modulus theorem for H∞. As B is a finite
matrix Blaschke–Potapov product, B is uniformly continuous on the closed disk D,
and B−1 is uniformly continuous on any annulus Ar = {z : r ≤ |z| ≤ 1} which misses
the zeros of B. As B−1 has norm 1 on the unit circle, we can therefore guarantee
that ‖B−1(z)‖ ≤ s (for any preassigned s > 1) as long as we restrict to an annulus
Ar with r sufficiently close to 1. The result now follows.

We also need the following elementary result.
Proposition 2.7. Suppose that G ∈ H∞(De,C

p×m) with Hankel singular values
σ1 ≥ σ2 ≥ · · · (≥ 0). If Q ∈ H∞,k(D,Cp×m), then ‖G + Q‖∞ ≥ σk+1.

Proof. The Hankel singular values are characterized by

σk+1(HG) = inf
X : rankX≤k

‖HG −X‖,

where X here is an operator from H2(D,Cm) to H2(D,Cp) (see, e.g., [21, Chapter
VI, Theorem 1.5, page 98]). In particular, if K ∈ H∞,k(D,Cp×m), then X = HK has
rank equal to k. Hence

‖G + K‖∞ ≥ ‖HG+K‖op = ‖HG + HK‖op ≥ inf
X : rankX≤k

‖HG + X‖op = σk+1,

and the assertion follows.

2.2. Existence of Λ and Θ in Theorem 2.2. In this section we point out
some general considerations which guarantee the existence of a function Λ: D �→
C(p+m)×(p+m) satisfying conditions S′1, S′2, and S′3. It then remains to prove that
such a Λ leads to a parameterization of the set of all solutions of the Nehari–Takagi
problem as in Theorem 2.2. In practice, it then remains to compute Λ (and Θ) in
some explicit form in terms of known parameters in the application; this is what we do
in section 3 (for the setting of the left half-plane rather than of the unit disk), where
G(s) = C(sI − A)−1B is assumed to be the transfer function of a continuous-time
linear system having certain (nonexponential) stability properties.
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First we need to make a few general observations. The invertibility of H∗
GHG−σ2I

on L2(T,C
m) is equivalent to σ being in the resolvent set of [H∗

GHG]1/2, i.e., of σ
being in a gap of the spectrum of [H∗

GHG]1/2. It is well known that the singular
values σ1 > σ2 > · · · of HG consist of the points of the spectrum of [H∗

GHG]1/2 which
are isolated eigenvalues of finite multiplicity positioned to the right of the continuous
spectrum. The condition that σ is in a gap between Hankel singular values implies
in particular that σ is in a gap of the spectrum of [H∗

GHG]1/2, and hence implies the
invertibility of H∗

GHG−σ2I on L2(T,C
m). Further details on singular values in general

are given in Lemma 6.2 in Appendix B. For a given matrix function G ∈ L∞(T,Cp×m),
in addition to the notation HG : H2(D,Cm) �→ H2(D,Cp)⊥ for the Hankel operator
HG : f �→ PH2(D,Cp)⊥(G · f) associated with G, we let TG : H2(D,Cm) �→ H2(D,Cp)
denote the Toeplitz operator associated with G,

TG : f �→ PH2(D,Cp)(G · f) for f ∈ H2(D,Cm),

and we let MG : L2(T,C
m) �→ L2(T,C

p) denote the multiplication (sometimes also
called the Laurent) operator associated with G,

MG : f �→ G · f.

The next proposition gives a number of conditions equivalent to the invertibility of
H∗

GHG − σ2I on H2(D,Cm).
Proposition 2.8. Let G ∈ L∞(T,Cp×m) and set A =

[
I G
0 I

]
∈ L∞(T,

C(p+m)×(p+m)). Then the following conditions are equivalent:
(1) H∗

GHG − σ2I is invertible.
(2) The Toeplitz operator TA∗JσA is invertible on H2(D,Cp+m).
(3) The singular integral operator S := MA∗JσAPH2(D,Cp+m) + PH2(D,Cp+m)⊥ is

invertible on L2(T,C
m).

Proof. To see that (1) ⇒ (2), note that

A∗JσA =

[
Ip G
0 Im

]∗ [
Ip 0
0 −σ2Im

] [
Ip G
0 Im

]
=

[
Ip G
G∗ G∗G− σ2Im

]
.

Taking Schur complements, we see that invertibility of TA∗JσA is equivalent to invert-
ibility of

TG∗G−σ2Im − TG∗TG = PH2 (MG∗MG −MG∗PH2MG) |H2 − σ2IH2

= PH2
MG∗PH⊥

2
MG|H2

− σ2IH2

= H∗
GHG − σ2IH2 ,

and (1) ⇐⇒ (2) follows.

If we decompose L2(C
p+m) in the form L2(C

p+m) =
[ H2(D,Cp+m)

H2(D,Cp+m)⊥

]
, then the sin-

gular integral operator S := MA∗JσAPH2 +PH⊥
2

has the operator-block representation

S =

[
TA∗JσA 0
HA∗JσA IH⊥

2

]
.

From the triangular form of this block operator matrix, we see (2) ⇐⇒ (3).
Theorem VII.2.1 combined with Theorem VIII.4.1 from [10], adapted to our set-

ting, gives the following.
Theorem 2.9 (see [10, Theorem VII.2.1 and Theorem VIII.4.1] or [31]). Let

G ∈ L∞(D,Cp×m). Then the following are equivalent:
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(1) Any of the equivalent conditions (1), (2), or (3) in Proposition 2.8 holds.
(2) There exists a function Λ ∈ H2(D,C(p+m)×(p+m)) meeting the conditions

S′1, S′2, and S′3 of Theorem 2.2 and satisfying the additional condition: The
operator MV PH2MΛ (= MΛ−1PH2MΛ) defines a bounded projection operator
on L2(T,C

p+m). Moreover, Λ is uniquely determined up to a (p+m)×(p+m)-

matrix right constant factor U satisfying U∗[ Ip 0
0 −Im

]
U =

[ Ip 0
0 −Im

]
.

We point out that in fact conditions S′1, S′2, and S′3 already determine Λ uniquely
up to a constant (without the additional condition on the boundedness of MV PH2MΛ).
Indeed if Λ and Λ′ satisfy S′1, S′2, and S′3, then ΛΛ′−1(z) is analytic on D and satisfies

(ΛΛ′−1)∗(ζ)

[
Ip 0
0 −Im

]
(ΛΛ′−1)(ζ) =

[
Ip 0
0 −Im

]
for ζ ∈ T.(2.10)

We then use the formula
[ Ip 0

0 −Im

]
(ΛΛ′−1)∗−1(1/z)

[ Ip 0
0 −Im

]
to analytically continue

ΛΛ′−1 to the exterior of the unit disk. From (2.10) we see that the nontangential
boundary values from outside the disk agree with the nontangential boundary values
from inside the disk. By using Lemma 6.6 from [32, page 223], we see that the analytic
continuation passes through the unit circle as well. Then by Liouville’s theorem we see
that ΛΛ′−1 must be an invertible constant matrix U . Since Λ and Λ′ both satisfy S′1,
we see next that the constant matrix U must also satisfy U∗[ Ip 0

0 −Im

]
U =

[ Ip 0
0 −Im

]
.

We remark that the version of Theorem 2.9 as formulated in [10] uses the in-
vertibility of the singular integral operator (condition (3) in Proposition 2.8) as the
operator theory condition equivalent to the existence of the so-called canonical gen-
eralized factorization with respect to L2.

2.3. Proof of Theorem 2.2 via the Adamjan–Arov–Krĕın (AAK) the-
orem. The following result of Adamjan, Arov, and Krĕın (see [1]) also gives a pa-
rameterization of the set of all solutions of the (discrete-time) Nehari–Takagi problem
under the assumption that σk > σ > σk+1. A thorough recent treatment of the AAK
approach can be found in Peller [34].

Theorem 2.10. Let G ∈ H∞(De) and let HG : H2(D,Cm) �→ H2(D,Cp)⊥ be the
associated Hankel operator, with singular values σ1 ≥ σ2 ≥ · · · (≥ 0). Suppose that
σk > σ > σk+1. Define

Θ(ζ) =

[
Θ11(ζ) Θ12(ζ)
Θ21(ζ) Θ22(ζ)

]
∈ L2(T,C

(p+m)×(p+m))

by (viewed as an operator from Cp+m into L2(T,C
p+m))

Θ =

[
ζ · Z∗e

∗
∗γ∗ HGZe∗γ

ζ ·H∗
GZ∗e

∗
∗γ∗ Ze∗γ

]
,(2.11)

where e∗ : L2(T,Cp) �→ Cp, e : L2(T,Cm) �→ Cm, Z : H2(D,Cm) �→ H2(D,Cm),
Z∗ : H2(D,Cp) �→ H2(D,Cp), γ : Cm �→ Cm, and γ∗ : Cp �→ Cp are given by

e∗ :
∑∞

j=−∞ ζjfj �→ f−1, e :
∑∞

j=−∞ ζjgj �→ g0,

Z = (I − σ−2H∗
GHG)−1, Z∗ = (I − σ−2HGH

∗
G)−1,

γ = (eZe∗)−1/2, γ∗ = (e∗Z∗e
∗
∗)

−1/2.

Then the conclusion of Theorem 2.2 holds with Θ given by (2.11) rather than by (2.2).
In [4] it is argued that one way to compute a function Θ ∈ L2(D,C(p+m)×(p+m))

meeting the requirement in Theorem 2.2 is as follows: Θ should satisfy the conditions
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C′1. Θ(ζ)∗
[ Ip 0

0 −σ2Im

]
Θ(ζ) =

[ Ip 0
0 Iq

]
and

C′2. the columns of Θ should form a basis for the “wandering subspace” L asso-
ciated with the problem

Θ · Cp+m = L := M�Jσ ζ · M,

where we have set

M :=

[
Ip G
0 Im

]
·H2(D,Cp+m)

and where the notation �Jσ refers to the orthogonal difference in the indefinite
inner product 〈·, ·〉Jσ

on L2(T,C
p+m) induced by Jσ:

〈f, g〉Jσ
=

1

2π

∫
T

〈Jσf(ζ), g(ζ)〉Cp+m |dζ|.

In fact, this construction is very close to that in [10] for the construction of Wiener–
Hopf factors under the assumption that the associated singular integral operator is
invertible as discussed in section 2.2. Furthermore, in [2] it is verified that Θ as defined
in (2.11) meets the criteria C′1 and C′2. In this way we have a proof of Theorem 2.2
which ultimately rests on the main result from [1].

2.4. Proof of Theorem 2.2 via Krĕın-space projective geometry: The
Ball–Helton approach. This approach, originating in [4] (see also [39] and [2]),
relies on a projective geometry of Krĕın spaces. The method is reasonably straight-
forward in case the spectral factor Λ and its inverse V are bounded (and hence also Θ
is bounded), but there are some extra complications for the general case. Since these
extra complications remained a little obscure in the original exposition [4], we now re-
visit the ideas there in an attempt to make them more accessible for the system-theory
community. For basic background concerning Krĕın spaces, we refer to [9].

We first observe that the space L2(T,C
p+m) is a Krĕın space in the Jσ inner

product given by

〈f, g〉Jσ =
1

2π

∫
T

〈Jσf(ζ), g(ζ)〉Cp+m |dζ|.

A key role is played by the subspace M given by

M =

[
I G
0 I

]
·H2(D,Cp+m) ⊂ L2(T,C

p+m).(2.12)

In general a subspace M of a Krĕın space K is said to be regular if it has a good
orthogonal complement in the Krĕın space inner product (i.e., if K = M+̇M[⊥],
where +̇ indicates direct-sum decomposition), where M[⊥] indicates the orthogonal
complement in the indefinite Krĕın space inner product. We have the following char-
acterization of when the subspace M given by (2.12) is a regular subspace of the
Krĕın spaces (L2(T,C

p+m), 〈·, ·〉Jσ ).
Proposition 2.11. The subspace M given by (2.12) is a regular subspace of the

Krĕın space (L2(T,C
p+m), 〈·, ·〉Jσ

) if and only if any one of the equivalent conditions
in Proposition 2.8 holds.

Proof. Note that, for f, g ∈ H2(D,Cp+m), we have〈[
Ip G
0 Im

]
f, g

〉
Jσ

=

〈
Jσ

[
Ip G
0 Im

]
f, g

〉
L2(T,Cp+m)

= 〈TA∗JσAf, g〉L2(T,Cp+m) ,
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where A =
[
I G
0 I

]
is as in Proposition 2.8. Thus the map U : f �→

[ Ip G
0 Im

]
·f is unitary

from H2(D,Cp+m) with the inner product induced by the Toeplitz operator TA∗JσA

to M with the inner product induced by Jσ. A standard fact concerning Krĕın spaces
(see, e.g., [9]) is that a subspace of a Krĕın space K is regular if and only if it is itself
a Krĕın space in the inner product inherited from K. In the case at hand, by the
indefinite-metric unitary property of U , this happens if and only if H2(T,C

p+m) is a
Krĕın space in the inner product induced by TA∗JσA; this in turn is equivalent to the
invertibility of the Toeplitz operator TA∗JσA, i.e., condition (2) in Proposition 2.8.
Proposition 2.11 now follows.

When M is a regular subspace of (L2(T,C
p+m), 〈·, ·〉Jσ ), we denote by PM the

projection of L2(T,C
p+m) onto M along M[⊥]. Then PM is bounded as an operator

on L2(T,C
p+m) and is self-adjoint in the Jσ-inner product:

〈PMf, g〉Jσ = 〈f, PMg〉Jσ .

A key result from [4] is that when M is regular, then M has the following Beurling–
Lax-type representation.

Theorem 2.12 (see [4, 5]). Assume that the subspace M as in (2.12) is a regular
subspace of (L2(T,C

p+m), 〈·, ·〉Jσ
). Then there is a matrix function Θ ∈ L2(T,C

p+m)
such that

(1) M = L2(T,C
p+m)-closure of Θ ·H∞(D,Cp+m);

(2) Θ(ζ)∗JσΘ(ζ) = J1 :=
[ Ip 0

0 −Im

]
for almost all ζ ∈ T;

(3) the operator MΘPH2(D,Cp+m)M
−1
Θ defines a bounded operator, namely, the

Jσ-orthogonal projection PM of L2(T,C
p+m) onto M along M[⊥].

Moreover, Θ is uniquely determined up to a constant J-unitary factor on the right,
and in principle can be computed from the (J1, Jσ)-unitary property (2) above, along
with the condition that

Θ · Cp+m = M�Jσ
ζ · M.

Alternatively, Θ arises as Θ =
[ Ip G

0 Im

]
V , where V = Λ−1 and Λ is the spectral factor

for A∗JσA as in Theorem 2.9.
Remark 2.13. Note that if we set A =

[ Ip G
0 Im

]
(with then A−1 =

[ Ip −G
0 Im

]
), we

have

MΘPH2(D,Cp+m)MΘ−1 = MAMV PH2(D,Cp+m)MΛM
−1
A ,

where MA and its inverse M−1
A are bounded on L2(T,C

p+m). In this way we see that
the last part of condition (2) in Theorem 2.9 fits with condition (3) in Theorem 2.12.

The next step is to reformulate the Nehari–Takagi problem itself in terms of a
certain graph subspace of L2(T,C

p+m) instead of in terms of the matrix function
K ∈ H∞,k(T,C

p×m). We shall work with the Krĕın–Langer representation for an
element K of H∞,k(D,Cp×m). Specifically, a matrix function K ∈ L∞(T,Cp×m) is
in the class H∞,k(D,Cp×m) if and only if K has a representation as K = F · B−1,
where F ∈ H∞(D,Cp×m) and B ∈ H∞(D,Cm×m) is a Blaschke–Potapov product of
degree k, and k is the smallest nonnegative integer for which such a representation is
possible. Then we have the following reformulation of the Nehari–Takagi problem.

Proposition 2.14 (see [4, 2]). The angle-operator–graph correspondence induces
a one-to-one correspondence between solutions K ∈ H∞,k′(D,Cp×m) of the Nehari–
Takagi problem with datum G ∈ L∞(T,Cp×m) and with index k′ ≤ k, on the one
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hand, and subspaces G of the Krĕın space

K =

([
L2(T,C

p)
H2(D,Cm)

]
,
〈
·, ·
〉
Jσ

)
(2.13)

such that

(1) G ⊂ M :=
[ Ip 0

0 Im

]
·H2(D,Cp+m),

(2) G has codimension k in a maximal negative subspace of K, and
(3) G is shift invariant, i.e., ζ · G ⊂ G,

on the other hand, as follows. If K ∈ H∞,k′(D,Cp×m) has a representation as K =
FB−1, with F ∈ H∞(D,Cp×m) and with B ∈ H∞(D,Cm×m) a Blaschke–Potapov
product of degree k, and is such that ‖G + K‖∞ ≤ σ, and if we set

GK =

[
G + K

I

]
B ·H2(T,C

p×m) =

[
GB + F

B

]
·H2(D,Cp×m),(2.14)

then GK satisfies conditions (1), (2), and (3) listed above. Conversely, if G satisfies
conditions (1), (2), and (3) listed above, then necessarily there is a K ∈ H∞,k′(D,Cp×m)
with k′ ≤ k and with K = FB−1 for a Blaschke–Potapov product of degree k′ such
that ‖G + K‖∞ ≤ σ and G has the form GK as in (2.14).

Proof. We defer the proof to Appendix A (see section 5.1).

The next step is to note the geometric significance of the fact that σk > σ > σk+1.

Proposition 2.15. Assume that G ∈ L∞(T,Cp×m) has Hankel singular values
σ1 ≥ σ2 ≥ · · · with σk > σ > σk+1, and define subspaces M and K of L2(T,C

p+m)
as in (2.12) and (2.13). Then M is a regular subspace of K, and the Jσ-orthogonal
complement K �Jσ

M of M inside K has k negative squares.

Proof. One can compute that the relative Jσ-orthogonal complement K �Jσ M
is given by

K �Jσ
M =

[
I

σ−2H∗
G

]
H2(D,Cp)⊥.

Hence, the negative signature of K �Jσ
M is equal to the number of negative eigen-

values of the self-adjoint operator

[
I σ−2HG

] [Ip 0
0 −σ2Im

] [
I

σ−2H∗
G

]
= I − σ−2HGH

∗
G.

From the definition of singular values, we see that this quantity in turn is equal to k
if σk > σ > σk+1, and the assertion follows.

Proposition 2.15 enables us to adjust Proposition 2.14 to a more useful form as
follows.

Proposition 2.16. Assume that G ∈ L∞(T,Cp×m) has Hankel singular values
σ1 ≥ σ2 ≥ · · · satisfying σk > σ > σk+1 as in Proposition 2.15. Then the angle-
operator–graph correspondence as sketched in Proposition 2.14 induces a one-to-one
correspondence between solutions K ∈ H∞,k(D,Cp×m) of the Nehari–Takagi problem
with datum G ∈ L∞(T,Cp×m) and with index k, on the one hand, and subspaces G
of the Krĕın space K as in (2.13) such that

(1) G ⊂ M :=
[ Ip G

0 Im

]
·H2(D,Cp+m),
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(2) G is a maximal negative subspace as a subspace of M, and
(3) G is shift invariant, i.e., ζ · G ⊂ G,

on the other hand.
Proof. We defer the proof to Appendix A (see section 5.2).
Proposition 2.16 reduces the description of all solutions K of the Nehari–Takagi

problem to a description of all shift-invariant subspaces G of M which are maximal
negative as a subspace of M. The next proposition gives a characterization of these
subspaces; it is at this point that we use the Beurling–Lax representation of M given
in Theorem 2.12.

Proposition 2.17. Assume that K ∈ L∞(T,Cp×m) with Hankel singular values
σ1 > σ2 > · · · satisfying σk > σ > σk+1 as in Proposition 2.16. As in (2.12), let M
be considered as a Krĕın space in the Jσ-inner product, and let Θ ∈ L2(T,C

p×m) be
the Jσ-Beurling–Lax representer for M as in Theorem 2.12. Then a subspace G of
M satisfies conditions (1), (2), and (3) in Proposition 2.16 if and only if there is a
matrix function Q ∈ H∞(T,Cp×m) such that

G = L2(T,C
p+m)-closure of Θ

[
Q
I

]
·H∞(D,Cm)(2.15)

for a uniquely determined matrix function Q ∈ H∞(D,Cp×m) with ‖Q‖∞ ≤ 1.
Proof. The proof is deferred to Appendix A (see section 5.3).
We are now ready to put all the pieces together to complete the proof of Theo-

rem 2.2
Proof of Theorem 2.2. By combining Propositions 2.14 and 2.16 with Proposition

2.17, we see that K solves the Nehari–Takagi problem if and only if K has a Krĕın–
Langer factorization Q = FB−1 (where F ∈ H∞(D,Cp×m) and B ∈ H∞(D,Cm×m)
is a Blaschke–Potapov product of degree k) such that[

G + K
Im

]
B ·H2(D,Cm) ∩ Θ ·H∞(D,Cp+m) = Θ

[
Q
Im

]
·H∞(D,Cm)

for a uniquely determined Q ∈ H∞(D,Cp×m) with ‖Q‖∞ ≤ 1. In particular, we see
that for each of the standard basis vectors e1, . . . , em in Cm there must be correspond-
ing vector functions f1, . . . , fm ∈ BH2(D,Cm) so that[

G + K
Im

]
fj = Θ

[
Q
Im

]
ej ,

or, in operator form, [
G + K
Im

]
F =

[
Θ11Q + Θ12

Θ21Q + Θ22

]
.

From the bottom component we read off that F = Θ21Q+ Θ22; then the top compo-
nent gives

(G + K)(Θ21Q + Θ22) = Θ11Q + Θ12.

Once we confirm that F (ζ)−1 = (Θ21(ζ)Q(ζ) + Θ22(ζ))
−1 makes sense for almost all

ζ ∈ T, we can solve for G + K and arrive at the formula (2.3) for G + K. As all the
analysis is necessary and sufficient, this will then complete the proof of Theorem 2.2.
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We can see that Θ21(ζ)Q(ζ) + Θ22(ζ) is invertible for almost all ζ ∈ T by the
following geometric argument; for those readers who would prefer an analytic argu-
ment, we also give an analytic proof of the same point in the next section. By our
construction we have that the linear manifold[

G + K
Im

]
F ·H∞(D,Cm)

is dense in a shift-invariant subspace GG+K of K =
[ L2(T,C

p)
H2(D,Cm)

]
which has codimen-

sion k in a maximal Jσ-negative subspace of K. By the angle-operator–graph cor-
respondence for Jσ-negative subspaces, equivalently ‖G + K‖∞ ≤ σ and the L2-
closure of FH∞(D,Cm) has the form BH2(D,Cm) for a Blaschke–Potapov prod-
uct in H∞(D,Cm×m) of degree k. For this to occur, it is necessarily the case that
detF (ζ) �= 0 for almost all ζ ∈ T. The proof of Theorem 2.2 (via Krĕın-space projec-
tive geometry) is now complete.

2.5. Proof of Theorem 2.2 via a winding number argument. It is also
possible to bypass the Krĕın-space geometry ideas and give a more analytic, less
geometric proof for most of the content of Theorem 2.2, as we now show. The main
idea for this approach comes from [6]; it can also be considered as a purely frequency-
domain version of the state-space solution given in [3] for the rational case. One key
point of Theorem 2.2 is that every solution of the Nehar–Takagi problem arises from
a contractive H∞-free parameter via the linear-fractional map; for the proof of this
part we translate the ideas from the Grassmannian approach to the more analytic
setting here.

The starting point for this alternative derivation is still the Beurling–Lax repre-
sentation for the subspace M given in Theorem 2.12. Under the assumption that M
is a regular subspace of (L2(T,C

p+m), 〈·, ·〉Jσ ), we know that L2(T,C
p+m) has a direct

sum decomposition

L2(T,C
p+m) = M[⊥]+̇M,

and hence there is a bounded projection operator PM from L2(T,C
p+m) onto M along

the Jσ-orthogonal complement M[⊥] of M. In addition, in this setup the projection
operator PM is Jσ-self-adjoint in the sense that

〈PMf, g〉Jσ = 〈f, PMg〉Jσ for all f, g ∈ L2(T,C
p+m).

In addition, we shall have use for the operator P ∗
−PMP− on H2(D,Cm), where we

have set

P− =

[
0p×m

Im

]
: H2(D,Cm) �→ L2(T,C

p+m).

Note that then

P ∗
− =

[
0m×p PH2(D,Cm)

]
: L2(T,C

p+m) �→ H2(D,Cm).

Proposition 2.18. Assume that M as in (2.12) is regular and that M has the
Jσ-Beurling–Lax representation M = L2-closure of Θ ·H∞(D,Cp+m) as in Theorem
2.12. Then the following hold:



546 J. A. BALL, K. M. MIKKOLA, AND A. J. SASANE

(1) Jσ-orthogonal projection of L2(T,C
p+m) onto M can be computed either in

terms of G as

PM =

[
PH2(D,Cp) 0

0 0

]
+

[
HG

I

] (
H∗

GHG − σ2Im
)−1 [

H∗
G −σ2Im

]
(2.16)

or in terms of Θ as

PM = MΘPH2(D,Cp+m)M
−1
Θ .(2.17)

(2) The operator P ∗
−PMP− can be expressed in two ways:

P ∗
−PMP− = −σ2(H∗

GHG − σ2Im)−1(2.18)

= −σ2M[Θ21 Θ22]PH2(D,Cp+m)M[Θ21 −Θ22]∗ .(2.19)

(3) The number k of negative eigenvalues of the self-adjoint operator P ∗
−PMP−

on H2(D,Cm) can be expressed either as

k = the number of Hankel singular values > σ(2.20)

or as the number of negative squares of the kernel

Θ22(z)Θ22(w)∗ − Θ21(z)Θ21(w)∗

1 − zw
.(2.21)

Consequently, the matrix function Θ−1
22 Θ21 ∈ H∞,k(D,Cm×p) with ‖Θ−1

22 ·
Θ21‖∞ ≤ 1, and Θ22 has outer-inner factorization Θ22 = F · B, where F ∈
H2(D,Cm×m) is outer and B ∈ H∞(D,Cm×m) is a Blaschke–Potapov product
of degree k.

Proof. To prove (2.16) note that M has Jσ-orthogonal decomposition

M =

[
H2(D,Cp)

0

]
⊕Jσ

[
HG

Im

]
H2(D,Cm).(2.22)

The Jσ
-orthogonal projection onto im

[
HG

Im

]
can be computed as

P
im
[
HG

I

] =

[
HG

Im

]([
HG

I

][∗] [
HG

Im

])−1 [
HG

I

][∗]
.(2.23)

Here we view
[
HG

Im

]
as an operator acting from H2(D,Cm) with the standard Hilbert

space inner product into L2(T,C
p+m) with the Jσ-inner product. Hence[

HG

Im

][∗]
=

[
HG

Im

]∗
Jσ =

[
H∗

G −σ2I
]
.(2.24)

Substituting (2.24) into (2.23) and using (2.22) then gives the formula (2.16) for PM.
Formula (2.17) for PM was already noted as condition (3) of Theorem 2.12.
Formula (2.18) now follows upon multiplying (2.16) on the left by [0 PH2(D,Cm)]

and on the right by
[

0
Im

]
(considered as acting from H2(D,Cm) into L2(T,C

p+m)).
Formula (2.20) for the number of negative eigenvalues of P ∗

−PMP− can now be
read off immediately from formula (2.18) for P−PMP−. To get formula (2.21) for the
number of negative eigenvalues of P ∗

−PMP−, we use (2.19) to compute, where we set
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kw(ζ) = 1
1−ζw equal to the kernel function for H2(D,C), for any w1, . . . , wN ∈ D and

x1, . . . , xN ∈ Cm,〈
P−PMP−

(
N∑
j=1

kwjxj

)
,

N∑
i=1

kwixi

〉
H2(D,Cm)

= −σ2
N∑

i,j=1

〈(
MΘ21PH2MΘ∗

21
−MΘ22PH2MΘ∗

22

)
kwjxj , kwixi

〉
H2(D,Cm)

= −σ2
N∑

i,j=1

x∗
i

Θ21(wi)Θ21(wj)
∗ − Θ22(wi)Θ22(wj)

∗

1 − wiwj
xj .

By the density of the span of the kernel functions {kwx : w ∈ D, x ∈ Cm}, the formula
(2.21) for the number of negative eigenvalues for P ∗

−PMP− now follows.
Finally, from the (J, Jσ)-unitary property of Θ we know that Θ(ζ)−1 = J1Θ(ζ)∗Jσ

for almost all ζ ∈ T, and hence

Θ(ζ)J1Θ(ζ)∗ = Jσ−1 .

In particular,

Θ21(ζ)Θ21(ζ)
∗ − Θ22(ζ)Θ22(ζ)

∗ = −σ−2Im

or

Θ22(ζ)Θ22(ζ)
∗ = Θ21(ζ)Θ21(ζ)

∗ + σ−2Im ≥ σ−2Im(2.25)

for almost all ζ ∈ T. Hence, for all such ζ, Θ22(ζ) is invertible and

0 ≤ Θ22(ζ)
−1Θ21(ζ)Θ21(ζ)

∗Θ22(ζ)
∗−1 = Im − σ−2Θ22(ζ)

−1Θ22(ζ)
∗−1 ≤ Im.(2.26)

We conclude that Θ−1
22 Θ21 ∈ L∞(T,Cm×p) with ‖Θ−1

22 Θ21‖ ≤ 1. Moreover, by con-
jugating the kernel in (2.21) by Θ−1

22 (multiplying by Θ22(z)
−1 on the left and by

Θ22(w)∗−1 on the right for the generic sets of z and w for which these are defined),
we see that the kernel

Im − (Θ−1
22 Θ21)(z)(Θ

−1
22 Θ21)(w)∗

1 − zw

also has k negative squares on D×D, i.e., Θ−1
22 Θ21 ∈ H∞,k(D,Cm×p) with ‖Θ−1

22 Θ21‖∞
≤ 1. Thus Θ−1

22 Θ21 has a left Krĕın–Langer factorization Θ−1
22 Θ21 = B−1F with B

an m × m Blaschke–Potapov product of degree k and F ∈ H∞(D,Cm×p). From
the fact that M = L2-closure of Θ · H∞(D,Cm+p) and the fact that

[
0 Im

]
M ⊂

H2(D,Cm), we see that the matrix entries of both Θ21 and Θ22 are in H2. From
Θ−1

22 Θ21 = B−1F we conclude that Θ22 must have outer-inner factorization of the
form Θ22 = Θ22,o · B with Θ22,o ∈ H2(D,Cm×m) outer and B ∈ H∞(D,Cm×m)
a Blaschke–Potapov product of degree k. This completes the proof of Proposition
2.18.

Winding number proof of Theorem 2.2. Suppose that Q ∈ H∞(D,Cp×m) with
‖Q‖∞ ≤ 1. From (2.25) and (2.26) we see that Θ22(ζ) is invertible and that
‖(Θ−1

22 Θ21)(ζ)‖ < 1 for almost all ζ ∈ T. Hence the quantity

Θ21(ζ)Q(ζ) + Θ22(ζ) = Θ22(ζ)(Im + Θ22(ζ)
−1Θ21(ζ)Q(ζ))
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is invertible for almost all ζ ∈ T. We may then define a p×m matrix-valued function
K on T by

K = (V11Q + V12)(Θ21Q + Θ22)
−1.(2.27)

We verify that K ∈ L∞(T,Cp×m) and in fact that ‖G + K‖∞ ≤ σ as follows. Note
that[
G + K
Im

]
(Θ21Q + Θ22) =

[
Ip G
0 Im

] [
K
Im

]
(Θ21Q + Θ22) =

[
Ip G
0 Im

] [
V11Q + V12

Θ21Q + Θ22

]
=

[
Ip G
0 Im

]
V

[
Q
Im

]
= Θ

[
Q
Im

]
.(2.28)

(Here we use that
[ Ip G

0 Im

]
· V = Θ and thus also

[
V21 V22

]
=
[
Θ21 Θ22

]
.) Conse-

quently, considering the various expressions below as functions on T, we have

(G + K)∗(G + K) − σ2Im =
[
(G + K)∗ Im

]
Jσ

[
G + K
Im

]
= (Θ21Q + Θ22)

∗−1
[
Q∗ Im

]
Θ∗JσΘ

[
Q
IM

]
(Θ21Q + Θ22)

−1

= (Θ21Q + Θ22)
∗−1(Q∗Q− Im)(Θ21Q + Θ22)

−1 ≤ 0,

where the last step follows from the assumption that ‖Q‖∞ ≤ 1. In particular, it
follows that

‖K‖∞ ≤ σ + ‖G‖∞ whenever K = (V11Q + V12)(Θ21Q + Θ22)
−1 with ‖Q‖∞ ≤ 1.

(2.29)

Moreover, from (2.28) we see that G + K is given in terms of Q, as in (2.3).
For the discussion in this paragraph we consider the special case ‖Q‖∞ < 1; in

the end we shall use this special case to arrive at the general case by an approximation
argument. We observed at the end of the proof of Proposition 2.18 that the matrix
entries of Θ21 and Θ22 are all in H2, and by Proposition 2.18 we know that Θ22 has
outer-inner factorization Θ22 = F · B with F outer and the inner factor B equal to
a Blaschke–Potapov product of degree k. For any function f analytic on the disk D

(with possibly finitely many exceptional points), set fr(z) = f(rz) for each r < 1.
Then Θ22,r still has the form F ′

r ·B′
r with F ′

r outer and B′
r a Blaschke–Potapov product

of degree k, as long as we take r < 1 sufficiently close to 1. Moreover, by Proposition
2.6, we know that there is an r0 < 1 such that, for all r subject to r0 ≤ r < 1, we
have ‖Θ−1

22,rΘ21,r‖∞ ≤ 1
2 (1 + ‖Q‖−1

∞ ), with the consequence that

‖Θ−1
22,rΘ21,rQr‖∞ ≤ 1

2
‖Qr‖∞(1 + ‖Q‖−1

∞ )

≤ 1

2
(‖Q‖∞ + 1) < 1 for all r0 ≤ r < 1.(2.30)

By the Neumann series estimate, it follows that (I + Θ−1
22,rΘ21,rQr) is invertible in

L∞(T,Cm×m) with

‖(I + Θ−1
22,rΘ21,rQr)

−1‖∞ ≤ 1

1 − 1
2 (1 + ‖Q‖∞)

=
2

1 − ‖Q‖∞
.(2.31)



STATE-SPACE FORMULAS 549

Another consequence of the estimate (2.30) is that the determinant of (I +Θ−1
22,rΘ21,r

Qr) has winding number around the unit circle equal to zero. As det Θ22,r = det(F ′
r) ·

detB′
r has winding number equal to k (since F ′

r is outer and B′
r is a matrix Blaschke–

Potapov product of degree k), it follows that the determinant of

Θ21,rQr + Θ22,r = Θ22,r

(
Θ−1

22,rΘ21,rQr + Im
)

has winding number equal to k around the unit circle. As Θ21,rQr+Θ22,r is in the disk
algebra (analytic on the open disk and continuous on the closed disk), we conclude
that (Θ21,rQr + Θ22,r)

−1 is in H∞,k(D,Cm×m).
We now return to the case of a general Q ∈ H∞(D,Cp×m) with ‖Q‖ ≤ 1. Let s

be a number with 0 < s < 1. Then the above analysis applies to the situation where
we have s ·Q in place of Q. Thus

‖(Θ−1
22,rΘ21,r(sQr) + I)−1‖∞ ≤ 2

1 − s‖Q‖∞
≤ 2

1 − s
(2.32)

for all r < 1 sufficiently close to 1. Also, from (2.26) we read off that ‖Θ−1
22 ‖∞ ≤ σ;

by Proposition 2.6 we then have ‖Θ−1
22,r‖∞ ≤ σ + ε for any given ε > 0 as long as we

take r < 1 sufficiently close to 1. Hence, for all r < 1 but sufficiently close to 1, we
have

‖(Θ21,r(sQr) + Θ22,r)
−1‖∞ = ‖(Θ−1

22,rΘ21,r(sQr) + I)−1Θ−1
22,r‖∞

≤
(

2

1 − s

)
· (σ + ε) < ∞.

We conclude that (Θ21,r(sQr) + Θ22,r)
−1 converges pointwise boundedly, and hence,

by part (2) of Proposition 2.3, also in the L∞(T,Cm×m)-weak-∗ topology, to (Θ21(sQ)
+Θ22)

−1 as r → 1. As we have seen above, each (Θ21,r(sQr)+Θ22,r)
−1 is in H∞,k(D,

Cm×m). By Proposition 2.4, we conclude that (Θ21(sQ)+Θ22)
−1 ∈ H∞,k′(D,Cm×m)

with k′ ≤ k. But then Ks := (V11(sQ) + V12)(Θ21(sQ) + Θ22)
−1 is in (H2(D,Cp×m) ·

H∞,k′) ∩ L∞, and hence is in fact in H∞,k′(D,Cp×m) for some k′ ≤ k. By (2.29), we
know that ‖Ks‖∞ ≤ σ + ||G‖∞ for all s < 1. Hence, by another application of part
(2) of Proposition 2.3 combined with Proposition 2.4, we may let s → 1 and conclude
that K = (V11Q + V12)(Θ21Q + Θ22)

−1 is in H∞,k′(D,Cp×m) for some k′ ≤ k. Since
we have already verified that ‖G + K‖∞ ≤ σ and we know by Proposition 2.7 that
k is the smallest possible index for a solution to the Nehari–Takagi problem to exist
for level σ if σk > σ > σk+1, we conclude that necessarily k′ = k. We have now
verified that the formula (2.3) provides a solution K to the Nehari–Takagi problem
as asserted in Theorem 2.2.

Conversely, suppose that K ∈ H∞,k(D,Cp×m) provides a solution of the Nehari–
Takagi problem. Then K has a Krĕın–Langer factorization K = F ′B′−1, where
F ′ ∈ H∞(D,Cp+m) and B′ ∈ H∞(D,Cm×m) is a Blaschke–Potapov product of degree
k. Then [

G + K
Im

]
B′ =

[
Ip G
0 Im

] [
K
Im

]
B′

= Θ · Λ ·
[
F ′

B′

]
= Θ ·

[
Λ11F

′ + Λ12B
′

Λ21F
′ + Λ22B

′

]
=: Θ ·

[
Q1

Q2

]
,(2.33)
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where Q1 := Λ11F
′+Λ12B

′ ∈ H2(D,Cp×m) and Q2 := Λ21F
′+Λ22B

′ ∈ H2(D,Cm×m).
Since ‖G + K‖∞ ≤ σ by assumption,

0 ≥ B′∗ ((G + K)∗(G + K) − σ2Im
)
B′

= B′∗ [(G + K)∗ Im
]
Jσ

[
G + K
Im

]
B′

=
[
Q∗

1 Q∗
2

]
Θ∗JσΘ

[
Q1

Q2

]
= Q∗

1Q1 −Q∗
2Q2(2.34)

a.e. on T. We conclude that

Q2(ζ)x(ζ) = 0 ⇒ Q1(ζ)x(ζ) = 0.(2.35)

From the definition of Q1 and Q2 in (2.33) we see that

B′ = Θ21Q1 + Θ22Q2.(2.36)

Hence (2.35) forces B′(ζ)x(ζ) = 0 as well, and hence x(ζ) = 0 for almost all ζ ∈ T.
We conclude that Q2(ζ) is invertible a.e. on T and Q(ζ) := Q1(ζ)Q2(ζ)

−1 makes
sense. The calculation (2.34) then implies that ‖Q‖∞ ≤ 1, while (2.33) shows that
we recover G + K from Q as in the representation (2.3).

It remains to show that Q ∈ H∞(D,Cp×m). For this piece of the argument we
borrow some ideas from the Grassmannian approach. If Q2H∞(C,Cm) is not dense
in H2(D,Cm), we may choose a nonzero h0 ∈ H∞(D,Cm) lying in H2(D,Cm) �
Q2H∞(D,Cm). Then [

0
h0

]
⊥J1

[
Q1

Q2

]
H∞(D,Cm).

Since Θ∗JσΘ = J1 on T, it then follows that

Θ

[
0
h0

]
=

[
Θ12h0

Θ22h0

]
⊥Jσ

Θ

[
Q1

Q2

]
H∞(D,Cm) =

[
G + K
Im

]
B′H∞(D,Cm) (by (2.33)).

Hence

‖Θ12h0 + (G + K)B′h‖2
2 ≤ ‖Θ22h0 + B′h‖2

2

for all h ∈ H2(D,Cm). Therefore there is a contraction operator X from D0 :=
span{Θ22h0} + B′H2(D,Cm) into L2(T,C

p) such that[
X
Im

]
(h0 + B′h) =

[
Θ12h0

Θ22h0

]
+

[
G + K
Im

]
B′h ∈

[
Ip G
0 Im

]
H2(D,Cp+m)(2.37)

for all h ∈ H2(D,Cm). Note that
[ Ip G

0 Im

]
H2(D,Cp+m) has a Jσ-orthogonal splitting[

Ip G
0 Im

]
H2(D,Cp+m) =

[
H2(D,Cp)

{0}

]
⊕Jσ

[
HG

Im

]
E+ ⊕Jσ

[
HG

Im

]
E−,(2.38)

where E+ = imE((σ,+∞)) and E− = imE([0, σ)) and where we have set E(·) equal
to the spectral projection for the self-adjoint operator (H∗

GHG)1/2. Note that the first
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two direct summands in (2.38) are uniformly Jσ-positive, while the last is uniformly
Jσ-negative. As ‖X‖ ≤ 1, the equality (2.37) forces the existence of a subspace E0

− of
E− so that [

X
Im

]
D0 =

{[
Y2e
0

]
+

[
HG

Im

]
Y1e +

[
HG

Im

]
e : e ∈ E0

−

}
(2.39)

for operators Y1 : E0
− �→ E+ and Y2 : E0

− �→ H2(D,Cp). In particular,

D0 = {Y1e + e : e ∈ E0
−}.(2.40)

But the subspace D0 = span{Θ22h0}+B′H2(D,Cm) has codimension k− 1 in H2(D,
Cm), while the subspace on the right in (2.40) has the same codimension in H2(D,Cm)
as does E0

−. As E0
− is a subspace of E− which has codimension k in H2(D,Cm), we

conclude that the right-hand side of (2.40) has codimension at most k in H2(D,Cm). In
this way we arrive at a contradiction and conclude that necessarily Q2 is outer. It now
follows that Q = Q1Q

−1
2 is of bounded type with no inner factor in the denominator.

This together with Q ∈ L∞(T,Cp×m) gives us finally that Q ∈ H∞(D,Cp×m), as
wanted.

Remark 2.19. The band method. A very flexible method for solving a variety
of interpolation and extension problems which has evolved into increasing levels of
sophistication over the past two decades is the so-called band method (see [22] for an
excellent overview and [35] for one of the latest variations). Recent work (see [26])
enhances this abstract scheme to handle the Nehari–Takagi problem (σk+1 < σ < σk

with k ≥ 1) rather than merely the suboptimal Nehari problem (σ1 < σ). However,
the core of the method involves solving equations in a Wiener-like algebra; this lim-
itation forces the spectral factor Λ and its inverse Λ−1 = V (in the discrete-time
setting) to be in H∞(D,C(p+m)×(p+m)) rather than merely in H2(D,C(p+m)×(p+m)).
A remaining open issue appears to be the extension of this abstract framework to
include the situation studied in this paper.

3. State-space solutions. Let X be an arbitrary Hilbert space, and let A be
the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0. Let B ∈
L(Cm, X), C ∈ L(X,Cp). Assume that the triple (A,B,C) satisfies

A1. B∗(·I −A∗)−1x ∈ H2(C+,C
m) (input stable),

A2. C(·I −A)−1x ∈ H2(C+,C
p) (output stable),

A3. C(·I −A)−1Bu ∈ H∞(C+,C
p) (input-output stable)

for all x ∈ X, u ∈ Cm. Condition A3 holds if and only if D ∈ L(L2(R+; Cm),
L2(R+; Cp)), where

(Du)(t) = C

∫ t

0

T (t− s)Bu(s) ds (u ∈ L2(R+; Cm)).(3.1)

Equation (3.1) is equivalent to D̂u = Gû, where G(s) := C(sI−A)−1B and û denotes
the Laplace transform of u (û(s) :=

∫∞
0

e−stu(t) du). It is well known that ‖D‖ =
‖G‖H∞ . By Plancherel’s theorem (and the closed graph theorem), A2 means that
C : X → L2(R+; Cp) is bounded, where (Cx)(t) := CT (t)x, t ≥ 0. Hence it also
follows that LC := C∗C ∈ L(X). Similarly, A1 implies that Bd : X → L2(R+; Cm)
is bounded, where (Bdx)(t) := B∗T (t)∗x, t ≥ 0. Thus, LB := BB∗ ∈ L(X), where
B∗ := RBd, (Rf)(t) := f(−t) (the reflection). (See, for instance, Curtain and Zwart
[16] or Mikkola [30] for details.)
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It is easy to see that if the system is exponentially stable (that is, there are
ε > 0, M < ∞ such that ‖T (t)‖L(X) ≤ Me−εt for all t > 0), then A1–A3 are

satisfied (and C+ ⊂ ρ(A)). However, there are several important systems that are
not exponentially stable but for which A1–A3 hold. In this section we shall derive the
state-space formulas for the factors Λ and V for such systems; we use the additional
assumption that the open right half-plane C+ is contained in the resolvent set ρ(A),
but this assumption can be relaxed (for example, a zero-measurable spectrum on each
vertical line on C+ is not a problem; see Remark 3.4 below).

In Lemma 3.1 below we show that if A1–A3 hold, then the systems (A,−, B∗LC)
and (A∗,−, CLB) are output stable, that is, B∗LCT ∈ L(X,L2(R+; Cm)), CLBT

∗ ∈
L(X,L2(R+; Cp)). We use the following notation:

(π+f)(t) :=

{
f(t) if t ≥ 0,

0 if t < 0,
and Dd := RD∗R

is the input-output map of (A∗, C∗, B∗) (see [30, Lemma 6.2.9(b)]).
Lemma 3.1. If A1, A2, and A3 hold, then π+D∗Cx=B∗LCT (·)x and Rπ−DB∗x=

π+(Dd)∗Bdx = CLBT (·)∗x for each x ∈ X. In particular, there is M < ∞ such that
‖B∗LC(·I−A)−1x‖H2(C+,Cm) ≤ M‖x‖X and ‖CLB(·I−A∗)−1x‖H2(C+,Cp) ≤ M‖x‖X
for all x ∈ X.

Proof. By Lemma 4.2.6 of [33], we have π+D∗Cx = B∗LCTx (everywhere,
by continuity). The first inequality is obtained from Plancherel’s theorem with
M := ‖D‖max{‖C‖, ‖B‖}. Applying the above to (A∗, C∗, B∗), we obtain the sec-
ond equality and inequality (because ‖(Dd)∗‖ = ‖Dd‖ = ‖B∗(·I − A∗)−1C∗‖∞ =
‖G∗‖∞ = ‖G‖∞ = ‖D‖).

Now we are ready to give the state-space formulas for the factors Λ and V . The
case where C+ ⊂ ρ(A) is simple, and the general case will be reduced to that by using
the results given in section 6.

Lemma 3.2. Assume that the triple (A,B,C) satisfies A1, A2, A3 and that
C+ ⊂ ρ(A). Let G(s) = C(sI − A)−1B be the associated transfer function, with
associated Hankel singular values σ1 ≥ σ2 ≥ · · · , and let σ be such that σk+1 < σ < σk.
Let Λ be defined as follows:

Λ(s) =

[
Ip 0
0 σIm

]
+

1

σ2

[
−CLB

σB∗

](
I − 1

σ2
LCLB

)−1

(sI + A∗)−1
[
C∗ LCB

]
,

(3.2)

s ∈ C−. Then Λ has the following properties:

(1) Λ(iω)∗
[ Ip 0

0 −Im

]
Λ(iω) =

[
Ip G(iω)
0 Im

]∗[ Ip 0

0 −σ2Im

][
Ip G(iω)
0 Im

]
for almost all ω ∈

R.
(2) Λ(s) is invertible for each s ∈ C−, and its inverse is given by

V (s) =

[
Ip 0
0 1

σ Im

]
− 1

σ2

[
−CLB

σB∗

]
(sI + A∗)−1

(
I − 1

σ2
LCLB

)−1[
C∗ 1

σLCB
]
,

(3.3)

s ∈ C−.
(3) Λ(·) −

[ Ip 0
0 σIm

]
∈ H2(C−,C

(p+m)×(p+m)).

(4) V (·) −
[ Ip 0

0 1
σ Im

]
∈ H2(C−,C

(p+m)×(p+m)).
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Proof. 1◦ Case C+ ⊂ ρ(A): The proofs of parts (1) and (2) go in a way similar
to the suboptimal Nehari problem addressed in Curtain and Zwart [16, section 8.3].

The new part is to show that parts (3) and (4) hold. Set

ĝ(s) :=

[
C

B∗LC

]
(sI −A)−1 (s ∈ ρ(A)).(3.4)

By Lemma 3.1, we have ĝx ∈ H2(C+,C
p+m) for all x ∈ X, and so

f̂ := ĝ

(
I − 1

σ2
LBLC

)−1 [−LBC
∗

σB

]
(3.5)

satisfies f̂ z ∈ H2(C+,C
p+m) for all z ∈ Cp+m. Thus f̂ ∈ H2(C+,C

(p+m)×(p+m)).

Since −f̂(−s̄)∗ = Λ(s) −
[ Ip 0

0 σIm

]
, we obtain that (3) holds.

Part (4) can be proved in an analogous way.

2◦ The general case C+ ⊂ ρ(A): The proof in 1◦ establishes (2)–(4). However,
(1) is more complicated: Now (3.2) defines Λ on C− only, and on iR it is defined
a.e. as the radial (or nontangential) limit or, equivalently, as the Fourier (Laplace)
transform of the inverse Laplace transform of Λ. This follows from (3) (see below).

Nevertheless, the triple (A−ε, B,C) satisfies the assumptions of 1◦ (cf. Lemma 6.1).
Therefore, the corresponding functions Λε and Gε satisfy (1) in place of Λ and G.
(Note that Gε(iω) := C(iωI − (A− ε))−1B = G(iω+ ε).) Repeat (3.4) and (3.5) with

ĝε, f̂ε, A− ε, LC,ε, LB,ε in place of ĝ, f̂ , A, LC , LB , respectively.

By (2) and (3) of Lemma 6.1 (and Lemma A.3.1(j3) of Mikkola [30]), we have
gεx := π+

[
I
D∗

ε

]
Cεx → π+

[
I
D∗
]
Cx in L2(R+; Cp+m), and so ĝεx → ĝx in L2(iR; Cp+m),

as ε → 0+, for all x ∈ X. Therefore, f̂εz → f̂ z in L2(iR; Cp+m) for all z ∈ Cp+m

(here we also need (7) and (4) of Lemma 6.1); hence a subsequence converges a.e. on
iR. But, similarly, Gε(iω)z = G(iω + ε)z → G(iω)z, as ε → 0+, for almost every
ω ∈ R, for each z ∈ Cp+m (use the standard H∞ boundary function result, such as
Theorem 3.3.1(c1) of Mikkola [30]).

We already noted above that 〈Λε(iω)z̃,
[ Ip 0

0 −Im

]
Λε(iω)z〉 =

〈[
Ip Gε(iω)
0 Im

]
z̃,[ Ip 0

0 −σ2Im

][
Ip Gε(iω)
0 Im

]
z
〉

for almost every ω ∈ R, for any z, z̃ ∈ Cp+m. By the above,

we can remove the ε’s (just let ε → 0). Since Cp+m has a finite basis, (1) holds.

In light of Lemma 3.2, we now obtain our main theorem by invoking the key
frequency-domain result, namely, Theorem 2.1. The following theorem gives explicit
formulas (in terms of the state-space parameters) for all solutions to the suboptimal
Hankel norm approximation problem in the case of infinite-dimensional systems which
do not necessarily have an exponentially stable semigroup.

Theorem 3.3. Assume that the triple (A,B,C) satisfies A1, A2, A3 and that
C+ ⊂ ρ(A). Let G(s) = C(sI − A)−1B be the associated transfer function, and let
the Hankel singular values be denoted by σ1 ≥ σ2 ≥ · · · . Suppose that σ is such that
σk+1 < σ < σk, and let V be given by (3.3).

Then K is such that K(·) ∈ H∞,k(C−,C
p×m) and ‖G(i·) + K(i·)‖∞ ≤ σ if and

only if K is given by K(iω) = (V11(iω)Q(iω)+V12(iω))(V21(iω)Q(iω)+V22(iω))−1, ω ∈
R, for some Q ∈ H∞(C−,C

p×m) such that ‖Q‖∞ ≤ 1.

This follows from Theorem 2.1 and Lemma 3.2.
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Remark 3.4.

(a) The assumption C+ ⊂ ρ(A) can be weakened in all our results, including the
above. Indeed, it suffices that, for instance, the Lebesgue measure of {r+ωi ∈
σ(A) : ω ∈ R} is zero for all small r > 0, as one can verify from the proofs.

(b) Finally, we remark that in Chapter 6 of Sasane [40], using another approach,
state-space formulas were given in the nonexponentially stable case. However,
these were in terms of the parameters of the shifted system Σε and only guar-
anteed that, for a small enough shift, they are also solutions to the original
system. Also, while only the existence of some solutions was demonstrated
in [40], here we give a complete parameterization of all solutions.

4. An application to the case of well-posed linear systems. Finally, in
this last section we give an application of Theorem 3.3 to obtain state-space formulas
for the suboptimal Hankel norm approximation problem for well-posed linear systems.
This was done using the idea of reciprocal systems in Curtain and Sasane [15], but
there, instead of Theorem 3.3, a weaker result from Chapter 6 of Sasane [40] (which
was mentioned in Remark 3.4) was used. Here, using Theorem 3.3, we obtain a
different solution to the problem, where, as opposed to Curtain and Sasane [15], we
now obtain a parameterization of the set of all solutions to the suboptimal Hankel
norm approximation problem for well-posed linear systems.

We consider the suboptimal Hankel norm approximation problem for a well-posed
linear system Σ on a Hilbert space X, with input space Cm, output space Cp, gen-
erating operators A,B,C, semigroup {T (t)}t≥0, and transfer function G, under the
following assumptions:

B1. 0 ∈ ρ(A) and C+ ⊂ ρ(A).
B2. Σ is input-stable.
B3. Σ is output-stable.
B4. G ∈ H∞(C+,C

p×m).
(Condition B1 can be relaxed; for example, it suffices to assume that 0 ∈ ρ(A) and

σ(A) ∩ C+ is at most countable (see Remark 3.4(a)). Moreover, instead of 0 ∈ ρ(A)
it suffices to assume that ir ∈ ρ(A) for some r ∈ R, but then one must replace A by
A− ir in the formulas, so that the new G equals the old G(ir + ·).)

The reciprocal system of such a well-posed linear system is defined as the well-
posed linear system Σr with the bounded generating operators A−1, A−1B,−CA−1.
In Curtain and Sasane [15], it was established that if Σ satisfies B1–B4 above, then
its reciprocal system is such that

1. A1, A2, A3 from the previous section are satisfied;
2. C+ ⊂ ρ(A−1);
3. the controllability and observability Gramians of Σr are the same as the

controllability and observability Gramians of Σ;
4. Kr ∈ H∞,k(C−; Cp×m) is a solution to the suboptimal Hankel norm approx-

imation problem of the reciprocal system Σr if and only if

K(s) := Kr

(
1

s

)
−G(0) for s ∈ C−(4.1)

is a solution1 to the suboptimal Hankel norm approximation problem of the
original system Σ.

1Note that from equation (4.1), it follows that K ∈ H∞,k(C−,Cp×m) if and only if Kr ∈
H∞,k(C−,Cp×m).



STATE-SPACE FORMULAS 555

In light of these remarks, we have thus proved the following theorem.
Theorem 4.1. Suppose that the well-posed linear system Σ with transfer function

G satisfies assumptions B1–B4. Let σ be such that σk+1 < σ < σk, where σ1 ≥ σ2 ≥
· · · are the Hankel singular values of G. Let V be given by

V (s) =

[
Ip 0
0 1

σ Im

]
− 1

σ2

[
CA−1LB

σ(A−1B)∗

](
s + (A−1)∗

)−1
(
I − 1

σ2
LCLB

)−1

·
[
−(CA−1)∗ 1

σLCBA−1
]
,

s ∈ C−, where LB and LC denote the controllability Gramian and the observability
Gramian, respectively, of the system Σ, and Nσ := (I − 1

σ2LBLC)−1. Then K ∈
H∞,k (C−,C

p×m) satisfies ‖G(i·) + K(i·)‖∞ ≤ σ if and only if

K(s) = Kr

(
1

s

)
−G(0),

where Kr(iω) = (V11(iω)Q(iω) + V12(iω))(V21(iω)Q(iω) + V22(iω))−1, ω ∈ R, for
some Q ∈ H∞(C−,C

p×m) such that ‖Q‖∞ ≤ 1.
This solves the suboptimal Hankel norm approximation problem for well-posed

linear systems.

5. Appendix A. In this appendix we present the proofs that were deferred in
section 2.

5.1. Proof of Proposition 2.14.
Proof. Suppose that the matrix-valued function K has a Krĕın–Langer factoriza-

tion K = F ·B−1 with F ∈ H∞(D,Cp×m) and with B ∈ H∞(D,Cm×m) a Blaschke–
Potapov function of degree k. Then the graph of the multiplication operator MG+K

restricted to the subspace B ·H2(D,Cm) satisfies

GMG+K
:=

[
G + K

I

]
BH2(D,Cm)

=

[
I G
0 I

] [
K
I

]
BH2(D,Cm)

⊂
[
I G
0 I

]
H2(D,Cm+p) =: M.(5.1)

If also ‖G+K‖∞ ≤ σ, then we see that GG+K is a negative subspace in the Krĕın-space
inner product

〈f, g〉Jσ =
1

2π

∫
T

〈Jσf(ζ), g(ζ)〉Cm+p |dζ|

on L2(T,C
m+p); i.e., each function f ∈ GMG+K

has negative Jσ-self-inner product

〈f, f〉Jσ ≤ 0 for f ∈ GMG+K
.(5.2)

Since B ·H2(D,Cm) has codimension k in H2(D,Cm), we see in addition that GMG+K

has codimension k in a maximal negative subspace of the Krĕın space K :=
([ L2(T,C

p)
H2(D,Cm)

]
,〈

·, ·
〉
Lσ

)
. In addition, since G := GG+K is the graph of a multiplication operator

MG+K , we see that G is invariant for the shift operator Mζ : f(ζ) �→ ζf(ζ). We have
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thus verified the following: If K = FB−1 is a solution of the Nehari–Takagi problem,
then the subspace G = GG+K :=

[
G+K

I

]
· B · H2(D,Cm) (where B is the Blaschke–

Potapov product of degree k chosen so that K ·B ∈ H∞(D,Cp×m)) satisfies conditions
(1)–(3) in the statement of Proposition 2.14.

Conversely, if G is a subspace of K which satisfies conditions (1)–(3) in Proposition
2.14, one can reverse the steps and come up with a K ∈ H∞,k′(D,Cp+m) (k′ ≤ k)
which solves the Nehari–Takagi problem as follows. Since G is a negative subspace in
the Jσ-inner product, G necessarily has the form of a graph space

G =

[
X
I

]
D(X),

where the angle operator X : D(X) �→ L2(T,C
p) has domain D(X) ⊂ H2(D,Cm)

and norm ‖X‖ ≤ σ. Since G has codimension k in a maximal negative subspace,
necessarily dimH2(D,Cm) �D(X) = k. Since G is shift invariant, we have[

MζX
Mζ

]
D(X) ⊂

[
X
I

]
D(X).

Hence D(X) is shift invariant, and

MζXx = XMζx for x ∈ D(X).

But then, by the Beurling–Lax theorem, D(X) has the form D(X) = B ·H2(D,Cm)
for a Blaschke–Potapov factor of degree k, and the rule

X : ζ−nBh �→ ζ−nX(Bh)

(for h ∈ H2(D,Cm) and n = 0, 1, 2, . . . ) extends X to an operator, still called X,
defined on the dense subset ∪∞

n=0ζ
−nBH2(D,Cm) of L2(T,C

m), still with norm ‖X‖ ≤
σ, such that XMζ = MζX. This forces X to be a multiplication operator X = MG+K

for some matrix function K ∈ L∞(T,Cp+m) with ‖G+K‖∞ ≤ σ. From the fact that
G ⊂ M, we have [

G + K
I

]
BH2(D,Cm) ⊂

[
I G
0 I

]
H2(D,Cm),

i.e., [
I G
0 I

]−1 [
G + K

I

]
BH2(D,Cm) =

[
K
I

]
BH2(D,Cm) ⊂ H2(D,Cp+m).

In particular, K ·B maps H2(D,Cm) into H2(D,Cp), and we see that F : = K ·B ∈
H∞(D,Cp×m). But then K = F · B−1 has the Krĕın–Langer factorization form
required to be in the class H∞,k′(D,Cp×m) for k′ at most k. Proposition 2.14 now
follows.

5.2. Proof of Proposition 2.16.
Proof. By Proposition 2.7, since σk > σ > σk+1 we know that the existence of

a solution K ∈ H∞,k′(D,Cp×m) with k′ ≤ k forces k′ = k. This combined with the
result in Proposition 2.14 implies that the only content to be added by Proposition
2.16 is that, under the hypothesis that σk > σ > σk+1, a subspace G of M is M-
maximal negative (i.e., maximal as a negative subspace contained in M) if and only
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if G ⊂ M has codimension k in a K-maximal negative subspace G̃ of K. One can
see this general principle as follows. As M is regular, M has a fundamental decom-
position M = M++̇M−, where M+ is a uniformly positive subspace and M− is a
uniformly negative subspace in the Krĕın-space inner product 〈·, ·〉Jσ . As M[⊥] is also
regular, M[⊥] also has a fundamental decomposition as M[⊥] = P+̇N , where P is
uniformly positive and N is uniformly negative. We note also that, as a consequence
of Proposition 2.15, dimN = k. Then K = K++̇K− is a fundamental decomposition
for K, where

K+ = M++̇P, K− = M−+̇N .

By the angle-operator–graph correspondence, M-maximal negative subspaces of M
are of the form

G = {Xx + x : x ∈ M−},

where X is a Hilbert space contraction operator from (M−,−〈· , ·〉Jσ
) into (M+,

〈· , ·〉Jσ ). Similarly, K-maximal negative subspaces of K are of the form

G̃ = {X̃x + x : x ∈ K− = M−+̇N},

where X̃ is a contraction operator from (K−,−〈· , ·〉Jσ
) into (K+ = M++̇P, 〈·, ·〉Jσ

).
From this model, it is clear that M-maximal negative subspaces of M match up
exactly with those subspaces of M which have codimension k in a K-maximal negative
subspace of K. This completes the proof of Proposition 2.16.

5.3. Proof of Proposition 2.17. The proof of Proposition 2.17 requires a pre-
liminary lemma.

Lemma 5.1. Suppose that R ∈ H2(D,Cp+m) is outer and that G is a closed,
shift-invariant subspace of H2(D,Cp+m). Then G ∩R ·H∞(D,Cp+m) is dense in G.

Proof. Let g ∈ G. For n = 1, 2, . . . choose scalar outer functions rn so that

|rn(ζ)| = min

{
n

‖R(ζ)−1g(ζ)‖ , 1
}

for almost all ζ ∈ T.

Then gn := rn ·g ∈ G since G is shift invariant. Since ‖R−1(ζ)gn(ζ)‖ ≤ n for almost all
ζ ∈ T, by construction, we see that gn ∈ R ·H∞(D,Cp+n). Finally, since |rn(ζ)| ≤ 1
for almost all ζ ∈ T and g ∈ H2(D,Cp+m), we see that {gn} converges to g as n → ∞
in H2(D,Cp+m), and the lemma follows.

Proof of Proposition 2.17. Suppose first that G ⊂ M is maximal negative as
a subspace of M in the Jσ-inner product. Then G has the form G =

[ Ip G
0 Im

]
· G′,

where G′ is a closed shift-invariant subspace of H2(D,Cp+m). By Lemma 5.1 we know

that G′ ∩ V ·H∞(D,Cp+m) is dense in G′. Multiplication by
[ Ip G

0 Im

]
then gives that

G ∩ Θ ·H∞(D,Cp+m) is dense in G. We may write G ∩ Θ ·H∞(D,Cp+m) in the form

G ∩ Θ ·H∞(D,Cp+m) = Θ · G1,

where G1 ⊂ H∞(D,Cp+m).
We assert that G1 is weak-∗ closed in H∞(D,Cp+m). By part (1) of Proposition

2.3, it suffices to consider a sequence {hn}n=1,2,... of elements of G1 convergent in
the weak-∗ topology to an element h of L∞(D,Cp+m) and prove that in fact h ∈ G1,
i.e., that Θh ∈ G ∩ Θ · H∞(D,Cp+m). From the characterization of H∞(D,Cp+m)
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as that subspace of L∞(T,Cm+p) consisting of functions F for which all the Fourier
coefficients of negative index vanish,

1

2π

∫
T

F (ζ)ζ
n|dζ| = 0 for n = −1,−2, . . . ,

it is easily seen that H∞(D,Cp+m) is weak-∗ closed in L∞(T,Cp+m) and hence h ∈
H∞(D,Cp+m). It therefore remains only to show that Θh ∈ G. For this purpose note
that, for any k ∈ L2(T,C

p+m),

〈Θhn, k〉L2 =
1

2π

∫
T

k(ζ)∗Θhn(ζ)k(ζ)|dζ|.(5.3)

As k∗Θ ∈ L2(T,C
1×(m+n)) ⊂ L1(T,C

1×(m+n)) and hn is assumed to converge to h in
the weak-∗ topology of L∞(T,C(m+n)×1), we may take limits in (5.3) to get

lim
n→∞

〈Θhn, k〉L2 = 〈Θh, k〉L2
for each k ∈ L2(T,C

p+m);(5.4)

i.e., Θhn converges to Θh in the weak topology on L2(T,C
p+m). As Θhn ∈ G for

each n and as norm-closed subspaces of a Hilbert space are also closed in the weak
topology (see [42, Theorem 6.3, page 158]), it follows that Θh ∈ G as wanted. We
conclude that G1 is weak-∗ closed as asserted.

By the Beurling–Lax theorem for weak-∗ closed subspaces of H∞(D,Cm+p) (see,
e.g., [41] or [25, page 25] for the scalar case), there is a matrix inner function ψ =

[ ψ1

ψ2

]
in H∞(D,C(p+m)×m1) (for some m1 ≤ m + p) so that

G1 =

[
ψ1

ψ2

]
H∞(D,Cm1).(5.5)

The inner property of ψ means that

ψ1(ζ)
∗ψ1(ζ) + ψ2(ζ)

∗ψ2(ζ) = Im′ for almost all ζ ∈ T.(5.6)

From the fact that G1 is J1-negative we then also get

ψ1(ζ)
∗ψ1(ζ) − ψ2(ζ)

∗ψ2(ζ) ≤ 0 for almost all ζ ∈ T.(5.7)

Hence, if we set Q(ζ) = ψ2(ζ)ψ1(ζ)
‡, where ψ2(ζ)

‡ is the left Moore–Penrose gener-
alized inverse of ψ2(ζ),

ψ2(ζ)
‡ : c �→

{
0 if c ⊥ imψ2(ζ),

c′ if c = ψ2(ζ)c
′,

(5.8)

then Q(ζ) defines a contraction operator from Cm into Cp for almost all ζ ∈ T, and
we can rewrite (5.5) as

G1 =

[
Q
Im

]
ψ2H∞(D,Cm1).(5.9)

We next argue that ψ2H∞(D,Cm1) is weak-∗ closed in H∞(D,Cm). Indeed,
suppose that ψ2hn converges in the L∞-weak-∗ topology to an element k ∈ L∞.
Then the computation (for each g ∈ L1(T,C

p))

[ψ1hn, g] = [Qψ2hn, g] = [ψ2hn, Q
∗g] → [k,Q∗g] = [Qk, g]
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shows that ψ1hn tends weak-∗ to Qk. (Here we let [·, ·] denote the duality pairing

[F, f ] =
1

2π

∫
T

f(ζ)∗F (ζ)|dζ| for F ∈ L∞(T,Cm′
) and f ∈ L1(T,C

m′
)

between L∞(T,Cm′
) and L1(T,C

m′
) for any fixed choice of m′, and we use that

Q∗ · g ∈ L1(T,C
m) for any g ∈ L1(T,C

p) since Q(ζ) is contractive a.e.) We conclude
that [

ψ1

ψ2

]
hn →

[
Q
Im

]
k

in the weak-∗ topology. As G1 is closed in the weak-∗ topology, it follows that
[

Q
Im

]
k ∈

G1, and hence, in particular, k ∈ ψ2H∞(D,Cm1). We conclude that ψ2H∞(D,Cm1)
is closed in the weak-∗ topology as wanted.

We next argue that in fact

ψ2H∞(D,Cm′
) = H∞(D,Cm).(5.10)

Indeed, via a second application of the Beurling–Lax theorem for weak-∗ closed sub-
spaces of vector-valued H∞, by the fact established in the previous paragraph it
follows that there is an m × m′ matrix inner function φ so that ψ2H∞(D,Cm′

) =
φH∞(D,Cm′

). If m′ < m (or more generally, if φH∞(D,Cm′
) does not fill up all of

H∞(D,Cm)), then we may choose a nonzero vector f ∈ (H2(D,Cm)�ψH2(D,Cm′
))∩

H∞(D,Cm) so that the L2-closure of MΘ ·
(
span

[
0
f

]
+ G1

)
is a larger negative sub-

space of M which includes G as a subspace. As G is assumed to be maximal negative
in M, this leads to a contradiction, and we conclude that m′ = m and φ is a unitary
constant. We have now arrived at

G ∩ Θ ·H∞(D,Cp+m) = Θ

[
Q
I

]
·H∞(D,Cm).

Taking closures in this identity gives the representation (2.15) for the shift-invariant
subspace G assumed to be maximal negative in M.

Conversely, suppose that Q ∈ H∞(D,Cp×m) with ‖Q‖∞ ≤ 1 and we define G ⊂
L2(T,C

p×m) by (2.15). From the factorization
[ Ip G

0 Im

]
= Θ ·Λ, where Λ and V = Λ−1

are in H2(D,C(p+m)×(p+m)), it is clear that G ⊂ M :=
[ Ip G

0 Im

]
·H2(D,Cp+m). Since

‖Q‖∞ ≤ 1 and Θ is (J1, Jσ)-unitary on T, we see that necessarily G is negative in
the Jσ-inner product. If G′ is a Jσ-negative subspace with G ⊂ G′ ⊂ M, then by the
same argument as in the first part of the proof we know that

G′ ∩ Θ ·H∞(D,Cp+m) = G′
1

for some weak-∗ closed subspace G′
1 of H∞(D,Cp+m). The (J1, Jσ)-unitary property

of Θ and the fact that G′ is Jσ-negative then force G′
1 to be J1-negative. Hence G′

1

can contain no elements of the form
[
h
0

]
with h ∈ H∞(D,Cp) nonzero. We conclude

that G′
1 is a graph space; i.e., there is an operator X mapping some domain D(X) ⊂

H∞(D,Cm) into H∞(D,Cp) so that G′
1 =
[

X
Im

]
D(X). Since G′ ⊃ G, we see next that

G′
1 ⊃ G1, i.e., [

X
Im

]
D(X) ⊃

[
Q
Im

]
H∞(D,Cm).

As D(X) ⊂ H∞(D,Cm), we must have D(X) = H∞(D,Cm), X is the operator of
multiplication by Q, and G = G′ is M-maximal negative. This concludes the proof of
Proposition 2.17.



560 J. A. BALL, K. M. MIKKOLA, AND A. J. SASANE

6. Appendix B. In this appendix we present the proofs that were deferred in
section 3.

To prove Lemma 3.2(1) we want to study how the operators determined by
“shifted” triple (A− ε, B,C) converge to those determined by (A,B,C), as ε → 0+.
For the shifted system, the semigroup is denoted by {Tε(t)}t≥0, the controllability
map is denoted by Cε, and the controllability Gramian C∗

ε Cε is abbreviated by LC,ε;
similarly, one uses the notation B∗

ε , LB,ε,Dε, etc. Since the functions in A1, A2, and
A3 are shifted to the left (C(sI − (A − εI))−1x = C((s + ε)I − A)−1x, etc.), the
assumptions A1–A3 hold a fortiori. Some further claims are straightforward, while
others are more complicated.

Lemma 6.1. Assume that the triple (A,B,C) satisfies A1, A2, and A3. Then,
with the above notation, as ε → 0+, we have the following for all k ∈ {1, 2, 3, . . . }, t ≥
0, x ∈ X, u ∈ L2(R+; Cm), y ∈ L2(R+; Cp) :

(1) Tε(t) = e−εtT (t), Cεx = e−ε·Cx, and Dεu = e−ε·Deε·u.
(2) ‖Cε‖ ≤ ‖C‖ and ‖Cεxε − Cx‖2 → 0 whenever ‖xε − x‖X → 0.
(3) ‖Dε‖ ≤ ‖D‖ and ‖D∗

ε yε −D∗y‖2 → 0 whenever ‖yε − y‖2 → 0.
(4) ‖LC,ε‖ ≤ ‖LC‖, ‖LB,ε‖ ≤ ‖LB‖, LC,εx → LCx, and LB,εx → LBx.
(5) σk is the kth singular value of Γ := CB.
(6) σk,ε → σk−, where σk,ε is the kth singular value of Γε := CεBε.
(7) Let σk > σ > σk+1. Then there are ε0 > 0 and M0 < ∞ such that Nσ,ε :=

(I − σ−2LB,εLC,ε)
−1 exists and ‖Nσ,ε‖ ≤ M0 for all ε ∈ (0, ε0). Moreover,

Nσ,εx → Nσx.
Proof. (1) This is straightforward.
(2) By (1), we have ‖Cε‖ ≤ ‖C‖. Obviously, ‖Cεx− Cx‖2 → 0. Since Cεxε − Cx =

Cε(xε − x) + (Cε − C)x, we obtain that (2) holds.

(3) We have D̂εu(s) = (G(·)u(· − ε))(s + ε) = G(ε + s)u(s), i.e., Gε = G(ε + ·).
Therefore, ‖Gε‖∞ ≤ ‖G‖∞ and G∗

εy0 → G∗y0 a.e. on iR, for any y0 ∈ Cp (see,
e.g., Theorem 3.3.1(c1) of [30]). Consequently, G∗

ε ŷ → G∗ŷ in L2(iR; Cm) for any
ŷ ∈ L2(iR; Cp), by the dominated convergence theorem. By Plancherel’s theorem,
this means that D∗

ε y → D∗y for any y ∈ L2(R; Cm). Because the functions D∗
ε are

uniformly bounded, (3) also holds.
(4) We have

‖LC,ε‖ = sup
‖x‖≤1

〈x, LC,εx〉 = sup
‖x‖≤1

‖Cεx‖2
L2

≤ sup
‖x‖≤1

‖Cx‖2
L2

= sup
‖x‖≤1

〈x, LCx〉 = ‖LC‖.

Moreover, 〈x, (LC − LC,ε)x〉 =
∫∞
0

(1 − e−2εt)|(Cx)(t)|2 dt → 0. By duality (i.e.,
(A∗, C∗, B∗) in place of (A,B,C)), we obtain the claims for LB .

(5) By Plancherel’s theorem, HG and Γ are isomorphic (see [16, Lemma 8.2.3(c),
page 397]).

(6) Define (Sεf)(t) = e−εtf (ε ∈ R). For any f ∈ L2(R; Cn), n ≥ 1, we have
Sεf → f in L2 as ε → 0. Moreover, ‖Sεf‖ ≤ ‖f‖ (respectively, ‖S−εf‖ ≤ ‖f‖) if
f = 0 on R− (respectively, R+). Therefore, Γ∗

εΓεu → Γ∗Γu for each u ∈ L2(R−; Cm)
(see Mikkola [30, Lemma A.3.1(j3)] and note that Cε = SεC, Bε = BSε). Thus, we
get lim infε→0+ σk,ε ≥ σk from Lemma 6.3.

Conversely, if rankK ≤ k − 1, then rankKε ≤ k − 1, where Kε := SεKS−ε, and
‖Γε−Kε‖ = ‖Sε(Γ−K)S−ε‖ ≤ ‖Γ−K‖. Hence σk+1,ε ≤ σk+1. Similarly, we observe
that σk+1,ε ≤ σk+1,ε′ when ε > ε′ > 0.

(7) Let δ be as in Lemma 6.2(2), and choose ε0 so that σ2
l,ε − σ2

l < δ/2 for l = k,

k+1, and ε∈ (0, ε0) (use (6)). Then Lemma 6.2(2) implies that ‖(σ2I−Γ∗
εΓε)

−1‖≤ 2/δ,
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that is, that ‖(I − σ−2Γ∗
εΓε)

−1‖ ≤ 2σ2/δ, for ε ∈ (0, ε0). Apply (I − ST )−1 =
I + S(I − TS)−1T to T = σ−2B∗

ε , S := C∗
ε CεBε to obtain the inequality in (7) for

M0 := 1+2σ2‖C‖‖B‖/δ (use (2) and its dual). The last claim follows from the others
and (4) (see (j3)–(j5) of Lemma A.3.1 of Mikkola [30]).

In the above we have used the following two lemmas. In the first one we present
some sort of a singular value decomposition with k largest singular values on the
diagonal and a small operator on the bottom-right corner.

Lemma 6.2 (partial singular value decomposition). Assume that {σk} are the
singular values of S ∈ L(X,Y ) and X,Y are Hilbert spaces.

(1) For any k ∈ {0, 1, 2, . . . }, there is a k-dimensional subspace Xk ⊂ X such
that S∗S = diag(σ2

1 , . . . , σ
2
k;T ) on Xk ×X⊥

k = X, ‖T‖ = σ2
k+1.

(2) We have σ2 ∈ ρ(S∗S) and ‖(σ2 − S∗S)−1‖ ≤ δ−1, where δ := min{σ2
k −

σ2, σ2 − σ2
k+1}.

Claim (1) follows from pp. 212–213 of [21], alternatively, by using a resolution
of the identity of S∗S. Claim (2) follows, because (σ2 − S∗S)−1 = diag((σ2

1 −
σ2)−1, . . . , (σ2

k − σ2)−1; (σ2 − T )−1). Recall that σk := inf{‖S −K‖ : K ∈ L(X,Y ),
rankK ≤ k − 1} = infdimM≤k−1 ‖SPM⊥‖, where PM⊥ is the orthogonal projection
X → M⊥.

Lemma 6.3 (lim infn σk,n ≥ σk). Let Sn, S ∈ L(X,Y ) for all n, and let S∗
nSnx →

S∗Sx for all x ∈ X, where X,Y are Hilbert spaces. Then lim infn→∞ σk,n ≥ σk, where
σk,n is the kth singular value of Sn (n ∈ N).

Proof. Given ε > 0, choose N such that ‖(S∗
nSn − S∗S)P‖ < ε for all n ≥ N ,

where P : X → Xk−1 is the orthogonal projection and Xk−1 is as in Lemma 6.2.

We obviously have σk = infdimM≤k−1 ‖SPM⊥‖, where PM⊥ is the orthogonal
projection X → M⊥. But if dimM ≤ k − 2, then there is x ∈ M⊥ ∩ Xk−1 such
that ‖x‖ = 1 (otherwise we would have Xk−1 ⊂ Ker(PM⊥) = M). Then ‖Snx‖ =
〈Px, S∗

nSnPx〉 ≥ 〈x, S∗Sx〉 − ε ≥ σk − ε.
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Abstract. Instantaneous control is applied to the control of the instationary Navier–Stokes
system. This control technique is closely related to receding horizon control and allows for an
interpretation as suboptimal closed loop controller, whose parameters may be adjusted so as to
stabilize the nonlinear equation under consideration. Besides stability analysis for the distributed
control case, numerical examples for the continuous and discrete-in-time control laws are presented.
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1. Introduction. This research is devoted to the study of instantaneous control
applied to the instationary Navier–Stokes system. It thereby builds upon and extends
results of [14] for the Burgers equation, where a comprehensive discussion of the
method also can be found.

In primal variables the Navier–Stokes system can be written in the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt − νΔy + (y∇)y + ∇p = Bu in Q,

−div y = 0 in Q,

y = 0 on (0, T ) × ∂Ω,

y(0) = φ in Ω.

(D)

Here ν := 1/Re denotes the viscosity parameter, with Re denoting the Reynolds num-
ber. Furthermore, Q := (0, T ) × Ω, with Ω ⊂ R2 denoting an open bounded domain
and T > 0 the time horizon. The control target is to match the given desired state z
in the L2(Q)-sense by adjusting the body force Bu in an appropriate manner. Above,
B denotes an abstract control extension operator which maps controls of an abstract
Hilbert space U to admissible right-hand sides of the Navier–Stokes system (D). In
this context the method of instantaneous control serves a dual purpose—to construct
a closed loop feedback control law which steers the system state y to z for t tending to
∞, and to compute open loop control policies which (hopefully) approximate optimal
open loop control strategies, i.e. solutions of⎧⎨⎩minJ(y, u) =

1

2

∫ T

0

∫
Ω

|y − z|2dx dt +
α

2

∫ T

0

|u|2U dt

s.t. (D).
(P)

Optimal control problems for the Navier–Stokes system of the form of (P) are mathe-
matically and numerically well understood [1, 2, 9, 13]. For (P) instantaneous control
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may be regarded as a suboptimal control approach which provides control policies on
the time horizon (0, T ). However, as is shown in [14], instantaneous control may be
regarded as nonlinear feedback control policy, and it is the main aim of this work to
extend the stability analysis presented there to the Navier–Stokes system.

Instantaneous control works as follows. The uncontrolled Navier–Stokes equations
are discretized with respect to time. Then, at selected time slices an instantaneous
version of the cost functional is approximately minimized w.r.t. a stationary quasi-
Navier–Stokes system, whose structure depends on the chosen time-discretization
method. The control obtained is used to steer the system to the next time slice,
where the procedure is repeated.

Instantaneous control therefore is closely related to receding horizon control (rhc)
or model predictive control (mpc) with finite time horizon [7, 21, 22]. It was applied
to control the Burgers equation with stochastic forcing in [5] and was also successfully
applied to compute suboptimal controls for a great variety of fluid mechanical control
problems [3, 4, 10, 12, 19, 20], and in the recent past it was also applied as a real-time
control approach to the cooling of steel [25]. Linear body force feedback control for
the Navier–Stokes system is investigated in [8, 17, 18].

As far as the author knows there are only a few stability investigations for the
application of the method to the control of infinite-dimensional systems [14, 16].

In the present work the results obtained in [14] are extended to the instationary
Navier–Stokes system in two spatial dimensions. While for the continuous control
policies developed in [14] similar stability properties can be proved as in the case of the
Burgers equation, for the discrete controllers developed there only conditional stability
can be shown for the Navier–Stokes system (Theorems 4.4 and 4.5). This motivates
the construction of a slightly modified control policy, for which unconditional stability
is proved in Theorem 4.7. The main results of the present work can be summarized
as follows.

Main results.
1. Given a sufficiently smooth desired state z, instantaneous control of the insta-

tionary Navier–Stokes system can be regarded as time discretization of a closed loop
feedback policy K that steers the system exponentially fast to z, i.e., with S denoting
the Stokes operator and b(y) the nonlinearity of the Navier–Stokes equations

yt + νSy + b(y) = K(y),

the solution of this system satisfying |y(t)− z(t)|H1 ≤ c exp(−γt) with some positive
constants c and γ (Theorems 4.1 and 4.2).

2. Instantaneous control may be regarded as a discrete-in-time feedback policy
that steers the dynamical system exponentially fast to the desired state z, provided
that either z(0) is sufficiently close to the initial value φ or the viscosity parameter ν
is sufficiently large (Theorems 4.4 and 4.5).

3. Instantaneous control gives rise to a discrete-in-time feedback policy that
steers the dynamical system exponentially fast to the desired state z (Theorem 4.7).

The paper is organized as follows. In section 2 an appropriate functional analytic
framework is introduced and preliminary results are collected. In section 3 the deriva-
tion of the instantaneous control approach, the formulation of the algorithm, and its
interpretation as nonlinear continuous and discrete-in-time feedback control policy
are sketched. The results in this part of the work are similar to those in [14] and are
stated for the convenience of the reader. In section 4 both exponential stability of the
continuous controllers and conditional exponential stability of the discrete controllers
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are shown. To obtain these results in consequence of the nonlinearity in the Navier–
Stokes system a more subtle analysis is necessary than for the Burgers equation in [14].
Moreover, a slightly modified discrete controller is proposed for which unconditional
exponential stability is proved. Finally, in section 5 numerical examples are presented,
which illustrate the theoretical results and also compare the feedback policy on a time
horizon [0, T ] to the corresponding optimal open loop control strategy for (P).

Throughout this work c and C denote global generic constants whose dependencies
are mentioned when necessary.

2. Preliminaries. Set V = {v ∈ H1
0 (Ω)2, div v = 0}, H = closL2(Ω)2{v ∈

C∞
0 (Ω)2, div v = 0} and identify the Hilbert space H with its dual H ′. On H the

common inner product is used, and V is endowed with the inner product

(ϕ,ψ)V = (∇ϕ,∇ψ)H for ϕ,ψ ∈ V.

Moreover, with Z denoting a Hilbert space, Lp(Z) (1 ≤ p ≤ ∞) denotes the space of
measurable abstract functions ϕ : (0, T ) → Z, which are p-integrable (1 ≤ p < ∞) or
essentially bounded on (0, T ) (p = ∞), respectively.

As control space, L2(U) is taken, where U denotes the Hilbert space of abstract
controls. The space U also is identified with its dual. Furthermore,

B : U → V ′(2.1)

denotes the control extension operator, which is assumed to be bounded. In order
to formulate the weak form of the instationary Navier–Stokes equations, let W :=
W (V ) = {ϕ ∈ L2(V ) : ϕt ∈ L2(V ′)} supplied with the common inner product.
Further, introduce

b(u, v, w) :=

∫
Ω

(u · ∇)vw dx.

Then from [24],

b(u, v, w) ≤ C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|u|
1
2

H |u|
1
2

V |v|
1
2

H |v|
1
2

V |w|V ∀u, v, w ∈ V,

|u|
1
2

H |u|
1
2

V |v|
1
2

V |Δv|
1
2

H |w|H ∀u ∈ V, v ∈ V ∩H2(Ω)2, w ∈ H,

|u|H |v|V |w|
1
2

H |Δw|
1
2

H ∀u ∈ H, v ∈ V, w ∈ V ∩H2(Ω)2,

|u|
1
2

H |Δu|
1
2

H |v|V |w|H ∀u ∈ V ∩H2(Ω)2, v ∈ V, w ∈ H,

(2.2)

with a positive constant C, which for the uppermost estimate can be chosen as C =
√

2
[23, Chap. III, eq. (3.55)]. Moreover, for y ∈ L2(V ) the function b(y) defined by

〈b(y), v〉V ′,V := −b(y, y, v) ∀ v ∈ V(2.3)

is an element of V ′ for almost all t ∈ (0, T ) and b(y) ∈ L1(V ). Now let P : L2(Ω)2 → H
denote the Leray projector [6, Remark 1.10]. Then, the Stokes operator S is given by

S : D(S) ⊂ H → H, S := −PΔ, D(S) = H2(Ω)2 ∩ V.

Further define

A := νS
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and denote by B the solution operator of

v + hAv = f in V ′,(2.4)

where f ∈ V ′ is given. The operator B is linear, bounded, and self-adjoint, and there
holds B−1 = I + hA.

In this setting the Navier–Stokes system (D) may be rewritten as the Burgers
equation in the space V ,

yt + Ay = b(y) + Bu,
y(0) = φ,

where the nonlinearity b(y) is defined in (2.3). The derivation and also the interpreta-
tion of instantaneous control for the Navier–Stokes system in the following therefore
are abutted to the exposition in [14].

Let X = W×L2(U) and Y = L2(V ′)×H. Introducing the operator e : X → Y by

e(y, u) = (e1(y, u), e2(y, u)) = (yt − νΔy − b(y) − Bu, y(0) − φ),

the Navier–Stokes system (D) can be expressed in the form e(y, u) = 0 in Y , and the
optimal control problem (P) can be regarded as a minimization problem with equality
constraints:

minimize J(y, u) s.t. e(y, u) = 0.

Among other things, it is shown in [13] that this problem admits a solution (y∗, u∗) ∈
X and that both J and e are infinitely continuously Fréchet-differentiable.

Young’s inequality

ab ≤ δa2 +
1

4δ
b2 ∀ a, b ≥ 0, δ > 0,(2.5)

and the following lemmas are frequently used in the proofs of the main theorems.
Lemma 2.1. For y ∈ V let w := By. Then w ∈ V ∩ H3(Ω)2 and Sw ∈ V .

Moreover,

|w|2H ≥ |y|2H − 2νh|y|2V .(2.6)

Further, let z := B((y∇)y) = Bb(y). Then z ∈ V and

|z|2H ≤ 1

2νh
|y|2H |y|2V .(2.7)

Proof. By the definition of the operator B the regularity claim for w follows
from [23, Chap. I, Prop. 2.3]. Thus, Sw ∈ H1(Ω)2 [6, Remark 1.10] and, since y ∈ V ,
Sw ∈ V . Therefore, Sw can be utilized as test function in the equation

w + hAw = y.

This gives

|w|2V + νh|Sw|2H =

∫
Ω

∇w∇y dx ⇒ |w|2V + 2νh|Sw|2H ≤ |y|2V .
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Furthermore, using y as test function, the latter estimate leads to

|y|2H =

∫
Ω

yw + νh∇y∇w dx ≤ 1

2
|y|2H +

1

2
|w|2H + hν|y|V |w|V

≤ 1

2
|y|2H +

1

2
|w|2H + hν|y|2V ,

which gives the first claim.
To prove the second claim take z as test function in the equation

z + hAz = b(y).

This gives, using the first estimate of (2.2) and Young’s inequality (2.5) with δ = νh,

|z|2H + νh|z|2V ≤ |b(y)|V ′ |z|V ≤
√

2|y|H |y|V |z|V ≤ 1

2νh
|y|2H |y|2V + νh|z|2V ,

which completes the proof of the lemma.
Lemma 2.2. Let y ∈ V , κ := By, and τ := Bκ. Then∫

Ω

ByBSy dx = |y|2V − νh

∫
Ω

(Sκ + Sτ)Sy dx

and

|Sτ |2H , |Sκ|2H ≤ 1

4νh
|y|2V .(2.8)

Proof. The definition of κ and τ implies κ ∈ H3(Ω)2 ∩ V , τ ∈ H5(Ω)2 ∩ V .
Moreover, Sκ and Sτ are elements of V . Integration by parts gives the first part of
the claim. To obtain the second claim, test the equation for κ with Sκ. This gives

|κ|2V + νh|Sκ|2H ≤ |y|V |κ|V ≤

⎧⎪⎨⎪⎩
1

4
|y|2V + |κ|2V

1

2
|y|2V +

1

2
|κ|2V ,

where Young’s inequality (2.5) was used for the upper estimate with δ = 1, and
for the lower estimate with δ = 1

2 . Since the same estimate holds with κ replaced
by τ and y replaced by κ, and |κ|V ≤ |y|V by the lower estimate, the lemma is
proved.

3. Instantaneous control strategy. For m ∈ N an equidistant discretization
of the time interval (0, T ) is defined by h = T

m and tk = kh, k = 0, 1, . . . ,m. Instan-
taneous versions of the cost functional J in (P) are given by

Jk : V × U → R, (y, u) �→ 1

2
|y − zk|2H +

α

2
|u|2U ,

where

zk =
1

h

∫ tk+h
2

tk−h
2

z(s, ·)ds(3.1)
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and z(t, ·) = 0 for t > T . Finally, for k = 1, . . . ,m and i = 1, 2, introduce the
operators eki : V × U → V ′ by

ek1(y, u) = (I + hA)y − hb(yk−1) − yk−1 − Bu,

and for later purposes also

ek2(y, u) = (I + hA)y − hb(y) − yk−1 − Bu,

where yk−1 denotes the state at the previous time slice.
The instantaneous optimal control problem for the semi-implicit time integration

is given by

minimize Jk(y, u) s.t. ek1(y, u) = 0 in V ′,(Pk )

where y0 = φ. The initial value φ now is required to be an element of the space V .
For given yk−1, a pair (yk, uk) satisfies the subsidiary condition ek1(y, u) = 0 in V ′ if
and only if

νh(yk, ϕ)V + (yk, ϕ)H = (yk−1, ϕ)H + 〈Buk + hb(yk−1), ϕ〉V ′,V ∀ϕ ∈ V.(3.2)

Since φ ∈ V holds, the right-hand side in this linear equation defines a bounded linear
functional on V . Thus, for every uk ∈ U , (3.2) admits a unique solution yk ∈ V which
satisfies the a priori estimate

|yk|V ≤ C

νh

(
|yk−1|H + h|yk−1|2V + |uk|U

)
.

Since Jk is quadratic and ek1 is linear, every problem (Pk ), k = 1, . . . ,m, admits a
unique solution (yk∗ , u

k
∗) ∈ V × U which in fact defines a minimum for (Pk ). Fur-

thermore, the unique Lagrange multiplier λk
∗ ∈ V together with the solution (yk∗ , u

k
∗)

satisfies the first-order necessary optimality conditions (note that A is self-adjoint)

(I + hA)y = Bu + yk−1 + hb(yk−1),(3.3a)

(I + hA)λ = −(y − zk),(3.3b)

αu− B�λ = 0.(3.3c)

The optimal control problem (Pk ) is equivalent to the unconstrained minimization
of the functional

Ĵk(u) = Jk(y(u), u)

over U , where for a control u ∈ U the state y(u) ∈ V is given as the unique solution
to (3.2). The gradient of Ĵk at u is given by

∇Ĵk(u) = αu− B�λ,

where for given u the function λ is obtained by first solving the linear quasi-Stokes
problem (3.3a) for the state y and then solving (3.3b) for λ.

Remark 3.1. If one uses implicit time integration in problem (Pk ), i.e., in the
subsidiary condition the operator ek1 is replaced by ek2 , the adjoint equation (3.3b)
alters to

(I + hA)λ− b′(y)�λ = −(y − zk).(3.4)
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Into this equation the state y enters in two different fashions: first as observation
−(y − zk), and second as coefficient in the nonlinearity b′(y)�. Since the gradient

∇Ĵk(u) at a control u depends on λ, in the present case it depends on the obser-
vation yk − zk and also on the whole state yk in terms of the derivative of b. The
structure of (3.4) is retained also in the case of boundary observation, where the ob-
servation enters as boundary condition into the adjoint equation, but the whole state
yk again enters as a coefficient function. As a consequence, computation of gradient
information for Ĵk in the present case cannot be based on observations alone.

On the other hand, the adjoint equation (3.3b) depends only on the observation
yk − zk. Therefore, gradient information for the functional Ĵk is available utilizing
the observations only. In the particular case of boundary observation no information
of the state in the whole computational domain is needed at all.

3.1. The algorithm. Instead of solving (Pk ) exactly, the instantaneous control
strategy provides only approximate solutions to this problem through applying one
step of the steepest descent method with stepsize ρ > 0. The control obtained in
this way is used to steer the system to the next time slice. With the gradient of
the functional Ĵk available, this procedure in algorithmic form can be formulated as
follows.

Algorithm 1 (instantaneous control).
1. Set y0 = φ, k = 0 and t0 = 0.
2. Given an initial control uk

0 , solve

(I + hA)y = yk + hb(yk) + Buk
0 ,

(I + hA)λ = −(y − zk).

3. Set ∇Ĵ(uk
0) = αuk

0 − B�λ.
4. Given ρ > 0, set uk+1 = uk

0 − ρ∇Ĵ(uk
0).

5. Solve

(I + hA)yk+1 = yk + hb(yk) + Buk+1.

6. Set tk+1 = tk + h, k = k + 1. If tk < T goto 2.
Here, Ĵ = Ĵk. The choice of the stepsize ρ in step 4 of the algorithm is crucial.

Since (Pk ) is quadratic with linear constraints, the optimal choice ρ∗ can be computed
exactly and in the present situation is given by

ρ∗ = − (y(u) − z, y(d))H + α(u, d)U

|y(d)|2H + α|d|2U
=

|d|2U
|y(d)|2H + α|d|2U

≤ 1

α
,(3.5)

where d = −∇Ĵ(u). The computation of ρ∗ requires only the computation of the
auxiliary function y(d).

It is shown in [11, 14] that Algorithm 1 allows the interpretation as a nonlinear
discrete-in-time suboptimal closed loop control method, which turns out to be the
stable time discretization of some continuous closed loop controller. For the conve-
nience of the reader these results for the Navier–Stokes system are summarized in the
following subsection. To simplify the exposition from here onward, U = V ′ and, thus,
B = I are assumed. This choice is justified by the fact that in many applications of
distributed control applied to systems governed by parabolic equations, the operator
B defined in (2.1) plays the role of an extension operator.

3.2. Feedback control laws. It is shown in [11, Theorem 5.4.1], [14, Theorem
3] that Algorithm 1 allows the following interpretation.
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Theorem 3.2.

(i) For uk
0 = 0 Algorithm 1 is equivalent to the semi-implicit time discretization

with discretization stepsize h,

(I + hA)yk+1 = yk + hb(yk) − ρBB(yk − zk) − hρBB(b(yk) −Azk), y0 = φ,

(3.6)

of the dynamical system

ẏ + Ay − b(y) = K(y) in L2(V ′) and y(0) = φ,(3.7)

where

K(y) = −ρ

h
BB(y − z) − ρBB(b(y) −Az).(3.8)

(ii) Choosing the initial control uk
0 in Algorithm 1 as the solution of(

I − ρ

1 − ρα
BB

)
uk

0 =
1

1 − ρα

(
zk+1 − zk + Azk+1 − b(zk) + ρBB(b(zk) −Azk)

)
,

the algorithm is equivalent to

(I + hA)wj+1 = wj + h(b(yj) − b(zj)) − ρBBwj

(3.9)
−ρhBB(b(yj) − b(zj)), w0 = φ− z(0),

where w := y − z. The related continuous system is given by

yt + Ay − b(y) = K(y) in L2(V ′) and y(0) = φ,(3.10)

where

K(y) = −ρ

h
BB(y − z) − ρBB(b(y) − b(z)) + zt + Az − b(z).(3.11)

It is now clear that the nonlinear operators K defined in (3.8) and (3.11), respec-
tively, can be interpreted as nonlinear closed loop control policies for the Navier–Stokes
equations. In this context it is important to note that the discretization stepsize h
and the descent parameter ρ in the gradient step of Algorithm 1 in the continuous
case may now be regarded as parameters defining the controller.

The discrete counterpart to (3.11) will frequently be used in what follows. It is
given by

KD(y) = −ρ

h
BB(y − zj) − ρBB(b(y) − b(zj)) +

zj+1 − zj

h
+ Azj+1 − b(zj).(3.12)

Unless otherwise stipulated, the following assumption holds from here onward.
Assumption 3.3. 0 �= φ ∈ V , and z ∈ H2,1(Q).
Note that this assumption on the desired state z in particular implies that z(0)

is meaningful. Moreover, z(0) ∈ V .

4. Existence, uniqueness, and stability of solutions. In this section exis-
tence, uniqueness, stability, and regularity of a solution to (3.10) are discussed. The
boundary ∂Ω is assumed to be as smooth as required by the existence and regular-
ity results for the Stokes and quasi-Stokes problems considered in the proofs of the
theorems below; see [23, Chap. I, Prop. 2.3]. It follows from the a priori estimates
to be derived that the stabilized system (3.10) admits a unique solution. Moreover,
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the H- and V -norms of difference w = y − z decay exponentially with rate − ρ
h . To

achieve these results the range of ρ has to be adapted to the size of |z|2L∞(H). For this

purpose set dH := 2|φ− z(0)|2H and let the range of ρ be implicitly defined by

0 < ρ ≤ ρ1 := min

⎛⎝ρ0,
ν2

2ν2 + exp
(

4+ρ
ν |z|2L2(V )

)
dH + |z|2L∞(H)

⎞⎠.(4.1)

Theorem 4.1. Let 0 < ρ ≤ ρ1 with ρ1 from (4.1) and let h > 0 be fixed. Further,
let φ ∈ H and z ∈ W . Then (3.10) for every T > 0 admits a unique solution y ∈ W ,
and the difference w = y − z satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|w|2H ≤ C (ν, |z|W ) e−
ρ
h t ∀ t ∈ [0, T ],

|w|2L∞(H) ≤ C (ν, |z|W ),

|w|2L2(V ) ≤ C (ν, |z|W ), and

|wt|2L2(V ′) ≤ C (ν, |z|W )
{

1 +
ρ

h

}
,

(4.2)

where C(ν, |z|W ) is a positive constant independent of ρ and h.
Proof. Existence of a solution can be proved using a Galerkin ansatz in combina-

tion with the estimates derived below; compare [11, 14]. Uniqueness also follows from
these estimates. To prove (4.2) use w as test function in the variational formulation
of (3.10). This leads to

d

dt
|w|2H + ν|w|2V +

ρ

h
|Bw|2H

=

∫
Ω

((w∇)w + (z∇)w + (w∇)z)w dx

−ρ

∫
Ω

(B((w∇)w + (z∇)w + (w∇)z))Bw dx = (i) + · · · + (vi).

Since (i) = (ii) = 0, it remains to estimate the terms (iii), (iv), (v), and (vi) in
order to derive a differential inequality for y − z. To begin, estimate, using Young’s
inequality and (2.7),

(iii) ≤ ν

2
|w|2V +

2

ν
|z|2V |w|2H ,

(iv) ≤ ρh|B((w∇)w)|2H +
ρ

4h
|Bw|2H ≤ ρ

2ν
|w|2H |w|2V +

ρ

4h
|Bw|2H ,

(v) + (vi) ≤ ρh
{
|B((w∇)z)|2H + |B((z∇)w)|2H

}
+

ρ

4h
|Bw|2H

≤ ρ

4h
|Bw|2H +

ρ

2ν

{
|w|2V |z|2H + |z|2V |w|2H

}
,

and apply estimate (2.6). This leads to

1

2

d

dt
|w|2H +

(
ν

(
1

2
− ρ

)
− ρ

2ν

(
|w|2H + |z|2L∞(H)

))
|w|2V +

ρ

2h
|w|2H ≤ 4 + ρ

2ν
|z|2V |w|2H .

Since ρ satisfies (4.1), ν( 1
2 − ρ) − ρ

2ν (exp( 4+ρ
ν |z|2L2(V ))dH + |z|2L∞(H)) > 0. For ρ in

this range standard arguments yield

1

2

d

dt
|w|2H +

(
ν

(
1

2
− ρ

)
− ρ

2ν

(
exp

(
4 + ρ

ν
|z|2L2(V )

)
dH + |z|2L∞(H)

))
(4.3)

× |w|2V +
ρ

2h
|w|2H ≤ 4 + ρ

2ν
|z|2V |w|2H .
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Since the right-hand side in (4.3) is integrable, a further Gronwall argument gives the
desired result. Note that the estimate for wt is a direct consequence of the second
and third estimates in (4.2).

A similar result holds for the decay w.r.t. the V -norm of w. Now let the range of
ρ be implicitly defined by the relation

0 < ρ ≤ ρ2 := min

⎛⎝ρ0,
1

2

ν2

2ν2 + 3 exp
(

4+ρ
ν |z|2L2(V )

)
dH + 3|z|2L∞(H)

⎞⎠.(4.4)

Theorem 4.2. Let ρ satisfy (4.4) and let y be the unique solution of (3.10). Then
y ∈ H2,1(Q), and w = y − z satisfies

|w|2V ≤ C
(
ν, |z|H2,1(Q)

)
e−

ρ
h t ∀ t ∈ [0, T ],

|w|2L∞(V ) ≤ C
(
ν, |z|H2,1(Q)

)
,

|w|2L2(H2(Ω)2∩V ) ≤ C
(
ν, |z|H2,1(Q)

)
, and

|wt|2L2(H) ≤ C
(
ν, |z|H2,1(Q)

){
1 +

ρ

h

}
,

where C(ν, |z|H2,1(Q)) is a positive constant independent of ρ and h.
Proof. Use Sw as test function in (3.10). This leads to

1

2

d

dt
|w|2V + ν|Sw|2H +

∫
Ω

((y∇)y − (z∇)z)Sw dx

= −ρ

h

∫
Ω

BwBSw dx− ρ

∫
Ω

B((y∇)y − (z∇)z)BSw dx.

Relation (4.4) implies 1 − ρ − 3ρ
ν2 (exp( 4+ρ

ν |z|2L2(V ))dH + |z|2L∞(H)) ≥ 1
2 . Restricting

ρ to this range, similar to the derivation of (4.3) after several applications of (2.2),
(2.8), Lemma 2.2, and Young’s inequality, one ends up with

1

2

d

dt
|w|2V +

ν

2
|Sw|2H +

ρ

h

(
1 − ρ− 3ρ

ν2

(
exp

(
4 + ρ

ν
|z|2L2(V )

)
dH + |z|2L∞(H)

))
|w|2V

(4.5)

≤ Cν

{
|w|2H |w|2V + |z|H |Sz|H + |z|2V + |z|4V

}
|w|2V .

Since the right-hand side in (4.5) is integrable, a Gronwall argument gives the desired
result.

4.1. Stability of discrete controllers. First the stability properties of the
instantaneous control procedure (3.9) are investigated. As will be shown, stability for a
certain parameter range of h and ρ can be ensured only by requiring additionally either
largeness of the viscosity parameter ν or smallness of φ − z(0). As is shown in [14],
these restrictions do not apply when the procedure is applied to the instationary
Burgers equation. Secondly, a slightly modified version of the controller (3.12) is
applied to the fully implicit Euler discretization of the Navier–Stokes system. It turns
out that the resulting discrete-in-time system for w = y− z is unconditionally stable.
Note that fully implicit discretization of the state is a realistic situation, since the
discrete controller is applied to stabilize a physical system which is described by the
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Navier–Stokes equations. Therefore, the choice of the discretization procedure for
the uncontrolled state need not be linked to the discrete controller.

Throughout this section it is assumed that the following assumption holds.
Assumption 4.3. In addition to Assumption 3.3, let z ∈ C([0, T ];H1,∞(Ω)2∩V ).
In a preparatory step, an inequality relating the H-norms of w = yj+1−zj+1 and

v = yj − zj is derived, and z := zj , j ∈ N. To begin, test (3.9) with w. This gives

1

2
|w|2H − 1

2
|v|2H +

1

2
|w − v|2H + νh|w|2V

= h

∫
Ω

(
(v∇)v + (zj∇)v + (v∇)zj

)
w dx− ρ

∫
Ω

BvBw dx(4.6)

−ρh

∫
Ω

B
(
(v∇)v + (zj∇)v + (v∇)zj

)
Bw dx = (i) + · · · + (vii).

Estimating, using (2.2),

|B((v∇)v)|2H ≤ 1

2νh
|v|2H |v|2V

from Lemma 2.1 and Young’s inequality yields

(i) ≤ νh

4
|w|2V +

2h

ν
|v|2H |v|2V ,

(ii) ≤ νh

4
|w|2V +

|z|2∞h

ν
|v|2H ,

(iii) ≤ h

2
|w|2H +

|z|21,∞h

2
|v|2H ,

(iv) = −ρ

∫
Ω

|Bw|2dx− ρ

∫
Ω

B(v − w)Bw ≤ ρ

2
(ρ− 1)|Bw|2H +

1

2
|v − w|2H ,

(v) = −ρh

∫
Ω

B ((v∇)v)Bw dx ≤ 3ρh

2ν(1 − ρ)
|v|2H |v|2V +

ρ

12
(1 − ρ)|Bw|2H ,

and finally

(vi) + (vii) = −ρh

∫
Ω

B
(
(v∇)zj + (zj∇)v

)
Bw dx

≤
{

3ρh2|z|21,∞
1 − ρ

+
3ρh|z|2∞
4(1 − ρ)ν

}
|v|2H +

ρ(1 − ρ)

6
|Bw|2H .

Now introduce

c1(ρ, h) :=
1

2
+

ρ

4
(1 − ρ) − h

2

and

c j
2 (ρ, h, z) :=

1

2
+

[
2h

ν
+

3hρ

2ν(1 − ρ)

]
|v|2V

+

[
|z|21,∞h

2
+

|z|2∞h

ν
+

3ρh2|z|21,∞
1 − ρ

+
3ρh|z|2∞
(1 − ρ)4ν

]
︸ ︷︷ ︸

=:c̃2(h,ρ,z)

.
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With this notation the estimates above and Lemma 2.1 together with (4.6) give

c1(ρ, h)|w|2H − c j
2 (ρ, h, z)|v|2H +

νh

2
(1 − ρ + ρ2)|w|2V ≤ 0.(4.7)

Theorem 4.4 (conditional H-norm stability of instantaneous control). Let wj :=
yj − zj, where yj denotes the iterates obtained by (3.9). Then

∀ρ ∈ (0, 1) ∃h∗(ρ), 0 < κ < 1 ∀j ∈ N : |wj+1|2H ≤ κj |w0|2H ,

provided 0 < h ≤ h∗(ρ) and

crit :=
4 − ρ

ν2(1 − ρ)(1 − ρ + ρ2)
|w0|2H

is sufficiently small.
Proof. Fixing ρ ∈ (0, 1), define

ĉ2(ρ, h, z) :=
1

2
+ crit + c̃2(ρ, h, z)

and argue by induction as follows.
1. Set j = 0, and choose h0 = h0(ρ) and crit so small that for all 0 < h ≤ h0

(a) ĉ2(ρ, h, z) ≤ 1 and c02(ρ, h, z) ≤ 1,

(b) ĉ2(ρ,h,z)
c1(ρ,h) = κ1 < 1, and

(c)
c02(ρ,h,z)
c1(ρ,h) = κ2 < 1

hold. This is possible, since for ρ ∈ (0, 1) the term ρ
4 (1−ρ) in the definition of c1(ρ, h)

is positive. Define κ := max(κ1, κ2). Then (4.7) implies

|w1|2H ≤ κ|w0|2H
and

|w1|2V ≤ 2

νh(1 − ρ + ρ2)
|w0|2H =

2

νh(1 − ρ + ρ2)
κ0|w0|2H .

2. Now assume that for j ∈ N

(a) |wj |2H ≤ κj |w0|2H and

(b) |wj |2V ≤ 2
νh(1−ρ+ρ2)κ

j−1|w0|2H
hold true.

3. Then conclude from (4.7) that

c j
2 (ρ, h, z) =

1

2
+

[
2h

ν
+

3hρ

2ν(1 − ρ)

]
|wj |2V + c̃2(ρ, h, z)

≤ 1

2
+

[
2h

ν
+

3hρ

2ν(1 − ρ)

]
2

νh(1 − ρ + ρ2)
κj−1|w0|2H + c̃2(ρ, h, z)

≤ 1

2
+ crit + c̃2(ρ, h, z) = ĉ2(ρ, h, z).

Thus, a further application of (4.7) implies

|wj+1|2H ≤ c j
2 (ρ, h, z)

c1(ρ, h)
|wj |2H ≤ ĉ2(ρ, h, z)

c1(ρ, h)
|wj |2H ≤ κj+1|w0|2H

and

|wj+1|2V ≤ 2

νh(1 − ρ + ρ2)
c j
2 (ρ, h, z)|wj |2H ≤ 2

νh(1 − ρ + ρ2)
κj |w0|2H ,

which completes the proof of Theorem 4.4.
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The last estimate of the previous proof also yields stability with respect to the
V -norm.

Theorem 4.5 (conditional V -norm stability of instantaneous control).

∀ρ ∈ (0, 1) ∃h∗(ρ), 0 < κ < 1 ∀j ∈ N, 0 < h ≤ h∗ : |wj |V ≤ 2

νh(1 − ρ + ρ2)
κj−1|w0|H ,

provided

crit :=
4 − ρ

ν2(1 − ρ)(1 − ρ + ρ2)
|w0|2H

is sufficiently small.
Remark 4.6. The smallness of crit in Theorems 4.4 and 4.5 is a condition either

on the smallness of the initial difference between state and desired state or on the
smallness of the Reynolds number of the fluid. It has to be required since there are
no better estimates available for the term (i) in (4.6). The term (v) in (4.6) could
be estimated in a slightly different way to obtain a ρ2 in front of |v|2V (see the proof
of the next theorem) and therefore could be reduced by decreasing ρ. However, for
(i) in (4.6) there is no further knob to fix its size. For the Burgers equation the
situation is much more comfortable at this stage. Due to the continuous embedding
H1 ↪→ L∞ and the well-known L2-H1 interpolation estimate for L∞ functions in one
spatial dimension, one has

h

∫
Ω

vv′w dx ≤ νh

4
|w|2V + h1−2α|w|2H + h1+2α 1

2
√
ν
|w|2V |w|2H ∀ α ∈ (0, 1).

Following the lines of the proof of Theorem 4.4 one can now conclude that the small-
ness requirement on crit may be dropped provided ρ is sufficiently small, since the
power of h in the last addend on the right-hand side of this estimate is larger than
one. For more details see [14].

Finally, a discrete-in-time control policy for the Navier–Stokes system is consid-
ered which is unconditionally stable. Let

KD(y) = −ρ

h
BB(y − zj) − ρBB(b(y) − b(zj)) +

zj+1 − zj

h
+ Azj+1 − b(zj+1),

(4.8)

and consider the following discretization of (3.10):

yj+1 − yj

h
+ Ayj+1 − b(yj+1) = KD(yj), j = 0, 1, . . . and y0 = φ.(4.9)

There holds the following theorem.
Theorem 4.7 (H- and V -norm stability of (4.8)). Let wj := yj − zj. There

exists some ρ∗ ∈ (0, 1) such that for every 0 < ρ ≤ ρ∗ there exist an h∗(ρ) > 0 and a
positive κ < 1 such that for all j ∈ N

|wj |2H ≤ κj |w0|2H and

|wj |2V ≤ 2

νh(1 − 2
3ρ + 2

3ρ
2)
κj−1|w0|2H ,

provided 0 < h ≤ h∗(ρ).
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Proof. During the proof again let v = yj − zj , w = yj+1 − zj+1 and test (4.9)
with w. This leads to

1

2
|w|2H − 1

2
|v|2H +

1

2
|w − v|2H + hν|w|2V

= h

∫
Ω

(
(w∇)w + (zj∇)w + (w∇)zj

)
w dx− ρ

∫
Ω

BvBw dx
(4.10)

−ρh

∫
Ω

B
(
(v∇)v + (zj∇)v + (v∇)zj

)
Bw dx

= (i)′ + (ii)′ + (iii)′ + (iv) + (v)′ + (vi) + (vii),

where (iv), (vi), and (vii) are defined in (4.6). There holds (i)′ = (ii)′ = 0, and (iii)′

can be estimated as

(iii)′ ≤ νh

2
|w|2V +

h

ν
|z|2V |w|2H .

Utilizing the estimate |BBw|V ≤ |w|V , one obtains

(v)′ ≤ νh

3
|w|2V +

3ρ2h

2ν
|v|2H |v|2V .

The remaining addenda can be estimated as above. Now introduce

c1(ρ, h, z) :=
1

2
+

ρ

3
(1 − ρ) − 2h

ν
|z|2L∞(V ) −

h

2

and

c j
2 (ρ, h, z) :=

1

2
+

3ρ2h

2ν
|v|2V +

[
3ρh2|z|21,∞

1 − ρ
+

3ρh|z|2∞
4(1 − ρ)ν

]
︸ ︷︷ ︸

=:c̃2(h,ρ,z)

.

With this notation and the estimates above, one concludes from (4.10) that

c1(ρ, h, z)|w|2H − c j
2 (ρ, h, z)|v|2H +

νh

2

(
1 − 2

3
ρ +

2

3
ρ2

)
|w|2V ≤ 0.(4.11)

Now define

ĉ2(ρ, h, z) :=
1

2
+

3ρ2

ν2(1 − 2
3ρ + 2

3ρ
2)
|w0|2H + c̃2(ρ, h, z)

and proceed as follows.
1. Choose ρ∗ ∈ (0, 1) such that

3ρ

ν2(1 − 2
3ρ + 2

3ρ
2)
|w0|2H ≤ 1

6
(1 − ρ) ∀ ρ ∈ (0, ρ∗].(4.12)

2. Fix ρ ∈ (0, ρ∗] and choose h∗ = h∗(ρ) > 0 such that
(a) c̃2(h, ρ, z) ≤ 1

4 ,

(b) 3ρ2h
2ν |w0|2V ≤ 1

4 ,

(c) h
2 + 2h

ν |z|2L∞(V ) + c̃2(h, ρ, z) <
ρ
6 (1 − ρ), and

(d)
c02(ρ,h,z)
c1(ρ,h,z)

≤ κ1 < 1

hold for all h in the interval (0, h∗]. Let h ∈ (0, h∗].
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3. Now conclude from (4.12) and ρ ∈ (0, 1) that

3ρ2

ν2(1 − 2
3ρ + 2

3ρ
2)
|w0|2H ≤ ρ

6
(1 − ρ) <

1

4
,

which together with (c) implies that

ĉ2(ρ, h, z) < 1 and
ĉ2(ρ, h, z)

c1(ρ, h, z)
≤ κ2 < 1.

Furthermore, (a) and (b) give c02(ρ, h, z) ≤ 1, so that with (4.11)

|w1|2V ≤ 2c02(ρ, h, z)

νh(1 − 2
3ρ + 2

3ρ
2)
|w0|2H ≤ 2

νh(1 − 2
3ρ + 2

3ρ
2)
κ0|w0|2.

4. Now assume that for j ∈ N

(a) |wj |2H ≤ κj |w0|2H and

(b) |wj |2V ≤ 2
νh(1− 2

3ρ+
2
3ρ

2)
κj−1|w0|2H

hold true, where κ := max(κ1, κ2) < 1.
5. Then conclude from (b) that

c j
2 (ρ, h, z) =

1

2
+

3hρ2

2ν
|wj |2V + c̃2(ρ, h, z)

≤ 1

2
+

3hρ2

2ν

2

νh(1 − 2
3ρ + 2

3ρ
2)
κj−1|w0|2H + c̃2(ρ, h, z)

≤ ĉ2(ρ, h, z).

Thus, utilizing (4.11) one more time gives

|wj+1|2H ≤ c j
2 (ρ, h, z)

c1(ρ, h, z)
|wj |2H ≤ ĉ2(ρ, h, z)

c1(ρ, h, z)
|wj |2H ≤ κj+1|w0|2H

and

|wj+1|2V ≤ 2

νh(1 − 2
3ρ + 2

3ρ
2)
c j
2 (ρ, h, z)|wj |2H ≤ 2

νh(1 − 2
3ρ + 2

3ρ
2)
κj |w0|2H ,

which completes the proof of Theorem 4.7.
Remark 4.8.

1. In the discrete scheme (4.9) all local quantities are discretized implicitly, and
nonlocal quantities explicitly.

2. The proof of Theorem 4.7 is constructive. Estimates of ρ∗ and h∗(ρ) therefore
can be deduced from (4.12) and 2(a)–(d) of the proof of the theorem, respectively.

3. Note further that the conditions on ρ in (4.1), (4.4) are satisfied for the
stepsize of (3.5), provided the parameter α is chosen sufficiently large.

5. Numerical validation. Here the results obtained in the previous sections
are numerically validated. In order to value the performance of the feedback opera-
tors (3.11) and (3.12), the numerical example is taken from [16]. As is demonstrated
below the instantaneous controller presented here steers the H-norm and the V -norm
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Fig. 1. Desired flow at T = 2.

of the difference y − z to zero with exponential decay. This seems to be a more sta-
ble performance than that reported by Hou and Yan in [16] for their (1, 1)-rhc (i.e.,
control horizon length coincides with time stepsize). The instantaneous controls are
compared to the optimal control, and it turns out that instantaneous controls give a
much better reduction of the control gain but at significantly higher overall costs.

The control problem considered here is of tracking type and is given by (P) with
cost functional

J(y, u) :=
1

2

∫
Q

|y − z|2dx dt +
α

2

∫
Q

|u|2dx dt

and control space U := L2(Ω)2, with B denoting the injection from U into V ′. The
initial value of the uncontrolled flow is chosen as

y(x, 0) = e

[
(cos 2πx1 − 1) sin 2πx2

−(cos 2πx2 − 1) sin 2πx1

]
with e denoting the Euler number, and the desired state is time dependent and
given by

z(t, x) =

[
ϕx2(t, x1, x2)
−ϕx1(t, x1, x2)

]
,

where ϕ is defined through the stream function

ϕ(t, x1, x2) = θ(t, x1)θ(t, x2)

with

θ(t, y) = (1 − y)2(1 − cos 2kπt), y ∈ [0, 1].

For the results presented, α = 1.e − 2, k = 1, and the time interval is chosen
as [0, 2], i.e., T = 2. For the discretization in time, an equidistant grid with width
δt = 0.01 is used, and for the spatial discretization, the Taylor–Hood finite element [15]
is used on a grid containing 1024 triangles with 2113 velocity nodes and 545 pressure
nodes. The number of unknowns in the discretized control problem therefore has the
magnitude 1.65 × 106, including the primal, adjoint, and control variables.
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Fig. 2. Optimally controlled (left) versus instantaneously controlled flows for t = 0.1, 1, 1.6, 2.

In Figure 1 the desired flow at T = 2 is shown. It forms four cells with opposite
flow directions near the cell borders.

In Figure 2 the evolution of the optimally controlled flow computed with Newton’s
method (see [11, 13] for computational details) and the instantaneously controlled flow
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Fig. 3. Evolution of cost (left) and control gain for h = 0.01 and ρ = 0.1.
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Fig. 4. Evolution of cost (left) and control gain for ρ = 0.1 and h = 0.01, 0.05, 0.1.

are illustrated at selected time instances. The costs are compared in Figure 3. For the
instantaneous control strategy they become larger with increasing time. This is due
to the increasing dynamics of the desired state. As is expected, the optimal control
strategy equidistributes the costs over the time horizon, whereas instantaneous control
at every time instance tries to match the desired state. This is also illustrated by the
evolution in Figure 2.

For ν = 1/Re = 1/10 and γ = 1.e− 2, the numerical computation of the optimal
control takes about 45 minutes of cpu-time on a DEC-ALPHATM station 500. The
instantaneous feedback controller takes about 2 minutes to compute a control function
on the time horizon [0, 2].

In Figure 4 the evolution of the L2-cost for the instantaneous control law is
shown for ρ = 0.1 and different values of h. In Figure 5, h = 0.1 is fixed, and the
evolution of the control gain in the L2- and H1-norms for different values of ρ is shown.
Exponential decay is observed, and thus the theoretical results of Theorems 4.1, 4.2,
4.4, and 4.5 are confirmed.
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Fig. 5. Evolution of control gain in L2-norm (left) and H1-norm for h = 0.1 and ρ =
0.01, 0.1, 1, 5.
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MULTIRATE STABILIZATION OF LINEAR MULTIPLE SENSOR
SYSTEMS VIA LIMITED CAPACITY COMMUNICATION

CHANNELS∗

ALEXEY S. MATVEEV† AND ANDREY V. SAVKIN‡

Abstract. The paper addresses a feedback stabilization problem involving bit-rate communica-
tion capacity constraints. A discrete-time partially observed linear system is studied. Unlike classic
theory, the signals from multiple sensors are transmitted to the controller over separate finite capacity
communication channels. The sensors do not have constant access to the channels, and the channels
are not perfect: the messages incur time-varying transmission delays and may be corrupted or lost.
However, we suppose that the time-average number of bits per sample period that can be success-
fully transmitted over the channel during a time interval converges to a certain limit as the length
of the interval becomes large. Necessary and sufficient conditions for stabilizability are established.
They give the tightest lower bounds on the channel capacities for which stabilization is possible. An
algorithm for stabilization is also presented.

Key words. networked control systems, finite data rate, communication constraints, stabiliz-
ability
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1. Introduction. The standard assumption in classical control theory is that
data transmission required by the algorithm can be performed with infinite pre-
cision. However, due to the growth in communication technology, it is becoming
more common to employ digital finite capacity networks for the exchange of infor-
mation between plant components. Examples concern complex dynamical processes
like advanced aircraft, spacecraft, automotive, industrial and defense systems, arrays
of microactuators, and power control in mobile communication. Bandwidth commu-
nication constraints are often major obstacles to control system design by means of
classical theory. For instance, as was shown in [24], the design of control systems
for platoons of underwater vehicles strongly highlights the need for control strategies
that address explicitly the bandwidth limitation on communication between vehicles,
which is severely restricted underwater. All these emerging applications motivate de-
velopment of a new chapter of control theory that deals with networked systems and
combines the control and communication issues, taking into account all the limitations
on communication between sensors, controllers, and actuators.

Recently there was a good deal of research activity in this field. Starting with
[4] and continuing with [1, 2, 3, 7, 8, 13, 15, 16, 17, 19, 22, 25, 27], various control
schemes were proposed for stabilization via a limited capacity channel. The smallest
data rate above in which stabilization is possible was derived in [19, 20, 25, 27] in
various settings. However, up to now, only networks with the simplest topology, which
involve only one “sensor-controller” and “controller-actuator” channel, and perfect,
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i.e., noiseless and undelayed, communication were mainly considered. However, many
modern control systems are implemented in a distributed fashion, which results in a
less trivial topology with multiple sensors, controllers, and actuators communicating
over a serial network. Various time delays in transmission are characteristic for such
networks, and nonconstant access to the channel is typical [13].

In this paper, we also study a stabilization problem via quantized state feedback
for a linear time-invariant partially observed system. However, we consider a multi-
channel communication between the multiple sensors and the controller, where each
sensor is served by its own finite capacity channel and there is no information ex-
change between the sensors. There is also no feedback communication between the
sensors and the controller, and the sensors have no access to the control. The objec-
tive is to establish first, the tightest lower bounds on the capacities of the channels for
which the stabilization is possible and second, the rate of exponential stability that is
achievable for given capacities obeying those bounds. To this end, we obtain necessary
and sufficient conditions for stabilizability. In the particular case where the channels
are perfect and the system is detectable via each sensor, these conditions formally
come to those from [19, 20]. Thus we show that in this case, multiple noncommu-
nicating sensors and channels with separate capacity constraints may be treated as
a single sensor and a single channel with a united constraint, respectively. However,
employing multiple sensors usually means that there are problems with detectability
by means of a single sensor, and then the model with nondetecting sensors is often a
good option.

Another crucial point is that we do not assume the channels to be perfect. Sensor
signals may incur independent and time-varying delays and arrive at the controller
out of order. There may be periods when the sensor is denied access to the channel.
Transmitted data may be corrupted or even lost. However, we assume that the com-
munication noise is compensated and so ultimately reveals itself only in the form of
decay of the channel information capacity. For example, employing error correcting
block codes [10, Chap. 12] means that the channel must be partly engaged in trans-
mission of redundant check symbols, which decreases the average amount of carried
primal messages from the sensors. We suppose that error correction is the function
of the channel, i.e., the corresponding coder and decoder are given and considered
as parts of what is termed “channel.” The key assumption is that the time-average
number of bits per sample period that can be successfully transmitted across the
channel during a time interval converges to what we call the transmission capacity as
the length of the interval becomes large. The stabilizability region is given in terms
of these capacities. Note that bounded communication delays do not influence them
and thus the region, though they affect the design of the stabilizing controller.

Stabilization with limited information feedback was studied in the presence of
transmission delays in [27]. Unlike the current paper, the transmission time required
to transfer one bit was assumed constant, the continuous time linear plant and the
network with the simplest topology and constant access channels were considered,
and conditions for nonasymptotic stability but a weaker property called containability
were established.

Stabilization of multiple sensor systems via perfect (instantaneous and noiseless)
channels was discussed in [25] under the assumption that the control is known at the
sensor sites. In fact, a particular recurrent (i.e., changed according to a fixed rule as
time progresses) stabilization scheme was examined. It is based on scaled quantization
by means of special quantizers. Ideas coherent with Slepian–Wolf encoding of data



586 ALEXEY S. MATVEEV AND ANDREY V. SAVKIN

from correlated sources were also employed. It was established when the system
can be stabilized via such a scheme. The answer is given in terms of the controller
parameters called the rate vectors. They are tuples of naturals each being the number
of the quantizer levels with respect to a certain state coordinate. These conditions
can be reformulated in terms of the capacities of the channels. Then the criterion
for stabilizability via the above scheme reduces to solvability of some linear system
of inequalities in integers. The arguments from [25] also presuppose that the system
is reducible to the real-diagonal form so that any “mode” is in a simple relation with
any sensor. The latter means that the mode either does not affect the sensor outputs
or can be completely determined from these outputs.1

In this paper, we show that there exist stabilizible systems, which, however, can-
not be stabilized by means of the aforementioned control scheme. Moreover, insuffi-
cient are all schemes that merely have some features in common with that one (see
section 9).2 This stresses that stabilizability should be tested in the class of all con-
trollers with a given information pattern. Such an analysis is offered in this paper.
This gives rise to an additional trouble in the form of a gap between necessary and
sufficient conditions, where all and specific controllers proposed in this paper are con-
cerned, respectively. To fill this gap, not only time averaging but also convex duality
techniques are employed. Contrary to [25], the final criterion is given in terms of only
the plant and channels parameters. This criterion strictly improves that from [25].

We consider the case where the system is not necessarily reducible to a diagonal
form. It is shown that nontrivial Jordan blocks may make it impossible to disinte-
grate the system into state-independent subsystems each in simple relations with the
sensors. To treat this case, we employ sequential stabilization based on triangular
decomposition into state-dependant subsystems. They are stabilized successively. In
doing so, their interinfluence is interpreted as an exogenous disturbance, and ideas
related to those from [6, 22] as well as [2, 19, 20, 25] are employed. Points of novelty
concern an account for transmission delays and disturbances decaying at a known
rate. Unlike the previous works, no other characteristics of the disturbance (e.g., an
upper bound) are assumed to be known. Apart from state-dependency, the subsys-
tems are also dependant via control. Since it is common, the control aimed to stabilize
a particular subsystem may disturb the others. We offer a method to cope with this
problem. Note that this issue was not addressed in [25]. Finally, contrary to [25], we
consider the case when the sensors have no access to the control: there is no feedback
communication between them and the decoder.

The paper is organized as follows. We first illustrate the problem statement and
the main result by an example in section 2. The general problem statement is given
in section 3. Section 4 offers basic definitions, assumptions, and notations. The main
result is presented in section 5. Its proof is given in sections 7 and 8, where necessary
and sufficient conditions for stabilizability are, respectively, justified. In section 6,
the main result is applied to the example from section 2. The concluding section 9
comments on an important assumption imposed in this paper.

2. Example. We first illustrate the class of problems to be studied by an exam-
ple.

1The arguments from [25] do not really require the diagonal form. However, the assumption that
the system can be decomposed into independent subsystems each in simple relations with sensors
seems to be crucial.

2For example, stabilization results from a control scheme, which is not recurrent but is cyclic
(i.e., periodically varies in time).
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Fig. 2.1. Platoon of autonomous vehicles.

We consider a platoon composed of k vehicles moving along a line and enumerated
from right to left. The dynamics of the platoon are uncoupled, and the vehicles are
described by the equations

ẋi = vi, v̇i = ui, i = 1, . . . , k,(2.1)

where xi is the position of the ith vehicle, vi is its velocity, and ui is the control
input. Each vehicle is equipped with a sensor giving the distance yi = xi − xi−1

from it to the preceding one for i ≥ 2 and the position y1 = x1 for i = 1. It is also
endowed with a digital communication channel over which the measurement yi is sent
to the central controller. To this end, the sensor signals are sampled with a period
Δ > 0. This channel is delayed, nonstationary, and lossy and transmits on average
ci > 0 bits per sample period. Employing the data that arrives over all channels, the
central controller produces the control inputs for all vehicles at the sample times. The
objective is to stabilize the platoon motion about a given constant-velocity trajectory:
vi = v0

i , xi(t) = x0
i + v0

i t ∀i. This situation is illustrated in Figure 2.1 for k = 4. In
this context, we pose the following questions:

1. What is the minimum rate of the information transmission for which stabi-
lization is possible?

2. Which rate of stability can be achieved for channels with given capacities cj

and sample period Δ?

More precisely, we are interested in the rate μ at which the platoon is able to approach
the following desired trajectory:

|vi(t) − v0
i | ≤ Kv,iμ

t/Δ, |xi(t) − x0
i − v0

i t| ≤ Kx,iμ
t/Δ.

As will be shown in section 6, stabilization of the platoon is possible for any

capacities ci > 0 and at any rate μ > μ0 :=
√

2
−cmin

, where cmin := mini=1,...,k ci. At
the same time, no rate μ < μ0 is achievable.

Now consider another situation where the sensor system accommodated by each
vehicle is able to give the distances to l < k vehicles to the right, as well as to l
vehicles to the left. Then the platoon motion remains stabilizable for any capacities
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Fig. 3.1. Feedback control by means of communication channels.

ci. However, the above threshold stability rate μ0 is changed: μ0 =
√

2
−ck,l

. Here

(2.2) ck,l := min
{
c
(1)
k,l , c

(2)
k,l , c

(3)
k,l

}
if 2l ≥ k, and ck,l := min

{
c
(4)
k,l , c

(5)
k,l , c

(6)
k,l

}
if 2l < k, where

c
(1)
k,l := min

i=1,...,k−l

1

i

i∑
j=1

cj , c
(2)
k,l :=

1

k

k∑
j=1

cj , c
(3)
k,l := min

i=l+1,...,k−1

1

k − i

k∑
j=i+1

cj ,

c
(4)
k,l := min

i=1,...,l+1

1

i

i∑
j=1

cj , c
(5)
k,l := min

i=l+2,...,k−l
ci, c

(6)
k,l := min

i=k−l,...,k−1

1

k − i

k∑
j=i+1

cj .

The objective of this paper is to develop a general theory that enables one to obtain
results like these.

3. General problem statement. We consider linear discrete-time multiple
sensor systems of the form

x(t + 1) = Ax(t) + Bu(t); x(0) = x0;(3.1)

yj(t) = Cjx(t), j = 1, . . . , k.(3.2)

Here x ∈ Rn is the state, u ∈ Rnu is the control, and yj ∈ Rny,j is the output of
the jth sensor. The system is unstable: there is an eigenvalue λ of the matrix A with

|λ| ≥ 1. The objective is to stabilize the plant: x(t)
t→∞−−−→ 0.

We consider a remote control setup. Each sensor is served by its own commu-
nication channel capable of transmitting signals from a finite alphabet Ej . Over this
channel, the jth coder sends a message ej(t) ∈ Ej based on the prior measurements

ej(t) = Ej [t,yj(0), . . . ,yj(t)].(3.3)

On the basis of the data e(t) received over all channels up to the current time t, the
decoder selects the control

u(t) = U [t, e(t)] .(3.4)

In the situation illustrated in Figure 3.1, the networked controller is constituted by
the decoder and the set of coders

NC :=
[
E1(·), . . . ,Ek(·),U(·)

]
.(3.5)
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Transmitted messages incur delays and may be lost: the message sent at time t
arrives at the decoder at the discrete time t+ τj(t) ≥ t, where τj(t) := ∞ if it is lost.
So the data available to the decoder at time t is

e(t) :=
[
e1(t), . . . ,ek(t)

]
, where ej(t) :=

[
ej(θ1), . . . , ej(θσj

)
]

(3.6)

is the data that arrived via the jth channel by the time t: {θ1 < θ2 < · · · < θσj} =
{θ = 0, 1, . . . : θ + τj(θ) ≤ t}.

The main question to be considered is what is the minimum rate of the information
exchange in the system for which stabilization is possible? In other words, we look
for necessary and sufficient conditions for stabilizability expressed in terms of the
channels transmission capacities c1, . . . , ck, along with the plant-sensors parameters
A,B,Cj . Roughly speaking, such a capacity is the average number of bits transmitted
over the channel during the sample period, despite the losses and delays.

4. Definitions, notations, and assumptions. It should be remarked that
there may be a difference between the number of bits that happen to reach the de-
coder thanks to occasional favorable circumstances and the number of bits that can
be successfully transmitted under any circumstances. In fact, these numbers give rise
to two concepts of capacity. The first and second of these are concerned with the nec-
essary and sufficient conditions for stabilizability, respectively. To simplify matters,
we postulate that these capacities coincide: the discrepancy between those numbers
is considerably less than the time of a long experiment.

We also consider the case where there is an uncertainty about the channel. Specif-
ically, its regime of operation given by the distribution of integer transmission delays
τj(t) over time t may not be known in advance. However, we suppose that it satisfies
certain assumptions, and the designer of the controller is aware of some lower and
upper bounds for the number of bits transmitted across the channel during a time
interval of a given duration.

To understand the details, we start with the following.
Definition 4.1. We say that a message is transmitted within a time interval

[t0 : t1] if it departs and arrives at times t and t+τj(t) from this interval: t, t+τj(t) ∈
[t0 : t1].

The length or duration of a discrete time interval [t0 : t1] is defined to be t1 − t0.
Assumption 4.1. For each channel, there exist two integer functions b−j (r) and

b+j (r) of time r such that

1. no more than b+j (r) bits are brought by the transmissions that occur within
any time interval of length r;

2. given a time interval of duration r, there exists a way to transmit without
losses and errors no less than b−j (r) bits of information within this interval;

3. as the length r of the time interval increases, the averaged numbers b+j (r)/r

and b−j (r)/r converge to a common limit cj called the transmission capacity
of the channel

cj = lim
r→∞

b−j (r)

r
= lim

r→∞

b+j (r)

r
.(4.1)

Claim 1 means that pj(t0, t1) · log2 Nj ≤ b+j (t1 − t0). Here pj(t0, t1) and Nj

denote the numbers of messages transmitted in fact during the time interval [t0 : t1]
and the size of the channel alphabet, respectively. Note that each message from this
alphabet carries log2 Nj bits. In claim 2, the “way” is constituted by encoding and
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decoding rules. The former translates b-bit words β = (β1, . . . , βb), βi = 0, 1, into
sequences of messages e ∈ Ej sent consecutively during the interval at hand. The
decoder transforms the sequence of messages that arrived within this interval into a
b-bit word β′. The overall transmission must be errorless: β′ = β.

We suppose that the designer of the controller is aware of these rules, along with
the functions b−j (r), b+j (r). A regime of the channel operation {τj(·)} compatible with
these data is said to be possible.

Now we offer two examples of channels satisfying Assumption 4.1. Other such
examples can be found in [18].

Noiseless instantaneous channel. The channel is constantly accessible; any trans-
mission is successful and instantaneous τj(t) = 0. Then b−j (r) = 	(r+1)·log2 Nj
, b+j (r)
= �(r + 1) · log2 Nj�, and cj = log2 Nj .

Noiseless delayed channel. Now suppose that in the previous example, the trans-
mission time is nonzero, is not known in advance, but is bounded 0 ≤ τj(t) ≤ τ+

j

by a known constant. The messages do not overtake each other. Then b−j (r) =

	(r− τ+
j + 1) · log2 Nj
 if r ≥ τ+

j and b−j (r) = 0, otherwise b+j (r) = �(r + 1) · log2 Nj�
and cj = log2 Nj .

Now we introduce two concepts of stabilizability: weak and strong ones.

Definition 4.2. The system is said to be stabilizable if some networked con-

troller makes all trajectories converging to zero x(t)
t→∞−−−→ 0 for at least one possible

regime of channels operation.

Definition 4.3. We say that a networked controller uniformly exponentially
stabilizes the system at the rate μ ∈ (0, 1) if the corresponding trajectories obey the
inequalities

|x(t)| ≤ Kxμ
t, |u(t)| ≤ Kuμ

t ∀t = 0, 1, 2, . . .(4.2)

whenever |x0| ≤ K0. This must be true irrespective of the regime of channels opera-
tion, provided it is possible. The constants Kx and Ku may depend on K0 but must
not depend on time t and this regime.

Definition 4.4. The system is said to be uniformly exponentially stabilizable at
the rate μ ∈ (0, 1) if there exists a networked controller that uniformly exponentially
stabilizes the system at this rate.

Note that this controller may depend on μ, along with b+j (·), b−j (·) and A,B,Cj .

Definition 4.5. The system uniformly exponentially stabilizable at some rate
μ ∈ (0, 1) is said to be uniformly exponentially stabilizable. The infimum value of μ
is called the rate of exponential stabilizability.

4.1. General notations. mes—the Lebesgue measure; Bd
x—the open ball cen-

tered at x with the radius d; det A—the determinant of the operator A in a finite
dimensional linear space; σ(A)—the spectrum of A; σ+(A) := {λ ∈ σ(A) : |λ| ≥ 1};
σ−(A) := σ(A) \ σ+(A); Mσ = Mσ(A)—the invariant subspace of A related to the
spectrum set σ ⊂ σ(A); Mst(A) := Mσ−(A); Munst(A) := Mσ+(A); A|L—the operator
A acting in its invariant subspace L; �z� := min{i = 0,±1,±2, . . . : i ≥ z}, 	z
 :=
max{i = 0,±1,±2, . . . : i ≤ z}.

4.2. Assumptions about the system (3.1), (3.2).

Assumption 4.2. The pair (A,B) is stabilizable.

The next assumption concerns the subspaces that are not observed and detected,
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respectively, by a given sensor:

L−obs
j := {x ∈ Rn : CjA

νx = 0 ∀ν = 0, . . . , n− 1} , L−
j := Munst(A) ∩ L−obs

j .

(4.3)

To state this assumption, we introduce the following.

Definition 4.6. A spectral set σ ⊂ σ(A) is said to be elementary if it consists
of either one real eigenvalue or a couple of conjugate complex ones.

Assumption 4.3. Let σ ⊂ σ+(A) be any elementary set that gives rise to more
than one real Jordan block. Consider the subspace L−

j ∩Mσ of states x ∈ Mσ ignored
by the jth sensor. Then the variety of all these subspaces j = 1, . . . , k has the atomic
structure: the space Mσ can be decomposed into a direct sum of “atom” subspaces
M i

σ, i = 1, . . . ,mσ, so that any L−
j ∩Mσ is the sum of several “atoms” (the sum over

the empty set is {0}):

L−
j (σ) := L−

j ∩Mσ = ⊕i∈I(j)M
i
σ, where I(j) ⊂ [1 : mσ].(4.4)

If the set σ gives rise to only one real Jordan block, this assumption is necessarily
true (see Lemma 8.2).

Assumption 4.3 is technical, imposed to meet the paper length limitation, and
will be commented on in section 9. A typical example of the situation forbidden by
this assumption is as follows:

x(t + 1) = λx(t) + u(t) ∈ R2, y1(t) = x1(t), y2(t) = x2(t),(4.5)

y3(t) = x1(t) − x2(t), λ > 1,

where x = (x1, x2). Indeed, here the invariant subspaces nondetectable by the sensors
are L−

1 = {x : x1 = 0}, L−
2 = {x : x2 = 0}, and L−

3 = {x : x1 = x2}. It is easy
to see that R2 cannot be decomposed into a direct sum of “atom” subspaces M i so
that its special partial sums give each space L−

i , as is required by Assumption 4.3.
Anyhow, this assumption holds if any eigenvalue λ : |λ| ≥ 1 gives rise to only one real
Jordan block, or each of the sensors detects or ignores any of the above subspaces Mσ

completely: either Mσ ∩ L−
j = {0} or Mσ ⊂ L−

j .

5. The main result. For any group of sensors J ⊂ [1 : k], we introduce the
space of states

L(J) :=
⋂
j∈J

L−
j(5.1)

nondetectable by this group. (We recall that L−
j is given by (4.3).) For consistency,

we assign Munst(A) to the empty group. Gathering L = L(J) except for L = {0}
over all groups of sensors J gives rise to a set L = {L}. Its size may be less than the
number of all such groups since different groups may produce a common space L(J).

Now we are in a position to state the main result of the paper.

Theorem 5.1. Suppose that Assumptions 4.1–4.3 hold. Then the following two
statements are equivalent:

1. The system (3.1), (3.2) is uniformly exponentially stabilizable (see Defini-
tion 4.5);
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2. For every subspace (5.1) L ∈ L constituted by all states nondetectable by a
certain group of sensors,

log2 |detA|L| <
∑

j �∈J(L)

cj , where J(L) := {j = 1, . . . , k : Cjx = 0 ∀x ∈ L} .
(5.2)

Here the sum is over the sensors that do not completely ignore the subspace
L at hand, and cj is the transmission capacity (4.1) of the jth channel.

If the equivalent claims 1 and 2 are true, the rate μ0 of exponential stabilizability of
the system is given by

log2 μ
0 = max

L∈L

1

dimL

(
log2 |detA|L| −

∑
j �∈J(L)

cj

)
.(5.3)

A stabilizing networked controller will be constructed in section 8. We note that
it uses only a finite and fixed number of recent observations yj and messages ej in
(3.3) and (3.4), respectively.

As was shown in [20], the quantity log2 |detA|L| from (5.2) represents the unit
time increment of the number of bits required to describe to a particular accuracy
the state of the open-loop system (3.1) considered on the invariant subspace L.
More precisely, if the initial state x0 is randomly distributed over the subspace L
in accordance with a certain probability density and u(t) ≡ 0, the differential en-
tropy H[x(t)] (see, e.g., [5] for the definition) of the state x(t) evolves as follows:
H[x(t+ 1)] = H[x(t)] + log2 |detA|L|. At the same time, the right-hand side of (5.2)
can be interpreted as the joint capacity of all channels except for those carrying no
information about the state x ∈ L. (The latter serve the sensors that completely
ignore such states Cjx = 0 ∀x ∈ L.) Thus the condition (5.2) means that the amount
of information concerning the state x ∈ L that the decoder may receive over all chan-
nels for the unit time exceeds the unit time growth of the number of bits required to
describe the state to a particular accuracy. It must be noted here that some of the
bits counted on the right-hand side in (5.2) characterize the state x ∈ L only partly.
They correspond to any sensor whose outputs are not sufficient to reconstruct the
entire state x ∈ L. Moreover all the sensors may be of such a kind. Nevertheless,
when inequalities (5.2) are taken for all subspaces L (or in other words, groups of
sensors), they constitute a sufficient and necessary criterion for stabilizability.

Remark 5.1. The conditions (5.2) imply that the system is detectable via the
entire set of the sensors.

Indeed, otherwise (5.2) fails to be true for L :=
⋂k

j=1L
−
j �= {0} since the sum over

the empty set is defined to be 0.
Remark 5.2. If the system is detectable by each sensor L−

j = {0} ∀j, the set L

contains only one space Munst := Munst(A) and so the condition 2 reduces to only
one inequality,

log2 |A|Munst | < c :=

k∑
j=1

cj .

The sum c can be interpreted as the capacity of the channel composed of all the
channels at hand. So the inequality is in a harmony with those from [11, 14, 19, 20, 25]
concerning the case of one channel.
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In general, the number of inequalities (5.2) does not exceed 2k (the total number
of all groups of sensors). It also does not exceed the number N of “unstable” invariant
subspaces. (If any eigenvalue λ : |λ| ≥ 1 gives rise to only one Jordan block, then N ≤
2n − 1.) Generally speaking, relations (5.2) are not independent. However, revealing
“superfluous” inequalities is usually a much harder task than direct verification of the
entire inequality set (5.2).

Remark 5.3. Whenever the system is stabilizable in the sense of Definition 4.2,
the set of nonstrict inequalities (5.2) holds. Moreover, if the second limit in (4.1) is
approached quickly enough, e.g.,∣∣∣∣∣b

+
j (r)

r
− cj

∣∣∣∣∣ ≤ const

r
,

the strict inequalities (5.2) are necessary for the weak stabilizability introduced by
Definition 4.2. Then Theorem 5.1 ensures that this stabilizability implies the strong
one described by Definitions 4.4 and 4.5.

The necessity of inequalities (5.2) can be complemented by the following fact.
Whenever one of the inequalities strictly violates (i.e., > occurs instead of < in (5.2)),
the state x(t) exponentially diverges from zero for almost all (with respect to the
Lebesgue measure) initial states x0 ∈ Rn, irrespective of which networked controller
is employed.

We do not prove these remarks since they are not utilized further.
Remark 5.4. The implication 1 ⇒ 2 remains true even if Assumption 4.3 is

dropped.
This easily follows from the proof of this implication presented in section 7.
The proof of Theorem 5.1 is given in sections 7 and 8. In section 7, we prove its

necessity part 1 ⇒ 2. The converse 1 ⇐ 2 is established in section 8, where formula
(5.3) is also justified.

6. Application of Theorem 5.1 to the example from section 2. In this
section, we justify the statements from section 2. We recall that they concern a platoon
of k vehicles described by (2.1). Each of them is equipped with a sensor giving the
distance yi = xi − xi−1 from it to the preceding vehicle for i ≥ 2 and the position
y1 = x1 for i = 1. It is also served by a communication channel with the transmission
capacity ci > 0 carrying signals to the controller with the sample period Δ > 0. The
objective is to stabilize the platoon motion about a given constant-velocity trajectory:
vi = v0

i , xi(t) = x0
i + v0

i t ∀i.
The substitution of the variables vi := vi − v0

i , xi := xi − x0
i − v0

i t keeps the
dynamics equations unchanged and shapes the control goal into xi = 0, vi = 0. To
put the problem into the framework adopted in this paper, we consider the trajectory
only at sampling times: xi(τ) := xi(τΔ), vi(τ) := vi(τΔ), ui(τ) := ui(τΔ + 0). Then

xi(τ + 1) = xi(τ) + Δ · vi(τ) +
Δ2

2
ui(τ), vi(τ + 1) = vi(τ) + Δ · ui(τ),(6.1)

yi(τ) = xi(τ) − xi−1(τ),

where x0 := 0. Now A = diag(A1, . . . , Ak), Ai = A = ( 1 Δ
0 1 ) . So the system has

only one eigenvalue 1, which gives rise to k Jordan blocks. The nonobservable and
nondetectable subspaces (4.3) are identical and equal,

L−
j = {x := (z1, w1, . . . , zk, wk) : zj = 0, wj = 0}, where zi := xi−xi−1, wi := vi−vi−1
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for i ≥ 2 and z1 := x1, w1 := v1. Assumption 4.3 holds with M i
σ := {x : zj = 0, wj =

0 ∀j �= i}, i = 1, . . . , k; Assumption 4.2 is immediate from (6.1). Since |detA|L| = 1
for any invariant subspace L, Theorem 5.1 guarantees that the platoon is uniformly
exponentially stabilizable under arbitrary transmission capacities ci > 0.

To determine the rate of stabilizability μ0, note that the states nondetectable by
(maybe, empty) group J ⊂ [1 : k] of sensors constitute the subspace L(J) := {x : zj =
0, wj = 0 ∀j ∈ J}. Since dimL(J) = 2(k−|J|), where |J| is the size of J, relation (5.3)
shapes into

log2 μ
0 = max

J

1

2(k − |J|)

(
−
∑
j �∈J

cj

)
= −1

2
cmin, where cmin := min

j=1,...,k
cj .(6.2)

Thus the rate of the platoon exponential stabilizability equals
√

2
−cmin

per sample
period.

Now consider the situation where the sensor system accommodated by each ve-
hicle gives the distances to l < k vehicles to the right, as well as to l vehicles to the
left. (We suppose that there is an imaginary vehicle numbered by 0 and staying at
the origin.) Then

L−
j =

{
x : zi = 0, wi = 0 ∀i = max{j − l + 1, 1}, . . . ,min{j + l, k}

}
.

Assumption 4.3 remains true with the same subspaces M i
σ, and the platoon evidently

remains uniformly exponentially stabilizable. What can be said about the rate of
stabilizability? Now the collection L consists of spaces L(J) related to sets J which
along with any element j ∈ J, contain a certain interval of the form [i − l + 1 :
i+ l]∩ [1 : k] � j, i = 1, . . . , k. Furthermore, such sets are said to be wide. To proceed,
we consider separately two cases.

1. Let 2l ≥ k. Then any two such intervals contain a common point. It follows
that apart from J = ∅, the wide sets J are intervals of the form [1 : i], i ≥ l + 1, or

[i : k], i ≤ k − l + 1. By retracing (6.2), we see that μ0 =
√

2
−ck,l

, where ck,l is given
by (2.2).

2. Now let 2l < k. Then the sets

[1 : i−1]∪[i+1 : k], i = l+2, . . . , k−l, [i : k], i = 2, . . . , l+2, [1 : i], i = k−l, . . . , k−1,

are wide. By restricting the maximum in (6.2) to only these sets J, we see that

μ0 ≥
√

2
−ck,l

, where ck,l is given by (2.2). In fact, μ0 =
√

2
−ck,l

. To prove this, it
suffices to show that

1

k − |J|
∑
j �∈J

cj ≥ ck,l(6.3)

for any wide set J. To this end, we put i− := min{j : j ∈ J} and i+ := max{j : j ∈ J}.
Then i− ≤ l + 1 ⇒ [i− : l + 1] ⊂ J and i+ ≥ k − l + 1 ⇒ [k − l + 1 : i+] ⊂ J by
the definition of the wide set. Hence {j : j �∈ J} = J1 ∪ · · · ∪ Js, where the sets Jν
are pairwise disjoint and any of them either contains only one index, Jν = {i}, i =
l + 2, . . . , k − l, or Jν = [1 : i], i = 1, . . . , l + 1, or Jν = [i : k], i = k − l + 1, . . . , k. By
(2.2), 1/|Jν |

∑
j∈Jν

cj ≥ ck,l. This implies (6.3) as follows:

1

k − |J|
∑
j �∈J

cj =
1

k − |J|

s∑
ν=1

|Jν |
1

|Jν |
∑
j∈Jν

cj ≥ ck,l.
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7. Inequalities (5.2) as necessary conditions for stabilizability. The cur-
rent and next sections contain the proof of Theorem 5.1. For technical reasons which
will become clear soon, we extend the class of systems

x(t + 1) = Ax(t) + B[t,u(0), . . . ,u(t)],(7.1)

where B(·) is a given function. We also generalize on them a fact well known for the
systems (3.1) (see [11, 20, 25]).

Lemma 7.1. Suppose that there is only one channel k = 1. Then log2 |detA| <
c := c1 whenever the system (7.1) is uniformly exponentially stabilizable.

Proof. Let some networked controller uniformly exponentially stabilize the sys-
tem. Then

|x(t)| ≤ Kμt ∀t = 01, 2, . . . whenever |x0| < 1, where μ ∈ (0, 1).(7.2)

Thanks to 1 of Assumption 4.1, no more than b+1 (t) bits arrive at the decoder by time
t. So in the formula

x(t) = Atx0 − ω(t), ω(t) := −
t−1∑
ν=0

At−1−νB
[
ν,u(0), . . . ,u(ν)

]
(7.3)

(3.4),(3.6)
===== V[t, e(t)], the tuple e(t) and the vector ω(t) take values from some sets each

containing no more than 2b
+
1 (t) elements and not depending on the initial state x0.

So (7.2) means that the image AtB1
0 of the unit ball can be covered by the union of

no more than 2b
+
1 (t) balls of the form BKμt

ω(t) . Hence

|detA|t mesB1
0 = mes

[
AtB1

0

]
≤ 2b

+
1 (t) mesBKμt

0 = 2b
+
1 (t)μntKn mesB1

0

⇓

log2 |detA| ≤ b+1 (t)

t
+ n log2 μ +

n log2 K

t
.

Letting t → ∞ and taking into account 3 of Assumption 4.1 and the inequality μ < 1
completes the proof.

Lemma 7.1 evidently remains true if the regime of channel operation (given by
τ1(·)) is known in advance.

To prove (5.2), we revert to the system (3.1) and pick a subspace L ∈ L constituted
by the states not detectable by a certain group of sensors. Then we restrict ourselves
to trajectories {x(t)} starting at x0 ∈ L and apply Lemma 7.1 to them. More
precisely, we take into account that {x(t)} may leave L due to controls, and consider
xL(t) := πx(t). Here π is an arbitrarily chosen projector from Rn onto L. By
applying formula (7.3) to the system (3.1), it is easy to check that the evolution of
xL is governed by the equations of the form (7.1),

xL(t + 1) = A|LxL(t) + πBu(t) +

t−1∑
i=0

(πA−Aπ)At−1−iBu(i), xL(t) ∈ L, xL(0) = x0.

(7.4)

(The first equation simplifies if πA = Aπ. However, such a projector π exists if and
only if there exists an A-invariant subspace that is complementary to L, which is not
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true in general.) We interpret (7.4) as equations of an auxiliary system and equip it
with the sensor

yL(t) = CJcxL(t).(7.5)

Here Jc := {j : j �∈ J} is the complement to the set J = {j : Cjx = 0 ∀x ∈ L} of
sensors ignoring the subspace L. Furthermore, for I ⊂ [1 : k], the symbol CI denotes
the block matrix that results from arranging the blocks Cj with j ∈ I into a column.
(For any entities vj enumerated by j ∈ [1 : k], the symbol vI is defined likewise.) We
also suppose that all channels with j �∈ J are commissioned to transmit yL.

The sum on the right-hand side of (5.2) equals the capacity of the union of these
channels. Hence (5.2) follows from Lemma 7.1 applied to the system (7.4), (7.5).
To complete the proof, it suffices to show that this system is stabilizable whenever
the original one (3.1), (3.2) can be stabilized. In doing so, one must cope with the
fact that the trajectory of the original closed-loop system (3.1)–(3.4) may leave the
subspace L. So the observations (3.2) and (7.5) may differ. Moreover, the sensors
omitted in (7.5) may see the state x(t) for t ≥ 1. It should be shown that they are
yet useless and can be dropped.

Lemma 7.2. Let the system (3.1), (3.2) be exponentially stabilized by some net-
worked controller, and the regime of channels operation be known in advance. Then
the system (7.4), (7.5) is also exponentially stabilizable.

Proof. We first show that for x0 ∈ L, the process in the original closed-loop
system obeys the relations

eJ(t) = E′
j

[
t, eJc(t− 1)

]
, yJ(t) = Y′[t, eJc(t− 1)

]
,(7.6)

yJc(t) = yL(t) + Y′′[t, eJc(t− 1)
]
.

We recall that the data ej(t) that arrived via the jth channel by time t is given by
(3.6). The observation yL(t) is defined by (7.4) and (7.5) for the sequence of controls
u(t) identical to that driving the original system.

For t = 0, we have x(0) ∈ L ⇒ yJ(0) = 0 and yJc(0) = yL(0), and (7.6) with
t = 0 follows from (3.3). Now suppose that (7.6) with t := θ holds for all θ ≤ t. Then

eJ(θ) = E
′[
θ, eJc(t− 1)

]
and so

e(θ) = [eJ(θ), eJc(θ)] = E
[
θ, eJc(t)

] (3.4)
=⇒ u(θ) = U′[θ, eJc(t)

]
, θ ≤ t.(7.7)

Now we invoke (7.3) and note that x0 ∈ L ⇒ At+1x0 ∈ L ⇒ CJA
t+1x0 = 0and(I −

π)At+1x0 = 0:

yJ(t + 1) = CJA
t+1x0︸ ︷︷ ︸

=0

+

t∑
θ=0

CJA
t−θBu(θ) =: Y′[t + 1, eJc(t)

]
,

yJc(t + 1) − yL(t + 1) = CJc

[
x(t + 1) − πx(t + 1)

]
= CJc(I − π)At+1x0︸ ︷︷ ︸

=0

+ CJc

t∑
θ=0

(I − π)At−θBu(θ) =: Y′′[t + 1, eJc(t)
]
,

i.e., the last two relations from (7.6) do hold with t := t + 1. Then the first relation
follows from (3.3).
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It follows from (3.3) and (7.6) that the signal eJc(t) is determined by the prior
measurements from (7.5),

eJc(t) = EL[t,yL(0), . . . ,yL(t)].

Now we interpret this as the equation of the coder, and the last relation from (7.7)
(where θ := t) as that of the decoder for the system (7.4), (7.5). By the foregoing, this
coder-decoder pair generates the trajectory πx(t),u(t), t = 0, 1, . . . , where x(t),u(t)
is the trajectory of the original closed-loop system. So the inequalities (4.2) are
inherited by the system (7.4), (7.5), which completes the proof.

As was remarked, the part 1 ⇒ 2 of Theorem 5.1 is immediate from Lemmas 7.1
and 7.2.

8. Inequalities (5.2) as sufficient conditions for stabilizability. From now
on, we suppose that 2 of Theorem 5.1 holds. We also assume, until otherwise stated,
that the system (3.1) has no stable modes. In the general case, a stabilizing controller
will be obtained by applying that presented below to the unstable part of the system.

To stabilize the system, we employ the scaled quantization scheme (see, e.g.,
[2, 12, 14, 19, 20, 22, 23, 25]). It was mainly developed for only one channel and is
stated briefly as follows. Both coder and decoder compute a common upper bound
δ of the current state norm |x| := maxi |xi|. They are also given a partition of the
unit ball into m balls (cubes) with small radii ≤ σ(m). The number m matches the
channel capacity so that the serial number of the cube can be communicated to the
decoder. The coder determines the current state from the observations and notifies
the decoder which cube contains this state divided by δ. Since the decoder knows δ, it
thus becomes aware of a ball B with the radius ≤ δσ(m) containing the current state.
Then it selects a control that drives the system from the center of this ball to zero. The
ball itself is expanded due to the unstable dynamics of the system and transformed
into a set D+(B) centered about zero: D+(B) ⊂ Bρ

0 . So the radius ρ can be taken
as a new upper bound δ. Here ρ ≤ δσ(m)α, where α characterizes the expansion rate
of the system. If σ(m)α < 1, the bound δ is thus improved δ := δσ(m)α < δ and by
continuing likewise, driven to zero δ → 0, along with the state x.

In the context of this paper, a problem with the above scheme is that no coder
may be aware of the entire state x. So a natural idea [25] is to disintegrate the system
(3.1) into subsystems each observable by some sensor. Then each subsystem can
be stabilized by following the above lines, provided the stability condition σ(m)α <
1 holds for it. In fact, this condition means that there is a way to communicate
a sufficiently large amount of information from the subsystem to the decoder: the
smaller the radius σ(m), the larger the size m of the partition, and so the larger the
number of bits required to describe which of m cubes contains the state.

No channel in itself may meet the above stability condition. At the same time, this
condition may be met if several channels are commissioned to transmit information
about a given subsystem. Then each channel may carry only a part of this information,
whereas the decoder assembles these parts and thus gets the entire message. Certainly,
these channels must be chosen among those serving the sensors that observe the
subsystem at hand.

Since a given sensor may observe several subsystems, the above scheme means that
each channel must transmit a set of messages each concerning a particular subsystem.
This gives rise to the question: is it possible to distribute the required information
about any particular subsystem over parallel channels in such a way that the total
amount of information carried via every channel meets its capacity? It will be shown
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via convex duality arguments that the answer is in the affirmative whenever 2 of
Theorem 5.1 holds.

Another problem is how to use a sensor observing the subsystem only partly.
Certainly, this problem does not hold if there are no such sensors and subsystems:
the state of each subsystem either is completely determined from or does not affect the
outputs of any given sensor. Decomposition into a set of such subsystems is possible.
However, in general, these subsystems are dependant. First, the control is common.
Second, Jordan blocks may entail an unavoidable interinfluence between the states of
subsystems. Now we illustrate this by an example.

Example. Consider the system whose dynamical matrix is a standard Jordan
block,

x1(t + 1) = λx1(t) + 0 + b∗1u(t)
x2(t + 1) = λx2(t) + x1(t) + b∗2u(t)

...
xd(t + 1) = λxd(t) + xd−1(t) + b∗du(t)

,

y1(t) = x1(t)
y2(t) = x2(t)

...
yd(t) = xd(t)

, |λ| > 1.

(8.1)

The unobservable subspaces of the sensors are, respectively,

L−
1 := {x : x1 = 0}, L−

2 = {x : x1 = x2 = 0}, . . . , L−
d−1 = {x : x1 = · · · = xd−1 = 0},

L−
d = {0}.

There are no other invariant subspaces (see Lemma 8.2 below), so this system cannot
be decomposed into subsystems with independent open-loop dynamics. At the same
time, any sensor except for the last one observes the state x only partly. So to exclude
such a partial vision, disintegration into state-dependant subsystems is unavoidable.

To deal with them, we employ sequential stabilization. We define the sth subsys-
tem as that described in the sth row from (8.1). Its state is xs. Then we stabilize the
first subsystem, which is independent of the other ones. This makes x1 exponentially
decaying. In the equations of the second subsystem, we interpret x1 as an exogenous
disturbance. By constructing a device stabilizing this subsystem under any exponen-
tially vanishing disturbances, we make x2 exponentially decaying. The entire system
is stabilized by continuing likewise.

These arguments, however, do not take into account that the control affects all
subsystems and some of them may be unstabilizable (though the entire system is
controllable). For example, the subsystems with s ≥ 2 are unstabilizable if b1 =
1, b2 = · · · bd = 0 in (8.1). These obstacles can be easily overcome via increasing the
sample period.

Indeed, let us pick r = 1, 2, . . . . The state xi := x(ir) evolves as follows:

xi+1 = Arxi + BU
i,(8.2)

where U
i :=

[
u(ir),u(ir + 1), . . . ,u(ir + r − 1)

]
and BU :=

r−1∑
j=0

Ar−1−jBuj

(8.3)

is the state to which the control program U =
[
u0, . . . ,ur−1

]
drives the system at

time t = r from x(0) = 0. Since the system (3.1) with no stable modes is controllable
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by Assumption 4.2, the operator B is onto if r > n. Related to the decomposition
of the system x = (x1, . . . ,xd) is a block partition BU =

[
B1U , . . . ,BdU

]
. Since

all operators Bs have full rank, any subsystem is controllable. Moreover, any control
action y = BsU in the sth subsystem can be implemented by a control U that does
not disturb the other subsystems, BjU = 0 ∀j �= s.

Summarizing, we adopt the following plan of proving the sufficiency part of The-
orem 5.1.

1. We decompose the system so that, for any given sensor, the state of each
subsystem either does not affect or is determined from the sensor outputs
and second, the decomposition is triangular. The latter permits us to employ
the sequential stabilization approach.

2. We increase the sample period and, for each subsystem, offer a class of
networked controllers stabilizing it under any exponentially decaying distur-
bance. In doing so, we assume that the coder is aware of the current state at
any sample time t = ir, and there is a way to transmit as much information
as desired from the coder to the decoder. Then we find the controller for
which the information traffic is minimal.

3. We show that if all subsystems are equipped with the above controllers, the
entire system is stabilized.

4. We obtain conditions under which the entire set of these controllers can be
implemented on the basis of real channels and sensors. These conditions are
not constructive and require that a linear system of inequalities be solvable
in integers.

5. By employing convex duality arguments, we show that these conditions are
equivalent to (5.2).

8.1. Decomposition of the system. Now we perform step 1 of the plan of
proving the sufficiency part of Theorem 5.1.

Proposition 8.1. Suppose that the system (3.1) has no stable modes. Then
after a proper one-to-one linear transformation and partition of the state

x = (x1, . . . ,xd)(8.4)

into several blocks xs ∈ Rns interpreted as the states of subsystems, the following
statements hold:

1. The unobservable subspace (4.3) L−obs
j = L−

j of any sensor is composed of
several blocks,

L−
j = {x : xs = 0 ∀s ∈ Oj} , where Oj ⊂ [1 : d].

2. The block representation of the dynamics equations (3.1) is lower triangular,

xs(t + 1) =

s∑
i=1

Asix
i(t) + Bsu(t), s = 1, . . . , d.(8.5)

By 1, the states xs of subsystems s �∈ Oj do not affect the outputs of the jth
sensor, whereas the states xs with s ∈ Oj are uniquely determined from these outputs.

To prove the proposition, we start with two technical facts.

Lemma 8.2. Assumption 4.3 holds for any elementary spectral set σ.



600 ALEXEY S. MATVEEV AND ANDREY V. SAVKIN

Proof. It suffices to prove the lemma assuming that the set σ gives rise to only one
real Jordan block. We put M := Mσ, Aσ := A|M and note that det[λI−Aσ] = ϕ(λ)p,
where the polynomial ϕ is irreducible over the field of real numbers. By employing
the basis in M reducing Aσ to the real Jordan form, it is easy to see that the formula
L(ν) := ker

[
ϕ(Aσ)

]ν
produces (p + 1) distinct {0} = L(0) ⊂ L(1) ⊂ · · · ⊂ L(p) = M

invariant subspaces and dimL(ν) = ν degϕ. We are going to show that there are no
other invariant subspaces.

Indeed let L be such a subspace and ψ be the minimal annihilating polynomial of
L. Then ψ is a divisor of ϕp and so ψ = ϕν , ν = 0, . . . , p. Hence L ⊂ ker

[
ϕ(Aσ)

]ν
=

L(ν). At the same time, Theorem 2 of [9, p. 180] implies that dimL = degψ. Thus
dimL = ν,degϕ = dimL(ν), and so L = L(ν).

As a result, we see that all invariant subspaces L−
j ∩Mσ are among L(0), . . . ,L(p).

It remains to pick M1
σ := L(1),mσ := p, and for i = 2, . . . , p, choose M i

σ so that
L(i− 1) ⊕M i

σ = L(i).

The next lemma plays the key role in the proof of Proposition 8.1.

Lemma 8.3. In Assumption 4.3, the atoms M i
σ, i = 1, . . . ,mσ, can be chosen so

that all partial direct sums M1
σ ⊕ · · · ⊕M i

σ, i = 1, . . . ,mσ, are A-invariant.

Proof. We consider the set of atoms with the minimal size mσ. We also introduce
the undetectable subspaces Lj := L−

j ∩ Mσ of Mσ, then form all their intersections
L∩ = Lj1 ∩ · · · ∩ Ljp , and then all algebraic sums (not necessarily direct) of such
intersections LΣ = L∩

i1 + · · · + L∩
ir . Here p, r and the subspaces Ljν , L

∩
iμ are chosen

arbitrarily. Let M denote the set of all LΣ. It is clear that (1) any space L ∈ M

is invariant and decomposed into a direct sum of several atoms, (2) L ∈ M ⇒ L ∩
Lj ∈ M∀j, (3) Mσ ∈ M, (4) L′, L′′ ∈ M ⇒ L′ + L′′ ∈ M, and (5) the set M is
finite. Now we pick a minimal element Lmin among L ∈ M, L �= {0}, i.e., such that
L ⊂ Lmin andL ∈ M andL �= {0} ⇒ L = Lmin. By trying here L := Lmin ∩ Lj ,
we see that either Lmin ⊂ Lj or Lmin ∩ Lj = {0}. Hence any Lj contains either all
atoms constituting Lmin or none of them. So these atoms can be replaced by their
sum in Assumption 4.3. Since the number of all atoms is minimal, the only concern
is Lmin = Mν

σ . By permuting the atoms, we set ν = 1. Then the claim of the lemma
holds for i = 1 by (1).

Now let Lmin denote a minimal element among L ∈ M, L ⊃ M1
σ , L �= M1

σ . By
(2) and (4), L := M1

σ + Lj ∩ Lmin ∈ M. So the minimum property yields that either
L = M1

σ or Lmin ⊂ L. In terms of the decomposition from (1) Lmin = M1
σ⊕Mmin ∈ M

(where Mmin is the sum of several atoms), this means that either Mmin ∩ Lj = {0}
or Mmin ⊂ Lj . Like above, this implies that Mmin consists of only one atom Mν

σ . By
permuting the atoms, we set ν = 2 and make the claim of the lemma true for i = 2
by (1). The proof is completed by continuing likewise.

Proof of Proposition 8.1. We decompose the spectrum σ(A) = σ1 ∪ · · · ∪ σp

into the union of disjoint elementary sets. Then Rn = Mσ1 ⊕ · · · ⊕ Mσp , and
any invariant subspace L−

j is decomposed L−
j = L−

j (1) ⊕ · · · ⊕ L−
j (p) into invari-

ant subspaces L−
j (ν) := L−

j ∩ Mσν . So it suffices to show that, for any ν, there
exist linear coordinates in Mσν and their block partition for which any subspace
L−
j (ν), j = 1, . . . , k, is the direct sum of several “blocks” and the operator A|Mσν has

a lower triangular form with respect to this partition. These blocks zi are in fact
given by Lemma 8.3: zi ∈ Mmσν−i+1

σν . More precisely, it suffices to pick a basis in
each subspace M i

σν , i = 1, . . . ,mσν , unite them to produce a basis in Mσν , and then
consider the coordinates with respect to this basis and their partition that corresponds
to the partition z = z1 + · · · + zmσν of z into zi ∈ Mmσν−i+1

σν .
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8.2. Separate stabilization of subsystems. In this subsection, we pick an
integer parameter r and focus attention only on the states at times τi = i · r. The
evolution of these states is given by (8.2), which evidently inherits the lower triangular
structure from (8.5),

xs
i+1 =

s∑
ν=1

A(r)
sν xν

i + BsU i(8.6)

for s = 1, . . . , d. Here xs
i := xs(τi),U i =

[
u(τi), . . . ,u(τi + r − 1)

]
, and the diagonal

coefficients from (8.6) are the rth powers of matching coefficients from (8.5), A
(r)
ss =

Ar
ss. The sth subsystem is described by the following equations:

xs
i+1 = Ar

ssx
s
i + BsU i + ξs,i, i = 0, 1, . . . .(8.7)

Here in accordance with (8.6),

ξs,i = 0 for s = 1 and ξs,i(t) =

s−1∑
ν=1

A(r)
sν xν

i otherwise.(8.8)

In this subsection, we ignore this rule and interpret ξs,i as an exogenous disturbance.
This permits us to study each subsystem independently of the others. We also suppose
that the disturbance decays at a known rate ρξ,

|ξs,i| ≤ Kξρ
i
ξ, ρξ ∈ [0, 1), i = 0, 1, . . . ,(8.9)

whereas Kξ is unknown, and offer a controller that stabilizes the sth subsystem under
all such disturbances. In doing so, we assume that the current state xs

i is measured
on-line. The proposed controller uses only finitely many bits of information about xs

i .
It will be mainly based on the ideas from [2, 12, 14, 19, 20, 22, 23, 25]. A

novelty concerns two points. First, we consider the case where the transmission of the
above bits to the decoder takes some time (specifically, r units of time). This implies
complements to the stabilization scheme, e.g., the need to quantize not the current
state but the state prognosis. Second, we take into account exogenous disturbances
decaying at a known rate.

We start with introducing components of which the coder and decoder will be
assembled.

Quantizer. An m-level quantizer Qs in Rns is a partition of the unit ball B1
0 ⊂

Rns with respect to some norm | · | into m disjoint sets Q1, . . . , Qm each equipped
with a centroid qQi ∈ Qi. Such a quantizer associates any vector xs ∈ Qi with its
quantized value Qs(xs) := qQi and any vector xs �∈ B1

0 with an alarm symbol �.
Definition 8.4. The quantizer Qs is said to be r-contracted (for the sth subsys-

tem) if

Ar
ss

(
Q− qQ

)
⊂ ρQsB1

0 ∀Q = Qi, i = 1, . . . ,m, where ρQs ∈ (0, 1).(8.10)

Deadbeat stabilizer. This is a linear transformation S of an initial state xs
0 into a

control program U that drives the unperturbed ξs,i ≡ 0 subsystem (8.7) to zero,

0 = xs
1(= xs(r)) = Ar

ssx
s
0 + BsU for U := Sxs

0 and any xs
0.(8.11)

It is supposed that a contracted quantizer and deadbeat stabilizer are given. Further-
more, we show that they do exist.
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Parameters. Apart from r, the controller employs two more parameters ρ and
γ. They are chosen so that

r > n, γ > ‖Ass‖r, and 1 > ρ > max{ρξ, ρQs},(8.12)

where Ass, ρξ, and ρQs are taken from (8.5), (8.9), and (8.10), respectively.
Both coder and decoder compute controls U c

i , U d
i and upper bounds δci , δ

d
i for

the state norm |xs
i |, respectively. Actually, acting upon the plant is the control U d

i .
The initial bounds are common: δc0 = δd0 = δ0. (The inequality δ0 ≥ |xs

0| may be
violated.) At any time τi = ir, the coder selects a finite-bit message based on xs

i .
This message is sent to the decoder and arrives by time τi+1. Specifically, the coder
and decoder act as follows.

The sth coder (at the times t = τi, i = 1, 2, . . . ).
c.1. Proceeding from the current state xs

i , computes the state prognosis for the
time t = τi+1,

x̂s
i+1 := Ar

ssx
s
i + BsU

c
i ;(8.13)

c.2. Employs the r-contracted quantizer Qs to compute the quantized value qi of
the scaled state at t = τi+1,

εi :=
[
δci
]−1

x̂s
i+1, qi := Q

s
[
εi

]
;(8.14)

c.3. Encodes this quantized value qi for transmission and sends it to the decoder;
c.4. Computes the next control program by means of the deadbeat stabilizer S

and corrects the upper bound,

U
c
i+1 := S

[
δci

�
qi

]
, δci+1 := δci × 〈qi〉ρ,γ , where(8.15)

�
q:=

{
q if q �= �,

0 otherwise,
〈q〉ρ,γ :=

{
ρ if q �= �,
γ otherwise.

(8.16)

The sth decoder (at the times t = τi, i = 2, 3, . . . ).
d.1. Decodes the newly received data and thus acquires qi−1;
d.2. Computes the current control program and corrects the upper bound,

U
d
i := S

[
δdi

�
qi−1

]
, δdi+1 := δdi ×

〈
qi−1

〉
ρ,γ

.(8.17)

For definiteness, the initial control programs U c
0,U

d
0,U

c
1,U

d
1 are taken to be zero.

We introduced separate controls U c
i ,U

d
i and bounds δci , δ

d
i to stress that the coder

and decoder compute them independently. However, it easily follows from (8.15),
(8.17) and induction on i that they in fact coincide,

δdi = δci−1, U
d
i = U

c
i , i = 1, 2, . . . .(8.18)

The second relation implies that the error in the state prognosis (8.13) is equal to the
disturbance from (8.7),

x̂s
i+1 = xs

i+1 − ξs,i.(8.19)
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Stabilizing properties of the offered controller are revealed by the following main result
of the subsection.

Proposition 8.5. Suppose that the disturbance in the sth subsystem (8.7) sat-
isfies (8.9) and that (8.12) holds. Then the above coder-decoder pair uniformly expo-
nentially stabilizes this subsystem,

|xs
i | ≤ Kxρ

i, |U d
i | ≤ Kuρ

i ∀i = 0, 1, 2, . . . whenever |xs
0| ≤ K0.(8.20)

Here ρ is the parameter of the controller and the constants Kx,Ku may depend on Kξ

from (8.9) and K0.

The proof of this proposition consists of several lemmas. We start with rough
estimates of concerned variables.

Lemma 8.6. The following inequalities hold for all i = 1, 2, . . . , h = 0, 1, . . . , and
p ≥ h:

δ0ρ
i−1 ≤ δci ≤ δ0γ

i−1, |U d
i | ≤ ‖S‖δci−1,(8.21)

|xs
p| ≤ ‖Ass‖r(p−h)

[
|xs

h| + K ′
ξρ

h
ξ

]
+ Kγγ

p|I(p, h)|,

where |I(p, h)| is the size of the set I(p, h) := {j = h, . . . , p− 1 : j ≥ 2 & qj−1 �= �},
K ′

ξ := Kξ/(‖Ass‖r − 1), and the constant Kγ does not depend on x0, i, h, p,Kξ.

Proof. The first formula is immediate from (8.15) and (8.16) since ρ < 1 < γ by

(8.12). The second one results from (8.17) and (8.18) since | �
q | ≤ 1 due to (8.16).

To prove the last formula, we first note that U d
j = 0∀j �∈ I(p, h), h ≤ j ≤ p − 1, by

(8.17) and (8.16). Hence

|xs
p|

(8.7)
===

∣∣∣∣∣∣Ar(p−h)
ss xs

h +

p−1∑
j=h

Ar(p−1−j)
ss

[
BsU

d
j + ξs,j

]∣∣∣∣∣∣
(8.9)

≤ ‖Ass‖r(p−h)|xs
h| + ‖Bs‖‖S‖δ0

∑
j∈I(p,h)

‖Ass‖r(p−1−j)︸ ︷︷ ︸
≤γp−1−jby (8.12)

γj−2

+ Kξ

p−1∑
j=h

‖Ass‖r(p−1−j) ρjξ︸︷︷︸
≤ρh

ξ by (8.9)

≤ ‖Ass‖r(p−h)|xs
h| + ‖Bs‖‖S‖δ0|I(p, h)|γp−3 + Kξρ

h
ξ

‖Ass‖r(p−h) − 1

‖Ass‖r − 1
,

which yields the last formula from (8.21).

To prove stability, it suffices to show that δci are true bounds for the state prognosis
|x̂s

i+1| ≤ δci for all large i. Indeed, then |εi| ≤ 1 ∀i ≈ ∞ by (8.14). Hence (8.15) and
(8.16) ensure that the bound δci and thus x̂s

i+1 decay exponentially δci+1 = ρδci for
i ≈ ∞. Then so does the state xs

i+1 thanks to (8.9) and (8.19), i.e., the system is
stable. We start by showing that even if the bound δci is incorrect for some i, it
becomes true later.

Lemma 8.7. For any K0,Kξ, and i0, there exists an integer p0 ≥ i0 such that the
bound δci is correct |x̂s

i+1| ≤ δci for at least one index i ∈ [i0 : p0] whenever |xs
0| ≤ K0

and (8.9) holds.
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Proof. The letter K (with possible indices) is used to denote a constant that
depends on K0,Kξ but not xs

0 and ξs,i. By putting h := 0 and the estimate |I(p, h)| ≤
p− h into the last inequality from (8.21), we see that

|xs
p+1| ≤ K(p) whenever |xs

0| ≤ K0 and (8.9) holds.(8.22)

Now suppose that the bound δci is incorrect for all i from some interval [i0 : i1] with
the left end i0. To estimate i1, we note that I(p, i) = ∅ for i := i0 + 1 and p := i1 + 1
due to (8.14). So the last inequality from (8.21) yields

|xs
i1+1| ≤ ‖Ass‖r(i1−i0)

[
K(i0+1) + K ′

ξρ
i0+1
ξ

]
; |x̂s

i1+1|
(8.19)
== |xs

i1+1 − ξs,i1 |
(8.9)

≤ ‖Ass‖r(i1−i0)
[
K(i0+1) + K ′

ξρ
i0+1
ξ

]
+ Kξρ

i1
ξ

ρξ<1

≤ ‖Ass‖r(i1−i0)
[
K(i0+1)+K ′

ξ

]
+Kξ

1≤‖Ass‖
≤

(
K(i0+1)+K ′

ξ+Kξ

)
‖Ass‖r(i1−i0).

At the same time, (8.15) and (8.16) entail that δci+1 = γδci for i ∈ [i0 : i1]. So
δci1 = γi1−i0δci0 ≥ γi1−i0ρi0−1δ0, where the last inequality is based on (8.21). Since
the bound δci1 is incorrect, it follows that

1 ≤
|x̂s

i1+1|
δci1

≤
(
‖Ass‖r

γ

)i1−i0 K(i0+1) + K ′
ξ + Kξ

ρi0−1δ0
.

By invoking the second relation from (8.12), we conclude that

i1 ≤ i0 + ν, where ν :=

⌊
log2(K

(i0+1) + K ′
ξ + Kξ) − (i0 − 1) log2 ρ− log2 δ0

log2 γ − r log2 ‖Ass‖

⌋
.

So one may pick p0 := i0 + 1 + max{ν, 0}. The claim of the lemma remains true
with the same p0 if the interval [i0 : i1] does not exist, because the bound δci0 is cor-
rect.

The next lemma in fact completes the proof of Proposition 8.5.
Lemma 8.8. Suppose that |xs

0| ≤ K0 and (8.9) holds. Whenever the bound δci
becomes correct |x̂s

i+1| ≤ δci , it is kept true afterwards, provided that i ≥ i0. Here i0
is taken so that

ρQs

ρ
+

‖Ass‖rKξ

δ0

(
ρξ
ρ

)i

< 1 ∀i ≥ i0.(8.23)

Remark 8.1. Such an i0 exists due to the last inequality from (8.12).
Proof of Lemma 8.8. By (8.14), |εi| ≤ 1. So (8.14), (8.15), and (8.16) imply that

εi ∈ Q, qi = qQ for some Q ∈ {Q1, . . . , Qm}; U
c
i+1 = S

[
δciqi

]
, δci+1 = ρδci ,

(8.24)

where Qj are the level sets of the quantizer. By (8.11), the third relation yields
δciA

r
ssqi + BsU c

i+1 = 0. Hence

(
δci+1

)−1 ∣∣x̂s
i+2

∣∣ (8.13)
==

(
δci+1

)−1 ∣∣Ar
ssx

s
i+1 + BsU

c
i+1

∣∣ =
(
δci+1

)−1 ∣∣Ar
ssx

s
i+1 − δciA

r
ssqi

∣∣
(8.19)
==

(
δci+1

)−1 ∣∣Ar
ss

[
x̂s
i+1 + ξs,i

]
− δciA

r
ssqi

∣∣ (8.14)

≤ δci
δci+1

∣∣Ar
ss

[
εi − qi

]∣∣+(δci+1

)−1 ∣∣Ar
ssξs,i

∣∣ .
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It follows from (8.10) and the first two relations in (8.24) that
∣∣Ar

ss

[
εi − qi

]∣∣ ≤ ρQs .
We proceed by invoking (8.9) and the last relation from (8.24), along with the first
inequality from (8.21),

(
δci+1

)−1 ∣∣x̂s
i+2

∣∣ ≤ ρQs

ρ
+ ‖Ass‖rKξ

ρiξ
δci+1

≤ ρQs

ρ
+

‖Ass‖rKξ

δ0

(
ρξ
ρ

)i
(8.23)
< 1.

Thus the bound δci+1 is true, which completes the proof.
Proof of Proposition 8.5. Consider the number p0 from Lemma 8.7, where i0 is

taken from Lemma 8.8. By these lemmas, the bound δci is true |x̂c
i+1| ≤ δci∀i ≥ p0.

Then δci+1 = ρδci ∀i ≥ p0 thanks to (8.14), (8.15), and (8.16). With regard to the first

relation from (8.21), we see that δci ≤ δ0γ
i i ≤ p0, δ

c
i = δcp0

ρi−p0 ≤ δ0
(
γ/ρ

)p0
ρi i ≥ p0

and so δci ≤ Kδρ
i ∀i, where Kδ := δ0

(
γ/ρ

)p0
. This and the second formula from

(8.21) give the second inequality in (8.20). To prove the first one, we note that

∣∣xc
i+1

∣∣ (8.19)
==

∣∣x̂c
i+1 + ξs,i

∣∣ (8.9)

≤ δci + Kξρ
i
ξ

(8.12)

≤ K0
xρ

i+1 ∀i ≥ p0,

where K0
x := ρ−1 (Kδ + Kξ) .

For i ≤ p0 + 1, inequality (8.22) yields |xc
i | ≤ K(i) ≤ K′ := maxj=0,...,p0+1 K(j). Thus

the first inequality in (8.20) does hold with Kx := max{K0
x; K′ρ−p0−1}.

8.3. Existence of a contracted quantizer and deadbeat stabilizer. To
implement the proposed scheme, the state xs

i should be determined at a certain site,
which may be only the site of a sensor. Then the quantized value qi = Qs(xs

i ) should
be communicated for r units of time to the decoder. Since the capacities of the
channels serving the sensors are limited, we are interested in minimizing the number
b of communicated bits. This number is that b = �log(m + 1)� required to describe
a quantized value (including the alarm one �) for the m-level quantizer Qs. Thus
finding an r-contracted quantizer with the minimum number of levels m is of interest.

Now we establish tight lower and upper bounds for this number.
Lemma 8.9. For any m-level r-contracted (8.10) quantizer, m > |detAss|r. This

inequality is sufficient up to a polynomial factor. In other words, there is a polynomial
ϕs(·) (depending on Ass) such that for any r = 1, 2, . . . there exists an r-contracted
quantizer Qs with the number of levels

ms ≤ ϕs(r)|detAss|r.(8.25)

Proof. Necessity. Due to (8.10), |detAss|r mes (Qi) = |detAss|r mes [Qi −
qQi ] = mes

[
Ar

ss(Qi − qQi)
]

≤ ρns

Qs mesB1
0 < mesB1

0 . Summing over i gives
m > |detAss|r.

Sufficiency. Note first that whenever the claim is true for two matrices A′
ss and

A′′
ss, it is also true for the block matrix

(
A′

ss 0

0 A′′
ss

)
. By employing the canonical Jordan

form of Ass, this reduces the proof to the case where the matrix is a real Jordan
block. Let ns denote its size, λ its eigenvalue, and ω := |λ|. As follows from, e.g., [26,
Lemma 3.1, p. 64], Ξ(r) := ω−rϕ(r)−1Ar

ss → 0 as r → ∞ for some polynomial ϕ(·).
So ‖Ξ(r)‖ < ρ < 1 for r ≈ ∞. Here ‖ · ‖ is the operator norm associated with the
norm |z| := maxi |zi| in Rns = {z = (z1, . . . , zns)}. Multiplying the polynomial ϕ(r)
by a sufficiently large scalar factor makes the inequality ‖Ξ(r)‖ < ρ true for all r.
Now consider the uniform quantizer Qs partitioning the unit ball B1

0 into ms := kns
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balls Qi of radius 1
k , where k := �ωrϕ(r)�. The centroid qQi is the center of the ball

Qi. Then

‖Ξ(r)‖ < ρ ⇒ Ξ(r)[Qi−qQi ] ⊂ ρ[Qi−qQi ] =
ρ

k
B1

0 ⇒ Ar[Qi−qQi ] ⊂ ρ
ωrϕ(r)

k
B1

0 ⊂ ρB1
0 .

Thus the quantizer is r-contracted. It remains to note that

ms = kns ≤ [ωrϕ(r)+1]ns ≤ 2ns−1
(
[ωrϕ(r)]ns +1

)
= 2ns−1

(
|detAss|rϕ(r)ns +1

)
1≤| detAss|

≤ 2ns−1|detAss|r
[
ϕ(r)ns + 1

]
.

Thus (8.25) does hold with ϕs(r) := 2ns−1[ϕ(r)ns + 1].
When all subsystems are equipped with the proposed controllers, the stability of a

particular subsystem may be violated by the controllers serving the other subsystems
since the control is common. To avoid this, it suffices to choose the controls in such
a way that they influence only the subsystem for which they are intended. For the
basic (unit) sample period, this may be impossible. Now we show that this can be
done if the sample period r is properly increased: the controls generated for a given
subsystem do not affect the other ones at times t = i · r, i = 0, 1, . . . .

Common controls give rise to another trouble. As was remarked, the sth coder will
be implemented at the sites of sensors observing the sth subsystem. To compute the
states xs

i = xs(τi) utilized by this coder, not only the observations but also controls
must be known at these sites. However, the sth coder may know the control only
partly. It is aware of its own summand in the overall control, which is the sum of the
controls generated for all subsystems. At the same time, it is not able to determine
the summands based on the modes xj invisible at its site. To overcome this obstacle,
it suffices to note that the controls must be known for only n times t preceding τi. So
it suffices to ensure that all controllers produce zero controls at these times.

Now we show that deadbeat stabilizers with the above properties do exist.
Lemma 8.10. Whenever r > n, a deadbeat stabilizer for the sth subsystem exists.

Moreover, it can be chosen so that it generates control programs U = (u0, . . . ,ur−1)
vanishing since the time t = n, i.e., un = · · · = ur−1 = 0, and does not disturb the
other subsystems, i.e., BjU = 0 for j �= s, U = Sxs, and any xs.

Proof. By (8.11), a deadbeat stabilizer is the right inverse to the operator DU :=
−A−r

ss BsU . In (8.2), BU is the state to which the control program U drives the
system (3.1) at time t = r from x(0) = 0. By assumption, this system has no stable
modes. So it is controllable thanks to Assumption 4.2. It follows that the operator
B is onto. Moreover, B|M is onto, where M := {U : un = · · · = ur−1 = 0}. Indeed
for any x, it suffices to pick the control program u0, . . . ,un−1 that drives the system
from 0 at t = 0 to An−rx at t = n and extend it by zeros to form U ∈ M . Then
evidently BU = x. Now consider x such that in (8.4) all blocks are zeros except for
xs ∈ Rns . Since this block can be chosen arbitrarily, it follows that the operator Bs

maps L := {U ∈ M : BjU = 0∀j �= s} onto Rns . So evidently does D. It remains
to define S as the right inverse to D|L.

8.4. Stabilization of the entire system. Now we study the set of all subsys-
tems in their actual connection. So the disturbance in (8.7) is given by (8.8). We pick
r > n and suppose that the following claims hold for any s:

A1. The block xs(τi) of the state can be determined at any time τi = i · r at a
certain site (called the sth site);
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A2. The sth coder from subsection 8.2 is implemented at this site;
A3. There is a way to communicate the quantized value qs

i generated by the sth
coder at the step c.3 to the decoder site during the time interval [τi : τi+1).

Note that the sth coder is driven by only the sequence of states xs
i = xs(τi). So

A1 makes A2 possible. In A3, considered is the site where the actual decoder (see
Figure 3.1) must be situated. The sth decoder from subsection 8.2 is implemented
at this site for all s. This is possible since it is driven only by the sequence of
quantized values qs

i , i = 0, 1, . . . . Each decoder produces its own sequence of controls
U d

i =
[
us(ir),us(ir + 1), . . . ,us(ir + r − 1)

]
. These sequences are summed over all

decoders to produce the control sequence acting upon the plant:

u(t) := u1(t) + u2(t) + · · · + ud(t).

To complete the description of the coders, a quantizer, deadbeat stabilizer, and
parameters r, γ, ρ should be chosen for each coder. The parameter r > n is already
picked. For any subsystem s, the quantizer and stabilizer are taken from Lemmas 8.9
and 8.10, respectively. The parameter γ = γs is chosen to satisfy the second relation
from (8.12). As for the third relation, it is indefinite under the circumstances since
ρξ from (8.9) is not given. So now we pick the parameter ρ = ρs in another way. It
is chosen successively for s = 1, 2, . . . , d and so that

ρ1 > ρQ1 , ρ2 > max{ρQ2 ; ρ1}, ρ3 > max{ρQ3 ; ρ2}, . . . , 1 > ρd > max{ρQd ; ρd−1},
(8.26)

where ρQs is taken from (8.10). Stabilizing properties of this control scheme are
described by the following.

Proposition 8.11. Suppose that assumptions A1–A3 hold. Then the proposed
networked controller uniformly exponentially stabilizes the entire system (3.1) at the

rate μ = ρ
1/r
d .

We preface the proof of this proposition with a simple technical fact.
Lemma 8.12. Suppose that a trajectory of the system (3.1) satisfies the estimates

|xi| ≤ Kxρ
i, |U i| ≤ Kuρ

i, i = 0, 1, 2, . . . ,(8.27)

where xi := x(τi), ρ ∈ [0, 1), τi := i · r, and U i := [u(τi),u(τi + 1), . . . ,u(τi + r −
1)]. Then (4.2) holds, where μ := ρ1/r and the constants Kx,Ku are determined by
Kx,Ku, ρ (for a given system).

Proof. Whenever t ∈ [τi : τi+1), we have ρi = μτi = μτi−tμt ≤ μ−rμt = ρ−1μt.
So |u(t)| ≤ |U i| ≤ Kuρ

i ≤ Kuρ
−1μt, i.e., the second inequality from (4.2) does hold.

We denote κ := 1 + ‖A‖. Then

|x(t)| =

∣∣∣∣∣∣At−τix(τi) +

t−1∑
j=τi

At−1−jBu(j)

∣∣∣∣∣∣ ≤ ‖A‖t−τi |x(τi)|+
t−1∑
j=τi

‖A‖t−1−j‖B‖|u(j)|

≤

⎡⎣‖A‖t−τi + ‖B‖
t−1∑
j=τi

‖A‖t−1−j

⎤⎦× [|x(τi)| + |U i|]

≤

⎡⎣κr + ‖B‖
τi+1−1∑
j=τi

κτi+1−1−j

⎤⎦ [Kx + Ku] ρi,
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where ρi ≤ ρ−1μt. By the index substitution j := τi + ν in the last sum, we see that
(4.2) is true.

Proof of Proposition 8.11. Suppose that |x(0)| ≤ K0, where K0 is given. The
controls us with s ≥ 2 do not disturb the first block x1

i := x1(τi) of the state at
times τi = i · r by the choice of the deadbeat stabilizers. So this block x1

i , i = 0, 1, . . . ,
evolves just as in the first subsystem (8.7) driven by the first coder and decoder and
perturbed by the noise ξ1,i, which is zero by (8.8). Then Proposition 8.5 and the first
inequality from (8.26) imply that the first subsystem s = 1 is uniformly exponentially
stabilized (8.20) at the rate ρ := ρ1. This and (8.8) imply that the noise ξ2,i in
the second subsystem (8.7) (where s = 2) exponentially decays (8.9) at the rate ρ1.
Now we retrace the above arguments with respect to this subsystem and employ the
second relation from (8.26). As a result, we establish that this subsystem is stabilized
at the rate ρ2, i.e., (8.20) holds for s = 2 and ρ := ρ2. By continuing likewise, we see
that for any s, inequalities (8.20) are true with ρ := ρs and proper constants Kx,Ku

(depending on s) whenever |x(0)| ≤ K0. Since ρd ≥ ρs ∀s by (8.26), it follows that
(8.27) holds with ρ := ρd and some constants Kx,Ku depending on K0. Lemma 8.12
and Definition 4.3 complete the proof.

8.5. Analysis of Assumptions A1 and A3. Our next goal is to show that
these assumptions stated in the previous subsection are satisfied whenever r > 2n and
(5.2) holds. This in fact will complete the proof of Theorem 5.1. In this subsection,
we perform the first step to this end.

We start with assumption A1. By 1 of Proposition 8.1, the unobservable subspace
(4.3) L−obs

j = L−
j of the jth sensor is composed of several blocks xs, s �∈ Oj , of the state

(8.4). These blocks do not affect its outputs yj , whereas all other blocks xs, s ∈ Oj ,
can be determined from these outputs.

Lemma 8.13. Whenever r > 2n, assumption A1 holds. For any s, the site of
any sensor j with Oj � s can be taken as the sth site in A1.

Proof. We recall that the deadbeat stabilizers were taken from Lemma 8.10. So
they produce control programs U = (u0, . . . ,ur−1) with zeros ui = 0 at any place
i ≥ n. For r > 2n, this means that the corresponding control sequence u(t), t =
0, 1, . . . , vanishes u(t) = 0 for at least n times t preceding each τi = i · r, i = 0, 1, . . . .
It remains to invoke the remarks prefacing Lemma 8.10.

Now we turn to an analysis of A3. We recall that in A3, the value qs
i is given by

an ms level quantizer Qs. Description of such a value (which may equal �) requires
bs = �log2(ms + 1)� bits. This number may exceed the capacity of the channel that
serves any particular sensor j observing the block xs. So we employ all such channels.
Specifically, the following scheme of transmission qs

i to the decoder site is used for
each subsystem s = 1, . . . , d:

T1. The sth coder is implemented at the sites of all sensors j observing the state
xs, i.e., such that s ∈ Oj ;

T2. By employing a common encoding rule, the value qs
i produced at each of

these sites is then transformed into a bs-bit sequence βs
i = (β1, β2, . . . , βbs)

of binary digits βν = 0, 1;
T3. By applying a common rule, this sequence β is split into several subsequences

βs,j
i each associated with one of the concerned sensors j, i.e., such that s ∈ Oj ;

T4. Each of these sensors j sends only its own subsequence βs,j
i over the attached

channel to the decoder site;
T5. At the decoder site, the required value qs

i is reconstructed by reversing the
rules from T2 and T3.
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We assume that the rules from T2 and T3 do not change as i progresses and are
known at the decoder site. Furthermore, the rule from T2 is lossless: the value qs

i

can be reconstructed from β. This makes T5 possible.

The above scheme means that several binary words βs,j
i , s ∈ Oj , must be trans-

mitted over the common jth channel during any time interval [τi : τi+1) of duration
r − 1. By 2 of Assumption 4.1, this is possible if the total length of these words does
not exceed b−j (r − 1). Now we denote by bsj the number of bits in βs,j

i whenever
s ∈ Oj and put bsj := 0 otherwise. Summarizing, we arrive at the following lemma.

Lemma 8.14. Assumption A3 is satisfied whenever there exist nonnegative integer
numbers bsj , s = 1, . . . , d, j = 1, . . . , k, such that the following relations hold:

k∑
j=1

bsj = bs = �log2(ms + 1)� ∀s,
d∑

s=1

bsj ≤ b−j (r − 1) ∀j, and bsj = 0(8.28)

whenever s �∈ Oj .

Here k and d are the numbers of sensors and subsystems, respectively, ms is the
number of levels for the r-contracted quantizer taken from Lemma 8.9, whereas b−j (·)
and Oj are taken from 2 of Assumption 4.1 and 1 of Proposition 8.1, respectively.

8.6. Inconstructive sufficient conditions for stabilizability. These condi-
tions are immediate from Proposition 8.11 combined with Lemmas 8.13 and 8.14.

Proposition 8.15. Suppose that the following system of relations

log2 |detAss| <
k∑

j=1

αsj ∀s,
d∑

s=1

αsj < cj ∀j, αsj ≥ 0 ∀s, j, αsj = 0 whenever s �∈ Oj

(8.29)

is solvable in real numbers αsj. Here Ass is taken from 2 of Proposition 8.1 and cj

is the transmission capacity (4.1) of the jth channel. Then the system (3.1), (3.2) is
uniformly exponentially stabilizable.

Proof. It suffices to show that for all large r, the system (8.28) is solvable in
nonnegative integers bsj . Indeed such an r can be clearly chosen so that r > 2n.
Then Lemmas 8.13 and 8.14 ensure that assumptions A1 and A3 from subsection 8.4
hold, whereas A2 ⇐ A1. In A2, the parameters of the sth coder are chosen as was
indicated in that subsection. Proposition 8.11 completes the proof.

We note first that in (8.28), the first relation can be replaced by the inequality

k∑
j=1

bsj ≥ �log2(ms + 1)�.(8.30)

Indeed, if after this the system is solvable, than a solution for the original relation can
be obtained by properly decreasing the nonnegative integers bsj . Specifically, they are
decreased to satisfy the first relation from (8.28), which may only enhance the second
relation and keep the third relation true.

We are going to show that a solution is given by bsj := 	r ·αsj
, provided r ≈ ∞.
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Indeed the third relation in (8.28) follows from the last one in (8.29). Furthermore,

1

r

k∑
j=1

bsj
r→∞−−−→

k∑
j=1

αsj
(8.29)
== log2 |detAss| + κs, where κs > 0,

1

r
�log2(ms + 1)� ≤ 1

r
[log2(ms + 1) + 1]

(8.25)

≤ 1

r
[log2 (ϕs(r)|detAss|r + 1) + 1]

r→∞−−−→ log2 |detAss|.

It follows that (8.30) does hold for all r ≈ ∞. Likewise,

1

r

d∑
s=1

bsj
r→∞−−−→

d∑
s=1

αsj
(8.29)
== cj − ηj , where ηj > 0,

b−j (r − 1)

r

(4.1)−−−→ cj as r → ∞.

Thus the second relation from (8.28) is also true for all r ≈ ∞.

8.7. Convex duality and a criterion for the system (8.29) to be solvable.
Now we in fact perform the final step in the proof of the sufficiency part of Theorem 5.1
by justifying the following claim.

Proposition 8.16. The system (8.29) is solvable in real numbers αsj if and only
if 2 of Theorem 5.1 holds.

Then by invoking Proposition 8.15, we arrive at the following corollary.
Corollary 8.1. Whenever the system (3.1) has no stable modes, 2 of Theo-

rem 5.1 implies 1.
We preface the proof of Proposition 8.16 with a useful reformulation of 2 from

Theorem 5.1 in terms of the decomposition from Proposition 8.1.
Lemma 8.17. Along with the sets Oj from 1 of Proposition 8.1, consider all

their unions O =
⋃

j∈J Oj, where J ranges over all groups of sensors. (The union of
the empty group of sets Oj is included and interpreted as the empty set.) Then 2 of
Theorem 5.1 is true if and only if for any such a union O �= [1 : d],∑

s �∈O

log2 |detAss| <
∑

j:Oj �⊂O

cj .(8.31)

Proof. Due to 1 of Proposition 8.1, the sets (5.1) L =
⋂

j∈J L−
j have the form

L = {x : xs = 0 ∀s ∈ O} , where O =
⋃
j∈J

Oj .

So (8.5) implies detAL =
∏

s �∈O detAss. Hence the left-hand sides in (5.2) and (8.31)
coincide. It remains to note that so do the right-hand ones since in (5.2) J(L) = {j :
Oj ⊂ O} owing to (4.3), (5.1), and 1 of Proposition 8.1.

Proof of Proposition 8.16. Necessity. Suppose that (8.29) has a solution αsj .
Then

∑
s �∈O

log2 |detAss|
(8.29)
<

∑
s �∈O

k∑
j=1

αsj =

k∑
j=1

∑
s �∈O

αsj
(8.29)
==

∑
j:Oj �⊂O

∑
s �∈O

αsj ≤
∑

j:Oj �⊂O

d∑
s=1

αsj

(8.29)
<

∑
j:Oj �⊂O

cj ,
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i.e., (8.31) holds. By Lemma 8.17, so does (5.2).
Sufficiency. Now suppose that 2 of Theorem 5.1 is true. By Lemma 8.17, this

means that (8.31) holds for the union O of any sets Oj , provided O �= [1 : d]. It should
be shown that (8.29) is solvable in real numbers αsj .

Suppose the contrary. Then the following convex polyhedra in the space of ma-
trices α = (αsj) are disjoint:

C1 :=

⎧⎨⎩α : log2 |detAss| <
k∑

j=1

αsj ∀s

⎫⎬⎭ ,

C2 :=

{
α :

d∑
s=1

αsj < cj ∀j, αsj ≥ 0 ∀s, j, αsj = 0 if s �∈ Oj

}
.

Hence they are separated by a hyperplane: there exists a nonzero matrix γ = (γsj)
such that

inf
α∈C1

∑
s,j

γsjαsj ≥ sup
α∈C2

∑
s,j

γsjαsj .(8.32)

The definition of C1 implies that

inf
α∈C1

∑
s,j

γsjαsj =

d∑
s=1

inf
(αj):

∑k
j=1 αj>log2 | detAss|

k∑
j=1

γsjαj .

The infimum on the right is that of a linear functional over a half-space of (αj)
bounded by a hyperplane with the normal (1, . . . , 1). This infimum is finite only if
the functional is generated by a vector colinear with the normal. So γsj = θs ∀j for
some θs ≥ 0 and

∑
s θs > 0. It follows that

inf
α∈C1

∑
s,j

γsjαsj =

d∑
s=1

θs log2 |detAss|.

At the same time, the definition of C2 implies that

sup
α∈C2

∑
s,j

γsjαsj = sup
αsj≥0,

∑
s αsj<cj ,

s �∈Oj⇒αsj=0

∑
sj

θsαsj =

k∑
j=1

max
αs≥0,

∑
s αs≤cj

∑
s∈Oj

θsαs

=

k∑
j=1

cj max
s∈Oj

θs.

By (8.32), the cone K := {θ = (θ1, . . . , θd) ∈ Rd : θs ≥ 0} contains a nonzero solution
of the inequality

d∑
s=1

θs log2 |detAss| ≥
k∑

j=1

cj max
s∈Oj

θs.(8.33)

This cone can be partitioned into a finite number of convex polyhedral subcones such
that the right-hand side of (8.33) is linear on any subcone. It follows that (8.33) must
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be satisfied on some extreme ray of some subcone. Any of them is bounded by a finite
number of hyperplanes, each described by an equation of the form either θν = 0 or
θμ = θν , where ν �= μ and ν, μ ∈ Oj for some j. This implies [21, p. 104] that the
extreme ray is described by a finite system of such equations, which determines its
solution uniquely up to multiplication by a scalar. It is easy to see that the solution
of such a system looks as follows: θs = θ whenever s �∈ O, and θs = 0 otherwise. Here
O ⊂ [1 : d] is some set, O �= [1 : d]. For vectors on the above extreme ray, we have
θ > 0, and (8.33) shapes into∑

s �∈O

log2 |detAss| ≥
∑

j:Oj �⊂O

cj .

Changing O := O :=
⋃

j:Oj⊂O Oj does not alter the right-hand side, possibly in-

creases the left-hand one, and thus keeps the inequality true, in violation of (8.31).
The contradiction obtained proves that the system (8.29) is solvable in real numbers
αsj .

8.8. Proof of Theorem 5.1. It was shown in section 7 that 1 ⇒ 2. The
converse 2 ⇒ 1 is given by Corollary 8.1 if the system (3.1) has no stable modes.
Thus it remains to drop the last requirement and prove (5.3).

To achieve the first objective, we consider the system (3.1) with both unstable and
stable modes that satisfies 2. It is clear that it suffices to stabilize only its unstable
part,

x+(t + 1) = A+x+(t) + π+Bu(t), x+(0) := π+x0 ∈ L+, y+(t) = Cx+(t).
(8.34)

Here L+ := Munst(A) and L− := Mst(A) are the invariant subspaces of A related
to the unstable and stable parts of its spectrum, π+ and π− are the projectors onto
L+ parallel to L− and vice versa, respectively, and A± := A|L± . Thanks to the
second relation from (4.3), 2 still holds for the system (8.34). By the foregoing, this
system can be uniformly exponentially stabilized by some networked controller. While
constructing it, we employ the parameter r > 2n. Now we apply this controller to the
primal system (3.1). In doing so, the proof of possibility of T1 from subsection 8.5
must be revisited. Indeed the sth coder can be implemented at the jth sensor site
(where s ∈ Oj) only if xs(τi), τi := i · r can be determined there. Formerly this was
done on the base of the past measurements from (8.34). Now we must employ the
observations from (3.1). This is possible due to (4.3) and 1 of Proposition 8.1 since
the dynamics of the system (3.1) is free u(t) = 0 at least n time steps before τi.

By Definition 4.3, there exists μ ∈ [0, 1) such that whenever a constant K0 is
given and |x0| ≤ K0,

|π+x(t)| ≤ K+
x μt, |u(t)| ≤ Kuμ

t ∀t = 0, 1, 2, . . . .

The evolution of x−(t) := π−x(t) is described by the first two equations from (8.34),
where the index + is switched to −. Since the operator A− is stable and the controls
u(t) exponentially decay, so do the states |x−(t)| ≤ K−

x ρt. Here ρ ∈ (0, 1) does
not depend on K0. Since |x(t)| = |x−(t) + x+(t)| ≤ |x−(t)| + |x+(t)|, increasing
μ := max{μ, ρ} yields (4.2). Definitions 4.3 and 4.4 complete the proof of 1 from
Theorem 5.1.

It remains to justify (5.3). To this end, we note that the transformation z(t) :=
μ−tx(t), v(t) := μ−tu(t) establishes a one-to-one correspondence between the trajec-
tories {x(t), u(t)} and {z(t), v(t)} of the systems given by (3.1) and the equation



MULTIRATE STABILIZATION OF MULTIPLE SENSOR SYSTEMS 613

z(t + 1) = μ−1Az(t) + μ−1Bv(t), respectively. We equip the latter with the sensors
ỹj = Cjz, j = 1, . . . , k. It easily follows from Definitions 4.3 and 4.4 that the initial
system is uniformly exponentially stabilizable at a rate μ′ ∈ (0, μ) if and only if the
second system is uniformly exponentially stabilizable. By applying the 1 ⇔ 2 part of
Theorem 5.1 to it, we get

−dimL · log2 μ + log2 |detA|L|

<
∑

j �∈J(L)

cj ∀L ∈ L ⇒ log2 μ > max
L∈∈L

1

dimL

(
log2 |detA|L| −

∑
j �∈J(L)

cj

)
.

To arrive at (5.3), it remains to note that the rate of exponential stabilizability μ0 is
the infimum of all such μ.

9. Comments on Assumption 4.3. Now we explain why it has such a big
impact on the controller design. We also briefly discuss ideas underlying such a
design in the case where this assumption does not hold.

To start with, we illuminate the role of Assumption 4.3. A “subsystem” (arising
from (8.4)) is said to be in a simple relation with the jth sensor if it either does affect
this sensor or its state can be uniquely determined from the sensor outputs. The
simplest case in stabilization of a multiple sensor system is where the system can be
decomposed into independent subsystems each in a simple relation with any sensor.
In general, this is impossible. As was shown, a nontrivial Jordan block may form
a barrier to decomposition into independent subsystems. The example (4.5) proves
that it may be still worse: the system cannot be disintegrated into (even dependent)
subsystems each in simple relations with sensors. Assumption 4.3 in fact describes
when this worst case does not occur.

So if this assumption is violated, unavoidable is the situation where some sensor
partly observes some subsystem: its state cannot be determined on the site of this
sensor though the sensor signals contain information about this state. Then an addi-
tional problem arises: how to utilize this information in the coding-decoding scheme
for stabilization purposes? As will be shown, the answer requires the revision of some
basic principles on which the design of such schemes was based up to now. In this
paper, this is omitted due to space limitations.

To come into details, we pick natural c and real λ ≈
√

2
3c
, λ <

√
2
3c

numbers and
revert to the example (4.5),

x(t + 1) = λx(t) + u(t) ∈ R2, y1(t) = x1(t), y2(t) = x2(t),(9.1)

y3(t) = x1(t) − x2(t), t = 0, 1, . . . ,

where x = (x1, x2). Any of three channels transmits c bits per unit time without
delays and losses, i.e., c1 = c2 = c3 = c. The necessary conditions for stabilizability

(5.2) take the form λ <
√

2
3c

and are satisfied.
Assumption 4.3 clearly does not hold: one of the sensors observes a certain subsys-

tem only partly for any decomposition of the system (9.1).For example, consider the
natural decomposition x = (x1, x2), where x1 and x2 are interpreted as the states of
the subsystems. They are in simple relations with the first and second sensors. How-
ever, they are not in such relations with the third one. Indeed the state xi influences
its outputs y3 = x1 − x2 but cannot be determined on the basis of them. Moreover,
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the only linear coordinate (i.e., function) of the state that can be determined on the
site of the third sensor is its output y3 (up to a scalar factor). Likewise, the first and
second sensors permit us to find only x1 and x2, respectively. This conclusion holds
for any decomposition.

Now we are going to show that though the system (9.1) is stabilizable, it cannot
be stabilized by a controller with the following features, which are characteristic for
the most known relevant controllers:

1. Not only the “mode” yi but also its upper (maybe incorrect) bound δi is
determined at the sensor site;

2. The state x and these bounds in fact constitute the state of the closed-loop
system, which is time-invariant;

3. At the decoder site, the information about the “mode” yi(t) comes to its
quantized scaled value ei(t) = Qi[δi(t)

−1yi(t)] given by a static quantizer
Qi(·) with convex level sets and the number mi of levels matching mi ≤ 2c−1
the channel capacity;

4. The next bound δi(t + 1) is determined from δi(t) and the knowledge of
whether ei(t) = � or not;

5. Whenever all bounds are true δi(t) ≥ |yi(t)| ∀i, they remain true afterwards.
It is clear that these features mainly concern the coding algorithm.

Remark 9.1. In [25], a specific class of networked controllers was proposed for
stabilization of multiple sensor systems. Since those controllers satisfy 1–5, they are
unable to stabilize some stabilizable systems, e.g., the system (9.1). In [25], it was
established when a system can yet be stabilized by a controller from this class. The
corresponding results are formulated as criteria for “stabilizability” with no reference
to the class. This does not seem a good idea because then some actually stabilizable
systems are in fact classified as “unstabilizable.”

Lemma 9.1. Let c ≥ 2 and a networked controller satisfying 1–5 be given. Then
the closed-loop system (9.1) is neither stable nor dissipative: lim supt→∞supx0∈Bδ

0
|x(t)|

= ∞ for all δ > 0 and initial bounds δ0
i > 0.

Proof. By 2 and 4, δi(t + 1) = Di[δi(t)] whenever ei(t) �= �. We are going to
estimate Di(·) from below. Due to 3, any quantizer Qi is related to a partition of

the interval [−1, 1] into mi subintervals (level sets) Δ
(i)
1 , . . . ,Δ

(i)
mi , Δ

(i)
j = [α

(i)
j , β

(i)
j ].

Since mi ≤ 2c − 1, one of them has the length β
(i)
ji − α

(i)
ji ≥ 2 · 2−c. Now we pick

δ > 0, set the initial bounds δ1(0) = δ2(0) = δ, δ3(0) = 2δ, and note that all initial

states from the segment S := {x0 = (δα
(1)
j1 + θ, δα

(2)
j2 + θ) : 0 ≤ θ ≤ 2δ2−c} give

rise to common outputs for each quantizer i = 1, 2, 3 at t = 0. So they give rise to
a common control u(0) = (u1, u2). For all these states, the above initial bounds are
correct. Then 5 ensures that for i = 1, 2

δi(1) = Di[δi(0)] = Di[δ] ≥ |yi(1)| = |λxi(0) + ui|.

Here λxi(0)+ui runs over an interval of length ≥ 2λδ2−c as x0 ranges over S. Hence

Di(δ) ≥ λδ2−c(9.2)

for i = 1, 2. This inequality is extended on i = 3 by putting δ1(0) = δ3(0) = δ, δ2(0) =

2δ, S := {x0 = (δα
(1)
j1 + θ, δα

(1)
j1 − δα

(3)
j3 ) : 0 ≤ θ ≤ 2δ2−c} and retracing the above

arguments.
Now we suppose that for some δ0

i > 0 and δ > 0 the conclusion of the lemma
violates c := sup |x(t)| < ∞, where sup is over x0 ∈ Bδ

0 and all t. By decreasing δ, one
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can ensure that δ < min{δ0
1 , δ

0
2 ,

1
2δ

0
3}. Then for all initial states x0 ∈ Bδ

0 , the bounds
δi are correct for t = 0. Thanks to 4 and 5, they remain correct for all t and common

for all x0 ∈ Bδ
0 . Then (9.2) yields δi(t) ≥ δ

(
λ
2c

)t
. Here λ ≈

√
2
3c

. So δi(t) → ∞ as

t → ∞. As a result, the interval [−2c, 2c] is covered by at most two intervals δi(t)Δ
(i)
j

for each i = 1, 2, 3, provided t is large enough. Since |x(t)| ≤ c ⇒ |yi(t)| ≤ 2c, i =
1, 2, 3, this and 3 mean that for x0 ∈ Bδ

0 each Qi in fact acts as a binary quantizer at
any large time. Thus the decoder receives in fact no more than one bit of information
about processes with x0 ∈ Bδ

0 via each channel. By treating three channels as one
and retracing the arguments from the proof of Lemma 7.1 (see also [20, 25, 11]),
we arrive at the necessary conditions for dissipativity λ2 ≤ 23 ⇔ λ ≤ 23/2. At

the same time, c ≥ 2 and λ ≈
√

2
3c

> 23/2. The contradiction obtained proves the
lemma.

Now we show that nevertheless the system (9.1) is stabilizable. The stabilizing
controller lacks properties 2 and 3. It employs a 2-periodic quantization scheme
applied to not only scaled but also shifted observations. We give only a sketch of the
proof and focus on the main part of the stabilization process. It starts when a correct
upper bound of the state norm is found via successive multiplying by a sufficiently
large factor (see, e.g., subsection 8.2).

Each coder computes a number δi(t), and the decoder duplicates these computa-
tions. The meaning of the numbers and actions of the controller are different for odd
and even times t. To explain them, we put N := 2c.

At odd times, δ1(t) = δ2(t), δ3(t) = δ1(t) + δ2(t), x(t) ∈ M(t) := {x : −δi(t) ≤
yi < δi(t), i = 1, 2} and

1. For i = 1, 2, the ith coder determines which interval [μ
(i)
j′ , μ

(i)
j′+1), μ

(i)
j′ :=

j′ 2δi(t)N , j′ = 0, . . . , N − 1, contains yi(t) := yi(t) + δi(t), and notifies the

decoder about its serial number j′ = j(i);

2. For i = 3, the coder (a) finds which interval [ωj , ωj+1), ωj := j δi(t)
N contains

yi(t), (b) notifies the decoder which subinterval [ω
(ν)
j , ω

(ν+1)
j ), ω

(ν)
j := ωj +

ν
ωj+1−ωj

N−2 , ν = 0, . . . , N − 3, contains yi(t), and (c) uses the remaining bit to
make the decoder aware of whether j is odd or even.

It is easy to see that (j(1) + j
(2)
∗ ) δ3(t)N < y3(t) < (j(1) + j

(2)
∗ + 2) δ3(t)N , where j

(2)
∗ :=

N − j(2) − 1. So either j = j(1) + j
(2)
∗ or j = j(1) + j

(2)
∗ + 1. Hence j can be found

from j(1), j(2) and the information from (c).

3. From j(1), the decoder finds the strip {x : y1 ∈ −δ1(t) + [μ
(1)

j(1)
, μ

(1)

j(1)+1
)} that

contains x(t). By reconstructing j and using ν, it finds another such strip

{x : y3 ∈ −δ3(t) + [ω
(ν)
j , ω

(ν+1)
j )}. Then the decoder selects a control driving

the system from the center of the intersection of the strips to zero.
As a result, x(t + 1) ∈ M(t + 1) := {x : −ε′ ≤ y1 < ε′,−ε′′ ≤ y3 < ε′′}, where
ε′ := λδ1(t)N

−1 ≈ δ1(t)2
3/2c2−c = δ1(t)2

c/2 > δ1(t) and ε′′ := λδ1(t)[N(N − 2)]−1 ≈
δ1(t)2

c/2(2c − 1)−1 ≤ 2δ1(t)2
−c/2 < δ3(t) for c ≥ 2. Thus, for one step, the domain

M(t) � x(t) is stretched in one direction and tightened in the other.
4. The ith coder defines the next number δi as the bound for yi when x ∈

M(t + 1), i.e., δ1(t + 1) := λN−1δi(t), δ3(t + 1) := 1
2λδ3(t)[N(N − 2)]−1, and

δ2(t + 1) := λδ2(t)N
−1[1 + (N − 2)−1].

At even times, δ3(t) = δ1(t)
N−2 , δ2(t) = δ1(t) + δ3(t),x(t) ∈ M(t) = {x : −δi(t) ≤

yi < δi(t), i = 1, 3}, and
5. The operation 1 is carried out by the first and third coders i = 1, 3, and 2 is
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done by the second one i = 2 with ωj altered: ωj := j 4δ2(t)
N .

The definitions of j(1), j(3) and j from 1 and 2, respectively, imply that j(1), j(3) ∈ [0 :
N − 1] and

−δ2(t) + 2δ2(t)
N

[
j(1) + N−1−j(3)−j(1)

N−1

]
< y2 < −δ2(t) + 2δ2(t)

N

[
j(1) + N−1−j(3)−j(1)

N−1

]
+ 2δ2(t)

N ⇓
−δ2(t) + 2δ2(t)

N (j(1) − 1) < y2 < −δ2(t) + 2δ2(t)
N (j(1) + 2),

whereas −δ2(t)+ 4δ2(t)
N j ≤ y2 < −δ2(t)+ 4δ2(t)

N (j+1). It follows that either j = j(1)/2

or j = j(1)/2 − 1 if j(1) is even, and either j = (j(1) − 1)/2 or j = (j(1) − 1)/2 + 1 if
j(1) is odd. Thus the number j can be found by the decoder on the basis of j(1) and
the information from 2.c).

6. The decoder finds two strips containing x(t). The first of them is {x :

y3 ∈ −δ3(t) + [μ
(3)

j(3)
, μ

(3)

j(3)+3
)}, and the second one is {x : y2 ∈ −δ2(t) +

[ω
(ν)
j , ω

(ν+1)
j )}. Then the decoder selects a control driving the system from

the center of the intersection of the strips to zero.

As a result, x(t + 1) ∈ M ′(t + 1) := {x : −ε′ ≤ y3 < ε′,−ε′′ ≤ y2 < ε′′}, where

ε′ := λδ3(t)N
−1 and ε′′ := 1/2[ω

(ν+1)
j − ω

(ν)
j ] = 2λδ2(t)[N(N − 2)]−1 = 2λδ3(t)(N −

1)[N(N − 2)]−1 ≤ 3λδ3(t)N
−1 (since N = 2c and c ≥ 2). The set M ′(t+1) is covered

by the square M(t + 1) := {x : |x1|, |x2| ≤ 3λδ3(t)N
−1}.

7. The numbers δi are updated so that δ1 = δ2 become the half length of the edge
of M(t+1) and δ3 = δ1+δ2, i.e., δ1(t+1) := 3λδ1(t)[N(N−2)]−1, δ2(t+1) :=
3λδ2(t)[N(N − 1)]−1, δ3(t + 1) := 6λδ3(t)N

−1.

Now observe that for two steps, the square M(t) � x(t) with the edge 2δ1(t) (where t

is odd) is transformed into the square M(t+ 2) with the edge 2δ1(t)× 3λ2

N2(N−2) . So if
3λ2

N2(N−2) < 1 ⇔ λ < 23/2c
√

1/3(1 − 21−c), the system is stabilized. The last inequal-

ity is a bit worse than the necessary condition for stabilizability λ < 23/2c. This gap
can be discarded by increasing the sample period to r time units. Indeed, this “trans-
forms” λ into λr, N into Nr, and the sufficient condition λ < 23/2c

√
1/3(1 − 21−c)

for stabilizability into λr < 23/2rc
√

1/3(1 − 21−rc) ⇔ λ < 23/2c[1/3(1 − 21−rc)]2/r.
The latter reduces to λ < 23/2c as r → ∞.

Thus even for a very simple system, violation of Assumption 4.3 complicates
the coding-decoding scheme. We consider the study of the general case where this
assumption does not hold as a topic of separate research.
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Nyquist criterion is established for asymptotic stability analysis of a class of FDLCP systems for
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1. Introduction. Stability analysis is a difficult topic in finite-dimensional lin-
ear continuous-time periodic (FDLCP) systems [3], [8], [14], [19], [27], which are
encountered in many engineering applications. For instance, the flapping dynamics
of helicopter rotors [7], [26] and rolling motion of ships in waves [1] can be related
to FDLCP models. Other examples include robot arms moving along periodic tra-
jectories and electromechanical oscillation in AC generators [22]. Different types of
(closed-loop) stability of FDLCP systems are discussed via various methods in the lit-
erature. Absolute stability of FDLCP systems with nonlinearities satisfying integral
quadratic constraints is dealt with in [16] and [28] by the cutting plane algorithm and
the Hamiltonian approach, respectively, while input/output stability and Youla-style
parameterization of stabilizing controllers are discussed in [6] via the graph representa-
tion theory. As for asymptotic stability analysis of FDLCP systems, the Floquet theo-
rem [18] completes the task by testing the eigenvalues of its monodromy matrix that is
hard to find. Asymptotic stability has also been examined by a Lyapunov method [4]
and the harmonic analysis [31]. Perturbation methods to study stability in FDLCP
systems can be found in [20]. Nyquist-type stability criteria have also been considered
in the FDLCP cases; for example, two generalized Nyquist criteria are suggested in [15]
and [26]. The former is an integral-operator-based Nyquist criterion, while the latter
is given in terms of the Hill-determinant of the infinite-dimensional harmonic trans-
fer operator of an FDLCP system. However, due to the infinite-dimensionality and
various convergence issues in the Hill-determinant, the validity of the latter general-
ized Nyquist criterion [26] remains as an open problem in general situations. Similar
comments also apply to the former criterion. As for integral-operator modeling of
periodic systems, we refer the readers to [2] for a general idea.

∗Received by the editors November 1, 2002; accepted for publication (in revised form) March 10,
2005; published electronically September 12, 2005.

http://www.siam.org/journals/sicon/44-2/41690.html
†Department of Electrical Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku,

Kyoto 615-8510, Japan (zhouj@kuee.kyoto-u.ac.jp, hagiwara@kuee.kyoto-u.ac.jp).

618



REGULARIZED NYQUIST CRITERIA IN PERIODIC SYSTEMS 619

A crucial observation for establishing Nyquist-type stability criteria in more gen-
eral FDLCP systems is that the harmonic transfer operators of FDLCP systems are
Hilbert–Schmidt operators under mild assumptions. Hence the validity of the 2-
regularized determinant on the harmonic transfer operators [5] can be justified. It
should be pointed out that the harmonic transfer operators do not belong to the trace
class [9] in general so that the standard operator determinant cannot be validated.
Thus, developing a Nyquist-type criterion based on the 2-regularized determinant
technique provides us with a natural and much stronger tool in stability analysis in
the FDLCP field. In connection with the usual determinant defined on trace class
operators, it is worth mentioning that in sampled-data systems, which are periodic
(but not included in FDLCP systems) if the signal behavior both at the sampling in-
stants and intersamples is considered, a Nyquist criterion regarding internal stability
has been recovered with the transfer operator defined via lifting technique [13] under
the assumption that the transfer operator is a trace class operator.

In this paper, using the 2-regularized determinant on Hilbert–Schmidt operators,
we first derive some interesting analytic properties of the 2-regularized determinant
of what we call the modified harmonic state operator of an FDLCP system. These
results have not been explicitly discussed in the literature to the authors’ best knowl-
edge and constitute a significant contribution to this study. Second, based on these
properties, a 2-regularized Nyquist criterion is established for asymptotic stability of
a class of FDLCP systems. This Nyquist criterion is necessary and sufficient, and
makes it possible for us to investigate the closed-loop asymptotic stability via the
open-loop FDLCP system and the 2-regularized determinant of the corresponding
harmonic return difference operator, similar to what we do in the LTI (linear time-
invariant) continuous-time case. In spite of the success that the criterion applies to a
big class of practical FDLCP systems, however, it brings another problem. Namely,
it is nontrivial to implement the criterion numerically because of the 2-regularized
determinant on the infinite-dimensional harmonic return difference operator. To re-
solve the problem, the staircase truncation [30] is applied to the harmonic transfer
operator. It is shown that under mild assumptions the truncation convergence can be
ensured, and the 2-regularized Nyquist criterion can be implemented via only finite-
dimensional computations to any degree of accuracy, and the truncation size can be
estimated readily through simple computations.

The following is the outline of this paper. Section 2 gives preliminaries to FDLCP
systems, their harmonic state operators and transfer operators, the Toeplitz trans-
formation of periodic functions, and operator determinants. Properties about the 2-
regularized determinants of the modified harmonic transfer operators are also derived.
In section 3, the 2-regularized Nyquist criterion is established, while its implementa-
tion is considered via truncation in section 4. The lossy Mathieu equation is studied
to illustrate the results in section 5. Proofs of lemmas, if any, are given in appendices.

In this paper, ‖·‖ denotes the Euclidean norm of a vector and the norm of a
matrix induced by this norm. l2 is the set of all infinite-dimensional vectors x such
that ‖x‖2

l2
:=

∑+∞
−∞ ‖[x]m‖2 < ∞, where [x]m is the mth (vector) entry of x. ‖·‖l2/l2

is the l2-induced norm. L2[0, h] is the linear space of all vector measurable functions

x defined on [0, h] such that ‖x(·)‖L2[0,h] := [
∫ h

0
‖x(t)‖2 dt]1/2 < ∞. F (·) ∈ L2[0, h]

means that F is an h-periodic matrix function, each element of which belongs to
L2[0, h] when its domain is restricted to [0, h]. This expression is also used for other
function sets defined over [0, h]. C is the field of all complex numbers, and Z is the
ring of all integers.
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2. Preliminaries to FDLCP systems and operator determinants. In this
section we first review facts about FDLCP systems [29], and then the 2-regularized
determinant [5] for Hilbert–Schmidt operators. In particular, we derive properties
about the harmonic state operator of FDLCP systems in the 2-regularized determinant
sense.

Consider the FDLCP system given by

G :

{
ẋ = A(t)x + B(t)u,

y = C(t)x,
(2.1)

where A(t), B(t), and C(t) are h-periodically time-varying matrices. The transition
matrix of (2.1) with the initial time t0 is denoted by Φ(t, t0). By the Floquet the-
orem [14], [18], if A(t) ∈ L2[0, h], then Φ(t, t0) is continuous with respect to t and
has a Floquet factorization Φ(t, t0) = P (t, t0)e

Q(t−t0), where P (t, t0) is absolutely
continuous in t, nonsingular and h-periodic in t and t0, and Q is a constant matrix.
Moreover, the system is asymptotically stable if and only if the eigenvalues of Q lie
in the open left-half plane. Without loss of generality, we assume t0 = 0.

Now we review the Toeplitz transformation of periodic functions. Expand X(t) ∈
L2[0, h] to its Fourier series

∑+∞
m=−∞ Xmejmωht with ωh := 2π/h. The Toeplitz

transformation on X(t), denoted by T {X(t)}, maps X(t) onto a doubly infinite-
dimensional block Toeplitz operator [26] (or block Laurent operator [10, p. 564]) of
the form

T {X(t)} :=

⎡⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... · ·

·
· · · X0 X−1 X−2 · · ·
· · · X1 X0 X−1 · · ·
· · · X2 X1 X0 · · ·

· ·
· ...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ =: X.(2.2)

We further define A := T {A(t)}, B := T {B(t)}, C := T {C(t)}, P := T {P (t, 0)},
B̂ := T {P−1(t, 0)B(t)}, Ĉ := T {C(t)P (t, 0)}, Q := diag[. . . , Q,Q,Q, . . .], and

E(s) := diag[. . . , ϕ−2(s)I, ϕ−1(s)I, ϕ0(s)I, ϕ1(s)I, ϕ2(s)I, . . .],(2.3)

where ϕm(s) := s + jmωh,m ∈ Z, s ∈ C. It follows that E(s) = E(j0) + sI, where
I := T {I}.

We need the following function sets to validate the Fourier analysis and Toeplitz
transformation operations involved (see [29] and [32] for details) and simplify our
statements.

LPCD[0, h] :=

{
f(t) :

f(t) is piecewise continuous and
differentiable at a.e. t ∈ [0, h]

}
,

LPCC[0, h] :=

{
f(t) :

f(t) is piecewise continuous and its Fourier series
expansion is convergent to f(t0) for a.e. t0 ∈ [0, h]

}
,

LCAC[0, h] :=

{
f(t) :

f(t) is continuous and the Fourier series
expansion of f(t) is absolutely convergent

}
⊂ LPCC[0, h].

Here PCD stands for piecewise continuous and differentiable, and PCC is short for
piecewise continuous and convergent, while CAC is the abbreviation for continuous
and absolutely convergent.
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Now we state the similarity transformation formulas and eigenvalues of FDLCP
systems in terms of the Toeplitz transformation of the system matrices and the Floquet
factorization of the transition matrix [29], [31]. To facilitate the statements, let lE :=
{x ∈ l2 : E(j0)x ∈ l2}. Then, lE is a proper subset of l2 and dense in l2 [29].

Lemma 2.1. In the FDLCP system (2.1), assume that A(t) ∈ LPCD[0, h] and
B(t), C(t) ∈ LPCC[0, h]. Then, lE is P - and P−1-invariant. Also, the unbounded
operators P (E(j0)−Q)P−1 and E(j0)−A are densely defined on l2 (or equivalently,
well defined on the subset lE ⊂ l2) and coincide with each other:

P (E(j0) −Q)P−1 = E(j0) −A.(2.4)

Moreover, it holds on the whole Hilbert space l2 that B̂ = P−1B and Ĉ = C P .
Furthermore, system (2.1) is asymptotically stable if and only if the set Λ of all

eigenvalues of Q−E(j0), i.e., Λ = {λ(Q) + jmωh : m ∈ Z}, lies in the open left-half
plane. It is also true that Λ = ΛA where ΛA is the set of all eigenvalues of A−E(j0).
In the above, λ(·) denotes the set of all eigenvalues of the matrix (·).

Now we introduce the harmonic transfer operator [26] of system (2.1) given by

G(s) := C(E(s) −A)−1B(2.5)

in which A − E(s) is called the harmonic state operator of system (2.1). In view of
(2.4) in Lemma 2.1, Q−E(s) is called the Floquet state operator of (2.1) to distinguish

it from A−E(s). When E−1(s) exists, I −E−1(s)A (respectively, I −E−1(s)Q) will
be called the modified harmonic state operator (respectively, the modified Floquet
state operator) of system (2.1).

Now we consider a domain Ω ⊂ C and assume that s ∈ Ω. Let us further give
assumptions A1 and A2 about Ω to facilitate our statements.

A1 The domain Ω is closed and has a simple closed boundary, denoted by ∂Ω, and
thus is a simply connected domain on C. Also, it holds that

|Im(s)| < KΩ := ωh (∀s ∈ Ω).(2.6)

Furthermore, E(s)−Q is an invertible mapping from lE to l2 for each s ∈ ∂Ω.
A2 On the domain Ω, E(s) is an invertible mapping from lE to l2.

Note that the last assumption of A1 is satisfied if and only if ∂Ω contains no points in
Λ, while A2 is satisfied if and only if Ω does not contain any points in Γ := {jmωh :
m ∈ Z}. Hence, relation (2.4) tells us that

P (E(s) −Q)−1P−1 = (E(s) −A)−1(2.7)

for all s ∈ Ω \ Λ. That is, E(s) − A is an invertible mapping from lE to l2 for each
s ∈ Ω \ Λ. (2.7) says that the harmonic transfer operator G(s) is well defined on
l2 for all s ∈ Ω\Λ. Lemma 2.2 gives basic facts about G(s) that play a key role in
developing the Nyquist criterion.

Lemma 2.2. In the FDLCP system (2.1), let A(t) ∈ LPCD[0, h] and B(t), C(t) ∈
LPCC[0, h]. Assume that the domain Ω satisfies A1. Then for each s ∈ Ω\Λ, (E(s)−
Q)−1 ∈ C2(l2), and thus G(s) ∈ C2(l2). Furthermore, ‖G(s)‖2 has a uniform upper
bound over s ∈ ∂Ω.

Now we introduce the 2-regularized determinant of Hilbert–Schmidt operators and
derive some properties about the 2-regularized determinant of the modified harmonic
transfer operators.
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Let λi(A) denote the ith eigenvalue of a linear compact operator A : l2 → l2,
and si(A) := (λi(A

∗A))1/2 be its ith singular value. For p = 1 and 2, the set of all
compact operators A : l2 → l2 satisfying ‖A‖p := (

∑
i si(A)p)1/p < ∞ is denoted by

C1(l2) and C2(l2), respectively. In particular, the operators in C1(l2) are called trace
class operators while those in C2(l2) are called Hilbert–Schmidt operators [5]. Clearly,
C1(l2) ⊂ C2(l2). For A ∈ C1(l2), the operator trace and determinant below are well
defined in the sense that the infinite series and product converge

tr(A) :=
∑

λi(A), det(I + A) :=
∏

(1 + λi(A)).(2.8)

Note that for A ∈ C2(l2), R2(A) := (I + A) exp{−A} − I ∈ C1(l2). Thus, it is
justified to define the determinant of I + R2(A) in the sense of (2.8), denoted by
det2(I +A) := det(I +R2(A)), which is called the 2-regularized determinant of I +A.
For our aim, assume that B ∈ C2(l2). Then

det2(I + A) =
∏

[(1 + λi(A)) exp(−λi(A))],(2.9)

det2(I + A)det2(I + B) = det2[(I + A)(I + B)] exp{tr(AB)}.(2.10)

By Proposition 1.3 of [9, p. 98], if A ∈ C2(l2) and B and C are bounded linear
operators on l2, then BAC belongs to C2(l2) and ‖BAC‖2 ≤ ‖B‖l2/l2‖A‖2‖C‖l2/l2 .
Moreover, Theorem 3.1 of [9, p. 43] says that AB and BA have the same nonzero
eigenvalues with multiplicity taken into account, i.e., det2(I + AB) = det2(I + BA).

When establishing a Nyquist-type criterion for FDLCP systems, one might be
tempted to talk about some sort of determinant about the harmonic state operator
A−E(s) or the Floquet state operator Q−E(s) as in the LTI continuous-time case.
However, such a determinant notion for these unbounded operators is not readily
available in the literature. The following lemma will be a key to get around the
difficulty, in which the 2-regularized determinant of these operators premultiplied by
−E−1(s) (i.e., the modified harmonic and Floquet state operators) are considered.

Lemma 2.3. In the FDLCP system (2.1), let A(t) ∈ LCAC[0, h] ∩ LPCD[0, h].
Assume that the domain Ω satisfies A1 and A2. Then for each s ∈ Ω, E−1(s) ∈
C2(l2), and thus E−1(s)A ∈ C2(l2), E

−1(s)Q ∈ C2(l2). In particular, ‖E−1(s)‖2 has
a uniform upper bound over s ∈ Ω. Furthermore,

det2[I − E−1(s)A] = gA(s) det2[I − E−1(s)Q],(2.11)

where the function gA(s) does not vanish for each s ∈ Ω and is analytic over Ω. Also,
I −E−1(s)A is invertible for each s ∈ Ω, and the inverse of I −E−1(s)A is bounded
on l2.

Lemma 2.4. Let λk(Q) denote the kth eigenvalue of the n × n matrix Q. If the
domain Ω satisfies A1 and A2, then the function

fQ(s) := det2[I − E−1(s)Q]

=
n∏

k=1

∞∏
m=−∞

(
1 − λk(Q)

s + jmωh

)
exp

{
λk(Q)

s + jmωh

}
(2.12)

is analytic on Ω, which has a zero at each point λk(Q) − jmωh, k = 1, 2, . . . , n, and
m ∈ Z (i.e., counted up to multiplicity), and has no other zeros on the complex plane.
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Remark 1. Lemma 2.4 says that the set of all zeros of fQ(s) is equal to the set
Λ of all the eigenvalues of Q − E(j0). This, together with Lemma 2.1, tells us that
asymptotic stability of an FDLCP system can be reflected by the function fQ(s).
This is the starting point of establishing a generalized Nyquist criterion via the 2-
regularized determinant approach. To relate fQ(s) to its closed-loop counterpart via
the 2-regularized determinant of the harmonic return differential operator will be the
task in the following section, by which a Nyquist criterion of FDLCP systems will be
derived in a similar fashion to the corresponding result in the LTI continuous-time
systems.

In the following, ∂Ω will be chosen to form a Nyquist contour Nr, which needs to
directly pass through the origin or to include the origin in the interior of the region
enclosed by Nr (that is, to bypass the origin if there are any eigenvalues of Q−E(j0)
at the origin). However, such an Ω violates the assumption A2, since 0 ∈ Γ. To
surmount this problem, we introduce a shift factor ρ > 0 to s and replace assumption
A2 by the following assumption.

A2′ On the domain Ω, E(s + ρ)(= E(s) + ρ I) is an invertible mapping from lE to
l2.

As we shall see later, assumption A2′ can in fact be essentially simplified to the
condition ρ > 0 in our context due to the specific choice of the domain Ω given later.
The introduction of such ρ > 0 is crucial only in the FDLCP setting exactly because
E(s + ρ) is noninvertible at s = 0 if ρ = 0; this noninvertibility causes a problem
when we try to deal with the 2-regularized determinant of I − E−1(s)A. It is easy
to see that such a difficulty does not exist in the LTI continuous-time case since in
that case det(sI − A) can be considered directly and s need not be inverted (recall
the paragraph just before Lemma 2.3).

Remark 2. Once we introduce ρ > 0, we consider det2[I−E−1(s+ρ)(A+ρI)] and
det2[I−E−1(s+ρ)(Q+ρI)] instead of similar relations in Lemmas 2.3 and 2.4. Hence,
what we indeed employ in the subsequent arguments is the accordingly modified
versions of Lemmas 2.3 and 2.4. Note that A1 is not affected by this shift factor. Thus,
Lemma 2.3 still holds even if A2 is replaced by A2′, provided that E(s), gA(s), A, and
Q are also replaced by E(s + ρ), gA+ρI(s + ρ), A + ρI, and Q + ρI, respectively. To
facilitate the following descriptions, we will refer to this modified result as Lemma 2.3′.
Similarly, Lemma 2.4 holds true when A2 is replaced by A2′ if E(s), fQ(s), Q, λk(Q),
and jmωh are replaced by E(s+ ρ), fQ+ρI(s+ ρ), Q+ ρI, λk(Q+ ρI), and ρ+ jmωh,
respectively. This modified result will be referred to as Lemma 2.4′. Moreover, it is
obvious that the set of zeros of fQ+ρI(s + ρ) equals that of the set of zeros of fQ(s).
Clearly, these modified results can be validated even if condition (2.6) is removed from
A1, because of the periodicity of E(s).

It is worth noticing that the introduction of the shift factor ρ > 0 does not
cause any approximation effect at all on the stability analysis. This is because the
invertibility of I−E−1(s+ρ)(A+ρI) is equivalent to that of E−1(s+ρ){I−E−1(s+
ρ)(A + ρI)} = E(s) −A.

3. 2-Regularized Nyquist stability criterion. In this section, we develop a
Nyquist criterion by the 2-regularized determinant for stability analysis of the closed-
loop FDLCP system when an output feedback is introduced. In system (2.1), let
A(t), B(t), C(t) ∈ LCAC[0, h]∩LPCD[0, h], and an h-periodically time-varying output
feedback u = −K(t)y+ v is introduced. This leads to the closed-loop FDLCP system
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described by

Gc :

{
ẋ = Ac(t)x + B(t)v,

y = C(t)x.
(3.1)

Here v is a new reference input and it is assumed that K(t) ∈ LCAC[0, h]∩LPCD[0, h].
Clearly, Ac(t) := A(t) −B(t)K(t)C(t) ∈ LCAC[0, h] ∩ LPCD[0, h]. These assumptions
about A(t), B(t), C(t), and K(t) ensure that the Toeplitz transformation and Lem-
mas 2.1–2.4 (see also Remark 2) apply to both the open- and closed-loop FDLCP
systems.

Now such a question emerges, In what way can one claim asymptotic stability of
the closed-loop system Gc by observing the open-loop harmonic transfer operator?

3.1. 2-Regularized determinant relation between open- and closed-loop
modified harmonic state operators. As known in the LTI case, one must obtain
the relationship between the open- and closed-loop pole polynomials before claiming
the Nyquist criterion. The aim of this subsection is to get a similar relationship
in the FDLCP case, where Lemma 2.4 and Remark 2 suggest that fQ+ρI(s + ρ) =
det2[I−E−1(s+ρ)(Q+ρI)], and the corresponding closed-loop counterpart plays the
role of pole polynomials. To derive such a relationship, let us define K = T {K(t)}.
Then it follows from Lemma 2.2 that for each s ∈ Ω\Λ, KG(s) is well defined and
belongs to C2(l2). Therefore, it makes sense to talk about the det2 of the return
difference operator I + KG(s) for each s ∈ Ω\Λ. Noting that E(s + ρ) is invertible
for all s ∈ Ω by A2′, we compute det2 of I + KG(s) as

det2[I + KG(s)] = det2[I + (E(s) −A)−1BK C]

= det2[I + (I − E−1(s + ρ)(A + ρI))−1E−1(s + ρ)BK C]

= det2[(I − E−1(s + ρ)(A + ρI))−1(I − E−1(s + ρ)(Ac + ρI))],(3.2)

where Ac := A−BK C. Note that A−BK C = T {Ac(t)} holds since B(t),K(t), and
C(t) belong to LCAC[0, h] [17]. In (3.2), we used the facts that (E(s)−A)−1 ∈ C2(l2)
for each s ∈ Ω\Λ and that K C is bounded on l2, where the first fact can be shown
by (2.7) and Lemma 2.2.

Before we expand (3.2) via (2.10), we must show that the det2’s of (I −E−1(s+
ρ)(A + ρI))−1 and I − E−1(s + ρ)(Ac + ρI) are well defined for all s ∈ Ω \ Λ. To
this end, let us define the infinite-dimensional matrix M(s + ρ) such that for each
s ∈ Ω\Λ, it holds that

(I − E−1(s + ρ)(A + ρI))(I + M(s + ρ)) = I.(3.3)

It follows easily that M(s + ρ) is indeed given by

M(s + ρ) = E−1(s + ρ)(A + ρI)(I − E−1(s + ρ)(A + ρI))−1.

Then the fact that E−1(s+ ρ) ∈ C2(l2) and that (A+ ρI)(I −E−1(s+ ρ)(A+ ρI))−1

is bounded on l2 (by Lemma 2.3) implies that M(s + ρ) ∈ C2(l2). Similarly, for each
s ∈ Ω, E−1(s + ρ)(Ac + ρI) and E−1(s + ρ)(A + ρI) belong to C2(l2). Thus it makes
sense to deal with the det2’s of (I −E−1(s+ ρ)(A+ ρI))−1, I −E−1(s+ ρ)(Ac + ρI),
and I − E−1(s + ρ)(A + ρI) on Ω\Λ, separately.

Now taking the det2 on both sides of (3.3), we obtain

det2[I − E−1(s + ρ)(A + ρI)]

=
exp{−tr(E−1(s + ρ)(A + ρI)M(s + ρ))}

det2[I + M(s + ρ)]
.(3.4)



REGULARIZED NYQUIST CRITERIA IN PERIODIC SYSTEMS 625

Then expanding the det2 of (3.2) via (2.10) and using (3.4), we have

det2[I + KG(s)] = det2[(I − E−1(s + ρ)(A + ρI))−1]

×det2[I − E−1(s + ρ)(Ac + ρI)]

× exp{tr(M(s + ρ)E−1(s + ρ)(Ac + ρI))}

= exp{Δ(s + ρ)}det2[I − E−1(s + ρ)(Ac + ρI)]

det2[I − E−1(s + ρ)(A + ρI)]
,(3.5)

where the scalar function Δ(s + ρ) is given by

Δ(s + ρ) := tr(M(s + ρ)E−1(s + ρ)(Ac + ρI)) − tr(M(s + ρ)E−1(s + ρ)(A + ρI))

= −tr(E−1(s + ρ)(A + ρI)(E(s) −A)−1BK C).(3.6)

3.2. Nyquist contour and Nyquist locus. Before leading the above argu-
ments to a Nyquist stability criterion, we need to describe in what way an appropriate
Nyquist contour, i.e., ∂Ω, should be taken and how the corresponding Nyquist locus
should be plotted in the 2-regularized determinant sense.

First let us see how an appropriate Nyquist contour should be taken.
To this purpose, we mention some facts about the eigenvalues of Q − E(j0) (or

equivalently the operator A − E(j0)), which are given in Lemma 2.1. First, all the
eigenvalues of Q−E(j0) are located in a vertical strip region parallel to the imaginary
axis; second, the eigenvalues distribution pattern in the horizontal strip

CF := {s ∈ C : −ωh/2 < Im(s) ≤ ωh/2},(3.7)

which is called the fundamental strip [26], unfolds itself vertically to both −j∞ and j∞
with the period jωh. In other words, if we can understand the eigenvalue distribution
pattern in CF , then the whole eigenvalue structure of Q−E(j0) is clarified. Based on
this, a possible Nyquist contour would be the boundary of the right-half fundamental
strip of CF , i.e., {s : Re(s) ≥ 0, s ∈ CF }. However, since G(s) is not well defined for
s ∈ Λ, the actual Nyquist contour should avoid going through these points in Λ. Hence
the Nyquist contour Nr shown in Figure 3.1 is taken. In Figure 3.1 the crosses (×’s)
denote possible eigenvalues of the open-loop operator Q− E(j0) on the boundary of
the right-hand half of CF . It should be stressed that the Nyquist contour Nr bypasses
the eigenvalues of Q − E(j0) on the imaginary axis with −ωh/2 < Im(λ) < ωh/2, if
any, from the left-hand side while other eigenvalues on the boundary of the right-half
fundamental strip, if any, from the upper-side, via a semicircle with the radius r that
is small enough. Thus, if Q− E(j0) has eigenvalues on the imaginary axis such that
−ωh/2 < Im(λ) ≤ ωh/2, they are to be included in the interior of the region enclosed
by Nr. Now let us assume that the right edge of Nr is far enough from the imaginary
axis so that there are no eigenvalues of Q − E(j0) on it, and finally, let us define
the domain Ω as the union of the Nyquist contour Nr and the interior of the region
enclosed by Nr. Then, it is obvious that Ω satisfies A1 and A2′ whenever ρ > r ≥ 0
and KΩ > ωh/2 + r. Hence the arguments from (3.2) to (3.6) are validated for such
a ρ.

Next let us see how the corresponding Nyquist locus can be plotted.
Now segment the Nyquist contour Nr given in Figure 3.1 into four pieces Nab,

Nbc, Ncd, and Nda in the obvious fashion and note the following observations. First,
since det2[I+KG(s)] and Δ(s+ρ) are jωh-periodic in the frequency domain, the plot
of det2[I + KG(s)] exp{−Δ(s + ρ)} corresponding to Nab will form a closed curve.
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Fig. 3.1. Nyquist contour Nr.

Second, for each s ∈ Nbc, there is a corresponding complex number s̃ = s − jωh ∈
Nda such that det2[I + KG(s)] exp{−Δ(s + ρ)} = det2[I + KG(s̃)] exp{−Δ(s̃ +
ρ)} due to the same periodicity. The only difference between the plot of det2[I +
KG(s)] exp{−Δ(s+ ρ)} corresponding to Nbc and that corresponding to Nda is that
these two plots are drawn in just opposite directions. To facilitate the discussions,
we assume that Nbc and Nda are taken in such a way that they bypass closed-loop
eigenvalues, if any, in a similar fashion to what is done for open-loop eigenvalues.
Clearly, this requirement on Nbc and Nda can always be satisfied, in principle, and
brings no essential difficulty to validate the second assertion we just claimed while
keeping A2′. Third, if Re(s) is made large enough for s ∈ Ncd (i.e., the Nyquist contour
Nr is extended to the right far enough so that it encloses all the unstable closed-loop
eigenvalues on the fundamental strip), det2[I +KG(s)] exp{−Δ(s+ ρ)} → 1 for each
s ∈ Ncd. These facts indicate that the plot segment of det2[I+KG(s)] exp{−Δ(s+ρ)}
corresponding to Nbc, Ncd, and Nda neither goes through the origin nor contributes
to encirclements around the origin. In other words, to investigate the encirclements
of det2[I + KG(s)] exp{−Δ(s + ρ)} around the origin on Nr, it is enough to see the
plot of det2[I + KG(s)] exp{−Δ(s + ρ)} corresponding to Nab. In view of this, the
plot det2[I + KG(s)] exp{−Δ(s + ρ)} : Nab → C is called the Nyquist locus of (2.1)
when s ∈ Nab moves in the clockwise direction with respect to Nr.

3.3. 2-Regularized Nyquist stability criterion. On the basis of arguments
in the two preceding subsections, we are ready to show the 2-regularized Nyquist
criterion, which is the main result of this paper.

Theorem 3.1. Assume that A(t), B(t), C(t) of the FDLCP system (2.1) and the
feedback matrix K(t) belong to LCAC[0, h] ∩ LPCD[0, h]. Let nus denote the number
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of the unstable eigenvalues of the open-loop Floquet state operator Q − E(j0) (or
equivalently, the harmonic state operator A − E(j0)) in the fundamental strip CF

defined in (3.7) counted according to their multiplicity. Take an arbitrary positive
number ρ and a sufficiently small number r according to the open-loop eigenvalue
condition of Q−E(j0) on the imaginary axis such that ρ > r ≥ 0, and then consider
the harmonic transfer operator G(s) and the scalar function Δ(s+ρ) defined in (3.6).
Then, the closed-loop system Gc is asymptotically stable if and only if the Nyquist
locus, det2[I + KG(s)] exp{−Δ(s + ρ)} : Nab → C, vanishes nowhere on Nab and
encircles the origin nus times in the counterclockwise sense.

Proof. Under the given assumptions on the system matrices and the feedback
gain matrix, Lemma 2.3′ stated in Remark 2 ensures a modified version of (2.11),
which reads

det2[I − E−1(s + ρ)(A + ρI)] = gA+ρI(s + ρ) det2[I − E−1(s + ρ)(Q + ρI)]

for each s ∈ Ω, where gA+ρI(s+ρ) is analytic and vanishes nowhere on Ω. By applying
Lemma 2.3′ to the closed-loop term det2[I −E−1(s+ ρ)(Ac + ρI)], we readily obtain

det2[I − E−1(s + ρ)(Ac + ρI)] = gAc+ρI(s + ρ) det2[I − E−1(s + ρ)(Q
c
+ ρI)]

for each s ∈ Ω, where gAc+ρI(s + ρ) is analytic and vanishes nowhere on Ω. Here,
Q

c
:= T {Qc} with Qc being the constant matrix of the Floquet factorization of the

transition matrix Φc(t, t0) of the closed-loop FDLCP system (3.1). Thus, relation
(3.5) can be rewritten as

det2[I + KG(s)] exp{−Δ(s + ρ)}

=
gAc+ρI(s + ρ) det2[I − E−1(s + ρ)(Q

c
+ ρI)]

gA+ρI(s + ρ) det2[I − E−1(s + ρ)(Q + ρI)]
.(3.8)

Now we concentrate the attention on the right-hand side of (3.8). By Lemma 2.4′

stated in Remark 2, the right-hand side of (3.8) is just gAc+ρI(s + ρ)fQc+ρI(s + ρ)/
gA+ρI(s + ρ)fQ+ρI(s + ρ) =: d(s), which is analytic on Ω except at the zeros of
fQ+ρI(s+ρ) contained in Ω. It is also clear that d(s) is meromorphic by Theorem 15.12
of [24]. Apparently, by the definition of Ω, only finitely many zeros of fQc+ρI(s+ρ) and
fQ+ρI(s+ρ) are contained in Ω, which in particular implies that (3.8) is not identically
zero over Ω. These facts imply that the argument principle about complex functions
applies to d(s) if the right-hand side of (3.8) never vanishes at each s ∈ ∂Ω(= Nr) (this
guarantees that there are no zeros of fQc+ρI(s+ρ) located on Nr). Note by Remark 2
that the sets of zeros of fQ+ρI(s+ ρ) and fQc+ρI(s+ ρ) are actually independent of ρ
and just the sets of the eigenvalues of the open- and closed-loop operators, Q−E(j0)
and Q

c
− E(j0), respectively. Furthermore, it follows readily that the right-hand

side of (3.8) never vanishes on the segments Nbc, Ncd, and Nda of Nr because of the
assumption that they do not go through the closed-loop eigenvalues. Hence, some
straightforward discussions will lead to the desired assertions.

Remark 3. It should be stressed that nus indicates the number of unstable eigen-
values of Q−E(j0) in the closed right-half portion of the fundamental strip. However,
it is easy to see that nus equals the number of the unstable eigenvalues of Q in the
whole closed right-half plane.

3.4. Equivalent interpretation of Theorem 3.1. In this subsection we show
that Theorem 3.1 can have a more explicit expression which will provide convenience
for implementing Theorem 3.1. To this end, let us return to (3.2) and compute the
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det2 of I + KG(s) again but after the harmonic transfer operator G(s) has been
rewritten as G(s) = Ĉ(E(s)−Q)−1B̂ by means of Lemma 2.1 and (2.7). That is, we
compute

det2[I + KG(s)] = det2[I + K Ĉ(E(s) −Q)−1B̂].(3.9)

It is not hard to see that all the arguments around (3.2)–(3.6) can be repeated on the
operator K Ĉ(E(s) −Q)−1B̂ ∈ C2(l2). Then we can conclude that

det2[I + KG(s)] exp{−Δ̃(s + ρ)} =
det2[I − E−1(s + ρ)(Ãc + ρI)]

det2[I − E−1(s + ρ)(Q + ρI)]
(3.10)

with Ãc := Q− B̂ K Ĉ and

Δ̃(s + ρ) := −tr(E−1(s + ρ)(Q + ρI)(E(s) −Q)−1B̂ K Ĉ).(3.11)

Now we observe that E(j0)− Ãc = P−1(E(j0)−Ac)P , where the similarity transfor-
mation formula is used. This equation clearly says that every eigenvalue of E(j0)−Ãc

is also an eigenvalue of E(j0) − Ac and vice versa. This implies that one can test
stability of the closed-loop system Gc by that of the closed-loop system G̃c : (Ãc(t) :=
Q− B̂(t)K(t)Ĉ(t), B̂(t), Ĉ(t)). Combining this fact with (3.10), we have the following
corollary about Theorem 3.1.

Corollary 3.2. Suppose all the assumptions of Theorem 3.1 hold. Take an arbi-
trary positive number ρ and a sufficiently small number r according to the open-loop
eigenvalue condition of Q−E(j0) on the imaginary axis such that ρ > r ≥ 0. Consider

the harmonic transfer operator G(s) and the scalar function Δ̃(s+ ρ) given in (3.11).
Then the closed-loop system Gc is asymptotically stable if and only if the modified
Nyquist locus, det2[I +KG(s)] exp{−Δ̃(s + ρ)} : Nab → C vanishes nowhere on Nab

and encircles the origin nus times in the counterclockwise sense.
The Nyquist locus in Theorem 3.1 is defined by det2[I+KG(s)] exp{−Δ(s+ρ)} :

Nab → C, while that of Corollary 3.2 is defined by det2[I + KG(s)] exp{−Δ̃(s +
ρ)} : Nab → C. That is, in Corollary 3.2 one only needs to compute Δ̃(s + ρ)
instead of Δ(s+ρ). If we further compute det2[I+KG(s)] by the right-hand relation
of (3.9), then the block-diagonal structures of (E(s) − Q)−1 and E−1(s + ρ)(Q +

ρI)(E(s) − Q)−1 will bring us convenience in plotting the modified Nyquist locus

det2[I + KG(s)] exp{−Δ̃(s + ρ)} : Nab → C as we will see in the next section.
Remark 4. Note that only the “DC-part” of B̂(t)K(t)Ĉ(t) contributes to Δ̃(s+ρ).

In other words, if the “DC-part” of B̂(t)K(t)Ĉ(t) is zero, then the exponential part on
the left-hand side of (3.10) can be dropped. As a side note, we point out that Δ(s+ρ)
does not equal Δ̃(s+ρ) since P and E−1(s) do not commute, and det2[I−E−1(s)Q] �=
det2[I − E−1(s)A] in general.

Remark 5. Since any periodically time-varying state matrix A(t) can be rewritten
in the form of Aconst + Ã(t) with Aconst being a constant matrix, stability of the
FDLCP system with the state matrix A(t), no matter this FDLCP system itself
is open- or closed-loop, can be easily tested by recasting the stability problem as a
closed-loop stability problem with (Aconst, I, I) = (Q, I, I) being the open-loop system
matrices and −Ã(t) being (treated as) the feedback gain. This recasting technique
means that Corollary 3.2 can be easily applied without computing the transition
matrix of any FDLCP models. Having this recasting technique in mind, a finite-
dimensional truncated implementation of the modified Nyquist criterion is developed
in the following section.
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4. Implementation of the 2-regularized Nyquist criterion. In the previ-
ous section, generalized Nyquist criteria were developed for asymptotic stability of
FDLCP systems. Unfortunately, however, it is hard to implement them directly due
to the infinite-dimensionality of the harmonic transfer operator and operators involved
in the determinant and trace computations. In this section, we consider the imple-
mentation problem of the 2-regularized Nyquist criterion in Corollary 3.2 through the
staircase truncations on G(s) and other infinite-dimensional operators involved, and
then the closed-loop stability analysis is reduced to that of a finite-dimensional LTI
continuous-time system in an asymptotic sense.

The staircase truncation is first proposed for the H∞ norm computation in FDLCP
systems [30]. It should be noted that although the same truncation is adopted, the
convergence problem in the H∞ norm computation and that in the Nyquist locus
plotting are essentially different. More precisely, in the H∞ norm case convergence
is related to infinite summations, while in the Nyquist locus case of this paper con-
vergence pertains to infinite products. This discrepancy alerts us that just sketching
the convergence proof might mislead the reader in understanding the implementation
algorithm, and thus we keep the arguments in their complete form. Another benefit
to make the convergence arguments in this way is that the inequalities in the conver-
gence arguments can explicitly provide us with estimation formulas of the truncation
size, though we will not deal with the size estimation problem in the paper due to the
space limitation.

For simplicity, the discussions are given for the case of K = I throughout this
section. This brings no loss of generality if we notice that one can always treat K C
as a single operator in the harmonic return difference operator I + KG(s).

4.1. Truncation description. In this subsection we describe the staircase trun-
cation. Strictly speaking, the staircase truncation is two-step: first skew truncate G(s)
to G[N ](s), and then truncate G[N ](s) in a staircase fashion to G[N,M ](s). Namely,

we take an integer N ≥ 1 and approximate G(s) = Ĉ(E(s) −Q)−1B̂ by

G[N ](s) = Ĉ [N ](E(s) −Q)−1B̂[N ],(4.1)

where B̂[N ] := T {B̂N (t)}. Here B̂N (t) :=
∑N

m=−N B̂mejmωht with {B̂m} being the

Fourier coefficient sequence of B̂(t). Similarly, Ĉ [N ] is constructed in terms of {Ĉm},
which is the Fourier coefficient sequence of Ĉ(t). Only the skew truncation cannot
reduce the det2 computation to a finite-dimensional one, and thus we introduce the
staircase truncation on G(s) as follows:

G[N,M ](jϕ) = Ĉ [N,M ](EM (s) −Q
M

)−1B̂[N,M ].(4.2)

Here, the infinite-dimensional matrix B̂[N,M ] := diag[. . . , B̂NM , B̂NM , B̂NM , . . .] is
defined with

B̂NM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B̂0 · · · B̂−N 0
...

. . .
. . .

B̂N
. . . B̂−N

. . .
. . .

...

0 B̂N · · · B̂0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

(2M+1)−blocks

,(4.3)
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where we assume M ≥ N + 1. The infinite-dimensional matrix Ĉ [N,M ] is defined

similarly to B̂[N,M ] but in terms of the Fourier coefficients of Ĉ(t). Furthermore,
the infinite-dimensional but block-diagonal operators E(s) and Q are partitioned into
diagonal blocks accordingly. That is,

Q
M

:= diag[. . . , QM , QM , QM , . . .](= Q),

EM (s) := diag[. . . , EM,−1(s), EM0(s), EM1(s), . . .](= E(s))

with QM = diag[Q,Q, . . . , Q] being (2M + 1) × (2M + 1) and

EMm(s) = diag[ϕm(2M+1)−M (s)I, . . . , ϕm(2M+1)(s)I, . . . , ϕm(2M+1)+M (s)I],

where m ∈ Z.

4.2. Truncation convergence. To state the final result, we need to establish
convergence lemmas associated with the staircase truncation on the harmonic transfer
operator in the det2 and trace sense. In this subsection, we show relevant convergence
lemmas for the suggested truncation treatment.

Lemma 4.1. Assume in the FDLCP system (2.1) that A(t) ∈ LPCD[0, h] and
B(t), C(t) ∈ LCAC[0, h], and the domain Ω satisfies A1. Then for any μ > 0, there
exists an integer N0(μ) > 0 such that |det2[I + G[N ](s)] − det2[I + G(s)]| < μ (∀N ≥
N0(μ),∀s ∈ ∂Ω).

On the basis of Lemma 4.1, to show the convergence that det2[I + G[N,M ](s)] →
det2[I + G(s)] as N,M → ∞, it suffices to show that det2[I + G[N,M ](s)] → det2[I +
G[N ](s)] as M → ∞ for each fixed N > 0. This is answered by the following lemma.

Lemma 4.2. Assume in the FDLCP system (2.1) that A(t) ∈ LPCD[0, h] and
B(t), C(t) ∈ LCAC[0, h], and the domain Ω satisfies A1. Then for any μ > 0 and fixed
N > 0, there exists an integer M0(N,μ) > 0 such that |det2[I +G[N,M ](s)]−det2[I +
G[N ](s)]| < μ (∀M ≥ M0(N,μ),∀s ∈ ∂Ω).

Now we apply the staircase truncation on the infinite-dimensional matrix B̂ Ĉ as

we do on G(s), and get the truncated version B̂C [N,M ], which is defined similarly to

B̂[N,M ] but in terms of the Fourier coefficients of B̂(t)Ĉ(t). Based on this truncation,
we further define

Δ̃[N,M ](s + ρ) := −tr
(
E−1(s + ρ)(Q + ρI)(E(s) −Q)−1B̂C [N,M ]

)
= −

∑
m

tr
(
Δ̃m[N,M ](s + ρ)

)
,(4.4)

where IM is defined similarly to Q
M

but in terms of the identity matrix I and

Δ̃m[N,M ](s + ρ) := E−1
Mm(s + ρ)(QM + ρIM )(EMm(s) −QM )−1B̂CNM(4.5)

with m ∈ Z and IM being the (2M + 1) × (2M + 1) blockwise identity. The matrix

B̂CNM is defined similarly to B̂NM but in terms of the Fourier coefficients of B̂(t)Ĉ(t).
Then by repeating arguments similar to those in the proofs of Lemmas 4.1 and 4.2,
the following lemma can be shown.

Lemma 4.3. Assume in the FDLCP system (2.1) that A(t) ∈ LPCD[0, h] and
B(t), C(t) ∈ LCAC[0, h], and the domain Ω satisfies A1 and A2′. Then for any μ >
0 and fixed N > 0, there exist integers N1(μ) > 0 and M1(N,μ) > 0 such that
|Δ̃[N,M ](s + ρ) − Δ̃(s + ρ)| < μ (∀N ≥ N1(μ),M ≥ M1(N,μ),∀s ∈ ∂Ω).
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Combining Lemmas 4.1, 4.2, and 4.3, we can get a tight estimation of det2[I +
G(s)] exp{−Δ̃(s+ρ)} by det2[I+G[N,M ](s)] exp{−Δ̃[N,M ](s+ρ)}. Now we show that
the latter can be reduced to finite-dimensional computations. Indeed, by definition,
we have

det2
[
I + G[N,M ](s)

]
exp

{
−Δ̃[N,M ](s + ρ)

}
=

∏
m

∏
k

(
1 + λk

(
Gm[N,M ](s)

))
exp

{
−λk

(
Gm[N,M ](s)

)}
× exp

{
−
∑
m

tr
(
Δ̃m[N,M ](s + ρ)

)}
,(4.6)

where the finite-dimensional matrix Gm[N,M ](s) is given by

Gm[N,M ](s) := ĈNM (EMm(s) −QM )−1B̂NM (m ∈ Z).(4.7)

Lemma 4.4. Assume in the FDLCP system (2.1) that A(t) ∈ LPCD[0, h] and
B(t), C(t) ∈ LCAC[0, h], and the domain Ω satisfies A1 and A2′. Then for any fixed
N , it holds uniformly over s ∈ ∂Ω that⎧⎪⎪⎨⎪⎪⎩

lim
M→∞

∏
m�=0

∏
k

(
1 + λk

(
Gm[N,M ](s)

))
exp

{
−λk

(
Gm[N,M ](s)

)}
= 1,

lim
M→∞

∑
m�=0

tr
(
Δ̃m[N,M ](s + ρ)

)
= 0.

(4.8)

On the basis of Lemma 4.4 and (4.6), it follows readily that for any μ > 0 and
fixed N > 0, there exists an integer M2(N,μ) such that ∀M ≥ M2(N,μ) and ∀s ∈ ∂Ω∣∣det2

[
I + G[N,M ](s)

]
exp

{
−Δ̃[N,M ](s + ρ)

}
−det2

[
IM + G0[N,M ](s)

]
exp

{
−tr

(
Δ̃0[N,M ](s + ρ)

)}∣∣ < μ.(4.9)

A complete proof for (4.9) is given in Appendix B to keep our mainstream discussions
clear.

4.3. Finite-dimensional 2-regularized Nyquist criterion. Summarizing the
above discussions, we are led immediately to the following theorem, which reduces the
Nyquist criterion of Corollary 3.2 to a finite-dimensional one in an asymptotic sense.

Theorem 4.5. Suppose in the FDLCP system (2.1) that A(t), B(t), C(t) ∈
LCAC[0, h]∩LPCD[0, h]. Let nus denote the number of the unstable eigenvalues of the
open-loop Floquet state operator Q − E(j0) in the fundamental strip CF defined in
(3.7). Take an arbitrary positive number ρ and a sufficiently small number r according
to the open-loop eigenvalue condition of Q − E(j0) on the imaginary axis such that
ρ > r ≥ 0. If N and M are large enough truncation parameters satisfying M ≥ N+1,
then the closed-loop system Gc is asymptotically stable if and only if the modified
Nyquist locus, det2[IM + G0[N,M ](s)] exp{−tr(Δ̃0[N,M ](s + ρ))} : Nab → C, vanishes
nowhere on Nab and encircles the origin nus times in the counterclockwise sense.
Δ̃0[N,M ](s+ρ) and G0[N,M ](s) are defined in (4.5) and (4.7), respectively, with m = 0.

Remark 6. Recall the recasting treatment suggested in Remark 5, by which Aconst

can be taken in such a way that the “DC-part” of Ã(t) is zero. It would be worth
noting that tr(Δ̃0[N,M ](s + ρ)) will be identically zero in such a recasting treatment,
and thus the exponential part can be dropped in the (modified) Nyquist locus (see
Remark 4).
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5. Numeric examples. Consider asymptotic stability of the lossy Mathieu
equation by means of Theorem 4.5. The lossy Mathieu equation was frequently en-
countered in such studies as the rolling motion of ships [1], the flapping dynamics
of the helicopter rotor blade [26], and the motion of a pendulum with a periodically
excited support [12]. A comprehensive study about this differential equation can be
found in [23] and [25]. It turns out to be one of the most widely studied FDLCP
models in the literature, and hence using the lossy Mathieu equation as our numeric
example is reasonable. More precisely, the lossy Mathieu equation is given by

ẍ(t) + 2ξẋ(t) = [1 − 2β cosωht]u(t), ωh = 2 (i.e., h = π)

which leads to the state-space model

A(t) =

[
0 1
0 −2ξ

]
, B(t) =

[
0

1 − 2β cosωht

]
, C(t) = [1 0],

where the open-loop state matrix A(t) is constant but the input matrix B(t) is a
π-periodic time-varying matrix, each entry of which is continuous and differentiable
on [0, h]. In other words, in the open-loop system, Q = A(t) and P (t, 0) = I. Now we
introduce the output feedback u(t) = −ky(t), where k is a scalar constant. This leads
to a closed-loop FDLCP system with a π-periodic time-varying state matrix, and our
problem is to test the closed-loop stability by Theorem 4.5.
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Fig. 5.1. 2-Regularized Nyquist loci with the output feedback gain k varying from 1.2 to −0.3
in the case of β = 0.35 and ξ = 0.2 (Nr = N0.05, the arrows indicate the Nyquist locus direction).

It is clear that the open-loop system has a zero eigenvalue. If we take a Nyquist
contour as described in Figure 3.1, the corresponding region enclosed by this Nyquist
contour has one unstable open-loop eigenvalue of the operator Q − E(j0), assuming
that ξ > 0. Note also that the Fourier series expansion of B(t) has nonzero terms only
up to the first harmonic wave. Since P (t, 0) = I, it follows that the skew truncation
can be dispensed with, and only the staircase truncation on the corresponding (open-
loop) harmonic transfer operator is enough. Figures 5.1 and 5.2 give the (modified)
Nyquist loci under different parameters β, ξ while the output feedback gain k varies
from 1.2 to −0.3. In the computations, the staircase truncation parameter M = 10,
the shift factor ρ = 0.1, and the bypassing radius r = 0.05 are taken for simplicity.
The computation results show that there are no numerically discernible differences
among the Nyquist loci when larger M ’s are taken, for example, when M = 20.
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From Figure 5.1, it can be asserted that in the case of β = 0.35 and ξ = 0.2, the
closed-loop FDLCP system is stable when the feedback gain k is relatively small, while
the closed-loop system slides to the stable/unstable boundary when the feedback gain
k is overstrong (i.e., k ≥ 1.2). However, in the case of β = 0.35 and ξ = 0.5, whose
Nyquist loci are given in Figure 5.2, stability of the closed-loop FDLCP system has
relatively strong robustness to the output feedback gain variation. From Figures 5.1
and 5.2, the Nyquist loci when positive feedback is applied, i.e., k ≤ 0, tell us that
the closed-loop FDLCP systems are unstable in both cases.
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Fig. 5.2. 2-Regularized Nyquist loci with the output feedback gain k varying from 1.2 to −0.3
in the case of β = 0.35 and ξ = 0.5 (Nr = N0.05, the arrows indicate the Nyquist locus direction).

Finally, we observe that Nyquist loci under different bypassing radii r’s can also
reveal some structural features of the open-loop FDLCP systems. For example, in
the case of β = 0.5, ξ = 0.2, and k = 0.4, Figure 5.3 gives the Nyquist loci with
the bypassing radius being r = 0.05, 0.04, and 0.03, respectively. One can see that
as r → 0, the Nyquist locus goes to infinity on the portion corresponding to the
bypassing semicircle. This clearly reflects the fact that the open-loop system has an
unstable eigenvalue at the origin.
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Fig. 5.3. 2-Regularized Nyquist loci with different bypassing radii r.

The stability results about the lossy Mathieu equation here coincide with those
derived through the approximate modeling approach [31], which also gives neces-
sary and sufficient stability conditions for FDLCP systems via the so-called harmonic
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Lyapunov equation. Note that the lossy Mathieu equation may be reexpressed by
a periodic differential equation similar to that of Exercise 1.5.6 of [12]. Hence, the
stability assertion for Exercise 1.5.6 of [12] confirms that stability analysis through
the Nyquist criterion upon the lossy Mathieu equation is effective.

6. Conclusion. In this paper, we established a generalized Nyquist criterion
in FDLCP systems by means of the 2-regularized determinant related to the open-
loop harmonic transfer operator. This work is inspired by the fact that the har-
monic transfer operators of most practical FDLCP systems, which are defined via
the Fourier series analysis of the system matrices, are Hilbert–Schmidt operators;
that is, the use of the 2-regularized determinants can be validated for a large class
of FDLCP systems, while the use of the usual determinant cannot. This criterion
makes it possible to test the closed-loop asymptotic stability through open-loop anal-
ysis in a much more general FDLCP setting, compared to the Hill-determinant and
trace class operator determinant techniques. The Hill-determinant defined on the
harmonic transfer operator [26] is hard to validate in general. Moreover, by using the
recasting technique suggested in Remark 5, the generalized Nyquist criterion can be
applied to both open- and closed-loop FDLCP systems without involving the transi-
tion matrix and Floquet factorization computations, and thus can be implemented via
finite-dimensional conditions in an asymptotic sense. In addition, it is clear that the
2-regularized Nyquist criterion applies to both SISO (single input/single output) and
MIMO (multi input/multi output) cases. Observations (say by Theorem 7.4 of [11])
indicate that the Nyquist locus in the 2-regularized determinant sense is also continu-
ous with regard to the periodically time-varying feedback gain K(t), and thus can be
utilized in robustness analysis. This is left as one of our subsequent research topics.

Appendix A. The function f(n) of an integer n is defined by

f(n) =

{
1, n = 0,
|n|−1, n �= 0.

Then we have
∑∞

n=N+1 f(n)2 < 1
N (N ≥ 1) and

∑∞
n=−∞ f(n)2 < 5.

Appendix B.
Proof of Lemma 2.2. Under the assumptions on A(t), B(t), and C(t), the similar-

ity transformation formulas of Lemma 2.1 apply. Thus the harmonic transfer operator
can be rewritten as

G(s) = Ĉ(E(s) −Q)−1B̂(B.1)

for all s ∈ Ω\Λ. Here, B̂ and Ĉ are bounded on l2 by Corollary 2.2 of [9, p. 567].
Also, it is obvious that for each fixed s ∈ Ω\Λ, there exists a number K(s) > 0 such
that

‖(ϕm(s)I −Q)−1‖ ≤ K(s)f(m),(B.2)

where f is defined in Appendix A. Noting the block-diagonal structure of (E(s)−Q)−1,

it follows that (E(s) − Q)−1 is compact for s ∈ Ω\Λ. Since ‖(E(s) − Q)−1‖2
2 =∑

m ‖(ϕm(s) − Q)−1‖2
2 ≤ n

∑
m ‖(ϕm(s) − Q)−1‖2, (B.2) tells that (E(s) − Q)−1 ∈

C2(l2) for each fixed s ∈ Ω\Λ. Noting that B̂ and Ĉ are bounded on l2, we obtain by
(B.1) that G(s) ∈ C2(l2) for each s ∈ Ω\Λ.
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It remains to show that ‖G(s)‖2 is uniformly bounded over s ∈ ∂Ω. To this end,
let us show that there exists a number K > 0 independent of s such that

‖(ϕm(s)I −Q)−1‖ ≤ Kf(m)(B.3)

for all s ∈ ∂Ω. To see this, we note that if ‖Q/z‖ < 1, then

‖(zI −Q)−1‖ =
1

|z|

∥∥∥∥I − 1

z
Q +

1

z2
Q2 − · · ·

∥∥∥∥
≤ 1

|z|

(
‖I‖ +

∥∥∥∥1

z
Q

∥∥∥∥ +

∥∥∥∥ 1

z2
Q2

∥∥∥∥ + · · ·
)

≤ 1

|z| − ‖Q‖ .

Since |ϕm(s)| > ‖Q‖ if |m|ωh > |Im(s)|+‖Q‖, this inequality says if |m|ωh > |Im(s)|+
‖Q‖, then

‖(ϕm(s)I −Q)−1‖ ≤ (|ϕm(s)| − ‖Q‖)−1.(B.4)

Thus it is clear by (2.6) that there exists an integer m0 > 0 such that (B.4) holds for
all integers m ≥ m0 and s ∈ ∂Ω. Again from (2.6), there is Km0

> 0 independent of
s such that ‖(ϕm(s)I −Q)−1‖ ≤ Km0

f(m) for all m ≥ m0 and s ∈ ∂Ω. Furthermore,
for each s ∈ ∂Ω, ϕm(s) is not an eigenvalue of Q by A1. Hence, from (2.6) there is
K ′

m0
> 0 such that for all |m| < m0 and s ∈ ∂Ω, ‖(ϕm(s)I − Q)−1‖ ≤ K ′

m0
f(m).

Taking K = max{Km0 ,K
′
m0

}, (B.3) follows for any s ∈ ∂Ω. Thus it follows from

Appendix A that for any s ∈ ∂Ω, ‖(E(s) − Q)−1‖2 ≤ [
∑

m nK2f(m)2]1/2 < K ′ for

some K ′ > 0 independent of s ∈ ∂Ω. Finally, noting that B̂ and Ĉ are bounded on l2
and ‖Ĉ(E(s)−Q)−1B̂‖2 ≤ ‖Ĉ‖l2/l2‖B̂‖l2/l2‖(E(s)−Q)−1‖2, the uniform boundedness

of ‖Ĉ(E(s) −Q)−1B̂‖2 over ∂Ω follows readily.
Proof of Lemma 2.3. By the definition of ϕm(s), if we write s = x+ jy, then we

obtain

|ϕm(s)−1| =
1√

x2 + (y + mωh)2
≤

⎧⎨⎩(|y + mωh|)−1 ≤ Kϕf(m) (m �= 0),

(
√
x2 + y2)−1 ≤ Kϕf(m) (m = 0)

(B.5)

for some Kϕ > 0 independent of s ∈ Ω, where A1 is used for m �= 0 while A2 is used
for m = 0. Furthermore, we observe from (B.5) that

‖E−1(s)‖2 ≤
[∑

m

nK2
ϕf(m)2

]1/2

≤ KE < ∞(B.6)

for some KE > 0 independent of s ∈ Ω. The inequality (B.6) says that E−1(s) ∈ C2(l2)
for each s ∈ Ω. Since A and Q are bounded on l2, E

−1(s)A and E−1(s)Q belong to
C2(l2) for each s ∈ Ω.

To see (2.11), we note by Lemma 2.1 that E(s) − A = P (E(s) − Q)P−1, which
implies

I − E−1(s)A = E−1(s)P E(s)(I − E−1(s)Q)P−1(B.7)

on the subset lE of l2. Furthermore, it is already known [29] on lE that

P̃ = E(s)P − P E(s)(B.8)
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with P̃ := T { d
dtP (t, 0)}. Since lE is P−1-invariant by Lemma 2.1, using (B.8) in (B.7)

gives that on lE

I − E−1(s)A = (P − E−1(s)P̃ )(I − E−1(s)Q)P−1

= (I − E−1(s)P̃ P−1)(I − P E−1(s)QP−1).(B.9)

Noting that all operators in (B.9) are bounded and lE is dense in l2, (B.9) is true on
the whole l2. On the other hand, it is straightforward to see that E−1(s)P̃ P−1 and
P E−1(s)QP−1 belong to C2(l2) since E−1(s) does. These observations validate the
following derivations:

det2[I − E−1(s)A] = det2[I − E−1(s)P̃ P−1]det2[I − P E−1(s)QP−1]

× exp{−tr(E−1(s)P̃ P−1P E−1(s)QP−1)}
= det2[I − E−1(s)P̃ P−1]det2[I − E−1(s)Q]

× exp{−tr(E−1(s)P̃ E−1(s)QP−1)}
=: gA(s) det2[I − E−1(s)Q],(B.10)

where gA(s) := det2[I −E−1(s)P̃ P−1] exp{−tr(E−1(s)P̃ E−1(s)QP−1)}. Hence, the
assertions regarding (2.11) will follow if it is shown that gA(s) does not vanish and is
analytic over Ω.

We complete the task in two steps by showing that the two components of gA(s)
vanish nowhere on Ω and are analytic in s over Ω.

Step 1. It is shown that det2[I − E−1(s)P̃ P−1] vanishes nowhere on Ω and is
analytic in s over Ω. To see this, we note from (B.8) that on lE ,

I − E−1(s)P̃ P−1 = E−1(s)P E(s)P−1,(B.11)

which says that I − E−1(s)P̃ P−1 is invertible on lE for each s ∈ Ω since E(s)
is invertible on lE , and lE is P - and P−1-invariant (see Lemma 2.1). Since lE is
dense in l2, this, in particular, implies that I − E−1(s)P̃ P−1 has a dense range
in l2. Furthermore, one can claim that I − E−1(s)P̃ P−1 is one-to-one on l2 since
(I − E−1(s)P̃ P−1)x = 0 implies that x ∈ lE , and thus x = 0 by the invertibility of
I −E−1(s)P̃ P−1 on lE . On the basis of these facts, Theorem 2.7.6 of [21, p. 30] tells
us that the operator I − E−1(s)P̃ P−1 is actually invertible on the whole l2. This,
together with the invertibility of I − E−1(s)Q, implies by (B.9) that I − E−1(s)A
is invertible on l2. On the other hand, Property 1.8(e) of [5, p. 17] ensures that
det2[I − E−1(s)P̃ P−1] �= 0 on Ω.

To show that det2[I−E−1(s)P̃ P−1] is analytic in s over Ω, we need some prepa-
rations. To this end, let us approximate P̃ and P−1 by [P̃ ]N and [P−1]N , respectively,
as follows:

[P̃ ]N := T
{ ∑

|m|≤N

P̃mejmωht

}
, [P−1]N := T

{ ∑
|m|≤N

P̌mejmωht

}
.

Here {P̃m} and {P̌m} are the Fourier coefficients sequences of P̃ (t, 0) and P−1(t, 0),
respectively. Now let us define the operators

K(s) := −E−1(s)P̃ P−1, KN (s) := −E−1(s)[P̃ ]N [P−1]N .



REGULARIZED NYQUIST CRITERIA IN PERIODIC SYSTEMS 637

Since E−1(s) ∈ C2(l2), it follows that KN (s) ∈ C2(l2) for each N and s ∈ Ω. By the
structure of the operators P̃ and P−1 and (B.6), Proposition 1.3 of [9, p. 98] tells us
that

‖K(s)‖2 ≤ ‖E−1(s)‖2‖P̃‖l2/l2‖P
−1‖l2/l2 ≤ K1 < ∞,(B.12)

‖KN (s)‖2 ≤ ‖E−1(s)‖2‖[P̃ ]N‖l2/l2‖[P
−1]N‖l2/l2 ≤ KE

∑
|m|≤N

‖P̃m‖
∑

|m|≤N

‖P̌m‖

≤ KE

+∞∑
m=−∞

‖P̃m‖
+∞∑

m=−∞
‖P̌m‖ ≤ K2 < ∞(B.13)

for some K1 > 0 and K2 > 0 independent of s ∈ Ω and N . This is because P̃ (t, 0)
and P (t, 0) belong to LCAC[0, h] under the assumption about A(t) [29], and thus∑+∞

m=−∞ ‖P̃m‖ < ∞ and
∑+∞

m=−∞ ‖P̌m‖ < ∞. By A2 and the form of E(s), KN (s)
is analytic in s over Ω in the elementwise sense since each entry of KN (s) is a finite
sum due to the skew-strip structure of [P̃ ]N and [P−1]N . In the following, we say
that KN (s) is an analytic C2(l2)-valued function in this sense.

Now we show that K(s) −KN (s) → 0 in the norm of C2(l2) uniformly over Ω as
N → ∞. To see this, we note that

‖K(s) −KN (s)‖2 ≤ ‖E−1(s)‖2‖P̃ P−1 − [P̃ ]N [P−1]N‖l2/l2

≤ KE

(
‖P̃ − [P̃ ]N‖l2/l2‖P

−1‖l2/l2 + ‖[P̃ ]N‖l2/l2‖P
−1 − [P−1]N‖l2/l2

)
.(B.14)

On the other hand, by the structures of P̃ − [P̃ ]N and P−1 − [P−1]N and the facts
that P̃ (t, 0) and P−1(t, 0) belong to LCAC[0, h], it follows readily that ‖P̃ − [P̃ ]N‖l2/l2
and ‖P−1 − [P−1]N‖l2/l2 go to zero as N → ∞. These facts, together with the fact

that there is an upper bound for ‖[P̃ ]N‖l2/l2 independent of N , imply that ‖K(s) −
KN (s)‖2 → 0 uniformly over Ω as N → ∞. This ensures that K(s) is an analytic
C2(l2)-valued function, which leads us to the desired consequence.

Step 2. It is shown that exp{−tr(E−1(s)P̃ E−1(s)QP−1)} does not vanish and is
analytic over s ∈ Ω. By Property 1.3(c) of [5, p. 14] and Theorem 2.1 of [9, p. 111],
we have

|tr(E−1(s)P̃ E−1(s)QP−1)| ≤ ‖E−1(s)P̃ E−1(s)QP−1‖1

≤ ‖E−1(s)‖2
2 ‖P̃‖l2/l2‖QP−1‖l2/l2 ≤ K2

E‖P̃‖l2/l2‖QP−1‖l2/l2 ≤ K3 < ∞

for some K3 > 0 independent of s ∈ Ω since P̃ , Q, and P−1 are bounded on l2. This

inequality says clearly that exp{−tr(E−1(s)P̃ E−1(s)QP−1)} does not vanish on Ω.

To show that exp{−tr(E−1(s)P̃ E−1(s)QP−1)} is analytic over s ∈ Ω, by Re-

mark 10.3 of [24, p. 197], it is enough to show that tr(E−1(s)P̃ E−1(s)QP−1) =: tA(s)
is analytic over s ∈ Ω. To this end, we further define the trace function

tr(E−1(s)[P̃ ]NE−1(s)Q[P−1]N ) =: tN (s).

It should be pointed out that for each fixed N , E−1(s)[P̃ ]NE−1(s)Q[P−1]N belongs

to C1(l2) since E−1(s) ∈ C2(l2). Hence, tN (s) is well defined. Now we observe that

|tA(s) − tN (s)| ≤ |tr(E−1(s)(P̃ − [P̃ ]N )E−1(s)QP−1)|
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+ |tr(E−1(s)[P̃ ]NE−1(s)Q(P−1 − [P−1]N ))|
≤ ‖(E−1(s)(P̃ − [P̃ ]N )E−1(s)QP−1)‖1

+ ‖E−1(s)[P̃ ]NE−1(s)Q(P−1 − [P−1]N )‖1

≤ ‖E−1(s)‖2
2‖P̃ − [P̃ ]N‖l2/l2‖QP−1‖l2/l2

+ ‖E−1(s)‖2
2‖[P̃ ]N‖l2/l2‖Q‖l2/l2‖P

−1 − [P−1]N‖l2/l2 .

As seen in Step 1 that P̃ (t, 0) and P−1(t, 0) belong to LCAC[0, h], it follows that
‖P̃ − [P̃ ]N‖l2/l2 and ‖P−1 − [P−1]N‖l2/l2 go to zero as N → ∞. These facts, together

with ‖E−1(s)‖2
2 ≤ K2

E and the fact that ‖[P̃ ]N‖l2/l2 has an upper bound independent
of N , imply that |tN (s)− tA(s)| → 0 as N → ∞ uniformly over s ∈ Ω. This indicates
that to complete the proof, it suffices to show that for each fixed N , the function
tN (s) is analytic over s ∈ Ω.

It is easy to see from the structure of [P̃ ]N and [P−1]N that the blockwise (m,m)th
entry on the diagonal of the operator E−1(s)[P̃ ]NE−1(s)Q[P−1]N is

ϕ−1
m (s)[P̃N , . . . , P̃−N ] diag

[
ϕ−1
m−N (s), . . . , ϕ−1

m+N (s)
] ⎡⎢⎣QP̌−N

...
QP̌N

⎤⎥⎦
whose trace is denoted by tNm(s). Obviously, tN (s) =

∑∞
m=−∞ tNm(s). It is straight-

forward to see that tNm(s) is analytic over Ω, and

|tNm(s)| ≤ nKN |ϕ−1
m (s)|max

{
|ϕ−1

m−N (s)|, . . . , |ϕ−1
m+N (s)|

}
,

where KN = ‖[P̃N , . . . , P̃−N ]‖ . . . ‖[P̌T
−NQT , . . . , P̌T

NQT ]‖. Furthermore, by Appendix
A and (B.5),∣∣∣∣tN (s) −

∑
|m|≤M

tNm(s)

∣∣∣∣ ≤ ∑
|m|>M

|tNm(s)|

≤ nKN

[ ∑
|m|>M

|ϕ−1
m (s)|2

]1/2[ ∑
|m|>M

(
max

{
|ϕ−1

m−N (s)|, . . . , |ϕ−1
m+N (s)|

})2]1/2

≤ nKN

[ ∑
|m|>M

K2
ϕf

2(m)

]1/2[ ∞∑
m=−∞

(
max

{
|ϕ−1

m−N (s)|, . . . , |ϕ−1
m+N (s)|

})2]1/2

< nKN

[
2K2

ϕ

M

]1/2[
(2N + 1)K2

ϕf(0)2 +
∑

|m|≥1

K2
ϕf

2(m)

]1/2

< nKNK2
ϕ

[
2

M

]1/2

[(2N + 1) + 5]1/2 =: nK ′
N

[
2

M

]1/2

→ 0 (M → ∞)

since K ′
N < ∞ for any fixed N ≥ 1. The above arguments say that

∑
|m|≤M tNm(s)

converges to tN (s) uniformly over s ∈ Ω. Therefore, it follows that tN (s) is also
analytic over s ∈ Ω.

Finally, let us show the assertion that (I −E−1(s)A)−1 is bounded on l2. To this
end, we note by (B.8) that E−1(s)P−1E(s) = P−1 +E−1(s)P−1P̃ P−1 on lE . Hence,
E−1(s)P−1E(s) is bounded on lE . Obviously, this implies that P E−1(s)P−1E(s),
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which is the inverse of I−E−1(s)P̃ P−1 by (B.11), is bounded on lE . Since lE is dense
in l2, it follows that (I −E−1(s)P̃ P−1)−1 is also bounded on l2. On the other hand,
by the block-diagonal structure of (I − E−1(s)Q)−1 and the assumption about Ω, it

is straightforward to show that (I −E−1(s)Q)−1 is also bounded on l2. Summarizing
these facts leads to the desired assertion by (B.9).

Proof of Lemma 2.4. The second equality of (2.12) follows from the 2-regularized
determinant definition and the fact that E−1(s)Q has an eigenvalue at each point
λk(Q)/(s + jmωh), m ∈ Z.

To see the assertions about fQ(s), we consider only the case of n = 1 without loss
of generality. The arguments are given by means of the results in Chapter 15 of [24,
pp. 298–303]. More precisely, let us define the function sequence {fm(s)} by

fm(s) :=
(
1 − λ(Q)

s + jmωh

)
exp

{
λ(Q)

s + jmωh

}
(m ∈ Z).

By A2, the function fm(s) is analytic on Ω and has a zero at λ(Q) − jmωh. Note by

(B.5) that | λ(Q)
s+jmωh

| ≤ |λ(Q)|Kϕf(m) for any m ∈ Z and s ∈ Ω. Hence, there exists

a finite integer m0 > 1 such that | λ(Q)
s+jmωh

| ≤ 1 ∀|m| ≥ m0 and ∀s ∈ Ω, which implies

by Lemma 15.8 of [24, p. 301] that

|1 − fm(s)| ≤
∣∣∣ λ(Q)

s + jmωh

∣∣∣2 ≤ |λ(Q)|2K2
ϕf

2(m) (∀|m| ≥ m0 ∀s ∈ Ω).

The above arguments tell us that∑
|m|≥m0

|1 − fm(s)| ≤
∑

|m|≥m0

|λ(Q)|2K2
ϕf

2(m) ≤ 2

m0 − 1
K2

ϕ|λ(Q)|2(B.15)

by Appendix A, which implies that
∑

m |1 − fm(s)| is uniformly convergent on Ω.
Then it follows by the first conclusion of Theorem 15.6 of [24, p. 300] that

∏
m fm(s)

converges uniformly on Ω, and thus the product
∏

m fm(s) is analytic on Ω. The
zeros property is a direct result of the second conclusion of Theorem 15.6 of [24, p.
300].

Proof of Lemma 4.1. First let us show that det2[I + G[N ](s)] is well defined for
each N . That is, we must show that G[N ](s) ∈ C2(l2) for each N and s ∈ ∂Ω. To
see this, we note by the assumptions about the system matrices that B̂(t) and Ĉ(t)
belong to LCAC[0, h] [29]. Furthermore, by the structures of the operators B̂[N ] and

Ĉ [N ], it follows that⎧⎪⎪⎨⎪⎪⎩
‖B̂[N ]‖l2/l2 ≤

∑
|m|≤N

‖B̂m‖ ≤
+∞∑

m=−∞
‖B̂m‖ ≤ KB < ∞,

‖Ĉ [N ]‖l2/l2 ≤ KC < ∞
(B.16)

for some KB > 0 and KC > 0 that are independent of N . These facts, together with
the definition of G[N ](s) and (B.3), imply that for any s ∈ ∂Ω

‖G[N ](s)‖2 ≤ ‖B̂[N ]‖l2/l2‖Ĉ [N ]‖l2/l2‖(E(s) −Q)−1‖2

≤ KBKC

[
n
∑
m

K2f2(m)

]1/2

<
√

5nKBKCK < ∞.(B.17)
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Equation (B.17) gives that G[N ](s) belongs to C2(l2) and ‖G[N ](s)‖2 has a uniform
upper bound for all N and s ∈ ∂Ω. Similarly we can show that G[N,M ](s) ∈ C2(l2)
and ‖G[N,M ](s)‖2 has a uniform upper bound for all N , M , and s ∈ ∂Ω.

Now we show the main assertion. It is known from Theorem 7.4 of [11, p. 69]
that

|det2[I + G(s)] − det2[I + G[N ](s)]|

≤ ‖G(s) −G[N ](s)‖2 exp

{
1

2
(‖G(s)‖2 + ‖G[N ](s)‖2 + 1)2

}
.(B.18)

Hence, the uniform boundedness of ‖G[N ](s)‖2 over N and s ∈ ∂Ω together with that
of ‖G(s)‖2 over s ∈ ∂Ω says that to show the main convergence, it suffices to show
that ‖G(s) − G[N ](s)‖2 → 0 uniformly for all s ∈ ∂Ω as N → ∞. To see this, we
observe that

‖G(s) −G[N ](s)‖2 ≤ ‖Ĉ − Ĉ [N ]‖l2/l2‖(E(s) −Q)−1‖2‖B̂‖l2/l2
+ ‖Ĉ [N ]‖l2/l2‖(E(s) −Q)−1‖2‖B̂ − B̂[N ]‖l2/l2

<
√

5nKKB‖Ĉ − Ĉ [N ]‖l2/l2 +
√

5nKKC‖B̂ − B̂[N ]‖l2/l2 ,(B.19)

where (B.16) is used. Furthermore, by the skew structure of Ĉ − Ĉ [N ], it follows that

‖Ĉ− Ĉ [N ]‖l2/l2 ≤
∑

|m|≥N ‖Ĉm‖ → 0 as (N → ∞) since Ĉ(t) ∈ LCAC[0, h]. Similarly,

by B̂(t) ∈ LCAC[0, h] we have ‖B̂ − B̂[N ]‖l2/l2 → 0 as N → ∞. Using these facts in
(B.19), the desired convergence follows.

Proof of Lemma 4.2. From the proof of Lemma 4.1, we have G[N ](s), G[N,M ](s) ∈
C2(l2) for all N,M , and s ∈ ∂Ω, and ‖G[N ](s)‖2 and ‖G[N,M ](s)‖2 are uniformly
bounded from above over N,M , and s ∈ ∂Ω. Therefore, an inequality similar to
(B.18) between G[N ](s) and G[N,M ](s) can be claimed. This means that to show the
result, it suffices to show that

‖G[N,M ](s) −G[N ](s)‖2 → 0 ∀s ∈ ∂Ω (M → ∞)(B.20)

uniformly for each fixed N > 0. To this end, we focus the attention on the inequality

‖G[N,M ](s) −G[N ](s)‖2 ≤ ‖Č [N,M ](E(s) −Q)−1‖2‖B̂[N,M ]‖l2/l2
+ ‖Ĉ [N ]‖l2/l2‖(E(s) −Q)−1B̌[N,M ]‖2,(B.21)

where B̌[N,M ] := B̂[N ]−B̂[N,M ]. More explicitly, it is given by the infinite-dimensional
matrix

B̌[N,M ] :=

⎡⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . 0
B̌NMl 0 B̌NMu

B̌NMl 0 B̌NMu

B̌NMl 0 B̌NMu

0
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎦
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with the entry matrices B̌NMl and B̌NMu given by

B̌NMl =

⎡⎢⎢⎢⎢⎣
0 B̂N · · · B̂1

. . .
. . .

...
. . . B̂N

0 0

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

(2M+1)

, B̌NMu =

⎡⎢⎢⎢⎢⎣
0 0

B̂−N
. . .

...
. . .

. . .

B̂−1 · · · B̂−N 0

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

(2M+1)

.

The matrix Č [N,M ] is defined similarly but in terms of {Ĉm}Nm=−N .

Furthermore, by the structure of B̂[N,M ], it is easy to see that ‖B̂[N,M ]‖l2/l2 ≤∑
|m|≤N ‖B̂m‖ ≤

∑+∞
m=−∞ ‖B̂m‖ ≤ KB < ∞ as in (B.16). This, together with the

fact that ‖Ĉ [N ]‖l2/l2 ≤ KC , implies that to complete the proof of (B.20) via (B.21),
it remains to show that as M → ∞

‖Č [N,M ](E(s) −Q)−1‖2 → 0, ‖(E(s) −Q)−1B̌[N,M ]‖2 → 0(B.22)

uniformly for s ∈ ∂Ω. Now we show that the convergence of (B.22) is true. To see
this, we note that∥∥(E(s) −Q)−1B̌[N,M ]

∥∥
2

≤
∥∥(E(s) −Q)−1B̌l[N,M ]

∥∥
2

+
∥∥(E(s) −Q)−1B̌u[N,M ]

∥∥
2
,(B.23)

where B̌l[N,M ]
and B̌u[N,M ]

are the lower and upper triangle portions of B̌[N,M ],

respectively. Hence, by the structures of EM (jϕ), Q
M

, and B̌l[N,M ]
as well as the

fact that the entries of B̌NMl are zero except its right-upper blocks, we have

∥∥(E(s) −Q)−1B̌l[N,M ]

∥∥
2

=

[∑
m

∥∥(EMm(s) −QM )−1B̌NMl

∥∥2

2

]1/2

≤
[∑

m

∥∥∂N(
(EMm(s) −QM )−1

)∥∥2

2
· ‖B̌NMl‖2

]1/2

,(B.24)

where ∂N (·) means taking out the first N block columns from (·). Moreover, by
similar arguments to the above, it readily follows that ‖B̌NMl‖ ≤ KB since B̌NMl

is a submatrix of B̂[N,M ]. Hence, it is easy to see by (B.3) that under our standing
assumption M ≥ N + 1,∥∥(E(s) −Q)−1B̌l[N,M ]

∥∥
2

≤ KB

[∑
m

N−1∑
k=0

n‖((s + j(m(2M + 1) −M + k))I −Q)−1‖2
2

]1/2

≤ KB

√
n

[∑
m

N−1∑
k=0

K2f2(m(2M + 1) −M + k)

]1/2

≤ KB

√
n

[
NK2

∑
m

max
k∈{0,1,...,N−1}

{f2(m(2M + 1) −M + k)}
]1/2
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≤ KKB

√
nN

[∑
m

f2
(

min
k∈{0,1,...,N−1}

{|m(2M + 1) −M + k|}
)]1/2

< KKB

√
nN

[∑
m

f2(m(M + 1))

]1/2

= KKB

√
nN

[
1

(M + 1)2

∑
m

f2(m)

]1/2

≤ KKB

√
5nN

M + 1
.(B.25)

Thus, for each fixed N and for any μ > 0, there exists an integer M ′
0(N,μ) > 0 such

that

‖Ĉ [N ]‖l2/l2
∥∥(E(s) −Q)−1B̌l[N,M ]

∥∥
2
<

μ

4
(∀M ≥ M ′

0(N,μ) ∀s ∈ ∂Ω).(B.26)

The above arguments can be repeated on the second term of the right-hand side of
(B.23). Hence, for the same μ > 0 and M ′

0(N,μ), it is easy to see that

‖Ĉ [N ]‖l2/l2
∥∥(E(s) −Q)−1B̌u[N,M ]

∥∥
2
<

μ

4
(∀M ≥ M ′

0(N,μ) ∀s ∈ ∂Ω),(B.27)

where we used the fact that ‖B̌NMl‖ and ‖B̌NMu‖ have the same upper bound. From
(B.26) and (B.28), it follows that

‖Ĉ [N ]‖l2/l2
∥∥(E(s) −Q)−1B̌[N,M ]

∥∥
2
<

μ

2
(∀M ≥ M ′

0(N,μ) ∀s ∈ ∂Ω).(B.28)

In a similar way, one can conclude that for each fixed N and any μ > 0, there exists
an integer M ′′

0 (N,μ) > 0 such that

‖B̂[N,M ]‖l/2l2
∥∥Č [N,M ](E(s) −Q)−1

∥∥
2
<

μ

2
(∀M ≥ M ′′

0 (N,μ) ∀s ∈ ∂Ω).(B.29)

Then, the desired convergence assertion follows from (B.21), (B.28), and (B.29) by
taking M0(N,μ) = max{M ′

0(N,μ),M ′′
0 (N,μ)}.

Proof of Lemma 4.4. To see the first assertion of (4.8), we observe from (B.3)
that

‖Gm[N,M ](s)‖ ≤ ‖ĈNM‖·‖(EMm(s) −QM )−1‖ · ‖B̂NM‖
≤ K ‖ĈNM‖·‖B̂NM‖ max{f(m(2M + 1) −M), . . . ,

f(m(2M + 1)), . . . , f(m(2M + 1) + M)}
< K ‖ĈNM‖·‖B̂NM‖ f(|m|(M + 1)) ≤ KK ′

BK
′
C f(|m|(M + 1))(B.30)

for each |m| ≥ 1. Here ‖ĈNM‖ and ‖B̂NM‖ have upper bounds independent of N
and M (see similar arguments around (B.16)), denoted by K ′

B and K ′
C . Inequality

(B.30) says that for each fixed N , there exists a large enough integer M0 with M0 ≥
N + 1 such that ‖Gm[N,M ](s)‖ < 1 for all |m| ≥ 1, M ≥ M0, and s ∈ ∂Ω. Thus,
|λk(Gm[N,M ](s))| < 1, from which Lemma 15.8 of [24] and (B.30) yield that∑

m�=0

∑
k

|1 − (1 + λk(Gm[N,M ](s))) exp{−λk(Gm[N,M ](s))}|

≤
∑
m�=0

∑
k

[KK ′
BK

′
Cf(|m|(M + 1))]2

= [KK ′
BK

′
C ]2

(2M + 1)dC
(M + 1)2

∑
m�=0

f2(m) <
8dC [KK ′

BK
′
C ]2

M + 1
,(B.31)
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where dC is the row dimension of the output matrix C(t) of the FDLCP system (2.1).
On the other hand, it is straightforward to show by induction that∣∣∣∣∏

k

(1 + ak) − 1

∣∣∣∣ ≤ exp

{∑
k

|ak|
}
− 1,(B.32)

where ak ∈ C. Since
∑

m�=0

∑
k |1−(1+λk(Gm[N,M ](s))) exp{−λk(Gm[N,M ](s))}| → 0

as M → ∞ by (B.31), it follows from (B.32) that∏
m�=0

∏
k

(
1 + λk

(
Gm[N,M ](s)

))
exp

{
−λk

(
Gm[N,M ](s)

)}
→ 1

uniformly with respect to s. This gives the first assertion.
To see the second assertion of (4.8), we observe

‖Δ̃m[N,M ](s + ρ)‖ ≤
∥∥E−1

Mm(s + ρ)
∥∥ ‖QM + ρIM‖

∥∥(EMm(s) −QM )−1
∥∥ ‖B̂CNM‖

< KKϕf
2(|m|(M + 1))(‖Q‖ + ρ)‖B̂CNM‖(B.33)

for each |m| ≥ 1. In the derivation of (B.33), we repeated some arguments similar to
those in (B.30) and used the fact that ‖E−1

Mm(s + ρ)‖ ≤ Kϕf(|m|(2M + 1) − M) <
Kϕf(|m|(M+1)). It is easy to see that under the given assumptions about the system

matrices, ‖B̂CNM‖ has an upper bound independent of N and M , denoted by KBC .
Then it follows that∣∣∣∣ ∑

m�=0

tr(Δ̃m[N,M ](s + ρ))

∣∣∣∣ ≤ ∑
m�=0

(2M + 1)n‖Δ̃m[N,M ](s + ρ)‖

<
∑
m�=0

(2M + 1)nKKϕKBCf
2(|m|(M + 1))(‖Q‖ + ρ)

<
4(2M + 1)nKKϕKBC(‖Q‖ + ρ)

(M + 1)2
→ 0 (M → ∞)(B.34)

which leads to the desired assertion. This completes the proof.
Proof of (4.9). By the det2 definition and the block-diagonal structure of the

infinite-dimensional matrix G[N,M ](s), it is evident that∣∣det2
[
I + G[N,M ](s)

]
exp

{
−Δ̃[N,M ](s + ρ)

}
−det2

[
IM + G0[N,M ](s)

]
exp

{
−tr

(
Δ̃0[N,M ](s + ρ)

)}∣∣
≤

∣∣det2
[
IM + G0[N,M ](s)

]
exp

{
−tr

(
Δ̃0[N,M ](s + ρ)

)}∣∣
×
[ ∣∣∣∣ ∏

m�=0

∏
k

(
1 + λk

(
G0[N,M ](s)

))
exp

{
−λk

(
G0[N,M ](s)

)}
− 1

∣∣∣∣
×
∣∣∣∣ exp

{
−

∑
m�=0

tr
(
Δ̃m[N,M ](s + ρ)

)}∣∣∣∣
+

∣∣∣∣ exp

{
−

∑
m�=0

tr
(
Δ̃m[N,M ](s + ρ)

)}
− 1

∣∣∣∣ ].
This, together with Lemma 4.4, tells us that (4.9) follows if it is shown that |det2[IM +
G0[N,M ](s)]| and |tr(Δ̃0[N,M ](s + ρ))| are uniformly bounded over M and s ∈ ∂Ω.
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To see the uniform boundedness of |tr(Δ̃0[N,M ](s+ ρ))|, we observe by (4.5) that∣∣tr(Δ̃0[N,M ](s + ρ)
)∣∣ ≤ ∥∥Δ̃0[N,M ](s + ρ)

∥∥
1

≤
∥∥E−1

M0(s + ρ)(QM + ρIM )
∥∥

2

∥∥(EM0(s) −QM )−1B̂C [N,M ]

∥∥
2

≤
∥∥E−1

M0(s + ρ)
∥∥

2
‖QM + ρIM‖ ·

∥∥(EM0(s) −QM )−1
∥∥

2

∥∥B̂C [N,M ]

∥∥
≤ (‖Q‖ + ρ)

∥∥B̂C [N,M ]

∥∥ ∑
|i|≤M

nK2
ϕf

2(i)
∑

|i|≤M

nK2f2(i)

< (5nKKϕ)2(‖Q‖ + ρ)
∥∥B̂C [N,M ]

∥∥.
Hence, the desired uniform boundedness follows from the fact that ‖B̂C [N,M ]‖ has an
upper bound independent of M .

To see the uniform boundedness of |det2[IM +G0[N,M ](s)]|, we need some prepa-
rations. By Theorem 7.4 of [11, p. 69], we have

∣∣det2
[
IM + G0[N,M ](s)

]∣∣ ≤ exp

{
1

2

∥∥G0[N,M ](s)
∥∥

2

}
which implies that to see the uniform boundedness of |det2[IM+G0[N,M ](s)]|, it suffices
to show that ‖G0[N,M ](s)‖2 is uniformly bounded over M and s ∈ ∂Ω. To see this,

we note that B̂NM and ĈNM are submatrices of B̂[N ] and Ĉ [N ], respectively. Hence,
we immediately have∥∥G0[N,M ](s)

∥∥
2
≤ ‖ĈNM‖ ·

∥∥(EM0(s) −QM )−1
∥∥

2
· ‖B̂NM‖

≤ KCKB

∑
|i|≤M

nK2f2(i) < 5nK2KCKB .

This completes the proof.
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Birkhäuser, Basel, 1990.
[10] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators, Vol. II,
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NONLINEAR SYSTEMS∗
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Abstract. Given two analytic nonlinear input-output systems represented as Fliess operators,
four system interconnections are considered in a unified setting: the parallel connection, product
connection, cascade connection, and feedback connection. In each case, the corresponding generating
series is produced and conditions for the convergence of the corresponding Fliess operator are given.
In the process, an existing notion of a composition product for formal power series has its set of
known properties significantly expanded. In addition, the notion of a feedback product for formal
power series is shown to be well defined in a broad context, and its basic properties are characterized.
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1. Introduction. Let X = {x0, x1, . . . , xm} denote an alphabet and X∗ the set
of all words over X (including the empty word ∅). A formal power series in X is
any mapping of the form X∗ → R�, and the set of all such mappings will be denoted
by R�〈〈X〉〉. For each c ∈ R�〈〈X〉〉, one can formally associate an m-input, �-output
operator Fc in the following manner. Let p ≥ 1 and a < b be given. For a measurable
function u : [a, b] → Rm, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the
usual Lp-norm for a measurable real-valued function, ui, defined on [a, b]. Let Lm

p [a, b]
denote the set of all measurable functions defined on [a, b] having a finite ‖ · ‖p-norm
and Bm

p (R)[a, b] := {u ∈ Lm
p [a, b] : ‖u‖p ≤ R}. With t0, T ∈ R fixed and T > 0,

define recursively for each η ∈ X∗ the mapping Eη : Lm
1 [t0, t0 + T ] → C[t0, t0 + T ] by

E∅ = 1, and

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X, η̄ ∈ X∗, and u0(t) ≡ 1. The input-output operator corresponding to c
is then

Fc[u](t) =
∑
η∈X∗

(c, η)Eη[u](t, t0),

which is referred to as a Fliess operator. All Volterra operators with analytic kernels,
for example, are Fliess operators. In the classical literature, where these operators first
appeared [7, 9, 10, 26], it is normally assumed that there exist real numbers K,M > 0
such that |(c, η)| ≤ KM |η||η|! for all η ∈ X∗, where |z| = max{|z1| , |z2| , . . . , |z�|}
when z ∈ R�, and |η| denotes the number of letters in η. This growth condition on
the coefficients of c ensures that there exist positive real numbers R and T0 such
that, for all piecewise continuous u with ‖u‖∞ ≤ R and T ≤ T0, the series defining
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Fig. 1.1. Elementary system interconnections.

Fc converges uniformly and absolutely on [t0, t0 + T ]. Therefore, a power series c is
said to be locally convergent when its coefficients satisfy such a growth condition. The
set of all locally convergent series in R�〈〈X〉〉 will be denoted by R�

LC〈〈X〉〉. More
recently, it was shown in [13] that local convergence also implies that Fc constitutes
a well-defined operator from Bm

p (R)[t0, t0 + T ] into B�
q(S)[t0, t0 + T ] for sufficiently

small R,S, T > 0, where the numbers p, q ∈ [1,∞] are conjugate exponents, i.e.,
1/p + 1/q = 1 with (1,∞) being a conjugate pair by convention.

In many applications, input-output systems are interconnected in a variety of
ways. Given two Fliess operators Fc and Fd, where c, d ∈ R�

LC〈〈X〉〉, Figure 1.1 shows
four elementary interconnections. The product connection is defined componentwise,
and in the case of the feedback connection it is assumed that � = m > 0. The general
goal of this paper is to describe in a unified manner the generating series for each
elementary interconnection and conditions under which it is locally convergent. The
clear antecedent to this work is that of Ferfera, who first described the generating
series for such connections (implicitly in the case of feedback) and, in particular,
introduced the composition product c ◦ d of two formal power series c and d [5, 6]. In
each case, however, the local convergence of the new generating series or, equivalently,
the convergence of the corresponding Fliess operator, was not explicitly addressed. It
is trivial to show that the parallel connection of Fc and Fd always produces a locally
convergent generating series when c and d are locally convergent. The same conclusion
was later provided in [28] for the product connection via an analysis involving the
shuffle product. In this paper, an analogous result is developed for the composition
product by producing an explicit expression for one pair of growth constants, Kc◦d
and Mc◦d. In the process, the set of known properties of the composition product is
significantly expanded. (An interesting parallel development has appeared in [3, 11]
regarding a composition product for formal power series motivated by the composition
of two analytic functions (see, e.g., [18]) rather than two Fliess (integral) operators.
Its definition is quite distinct and not clearly related to the composition product
described in this paper.)
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The feedback connection is a fundamentally more difficult case to analyze. For
example, when Fc is a linear operator, the formal solution to the feedback equation

y = Fc[u + Fd[y]](1)

is

y = Fc[u] + Fc ◦ Fd ◦ Fc[u] + · · · .

It is not immediately clear that this series converges in any manner and, in particular,
converges to another Fliess operator, say, Fc@d, for some c@d ∈ Rm

LC〈〈X〉〉. When Fc

is nonlinear, the problem is further complicated by the fact that operators of the form
I+Fd, where I denotes the identity map, never have a Fliess operator representation.
In this paper, the problem is circumvented by introducing a simple variation of the
composition product so that an appropriate feedback product, c@d, is well defined, and
y = Fc@d[u] satisfies the feedback equation (1) in the sense that every analytic input
u produces an analytic output y with (u, y) satisfying (1). In this case, c@d is referred
to as being input-output locally convergent, and explicit expressions are derived for
one set of growth constants, Kcy and Mcy , for the series representation of the output
function, cy.

It should be stated that Ferfera’s primary interest in [5, 6] was rational series
and their corresponding bilinear realizations. In a state space setting, the issue of
local convergence is rather straightforward. If c and d each have finite Lie rank, in
addition to being locally convergent, then the mappings Fc and Fd each have a finite-
dimensional analytic state space realization, and therefore so does each interconnected
system (see [16, 21] for a basic treatment of nonlinear realization theory). The lit-
erature then provides that the corresponding generating series can be computed by
successive Lie derivatives and, in particular, it must be locally convergent [26, Lemma
4.2]. (Additional analysis of interconnected state space systems using a chronological
product together with Hall–Viennot bases appears in [17].) While the state space for-
malism is clearly dominant in modern control theory, other system descriptions like
Volterra series [10, 16, 21] or input-output differential equations [28, 29, 30] are some-
times useful. In such settings, the convergence analysis of interconnected systems is a
natural application for the main results of this paper. But even in a pure state space
setting, as illustrated by Examples 3.2 and 4.11, knowledge of the growth constants
for the generating series of a given interconnection permits one to compute a lower
bound on any finite escape time. This is particularly useful in physical problems, like
the one described in [12], as it provides computable limitations on the applicability
of the underlying mathematical models.

The paper is organized as follows. In section 2 the composition product is intro-
duced and developed independently of the system interconnection problem. First, its
various fundamental properties are presented. Then, in preparation for the feedback
analysis, it is shown that the composition product produces a contractive mapping on
the set of all formal power series using a familiar ultrametric. In section 3, the three
nonrecursive connections, parallel, product, and cascade, are analyzed primarily by
applying results from section 2. In section 4 the feedback connection is considered.
The main focus is on showing when the feedback product of two formal power series
is well defined and in precisely what sense it is locally convergent.

2. The composition product. The composition product of two formal power
series over an alphabet X = {x0, x1, . . . , xm} is defined recursively in terms of the
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shuffle product. The shuffle product of two words η, ξ ∈ X∗ is defined recursively by

η �� ξ = (xjη
′) �� (xkξ

′) := xj [η
′
�� ξ] + xk[η �� ξ′]

with ∅ �� ∅ = ∅ and ξ �� ∅ = ∅ �� ξ = ξ. It is easily verified that η �� ξ is always a
polynomial consisting of words each having length |η|+ |ξ|. The definition is extended
to any two series c, d ∈ R〈〈X〉〉 by

c �� d =
∑

η,ξ∈X∗

[(c, η)(d, ξ)] η �� ξ.(2)

For a fixed ν ∈ X∗, the coefficient (η �� ξ, ν) = 0 if |η| + |ξ| = |ν|. Hence, the infi-
nite sum in (2) is well defined since the family of polynomials {η �� ξ : η, ξ ∈ X∗} is
locally finite [2]. In general, the shuffle product is commutative. It is also associative
and distributes over addition. Thus, the vector space R〈〈X〉〉 with the shuffle prod-
uct forms a commutative R-algebra, the so-called shuffle algebra, with multiplicative
identity element ∅. The shuffle product on R�〈〈X〉〉 is defined componentwise, i.e.,
(c �� d, ν)i = (ci �� di, ν) for i = 1, 2, . . . , �.

For any η ∈ X∗ and d ∈ Rm〈〈X〉〉, the composition product is defined recursively
as

η ◦ d =

{
η : |η|xi = 0 ∀i = 0,

xn+1
0 [di �� (η′ ◦ d)] : η = xn

0xiη
′, n ≥ 0, i = 0,

where |η|xi denotes the number of letters in η equivalent to xi and di : ξ �→ (d, ξ)i,
the ith component of the coefficient (d, ξ). Consequently, if

η = xnk
0 xikx

nk−1

0 xik−1
· · · xn1

0 xi1x
n0
0 ,(3)

where ij = 0 for j = 1, . . . , k, then it follows that

η ◦ d = xnk+1
0 [dik �� x

nk−1+1
0 [dik−1

�� · · · xn1+1
0 [di1 �� xn0

0 ] · · ·]].

Alternatively, for any η ∈ X∗, one can uniquely associate a set of right factors
{η0, η1, . . . , ηk} by the iteration

ηj+1 = x
nj+1

0 xij+1ηj , η0 = xn0
0 , ij+1 = 0,(4)

so that η = ηk with k = |η| − |η|x0 . In which case, η ◦ d = ηk ◦ d, where

ηj+1 ◦ d = x
nj+1+1
0 [dij+1 �� (ηj ◦ d)]

and η0 ◦ d = xn0
0 . The theorem below ensures that the composition product of two

series described subsequently is well defined.
Theorem 2.1. Given a fixed d ∈ Rm〈〈X〉〉, the family of series {η ◦ d : η ∈ X∗}

is locally finite, and therefore summable.
Proof. Given an arbitrary η ∈ X∗ expressed in the form (3), it follows directly

that

ord(η ◦ d) = n0 + k +

k∑
j=1

nj + ord(dij ) = |η| +
|η|−|η|x0∑

j=1

ord(dij ),(5)
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where the order of c is defined as

ord(c) =

{
inf{|η| : η ∈ supp(c)} : c = 0,

∞ : c = 0,

and supp(c) := {η ∈ X∗ : (c, η) = 0} denotes the support of c. Hence, for any ξ ∈ X∗,

Id(ξ) := {η ∈ X∗ : (η ◦ d, ξ) = 0}
⊂ {η ∈ X∗ : ord(η ◦ d) ≤ |ξ|}

=

⎧⎨⎩η ∈ X∗ : |η| +
|η|−|η|x0∑

j=1

ord(dij ) ≤ |ξ|

⎫⎬⎭ .

Clearly this last set is finite, and thus Id(ξ) is finite for all ξ ∈ X∗. This fact implies
summability.

For any c ∈ R�〈〈X〉〉 and d ∈ Rm〈〈X〉〉, the composition product is defined as

c ◦ d =
∑
η∈X∗

(c, η) η ◦ d.

The summation can also be written using the set of all right factors as described by
(4). Let Xi be the set of all words in X∗ of length i. For each word η ∈ Xi, the jth
right factor, ηj , has exactly j letters not equal to x0. Therefore, given any ν ∈ X∗,

(c ◦ d, ν) =

|ν|∑
i=0

i∑
j=0

∑
ηj∈Xi

(c, ηj)(ηj ◦ d, ν).(6)

The third summation is understood to be the sum over the set of all possible jth
right factors of words of length i. This set has a familiar combinatoric interpreta-
tion. A composition of a positive integer N is an ordered set of positive integers
{a1, a2, . . . , aK} such that N = a1 + a2 + · · · + aK . (For example, the integer 3 has
the compositions 1+1+1, 1+2, 2+1, and 3). For a given N and K, it is well known
that there are CK(N) =

(
N−1
K−1

)
possible compositions. Now each factor ηj ∈ Xi, when

written in the form

ηj = x
nj

0 xijx
nj−1

0 xij−1
· · · xn1

0 xi1x
n0
0 ,

maps to a unique composition of i + 1 with j + 1 elements:

i + 1 = (n0 + 1) + (n1 + 1) + · · · + (nj + 1).

Thus, there are exactly Cj+1(i+1)mj =
(
i
j

)
mj possible factors ηj in Xi, and the total

number of terms in the summations of (6) is ((m + 1)|ν|+1 − 1)/m ≈ (m + 1)|ν|. As
will be seen shortly, this provides a conservative lower bound on the growth rate of
the coefficients of c ◦ d.

It is easily verified that the composition product is linear in its first argument,
but not its second. A special exception are linear series. A series c ∈ R�〈〈X〉〉 is
called linear if

supp(c) ⊆ {η ∈ X∗ : η = xn1
0 xix

n0
0 , i ∈ {1, 2, . . . ,m}, n1, n0 ≥ 0}.

It was shown in [5] that the composition product is associative and distributive from
the right over the shuffle product. But in general it is neither commutative nor has an
identity element. This lack of an identity element is precisely the reason the identity
map I is not realizable as a Fliess operator. Other elementary properties concerning
the composition product are summarized below.
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Lemma 2.2. The following identities hold (1l is a column vector with m ones):
1. 0 ◦ d = 0 for all d ∈ Rm〈〈X〉〉.
2. c ◦ 0 = c0 :=

∑
n≥0(c, x

n
0 ) xn

0 . (Therefore, c ◦ 0 = 0 if and only if c0 = 0.)
3. c0 ◦ d = c0 for all d ∈ Rm〈〈X〉〉. (In particular, 1 ◦ d = 1.)

4. c ◦ 1l = c ll :=
∑

η∈X∗(c, η) x
|η|
0 . (Therefore, c ◦ 1l = c if and only if c0 = c.)

The set Rm〈〈X〉〉 forms a metric space under the ultrametric

dist : Rm〈〈X〉〉 × Rm〈〈X〉〉 → R+ ∪ {0},
: (c, d) �→ σord(c−d),

where σ ∈ (0, 1) is arbitrary [2]. The following theorem states that the composition
product on Rm〈〈X〉〉 × Rm〈〈X〉〉 is continuous in its left argument. (Right argument
continuity will be addressed later.)

Theorem 2.3. Let {ci}i≥1 be a sequence in Rm〈〈X〉〉 with limi→∞ ci = c. Then
limi→∞(ci ◦ d) = c ◦ d for any d ∈ Rm〈〈X〉〉.

Proof. Define the sequence of nonnegative integers ki = ord(ci−c) for i ≥ 1. Since
c is the limit of the sequence {ci}i≥1, the sequence {ki}i≥1 must have an increasing
subsequence {kij}. Now observe that

dist(ci ◦ d, c ◦ d) = σord((ci−c) ◦d)

and

ord((cij − c) ◦ d) = ord

⎛⎝ ∑
η∈supp(cij−c)

(cij − c, η) η ◦ d

⎞⎠
≥ inf

η∈supp(cij−c)
ord(η ◦ d)

≥ inf
η∈supp(cij−c)

|η| + (|η| − |η|x0) ord(d)

≥ kij .

Thus, dist(cij ◦ d, c ◦ d) ≤ σkij for all j ≥ 1, and limi→∞ ci ◦ d = c ◦ d.
The ultrametric space (Rm〈〈X〉〉,dist) is known to be complete [2]. Given a fixed

c ∈ Rm〈〈X〉〉, consider the mapping Rm〈〈X〉〉 → Rm〈〈X〉〉 : d �→ c ◦ d. The goal is to
show that this mapping is always a contraction on Rm〈〈X〉〉, i.e., that

dist(c ◦ d, c ◦ e) ≤ σ dist(d, e) ∀d, e ∈ Rm〈〈X〉〉,

so that fixed point theorems can be applied in later analysis [14, 22, 23, 24]. Any
c ∈ Rm〈〈X〉〉 can be written unambiguously in the form

c = c0 + c1 + · · · ,(7)

where ck ∈ Rm〈〈X〉〉 has the defining property that η ∈ supp(ck) only if |η|−|η|x0 = k.
Some of the series ck may be the zero series. When c0 = 0, c is referred to as being
homogeneous. When ck = 0 for k = 0, 1, . . . , l − 1 and cl = 0, then c is called
homogeneous of order l. In this setting consider the following lemma.

Lemma 2.4. For any ck in (7),

dist(ck ◦ d, ck ◦ e) ≤ σk dist(d, e) ∀d, e ∈ Rm〈〈X〉〉.
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Proof. The proof is by induction for the nontrivial case, where ck = 0. First
suppose k = 0. From the definition of the composition product it follows directly that
η ◦ d = η for all η ∈ supp(c0). Therefore,

c0 ◦ d =
∑

η∈ supp(c0)

(c0, η) η ◦ d =
∑

η∈ supp(c0)

(c0, η) η = c0,

and

dist(c0 ◦ d, c0 ◦ e) = dist(c0, c0) = 0 ≤ σ0 dist(d, e).

Now fix any k ≥ 0 and assume the claim is true for all c0, c1, . . . , ck. In particular,
this implies that

ord(ck ◦ d− ck ◦ e) ≥ k + ord(d− e).(8)

For any j ≥ 0, words in supp(cj) have the form ηj as defined in (4). Observe then
that

ck+1 ◦ d− ck+1 ◦ e =
∑

ηk+1∈X∗

(ck+1, ηk+1) ηk+1 ◦ d− (ck+1, ηk+1) ηk+1 ◦ e

=
∑

ηk,ηk+1∈X∗

(ck+1, ηk+1)
[
x0

nk+1+1[dik+1
�� [ηk ◦ d]]

−x0
nk+1+1[eik+1

�� [ηk ◦ e]]
]

=
∑

ηk,ηk+1∈X∗

(ck+1, ηk+1)
[
x0

nk+1+1[dik+1
�� [ηk ◦ d]]

−x0
nk+1+1[dik+1

�� [ηk ◦ e]]
+ x0

nk+1+1[dik+1
�� [ηk ◦ e]] − x0

nk+1+1[eik+1
�� [ηk ◦ e]]

]
=

∑
ηk,ηk+1∈X∗

(ck+1, ηk+1)
[
x0

nk+1+1[dik+1
�� [ηk ◦ d− ηk ◦ e]]

+x0
nk+1+1[(dik+1

− eik+1
) �� [ηk ◦ e]]

]
,

using the fact that the shuffle product distributes over addition. Next, applying the
identity (5) and the inequality (8) with ck = ηk, it follows that

ord(ck+1 ◦ d− ck+1 ◦ e) ≥ min

{
inf

ηk+1∈ supp(ck+1)
nk+1 + 1 + ord(d) + k + ord(d− e),

inf
ηk+1∈ supp(ck+1)

nk+1 + 1 + ord(d− e) + |ηk| + k ord(e)

}
≥ k + 1 + ord(d− e),

and thus,

dist(ck+1 ◦ d, ck+1 ◦ e) ≤ σk+1 dist(d, e).

Hence, dist(ck ◦ d, ck ◦ e) ≤ σk dist(d, e) holds for any k ≥ 0.
Applying the above lemma leads to the following result.
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Lemma 2.5. If c ∈ Rm〈〈X〉〉, then for any series c′0 ∈ Rm〈〈X0〉〉,

dist((c′0 + c) ◦ d, (c′0 + c) ◦ e) = dist(c ◦ d, c ◦ e) ∀d, e ∈ Rm〈〈X〉〉.(9)

(Here X0 denotes the single letter alphabet {x0}.) If c is homogeneous of order l ≥ 1
then

dist(c ◦ d, c ◦ e) ≤ σl dist(d, e) ∀d, e ∈ Rm〈〈X〉〉.(10)

Proof. The equality is proved first. Since the ultrametric dist is shift-invariant,
observe that

dist((c′0 + c) ◦ d, (c′0 + c) ◦ e) = dist (c′0 ◦ d + c ◦ d, c′0 ◦ e + c ◦ e)
= dist (c′0 + c ◦ d, c′0 + c ◦ e)
= dist (c ◦ d, c ◦ e) .

The inequality is proved next by first selecting any fixed l ≥ 1 and showing
inductively that it holds for any partial sum

∑l+k
i=l ci, where k ≥ 0. When k = 0,

Lemma 2.4 implies that

dist(cl ◦ d, cl ◦ e) ≤ σl dist(d, e).

If the result is true for partial sums up to any fixed k ≥ 0, then using the ultrametric
property

dist(d, e) ≤ max{dist(d, f),dist(f, e)} ∀d, e, f ∈ Rm〈〈X〉〉,

it follows that

dist

((
l+k+1∑
i=l

ci

)
◦ d,

(
l+k+1∑
i=l

ci

)
◦ e

)

= dist

((
l+k∑
i=l

ci

)
◦ d + cl+k+1 ◦ d,

(
l+k∑
i=l

ci

)
◦ e + cl+k+1 ◦ e

)

≤ max

{
dist

((
l+k∑
i=l

ci

)
◦ d + cl+k+1 ◦ d,

(
l+k∑
i=l

ci

)
◦ d + cl+k+1 ◦ e

)
,

dist

((
l+k∑
i=l

ci

)
◦ d + cl+k+1 ◦ e,

(
l+k∑
i=l

ci

)
◦ e + cl+k+1 ◦ e

)}

= max

{
dist(cl+k+1 ◦ d, cl+k+1 ◦ e),dist

((
l+k∑
i=l

ci

)
◦ d,

(
l+k∑
i=l

ci

)
◦ e

)}
≤ max

{
σl+k+1 dist(d, e), σl dist(d, e)

}
≤ σl dist(d, e).

Hence, the result holds for all k ≥ 0. Inequality (10) is proved by noting that c =

limk→∞
∑l+k

i=l ci and using the left argument continuity of the composition product,
proved in Theorem 2.3, and the continuity of the ultrametric.

The main result regarding contractive mappings is below.
Theorem 2.6. For any c ∈ Rm〈〈X〉〉, the mapping d �→ c ◦ d is a contraction on

Rm〈〈X〉〉.
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Proof. Choose any series d, e ∈ Rm〈〈X〉〉. If c is homogeneous of order l ≥ 1, then
the result follows directly from (10). Otherwise, observe that, via (9),

dist(c ◦ d, c ◦ e) = dist

(( ∞∑
l=1

ci

)
◦ d,

( ∞∑
l=1

ci

)
◦ e

)
≤ σ dist(d, e).

An immediate result of this theorem is the right argument continuity of the com-
position product.

Theorem 2.7. Let {di}i≥1 be a sequence in Rm〈〈X〉〉 with limi→∞ di = d. Then
limi→∞(c ◦ di) = c ◦ d for all c ∈ Rm〈〈X〉〉.

Proof. Trivially,

lim
i→∞

dist(c ◦ di, c ◦ d) ≤ σ lim
i→∞

dist(di, d) = 0.

The final property considered in this section is local convergence. If all the sum-
mands in the defining expression (6) are unity, i.e., c and d have no coefficient growth
whatsoever, then earlier combinatoric analysis shows that (c ◦ d, ν) grows at least
at the rate (m + 1)|ν|. Of course, in general, much faster growth rates are possible
when c and d are simply locally convergent. The analysis begins by considering the
local convergence of the shuffle product. It provides a point of reference and some
important tools. The following theorem was proved in [28].

Theorem 2.8. Suppose c, d ∈ R�
LC〈〈X〉〉 with growth constants Kc,Mc and

Kd,Md, respectively. Then c �� d ∈ R�
LC〈〈X〉〉 with

|(c �� d, ν)| ≤ KcKdM
|ν|(|ν| + 1)! ∀ν ∈ X∗,(11)

where M = max{Mc,Md}.
Noting that n + 1 ≤ 2n for all n ≥ 0, (11) can be written more conventionally as

|(c �� d, ν)| ≤ KcKd(2M)|ν||ν|! ∀ν ∈ X∗.

The specific goal here is to show that c ◦ d is also locally convergent, when the series
c and d are locally convergent, and to produce an inequality analogous to (11). The
following properties of the shuffle product are essential.

Lemma 2.9 (see [28]). For c, d ∈ R〈〈X〉〉 and any ν ∈ X∗,

1. (c �� d, ν) =
∑

ξ,ξ̄∈X∗

(c, ξ)(d, ξ̄)(ξ �� ξ̄, ν) =

|ν|∑
i=0

∑
ξ∈Xi

ξ̄∈X|ν|−i

(c, ξ)(d, ξ̄)(ξ �� ξ̄, ν);

2.
∑
ξ∈Xi

ξ̄∈X|ν|−i

(ξ �� ξ̄, ν) =

(
|ν|
i

)
, 0 ≤ i ≤ |ν|.

Now given any η ∈ X∗, the set of right factors {η0, η1, . . . , ηk} defined by (4)
produces a corresponding family of real-valued functions:

Sη0(n) =
1

|η0|!
, n ≥ 0,

Sη1(n) =
1

(n)n1+1
Sη0(n), 1 ≤ |η1| ≤ n,

Sηj (n) =
1

(n)nj+1

n−|ηj |∑
i=0

Sηj−1(n− (nj + 1) − i), j ≤ |ηj | ≤ n, 2 ≤ j ≤ k,
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where (n)i = n!/(n− i)! denotes the falling factorial. The next two lemmas form the
core of the local convergence proof for the composition product.

Lemma 2.10. Suppose c ∈ R�
LC〈〈X〉〉 and d ∈ Rm

LC〈〈X〉〉 with growth constants
Kc,Mc and Kd,Md, respectively. Then

|(c ◦ d, ν)| ≤ Kc ψ|ν|(Kd) M
|ν||ν|! ∀ν ∈ X∗,(12)

where M = max{Mc,Md}, and {ψn(Kd)}n≥0 is the set of degree n polynomials in
Kd,

ψn(Kd) =

n∑
i=0

i∑
j=0

∑
ηj∈Xi

Kj
d Sηj (n) |ηj |!, n ≥ 0.

Proof. The proof has two main steps. It is first shown that for any integer l > 0
and any η ∈ X∗ with |η| ≤ l and right factors {η0, η1, . . . , ηk} as defined in (4),

|(ηj ◦ d, ν)| ≤ Kj
dM

−|ηj |
d M

|ν|
d |ν|! Sηj (|ν|)(13)

for all 0 ≤ j ≤ k and |ηj | ≤ |ν| ≤ l. (Note that when |ν| < |ηj |, the coefficients
(ηj ◦ d, ν) = 0, and Sηj (|ν|) is simply not defined.) This is shown by induction
on j. The case j = 0 < l is trivial. When j = 1 ≤ l, the left-shift operator

x
−(n1+1)
0 := (xn1+1

0 )−1 is employed, where, in general, for any ξ, ν ∈ X∗,

ξ−1(ν) =

{
ν′ : ν = ξν′,
0 : otherwise.

Observe the following for any ν with |η1| ≤ |ν| ≤ l and containing the left factor
xn1+1

0 (otherwise the claim is trivial):

|(η1 ◦ d, ν)| =
∣∣(xn1+1

0 (di1 �� xn0
0 ), ν)

∣∣
=

∣∣∣∣∣(di1 �� xn0
0 , x

−(n1+1)
0 (ν)︸ ︷︷ ︸

ν′

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
ξ∈X|ν′|−n0

(di1 , ξ)(ξ �� xn0
0 , ν′)

∣∣∣∣∣
≤

∑
ξ∈X|ν′|−n0

(KdM
|ξ|
d |ξ|!) (ξ �� xn0

0 , ν′) (since 0 ≤ |ξ| < l)

≤ KdM
|ν′|−n0

d (|ν′| − n0)!

(
|ν′|
n0

)
= KdM

−|η1|
d M

|ν|
d |ν|! Sη1(|ν|).

Now assume that the result holds up to some fixed j, where 1 ≤ j ≤ k − 1. Then in
a similar fashion for |ηj+1| ≤ |ν| ≤ l,

|(ηj+1 ◦ d, ν)| =

∣∣∣∣∣(dij+1 �� (ηj ◦ d), x−(nj+1+1)
0 (ν)︸ ︷︷ ︸

ν′

)∣∣∣∣∣
=

∣∣∣∣∣
|ν′|∑
i=0

∑
ξ∈Xi

ξ̄∈X|ν′|−i

(dij+1 , ξ)(ηj ◦ d, ξ̄)(ξ �� ξ̄, ν′)

∣∣∣∣∣.
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Since (ηj ◦ d, ξ̄) = 0 for |ξ̄| < |ηj |, it follows that, by using the coefficient bounds for
d (because 0 ≤ |ξ| ≤ l − (j + 1)) and Lemma 2.9 (since |ηj | ≤ |ξ̄| < l − (nj+1 + 1)),

|(ηj+1 ◦ d, ν)| ≤
|ν′|−|ηj |∑

i=0

∑
ξ∈Xi

ξ̄∈X|ν′|−i

(KdM
|ξ|
d |ξ|!) ·

(
Kj

dM
−|ηj |
d M

|ξ̄|
d |ξ̄|! Sηj (|ξ̄|)

)
(ξ �� ξ̄, ν′)

= Kj+1
d M

−|ηj+1|
d M

|ν|
d

|ν′|−|ηj |∑
i=0

i! (|ν′| − i)! Sηj (|ν′| − i)

(
|ν′|
i

)

= Kj+1
d M

−|ηj+1|
d M

|ν|
d |ν|! 1

(|ν|)nj+1+1

|ν′|−|ηj |∑
i=0

Sηj (|ν| − (nj+1 + 1) − i)

= Kj+1
d M

−|ηj+1|
d M

|ν|
d |ν|! Sηj+1(|ν|).

Hence, the claim is true for all 0 ≤ j ≤ k.
In the second step of the proof, the claimed upper bound on (c ◦d, ν) is produced

in terms of the polynomials ψn(Kd). Since η ∈ Id(ν) only if |η| ≤ |ν|, using the
inequality (13), it follows that

|(c ◦ d, ν)| =

∣∣∣∣∣∣
|ν|∑
i=0

i∑
j=0

∑
ηj∈Xi

(c, ηj)(ηj ◦ d, ν)

∣∣∣∣∣∣
≤

|ν|∑
i=0

i∑
j=0

∑
ηj∈Xi

(KcM
|ηj ||ηj |!) · (Kj

dM
−|ηj |M |ν||ν|! Sηj (|ν|))

= Kc ψ|ν|(Kd) M
|ν||ν|!.

Lemma 2.11. For each right factor ηj as defined in (4) of a given word η ∈ X∗,
the following bounds apply:

0 < Sηj (n) ≤ (α + 1)n−|ηj |+j

αj |ηj |!

for any α > 0 and all n ≥ |ηj |.
Proof. The proof is again by induction. The j = 0 case is trivial. When j = 1,

observe that

Sη1(n) =
1

(n)n1+1|η0|!

≤ 1

(|η1|)n1+1|η0|!
, n ≥ |η1|,

=
1

|η1|!

≤
(
α + 1

α

)
(α + 1)n−|η1|

|η1|!
, n ≥ |η1|.

Now suppose the lemma is true up to some fixed j ≥ 1. Then

Sηj+1(n) =
1

(n)nj+1+1

n−|ηj+1|∑
i=0

Sηj
(n− (nj+1 + 1) − i)
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≤ 1

(n)nj+1+1

n−|ηj+1|∑
i=0

(α + 1)(n−(nj+1+1)−i)−|ηj |+j

αj |ηj |!

≤ (α + 1)j

αj |ηj+1|!

n−|ηj+1|∑
i=0

(α + 1)n−|ηj+1|−i, n ≥ |ηj+1|,

≤ (α + 1)n−|ηj+1|+j+1

αj+1|ηj+1|!
.

So the result holds for all j ≥ 0.
The main local convergence theorem for the composition product follows.
Theorem 2.12. Suppose c ∈ R�

LC〈〈X〉〉 and d ∈ Rm
LC〈〈X〉〉 with growth constants

Kc,Mc and Kd,Md, respectively. Then c ◦ d ∈ R�
LC〈〈X〉〉 with

|(c ◦ d, ν)| ≤ Kc((φ(mKd) + 1)M)|ν|(|ν| + 1)! ∀ν ∈ X∗,

where φ(x) := x/2 +
√

x2/4 + x and M = max{Mc,Md}.
Proof. In light of Lemma 2.10, the goal is to show that ψn(Kd) ≤ (φ(mKd) +

1)n(n + 1) for all n ≥ 0. Observe that applying Lemma 2.11 gives, for any α > 0,

ψn(Kd) ≤
n∑

i=0

i∑
j=0

∑
ηj∈Xi

i≥j

Kj
d

(α + 1)n−|ηj |+j

αj

= (α + 1)n
n∑

i=0

i∑
j=0

(
i

j

)(
mKd

α

)j (
1

α + 1

)i−j

= (α + 1)n
n∑

i=0

βi,

where β := mKd/α + 1/(α + 1). Setting β = 1 corresponds to letting α = φ(mKd),
and the theorem is proved. (Note that φ(1) = φg := (1 +

√
5)/2, the golden ratio,

and φ(mKd) ≈ mKd when mKd � 1.)
Example 2.13. In some cases, the coefficient boundaries given in Theorem 2.12

are conservative; i.e., smaller growth constants might be produced by exploiting par-
ticular features of the series under consideration. For example, given linear series
c =

∑
n≥0(c, x

n
0x1)x

n
0x1 and d =

∑
n≥0(d, x

n
0x1)x

n
0x1 in RLC〈〈X〉〉 with X = {x0, x1},

it can be shown directly that, by writing the composition product as a convolution

sum and using the fact that
∑n

k=0

(
n
k

)−1
< 3 for any n ≥ 0,

|(c ◦ d, ν)| < KcKdM
|ν||ν|! ∀ν ∈ X∗.

3. The nonrecursive connections. In this section the generating series are
produced for the three nonrecursive interconnections, and their local convergence is
characterized.

Theorem 3.1. If c, d ∈ R�
LC〈〈X〉〉, then each nonrecursive interconnected input-

output system shown in Figure 1.1(a)–(c) has a Fliess operator representation gener-
ated by a locally convergent series as indicated:

1. Fc + Fd = Fc+d;
2. Fc · Fd = Fc �� d;
3. Fc ◦ Fd = Fc◦d, where � = m.
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Proof.
1. Observe that

Fc[u](t) + Fd[u](t) =
∑
η∈X∗

[(c, η) + (d, η)] Eη[u](t, t0) = Fc+d[u](t).

Since c and d are locally convergent, define M = max{Mc,Md}. Then it follows that

|(c + d, η)| = |(c, η) + (d, η)| ≤ (Kc + Kd)M
|η||η|! ∀η ∈ X∗,

or c + d is locally convergent.
2. In light of the componentwise definition of the product interconnection and the

shuffle product, it can be assumed without loss of generality that � = 1. Therefore,

Fc[u](t)Fd[u](t) =
∑
η∈X∗

(c, η)Eη[u](t, t0)
∑
ξ∈X∗

(d, ξ)Eξ[u](t, t0)

=
∑

η,ξ∈X∗

(c, η)(d, ξ) Eη �� ξ[u](t, t0)

= Fc �� d[u](t).

Local convergence of c �� d is provided by Theorem 2.8.
3. It is first shown by induction that Fη ◦ Fd = Fη◦d for any η ∈ X∗ and

d ∈ Rm
LC〈〈X〉〉. Choose any η ∈ X∗, and let {η0, η1, . . . , ηk} be the corresponding set

of right factors defined in (4). Clearly,

(Fη0
◦ Fd[u])(t) = Eη0

[u](t, t0) = Fη0
[u](t) = Fη0◦d[u](t).

Now assume that

(Fηj ◦ Fd[u])(t) = Fηj◦d[u](t)

holds up to some fixed factor ηj . Then

(Fηj+1 ◦ Fd[u])(t) = E
x
nj+1
0 xij+1

ηj
[Fd[u]](t, t0)

=

∫ t

t0

· · ·
∫ τ2

t0︸ ︷︷ ︸
nj+1+1 times

Fdij+1
[u](τ1)Eηj

[Fd[u]](τ1, t0) dτ1 · · · dτnj+1+1

=

∫ t

t0

· · ·
∫ τ2

t0︸ ︷︷ ︸
nj+1+1 times

Fdij+1
�� (ηj◦d)[u](τ1) dτ1 · · · dτnj+1+1

= F
x
nj+1+1

0 [dij+1
�� (ηj◦d)]

[u](t)

= Fηj+1◦d[u](t).

Thus, the claim holds for η = ηj+1 and, by induction, for η = ηk. Finally,

(Fc ◦ Fd[u])(t) =
∑
η∈X∗

(c, η)Eη[Fd[u]](t, t0) =
∑
η∈X∗

(c, η)Fη◦d[u](t)

=
∑
η∈X∗

(c, η)

[ ∑
ν∈X∗

(η ◦ d, ν)Eν [u](t, t0)

]
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=
∑
ν∈X∗

⎡⎣ ∑
η∈X∗

(c, η)(η ◦ d, ν)

⎤⎦Eν [u](t, t0)

=
∑
ν∈X∗

(c ◦ d, ν) Eν [u](t, t0)

= Fc◦d[u](t).

Local convergence of c ◦ d was proved in Theorem 2.12.
Example 3.2. Let X = {x0, x1}, c =

∑
k≥0 KcM

k
c k!xk

1 , and d =
∑

k≥0 KdM
k
d k!xk

1 ,
where Kc,Mc > 0 and Kd,Md > 0 are arbitrary growth constants. It is easily verified
that the state space systems,

żc = Mcz
2
cuc, zc(0) = 1,

yc = Kczc,

żd = Mdz
2
dud, zd(0) = 1,

yd = Kdzd,

realize the operators Fc : uc �→ yc and Fd : ud �→ yd, respectively, for sufficiently small
inputs and intervals of time. Letting z = [zTc zTd ]T , it follows directly that Fc◦d is
realized by

ż = f(z) + g(z)u, z(0) = [1 1]T ,(14)

y = h(z),(15)

where

f(z) =

(
KdMcz

2
czd

0

)
, g(z) =

(
0

Mdz
2
d

)
, h(z) = Kczc.

The first few coefficients of c, d, and c ◦ d are given in Table 3.1 along with the upper
bounds on the coefficients of c ◦ d predicted by Theorem 2.12. Since these upper
bounds hold for any series c and d with the given growth constants, they can be

Table 3.1

Some coefficients (c, ν), (d, ν), (c ◦ d, ν) and upper bounds for (c ◦ d, ν) in Example 3.2.

ν (c, ν) (d, ν) (c ◦ d, ν) Upper bounds for (c ◦ d, ν)

∅ Kc Kd Kc Kc

x0 0 0 Kc(KdMc) Kc((φ(Kd) + 1)M) 2!

x1 KcMc KdMd 0 Kc((φ(Kd) + 1)M) 2!

x2
0 0 0 Kc(KdMc)2 2! Kc((φ(Kd) + 1)M)2 3!

x0x1 0 0 Kc(KdMc)Md Kc((φ(Kd) + 1)M)2 3!

x1x0 0 0 0 Kc((φ(Kd) + 1)M)2 3!

x2
1 KcM2

c 2! KdM
2
d2! 0 Kc((φ(Kd) + 1)M)2 3!

x3
0 0 0 Kc(KdMc)3 3! Kc((φ(Kd) + 1)M)3 4!

x2
0x1 0 0 Kc(KdMc)2Md 22 Kc((φ(Kd) + 1)M)3 4!

x0x1x0 0 0 Kc(KdMc)2Md 2 Kc((φ(Kd) + 1)M)3 4!

x0x2
1 0 0 Kc(KdMc)M2

d 2 Kc((φ(Kd) + 1)M)3 4!

x1x2
0 0 0 0 Kc((φ(Kd) + 1)M)3 4!

x1x0x1 0 0 0 Kc((φ(Kd) + 1)M)3 4!

x2
1x0 0 0 0 Kc((φ(Kd) + 1)M)3 4!

x3
1 KcM3

c 3! KdM
3
d3! 0 Kc((φ(Kd) + 1)M)3 4!
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Table 3.2

Tmax and tesc for specific examples of c ◦ d with ū = 1.

Case Kc Mc Kd Md Mc◦d Tmax tesc tesc/Tmax

1 4 2 2 2 7.46 0.03349 0.1967 5.873

2 2 4 2 2 14.93 0.01675 0.1105 6.598

3 2 2 4 2 11.66 0.02145 0.1105 5.152

4 2 2 2 4 14.93 0.01675 0.1580 9.435
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Fig. 3.1. The output of Fc◦d[u] when u(t) = ū = 1 for Cases 1–4 of Table 3.2.

conservative in specific cases. In [13] it is shown that given any series c ∈ R�
LC〈〈X〉〉,

where X = {x0, x1, . . . , xm} and |(c, ν)| ≤ KcM
|ν|
c |ν|! for all ν ∈ X∗, if

max{||u||1, T} ≤ 1

(m + 1)2Mc
,

then Fc[u] converges absolutely and uniformly on [0, T ]. The result still holds if one

has the slightly more generous growth condition |(c, ν)| ≤ KcM
|ν|
c (|ν| + 1)!. For a

constant input u(t) = ū, where |ū| ≥ 1, define

Tmax =
1

(m + 1)2Mc|ū|
.(16)

Then it follows from Theorem 2.12 that when m = 1, Fc◦d[ū] will always be well
defined on at least the interval [0, Tmax), where

Tmax =
1

4Mc◦d|ū|

and Mc◦d = (φ(Kd)+1) max{Mc,Md}. Four specific cases are described in Table 3.2.
Here each Tmax is compared against the finite escape time, tesc, of the state space
system (14)–(15) with u(t) = ū = 1, which is determined numerically (see Figure
3.1). In each case, the value of Tmax < tesc, but, as expected, Tmax is conservative
since the coefficient upper bounds for c ◦ d are conservative.

Example 3.3. The composition product provides an alternative interpretation
of the symbolic calculus of Fliess [8, 10, 19]. Specifically, consider an input-output
system represented by Fc with c ∈ R�

LC〈〈X〉〉. Any input u, which is analytic at
t = t0, can be represented near t0 by a series cu ∈ Rm

LC〈〈X0〉〉, i.e., u = Fcu [v] for
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some locally convergent series cu =
∑

k≥0(cu, x
k
0) xk

0 and all ν ∈ Bm
p (R)[t0, t0 + T ].

In effect, cu is the formal Laplace–Borel transform of the input u. (See [20] for more
analysis of this example using the formal Laplace–Borel transform.) The analyticity
of y = Fc[u] follows from [28, Lemma 2.3.8], and therefore the formal Laplace–Borel
transform of y, namely, cy, can be related to c and cu via

Fcy [v] = y = Fc[Fcu [v]] = Fc◦cu [v].

From [28, Corollary 2.2.4], it follows directly that cy = c ◦ cu.
This last example motivates the following definition.
Definition 3.4. A series c ∈ R�〈〈X〉〉 is input-output locally convergent if for

every cu ∈ Rm
LC〈〈X0〉〉 it follows that c ◦ cu ∈ R�

LC〈〈X0〉〉.
It is immediate that every locally convergent series is input-output locally con-

vergent, but the converse claim is only known to hold at present in certain special
cases.

Lemma 3.5. Let c ∈ R�〈〈X〉〉 be an input-output locally convergent series with
nonnegative coefficients. Then c is locally convergent.

Proof. Set cu = 1l and let K,M be the growth constants for the series c ◦ 1l. Then
from Lemma 2.2, property 4,

|(c ◦ 1l, xn
0 )| = max

i

∑
η∈Xn

(ci, η) ≤ KMn n! ∀n ≥ 0.

Thus, |(c, η)| = maxi(ci, η) ≤ KMn n! for all n ≥ 0.
Lemma 3.6. Let c ∈ R�〈〈X〉〉 be an input-output locally convergent linear series

of the form c =
∑

j≥0(c, x
j
0xij ) x

j
0xij , where ij ∈ {1, 2, . . . ,m} for all j ≥ 0. Then c

is locally convergent.
Proof. Again set cu = 1l and let K,M be the growth constants for the series c ◦ 1l.

Then

|(c ◦ 1l, xn
0 )| = max

i
|(ci, xn−1

0 xin)| ≤ KMn n! ∀n ≥ 0,

and the conclusion follows.

4. The feedback connection. Given any c, d ∈ Rm
LC〈〈X〉〉, the general goal of

this section is to determine when there exists a y which satisfies the feedback equation
(1) and, in particular, when there exists a generating series e so that y = Fe[u] for all
admissible inputs u. In the latter case, the feedback equation becomes equivalent to

Fe[u] = Fc[u + Fd◦e[u]],(17)

and the feedback product of c and d is defined by c@d = e. It is assumed throughout
that m > 0; otherwise the feedback connection is degenerate. An initial obstacle in
this analysis is that Fe is required to be the composition of two operators, Fc and
I + Fd◦e, where the second operator is never realizable by a Fliess operator due to
the direct feed term I. This does not prevent the composition from being a Fliess
operator, but to compensate for the presence of this term a modified composition
product is needed. Specifically, for any η ∈ X∗ and d ∈ Rm〈〈X〉〉, define the modified
composition product as

η ◦̃ d =

{
η : |η|xi

= 0 ∀i = 0,
xn

0xi(η
′ ◦̃ d) + xn+1

0 [di �� (η′ ◦̃ d)] : η = xn
0xiη

′, n ≥ 0, i = 0.
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For c ∈ R�〈〈X〉〉 and d ∈ Rm〈〈X〉〉, the definition is extended as

c ◦̃ d =
∑
η∈X∗

(c, η) η ◦̃ d.

It can be verified in a manner completely analogous to the original composition prod-
uct that the modified composition product is always well defined (summable), contin-
uous in both arguments, and locally convergent when both c and d are. In particular,
the following theorems are central to the analysis in this section.

Theorem 4.1. For any c ∈ R�
LC〈〈X〉〉 and d ∈ Rm

LC〈〈X〉〉, it follows that

Fc ◦̃ d[u] = Fc[u + Fd[u]]

for all admissible u.
Proof. The result is verified simply by inserting the direct feed term into the proof

of Theorem 3.1, part 3.
Theorem 4.2. For any c ∈ Rm〈〈X〉〉, the mapping d �→ c ◦̃ d is a contraction on

Rm〈〈X〉〉.
Proof. This is also a minor variation of previous results concerning the composi-

tion product, in particular, Lemma 2.4, Lemma 2.5, and Theorem 2.6. The contraction
coefficient, σ, is unaffected by the required modifications.

The first main result of this section is given next.
Theorem 4.3. Let c, d be fixed series in Rm〈〈X〉〉. Then the following proposi-

tions hold:
1. The mapping

S : Rm〈〈X〉〉 → Rm〈〈X〉〉
: ei �→ ei+1 = c ◦̃ (d ◦ ei)(18)

has a unique fixed point in Rm〈〈X〉〉, c@d = limi→∞ ei, which is independent of e0.
2. If c, d, and c@d are locally convergent, then Fc@d satisfies the feedback equa-

tion (17).
Proof.
1. The mapping S is a contraction since, by Theorems 2.6 and 4.2,

dist(S(ei), S(ej)) ≤ σ dist(d ◦ ei, d ◦ ej) ≤ σ2 dist(ei, ej).

Therefore, the mapping S has a unique fixed point, c@d, that is independent of e0,
i.e.,

c@d = c ◦̃ (d ◦ (c@d)).(19)

2. From the stated assumptions concerning c, d, and c@d, it follows that

Fc@d[u] = Fc ◦̃ (d◦(c@d))[u] = Fc[u + Fd[Fc@d[u]]]

for any admissible u.
The obvious question is whether c@d is always locally convergent, or at least

input-output locally convergent, when both c and d are locally convergent. The local
convergence of c and d guarantees that the feedback system in Figure 1.1(d) is at
least well-posed in the sense described in [1, 27] since Fc and Fd are well-defined
causal analytic operators. That is, there exist sufficiently small R,S, T > 0 such that
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for any u ∈ Bm
p (R)[t0, t0 + T ], there exists a y ∈ Bm

q (S)[t0, t0 + T ] which satisfies
the feedback equation (1). But whether y = Fc@d[u] on some ball of input functions
of nonzero radius over a nonzero interval of time is not immediate. The following
example shows that Rm

LC〈〈X〉〉 is not a closed subset of Rm〈〈X〉〉 in the ultrametric
topology.

Example 4.4. Let X = {x0, x1} and consider the following sequence of polyno-
mials in Rm

LC〈〈X〉〉:

ei = x1 + 222! x2
1 + 333! x3

1 + · · · + iii! xi
1, i ≥ 1.

Clearly, e = limi→∞ ei is not locally convergent.
A central issue is whether such an example can be produced by repeated com-

positions of a locally convergent series. It will be first shown that the answer to this
question is no. Then the more general case described by (18) is examined. This leads
to the main conclusion that the feedback product of two locally convergent series is
always input-output locally convergent.

Observe first that if e = c ◦ e, then it follows that e must have the form e =∑
n≥0(e, x

n
0 )xn

0 . Furthermore, since e appears on both sides of the expression e = c◦e,
it is possible by repeated substitution to express each coefficient (e, xn

0 ) in terms of the
coefficients {(c, ν) : |ν| ≤ n}. For example, if X = {x0, x1}, the first few coefficients
of e are

(e, ∅) = (c, ∅),
(e, x0) = (c, x0) + (c, ∅)(c, x1),

(e, x2
0) = (c, x2

0) + (c, x0)(c, x1) + (c, ∅)(c, x1)
2 + (c, ∅)(c, x0x1) + (c, ∅)(c, x1x0)

+(c, ∅)2(c, x2
1),

(e, x3
0) = (c, x2

0)(c, x1) + (c, x0)(c, x1)
2 + (c, ∅)(c, x1)

3 + (c, ∅)(c, x1)(c, x0x1)

+(c, ∅)(c, x1)(c, x1x0) + (c, ∅)2(c, x1)(c, x
2
1) + (c, x0)(c, x0x1)

+(c, ∅)(c, x1)(c, x0x1) + 2(c, x0)(c, x1x0) + 2(c, ∅)(c, x1)(c, x1x0)

+3(c, ∅)(c, x0)(c, x
2
1) + 3(c, ∅)2(c, x1)(c, x

2
1) + (c, x3

0) + (c, ∅)(c, x2
0x1)

+(c, ∅)(c, x0x1x0) + (c, ∅)2(c, x0x
2
1) + (c, ∅)(c, x1x

2
0) + (c, ∅)2(c, x1x0x1)

+(c, ∅)2(c, x2
1x0) + (c, ∅)3(c, x3

1)

...

If c is locally convergent with growth constants Kc,Mc, then

|(e, ∅)| ≤ Kc,

|(e, x0)| ≤ Kc(Kc + 1)Mc,

|(e, x2
0)| ≤ Kc

(
3

2
K2

c +
5

2
Kc + 1

)
M2

c 2!,

|(e, x3
0)| ≤ Kc

(
5

2
K3

c +
35

6
K2

c +
13

3
Kc + 1

)
M3

c 3!

...

This suggests that a variation of inequality (12) is possible, namely, that

|(e, xn
0 )| ≤ Kc ψ̃n(Kc) M

n
c n! ∀n ≥ 0,
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Table 4.1

The first few polynomials S̃ηj (Kc, n) and ψ̃n(Kc) when m = 1.

n ηj S̃η0 (Kc, n), . . . , S̃ηj (Kc, n) ψ̃n(Kc)

0 ∅ S̃∅(Kc, 0) = 1 1

1
x0

x1

S̃x0 (Kc, 1) = 1

S̃∅(Kc, 1) = 1, S̃x1 (Kc, 1) = 1
Kc + 2

x2
0 S̃x2

0
(Kc, 2) = 1

2

x0x1 S̃∅(Kc, 2) = 1, S̃x0x1 (Kc, 2) = 1
2

2 x1x0 S̃x0 (Kc, 2) = 1, S̃x1x0 (Kc, 2) = 1
2

3
2
K2

c + 3Kc + 3

x2
1 S̃∅(Kc, 2) = 1, S̃x1 (Kc, 2) = 1

2
Kc + 1,

S̃x2
1
(Kc, 2) = 1

2

x3
0 S̃x3

0
(Kc, 3) = 1

6

x2
0x1 S̃∅(Kc, 3) = 1, S̃x2

0x1
(Kc, 3) = 1

6

x0x1x0 S̃x0 (Kc, 3) = 1, S̃x0x1x0 (Kc, 3) = 1
6

x0x2
1 S̃∅(Kc, 3) = 1, S̃x1 (Kc, 3) = 1

2
K2

c + Kc + 1,

S̃x0x
2
1
(Kc, 3) = 1

6

3 x1x2
0 S̃x2

0
(Kc, 3) = 1

2
, S̃x1x

2
0
(Kc, 3) = 1

6
5
2
K3

c + 7K2
c + 6Kc + 4

x1x0x1 S̃∅(Kc, 3) = 1, S̃x0x1 (Kc, 3) = 1
6
Kc + 1

3
,

S̃x1x0x1 (Kc, 3) = 1
6

x2
1x0 S̃x0 (Kc, 3) = 1, S̃x1x0 (Kc, 3) = 1

3
Kc + 2

3
,

S̃x2
1x0

(Kc, 3) = 1
6

x3
1 S̃∅(Kc, 3) = 1, S̃x1 (Kc, 3) = 1

2
K2

c + Kc + 1,

S̃x2
1
(Kc, 3) = 1

2
Kc + 1, S̃x3

1
(Kc, 3) = 1

6

where each ψ̃n(Kc) is a polynomial in Kc of degree n. The next lemma establishes
the claim using a family of polynomials of the form

ψ̃n(Kc) =

n∑
i=0

i∑
j=0

∑
ηj∈Xi

Kj
c S̃ηj (Kc, n)|ηj |!, n ≥ 0.

Given a fixed n, every word ηj in the innermost summation satisfies j ≤ |ηj | ≤ n and
has a corresponding set of right factors {η0, η1, . . . , ηj}. When j > 0, each polynomial

S̃ηj
(Kc, n) is computed iteratively using its right factors and the previously computed

polynomials {ψ̃0(Kc), ψ̃1(Kc), . . . , ψ̃n−1(Kc)}:

S̃η0(Kc, n) =
1

|η0|!
, 0 ≤ |η0| ≤ n,

S̃η1(Kc, n) =
1

(n)n1+1
ψ̃n−|η1|(Kc) S̃η0(Kc, n), 1 ≤ |η1| ≤ n,

S̃η2(Kc, n) =
1

(n)n2+1

n−|η2|∑
i=0

ψ̃i(Kc) S̃η1
(Kc, n− (n2 + 1) − i), 2 ≤ |η2| ≤ n,

...

S̃ηj
(Kc, n) =

1

(n)nj+1

n−|ηj |∑
i=0

ψ̃i(Kc) S̃ηj−1
(Kc, n− (nj + 1) − i), 2 ≤ j ≤ |ηj | ≤ n.

See Table 4.1 for the case where m = 1.
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Lemma 4.5. Let c ∈ Rm
LC〈〈X〉〉 with growth constants Kc,Mc, and e ∈ Rm〈〈X〉〉

such that e = c ◦ e. Then

|(e, xn
0 )| ≤ Kc ψ̃n(Kc) M

n
c n! ∀n ≥ 0.(20)

Proof. The proof has some elements in common with that of Lemma 2.10, except
here it is not assumed a priori that e is locally convergent. The basic approach employs
nested inductions. The outer induction is on n. It is clear from the discussion above
that the claim holds when n = 0 and n = 1 for m = 1. A similar calculation can
be done for arbitrary m ≥ 1. Now suppose (20) holds up to some fixed n − 1 ≥ 1.
Given any ηj , where j ≤ |ηj | ≤ n, it will first be shown by induction on j (the inner
induction) that

|(ηj ◦ e, xn
0 )| ≤ Kj

cM
−|ηj |
c Mn

c n! S̃ηj (Kc, n), 0 ≤ j ≤ n.(21)

The j = 0 case is trivial. Suppose j = 1. Then 0 ≤ n− |η1| ≤ n− 1 and

|(η1 ◦ e, xn
0 )| =

∣∣(xn1+1
0 (ei1 �� xn0

0 ), xn
0

)∣∣
=

∣∣∣(ei1 �� xn0
0 , x

n−(n1+1)
0

)∣∣∣
=

∣∣∣(ei1 , xn−|η1|
0

)(
x
n−|η1|
0 �� xn0

0 , x
n−(n1+1)
0

)∣∣∣
≤

(
Kc ψ̃n−|η1|(Kc) M

n−|η1|
c (n− |η1|)!

) (
n− (n1 + 1)

n− |η1|

)
= KcM

−|η1|
c Mn

c n! S̃η1(Kc, n).

Now assume that inequality (21) holds up to some fixed j, where 1 ≤ j ≤ n−1. Then
0 ≤ n− |ηj+1| ≤ n− (j + 1) and

|(ηj+1 ◦ e, xn
0 )| =

∣∣∣(eij+1 �� (ηj ◦ e), xn−(nj+1+1)
0

)∣∣∣
=

∣∣∣∣∣∣
n−(nj+1+1)∑

i=0

(
eij+1

, xi
0

) (
ηj ◦ e, xn−(nj+1+1)−i

0

)(
n− (nj+1 + 1)

n− (nj+1 + 1) − i

)∣∣∣∣∣∣ .
Since (ηj ◦ e, xn−(nj+1+1)−i

0 ) = 0 when n − (nj+1 + 1) − i < |ηj | or, equivalently, i >
n−|ηj+1|, it follows that, using the coefficient bound (20) for e (because 0 ≤ i ≤ n−1)
and the bound (21) for ηj ◦ e,

|(ηj+1 ◦ e, xn
0 )| ≤

n−|ηj+1|∑
i=0

(
Kcψ̃i(Kc)M

i
c i!

)(
Kj

cM
−|ηj |
c Mn−(nj+1+1)−i

c

· (n− (nj+1 + 1) − i)! S̃ηj
(Kc, n− (nj+1 + 1) − i)

)
·
(

n− (nj+1 + 1)

n− (nj+1 + 1) − i

)
= Kj+1

c M−|ηj+1|
c Mn

c n!
1

(n)nj+1+1

·
n−|ηj+1|∑

i=0

ψ̃i(Kc) S̃ηj (Kc, n− (nj+1 + 1) − i)

= Kj+1
c M−|ηj+1|

c Mn
c n! S̃ηj+1

(Kc, n).
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Hence, the claim is true for all 0 ≤ j ≤ n.
To complete the outer induction with respect to n, observe that

|(e, xn
0 )| = |(c ◦ e, xn

0 )| =

∣∣∣∣∣∣
n∑

i=0

i∑
j=0

∑
ηj∈Xi

(c, ηj)(ηj ◦ e, xn
0 )

∣∣∣∣∣∣
≤

n∑
i=0

i∑
j=0

∑
ηj∈Xi

(
KcM

|ηj |
c |ηj |!

) (
Kj

cM
−|ηj |
c Mn

c n! S̃ηj
(Kc, n)

)
= Kc ψ̃n(Kc) M

n
c n!.

Therefore, inequality (20) holds for all n ≥ 0.
The next lemma provides an upper bound on the growth of the sequence ψ̃n(Kc),

n ≥ 0, when Kc is fixed.
Lemma 4.6. For any Kc ≥ 1, it follows that

ψ̃n(Kc) ≤ φg(mKc(2 + φg) + 1)nsn ∀n ≥ 0,(22)

where s0 = 1/φg, and sn, n ≥ 1, is an integer sequence equivalent to the bino-
mial transform of the sequence of Catalan numbers, Cn, n ≥ 1 (specifically, sequence
A007317 in [25]).

Proof. The proof has two main parts. First, it is shown by a nested induction
that, for any ε > 0, there exists a sequence of positive real numbers, ξn(ε), such that

ψ̃n(Kc) ≤ (mKc(2 + ε) + 1)nξn(ε), n ≥ 0, Kc ≥ 1.(23)

Then inequality (22) is produced for n ≥ 1 by setting ε = φg and showing that
ξn(φg) = φgsn when n ≥ 1. (n = 0 is a trivial special case.)

Let ε > 0 and define two sequences of positive real numbers, ξn(ε) and Γn(ε), via
the recurrence equations

ξn+1(ε) = ξn(ε) + Γn+1(ε), n ≥ 0, ξ0 = 1, Γ1 = 1/ε,(24)

Γn+1(ε) =
1

ε

[
ξn(ε) +

n∑
i=1

ξi(ε)Γn−i+1(ε)

]
, n ≥ 1.(25)

By definition, Γ0 = 1. In light of Table 4.1, inequality (23) clearly holds when n = 0
and n = 1 for m = 1 and Kc ≥ 1. (It is easily verified to also hold when m ≥ 1.) Now
suppose the inequality holds up to some fixed n − 1 ≥ 1. Given any word ηj , where
j ≤ |ηj | ≤ n, an inner induction with respect to j will now show that

S̃ηj
(Kc, n) ≤

(mKc(2 + ε) + 1)n−|ηj | (2 + ε)j Γn−|ηj |(ε)

|ηj |!
, 0 ≤ j ≤ |ηj |(26)

(cf. the proof of Lemma 2.11, where some of the computational details are similar).
The j = 0 case is trivial. Suppose j = 1. Since n− |η1| < n, it follows that

S̃η1(Kc, n) =
1

(n)n1+1

ψ̃n−|η1|(Kc)

|η0|!

≤
(mKc(2 + ε) + 1)n−|η1| ξn−|η1|(ε)

|η1|!

≤
(mKc(2 + ε) + 1)n−|η1| (2 + ε) Γn−|η1|(ε)

|η1|!
, n ≥ |η1|.
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This last inequality employs the general properties for any j ≥ 0 that ξn−|ηj |(ε) =
Γn−|ηj |(ε) when n = |ηj | and

n−|ηj |∑
i=0

ξi(ε)Γn−|ηj |−i(ε) = (2 + ε) Γn−|ηj |(ε)(27)

when n > |ηj |. Now suppose that inequality (26) holds up to some fixed j ≥ 1. Then

S̃ηj+1(Kc, n) =
1

(n)nj+1+1

n−|ηj+1|∑
i=0

ψ̃i(Kc) S̃ηj
(Kc, n− (nj+1 + 1) − i)

≤ 1

|ηj+1|!

n−|ηj+1|∑
i=0

(mKc(2 + ε) + 1)iξi(ε)

·
[
(mKc(2 + ε) + 1)n−|ηj+1|−i (2 + ε)j Γn−|ηj+1|−i(ε)

]
=

(mKc(2 + ε) + 1)n−|ηj+1|(2 + ε)j

|ηj+1|!

n−|ηj+1|∑
i=0

ξi(ε)Γn−|ηj+1|−i(ε)

=
(mKc(2 + ε) + 1)n−|ηj+1| (2 + ε)j+1 Γn−|ηj+1|(ε)

|ηj+1|!
, |ηj | < |ηj+1| ≤ n,

where again identity (27) was used to derive the final equality above. Hence, inequal-
ity (26) holds for all 0 ≤ j ≤ |ηj |. To complete the outer induction with respect to n,
observe that

ψ̃n+1(Kc) =

n+1∑
i=0

i∑
j=0

∑
ηj∈Xi

Kj
c S̃ηj (Kc, n + 1)|ηj |!

≤
n+1∑
i=0

i∑
j=0

(
i

j

)[
(mKc(2 + ε) + 1)n+1−i (mKc(2 + ε))j Γn+1−i(ε)

i!

]
i!

= (mKc(2 + ε) + 1)n+1
n+1∑
i=0

Γn+1−i(ε)

= (mKc(2 + ε) + 1)n+1ξn+1(ε).

Thus, inequality (23) must hold for all n ≥ 0.
Now consider setting ε = φg in the system of equations (24)–(25). Eliminating

by substitution the sequence Γn(φg) gives the recurrence relation

ξn+1(φg) = φg +
1

φg

n∑
i=1

ξi(φg)ξn−i+1(φg), n ≥ 1, ξ1(φg) = φg,

or, equivalently,(
ξn+1(φg)

φg

)
= 1 +

n∑
i=1

(
ξi(φg)

φg

)(
ξn−i+1(φg)

φg

)
, n ≥ 1,

ξ1(φg)

φg
= 1.

It is known that sn satisfies the recurrence equation

sn+1 = 1 +

n∑
i=1

sisn−i+1, n ≥ 1, s1 = 1(28)
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(see [25] and the references therein). Hence, the conclusion that ξn(φg) = φgsn, n ≥ 1,
is immediate.

The recurrence equation (28) can be derived from the well-known recurrence
relation for the Catalan numbers: Cn+1 =

∑n
i=0 CiCn−i with C0 = 1 [4], which in

turn is equivalent to Segner’s recurrence formula given in the year 1758 as a solution to
Euler’s polygon division problem [31]. It is also worth noting that the sequence tn :=
Γn(φg)/φg, n ≥ 1, the increments of sn, is sequence A002212 in [25]. The positive
integer sequences Cn, sn, and tn each have a variety of combinatoric interpretations
in graph theory and the theory of formal languages. Of particular interest to system
theorists, for example, is the fact that Cn is equivalent to the number of ways to
binary bracket the letters in a word of length n+1 [31, 32]. The asymptotic behavior
of sn,

sn ∼ 1

8

√
5

π

5n

n3/2

(see [15, sequence 124]), motivates the following central result concerning local con-
vergence.

Theorem 4.7. If c ∈ Rm
LC〈〈X〉〉 with growth constants Kc,Mc, and e = c ◦ e,

then e ∈ Rm
LC〈〈X0〉〉. Specifically, for any Kc ≥ 1,

|(e, xn
0 )| ≤ Kc((mKc(2 + φg) + 1)5Mc)

n n! ∀n ≥ 0.(29)

Proof. The result is trivial when n = 0. When n ≥ 1, it is first necessary to
show by induction that sn+1 < 5sn. The claim is clearly true when n = 1 or n = 2.
Suppose it is known to hold up to some fixed integer n+1 ≥ 2. Sequence sn is known
to satisfy another recurrence equation [15, 25]:

(n + 2)sn+2 = (6n + 4)sn+1 − 5nsn.

Therefore,

sn+2 < [(6n + 4)sn+1 − nsn+1]/(n + 2) < 5sn+1,

which proves the claim for all n ≥ 1. Next, substituting the upper bound φgsn ≤
5n, n ≥ 0, into (22) gives

ψ̃n(Kc) ≤ ((mKc(2 + φg) + 1)5)n ∀n ≥ 0.(30)

The theorem is finally proved by simply applying Lemma 4.5.
In most cases the upper bound in (29) is quite conservative because the upper

bound (30) is conservative. Figure 4.1 shows ψ̃n(Kc) (generated symbolically via
MAPLE) and upper bound (30) versus n for various values of Kc.

The final step of the analysis is to use Theorem 4.7 to prove the input-output
local convergence of the feedback product.

Theorem 4.8. If c, d ∈ Rm
LC〈〈X〉〉, then c@d is input-output locally convergent.

Specifically, when Kc ≥ 1, then

((c@d) ◦ b, xn
0 ) ≤ Kc([mKc(2 + φg) + 1][φ(m(Kb + Kd)) + 1]10M)n n!

for any b ∈ Rm
LC〈〈X0〉〉 and where M = max{Mb,Mc,Md}.

Proof. Select any series b ∈ Rm
LC〈〈X0〉〉. It follows from (19) that

(c@d) ◦ b = (c ◦̃ (d ◦ (c@d))) ◦ b = c ◦ (b + d) ◦ ((c@d) ◦ b).
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Fig. 4.1. A plot of log10(ψ̃n(Kc)) (solid lines) and the logarithm (base 10) of the upper bound
in (30) (dashed lines) versus n for various values of Kc.

Since b, c, and d are all locally convergent, so is the series c ◦ (b + d). Now apply
Theorem 4.7, replacing c with c ◦ (b + d) and e with (c@d) ◦ b. This implies that
(c@d)◦ b is always locally convergent, and therefore c@d must be input-output locally
convergent. To produce the given growth condition for the output series, note that

Kc◦(b+d) = Kc Mc◦(b+d) = 2(φ(m(Kb + Kd)) + 1)M,

using Theorem 2.12 and the fact that n + 1 ≤ 2n for all n ≥ 0. Substituting these
growth constants for Kc and Mc, respectively, in Theorem 4.7 produces the desired
result.

Example 4.9. Suppose c and d are linear series in Rm
LC〈〈X〉〉. Then c@d =

limi→∞ ei, where

ei+1 = c ◦̃ (d ◦ ei) = c + (c ◦ d) ◦ ei.

Setting e0 = c gives

c@d = c +

∞∑
k=1

(c ◦ d)◦k ◦ c,

where c◦k denotes k copies of c composed k − 1 times. It is easily verified since
(c, ∅) = 0 that ((c ◦ d)◦k, ν) = 0 for all k > |ν|. Hence,

(c@d, ν) = (c, ν) +

|ν|−1∑
k=1

((c ◦ d)◦k ◦ c, ν).

Example 4.10. For any c, d ∈ RLC〈〈X〉〉, a self-excited feedback loop can be
described by Fc@d[0] = F(c@d)◦0[u] = F(c@d)0 [u] (cf. Lemma 2.2, property 2). In this
case (c@d)0 = limi→∞ ei, where ei+1 = (c ◦ d) ◦ ei. Using the m = 0 version of (16)
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Table 4.2

Some coefficients (c, ν), (d, ν), and (c@d, ν) in Example 4.11.

ν (c, ν) (d, ν) (c@d, ν)

∅ Kc Kd Kc

x0 0 0 KcKdMc

x1 KcMc KdMd KcMc

x2
0 0 0 Kc((KdMc)2 2! + KcKdMcMd)

x0x1 0 0 KcKdM
2
c 2!

x1x0 0 0 KcKdM
2
c 2!

x2
1 KcM2

c 2! KdM
2
d2! KcM2

c 2!

x3
0 0 0 Kc((KdMc)3 3! + Kc(KdMc)2Md 7 + K2

cKdMcM2
d 2!)

x2
0x1 0 0 Kc((KdMc)2Mc 3! + KcKdM

2
cMd 3)

x0x1x0 0 0 Kc((KdMc)2Mc 3! + KcKdM
2
cMd 2!)

x0x2
1 0 0 KcKdM

3
c 3!

x1x2
0 0 0 Kc((KdMc)2Mc 3! + KcKdM

2
cMd 2!)

x1x0x1 0 0 KcKdM
3
c 3!

x2
1x0 0 0 KcKdM

3
c 3!

x3
1 KcM3

c 3! KdM
3
d3! KcM3

c 3!

(since the closed-loop system has, in effect, no external input) and Theorem 4.7,
F(c@d)0 [u] will converge at least on the interval [0, Tmax), where

Tmax =
1

M(c@d)0

=
1

(Kc◦d(2 + φg) + 1)5Mc◦d
.

Of course, if the series (c@d)0 can be computed explicitly, a potentially better estimate
T ′

max = 1/M ′
(c@d)0

is possible. For example, when c◦d = 1+x1, it is easily verified that

(c@d)0 =
∑

k≥0 x
k
0 so that Fc@d[0](t) = et for t ≥ 0. In this case, both Tmax = 0.04331

and T ′
max = 1 are very conservative. On the other hand, when c ◦ d = 1 + 2x1 + 2x2

1,
it follows that (c@d)0 =

∑
k≥0(k + 1)! xk

0 and Fc@d[0](t) = 1/(1 − t)2 for 0 ≤ t < 1.
Here Tmax = 0.02428 is less conservative and T ′

max = 1 is exact.
Example 4.11. Reconsider the state space systems in Example 3.2. The operator

Fc@d[u] then has the analytic state space realization

f(z) =

(
KdMcz

2
czd

KcMdzcz
2
d

)
, g(z) =

(
Mcz

2
c

0

)
, h(z) = Kczc

near z(0) = [1 1]T . The first few coefficients of c@d are given in Table 4.2. Since
c@d is a nonnegative series in this case, local convergence and input-output local
convergence are equivalent as a consequence of Lemma 3.5. Setting u(t) = ū = 1 is
equivalent to letting b = 1 in Theorem 4.8. Therefore, using again the m = 0 version
of (16) and the growth condition from Theorem 4.8, a lower bound on the finite escape
time for this system is

Tmax =
1

M(c@d)◦1
=

1

[Kc(2 + φg) + 1][φ(1 + Kd) + 1]10M
.

Four specific cases of Tmax are given in Table 4.3 and compared against the numerically
determined escape times. The conservativeness in these estimates is a consequence
of accumulated conservativeness in various intermediate upper bounds, for example
inequality (30), as compared to the cascade connection in Example 3.2.
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Table 4.3

Tmax and tesc for specific examples of (c@d) ◦ 1.

Case Kc Mc Kd Md M(c@d)◦1 Tmax tesc tesc/Tmax

1 4 2 2 2 1483 0.6745e−03 0.07556 112.0

2 2 4 2 2 1579 0.6335e−03 0.06606 104.3

3 2 2 4 2 1129 0.8857e−03 0.07387 83.4

4 2 2 2 4 1579 0.6335e−03 0.07556 119.3
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1. Introduction. Consider the following Mayer problem:

minimize g(x(1))(1.1)

over the solutions to the differential inclusion

x′(t) ∈ F (t, x(t)) a.e. in [0, 1],(1.2)

satisfying state constraints of the form

x(t) ∈ K ∀ t ∈ [0, 1](1.3)

and end point constraints of the form

x(1) ∈ K1,(1.4)

x(0) = x0,(1.5)
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‡CNRS, CREA, École Polytechnique, 1, rue Descartes, 75005 Paris, France (franko@shs.
polytechnique.fr).

673



674 AURELIAN CERNEA AND HÉLÈNE FRANKOWSKA

where K,K1 ⊆ Rn are closed sets, g(·) : Rn → R is a given function and F (·, ·) :
[0, 1] × Rn � Rn is a given set-valued map and x0 ∈ K. It is well known that the
classical Bolza problem in control theory

minimize

{
g(x(1)) +

∫ 1

0

L(t, x(t), x′(t))dt | x(·) solves (1.2)–(1.5)

}
is equivalent to the Mayer problem via a simple change of variables. This is the reason
why we choose the apparently simpler problem (1.1)–(1.5), instead of a more general
Bolza problem.

The value function associated to the problem (1.1)–(1.5) is defined by

V (t0, y0) = inf{g(x(1)) | x(·) is a solution to (1.2)–(1.4) on [t0, 1], x(t0) = y0},
(1.6)

with the convention inf ∅ = +∞. The value function satisfies the dynamic program-
ming principle. In particular, it is nondecreasing along trajectories to (1.2)–(1.4) and
is constant along optimal trajectories. This property can be used to show that the
value function is the only solution (in an appropriate sense) of an associated Hamilton–
Jacobi–Bellman equation under state constraints (see, for instance, [19, 20]). Such
solution is defined using subdifferentials of V . The aim of this paper is to study,
using the dynamic programming principle, a sensitivity relation between necessary
conditions for optimality and “gradients” of the value function.

Necessary optimality conditions for the problem (1.1)–(1.5) exist in the literature
in the form of the maximum principle. When F (t, x) = f(t, x, U) for some smooth
enough f , i.e., when the differential inclusion (1.2) is replaced by the control system

x′(t) = f(t, x(t), u(t)), u(t) ∈ U a.e. in [0, 1],

this principle says that for every optimal trajectory/control pair (x̄, ū) there exist
λ ∈ {0, 1}, a positive (scalar) Radon measure μ on [0, 1] and a μ-integrable function
ν(·) : [0, 1] → Rn, satisfying

ν(t) ∈ NK(x̄(t)) μ − a.e.,

(where NK(x̄(t)) denotes the normal cone to K at x̄(t)) such that a solution p(·) :
[0, 1] → Rn to the adjoint system

−p′(t) =
∂f

∂x
(t, x̄(t), ū(t))∗

(
p(t) +

∫
[0,t]

ν(s)dμ(s)

)
,

−p(1) ∈ λ∇g(x̄(1)) +

∫
[0,1]

ν(s)dμ(s) + NK1
(x̄(1))(1.7)

satisfies almost everywhere the maximum principle〈
p(t) +

∫
[0,t]

ν(s)dμ(s), f(t, x̄(t), ū(t))

〉
= max

u∈U

〈
p(t) +

∫
[0,t]

ν(s)dμ(s), f(t, x̄(t), u)

〉

and (λ, p, μ) 	= 0. When λ = 0, the above equalities are more related to constraint qual-
ifications than to optimality and are sometimes called abnormal multiplier rule. When
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x̄(0) ∈ ∂K, then there exists a trivial choice of multipliers 0 	= ζ ∈ NK(x̄(0)), ν =
ζδ0, p = −ζ, λ = 0 which forces any feasible trajectory starting at x̄(0) to satisfy
the maximum principle (here δ0 denotes the unit measure concentrated at {0}.) In
[1, 10, 13, 25, 29] the authors investigate the so-called nondegenerate maximum prin-
ciple, but they still allow λ = 0. We would like to underline here that calmness of
V (0, ·) may be used to investigate normality of some maximum principles.

Let D+
x V (0, x0)(·) denote the upper directional derivative of V (0, ·) at x0 defined

by

D+
x V (0, x0)(θ) = lim sup

s→0+,θ′→θ,x0+sθ′∈K

V (0, x0 + sθ′) − V (0, x0)

s
.

From the results of this paper it follows in particular that if for all t ∈ [0, 1] the
Clarke’s tangent cones CK(x̄(t)) have nonempty interior, CK1(x̄(1))∩Int(CK(x̄(1))) 	=
∅ and for some nonempty open convex subset F ⊂ CK(x̄(0)) and M > 0

D+
x V (0, x̄(0))(θ) ≥ −M ||θ|| ∀ θ ∈ F ,

then the maximum principle is nondegenerate in the sense that for ψ(t):=
∫
[0,t]

ν(s)dμ(s)

we have

λ + supt∈(0,1)||p(t) + ψ(t)|| 	= 0.

Moreover, if x̄(1) ∈ Int(K1), then

λ + var(ψ, (0, 1]) 	= 0,

where var(ψ, (0, 1]) denotes the total variation of ψ on (0, 1]. Both relations eliminate
the above mentioned trivial multipliers for x̄(0) ∈ ∂K. Actually we shall prove this
result with a more general choice of tangents (see Corollary 3.7).

A sufficient condition, very similar to the Mangasarian–Fromowitz constraint
qualification of mathematical programming, ensuring that λ = 1 is the existence
of a solution w to the linearized along (x̄, ū) control system

w′ =
∂f

∂x
(t, x̄(t), ū(t))w + v(t), v(t) ∈ Tco(f(t,x̄(t),U))(x̄

′(t)),(1.8)

satisfying

w(t) ∈ Int(CK(x̄(t))) ∀ t ∈ [0, 1], w(1) ∈ Int(CK1
(x̄(1))),(1.9)

where Tco(f(t,x̄(t),U))(x̄
′(t)) denotes the tangent cone of convex analysis to

co(f(t, x̄(t), U)) at x̄′(t). We shall provide such a condition even in the case of dif-
ferential inclusions. This condition uses the trajectory/control pair (x̄, ū) and is not
directly verifiable. Still it can be used to test for optimality a given trajectory/control
pair. Furthermore, the cones {CK(x̄(t))}t∈[0,1] may be replaced by larger subsets sat-
isfying Hypothesis 3.3 (see Example 2 in section 3).

In [28], in the context of nonsmooth control systems and smooth state constraints
the authors proved that λ = 1 if an inward pointing condition (involving continuous
selections from U) holds true on a neighborhood of the boundary of K and K1 = Rn.
Here we get a similar result by asking a weaker (pointwise) inward pointing condition
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just along the optimal trajectory (see Theorem 3.10). Namely we show that λ = 1
provided x̄(1) ∈ Int(K1), for some η > 0 the signed distance

d(x) =

{
−dist(x, ∂K) ∀ x ∈ K
dist(x, ∂K) otherwise

is of class C1,1
loc on ∂K + ηB and there exists ρ > 0 such that for almost all t ∈ [0, 1]

with x̄(t) ∈ ∂K + ηB we have minv∈F (t,x̄(t))〈∇d(x̄(t)), v〉 ≤ −ρ.
We discuss next the sensitivity relation of the adjoint state p(0) to the value

function V (0, ·). When there is no end point and state constraints, then λ = 1 and
ν = 0. If moreover V (t, ·) is differentiable at x̄(t), then it is well known that

p(t) = −∂V

∂x
(t, x̄(t))

and this last relation can be used to get sufficient conditions for optimality (see [5]).
Even when K1 = K = Rn, in general, V (t, ·) is not differentiable. Still a relationship
was obtained with the gradient of V (t, ·) replaced by the superdifferential. Indeed, it
was shown in [5, 16, 26, 36] that in addition the adjoint variable p is related to the
value function in the following way:

−p(t) ∈ ∂+
x V (t, x̄(t)) ∀ t ∈ [0, 1],(1.10)

where ∂+
x V (t, x̄(t)) denotes the superdifferential of V (t, ·) at x̄(t) (see section 2 for

the precise definition). A similar statement was previously obtained in [9] for control
systems with ∂+

x V (t, x̄(t)) replaced by Clarke’s generalized gradient ∂C
x V (t, x̄(t)). We

underline that, in general, ∂+
x V (t, x̄(t)) is smaller than ∂C

x V (t, x̄(t)) and ∂+
x V (t, x) =

∂V
∂x (t, x) whenever V (t, ·) is differentiable at x.

The aim of this paper is to derive a relation similar to (1.10) for the value function
of the constrained problem (1.1)–(1.5) for t = 0. This extension is used in turn to
investigate the nondegeneracy of the constrained maximum principle. Furthermore,
we are dealing with a more general setting of nonconvex differential inclusions.

Necessary optimality conditions for systems given by differential inclusions in
terms of adjoint inclusions associated to derivatives of the set-valued map F were
obtained in [14, 15, 17, 27] for problems with endpoint constraints and in [6, 7] for
problems under state constraints. We underline that such necessary optimality con-
ditions, in general, are not equivalent to necessary conditions expressed in terms of
generalized gradients of the Hamiltonian [1, 23, 33], the generalized Jacobians [34]
or in terms of the limiting normal cones (sometimes called Euler–Lagrange necessary
conditions) [35] (see [22] for several comparison results and examples). In [23] some
necessary conditions involving a costate satisfying simultaneously the Euler–Lagrange
and Hamiltonian conditions are proved for constrained convex valued differential inclu-
sions. The maximum principle of the present paper is related to the Euler–Lagrange
conditions, but we do not take limiting normals. Since the graph of F (t, ·) is, in
general, nonsmooth and we allow nonconvex values of F , our results are not con-
tained in [23, 29]. In Example 1 provided in section 3 we show that a trajectory to
an unconstrained system satisfies necessary conditions of [35], but in the same time
does not fulfill our necessary conditions and so is not optimal. So in some situations
our necessary conditions lead to a stronger discrimination between nonoptimal and
optimal trajectories. Naturally there is a price to pay to have stronger necessary
conditions. It consists in the assumption of existence of a “linearization” of F along
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(x̄, x̄′) by closed convex processes, which are Lipschitz with respect to the state (see
Hypothesis 3.2 in section 3). In the penalization approach to nonsmooth constrained
problems based on variational principles (see, for instance, [1, 34, 35]) such assump-
tion is not needed. When f is differentiable with respect to the state variable, the
Jacobian of f (with respect to x) can be used to get a linearization. However, it is not
the only instance when “linearizations” do exist. Example 1 concerns a nonsmooth
control systems “linearized” by linear and convex processes; see also remarks following
Hypothesis 3.2.

It is impossible in a short paper to provide the full overview, credits and bib-
liographies to the constrained maximum principle, because this topic was investi-
gated by many authors since the early sixties. We refer to [23, 29, 33, 35] for ex-
tended discussions on the constrained maximum principle and further references and
to [1, 10, 11, 25] for the Russian bibliography on the subject.

We derive a similar maximum principle for our problem (1.1)–(1.5) and also obtain
a relation of p(0) to V (0, ·) (see Theorem 3.4). This relation implies in particular that
p(0) = 0 whenever λ = 0. When V (0, ·) exhibits some additional regularity (for
instance, is Lipschitz on a neighborhood of x̄(0) in K), then

−p(0) ∈ λ∂xV (0, x̄(0)),(1.11)

where λ is the same as in (1.7) and ∂xV (0, x̄(0)) denotes a generalized supergradient of
V (0, ·) at x̄(0) defined by (2.5) in section 2. This supergradient is kind of regularized
(in the terminology of [31]) superdifferential. When V (0, ·) is locally Lipschitz around
x̄(0) ∈ Int(K), ∂xV (0, x̄(0)) coincides with Clarke’s generalized gradient of V (0, ·) at
x̄(0). In particular, for control systems, if there exists a solution to (1.8), (1.9), then
−p(0) ∈ ∂xV (0, x̄(0)).

Even if (1.11) looks similar to (1.10), it is valid only at the initial point. In general,
the relation (1.11) does not hold when t 	= 0 and needs a correction term involving
measures (see Example 2 of section 3). In Theorem 3.11 (under some additional
assumptions) we show how to correct p(t) by an element r(t) in order that

−r(t) − p(t) ∈ ∂xV (t, x̄(t)).(1.12)

We also deduce few corollaries from our main theorem, Theorem 3.4. For instance,
a nondegenerate maximum principle for (1.1)–(1.4) in the presence of initial point
constraints x(0) ∈ K0 for some closed set K0 (Corollary 3.8), the sensitivity relation
for the unconstrained case (Corollary 3.5) and a nondegenerate maximum principle
which encompass calm problems (Corollary 3.7).

In the literature proofs of the maximum principle for systems under state con-
straints are based either on a penalization [1, 34, 35] or on an abstract multiplier
rule [11, 21]. We proceed by using linearization of differential inclusion (1.2) along
the optimal trajectory, as it was done in [15, 17], but then we also “linearize” con-
straints (along the optimal trajectory as well) and use the variational inclusions from
[15] to get a Fermat type inequality. We derive next the maximum principle for “the
linear problem” under conical constraints, that is a very simple application of sep-
aration theorems and convex duality results. Recently, variational inclusions under
state constraints were obtained in [32] under additional assumptions on the boundary
of constraints implying that the value function is Lipschitz. In [8] we used them to
derive some preliminary results on this topic. In the present paper such Lipschitz
regularity requirement is removed, an additional endpoint constraint is added and a
new result on normality of the maximum principle is derived.
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The paper is organized as follows. In section 2 we recall some notations and
preliminary results to be used in what follows. In section 3 we present the main
theorems of this paper. Section 4 is devoted to the study of polar of the set of
continuous selections from a lower semicontinuous set-valued map and in section 5 we
provide proofs of results of section 3.

2. Preliminaries. Denote by B the closed unit ball in Rn. If Q ⊂ Rn we denote
by Q its closure and by co(Q) (resp. co(Q)) the convex (resp. closed convex) hull of
Q. We recall first the following definitions.

Definition 2.1. Let K ⊂ Rn be closed and x ∈ K.
(i) the contingent cone to K at x is defined by

TK(x) =

{
v ∈ Rn| lim inf

s→0+

dist(x + sv,K)

s
= 0

}
.

(ii) Clarke’s tangent cone to K at x is defined by

CK(x) =

{
v ∈ Rn | lim

s→0+,x′→Kx

dist(x′ + sv,K)

s
= 0

}
,

where →K denotes the convergence in K.
Let Y be a real Banach space. Recall that a set C ⊂ Y is called a cone if it is

nonempty and for all λ ≥ 0 and v ∈ C we have λv ∈ C. The negative polar cone of a
set Q ⊂ Y is defined by

Q− = {y∗ ∈ Y ∗ | 〈y∗, y〉 ≤ 0 ∀ y ∈ Q},

where Y ∗ denotes the dual of Y. The positive polar cone of Q is Q+ = −Q−. The
negative polar of Clarke’s tangent cone NK(x) := CK(x)− is also called the normal
cone to the set K at x ∈ K.

Let F : Rn � Rn be a set-valued map. It is called Lipschitz around x0 ∈ Rn if
there exist ε > 0, L ≥ 0 such that for any x, y ∈ x0 + εB, F (x) ⊂ F (y)+L||x− y||B,
where || · || denotes the Euclidean norm on Rn. Define

graph(F ) := {(x, y) ∈ Rn × Rn | y ∈ F (x)}.

Definition 2.2. Consider a set-valued map F : Rn � Rn, Lipschitz around x
and let y ∈ F (x). The adjacent derivative of F at (x, y) is the set-valued map dF (x, y)
from Rn into subsets of Rn defined by

dF (x, y)w =

{
v ∈ Rn | lim

s→0+
dist

(
v,

F (x + sw) − y

s

)
= 0

}
.

It is well known that graph(dF (x, y)) is equal to the adjacent tangent cone
to graph(F ) at (x, y) (see [3]).

In this paper we use closed convex cones A ⊂ graph(dF (x, y)). Each such convex
cone defines a set-valued map A : Rn � Rn by v ∈ A(u) if and only if (u, v) ∈ A.

Definition 2.3. Let A : Rn � Rn be a set-valued map. A is called closed
(resp., convex) process if graph(A) is a closed (resp., convex) cone. Its adjoint process
A∗ : Rn � Rn is defined by

A∗(p) = {q ∈ Rn | 〈q, u〉 ≤ 〈p, v〉 ∀ (u, v) ∈ graph(A)},

where 〈·, ·〉 denotes the scalar product in Rn.
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Notice that if A is Lipschitz on Rn with a Lipschitz constant m, then supq∈A∗(p) ‖q‖
≤ m‖p‖. For other properties of closed convex processes we refer to [3].

Consider an extended real function φ(·) : Rn → R ∪ {±∞}. We say that it
is positively homogeneous if φ(0) > −∞ and for every λ > 0, θ ∈ Rn we have
φ(λθ) = λφ(θ). We would like to underline that this definition differs slightly from
the one given in [31, pp. 5 and 87], where the authors require φ(0) < ∞. We need to
change this notion, since in this paper we deal with functions whose hypographs are
cones, while definitions in [31] are adapted to functions whose epigraphs are cones.

Consider a subset X ⊂ Rn and an extended real function h(·) : X → R∪ {±∞}.
The domain of h(·) is dom(h) = {x ∈ X | h(x) ∈ R}. When h(·) is not differentiable,
it is possible to define its gradient by taking weaker limits of differential quotients.

Definition 2.4. Let x0 ∈ dom(h). The superdifferential of h at x0 is the closed
convex set

∂+h(x0) :=

{
p ∈ Rn | lim sup

x→Xx0

h(x) − h(x0) − 〈p, x− x0〉
||x− x0||

≤ 0

}
.

The subdifferential of h at x0 is the closed convex set defined by ∂−h(x0) = −∂+(−h)(x0).
When x0 ∈ Int(dom(h)) and h(·) is Fréchet differentiable at x0, then ∂+h(x0) =

{∇h(x0)}.
Definition 2.5. The upper derivative of h(·) at x0 ∈ dom(h) in the direction θ

is given by

D+h(x0)(θ) = lim sup
s→0+, θ′→θ, x0+sθ′∈X

h(x0 + sθ′) − h(x0)

s
∀ θ ∈ TX(x0)

and D+h(x0)(θ) = −∞ for all θ /∈ TX(x0).
Notice that D+h(x0)(·) is upper semicontinuous and positively homogeneous. It

is known that ∂+h(x0) = {p ∈ Rn | 〈p, θ〉 ≥ D+h(x0)(θ) for all θ ∈ TX(x0)}; see
[16, Lemma 2.7]. If X is convex and h is concave, then ∂+h(x0) is equal to the
supergradient of convex analysis, i.e., p ∈ ∂+h(x0) if and only if h(x) ≤ h(x0) +
〈p, x− x0〉 for all x ∈ X.

In the proof of the results in the next sections we use the following consequence
of the separation theorem.

Lemma 2.6. Let h(·) : Rn → R ∪ {+∞} be a positively homogeneous convex
function and C ⊆ Rn be nonempty, convex, and such that for all λ > 0 and v ∈ C we
have λv ∈ C. Assume that dom(h)−C = Rn and h(c) ≥ 0 for all c ∈ C. Then there
exists q0 ∈ C+ such that 〈q0, v〉 ≤ h(v) for all v ∈ Rn.

Proof. If dom(h) = ∅, then h ≡ +∞ and the conclusion holds true with q0 = 0.
Assume next that dom(h) 	= ∅. Define R∗

− = {r ∈ R | r < 0} and Epi(h) = {(u, v) ∈
Rn ×R | v ≥ h(u)}. Since Epi(h) ⊂ Rn ×R and C ×R∗

− ⊂ Rn ×R are convex sets
and (Epi(h)) ∩ (C × R∗

−) = ∅, there exists (p, q) ∈ Rn × R, (p, q) 	= 0 such that

〈p, u〉 + qv ≤ 〈p, c〉 + qr(2.1)

for any (u, v) ∈ Epi(h) and any (c, r) ∈ C × R∗
−. Let u0 ∈ dom(h), c0 ∈ C. If in

(2.1) we take u = λku0, v = λkh(u0), r = rk with λk → 0+, rk → 0− we deduce
that 0 ≤ 〈p, c〉 for all c ∈ C. Hence p ∈ C+. On the other hand, if in (2.1) we take
u = λku0, v = λkh(u0)+ ρ, c = λkc0, r = rk with ρ ≥ 0, λk → 0+, rk → 0− we infer
that qρ ≤ 0 for all ρ ≥ 0. Thus q ≤ 0. Let us assume for a moment that q = 0. Then
from (2.1) we deduce that

p(u− c) ≤ 0 ∀ u ∈ dom(h), c ∈ C.(2.2)
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Therefore, from (2.2) and our assumption it follows that p = 0, which leads to a
contradiction with (p, q) 	= 0. Thus q < 0. From (2.1) we get〈

p

|q| , u
〉
− h(u) ≤

〈
p

|q| , λkc0

〉
− rk(2.3)

for any u ∈ dom(h) and λk → 0+, rk → 0−. Passing to the limit with k → ∞ we
find that 〈 p

|q| , u〉 ≤ h(u). It remains to set q0 = p
|q| and the lemma is proved.

Results of the next sections use a lower version of the regular subderivative (see
[31, p. 311]).

Definition 2.7. Let X ⊂ Rn, φ : X → R∪{±∞} and x ∈ dom(φ). The regular

superderivative is defined by d̂φ(x)(u) = −∞ for all u /∈ CX(x) and

d̂φ(x)(u) = lim
δ→0+

(
lim inf

x′→φx, s→0+
sup

u′∈u+δB,x′+su′∈X

[
φ(x′ + su′) − φ(x′)

s

])
∀ u∈CX(x),

(2.4)

where →φ denotes the φ−attentive convergence introduced in [31, p. 301]. This means
that the lower limit is taken over all sequences xi → x, si → 0+ such that φ(xi) →
φ(x).

It follows from [31, pp. 311–313] that d̂φ(x)(·) is upper semicontinuous and pos-

itively homogeneous and if φ is locally upper semicontinuous at x, then d̂φ(x)(·) is

concave. Thus, if in addition dom(dφ(x)) 	= ∅, then d̂φ(x)(·) takes values in [−∞,+∞)

and d̂φ(x)(0) = 0.
When x ∈ Int(X) and φ is locally Lipschitz at x, then Clarke’s directional deriva-

tive is defined by

φ0(x)(u) = lim sup
(x′,s)→(x,0+)

φ(x′ + su) − φ(x′)

s
, u ∈ Rn

and Clarke’s generalized gradient is defined by

∂Cφ(x) := {p ∈ Rn | 〈p, v〉 ≤ φ0(x)(v) ∀ v ∈ Rn}.
A generalized supergradient of φ at x that we shall use in this paper is defined

using d̂φ(x)(·) by

∂φ(x) := {p ∈ Rn | 〈p, v〉 ≥ d̂φ(x)(v) ∀ v ∈ CX(x)}.(2.5)

By [31, Theorem 8.24, p. 317] if d̂φ(x)(0) = 0, then ∂φ(x) 	= ∅. It is not difficult
to show that if φ is locally Lipschitz on a neighborhood of x ∈ Int(X), then ∂φ(x)
coincides with Clarke’s generalized gradient of φ at x.

Denote by I the interval [0, 1], by C(I) the space of all continuous functions x(·) :
I → Rn and by W 1,p(I) the space of all absolutely continuous functions x(·) : I → Rn

such that x′(·) ∈ Lp(I), p ≥ 1.
The space NBV (I) (normalized bounded variations) is the space of functions f

of bounded variation on I, which are continuous from the right on (0, 1) and such
that f(0) = 0. The norm of f ∈ NBV (I) is the total variation of f on I denoted by
‖f‖TV .

Finally, by a solution of the differential inclusion

x′(t) ∈ F (t, x(t))(2.6)

we mean a function x(·) ∈ W 1,1(I) which satisfies (2.6) almost everywhere in I.
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Remark. Let f(·, ·, ·) : I × Rn × U → Rn be measurable in the first variable
and continuous in the second and third variables. Set F (t, x) := f(t, x, U). It is well
known that if U is a complete separable metric space, then the set of solutions to the
control system

x′ = f(t, x, u(t)), u(t) ∈ U, u(·) is measurable

coincides with the set of solutions to the differential inclusion (2.6).

3. Main results. In this section we state several results announced in the in-
troduction. Their proofs are provided in section 5.

Consider the Mayer problem (1.1)–(1.5). We assume the following hypotheses.

Hypothesis 3.1. (i) F (·, ·) : I × Rn � Rn is a set-valued map with nonempty
closed values.

(ii) ∀ x ∈ Rn, F (·, x) is measurable.

(iii) There exists c > 0 such that ∀ (t, x) ∈ I × Rn, F (t, x) ⊂ c(1 + ||x||)B.

(iv) There exists l(·) ∈ L1(I,R) such that F (t, ·) is l(t)-Lipschitz.

(v) g : Rn → R is locally Lipschitz.

Consider a solution x̄(·) to (1.2). We wish to “linearize” F and K along x̄(·).
Denote by coF the set-valued map, whose value at (t, x) is the closed convex hull of
F (t, x), coF (t, x). Below we denote by dx coF (t, x̄(t), x̄′(t))v the adjacent derivative
of coF (t, ·) at (x̄(t), x̄′(t)).

Hypothesis 3.2. There exists a family of closed convex processes A(t, ·) : Rn �

Rn, t ∈ I, that satisfies

(i) A(·, v) is measurable ∀ v ∈ Rn.

(ii) A(t, v) ⊆ dx coF (t, x̄(t), x̄′(t))v ∀ v ∈ Rn, for a.e. t ∈ I.

(iii) For some m ≥ 0, A(t, ·) is m-Lipschitz on Rn for a.e. t ∈ I.

Notice that from (iii) it follows that for almost all t ∈ I, A(t, ·)∗(0) = {0}.
Remark.

(i) Assume that there exists a Carathéodory selection f(t, x) ∈ F (t, x) such that
for a.e. t ∈ I, x̄′(t) = f(t, x̄(t)) and f(t, ·) is differentiable at x̄(t). If ||f ′

x(·, x̄(·))||∞ <
∞, then we may take A(t, v) = f ′

x(t, x̄(t))v for all v ∈ Rn.

(ii) If in Hypothesis 3.1 (iv) we have l ∈ L∞(I) and graph(coF (t, ·)) is sleek
along (x̄, x̄′) in the sense that Tgraph(coF (t,·))(x̄(t), x̄′(t)) = Cgraph(coF (t,·))(x̄(t), x̄′(t))
for almost all t ∈ I, then, by results of [3, Chapter 5], we may take

A(t, v) := dx coF (t, x̄(t), x̄′(t))v ∀ v ∈ Rn.

Moreover, in this case graph(A(t, ·)) is equal to Cgraph(coF (t,·))(x̄(t), x̄′(t)).
Example 1. Consider the nonsmooth control system⎧⎨⎩

x′ = −|x| − 4y + u + v, x(0) = 0
y′ = u, y(0) = 0

u, v ∈ [0, 1]

and let (x̄, ȳ) ≡ 0.

As convex processes satisfying Hypothesis 3.2 one may take, for instance, linear
process Aλ(t, (w1, w2)) = (λw1 − 4w2, 0) for any λ ∈ [−1, 1], or the convex process
A(t, (w1, w2)) = (|w1| − 4w2 + R+, 0).

Concerning the constraints K and K1 we assume the following hypothesis.
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Hypothesis 3.3. K and K1 are closed subsets of Rn, Int(CK1
(x̄(1))) 	= ∅ and there

exists a lower semicontinuous set-valued map G : I � Rn such that for all t ∈ I, G(t)
is a closed convex cone with nonempty interior and for every v ∈ Int(G(t)) we can
find ε > 0 such that for all s ∈ [t− ε, t + ε] ∩ I, x̄(s) + [0, ε](v + εB) ⊂ K.

Remark. When for all t ∈ I, Int(CK(x̄(t))) 	= ∅, then we may set G(t) =
CK(x̄(t)). Indeed by [2, Proposition 7.13], v ∈ Int(CK(x̄(t))) if and only if there
exists ε > 0 such that for all x ∈ K ∩ (x̄(t)+ εB), x+[0, ε](v+ εB) ⊂ K. However, in
general, there may exist sets G(t) larger than Clarke’s tangent cone and sets different
from it; see Example 2.

Recall that V denotes the value function of problem (1.1)–(1.5) defined by (1.6).

Let D+
x V (0, x̄(0)), d̂xV (0, x̄(0)) and ∂xV (0, x̄(0)) denote, respectively, the directional

derivatives from Definitions 2.5 and 2.7, where we have set X = K and the generalized
supergradient of V (0, ·) at x̄(0), defined by (2.5).

Theorem 3.4. Let x̄(·) be an optimal solution to problem (1.1)–(1.5) and as-
sume that Hypotheses 3.1, 3.2, and 3.3 hold true. Further assume that an upper semi-
continuous concave positively homogeneous function ϕ : Rn → R ∪ {−∞} satisfies
Int(G(0)) ⊂ dom(ϕ) and ϕ ≤ D+

x V (0, x̄(0)).
Then there exist λ ∈ {0, 1}, ψ ∈ NBV (I) and an absolutely continuous function

p(·) : I → Rn such that λ + ||ψ||TV 	= 0 and p satisfies the adjoint inclusion

p′(t) ∈ A∗(t,−p(t) − ψ(t)) a.e. in I,(3.1)

the transversality condition

p(1) ∈ −λ∂Cg(x̄(1)) − ψ(1) −NK1
(x̄(1)),(3.2)

the maximum principle

〈p(t) + ψ(t), x̄′(t)〉 = max
v∈F (t,x̄(t))

〈p(t) + ψ(t), v〉 a.e. in I(3.3)

and the sensitivity relation

−p(0) ∈ λ∂+ϕ(0).(3.4)

Furthermore,

ψ(0+) ∈ G(0)−, ψ(t) − ψ(t−) ∈ G(t)−, ψ(t) =

∫
[0,t]

ν(s)dμ(s) ∀ t ∈ (0, 1]

(3.5)

for a positive (scalar) Radon measure μ on I and a μ-measurable function ν(·) : I →
Rn satisfying

ν(s) ∈ G(s)− ∩B μ − a.e.

If CK1(x̄(1)) ∩ Int(G(1)) 	= ∅, then the following nondegeneracy condition holds
true

λ + supt∈(0,1)||p(t) + ψ(t)|| 	= 0(3.6)

and if x̄(1) ∈ Int(K1), then

λ + var(ψ, (0, 1]) 	= 0,

where var(ψ, (0, 1]) denotes the total variation of ψ on (0, 1].



MAXIMUM PRINCIPLE AND DYNAMIC PROGRAMMING 683

Moreover, λ = 1 if there exists a solution to the constrained differential inclusion

w′∈A(t, w) + Tco(F (t,x̄(t)))(x̄′(t)), w(1)∈ Int(CK1(x̄(1))), w(t)∈ Int(G(t)) ∀ t∈ I.

In particular, if V (0, ·) is locally upper semicontinuous at x̄(0) and Int(G(0)) ⊂
dom(d̂xV (0, x0)), then (3.4) may be replaced by

−p(0) ∈ λ∂xV (0, x̄(0)).(3.4’)

Remark. Several remarks are in order.
(i) If G(·) satisfies Hypothesis 3.3, then for any closed convex cone with nonempty

interior Q ⊂ G(0), the set-valued map Ĝ defined by Ĝ(t) = G(t) for t > 0 and Ĝ(0) =
Q also satisfies Hypothesis 3.3. This property will be used to prove Corollary 3.7.

(ii) If the subdifferential ∂−
x V (0, x0) of V (0, ·) at x0 is nonempty, then any ζ ∈

∂−
x V (0, x0) defines a function ϕ of Theorem 3.4 by ϕ(θ) = 〈ζ, θ〉 for all θ ∈ G(0) and

ϕ(θ) = −∞ otherwise. Then, for λ = 1, relation (3.4) implies −p(0) ∈ ζ + G(0)+ ⊂
∂−
x V (0, x0)+G(0)+, which can be seen as another sensitivity relation at points where

∂−
x V (0, x0) 	= ∅.

The subdifferentials of the value function were used in [19, 20] to define solutions to
a Hamilton–Jacobi equation associated to the Mayer problem under state constraints.

(iii) The last statement (3.4′) holds true, in particular, when V (0, ·) is Lipschitz on
a neighborhood of x̄(0) in K and Int(G(0)) ⊂ CK(x̄(0)). In the case when K1 = Rn,
the local Lipschitz continuity of V (0, ·) can be deduced from the Lipschitz dependence
of solutions to (1.2), (1.3) on the initial conditions. In [18] this issue was investigated
for both smooth and nonsmooth sets of constraints K using the neighboring feasible
trajectories theorem; see also [20] for the case of inequality constraints.

(iv) If in the above theorem we assume that g(·) is differentiable at x̄(1), then,
by a very slight modification of the proof provided in section 5, inclusion (3.2) can be
replaced by

p(1) ∈ −λ∇g(x̄(1)) − ψ(1) −NK1
(x̄(1)).

Notice that, in general, {∇g(x̄(1))} may be not equal to ∂Cg(x̄(1)); so this would lead
to a stronger result.

(v) If x̄(·) is optimal, then for all t0 ∈ I, the restriction x̄|[t0,1] is optimal for the
problem

minimize g(x(1))

over the solutions to

x′ ∈ F (t, x), x(t0) = x̄(t0), x(t) ∈ K ∀ t ∈ [t0, 1], x(1) ∈ K1.

Thus the above theorem may be used to get the same conclusion on the time interval
[t0, 1] with a costate function q(·) and the inclusion

−q(t0) ∈ λ∂xV (t0, x̄(t0)).

Example 1 (continuation). Consider the unconstrained minimization problem

minimize x(1)
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over solutions to the nonsmooth control system defined at the beginning of this section.
We check that (x̄, ȳ) ≡ 0 does not satisfy conclusions of Theorem 3.4 and so is not
optimal. Indeed consider the convex process

A(t, (w1, w2)) = (w1 − 4w2, 0).

It satisfies Hypothesis 3.2. Then the adjoint system of Theorem 3.4 can be written as{
−p′1 = p1, p1(1) = −1
−p′2 = −4p1, p2(1) = 0.

Then p1(t) = −e1−t, p2(t) = 4e1−t − 4. Notice that

max
u,v∈[0,1]

〈(p1(t), p2(t)), (u + v, u)〉 = max
u∈[0,1]

(3e1−t − 4)u.

When t is sufficiently small, this maximum is strictly positive. Consequently, (x̄, ȳ) ≡
0 does not verify the maximum principle of Theorem 3.4.

We show next that the result of [35] does not allow to eliminate the control u ≡ 0.
Indeed, set F (x, y) =

⋃
u,v∈[0,1](−|x| − 4y + u + v, u) and let NL

graph(F )(0, 0, 0, 0)

denote the limiting normal cone to graph(F ) at (0, 0, 0, 0) (see, for instance, [33]
for the definition of the limiting normal cone). It is not difficult to check that
{(−1, 0,−1, 0), (1, 0,−1, 0)} ⊂ NL

graph(F )(0, 0, 0, 0). Let p ≡ (−1, 0). Since (0, 0) ∈
co{(−1, 0), (1, 0)}, this p satisfies the necessary conditions of [35].

Example 2. Consider a two-dimensional control system

x′ = u, y′ = v + u− 1, (u, v) ∈ [−1, 1] × [−1, 1],

the closed set of constraints

K = (R− × R−) ∪ (R+ × R),

and the Mayer problem

minimize − y(1)

over solutions to the above control system satisfying the state constraints (x, y)(t) ∈
K. Then, by a direct calculation, for all (x0, y0) ∈ K,

V (t, (x0, y0)) =

{
t− y0 − 1 if x0 ≥ 0 or y0 ≤ x0

t− x0 − 1 otherwise.

Notice that V (t, ·) is continuously differentiable on R∗
+ × R, where R∗

+ = R+\{0}.
For the initial condition x(0) = −1/2, y(0) = 0 an optimal trajectory is given by

(x̄(t), ȳ(t)) =

⎧⎨⎩
(t− 1/2, 0) if t ≤ 1/2

(t− 1/2, t− 1/2) if t ≥ 1/2.

Set

G(t) =

⎧⎨⎩
R × R− if t < 1/2
{(x, y) | y ≤ x, y ≤ 0} if t = 1/2
R × R if t > 1/2.
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Then, for every t0 > 1/2, (0, 1) = − ∂V
∂(x,y) (t0, x̄(t0)). On the other hand, the optimal

control ū(·) corresponding to x̄(·) is equal to (1, 0) on [0, 1
2 ] and G(t)− = R+(0, 1) for

all t ∈ [0, 1
2 ), G( 1

2 )− = {(x, y) | |x| ≤ y, x ≤ 0} and G(t)− = {0} for all t ∈ ( 1
2 , 1]. Let

λ, p, ψ be as in Theorem 3.4 for A(t, ·) ≡ 0 and ϕ(θ1, θ2) = −θ1 for (θ1, θ2) ∈ R×R−.
By (3.1) we have p(·) ≡ p(1) and, by (3.5), for some nonnegative nondecreasing

function γ and all t ∈ [0, 1/2), ψ(t) = γ(t)(0, 1). We also have ψ(t) = ψ( 1
2 ) for all

t ∈ [ 12 , 1] and

ψ

(
1

2

)
− γ

(
1

2
−
)

(0, 1) ∈ {(x, y) | |x| ≤ y, x ≤ 0}.(3.7)

Define w(t) = (0,−1) + (0,−1)t. Then w(·) is a solution to the linearized along
(x̄, ū) control system and w(t) ∈ Int(G(t)) for all t ∈ [0, 1]. Thus, by Theorem 3.4,
λ = 1.

We first claim that ψ(1) 	= 0. Indeed otherwise, by (3.7), ψ ≡ 0 and p = (0, 1).
But this contradicts the maximum principle (3.4) on [0, 1

2 ).

Consequently, ψ(1) 	= 0 and for all t0 >1/2,−p(t0) = (0, 1)+ψ(1) 	= ∂V
∂(x,y) (t0, x̄(t0)).

Hence for all t ∈ ( 1
2 , 1], −p(t) /∈ ∂xV (t, x̄(t)).

To complete the study of this example we next show that the multipliers p(·), ψ(·)
are unique and p(·) ≡ (1, 0),

ψ(s) =

{
0 s ∈ [0, 1

2 )
(−1, 1) s ∈ [ 12 , 1],

while there are several choices for ν, μ. For instance, μ may be equal to the Lebesgue
measure on Π := [0, 1]\{ 1

2} and μ({ 1
2}) = 1 and ν(·) = 0 on Π, ν( 1

2 ) = (−1, 1).
Another possible choice is the Dirac measure μ = δ 1

2
and any Borel measurable

ν : [0, 1] → R2 satisfying ν( 1
2 ) = (−1, 1).

We first compute ψ using the maximum principle. By (3.1) we have p(·) ≡
(0, 1) − ψ(1) and, by (3.5), ψ(t) = ψ( 1

2 ) for all t ∈ [ 12 , 1]. Notice that (3.5) implies
that for all 0 < t < 1

2 we have

p(t) + ψ(t) = (0, 1) −
∫

(t, 12 ]

ν(s)dμ(s) = (0, 1) − ρ(t)(0, 1) − (nx, ny)μ

({
1

2

})(3.8)

for ν(s) = (ν1(s), ν2(s)) ∈ NK(x̄(s)) μ-a.e. and ν2(s) ≥ 0 μ-a.e., the nonincreasing
function ρ(t) :=

∫
(t, 12 )

ν2(s)dμ(s) ≥ 0 and (nx, ny) ∈ G( 1
2 )−. Hence for a.e. t ∈ [0, 1

2 ],

〈p(t) + ψ(t), (1, 0)〉 = −nxμ

({
1

2

})
= max

(u,v)∈[−1,1]2
〈p(t) + ψ(t), (u, u + v − 1)〉 .

(3.9)

Since ψ is right continuous on (0, 1
2 ), (3.9) holds true for all 0 < t < 1

2 . Then (3.8)
and (3.9) together imply that for every 0 < t < 1

2 , 1 −
∫
(t, 12 ]

ν2(s)dμ(s) = 1 − ρ(t) −
nyμ({ 1

2}) = 0 and therefore

ρ(t) = 0 & nyμ

({
1

2

})
= 1.(3.10)
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Set β := nxμ({ 1
2}) ≤ 0. Then p(t) + ψ(t) = (−β, 0) and ψ(t) = ψ(0+) ∀ t ∈ (0, 1

2 ).
By (3.5), ψ(0+) ∈ R+(0, 1). This implies that for some α ≥ 0 we have

ψ(s) =

⎧⎨⎩
0 s = 0
α(0, 1) s ∈ (0, 1

2 )
α(0, 1) + (β, 1) s ∈ [ 12 , 1].

Notice that p(·) ≡ (0, 1) − ψ(1) satisfies the maximum principle (3.3) with any
choice of α ≥ 0, β ≤ 0 and ψ defined as above. The next step is to show that (3.4)
implies that α = 0 and β = −1. Indeed, −p(0) = α(0, 1) + (β, 1) − (0, 1) = (β, α) ∈
∂ϕ(0) and 1 = ϕ(−1, 0) ≤ −β, −1 = ϕ(1, 0) ≤ β, 0 = ϕ(0,−1) ≤ −α. Therefore
β = −1, α = 0. Finally, p(·) ≡ (0, 1) − (−1, 1) = (1, 0).

Observe next that

−p(t) − ψ(t) =

{
(−1, 0) t ∈ [0, 1

2 )
(0,−1) t ∈ [ 12 , 1].

Consider

ϕt(θ) =

⎧⎨⎩
〈(−1, 0), θ〉 t ∈ [0, 1

2 ), θ ∈ G(t)
〈(0,−1), θ〉 t ∈ [ 12 , 1], θ ∈ G(t)
−∞ otherwise.

Then ϕt ≤ D+
x V (t, (x̄(t), ȳ(t))) for all t ∈ I and we obtained the inclusion −p(t)−

ψ(t) ∈ ∂+ϕt(0) for all t ∈ I.
The natural question arises: Should we expect, in general, such property along

optimal trajectories for any choice of upper semicontinuous positively homogeneous
concave function ϕt ≤ D+

x V (t, x̄(t))? We conjecture that without additional assump-
tions on constraints, this is false.

In the unconstrained case, however, by Remark (iv) right after Theorem 3.4, we
have the inclusion −p(t) ∈ ∂xV (t, x̄(t)) for all t ∈ I provided the costate is unique.

Corollary 3.5. Let x̄(·) be an optimal solution to problem (1.1)–(1.5) and
assume that Hypotheses 3.1, 3.2, and 3.3 hold true and that x̄(I) ⊂ Int(K), x̄(1) ∈
Int(K1). Then there exists an absolutely continuous function p(·) : I → Rn such that

p′(t) ∈ A∗(t,−p(t)), 〈p(t), x̄′(t)〉 = max
v∈F (t,x̄(t))

〈p(t), v〉 a.e. in I,

p(1) ∈ −∂Cg(x̄(1)), −p(0) ∈ ∂xV (0, x̄(0)).

If, in addition, g(·) is differentiable at x̄(1) and the solution to the adjoint inclusion

p′(t) ∈ A∗(t,−p(t)), p(1) = −∇g(x̄(1))

is unique, then for all t ∈ I, −p(t) ∈ ∂xV (t, x̄(t)).
When the value function is differentiable, we have a more precise statement than

the one of Theorem 3.4.
Theorem 3.6. Let x̄(·) be an optimal solution to problem (1.1)–(1.5) and assume

that Hypotheses 3.1, 3.2, and 3.3 hold true. If x̄(0) ∈ Int(K) and V (0, ·) is differ-
entiable at x̄(0), then the same conclusions as in Theorem 3.4 hold true with (3.4)
replaced by p(0) = −λ∂V

∂x (0, x̄(0)).
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The next corollary implies that if V (0, ·) has some directional derivatives bounded
from below and CK1(x̄(1)) ∩ Int(G(1)) 	= ∅, then the maximum principle is nonde-
generate.

Corollary 3.7. Let x̄(·) be an optimal solution to problem (1.1)–(1.5). Assume
that Hypotheses 3.1, 3.2, and 3.3 are satisfied and that there exists a nonempty open
convex set F ⊂ G(0) and M > 0 such that for all θ ∈ F

D+
x V (0, x̄(0))(θ) ≥ −M ||θ||.(3.11)

Then we have the same conclusions as in Theorem 3.4 with G(0) replaced by R+F
and (3.4) replaced by

−p(0) ∈ λ(MB + F+).

Proof. It is enough to set ϕ(θ) = −M ||θ|| for all θ ∈ R+F and ϕ(θ) = −∞
otherwise and apply Theorem 3.4.

Remark. Assume that our problem (1.1)–(1.5) is calm in the sense that

lim inf
x→K x̄(0)

V (0, x) − V (0, x̄(0))

||x− x̄(0)|| > −∞,

then (3.11) holds true for some M > 0 and all θ ∈ G(0).
Consider next the Mayer problem (1.1)–(1.4) with an initial constraint of the form

x(0) ∈ K0,(3.12)

where K0 ⊂ Rn is a given closed set.
Then we have the following maximum principle for problem (1.1)–(1.4), (3.12)

with state and both initial and endpoints constraints.
Corollary 3.8. Let x̄(·) be an optimal solution to problem (1.1)–(1.4), (3.12)

and assume that Hypotheses 3.1, 3.2, and 3.3 are satisfied and Int(CK0
(x̄(0))) ∩

Int(G(0)) 	= ∅. Then we have the same conclusions as in Theorem 3.4 with (3.4)
replaced by

p(0) ∈ λ(NK0
(x̄(0)) + G(0)−).(3.13)

Proof. Consider the set-valued map Ĝ(·) defined by Ĝ(0) = CK0(x̄(0))∩G(0) and
Ĝ(t) = G(t) for all t ∈ (0, 1] and notice that Ĝ(·) satisfies Hypothesis 3.3. It remains
to apply Theorem 3.4 with G(·) replaced by Ĝ(·) and with the mapping ϕ(·) defined
by

ϕ(x) =

{
0 if x ∈ CK0(x̄(0)) ∩G(0)
−∞ otherwise.

Remark. In the case when we may take G(t) ≡ Rn, if in the statement of Corol-
lary 3.8 we define q(t) := p(t) + ψ(0+), then we obtain the maximum principle with
endpoint constraints from [15].

In what follows we show that when the boundary of K is smooth enough and a
pointwise inward pointing assumption holds true along the optimal trajectory, then
the maximum principle of Theorem 3.4 is normal, i.e., λ = 1 provided x̄(1) ∈ Int(K1).
A normal maximum principle (with a different adjoint inclusion and without assuming
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Hypothesis 3.2) was derived in [28] in the context of nonsmooth control systems,
smooth state constraints and K1 = Rn under an inward pointing condition (involving
continuous selections from U) imposed on a neighborhood of the boundary of K. We
propose here a less restrictive inward pointing assumption.

Hypothesis 3.9. K is closed and
(i) ∃ η > 0 such that the signed distance defined by

d(x) =

{
−dist(x, ∂K) ∀ x ∈ K
dist(x, ∂K) otherwise

is of class C1,1
loc on ∂K + ηB.

(ii) ∃ ρ > 0 such that for almost all t ∈ I with x̄(t) ∈ ∂K + ηB we have

min
v∈F (t,x̄(t))

〈∇d(x̄(t)), v〉 ≤ −ρ.

For all x ∈ ∂K we denote by n(x) the outward unit normal to K at x. Then
TK(x) = (R+n(x))−. Under Hypothesis 3.9, n(x) = ∇d(x) and therefore n(·) is
locally Lipschitz on the boundary of K.

Remark. Assume that Hypothesis 3.1 holds true with l independent from time,
that Hypothesis 3.9 (i) is satisfied and that there exists ρ > 0 such that for all t ∈ I
we have

∀ x ∈ ∂K, min
v∈F (t,x)

〈n(x), v〉 ≤ −ρ.

Then it is not difficult to show that Hypothesis 3.9 (ii) holds true with ρ replaced by
ρ/2 and may be a different choice of a constant η. Furthermore, from results of [18]
it follows that in this case the value function is locally Lipschitz on K.

Theorem 3.10. Let x̄(·) be an optimal solution to problem (1.1)–(1.5). As-
sume that Hypotheses 3.1, 3.2, and 3.9 hold true and that x̄(1) ∈ Int(K1). Then all
conclusions of Theorem 3.4 are valid with λ = 1 and G(t) = TK(x̄(t)) for every t ∈ I.

Theorem 3.11. In Theorem 3.4 assume that for all t ∈ I, A(t, ·) is a linear
operator and A(t, ·) is m(t)-Lipschitz for some m(·) ∈ L1(I). Then all the conclusions
of Theorem 3.4 are valid.

If there exists a solution to the constrained linear control system

w′ = A(s, w) + v(s), v(s) ∈ Tco(F (s,x̄(s)))(x̄
′(s)),(3.14)

w(s) ∈ Int(G(s)) ∀ s ∈ [0, 1], w(1) ∈ Int(CK1
(x̄(1)))(3.15)

and g is differentiable at x̄(1) ∈ Int(K1), then p(1) = −∇g(x̄(1))−ψ(1) and for every
upper semicontinuous concave function ϕt : Rn → R ∪ {−∞} satisfying Int(G(t)) ⊂
dom(ϕt) and ϕt ≤ D+

x V (t, x̄(t)) there exist ψt ∈ NBV ([t, 1]), a positive Radon mea-
sure μt, a selection νt(s) ∈ G(s)− ∩B μt-a.e. such that for every s ∈ (t, 1]

ψt(s) =

∫
[t,s]

νt(τ)dμt(τ), ψt(s) − ψt(s−) ∈ G(s)−, ψt(t+) ∈ G(t)−

and the solution r(·) : [t, 1] → Rn to

r′(s) = A∗(s,−r(s) − ψt(s) + ψ(s)), r(1) = ψ(1) − ψt(1)
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satisfies

−r(t) − p(t) ∈ ∂+ϕt(0), 〈r(s) + p(s) + ψt(s), x̄
′(s)〉

= max
v∈co(F (s,x̄(s)))

〈r(s) + p(s) + ψt(s), v〉 a.e. in [t, 1].

Remark. The mapping r of the above theorem depends on t. That means for each
t > 0 the costate p(t) is corrected by a solution of the adjoint equation with a different
function ψt in order −r(t)−p(t) ∈ ∂+ϕt(0). Notice that if for all s ≥ t, x̄(s) ∈ Int(K)
and x̄(1) ∈ Int(K1), then νt = 0 and the above theorem implies that the solution q
to

−q′(s) = A∗(s, q(s)), q(1) = −∇g(x̄(1))

satisfies −q(t) ∈ ∂+ϕt(0).

On the other hand, slightly modifying the proof provided in section 5 we get
−q(s) ∈ ∂+

x V (s, x̄(s)) for all s ∈ [t, 1], which is a known relation of the costate to the
value function derived in [5] for unconstrained problems.

4. Polar of the set of continuous selections. Recall that any function f :
[a, b] → Rn of bounded variation on [a, b] has right and left limits f(a+) and f(b−)
(see [12, p. 154]).

The space NBV ([a, b]) (Normalized Bounded Variations) is the space of functions
f of bounded variation on [a, b], which are continuous from the right on (a, b) and
such that f(a) = 0. The norm of f ∈ NBV ([a, b]) is the total variation of f on [a, b]
denoted by ‖f‖TV . If β ∈ C([a, b])∗, then there exists a unique f ∈ NBV ([a, b]) such

that for all ϕ ∈ C([a, b]), β(ϕ) =
∫ b

a
ϕ(s)df(s) (the Stieltjes integral) and ‖β‖ = ‖f‖TV

(see, for instance, [24, p. 113]). Conversely, every f ∈ NBV ([a, b]) defines an element

βf ∈ C([a, b])∗ by setting 〈βf , ϕ〉 =
∫ b

a
ϕ(s)df(s) for all ϕ ∈ C([a, b]).

Let f ∈ NBV (I) and ϕ ∈ W 1,1(I). We have the following integration by parts
formula ∫ 1

0

ϕ(s)df(s) = 〈f(1), ϕ(1)〉 −
∫ 1

0

〈f(s), ϕ′(s)〉ds.

Recall that any g ∈ NBV (I) defines a regular finite countably additive measure
on (I,Σ), where Σ denotes the σ-field of Borel subsets of I. We briefly recall the
corresponding construction that will be used to prove Lemma 4.2 below.

Define ḡ by ḡ = g on [0, 1) and ḡ(1) = 0. For all 0 < c < d ≤ 1 set λg((c, d]) =
ḡ(d) − ḡ(c) and λg([0, d])) = ḡ(d). By [12, pp. 141, 142] λg can be extended to a
regular countably additive measure (again denoted) λg on Borel subsets of I such that
var(λg, (c, d]) = var(ḡ, (c, d]) and var(λg, [0, d]) = var(ḡ, [0, d]), where var states for
the variation. Define next the measure μg on Borel subsets of I by setting μg({0}) =
g(0+), μg({1}) = g(1)−g(1−) and for every Borel subset A of (0, 1), μg(A) = λg(A).
It is not difficult to verify that μg is a finite, countably additive and regular measure
on I.

Notice that for every 0 < t < 1,

μg([0, t]) = μg({0}) + λg((0, t]) = g(0+) + μg(∪j≥1((aj+1, aj ])) = g(0+)

+ ḡ(t) − ḡ(0+) = g(t),
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where 0 < · · · < a2 < a1 = t and for all 0 < t < s < 1, μg((t, s]) = g(s) − g(t).
Furthermore,

μg((t, 1]) = μg({1}) + λg((t, 1)) = g(1) − g(1−) + μg(∪j≥1((aj , aj+1])),

where t = a1 < a2 < · · · < 1. Thus, by countable additivity,

μg((t, 1]) = g(1) − g(1−) + g(1−) − g(t) = g(1) − g(t).

This and the definition of the Stieltjes integral imply that for every w ∈ C(I),∫
[0,1]

w(s)dμg(s) =

∫ 1

0

w(s)dg(s).

Lemma 4.1. Consider a lower semicontinuous set-valued map G : I � Rn

such that for all t ∈ I, G(t) is a closed convex cone. Assume that for all t ∈ I,
Int(G(t)) 	= ∅ and let

C = {w(·) ∈ C(I) | w(t) ∈ G(t) ∀ t ∈ I}.(4.1)

Then

Int(C) = {w(·) ∈ C(I) | w(t) ∈ Int(G(t)) ∀ t ∈ I} 	= ∅.

Proof. Define the compact set D = {t ∈ I | G(t) 	= Rn}. If D = ∅, then there is
nothing to prove. Assume next that D 	= ∅ and define Γ(t) := {p ∈ G(t)− | ||p|| = 1}
for all t ∈ D.

We claim that Γ(·) is upper semicontinuous on D. Indeed, Γ(·) has nonempty
compact images and is bounded, so it is enough to check that its graph is closed.
Consider any pi ∈ Γ(ti) ⊂ G(ti)

−, pi → p, ti →D t0. Then ||p|| = 1. Let v ∈ G(t0).
By the lower semicontinuity of G(·) there exist vi ∈ G(ti), vi → v. Hence 〈pi, vi〉 ≤ 0
and, taking the limit, we get 〈p, v〉 ≤ 0. Since v ∈ G(t0) is arbitrary, p ∈ G(t0)

− and
our claim is proved.

Fix ε > 0 and define for all t ∈ D, Fε(t) = {v ∈ G(t) | 〈p, v〉 ≤ −ε ∀ p ∈ Γ(t)}.
Since Int(G(t)) 	= ∅, also Fε(t) 	= ∅ ∀ t ∈ D. Obviously, Fε(·) has closed convex
images and is lower semicontinuous on D. So by Michael’s theorem there exists a
continuous selection f̄(t) ∈ Fε(t) ⊂ Int(G(t)) ∀ t ∈ D. Let f be any continuous
extension of f̄ on the whole interval I. Then f(t) ∈ Int(G(t)) for all t ∈ I.

Consider any g ∈ C(I) such that ||g||∞ ≤ ε. Then for any t ∈ D and p ∈ Γ(t)
〈p, f(t)+g(t)〉 ≤ −ε+ε = 0, i.e., f(t)+g(t) ∈ G(t) ∀ t ∈ I, implying that Int(C) 	= ∅.
Notice that if ϕ ∈ Int(C), then for some ε > 0 and all t ∈ I, Bε(ϕ(t)) ⊂ G(t). Thus
Int(C) ⊂ W := {w(·) ∈ C(I) | w(t) ∈ Int(G(t)) ∀ t ∈ I}. Next, fix any ϕ ∈ W .
Then, by the lower semicontinuity of G(·) and compactness of I, there exists ε > 0
such that for all t ∈ I, ϕ(t) + εB ⊂ G(t). So, ϕ ∈ Int(C).

In the next lemma we consider NBV (I) as the dual of C(I) : with every f ∈
NBV (I) we associate the functional βf ∈ C(I)∗ defined by 〈βf , x〉 =

∫ 1

0
x(s)df(s)

(the Stieltjes integral).
Lemma 4.2. Consider a lower semicontinuous set-valued map G : I � Rn such

that for all t ∈ I, G(t) is a closed convex cone with nonempty interior. Let C be
defined by (4.1) and g ∈ NBV (I) be such that g ∈ C−. Then there exists a scalar
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positive Radon measure μ on I and a selection ν(s) ∈ G(s)− ∩ B μ − a.e. such that
for every t ∈ (0, 1] g(t) =

∫
[0,t]

ν(s)dμ(s), g(t) − g(t−) ∈ G(t)− and g(0+) ∈ G(0)−.

Proof. Let μg be the regular countably additive finite measure on I associated to
g by the construction recalled at the beginning of this section.

Define also for all t > 0, f(t) = var(g, [0, t]) (total variation of g on [0, t]) and
set f(0) = ‖g(0+)‖. Then f ≥ 0 is increasing, right continuous on [0, 1) and has
bounded variation. By the construction provided in [12, pp. 141–142], f defines a
regular countably additive positive scalar measure μ on Borel subsets of (0, 1). Setting
μ({0}) = f(0), μ({1}) = f(1) we obtain a Radon measure on I. Furthermore, since
the total variation is additive, it follows from this construction that μg is μ-continuous.
By the Radon–Nikodym theorem there exists a unique μ-integrable function ν such
that

∫
E
ν(s)dμ(s) = μg(E) for every Borel set E ⊂ I. In particular, this yields

g(t) =
∫
[0,t]

ν(s)dμ(s) for all 0 < t ≤ 1. For every Borel subset A ⊂ I denote by

v(μg, A) the total variation of μg on A. It is not difficult to check that for every open
set O in [0, 1] we have μ(O) = v(μg,O). Since μg and μ are regular also for every
Borel subset A ⊂ I, μ(A) = v(μg, A).

Claim 1. ν(s) ∈ B μ-a.e. Define ζ : I → B by ζ(s) = 0 if ν(s) = 0 and
ζ(s) = ν(s)/||ν(s)|| otherwise. Then for every Borel set A ⊂ I,

∫
A
ζ(s)dμg(s) =∫

A
ζ(s)ν(s)dμ(s) =

∫
A
||ν(s)||dμ(s). Let A be the set of all s ∈ I such that ||ν(s)|| > 1.

If μ(A) > 0 then from the last equality we get μ(A) <
∫
A
ζ(s)dμg(s) ≤ v(μg, A). The

obtained contradiction proves our claim.
We next show that ν(s) ∈ G(s)− μ-a.e. Even if it may be deduced from [30,

Corollary 6A] we provide the proof of this inclusion for the sake of completeness.
Set Δ = {t ∈ I | g(t) 	= g(t−)}. This set is at most countable.
Claim 2. Let w0 ∈ Rn and 0 ≤ t1 < t2 ≤ 1 be such that w0 ∈ G(s) for all

s ∈ [t1, t2] and t1 /∈ Δ. We claim that 〈g(t2) − g(t1), w0〉 ≤ 0. Indeed, by Lemma 4.1,
there exists a selection w̄(t) ∈ Int(G(t)), t ∈ I. Then for every ε > 0, εw̄(t) ∈
Int(G(t)) ∀ t ∈ I. For all δ > 0 define aδ := max{t1 − δ, 0}, bδ = min{t2 + δ, 1} and
the function wδ ∈ C(I) by

wδ(s) :=

⎧⎪⎪⎨⎪⎪⎩
s−aδ

δ w0 + t1−s
δ εw̄(s) if s ∈ [aδ, t1)

w0 if s ∈ [t1, t2]
bδ−s
δ w0 + s−t2

δ εw̄(s) if s ∈ (t2, bδ]
εw̄(s) otherwise.

Then
∫ 1

0
wδ(s)dg(s) ≤ 0 whenever δ > 0 is sufficiently small. Notice that

∫ t2
t1

w0dg(s) =

〈g(t2) − g(t1), w0〉. On the other hand if t1 − δ ≥ 0, then∫ t1

t1−δ

t1 − δ

δ
dg(s) =

t1 − δ

δ
(g(t1) − g(t1 − δ))

and, integrating by parts, we get∫ t1

t1−δ

s

δ
dg(s) =

t1
δ
g(t1) −

t1 − δ

δ
g(t1 − δ) − 1

δ

∫ t1

t1−δ

g(s)ds.

Finally, if t2 + δ ≤ 1, then∫
(t2,t2+δ]

t2 + δ

δ
dg(s) =

t2 + δ

δ
(g(t2 + δ) − g(t2+)).
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Integrating by parts we get∫
(t2,t2+δ]

s

δ
dg(s) =

t2 + δ

δ
g(t2 + δ) − t2

δ
g(t2+) − 1

δ

∫ t2+δ

t2

g(s)ds.

Thus from the equality g(t2+) = g(t2) we obtain∫ t1

t1−δ

s + δ − t1
δ

dg(s) = g(t1) −
1

δ

∫ t1

t1−δ

g(s)ds,∫
(t2,t2+δ]

δ + t2 − s

δ
dg(s) = −g(t2) +

1

δ

∫ t2+δ

t2

g(s)ds.

Since lims→t2+ g(s) = g(t2), lims→t1− g(s) = g(t1), from the inequality
∫ 1

0
wδ(s)

dg(s) ≤ 0 we deduce that 〈g(t2) − g(t1), w0〉 ≤ ε‖w̄‖∞‖g‖TV . Passing to the limit
when ε → 0+, we end the proof of our claim.

To show that ν(s) ∈ G(s)− μ-a.e it is enough to consider the case μ(I) 	= 0. Let
π(s) ∈ G(s) be the projection of ν(s) on G(s). Then π is μ-measurable and ||π(s)|| ≤ 1
μ-a.e. Thus π is μ-integrable. Furthermore, π(s) = 0 if and only if ν(s) ∈ G(s)−.
On the other hand,

∫
I
π(s)dμg(s) =

∫
I
π(s)ν(s)dμ(s) =

∫
I
||π(s)||2dμ(s). Hence if

π(s) 	= 0 on a set of positive measure, then for some ε > 0,
∫
I
π(s)dμg(s) ≥ 2ε.

Let w̄ ∈ Int(C). We may assume that ‖w̄‖∞ ≤ 1. Let δ > 0 be so that for all s ∈
I, w̄(s)+δB ⊂ G(s). Then π(s)+ ε

μ(I) (w̄(s)+δB) ⊂ G(s). Set ζ(s) := π(s)+ ε
μ(I) w̄(s).

Then
∫
I
ζ(s)dμg(s) ≥ ε. Since ζ is μ-measurable, there exist μ-measurable functions

ζi : I → Rn assuming only countable numbers of values and converging uniformly to
ζ. Thus for all large i and all s ∈ I, ζi(s) ∈ Int(G(s)). Consequently, for all large
i,

∫
I
ζi(s)dμg(s) > 0. Fix i sufficiently large. Then for some α ∈ Rn and a Borel set

A ⊂ I, we have ζi(s) = α for all s ∈ A and αμg(A) > 0. Notice next that by the lower
semicontinuity of G(·) and since α ∈ Int(G(s)) for every s ∈ A there exists an open
set Os � s such that α ∈ Int(G(s′)) for all s′ ∈ Os. Set O2 :=

⋃
s∈A Os. Since μg is

regular, there exists an open (in I) set O3 ⊃ A such v(μg,O3\A) < μg(A)/2. Define
the open set O := O2 ∩ O3.

Consequently, αμg(O) > αμg(A)/2 > 0. Since O is at most a countable union of
disjoint intervals (ti1, t

i
2] and eventually an interval [0, t0] with 0 < ti1 /∈ Δ, t0 > 0,

either αμg([0, t0]) = αg(t0) > 0 or there exist 0 < t1 < t2 such that αμg((t1, t2]) =
〈α, g(t2) − g(t1)〉 > 0. In both cases we obtain a contradiction with Claim 2.

To prove jump conditions, observe that G(t)−∩B = [0, 1]Γ(t) for all t ∈ D, where
Γ and D are defined as in the proof of Lemma 4.1. Thus, by the proof of Lemma 4.1,
t � G(t)− ∩ B is upper semicontinuous on D. Since G(t)− = {0} whenever t /∈ D,
we deduce that the set-valued map t � G(t)− ∩ B is upper semicontinuous on I.
This implies that for all ε > 0 and for all small t > 0, g(t) =

∫
[0,t]

ν(s)dμ(s) ∈
((G(0)− ∩B)+ εB)μ([0, t]). Taking the limit when t → 0+ we get g(0+) ∈ ((G(0)− ∩
B) + εB) limt→0+ μ([0, t]). Since this inclusion is valid for all ε > 0 we deduce that
g(0+) ∈ G(0)−. Fix next any 0 < t ≤ 1. Again, using the upper semicontinuity of
t � G(t)− ∩ B, we obtain that for every ε > 0 and all τ < t sufficiently close to t
we have g(t)− g(τ) =

∫
(τ,t]

ν(s)dμ(s) ∈ ((G(t)− ∩B) + εB)μ((τ, t]). Taking the limit,

first when τ → t− and then when ε → 0+ we deduce that g(t)− g(t−) ∈ G(t)−. The
proof is complete.
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5. Proofs of results of section 3. Proof of Theorem 3.4. Consider the set-
valued map B(·, ·) : I × Rn � Rn defined by

B(t, v) = A(t, v) + Tco(F (t,x̄(t)))(x̄′(t)).

By [15] for almost all t ∈ I, B(t, ·) is a closed convex process, Lipschitz with the same
Lipschitz constant as A(t, ·) and B(t, v) ⊆ dx coF (t, x̄(t), x̄′(t))v for all v ∈ Rn. Thus
the family {B(t, ·)}t∈I satisfies Hypothesis 3.2. It was also proved in [15] that

r(t) ∈ B∗(t, q(t)) iff r(t) ∈ A∗(t, q(t)), q(t) ∈ [Tco(F (t,x̄(t)))(x̄
′(t))]+(5.1)

= [F (t, x̄(t)) − x̄′(t)]+.

Set

S := {w(·) ∈ W 1,2(I) | w′(t) ∈ B(t, w(t)) a.e. in I},

C = {w(·) ∈ C(I) | w(t) ∈ G(t) ∀ t ∈ I}, C1 = {w(·) ∈ C(I) | w(1) ∈ CK1(x̄(1))}
(5.2)

γ(x(·)) = (x(0), x(1)), γ1(x(·)) = x(1) ∀ x(·) ∈ C(I).

Denote by S̄ the closure of S in C(I). By Lemma 4.1, Int(C) 	= ∅. It is also clear that
Int(C1) 	= ∅. Furthermore, since C1 = γ−1

1 (CK1(x̄(1))), C+
1 = (γ−1

1 (CK1(x̄(1))))+ =
γ∗
1 ((CK1(x̄(1)))+) (see, for instance, [4]), we infer that for every β1 ∈ C−

1 there exists
η ∈ NK1(x̄(1)) such that all w ∈ C(I), 〈β1, w〉 = 〈η, w(1)〉.

If Int(C1)∩Int(C) = ∅, then, by the separation theorem, there exists 0 	= β1 ∈ C−
1

satisfying −β1 ∈ C−. Let η ∈ NK1(x̄(1)) be such that all w ∈ C(I), 〈β1, w〉 =
〈η, w(1)〉. By Lemma 4.2 it is enough then to set ψ(1) = −η, ψ = 0 on [0, 1), λ = 0
and p ≡ 0 to get the conclusion of Theorem 3.4 in this case.

We assume next that Int(C1) ∩ Int(C) 	= ∅. Then Int(C1 ∩ C) = Int(C1) ∩ Int(C)
and therefore (C ∩ C1)

− = C− + C−
1 (see, for instance, [4]).

We have two cases.
Case 1. S̄ ∩ (Int(C ∩C1)) = ∅. Since S̄ and C ∩C1 are closed convex cones in C(I)

and Int(C ∩ C1) 	= ∅, they can be separated by a closed hyperplane passing through
the origin, i.e., there exists 0 	= β ∈ C(I)∗ such that

〈β, b〉 ≤ 0 ≤ 〈β, a〉 ∀ a ∈ S̄, b ∈ C ∩ C1.(5.3)

Thus β ∈ C− + C−
1 . Consider β0 ∈ C− and β1 ∈ C−

1 such that β = β0 + β1.
We claim that β0 	= 0. Indeed otherwise β1 	= 0 and β1 ∈ S̄+. Let 0 	= η ∈

NK1(x̄(1)) be such that for all w ∈ C(I), 〈β1, w〉 = 〈η, w(1)〉. Notice that for every
w1 ∈ CK1(x̄(1)) there exists w ∈ S such that w(1) = w1. Hence, by (5.3), for all
w1 ∈ CK1(x̄(1)) we have 〈η, w1〉 = 0. The interior of CK1(x̄(1)) being nonempty, this
last equality yields η = 0. The obtained contradiction proves our claim.

Let ψ ∈ NBV (I) be such that for all w ∈ C(I), 〈β0, w〉 =
∫ 1

0
w(s)dψ(s). Then

‖ψ‖TV 	= 0. By Lemma 4.2 applied to β0 for a positive Radon measure μ on I and a
μ-measurable selection ν(t) ∈ G(t)− ∩B μ-a.e., relations (3.5) hold true.

On the other hand, by (5.3), we have that β ∈ S+ ⊂ W 1,2(I)∗. Set

D(x(·)) = x′(·) ∀ x(·) ∈ W 1,2(I),
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L = {(x(·), y(·)) ∈ L2(I) × L2(I) | y(s) ∈ B(s, x(s)) a.e. in I}.

According to [15] one has

S+ = (1 ×D)∗(L+),(5.4)

L+ = {(−r(·), q(·)) ∈ L2(I) × L2(I) | r(s) ∈ B∗(s, q(s)) a.e. in I}.(5.5)

Therefore, there exists (−r, q) ∈ L+ such that for any x ∈ W 1,2(I)

〈β, x〉 = 〈(1 ×D)∗(−r, q), x〉 = 〈(−r, q), (x, x′)〉.

Let η ∈ NK1(x̄(1)) be such that for all w ∈ C(I), 〈β1, w〉 = 〈η, w(1)〉. Hence for any
x(·) ∈ W 1,2(I)

〈η, x(1)〉 = −
∫ 1

0

r(t)x(t)dt +

∫ 1

0

q(t)x′(t)dt−
∫ 1

0

x(t)dψ(t).(5.6)

From (5.6), integrating by parts, we get∫ 1

0

[
q(t) +

∫ t

0

r(s)ds + ψ(t)

]
x′(t)dt−

〈∫ 1

0

r(s)ds, x(1)

〉
−〈ψ(1), x(1)〉−〈η, x(1)〉 = 0.

The above holds true, in particular, for all x(·) ∈ W 1,2(I) with x(1) = 0. Thus,
from the Dubois–Raymond lemma it follows that there exists r0 ∈ Rn such that

q(t) +

∫ t

0

r(s)ds + ψ(t) = r0 a.e. in I.(5.7)

Define p(t) :=
∫ t

0
r(s)ds − r0. We have q(t) = −p(t) − ψ(t) a.e. and from (5.5) and

(5.1) we obtain (3.1) and (3.3). Using (5.7) we deduce that for any x ∈ W 1,2(I)

0 =

〈
−
∫ 1

0

r(t)dt, x(1)

〉
+ 〈r0, x(1) − x(0)〉 − 〈ψ(1), x(1)〉 − 〈η, x(1)〉.

Applying this relation to all x(·) ∈ W 1,2(I) with x(1) = 0, we get r0 = 0, p(0) = 0

and therefore −
∫ 1

0
r(t)dt−ψ(1)−η = 0. Consequently, −p(1)−ψ(1) = η ∈ NK1(x̄(1))

and (3.2), (3.4) are satisfied with λ = 0.
Case 2. S̄ ∩ (Int(C ∩ C1)) 	= ∅. Then Int(C ∩ C1) = Int(C) ∩ Int(C1) and also

S ∩ (Int(C ∩ C1)) 	= ∅. Since C ∩ C1 and S̄ are closed convex cones in C(I) and
S̄ ∩ (Int(C ∩ C1)) 	= ∅ we infer that

(S̄ ∩ C ∩ C1)
+ = S̄+ + C+ + C+

1(5.8)

(see, for instance, [4]). Let θ ∈ Rn and consider a solution w to the differential
inclusion

w′ ∈ B(t, w), w(0) = θ.(5.9)

From the variational inclusion (Theorem 3.4 in [15]) we know that for all si →
0+, θi → θ there exist solutions xi(·) to (1.2) with xi(0) = x̄(0) + siθi such that
xi(·)−x̄(·)

si
converge uniformly to w(·).
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Define h(·, ·) : Rn × Rn → R ∪ {+∞} by

h(θ, v) = g0(x̄(1))(v) − ϕ(θ).

Set E = γ(S̄ ∩ Int(C ∩ C1)). We claim that

h(θ, v) ≥ 0 ∀ (θ, v) ∈ E .(5.10)

We first show that

h(θ, v) ≥ 0 ∀ (θ, v) ∈ γ(S ∩ Int(C ∩ C1)).(5.11)

For this aim fix w ∈ S ∩ Int(C ∩ C1). Then, by Lemma 4.1, w(t) ∈ Int(G(t)) for all
t ∈ I. From Hypothesis 3.3, continuity of w and compactness of I we deduce that for
some ε > 0 and all t ∈ I, x̄(t) + [0, ε](w(t) + εB) ⊂ K.

Let si → 0+, θi → w(0) be such that x̄(0) + siθi ∈ K and

D+
x V (0, x̄(0))(w(0)) = lim sup

i→∞

V (0, x̄(0) + siθi) − V (0, x̄(0))

si

and xi be solutions to (1.2) starting at x̄(0) + siθi and such that xi(·)−x̄(·)
si

converge
uniformly to w(·).

Then, by the dynamic programming principle,

ϕ(w(0)) ≤ D+
x V (0, x̄(0))(w(0)) ≤ lim sup

i→∞

g(xi(1)) − g(x̄(1))

si
≤ g0(x̄(1))(w(1)).

Consequently, h(w(0), w(1)) ≥ 0.
Consider next w ∈ S̄ ∩ Int(C ∩C1) and wj ∈ S such that limj→∞ wj = w in C(I).

Then for all large j, wj ∈ S ∩ Int(C ∩ C1) and, by (5.11),

h(wj(0), wj(1)) ≥ 0.

Since w(0) ∈ Int(G(0)) ⊂ dom(ϕ) and ϕ is concave, ϕ is continuous at w(0). Thus
passing to the limit in the last inequality when j → ∞, we deduce (5.10).

Let w(·) ∈ S∩(Int(C∩C1)). By Lemma 4.1 w(0) ∈ Int(G(0)) and so dom(h)−E =
Rn × Rn. We apply Lemma 2.6 to deduce that there exists (a, c) ∈ E+ such that

h(θ, v) ≥ 〈(a, c), (θ, v)〉 ∀ (θ, v) ∈ Rn × Rn.(5.12)

From (5.12) and the definition of h(·, ·) we get g0(x̄(1))(v) − 〈c, v〉 − 〈a, θ〉 ≥ ϕ(θ) for
every (θ, v) ∈ Rn × Rn. If θ = 0 we obtain

c ∈ ∂Cg(x̄(1)).(5.13)

Consequently, for any θ ∈ Rn we have ϕ(θ) ≤ 〈−a, θ〉 and therefore

−a ∈ ∂+ϕ(0).(5.14)

Since for every w ∈ S̄ ∩ Int(C ∩ C1), 〈(a, c), γ(w)〉 ≥ 0 we get γ∗(a, c) ∈ (S̄ ∩ Int(C ∩
C1))

+ = (S̄∩C∩C1)
+. Hence, by (5.8), for some β0 ∈ C−, β1 ∈ C−

1 , γ∗(a, c)+β0 +β1 ∈
S̄+. Denote by S+ the positive polar of S in W 1,2(I)∗. Then γ∗(a, c) + β0 + β1 ∈ S+.
From (5.4), (5.5) it follows that there exist (−r, q) ∈ L+ such that

〈γ∗(a, c), x〉 + 〈β0 + β1, x〉 = 〈(1 ×D)∗(−r, q), x〉 ∀ x ∈ W 1,2(I)
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or, equivalently, for any x ∈ W 1,2(I)

〈η, x(1)〉 + 〈a, x(0)〉 + 〈c, x(1)〉 = −
∫ 1

0

r(t)x(t)dt +

∫ 1

0

q(t)x′(t)dt−
∫ 1

0

x(t)dψ(t)

(5.15)

for some ψ ∈ NBV (I), η ∈ NK1
(x̄(1)) satisfying 〈β0, y〉 =

∫ 1

0
y(s)dψ(s) for all

y ∈ C(I) and 〈β1, w〉 = 〈η, w(1)〉 for all w ∈ C(I).
We take x(·) ∈ W 1,2(I) such that x(0) = x(1) = 0 and we show as in Case 1

that there exists r0 ∈ Rn that verifies (5.7). Define p(t) =
∫ t

0
r(s)ds − r0. Thus

q(t) = −p(t) − ψ(t) a.e. in I and from (5.5) and (5.1) we deduce (3.1) and (3.3).
Using again (5.15) and integrating by parts we obtain that for any x ∈ W 1,2(I)

〈η, x(1)〉 + 〈a, x(0)〉 + 〈c, x(1)〉 = −〈r0, x(0)〉 + 〈−p(1) − ψ(1), x(1)〉.

We take first x ∈ W 1,2(I) with x(0) = 0 and we find that c + η = −p(1) − ψ(1) and,
by (5.13), (3.2) holds true with λ = 1. From Lemma 4.2 we deduce that ψ satisfies
(3.5) for some ν and μ as in the conclusions of our theorem.

If we take x ∈ W 1,2(I) with x(1) = 0, then we get a = −r0 = p(0) and (3.4)
follows from (5.14) with λ = 1.

We next prove (3.6). We already know that λ+‖ψ‖TV 	= 0. Assume for a moment
that λ = 0 and

sup
t∈(0,1)

||p(t) + ψ(t)|| = 0.(5.16)

Then ‖ψ‖TV 	= 0. From (3.1) and Hypothesis 3.2 we get p′(t) = 0 a.e. in I and, by
(3.4), p(·) ≡ 0. Therefore, by (3.2), −ψ(1) ∈ NK1

(x̄(1)) and, by (5.16), ψ(·) ≡ 0
on (0, 1). Thus ψ(1−) = 0 and, via (3.5), we have that ψ(1) ∈ G(1)−. Hence
〈ψ(1), v1〉 ≤ 0 for all v1 ∈ G(1) and 〈ψ(1),−v2〉 ≤ 0 for all v2 ∈ CK1

(x̄(1)). This
implies that ψ(1) ∈ (G(1)−CK1(x̄(1)))−. On the other hand, assumption CK1(x̄(1))∩
Int(G(1)) 	= ∅ yields G(1) − CK1

(x̄(1)) = Rn and we infer that ψ(1) = 0. Hence
supt∈I ||ψ(t)|| = 0. This yields ‖ψ‖TV = 0 and so we derive a contradiction and (3.6)
follows.

We have to check that when x̄(1) ∈ Int(K1),

λ + var(ψ, (0, 1]) 	= 0.(5.17)

Indeed, assume for a moment that λ + var(ψ, (0, 1]) = 0. Then ‖ψ‖TV 	= 0. By
(3.2), p(1) = −ψ(1) = −ψ(0+) and for all t ∈ (0, 1], ψ(t) = ψ(0+). Setting q(t) :=
p(t) + ψ(0+) we deduce from (3.1) that q′(t) ∈ A∗(t,−q(t)) a.e. in I and q(1) = 0.
But, by Hypothesis 3.2, ‖q′(t)‖ ≤ m‖q(t)‖ for a.e. t ∈ I. This and the Gronwall
inequality imply that q(·) ≡ 0. By (3.4), p(0) = 0 and therefore ψ ≡ 0 contradicting
to ‖ψ‖TV 	= 0. Inequality (5.17) is proved.

Let us assume next that there exists a solution w(·) ∈ W 1,1(I) to

w′ ∈ A(t, w) + Tco(F (t,x̄(t)))(x̄′(t)), w(1) ∈ Int(CK1(x̄(1))),

w(t) ∈ Int(G(t)) ∀ t ∈ I.

We already know that there exist λ, p, ψ as in the statement of our theorem. As-
sume for a moment that λ = 0 and set η = −p(1) − ψ(1) ∈ NK1(x̄(1)). Then, by
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(3.4), p(0) = 0 and
∫ 1

0
w(s)dψ(s) =

∫
[0,1]

w(s)ν(s)dμ(s). Hence for all w ∈ C ∩ C1,∫
[0,1]

w(s)dψ(s) + 〈η, w(1)〉 ≤ 0. On the other hand, by the very definition of the

adjoint process, for every w ∈ S we have
∫ 1

0
(p′w + pw′ + ψw′)(s)ds ≤ 0. Thus

〈p(1), w(1)〉 +
∫ 1

0
ψ(s)w′(s)ds ≤ 0. Integrating by parts we deduce that 〈η, w(1)〉 +∫ 1

0
w(s)dψ(s) ≥ 0. The above yields S ∩ (Int(C ∩ C1)) = ∅.
To deduce that λ = 1 it remains to verify that S ∩ (Int(C ∩ C1)) 	= ∅. For every

i ≥ 1 define the measurable set Ei = {s ∈ I | ||w′(s)|| ≤ i}. Then the Lebesgue
measures μl(I\Ei) converge to zero and limi→∞

∫
I\Ei

||w′(s)||ds = 0. Consider vi(·) ∈
L∞(I) defined by vi(s) = w′(s) for all s ∈ Ei and vi(s) = 0 otherwise and set

yi(t) = w(0)+
∫ t

0
vi(s)ds for all t ∈ I. Then yi converge uniformly to w. Furthermore,

for almost all s ∈ Ei, dist(y′i(s), B(s, yi(s))) ≤ m||yi(s) − w(s)|| and for almost
all s ∈ I\Ei, dist(y′i(s), B(s, yi(s))) ≤ m||yi(s)||. By the Filippov theorem (see, for
instance, [3, p. 401]) there exist M > 0 and wi ∈ W 1,1(I) such that w′

i(s) ∈ B(s, wi(s))
a.e. in I and

||wi−yi||∞ ≤ εi :=M(||yi−w||∞+μl(I\Ei)), ||w′
i(t)−y′i(t)||≤mεi+m||yi(t)|| a.e. in I.

Then wi ∈ W 1,∞(I) and the sequence wi converge uniformly to w. Hence for all large
i, wi ∈ S ∩ (Int(C ∩ C1)).

Proof of Theorem 3.6. The proof follows by exactly the same arguments as the
ones in the proof of Theorem 3.4. The only change is that in Case 2 it can be directly
proved that for any w(·) ∈ E〈

∂V

∂x
(0, x̄(0)), w(0)

〉
≤ g0(x̄(1))(w(1))

and then we apply Lemma 2.6 to the convex function h(θ, v) = g0(x̄(1))(v)
− 〈∂V∂x (0, x̄(0)), θ〉.

Proof of Theorem 3.10.
It is not restrictive to assume that ρ < 1. Notice that d(x̄(t)) ≤ 0 for all t ∈ I.

Set G(t) = TK(x̄(t)). We claim that G(·) satisfies Hypothesis 3.3. Indeed for all t ∈ I
such that x̄(t) ∈ ∂K,

G(t) = {v ∈ Rn | 〈n(x̄(t)), v〉 ≤ 0}

and

Int (G(t)) = {v ∈ Rn | 〈n(x̄(t)), v〉 < 0}.

Furthermore, G(t) = Rn whenever x̄(t) ∈ Int(K). Since n(·) is locally Lipschitz on
the boundary of K, the set-valued map I � t � Int (G(t)) is lower semicontinuous
on I. Thus also G(·) is lower semicontinuous on I. If x̄(t) ∈ Int (K), then for all
s sufficiently close to t, x̄(s) ∈ Int (K) and therefore for every v ∈ Rn there exists
ε > 0 such that for all s ∈ [t− ε, t + ε] ∩ I, x̄(s) + [0, ε](v + εB) ⊂ K.

Assume next that t ∈ I is so that x̄(t) ∈ ∂K and fix v ∈ Int (G(t)). Then
〈n(x̄(t)), v〉 < 0. Notice that the oriented distance is Lipschitz with the Lipschitz
constant one on η-neighborhood of ∂K.

By the mean value theorem for all (s, h) ∈ I ×R+ sufficiently close to (t, 0) there
exist θ(s, h) ∈ [0, 1] such that

d(x̄(s) + hv) = d(x̄(s)) + h〈∇d(x̄(s) + θ(s, h)hv), v〉 ≤ h〈∇d(x̄(s) + θ(s, h)hv), v〉.
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By Hypothesis 3.9 (i) there exist δ > 0 such that for all s ∈ [t− δ, t + δ] ∩ I, h ∈
[0, δ], 〈∇d(x̄(s) + θ(s, h)hv), v〉 ≤ −δ. Therefore for all v′ ∈ v + δB, d(x̄(s) + hv′) ≤
d(x̄(s) + hv) + h|v′ − v| ≤ −hδ + hδ = 0. Consequently, x̄(s) + [0, δ](v + δB) ⊂ K.
This proves our claim.

By Theorem 3.4 it is enough to show that there exists a solution to

w′ ∈ A(t, w) + Tco(F (t,x̄(t)))(x̄′(t)), w(t) ∈ Int(G(t)) ∀ t ∈ I.

From [3, Theorem 9.5.3] it follows that there exist L > 0 and a selection γ(t, w) ∈
A(t, w) such that for all w ∈ Rn, γ(·, w) is measurable, γ(t, ·) is L-Lipschitz and
γ(t, 0) = 0 for all t ∈ I. Thus |γ(t, w)| ≤ L|w|.

Define Γ := {t ∈ I | x̄(t) ∈ ∂K + ηB}. By the measurable selection theorem
(see, for instance, [3]) there exists a measurable selection Γ � s → v(s) ∈ F (s, x̄(s))
such that 〈∇d(x̄(s)), v(s)〉 ≤ −ρ for almost all s ∈ Γ. We extend v on I by setting
v(s) = x̄′(s) for all s /∈ Γ.

Then R+(v(s)−x̄′(s)) ∈ Tco(F (s,x̄(s)))(x̄
′(s)). We prove that there exists a solution

w to

w′ ∈ γ(s, w) + R+(v(s) − x̄′(s))(5.18)

such that w(s) ∈ Int (G(s)) for all s ∈ I.
If for all s ∈ I, x̄(s) ∈ Int(K), then any solution to w′ = γ(s, w) satisfies w(s) ∈

Int (G(s)). Assume next that x̄(I) ∩ ∂K 	= ∅ and set s0 = inf{s ∈ I | x̄(s) ∈ ∂K}.
Let w̄0 ∈ Int (G(s0)) and consider the solution w̄ to

w′(s) ∈ γ(s, w), s ∈ [0, s0], w̄(s0) = w̄0.

Then w̄(s) ∈ Int (G(s)) for all s ∈ [0, s0].
Denote by k a Lipschitz constant of ∇d(x̄(·)) on {t | x̄(t) ∈ ∂K + ηB} and set

M = sup
s∈I

sup
v∈F (s,x̄(s))

||v||, χ = max

{
1

η
,
k + L + 1

ρ

(
L + 2M

k + L + 1

ρ

)}
, δ =

1

2Mχ
.

Then η ≥ 1/χ. We claim that it is enough to show that for any s0 ≤ t0 < 1 such
that x̄(t0) ∈ ∂K and any w0 ∈ Int(G(t0)) there exist t1 ≥ t0 + min{1 − t0, δ} and
a solution to (5.18) defined on [t0, t1] with w(t0) = w0 and w(s) ∈ Int (G(s)) for all
s ∈ [t0, t1] and either t1 = 1 or x̄(t1) ∈ ∂K. Indeed if we prove this property, then we
can extend w̄(·) on the time interval [s0, 1] in a finite number of steps.

So fix t0 ≥ s0 such that x̄(t0) ∈ ∂K and w0 ∈ Int(G(t0)). Then w0 	= 0. Define

t2 = max

{
s ∈ [t0, 1] | x̄([t0, s]) ⊂ ∂K +

1

2χ
B

}
> t0.

Then either t2 = 1 or d(x̄(t2)) = − 1
2χ . In this second case

− 1

2χ
= d(x̄(t2)) = d(x̄(t0)) +

∫ t2

t0

〈∇d(x̄(s)), x̄′(s)〉ds.

Thus 1
2χ ≤ M(t2 − t0) and so t2 − t0 ≥ 1/2Mχ = δ. Consider the solution w to

w′ = γ(s, w) +
k + L + 1

ρ
||w||(v(s) − x̄′(s)), w(t0) = w0
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and set ξ(s) = ∇d(x̄(s)). Notice that w(t2) 	= 0. Fix any t ∈ [t0, t2] with x̄(t) ∈ ∂K.
We have to check that w(t) ∈ Int (G(t)). By the choice of v(·)

〈ξ(t), w(t)〉 = 〈ξ(t0), w0〉+
∫ t

t0

〈ξ, w〉′(s)ds ≤
∫ t

t0

||ξ′(s)|| · ||w(s)||ds+

∫ t

t0

〈ξ(s), w′(s)〉ds

≤ (k + L)

∫ t

t0

||w(s)||ds +
k + L + 1

ρ

∫ t

t0

〈∇d(x̄(s)), v(s)〉||w(s)||ds−

k + L + 1

ρ

∫ t

t0

d(x̄)′(s)||w(s)||ds ≤ −
∫ t

t0

||w(s)||ds− k + L + 1

ρ

∫ t

t0

d(x̄)′(s)||w(s)||ds.

On the other hand, integrating by parts, we obtain

−
∫ t

t0

d(x̄)′(s)||w(s)||ds = −d(x̄(t))||w(t)|| + d(x̄(t0))||w(t0)|| +
∫ t

t0

d(x̄(s))||w||′(s)ds

≤
∫ t

t0

|d(x̄(s))| · ||w′(s)||ds ≤
∫ t

t0

(
L + 2M

k + L + 1

ρ

)
|d(x̄(s))| · ||w(s)||ds.

Consequently,

−k + L + 1

ρ

∫ t

t0

d(x̄)′(s)||w(s)||ds ≤ χ

∫ t

t0

|d(x̄(s))| · ||w(s)||ds ≤ 1

2

∫ t

t0

||w(s)||ds.

This implies that

〈ξ(t), w(t)〉 ≤ −
∫ t

t0

||w(s)||ds +
1

2

∫ t

t0

||w(s)||ds = −1

2

∫ t

t0

||w(s)||ds < 0.

So we defined w(·) on [t0, t2] in such a way that w(s) ∈ Int(G(s)) for all s ∈ [t0, t2].
If t2 = 1 or x̄(t2) ∈ ∂K, then w(·) is as required. Assume next that t2 < 1 and
x̄(t2) /∈ ∂K. Set w2 = w(t2). If for all s > t2, x̄(s) ∈ Int(K), then w can be extended
on [t2, 1] by the solution to w′ = γ(s, w), w(t2) = w2. So we obtain a solution w to
(5.18) satisfying w(s) ∈ Int(G(s)) for all s ∈ [t0, 1]. It remains to consider the case
when for some t2 < s ≤ 1, x̄(s) ∈ ∂K. Define t1 = min{s > t2 | x̄(s) ∈ ∂K} and let

t3 = max

{
s ∈ [t2, t1] | |d(x̄(τ))| =

1

2χ

}
< t1.

Then for all s ∈ [t3, t1], |d(x̄(s))| ≤ ρ/4M .
We extend w(·) to the time interval [t2, t3] by the solution to w′ = γ(s, w), w(t2) =

w2. Then w(s) ∈ Int (G(s)) for all s ∈ [t2, t3]. Set w3 = w(t3) 	= 0 and extend w on
the time interval [t3, t1] by the solution to

w′ = γ(s, w) +
k + L + 1

ρ
||w||(v(s) − x̄′(s)) +

2||w3||
ρ(t1 − t3)

(v(s) − x̄′(s)), w(t3) = w3.

Then w(s) ∈ Int (G(s)) = Rn for all s ∈ [t3, t1). It remains to check that w(t1) ∈
Int(G(t1)).
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As before, by the choice of v(·),

〈ξ(t1), w(t1)〉 ≤ ||w3||+
∫ t1

t3

〈ξ, w〉′(s)ds ≤ ||w3||+
∫ t1

t3

k||w(s)||ds+

∫ t1

t3

〈ξ(s), w′(s)〉ds

≤||w3||−
∫ t1

t3

||w(s)||ds+ 2||w3||
ρ(t1 − t3)

∫ t1

t3

〈∇d(x̄(s)), v(s)〉ds−k + L + 1

ρ

∫ t1

t3

d(x̄)′(s)||w(s)||ds

− 2||w3||
ρ(t1 − t3)

∫ t1

t3

d(x̄)′(s)ds ≤ −
∫ t1

t3

||w(s)||ds+k + L + 1

ρ

∫ t1

t3

d(x̄)(s)||w(s)||′ds−||w3|| ≤

−
∫ t1

t3

||w(s)||ds + χ

∫ t1

t3

|d(x̄(s))| · ||w(s)||ds− ||w3|| +
4M ||w3||
ρ(t1 − t3)

∫ t1

t3

|d(x̄(s))|ds ≤

−1

2

∫ t1

t3

||w(s)||ds− ||w3|| + ||w3|| < 0.

This yields w(t1) ∈ Int(G(t1)). The proof is complete.

Proof of Theorem 3.11. In the difference with Theorem 3.4 we have m(·) ∈ L1(I)
instead of L∞(I). For this reason instead of (5.4), (5.5) we use the integration by
parts formula. The proof is very similar to the one of Theorem 3.4 so we only sketch
it. Let C, C1, γ have the same meaning as in the proof of Theorem 3.4 and set

S := {w(·) ∈ W 1,1(I) | w′(s) ∈ A(s, w(s)) + Tco(F (s,x̄(s)))(x̄
′(s)) a.e. in I}.

Let S̄ denote the closure of S in C(I). By Lemma 4.1 Int(C) 	= ∅. We only consider
the case Int(C) ∩ Int(C1) ∩ S̄ 	= ∅ since arguments used in the proof of Theorem 3.4
when Int(C1) ∩ Int(C) = ∅ and Int(C ∩ C1) ∩ S̄ = ∅ correspond to λ = 0 and are of
the same nature as in the proof of Theorem 3.4 via integration by parts arguments
given below.

As in Case 2 of the proof of Theorem 3.4 we show that there exist −a ∈ ∂+ϕ(0), c ∈
∂Cg(x̄(1)), β0 ∈ C− and β1 ∈ C−

1 such that γ∗(a, c)+β0 +β1 ∈ S+. Let ψ ∈ NBV (I)

and η ∈ NK1
(x̄(1)) be such that for all w ∈ C(I), 〈β0, w〉 =

∫ 1

0
w(s)dψ(s), 〈β1, w〉 =

〈η, w(1)〉.
By Lemma 4.2 there exist a positive Radon measure μ, a selection ν(s) ∈ NK(x̄(s))

∩B μ-a.e. such that (3.5) holds true. Furthermore, for all w ∈ S

〈η, w(1)〉 + 〈a,w(0)〉 + 〈c, w(1)〉 +

∫ 1

0

w(t)dψ(t) ≥ 0.

Let p solve (3.1) with p(1) = −c− ψ(1) − η. From the last inequality, integrating by
parts, we deduce that

〈a,w(0)〉 − 〈p(1), w(1)〉 −
∫ 1

0

〈ψ(t), w′(t)〉dt ≥ 0 ∀ w ∈ S.(5.19)
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Notice next that for every solution to w′ = A(s, w) on [0, 1] we have

0 =

∫ 1

0

(〈p′(t), w(t)〉 + 〈p(t) + ψ(t), w′(t)〉)dt = 〈p(1), w(1)〉 − 〈p(0), w(0)〉

+

∫ 1

0

〈ψ(t), w′(t)〉dt.

This and (5.19) imply that for all w(0) ∈ Rn, 〈a− p(0), w(0)〉 ≥ 0. So a = p(0).
To prove (3.3) consider an integrable selection v(t) ∈ Tco(F (t,x̄(t)))(x̄

′(t)) and let
w ∈ S be such that w(0) = 0 and w′(t) = A(t, w(t)) + v(t) a.e. Then

〈p(1), w(1)〉 =

∫ 1

0

(〈p′(t), w(t)〉 + 〈p(t), w′(t)〉)dt.

Since p solves (3.1) with p(1) = −c − ψ(1) − η, from the last equality and (5.19) we
deduce

〈p(1), w(1)〉 = −
∫ 1

0

〈ψ(t), w′(t) − v(t)〉dt +

∫ 1

0

〈p(t), v(t)〉dt ≥ 〈p(1), w(1)〉

+

∫ 1

0

〈p(t) + ψ(t), v(t)〉dt.

Consequently, 0 ≥
∫ 1

0
〈p(t)+ψ(t), v(t)〉dt. Since F (t, x̄(t))− x̄′(t) ⊂ Tco(F (t,x̄(t)))(x̄

′(t))
and v(t) ∈ Tco(F (t,x̄(t)))(x̄

′(t)) is an arbitrary integrable selection, we deduce (3.3)
from the measurable selection theorem. Exactly the same arguments as those used
in the proof of Theorem 3.4 imply that if CK1(x̄(1)) ∩ Int(G(1)) 	= ∅, then λ +
supt∈(0,1) ||p(t) + ψ(t)|| 	= 0 and if x̄(1) ∈ Int(K1), then λ + var(ψ, (0, 1]) 	= 0, and
that λ = 1 if there exists a solution w̄(·) to (3.14), (3.15).

To prove the last statement, notice that w̄(·) solves the constrained linear control
system (3.14), (3.15) also on the time interval [t, 1]. If x̄(1) ∈ Int(K1) and g is
differentiable at x̄(1), then by Remark (iv) after Theorem 3.4, p(1) = −∇g(x̄(1)) −
ψ(1).

From the already proved first statement of Theorem 3.11, replacing the time
interval [0, 1] by [t, 1], we deduce that there exist ψt, μt, νt as in Theorem 3.11 such
that a solution q(·) to the adjoint system

q′ = A∗(s,−q − ψt), q(1) = −∇g(x̄(1)) − ψt(1)

satisfies −q(t) ∈ ∂+ϕt(0) and 〈q(s)+ψt(s), x̄
′(s)〉 = maxv∈co(F (s,x̄(s)))〈q(s)+ψt(s), v〉

for almost all s ∈ [t, 1]. Setting r(s) = q(s) − p(s), we end the proof.
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[26] Ş. Mirică, A proof of Pontryagin’s minimum principle using dynamic programming, J. Math.
Anal. Appl., 170 (1992), pp. 501–512.

[27] E. S. Polovinkin and G. V. Smirnov, An approach to differentiation of many-valued mapping
and necessary optimality conditions for optimization of solutions of differential inclusions,
Differ. Equations, 22 (1986), pp. 660–668.

[28] F. Rampazzo and R. B. Vinter, A theorem on the existence of neighbouring feasible trajec-
tories with application to optimal control, IMA J. Math. Control and Systems, 16 (1999),
pp. 335–351.

[29] F. Rampazzo and R. B. Vinter, Degenerate optimal control problems with state constraints,
SIAM J. Control Optim., 39 (2000), pp. 989–1007.

[30] R. T. Rockafellar, Integrals which are convex functionals, II, Pacific J. Math., 39 (1971),
pp. 439–469.



MAXIMUM PRINCIPLE AND DYNAMIC PROGRAMMING 703

[31] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Gründlehren der Mathematis-
chen Wissenschaften 317, Springer-Verlag, Berlin, 1998.

[32] M. Tamzali-Lafond, Variational inclusions under state constraints, SIAM J. Control Optim.,
42 (2003), pp. 342–362.

[33] R. B. Vinter, Optimal Control, Birkhäuser, Boston, 2000.
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Abstract. In this paper, the study of the class of biochemical systems known as zero deficiency
networks is extended to the case of time-varying kinetic parameters. We show that the resulting
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1. Introduction. A biochemical network consists of the interactions among a
certain number of species, according to a set of specified reactions that induce a
dynamics for the species’ concentrations. The time evolution of the species’ concen-
trations is usually modeled by a system of differential equations together with a family
of parameters that characterize the reaction rates. These parameters may depend on
various external factors and stimuli such as temperature, the concentration of lig-
ands/substrates, or the concentration of an enzyme which may be regulated by an
independent dynamics.

Thus biological systems may, in many cases, be viewed as cascades of biochemical
networks, where the output of the ith level becomes the input to the (i + 1)th level
of the cascade. This is indeed the structure of many intracellular signal transduction
pathways, which are central to biological processes. For example, the binding of a lig-
and to a cell receptor triggers a sequence of biochemical reactions [12] that ultimately
lead to a cell response (such as contraction, motility, or proliferation).

Each level in the cascade may be studied independently as a system with inputs,
and in particular we will focus on the input-to-state stability properties of such sys-
tem. We are also interested in studying the effect of small parameter perturbations
(which may be due, for instance, to variations in the room temperature or other ex-
perimental setup problems) on the steady-state response of the system. The notion
of a parameter robust system should reflect the idea that these small perturbations
should not greatly affect the qualitative response and guarantee that the output error
will also be small. In addition, the input-to-state stability properties of a system
provide a framework for the analysis of the stability and convergence of cascades of
systems (see, for instance, [15, 2]).

A mathematical model for a certain family of biochemical networks, where the
reactions satisfy the mass action kinetics principle, was introduced by Horn and Jack-
son in 1972 [9] and followed up by the work of Feinberg [6, 7, 8]. These authors
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developed a rich and beautiful theory on these systems, also known in the literature
as zero deficiency networks. This model accommodates a wide variety of significant
biological systems, including many models for enzymatic mechanisms [14], a model
for T-cell receptor signal transduction [13], and receptor–ligand interactions and G-
protein coupled receptor activity in cyclic signaling pathways [3, 12, 19]. The models
of receptor–ligand interaction are of interest for biomedical applications as well as
for drug design: the concentration–response curves associated with some of the basic
models [3, 12] may also be analyzed in the context of these zero deficiency networks [5].

The zero deficiency networks may be characterized in terms of a strongly con-
nected graph and the corresponding irreducible matrix, while the mass action kinet-
ics property leads to nonlinear systems with polynomial vector fields. These are the
systems we consider in this paper: for these systems, which exhibit multiple steady
states, the state space may be viewed as a (disjoint) union of invariant manifolds
(which are parallel translates of a given subspace of Rn) so that to each of these in-
variant manifolds corresponds a distinct (globally) asymptotically stable steady state.
The idea of invariant sets of the state space and the existence of steady states, and
how these are affected by the external inputs or perturbations will be central to our
analysis.

Recently [17], this class of nonlinear systems was studied from a control theory
point of view, and the stability and other properties for the system with no inputs
were further analyzed. In [17] a formalism is developed for dealing with this type of
systems and several results are established which will be frequently referred to in the
present work.

We first introduce the class of systems to be studied and recall some basic results
(section 2). The definition and characterization of the notion of uniformly semiglobal
input-to-state stable systems as well as the statement of the main results are given in
section 3. The input-to-state stability estimates are established and the main theorems
are proved in sections 5 and 6. In section 4 we show the dependence of steady states
of the system on its parameters: the unique steady state in each invariant manifold is
an analytic function of the parameters. Section 7 summarizes the main contributions
in this paper.

2. Some notation and previous results. Let n ≥ m be integers and let
x ∈ Rn. Introduce the positive orthant

Rn
>0 = {(x1, . . . , xn) ∈ Rn : xi > 0 ∀ i}

and the closed positive orthant

Rn
≥0 = {(x1, . . . , xn) ∈ Rn : xi ≥ 0 ∀ i}.

Assume given two matrices A = (aij) ∈ Rm×m
≥0 and B ∈ Nn×m

0 , where the columns
of B are denoted by b1, . . . , bm. In our model of biochemical reactions there are n
distinct species whose concentrations are given by x = (x1, . . . , xn)′ and m complexes,
each complex denoting a set of reactants or products in a reaction. The complexes
are represented by the column vectors b1, . . . , bm with bj = (b1j , . . . , bnj)

′ and blj �= 0
if the species l appears in the complex j. The matrix A = (aij) is the matrix of the
kinetic constants, and an entry aij �= 0 means that complex i is being produced from
complex j.

The model for biochemical reaction networks of the Horn–Jackson–Feinberg zero



706 MADALENA CHAVES

deficiency type, with mass action kinetics, is as follows:

ẋ = fA(x) :=

m∑
i=1

m∑
j=1

aijx
b1j
1 x

b2j
2 · · ·xbnj

n (bi − bj).(2.1)

Since the vector x ∈ Rn represents the concentration of each species involved in the
reactions, we will be interested only in those trajectories that evolve in the positive
orthant. In fact, it is easy to see that the positive orthant Rn

>0 is a forward-invariant
set for the system (2.1) (see also section 5). We have the following assumptions on A
and B.

(a) The matrix B = (b1, . . . , bm) has nonnegative integer entries; it has full
column rank and none of its rows vanishes completely.

(b) The matrix A = (aij) has nonnegative entries (without loss of generality, we
assume that its diagonal entries are zero, since the corresponding terms would be of
the form aiix

b1i
1 · · ·xbni

n (bi − bi) ≡ 0) and is assumed to be irreducible.
This last property is equivalent to saying that the incidence graph of A is strongly
connected, and it describes the following property of the network: there is a chemical
pathway connecting every pair of complexes, but the pathway leading from bi to
bj may be different from the pathway leading from bj back to bi (in other words,
each individual chemical reaction is not necessarily reversible). Another equivalent
definition of irreducibility says that there is an integer k such that all the entries of
the matrix (A + I)k are strictly positive (see [10]).

Example. The simplest model for the interaction of a cell surface receptor with a
specific ligand is depicted as R+L � C. Here we have three species (n = 3): receptor
(R), ligand (L), and receptor–ligand product (C). There are only two complexes
(m = 2): R+L and C. Let x1, x2, and x3 denote the concentrations of R, L, and C,
respectively. Then the two columns of matrix B are b1 = (1, 1, 0)′ and b2 = (0, 0, 1)′.
The matrix A is of size 2 and its nonzero elements are a21 (the rate constant for
R + L → C) and a12 (the rate constant for C → R + L). It is easy to see that
ẋ1 = ẋ2 = −ẋ3 = −a21x1x2 + a12x3. A network involving two distinct receptor
conformations is shown in Figure 1.

Example. Another simple example is a dimer model, where the ligand binds to
two receptors, according to the diagram 2R + L � R + C1 � C2. In this case
n = 4 and m = 3. Setting x = (R,L,C1, C2), the matrix B consists of the vectors
b1 = (2, 1, 0, 0)′, b2 = (1, 0, 1, 0)′, and b3 = (0, 0, 0, 1)′. The nonnegative entries of the
matrix A are a21, a12, a32, and a23. Again, it is easy to see that properties (a) and
(b) are satisfied. At any given time, the concentration of receptors is given by the
equation Ṙ = −a21R

2L − (a32 − a12)RC1 + a23C2, and the concentration of ligand
is given by L̇ = −a21R

2L + a12RC1. The concentrations of C1 and C2 are given by
Ċ1 = −(a12 + a32)RC1 + a21R

2L+ a23C2 and Ċ2 = −a23C2 + a32RC1, respectively.
In this paper, we wish to study system (2.1) when the parameters aij are allowed

to be time variant. Values of the parameters should be such that, at each time instant,
the matrix A = (aij) is irreducible, so we consider the set of irreducible m×m matrices
whose entries are nonnegative:

A≥0 =
{
A ∈ Rm×m : A ≥ 0 and (A + I)k > 0 for some power k

}
(the inequality A ≥ 0 (resp., A > 0) means that every entry of the matrix on the
left-hand side is nonnegative (resp., positive)). Let |A|ecl denote the matrix norm
induced by the vector norm |·| (the Euclidean norm). Throughout this paper, we will
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define an input u(·) to be a piecewise locally Lipschitz function, with a finite number
of discontinuities, that is, there exist � ∈ N and numbers 0 = T0 < T1 < · · · < T� <
T�+1 = ∞ such that the function u is locally Lipschitz on each interval (Ti−1, Ti): for
each i = 1, . . . , �+1 and each compact interval J ⊂ (Ti−1, Ti), there exists κ > 0 such
that

|u(t) − u(s)| ≤ κ|t− s| ∀ s, t ∈ J.(2.2)

In addition, the mass action kinetics model may be generalized as in [17], so we
will consider the system with inputs

ẋ = f(x, u) :=

m∑
i=1

m∑
j=1

uijθ1(x1)
b1jθ2(x2)

b2j · · · θn(xn)bnj (bi − bj),(2.3)

where the same assumptions on B hold and each map θi : R → [0,+∞) has the
following properties:

(c) θi is real analytic;
(d) θi(0) = 0;

(e)
∫ 1

0
|ln θi(r)| dr < ∞;

(f) its restriction to R≥0 is strictly increasing and onto the set [0, σi), where
0 < σi ≤ +∞.

Before stating the last condition that the functions θi should satisfy, let us intro-
duce the following vector functions:

ρ[n](x) = (ln θ1(x1), . . . , ln θn(xn))′ and exp[n](v) = (ev1 , . . . , evn)′

defined on Rn
>0 and Rn, respectively. (From now on, we will drop the superscript n

of ρ[n] and exp[n], since its value is usually clear from the context.)
Each θi (restricted to R>0) is onto the set (0, σi), so each function ρi = ln θi (for

the restriction of θi to R>0) is onto (−∞, ρ̄i) with ρ̄i = lnσi. Since θi (restricted
to R≥0) is strictly increasing, ρi has an inverse function, which is onto R>0: ρ−1

i :
(−∞, ρ̄i) → R>0. Each function θi should also satisfy

(g) for any given constant p, limt→lnσi

∫ t

a
ρ−1
i (s) ds− pt = +∞ for any a < lnσi.

Note that, for any constant p, there exists t0 ∈ (−∞, ρ̄i) such that ρ−1
i (s) > p+ 1 for

all s ≥ t0. Therefore, when σi = +∞, condition (g) always holds. The case of mass
action kinetics corresponds to θi(r) = |r| ∀ i. Another example of interest is the case

θi(r) = |r|
k+|r| with k > 0. Even though condition (g) will not be used explicitly in

this paper, it is necessary to prove some auxiliary results such as Lemma IV.1 in [17],
which will be used in section 4.

For the case of a constant matrix A, system (2.3) has been extensively studied.
It takes the form

ẋ = f(x,A) := fA(x),(2.4)

and we next recall some results already established about this system, which are given
in [6, 7, 8, 9] (for the particular case of mass action kinetics), and can also be found
in [17] (for the general case).

For any two vectors a, b ∈ Rn, let 〈a, b〉 denote their dot product. Define the
stoichiometric space

D = span {bi − bj : i, j = 1, . . . ,m}
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and also consider its orthogonal space

D⊥ := {v ∈ Rn : 〈v, d〉 = 0 ∀ d ∈ D}.

Then, for any v ∈ D⊥, notice that

〈fA, v〉 =

m∑
i=1

m∑
j=1

aijx
b1j
1 · · ·xbnj

n 〈(bi − bj), v〉 ≡ 0(2.5)

by the definition of v. Hence 〈x(t), v〉 =constant= 〈x(0), v〉, and we have

〈x(t) − x(0), v〉 = 0 ∀ v ∈ D⊥ ⇔ x(t) − x(0) ∈ D ⇔ x(t) ∈ x(0) + D.

Therefore, the parallel translates of the stoichiometric space, p + D with p ∈ Rn
>0,

define invariant manifolds for the system ẋ = fA(x). For each p ∈ Rn
>0, we will define

a positive class of system (2.4) to be

S := (p + D) ∩ Rn
≥0 = {p + d : d ∈ D} ∩ Rn

≥0.

(If S ⊂ ∂Rn
≥0, then we do not consider such S as a positive class. In this work, we are

not concerned with trajectories that evolve on the boundary of the positive orthant.)
Note that the positive classes do not depend on the matrix A, only on B.

The equilibria of system (2.4) may be divided into boundary equilibria, E0 = {x ∈
∂Rn

≥0 : fA(x) = 0}, and positive equilibria, EA,+ = {x ∈ Rn
>0 : fA(x) = 0}.

From [17, Proposition VI.3] we know that E0 depends only on the matrix B and
not on A (however, the elements in EA,+ may depend on the matrix A). Throughout
this paper we will assume that no boundary equilibria exist in any positive class, i.e.,

S ∩ E0 = ∅ for each positive class S.(2.6)

Under these conditions we have the following result from [17] and also [6].
Theorem 2.1. Consider system (2.4) and assume that condition (2.6) holds.

Then, for each positive class S there exists a (unique) state x̄ = x̄S ∈ Rn
>0 which is a

globally asymptotically stable point relative to S, i.e., for each x0 ∈ S, the solution of
ẋ = fA(x), x(0) = x0, is defined ∀ t ≥ 0, and x(t) → x̄ as t → ∞, and ∀ ε > 0 there
exists δ > 0 such that if |x̄− x0| < δ, then |x̄− x(t)| < ε ∀ t > 0.

Throughout this paper, we will assume that the matrix B (which defines the
complexes that form the network) is fixed. Each matrix A ∈ A≥0 characterizes
a system of the form (2.4), and we will let x(t, x0, A) denote the solution of the
differential equation ẋ = fA(x) at time t, when the initial condition is x(0) = x0 ∈
Rn

>0. Then, from Theorem 2.1, it follows that each trajectory x(·, x0, A) converges
to the positive equilibrium in the same class as x0. So we define x̄(x0, A) to be the
unique equilibrium in the same class as x0, and thus we may also write

EA,+ =
{
x̄(x0, A) : x0 ∈ Rn

>0

}
and introduce the set of all such positive equilibrium points:

E =
⋃

A∈A≥0

EA,+.

In section 4 we will show that, as a map from Rn
>0×A≥0 to Rn, x̄(·, ·) is a real analytic

function.
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Fig. 1. A receptor–ligand network.

2.1. An example. As a motivation for our theoretical results, we will discuss
a nominal example. The biochemical network depicted in Figure 1 is a basic model
for receptor–ligand interactions at the cell surface [3, 12]. The ligand is denoted by
L, two cell receptor conformations are denoted by R1 and R2, and the respective
receptor–ligand complexes are denoted by C1 and C2. These constitute the n = 5
individual species, X = (R1, R2, L, C1, C2)

′. There are m = 4 complexes, R1 +L, C1,
R2 + L, and C2. This model may be characterized by the matrices

A =

⎛⎜⎝
0 a12 a13 0
a21 0 0 a24

a31 0 0 a34

0 a42 a43 0

⎞⎟⎠ , B =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
1 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ ,

where A is clearly irreducible. Under mass action kinetics, the dynamics of the system
is

Ṙ1 =−(a21 + a31)R1L + a12C1 + a13R2L,

Ṙ2 =−(a13 + a43)R2L + a31R1L + a34C2,

L̇=−a21R1L− a43R2L + a12C1 + a34C2,(2.7)

Ċ1 =−(a12 + a42)C1 + a21R1L + a24C2,

Ċ2 =−(a34 + a24)C2 + a42C1 + a43R2L.

The stoichiometric space is given by

D = span {bi − bj : i, j = 1, . . . , 4}
= span {(1, 0, 1,−1, 0)′, (1,−1, 0, 0, 0)′, (1, 0, 1, 0,−1)′},

and the positive classes are thus characterized by a pair of positive constants (α1, α2),

L + C1 + C2 = α1, R1 + R2 + C1 + C2 = α2,

and, incidentally, note that the classes reflect the conservation of the total amount of
ligand and the total amount of cell receptors in the system. The boundary equilibria
set is given by

E0 = {(r1, r2, 0, 0, 0)′, (0, 0, l, 0, 0)′ : r1, r2, l ∈ [0,+∞)},

and it is easy to see that each of these equilibrium points implies either α1 = 0 or
α2 = 0, which do not define a positive class. Therefore, the “no boundary equilibria”
assumption (2.6) holds.
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In this receptor–ligand model, the kinetic parameters are assumed to be fixed.
A rough numerical estimate of the effect of perturbations on the steady-states shows
that, for a sufficiently large (and fixed) T ,

|x(T, x0, A) − x(T, x0, A0)| <∼ 0.15 |A−A0|ecl,(2.8)

suggesting that the system is indeed parameter-robust and that, moreover, the error
is not amplified. Figure 2 shows the effect on the trajectories of the system of random
perturbations in the kinetic constants, while Figure 3 justifies estimate (2.8). In
this figure, each point · corresponds to the mean square error at steady state for a
given error in the kinetic constant (|A−A0|ecl). To obtain Figure 3, for each p ∈
{10, 20, 30, 40, 50, 60}, system (2.7) was simulated 20 times for the same fixed initial
condition (x0), with its kinetic constants randomly perturbed within p%, i.e.,

aij = (1 + p̃ij)a
0
ij with p̃ij ∈ [−p/100, p/100].

For each simulation, the norms |A−A0|ecl and |x(T, x0, A) − x(T, x0, A0)|, for a suf-
ficiently large T , were computed, and a point · was plotted. An average of the values
|x(T, x0, A) − x(T, x0, A0)| over intervals |A−A0|ecl ∈ [d0, d1] of length 0.16 was also
computed, resulting in the open squares (�). The solid line represents the best linear
fit to these average points with a slope of 0.05. Finally, notice that mostly all points
are below the dash-dotted line, that is, they satisfy estimate (2.8).

For both figures, the initial condition was set to x0 = (7, 2, 15, 0.5, 0.5)′ corre-
sponding to a common situation where the amount of ligand is larger than the total
amount of receptors, and there are practically no receptor–ligand complexes formed
at the beginning of the reaction. The (ideal) values of the parameters were set to

A0 =

⎛⎜⎝
0 0.25 0.8 0

2.7 0 0 0.45
0.9 0 0 0.25
0 0.55 2.5 0

⎞⎟⎠.

3. Input-to-state stability and robustness. We wish to study the system
with inputs (2.3) and establish general estimates that reflect the stability result ob-
tained numerically for the example in (2.8). To do this, we start by defining ap-
propriate input-to-state stability notions. An important observation on the system
is that positive classes are invariant not only under constant inputs but also under
any time-variant input map with u(t) ∈ A≥0 ∀ t. This follows from the fact that the
matrix B (and hence also the stoichiometric space and its orthogonal space D⊥) is
fixed, and also from (2.5). Indeed, let Sx̄ be any class (recall that each class may
be characterized by a positive equilibrium x̄ ∈ E). Then, for each initial condition
x0 ∈ Sx̄ and input map u(·), the trajectory of system (2.3) evolves in this positive
class for all times. Thus, any input-to-state stability estimates only need to hold in
that class.

3.1. Definition of input-to-state stability in each invariant subspace.
The input-to-state stability notion introduced in Definition 3.2 follows the ideas and
the concept of input-to-state stability (ISS) first established in [15] (and see also the
notion of input-output-to-state stability introduced in [11]). With the goal of analyz-
ing positive systems, the main difference in our definition of ISS is the introduction
of a condition on the completeness of the system with respect to positive states (i.e.,
those states with all coordinates in the strictly positive half-line). This condition
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Fig. 2. The dotted lines represent the trajectory of the system ẋ = fA0 (x) (A0 as indicated in
the text), while the solid, dashed, and dash-dotted lines represent the trajectories of ẋ = fA(x) with
the entries of A randomly chosen within, respectively, 10%, 20%, and 30% of the (nonzero) entries
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plays an important part in the subsequent characterization of the ISS property in
terms of an ISS-Lyapunov function: such a function need only be defined on Rn

≥0 and
differentiable on the strictly positive orthant, and it is not required to satisfy a de-
crease condition except at positive vectors, as stated in Definition 3.3 (in the original
characterization, the ISS-Lyapunov function was defined in Rn).

In addition, our notion of ISS is formulated as a semiglobal property, in the sense
that the input-to-state estimates only hold while the trajectories remain in some pre-
established compact set (see also [4]). And it is a uniform property, in the sense
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that the same functions provide input-to-state estimates for all trajectories evolving
in ∪x̄∈PSx̄, where P is a compact subset of E .

We first recall some standard notions that will be used in establishing estimates: a
function α : R≥0 → R≥0 is said to be of class K if it is continuous, strictly increasing,
and α(0) = 0. The function α is said to be of class K∞ if it is of class K and in
addition α(r) → +∞ as r → +∞. A function β : R≥0 × R≥0 → R≥0 is said to be of
class KL if, for each fixed t, β(·, t) is of class K and for each fixed r, β(r, ·) is strictly
decreasing with β(r, t) → 0 as t → +∞.

For the following definitions, let the system ẋ = f(x, u) evolve on a state space
X which is an open subset of Rn containing Rn

>0. Let U be a subset of A≥0, and
let A0 ∈ U. For any x̄0 ∈ Rn

>0, let Sx̄0 represent any invariant set for the system
ẋ = f(x, u) (with x̄0 ∈ Sx̄0). Let

‖u−A0‖ = ess. sup .{|u(t) −A0|ecl : t ∈ [0,+∞)}.

Definition 3.1. A system ẋ = f(x, u), with input-value set U, is Rn
>0-forward

invariant if, for each initial state x(0) ∈ Rn
>0 and each U-valued input u(·), the

corresponding maximal solution of ẋ = f(x, u) as a differential equation in X , which
is defined on an interval Jx(0),u = [0, tmax), has values x(t) ∈ Rn

>0 ∀ t ∈ Jx(0),u.
The system is Rn

>0-forward complete if it is Rn
>0-forward invariant and, for each

x(0) ∈ Rn
>0 and U-valued input u(·), Jx(0),u = [0,+∞).

Definition 3.2. A system ẋ = f(x, u) is uniformly semiglobal input-to-state
stable with input-value set U if

(i) the system is Rn
>0-forward complete, and

(ii) for every compact set P ⊂ E and every compact set F ⊂ Rn
≥0 containing P ,

there exist functions β = βP,F of class KL and ϕ = ϕP,F of class K∞ such that, for
every x̄0 ∈ P ∩ EA0,+ for some A0 ∈ U,

|x(t) − x̄0| ≤ β(|x0 − x̄0|, t) + ϕ(‖u−A0‖)(3.1)

for each U-valued input u(·) and every initial condition x0 ∈ F ∩ Sx̄0
1 and ∀ t ≥ 0

such that x(s) ∈ F ∀ s ∈ [0, t].
If the functions β, ϕ given in (ii) may be chosen independently of the compact F ,

then the system is uniformly input-to-state stable with input-value set U.
Definition 3.3. A continuous function V : Rn

≥0 → R≥0 is a uniformly semiglobal
ISS-Lyapunov function for the system ẋ = f(x, u) with input-value set U if

(i) the restriction of V to Rn
>0 is continuously differentiable;

(ii) for every compact P ⊂ E, there exist functions ν1 = ν1,P , ν2 = ν2,P ∈ K∞,
so that

ν1(|x− x̄0|) ≤ V (x) ≤ ν2(|x− x̄0|)

for each x̄0 ∈ P and ∀x ∈ Rn
≥0;

(iii) for every compact set P ⊂ E and every compact set F ⊂ Rn
≥0 containing P ,

there exist functions α = αP,F , γ = γP,F ∈ K∞ such that, for every x̄0 ∈ P ∩ EA0,+

for some A0 ∈ U,

∇V (x) f(x, u) ≤ −α(|x− x̄0|) + γ(|u−A0|)

for every u ∈ U and every x ∈ F ∩ Sx̄0 ∩ Rn
>0.

1Since P ⊂ F , the intersection F ∩ Sx̄0 is nonempty, containing at least the point x̄0.
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If the functions α, γ given in (iii) may be chosen independently of the compact
F ⊂ Rn

≥0, then the function V is a uniformly ISS-Lyapunov function for the system.
We next state without proof that the existence of an ISS-Lyapunov function im-

plies that the system is input-to-state stable (in the sense of the previous definitions).
The proof of the lemma is very similar to what is done in the case of the usual defini-
tion of an ISS system and follows closely the argument given in [18]. One should keep
in mind that the Lyapunov function is differentiable only on the positive orthant, and
that the trajectories evolve in invariant classes. (For a similar adaptation of the proof
given in [18], see also [4].)

Lemma 3.4. Consider an Rn
>0-forward complete system ẋ = f(x, u) with input-

value set U. Suppose that there is a uniformly (semiglobal) ISS-Lyapunov function V
for the system. Then, the system is uniformly (semiglobal) input-to-state stable with
input-value set U.

3.2. Main results. As already mentioned, the work of Horn and Jackson, and
Feinberg [6, 7, 8, 9] on zero deficiency biochemical networks considers only constant
kinetic parameters. This is also the case in the recent work developed in [17, 4].
In other words, so far the focus has been on systems (2.3) with constant inputs,
uij(t) ≡ aij . In this paper, our goal is to study the stability and robustness of zero
deficiency networks under time-varying parameters. In order to establish our stability
results a “lower bound” on the parameters will be assumed, that is, given any ε > 0,
we consider the input-value set to be the following subset of A≥0:

Uε = {A ∈ A≥0 : aij ≥ ε or aij = 0}.(3.2)

Note, however, that no upper bound on the values of aij is required. In addition,
recall that the input maps satisfy the regularity condition (2.2). So, we define

W := {w : [0,+∞) → Uε| w is a piecewise locally Lipschitz function}.(3.3)

The main results state that, first, system (2.3) is uniformly semiglobal ISS, and second,
if (2.3) is mass-conservative, then it is also uniformly ISS. The proofs of the theorems
are presented in section 6: the ISS properties are established by showing that the
system admits a uniformly (semiglobal) ISS-Lyapunov function (section 5.1).

Theorem 3.5. System (2.3) with the state space X = Rn, restricted to taking
input maps w ∈ W, is uniformly semiglobal ISS with input-value set Uε.

Theorem 3.6. Suppose that system (2.3) with state space X = Rn satisfies

∃v ∈ Rn
>0, v · f(x, u) = 0 ∀x ∈ X ∀u ∈ A≥0.(3.4)

Then the system, when restricted to input maps w ∈ W, is uniformly ISS with input-
value set Uε.

We would like to point out that, in the particular case of the constant input
u(t) ≡ A0, Theorem 3.6 recovers the global stability result of Theorem 2.1 for mass-
conservative systems. In fact, establishing that a given system is uniformly input-
to-state stable with input-value set Uε (appropriately chosen) provides an alternative
proof of Theorem 2.1. Furthermore, in the case when the input consists of small
perturbations around a desired value A0, for instance, u(t) = A0 + δ(t), uniform
(global) ISS implies robustness of the system with respect to A0. In other words, if
‖δ‖ ≤ δ0, then we expect the difference between the desired and perturbed steady
states of the system to satisfy |x̄− x̄0| <∼ ϕ(‖δ‖) ≤ ϕ(δ0) (see also the example
discussed in section 2.1).
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Remark. Condition (3.4) is satisfied by many biochemical systems; in particular,
it is satisfied by mass-conservative systems, whose trajectories are a priori constrained
to move in a compact subset of Rn

≥0. A system of the form (2.3) is mass-conservative
if and only if

v =

n−m+1∑
i=1

vi ∈ Rn
>0,

where {v1, . . . , vn−m+1} is a basis of the space D⊥. Recall that, by definition of the
invariant classes, for each vi there exists a positive constant αi such that 〈vi, x(t)〉 =
αi, ∀ t ∈ J . Then 〈v, x(t)〉 =

∑
αi for every t, and in those cases where v has

all coordinates positive, we immediately have that x(t) evolves in a compact subset
of Rn

≥0 and hence a compact subset of the state space. The example discussed in
section 2.1 is mass-conservative with v = (1, 1, 1, 2, 2)′.

Remark. One of the main assumptions in the model (2.3) is that, for all times t,
the incidence graph of the matrix u(t) is strongly connected or, equivalently, u(t) is
irreducible; hence the input u is only allowed to take values in A≥0. However, in some
ways, the structure of the network may be modified, i.e., new reactions may be added
and existing reactions may be removed, provided that the irreducibility of the matrix
u(t) is not violated at any time t. This is guaranteed by requiring that u ∈ Uε.

As discussed above, Theorems 3.6 and 3.5 hold for input maps that are piecewise
locally Lipschitz. These include many of the typical biological inputs such as piecewise
constant, periodic, or exponentially decaying signals.

Example. As mentioned in the introduction, changes in the temperature induce
changes in the value of the reaction rate constants. These changes are given by the
Arrhenius law [1]:

k = k(T ) := Fa e−
Ea
RT ,

where Fa > 0 is the frequency factor, Ea is the activation energy, T is the temperature
(in K), and R is the universal gas constant (≈8.31 J K−1 mol−1). The values Fa

and Ea are fixed for each reaction (e.g., for water formation, OH+H2
k→ H2O+H,

Fa = 8 × 1010 L mol−1 s−1, and Ea = 42 × 103 J mol−1). For most reactions Ea > 0,
so that k increases with the temperature. Then we have (note that 4/c is a Lipschitz
constant for the function e−c/x)

|k(T1) − k(T0)| = Fa

∣∣∣e− Ea
RT1 − e−

Ea
RT0

∣∣∣ ≤ 4R
Fa

Ea
|T1 − T0| .

In general, changes in temperature will be reflected in the matrix of kinetic parameters
as ‖uT1 − uT0‖ ≤ c |T1 − T0| for some c > 0. Then, from Theorem 3.6, we expect that
a change in temperature from T0 to T1 will lead to a deviation in the steady state of
order |x̄1 − x̄0| <∼ ϕ(|T1 − T0|), where ϕ is some K∞ function.

Example. Consider the model in Figure 1 and assume that the concentration of
ligand is regulated from “outside.” For instance, L(t) may be experimentally designed
to be a piecewise constant function, in order to measure the response of the system
to different concentrations of ligand. Or L could be regulated by an independent
network. In either case, we would have the following system:

ẋ = f(x,w),(3.5)
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where x = (R1, R2, C1, C2)
′ and

w(t) =

⎛⎜⎝
0 a12 a13L(t) 0

a21L(t) 0 0 a24

a31L(t) 0 0 a34

0 a42 a43L(t) 0

⎞⎟⎠.

If L is determined by a dynamical system, say ż = g(z), also of the form (2.1), then we
know that z(t) → z̄ for some z̄ ∈ E , and therefore w(·) ∈ W. An interesting problem
for further analysis is whether the convergence of L(t) to some L̄ implies that the
trajectory x(t) will also converge to some x̄ ∈ E . Another interesting question, which
we leave for further research, is whether the cascade system ẋ = f(x, z), ż = g(z) is
again input-to-state stable, in the manner developed in [15].

4. Dependence of the steady states on the kinetic parameters. A typical
problem concerning cell receptor–ligand interactions, and many other biochemical
reactions, is to determine the “dose-response” curves, that is, determine the final
concentration of the products, C̄1 or C̄2, as a function of the initial concentration of
ligand, L0 (see [12, 19] and [5]). When translated into mathematical language, this
problem involves the characterization of the multiple steady states of system (2.4)
and their dependence on the matrix A and classes Sx0 .

We recall that, for the case of constant inputs, say u(t) ≡ A, the system ẋ =
f(x, u) with initial condition x(0) = x0 converges to the constant steady state x̄(x0, A).
In contrast, for a general input u(·) one certainly does not expect the system to
converge to a constant steady state. However, one may still consider the map x̄ :
Rn

>0 ×A≥0 → E , where x̄(x0, A) is defined as the unique positive steady state of the
system ẋ = f(x,A) = fA(x) in the class Sx0 . Then the following is true:

x̄(x0, u(t)) ∈ E ∀ t.

We will show that x̄ is in fact a real analytic function of x0 and A. This will help
us in the proof of the main results, namely, in section 5, to show that the system is
Rn

≥0-forward complete.
Theorem 4.1. Assume that the maps θi are real analytic functions. Then the

map x̄ : Rn
>0 ×A≥0 → E ⊂ Rn

>0 given by (x0, A) �→ x̄(x0, A) is real analytic.
To prove this theorem we will use the following alternative expression for fA

(see [17]):

fA(x) = BÃθB(x),(4.1)

where

θB(x) =

⎛⎜⎜⎝
θ1(x1)

b11θ2(x2)
b21 · · · θn(xn)bn1

θ1(x1)
b12θ2(x2)

b22 · · · θn(xn)bn2

...
θ1(x1)

b1mθ2(x2)
b2m · · · θn(xn)bnm

⎞⎟⎟⎠ = exp[B′ρ(x)]

and

Ã = A +

⎛⎜⎜⎜⎝
−
∑m

i=1 ai1 0 · · · 0
0 −

∑m
i=1 ai2 · · · 0

...
...

...
0 0 · · · −

∑m
i=1 aim

⎞⎟⎟⎟⎠ .
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(Recall that we assumed without loss of generality that all the diagonal entries of A
are zero.) Now, given any matrix G ∈ Rm×m, with entries gij , define

φ(G) =

(
1 +

m∑
i=1

g2
ii

)−1

and MG = (φ(G)G + I)m−1.

By construction, the diagonal entries of φ(G)G+I are positive. Introduce the following
subset of Rm×m:

G = {G ∈ Rm×m : MG > 0 and 1̄G = 0},

where the inequality means that every entry of the matrix on the left-hand side is
strictly positive, and 1̄ is the row vector (1 1 · · · 1). The set G may be seen as an
open subset of the (m2 − m)-dimensional linear subspace {G : 1̄G = 0} of Rm×m.
Define G≥0 to be the set of all irreducible matrices which have 1̄G = 0, nonnegative
off-diagonal entries and arbitrary diagonal entries. Note that

G≥0 = {G ∈ G : G has nonnegative off-diagonal entries}.

Then to each matrix A ∈ A≥0, we associate a matrix Ã ∈ G≥0: clearly, 1̄Ã = 0 and

so Ã ∈ G≥0.
For each G ∈ G observe that 1̄MG = 1̄(φ(G)G + I)m−1 = 1̄ because 1̄G = 0 and

1̄(φ(G)G+I) = 1̄. So, any nonnegative eigenvector, v ∈ Rn
≥0, of the matrix MG must

correspond to the eigenvalue μ = 1 since

MGv = μv ⇒ 1̄(MGv) = 1̄(μv) ⇔ 1̄v = μ1̄v

and 1̄v is a positive scalar (since v �= (0, . . . , 0)′ by the definition of eigenvector).
Since, by definition, MG is irreducible and has all entries positive, by the Perron–

Frobenius theorem we know that the spectral radius of MG, σ(MG), is an eigenvalue
of MG of algebraic (and hence geometric) multiplicity one. Moreover, an eigenvector
associated with σ(MG) can be chosen to have all entries strictly positive (this will be
a Perron eigenvector of MG, and any two such vectors are positive multiples of each
other). But, as we have just seen, any positive eigenvector of MG corresponds to the
eigenvalue μ = 1, so we have

σ(MG) ≡ 1 ∀G ∈ G.

Define vP : G → Rm
>0 to be the map that assigns to each G ∈ G the unique Perron

eigenvector of MG, which has its first coordinate equal to 1,

vP =

(
1
wP

)
for some wP ∈ Rm−1

>0 . Then the map vP is a rational function on G, as shown in the
appendix.

Proof of Theorem 4.1. A function f , defined on an open set V, is real analytic if
it admits a power series expansion on a neighborhood of each point of V. If, as in our
case, the set V is not open, then the function f is still called real analytic if it admits
an extension to a real analytic function on a neighborhood of V (see [16]). This is
what we will show for the map x̄(·, ·).
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For each A consider the matrix Ã ∈ G≥0, constructed from A as indicated above.

Then, from (A.1), ker Ã = span {vP(Ã)}. Because B has full column rank, it follows
that each equilibrium x̄ ∈ EA,+ is characterized by

θB(x̄) = c vP(Ã) ⇔ B′ρ(x̄) = ρ(c vP(Ã)),(4.2)

where c is a positive constant.

Claim. For each A, the element z̄(A) ∈ Rn
>0 given by

z̄(A) = exp
[
B(B′B)−1ρ(vP(Ã))

]
is an equilibrium point in EA,+.

To prove the claim, note that B has full column rank, so B′B is an invertible
matrix and the formula gives ρ(z̄(A)) = B(B′B)−1ρ(vP(Ã)) or, equivalently,

B′ρ(z̄(A)) = B′B(B′B)−1ρ(vP(Ã)) = ρ(vP(Ã)).

The claim is proved by letting c = 1 and x̄ = z̄(A) in (4.2).

Now, by Proposition A.1, the map vP is a rational function on G and, furthermore,
vP(G) ∈ Rm

>0. The functions exp(·) and ρ(·) are analytic on Rn and Rn
>0, respectively,

so it follows that the map Ã �→ A(Ã) �→ z̄(A) from G≥0 → E is analytic because

it admits an analytic extension to G → Rn
>0. (Denote by A(Ã) the matrix which

coincides with A on the off-diagonal entries and has zero in its diagonal.)

Next, from Lemma IV.1 (and proof of Theorem 2) in [17], there is a real analytic
map ϕ(q, w), defined on Rn

>0 × Rn
>0, such that, for each q ∈ Rn

>0, x = ϕ(q, z̄(A)) is
the unique positive equilibrium of the system ẋ = fA(x) in the same class of q. Let
q = x0 and w = z̄(A). We may now conclude that the map Rn

>0 × G≥0 → E given by

(x0, Ã) �→ ϕ(x0, z̄(A))

is again analytic because it admits an analytic extension to Rn
>0 × G. Therefore,

x̄(x0, A) ≡ ϕ(x0, z̄(A))

is the unique element that belongs to both the class of x0 and the equilibria set EA,+,
and we have just shown that the map x̄ : Rn

>0 ×A≥0 → E is real analytic.

5. Existence and completeness of solutions. We now turn our attention to
system (2.3) and will show that it is complete in the sense of Definition 3.1.

Proposition 5.1. Consider system (2.3), with state space X = Rn and input-
value set A≥0. Then the system is Rn

>0-forward invariant.

Proof. Given an initial condition x(0) = x0 ∈ Rn
>0 and an A≥0-valued input u(t),

define F (t, x) := f(x, u(t)). The existence and uniqueness of a maximal solution to
this initial-value problem follows from standard results (such as stated in [16]), by
noticing that, for each fixed t, F (t, x) is locally Lipschitz in x and, for each fixed x,
it is locally integrable as a function of time. Forward invariance also follows from
standard arguments based on the fact that, for x ∈ Rn

≥0, if xk = 0 for any k, then
Fk(t, x) ≥ 0. The actual proof is very similar to that of Proposition 3.13 in [4], so we
will not reproduce it here. In that proposition, simply take C = 0 and replace “aij”
by “uij” (we only use the fact that uij ≥ 0).
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5.1. A Lyapunov function. In order to prove Rn
>0-forward completeness of

system (2.3), we will need to introduce our candidate ISS-Lyapunov function. Fix
any point x̄ in E and recall the notation ρi = ln θi. Define

V (x, x̄) =
n∑

i=1

∫ xi

x̄i

( ρi(s) − ρi(x̄i) ) ds.(5.1)

This function is introduced and motivated in [17], where it is shown that V is always
nonnegative and zero if and only if x ≡ x̄. It is also easy to see that V (x, x̄) → +∞
as |x− x̄| → +∞. Also, the function V is proper in the following sense: for each
compact set P ⊂ E , one can show that there exist two class K∞ functions ν1 = ν1,P ,
ν2 = ν2,P such that

ν1(|x− x̄|) ≤ V (x, x̄) ≤ ν2(|x− x̄|)(5.2)

∀x ∈ Rn
≥0 and ∀ x̄ ∈ P . For instance, we may take

ν1(r) = inf{V (x, x̄) : |x− x̄| ≥ r, x ∈ Rn
≥0, x̄ ∈ P}

and

ν2(r) = r + max{V (x, x̄) : |x− x̄| ≤ r, x ∈ Rn
≥0, x̄ ∈ P}.

So, it is easy to see that V satisfies both properties (i) and (ii) of Definition 3.3. In
the case of maps θi(r) = |r|, the function has the form

V (x, x̄) =

n∑
i=1

xi (lnxi − ln x̄i) + (x̄i − xi).(5.3)

Some more notation will be useful. For any x̄ = (x̄1, . . . , x̄n)′ ∈ E and ∀x ∈ Rn
>0

define

qj(x, x̄) = qj := 〈bj , ρ(x) − ρ(x̄)〉.(5.4)

Introduce also the scalar function ω : R → R≥0 given by

ω(r) = er − 1 − r .(5.5)

Furthermore, note that

∇x V (x, x̄) = ρ(x) − ρ(x̄) = (ln θ1(x1) − ln θ1(x̄1), . . . , ln θn(xn) − ln θn(x̄n)),

∇x̄ V (x, x̄) =

(
(x̄1 − x1)

θ′1(x̄1)

θ1(x̄1)
, . . . , (x̄n − xn)

θ′n(x̄n)

θn(x̄n)

)
.

Now, given any A ∈ A≥0 and any x̄ ∈ EA,+, consider

(5.6) ∇V (x, x̄) fA(x) = 〈ρ(x) − ρ(x̄), fA(x)〉

=

m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉eqj (qi − qj)

= −
m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉eqjω(qi − qj)

=: −W (x, x̄).
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The third inequality holds because

eqj (qi − qj) = eqj (qi − qj) − eqj (eqi−qj − 1) + eqj (eqi−qj − 1)

= −eqjω(qi − qj) + (eqi − eqj )

and

(5.7) m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉(eqi − eqj )

= (eq1 , . . . , eqm)′AθB(x̄) − (eq1 , . . . , eqm)′ diag

(∑
i

ai1, . . . ,
∑
i

aim

)
θB(x̄)

= (eq1 , . . . , eqm)′ÃθB(x̄) = 0,

since at steady state, recalling (4.1) and that B has full rank,

f(x̄, A) = fA(x̄) = BÃθB(x̄) = 0.

An important point to notice is that −W (x, x̄) (hence ∇V (x, x̄)fA(x)) is always non-
positive, because ω(r) ≥ 0 ∀ r (with ω(r) = 0 if and only if r = 0).

To prove Rn
>0-forward completeness, we consider the function V (x(t), x̄(x0, u(t)))

along a trajectory x(·, x0, u(·)), which is the solution of (2.3), when the input is u(·)
and the initial condition x(0) = x0. For the next lemma recall that the maps θi are
onto an interval of the form [0, σi), where 0 < σi ≤ +∞.

Lemma 5.2. Given any compact set P ⊂ E, let �1, �2 > 0 be any numbers so that

e
1
�1 <

σi

θi(x̄i)
∀ x̄ ∈ P, ∀ i = 1, . . . , n(5.8)

and

�2x̄i > |x̄i − r±| ∀ x̄ ∈ P, ∀ i = 1, . . . , n,(5.9)

where the numbers r± are defined by the equations ln θi(r±) = ln θi(x̄i) ± 1/�1.
Then

|x̄i − xi| ≤ �1 V (x, x̄) + �2x̄i

∀x ∈ Rn
≥0 and ∀ x̄ ∈ P .

Remark. If θi(r) = |r| ∀ i = 1, . . . , n, then r± = e±
1
�1 x̄i, and we may choose �1

and �2 independently of P : indeed, condition (5.8) becomes e
1
�1 < ∞ (satisfied by

any �1 > 0), and condition (5.9) becomes �2 > |1 − e±
1
�1 |. For instance, we may pick

�1 = 1 and �2 = 2.
Proof. Pick any compact set P ⊂ E and pick any numbers �1 and �2 according

to (5.8) and (5.9). First, note that the definition of V implies (see (5.1))∫ xi

x̄i

ρi(s) − ρi(x̄i) ds ≤ V (x, x̄), i = 1, . . . , n

(recall that ρi(s) = ln θi(s)). Now fix any i ∈ {1, . . . , n} and put a = x̄i. For r ≥ 0,
a > 0, define

h(r) = �1

∫ r

a

ρi(s) − ρi(a) ds− |a− r| + �2a.
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We will show that h(r) ≥ 0 ∀ r ≥ 0. The first derivative of h is piecewise continuous

dh

dr
=

{
�1(ρi(r) − ρi(a)) + 1 if 0 ≤ r < a,
�1(ρi(r) − ρi(a)) − 1 if r > a

and the second derivative is

d2h

dr2
= �1

θ′i(r)

θi(r)
> 0 for r �= a,

where θ′i(r) = dθi/dr > 0, because θi is strictly increasing. Each continuous piece of
the derivative has a zero, at the points r±,

dh

dr
= 0 ⇔

{
ρi(r−) = − 1

�1
+ ρi(a) if 0 < r < a,

ρi(r+) = 1
�1

+ ρi(a) if r > a.

Note that, because ρi is an increasing function, indeed r− < a and r+ > a. In
addition, from (5.8) it follows that both r− and r+ are well defined, since they belong
to the domain of θi. Since the second derivative of h is always positive for r �= a, h
has local minima at the points r = r±. By definition of �2, it follows that the value
of h at r± is positive:

h(r±) = �1

∫ r±

a

ρi(s) − ρi(a) ds− |a− r±| + �2a,

since the first term is positive by construction of V and the two other terms sat-
isfy (5.9)

−|a− r±| + �2a > 0.

To summarize,

dh

dr
=

⎧⎪⎪⎨⎪⎪⎩
< 0, 0 ≤ r < r−,
> 0, r− < r < a,
< 0, a < r < r+,
> 0, r+ < r

so that h decreases down to a local positive minimum at r−, then increases up to
h(a) > 0, and decreases again to another local positive minimum at r+, and increases
∀r > r+. Therefore,

h(r) > 0 ∀ r ∈ [0,+∞).

This finishes the proof, since for each a = x̄i,

h(r) > 0 ⇔ |x̄i − xi| ≤ �1

∫ xi

x̄i

ρi(s) − ρi(x̄i) ds + �2x̄i

≤ �1V (x, x̄i) + �2x̄i.

5.2. Completeness.
Proposition 5.3. Consider system (2.3) with state space X = Rn. Then the

system is Rn
>0-forward complete, whenever the input map u(·) is in W.

Proof. Pick any input map u(·) in W. Let x(t) be the issuing solution of (2.3), with
the initial condition x(0) = x0 ∈ Rn

>0, and let it be defined on the maximal interval
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[0, T ). From Proposition 5.1, we already know that x(t) := x(t, x0, u(·)) ∈ Rn
>0 ∀ t

in the interval [0, T ). Assuming that T < +∞, we will show that x(·) evolves on a
compact subset of X ∀ t ∈ [0, T ), which is a contradiction. To do this, we consider
the function

g(t) = V (x(t), x̄(x0, u(t)))

whose derivative is

ġ(t) = ∇x V (x(t), x̄(x0, u(t)))
d

dt
[x(t)] + ∇x̄ V (x(t), x̄(x0, u(t)))

d

dt
[x̄(x0, u(t))]

= 〈ρ(x) − ρ(x̄), f(x, u)〉 +
n∑

i=1

(x̄i − xi) ˙̄xi
θ′i(x̄i)

θi(x̄i)
,

where, for simplicity, we used x ≡ x(t) and x̄ ≡ x̄(x0, u(t)), and ˙̄xi := d
dt [x̄i(x0, u(t))].

Now, for almost all t ∈ [0, T ), u(t) takes values in a compact set. So there exist
constants c, c > 0 such that

c ≤ |x̄i(x0, u(t))| ≤ c for almost all t ∈ [0, T ).

By differentiability of x̄(·, ·) (Theorem 4.1), and because u is piecewise locally Lipschitz
with finitely many points of discontinuity, there exist positive constants κ and c1 such
that

˙̄xi =

m∑
i,j=1

dx̄i

duij

duij

dt
≤

m∑
i,j=1

κ

∣∣∣∣ dx̄i

duij

∣∣∣∣ ≤ c1 for almost all t ∈ [0, T ).

The function θi is positive and strictly increasing, so θ′i(r) is also positive. Since
x̄i(·, ·) takes values in a compact set, there exists c2 > 0 such that

θ′i(x̄i)

θi(x̄i)
≤ c2 for almost all t ∈ [0, T ).

From (5.6), 〈ρ(x) − ρ(x̄(x0, u)), f(x, u)〉 ≤ 0 ∀x ∈ Rn
>0, u ∈ A≥0. Then, applying

Lemma 5.2, with P = [c, c]n ∩ E , to the second term on ġ, we obtain

ġ ≤
n∑

i=1

| ˙̄xi|
θ′i(x̄i)

θi(x̄i)
(�1 V (x, x̄) + �2x̄i),

which implies

ġ(t) ≤ �1c1c2 g(t) + �2c1c2c for almost all t ∈ [0, T ).

Taking c3 = �2c1c2c and c4 = �1c1c2 and applying Gronwall’s lemma, yield

g(t) ≤ c3e
c4T ∀ t ∈ [0, T ).

For the compact set P = [c, c]n ∩ E , let ν1 = ν1,P be the class K∞ function such that
ν1(|x− x̄|) ≤ V (x, x̄) ∀x ∈ Rn

≥0 and x̄ ∈ P . Thus,

ν1(|x(t) − x̄(x0, u(t))|) ≤ g(t) ∀ t ∈ [0, T )

and, therefore,

|x(t)| ≤ c + ν−1
1

(
c3e

c4T
)

implying that x evolves in a compact subset of the state space, which contradicts
T < +∞.
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6. ISS estimates. To establish the main results, we now show that the function
V is a uniformly semiglobal ISS-Lyapunov function. In section 5.1 it was shown that
V satisfies properties (i) and (ii) of Definition 3.3. We next show that it also satisfies
property (iii).

For any x̄ = (x̄1, . . . , x̄n)′ ∈ E and any x ∈ Rn
≥0 define

πj(x, x̄) = πj :=

[
θ1(x1)

θ1(x̄1)

]b1j [θ2(x2)

θ2(x̄2)

]b2j
. . .

[
θn(xn)

θn(x̄n)

]bnj

(6.1)

and observe that, if x ∈ Rn
>0, from (5.4)

πj = eqj .

Using this notation, define the function Ψ : Rn
≥0 × E → R≥0,

Ψ(x, x̄) :=
m∑
i=1

m∑
j=1

(
e−πi − e−πj

)2
,

which, from Lemma 3.8 in [4], satisfies

Ψ(x, x̄) = 0 ⇔ x ∈ E0 ∪ EA,+,(6.2)

where E0 is the set of boundary equilibria and A ∈ A≥0 is such that x̄ ∈ EA,+. Recall
the function W defined in (5.6): a useful estimate (see Lemma 3.10 in [4]) establishes
that, for each fixed x̄,

W (x, x̄) ≥ 1

2

m∑
i=1

m∑
j=1

aij e
〈bj ,ρ(x̄)〉 (e−πi − e−πj

)2 ∀x ∈ Rn
>0.(6.3)

Moreover, since x ∈ Rn
>0, it follows from (6.2) that the expression on the right-hand

side is zero if and only if x ≡ x̄.
Next, given any A ∈ A≥0, suppose that A1 is a matrix with entries a1

ij = 1 if

aij > 0 and a1
ij = 0 if aij = 0. Then, for expression (6.3), we can write

W (x, x̄) ≥ 1

2
min
aij>0

{aij} min
j

e〈bj ,ρ(x̄)〉
m∑
i=1

m∑
j=1

a1
ij

(
e−πi − e−πj

)2
.

Since A1 is irreducible, we may apply Lemma VIII.1 from [17] to conclude that there
exists a positive constant κ(A1) such that

m∑
i=1

m∑
j=1

a1
ij

(
e−πi − e−πj

)2 ≥ κ(A1)

m∑
i=1

m∑
j=1

(
e−πi − e−πj

)2
.

Now, define the following subset of A≥0,

A1
≥0 := {A ∈ A≥0 : aij = 1 or aij = 0},

and note that its cardinality is finite (in fact, the number of elements in A1
≥0 is equal

to the number of distinct strongly connected graphs with m vertexes). Then let

κ1 := min
{
κ(A) : A ∈ A1

≥0

}
.
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Additionally observe that, given any ε > 0,

A ∈ Uε satisfies min
aij>0

{aij} = ε

(where Uε is the set defined in (3.2)).
From this discussion, it is easy to establish the following lemmas.
Lemma 6.1. For each compact P ⊂E and each ε> 0, there exists a constant

c(P, ε) given by

c(P, ε) =
1

2
εκ1 min

x̄∈P
min
j

e〈bj ,ρ(x̄)〉

such that

W (x, x̄) ≥ c(P, ε) Ψ(x, x̄)(6.4)

∀x ∈ Rn
>0 and any element x̄ ∈ P .

Lemma 6.2. Let P ⊂ E be any compact set. Given any compact subset F ⊂ Rn
≥0

containing the set P , there exists a class K∞ function, α = αP,F , such that

Ψ(x, x̄) ≥ α(|x− x̄|)

∀ x̄ ∈ P , x ∈ F ∩ Sx̄.
Proof. Pick any compact set P ⊂ E . Let F ⊂ Rn

≥0 be any compact set which
contains P , and let R0 be such that the closed ball |x| ≤ R0 contains the set F . Define
R = R0 + maxx̄∈P x̄. Note that, for every x̄ ∈ P , the ball |x− x̄| ≤ R also contains
the set F . Consider the function Rn

≥0 → Rn
≥0 given by

α(r) :=

⎧⎨⎩
r

r+1 min{Ψ(x, x̄) : x̄ ∈ P, x ∈ Sx̄, r ≤ |x− x̄| ≤ R} ∀ 0 ≤ r ≤ R,

α(R) r
R ∀ r > R.

As discussed above, for x ∈ Sx̄, Ψ(x, x̄) = 0 if and only if x = x̄. Since the minimum
is taken over a compact set, the function α satisfies α(0) = 0 and α(r) > 0 for r > 0.
Also clearly, for R ≤ r, α is strictly increasing and satisfies α(r) → +∞ as r → +∞.
For 0 ≤ r ≤ R, α(r) is also strictly increasing, as a product of a strictly increasing
function and a nondecreasing function. By construction, Ψ(x, x̄) ≥ α(|x− x̄|) for all
x̄ ∈ P , x ∈ F ∩ Sx̄. Finally, without loss of generality we may assume that α is
continuous on R≥0 (otherwise, it is possible to construct a continuous α̃, α̃(0) = 0,
with α(r) ≥ α̃(r), and α̃(r) → +∞ as r → +∞).

Pick any ε> 0 and consider the sets Uε and W as defined in (3.2) and (3.3),
respectively. For any point x̄0 ∈ E , set V0(x) ≡ V (x, x̄0), where V is the function
defined in (5.1). As in section 2, let Sx̄0 be the class that contains x̄0.

Proposition 6.3. Given any compact sets P ⊂E and F ⊂Rn
≥0 containing P ,

there exist class K∞ functions α = αP,F and γ = γP,F such that, for every x̄0 ∈
P ∩ EA0,+ for some A0 ∈ Uε,

∇V0(x) f(x, u) ≤ −α(|x− x̄0|) + γ(|u−A0|ecl)

for every u ∈ Uε and every x ∈ F ∩ Sx̄0 ∩ Rn
>0.

Proof. Pick any compact sets P ⊂E and F ⊂Rn
≥0 containing P . Let c(P, ε) be

the constant given by Lemma 6.1, and let α̃ = α̃P,F be the K∞ function given by
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Lemma 6.2. Now, pick any x̄0 ∈ P ∩ EA0,+ for some A0 = (a0
ij) ∈ Uε. Using the

notation qi ≡ qi(x, x̄0) (defined in (5.4)), we have

∇V0(x) f(x, u) =

m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj (qi − qj)

=

m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj (qi − qj − (eqi−qj − 1))

+

m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj (eqi−qj − 1)

= −
m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj ω(qi − qj)

+

m∑
i=1

m∑
j=1

(uij − a0
ij)e

〈bj ,ρ(x̄0)〉(eqi − eqj ),

where ω(r) is the function defined in (5.5). The last equality is justified because
ω(r) ≥ 0 ∀ r ∈ R and, by (5.7),

m∑
i=1

m∑
j=1

a0
ije

〈bj ,ρ(x̄0)〉(eqi − eqj ) = (eq1 , . . . , eqm)′Ã0θB(x̄0) = 0.

Applying Lemmas 6.1 and 6.2, there is a K∞ function α̃ such that

∇V0(x) f(x, u) ≤ −c(P, ε) α̃(|x− x̄0|)

+|u−A0|ecl
m∑
i=1

m∑
j=1

e〈bj ,ρ(x̄0)〉 |eqi − eqj | .

Next, let

c2(P, F ) = (m2 −m) max
j

max
x̄0∈P

e〈bj ,ρ(x̄0)〉 max
j

max
x∈F

eqj

and observe that

|u−A0|ecl
m∑
i=1

m∑
j=1

e〈bj ,ρ(x̄0)〉 |eqi − eqj | ≤ 2 c2(P, F ) |u−A0|ecl

∀x ∈ F .
Finally, choose α = αP,F to be α(r) = c(P, ε)α̃(r) and γ = γP,F to be γ(r) =

2 c2(P, F ) r.

6.1. Proof of Theorem 3.5. Let ε > 0 be any constant and consider the input-
value set Uε defined in (3.2) and the set W defined in (3.3). Proposition 5.3 shows
that system (2.3) is Rn

>0-forward complete with respect to input maps in W.
Choose any compact sets P ⊂ E and F ⊂ Rn

≥0 with P ⊂ F . Pick any element

x̄0 ∈ P and any matrix A0 ∈ Uε so that x̄0 = x̄(x0, A0) for some x0 ∈ F ∩Rn
>0.

2 Using

2If no such A0 exists, that is, if P ∩EA0,+ = ∅ ∀A0 ∈ Uε, then there is nothing to prove, because
the statement of Definition 3.2 is vacuous. But if A0 exists, then x0 always exists, for instance, x̄0.
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this element x̄0, construct the function V0(x) := V (x, x̄0). This function V0 satisfies
properties (i) and (ii) of Definition 3.3 and Proposition 6.3 establishes property (iii).
Hence V0 is a uniformly semiglobal ISS-Lyapunov function for system (2.3).

By Lemma 3.4, it follows that system (2.3) is uniformly semiglobal ISS with the
input-value set Uε, as we wanted to show.

6.2. Proof of Theorem 3.6. Let ε > 0 be any constant and consider the input
value set Uε defined in (3.2) and the set W defined in (3.3). Proposition 5.3 shows
that system (2.3) is Rn

>0-forward complete with respect to input maps in W. Assume
that system (2.3) is mass conservative, i.e., there exists v = (v1, . . . , vn)′ ∈ Rn

>0 so
that 〈v, f(x, u)〉 = 0 for every x ∈ Rn and every u ∈ Uε.

Choose any compact subset P ⊂ E and put

F (P ) := closure
{
q ∈ Rn

>0 : x̄(q,A) ∈ P for some A ∈ Uε

}
.

Then F (P ) is a compact subset of Rn
≥0 because it is closed and also bounded, since

q ∈ F (P ) ⇒ ∃ x̄ ∈ P such that viqi ≤ 〈v, q〉 = 〈v, x̄〉 ⇒ qi ≤
1

vi
|v||x̄| ≤ c

|v|
vi

∀ i, where c = max{|x̄| : x̄ ∈ P}. Moreover, given any x̄ ∈ P , F (P ) contains the
whole class Sx̄.

Now, pick any element x̄0 ∈ P and any matrix A0 ∈ Uε so that x̄0 = x̄(x0, A0)
for some x0 ∈ F (P ) ∩ Rn

>0.
2 Using this element x̄0, construct the function V0(x) :=

V (x, x̄0). This function V0 satisfies properties (i) and (ii) of Definition 3.3. Moreover,
the two K∞ functions provided by Proposition 6.3 depend only on P :

α = αP,F (P ) ≡ αP and γ = γP,F (P ) ≡ γP .

So, V0 is in fact a uniformly ISS-Lyapunov function for system (2.3).
By Lemma 3.4, it follows that system (2.3) (when constrained to take input maps

in W) is uniformly ISS with the input-value set Uε.

7. Conclusions. We have extended the analysis of zero deficiency biochemical
networks to the case where the kinetic parameters associated with each reaction rate
are assumed to be time-varying inputs. We have shown that these rate controlled
biochemical systems are input-to-state stable with respect to an appropriate input
set. Thus one may analyze the stability of the biochemical network when the reac-
tion rates are controlled by some independent process; for instance, some reactions
may be inhibited or activated through enzymatic activity. Also as a consequence of
the ISS property, we conclude that such systems of biochemical networks are robust
with respect to small perturbations in the kinetic parameters such as temperature
fluctuations.

By definition, the zero deficiency biochemical networks are assumed to be closed
systems in the sense that there are no inflows or outflows (such as additive inputs).
While the systems we have studied also do not allow any inflows or outflows, we have
nevertheless incorporated outside effects, in the form of “multiplicative” inputs, by
allowing an independent system to control the reaction rates.

Appendix. The Perron eigenvector vP. By a rational function everywhere
defined on G we mean a function ψ : G → Rm for which every coordinate is a quotient
ψi = pnump

−1
den of two polynomial functions (on the entries of G) pnum, pden : Rm×m → R

such that pden(G) �= 0 ∀G ∈ G.
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Proposition A.1. The map vP is a rational function on G.
Proof. For each G ∈ G, by an abuse of notation, we write vP for vP(G). We

will also drop the subscript and we let M = MG for simplicity. We have MvP =
σ(M)vP ⇔ (M − I)vP = 0. The matrix M − I has rank m− 1 because σ(M) = 1 is
a simple root of the characteristic polynomial of M . Put M − I = (N1 N), where N1

is the first column of M − I and N is the remaining m× (m− 1) matrix, and notice
that

(N1 N)

(
1
wP

)
= 0 ⇔ NwP = −N1.

Claim. The matrix N has full rank.
Suppose the claim is false. Then there exists an element u in the kernel of N ,

and one can write N(wP + u) = −N1. But if this is true, then it also holds that

(M − I)

(
1

wP + u

)
= 0

which implies wP+u = wP, because vP is in fact the unique vector with first coordinate
equal to 1 in the kernel of M − I. So u ≡ 0, which proves the claim.

It follows that det(N ′N) �= 0 for every G, and applying the Moore–Penrose
pseudo-inverse of N yields

vP =

(
1
wP

)
=

(
1

−(N ′N)−1N ′N1

)
,

where N and N1 are defined from M = MG, as above. This shows that vP is a rational
function on G.

For every G ∈ G, the Perron eigenvector of MG, vP, is also an eigenvector of the
matrix G, corresponding to the 0 eigenvalue, and has multiplicity 1. This fact follows
from two observations.

1. ker (G) �= ∅, so ∃v ∈ Rm \ {0} such that Gv = 0.
This is because 1̄G = 0, which means that the rows of G are linearly dependent and
thus have rank G ≤ m− 1.

2. Any v such that Gv = 0 satisfies v ∈ span {vP}.
This follows from

(φ(G)G + I)v = v ⇒ (φ(G)G + I)m−1v = MG v = v,

and hence v ∈ span {vP}, since σ(MG) = 1 is an eigenvalue of MG, of multiplicity 1.
Therefore, the kernel of G has dimension 1 and is given by

ker (G) = span {vP(G)}.(A.1)
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Abstract. The problem of determining optical flow for the image registration problem is dis-
cussed. Feedback solutions are proposed, and it is shown that they are optimal for certain optimal
control formulations of the problem. Well-posedness of the proposed feedback solutions is analyzed,
and numerical findings are presented.
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1. Introduction. In this paper we discuss the image registration problem [8, 4].
Let I(t, x) ≥ 0 denote the brightness of an image defined on [0, T ] × Ω, where Ω is
a bounded domain in Rd, d = 2, 3, with sufficiently smooth boundary. Consider the
optical flow equation

∂

∂t
I + V · ∇I = 0, I(0) = I0,(1.1)

where ∇I = gradxI is the gradient of I with respect to x ∈ Rd. Let I1 be a target
image at T . The problem is to find a vector field V = V (t, x) such that I(T ) = I1.
From this optical flow V , information about the spatial arrangement of an object
and its rate of change ought to be determined. Assuming that objects represented in
the image are flat surfaces, that illumination is uniform, and that reflectance varies
smoothly and has no spatial discontinuities, the image brightness of an object point
remains constant in the images when the object moves [8]. That is, the total derivative
of I vanishes, which results in (1.1). Optical flow is often a convenient and useful image
motion representation, and there has been increasing literature using this approach
(e.g., [8, 2, 1, 15, 4]) during the last decade.

In this paper we propose a method to construct such a vector field V , and we test
and analyze the proposed methods. We follow the optimal control formulation in [4]:
find V that minimizes

J(I, V ) =

∫ τ

0

∫
Ω

[
α(|∇I(t)|)

q
|V (t)|q +

β(|∇I(t)|)
p

|I(t) − I1|p
]
dxdt(1.2)

subject to (1.1), where 1
p + 1

q = 1 and nonnegative functions α, β are chosen appro-

priately. In order to obtain a smoother vector field V (t) = V (t, x) (say, in H1(Ω)),
for δ > 0 we also consider the following regularized optimal control formulation:

min
1

2

∫ τ

0

[
((I − δΔ)−1(|I(t) − I1|p−1sign(I(t) − I1)∇I),

|I − I1|p−1sign(I(t) − I1)∇I)L2(Ω) + (|V |2L2(Ω) + δ |∇V |2L2(Ω))
]
dt,

(1.3)
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subject to (1.1), where Δ is the Laplace operator.
In [4] an iterative algorithm based on the Lagrange multiplier method is developed

for determining the optimal vector field V (t) that minimizes the cost functional, and
it is tested numerically. In this paper (section 1.1) the feedback solution for (1.2) in
the following forms is derived:

V (t, x) =
1

T − t
(I(t) − I1)Φ(|∇I(t)|)∇I(t)(1.4)

and

V (t, x) = |I(t) − I1|p−1sign(I(t) − I1) Φ(|∇I(t)|)∇I(t).(1.5)

Let

Ψ(s) = Φ(s) s2, s ∈ R+,

and assume Ψ : R+ → R+ is Lipschitz with Ψ(0) = 0. The resulting closed loop
equations for I are thus given by

It +
1

T − t
(I(t) − I1)Ψ(|∇I(t)|) = 0, I(0) = I0,(1.6)

and

It + |I(t) − I1|p−1sign(I(t) − I1)Ψ(|∇I(t)|) = 0, I(0) = I0,(1.7)

respectively. For example, we use in our testing

Ψ(s) =
s

max(c, s)
, Φ(s) =

1

smax(c, s)

for some c > 0. If we let Φ(s) = 1
s , then (1.4)–(1.5) reduces to the geometrical motion

[11, 13]

It +
1

T − t
(I(t) − I1)|∇I(t)| = 0, I(0) = I0,

and

It + |I(t) − I1|p−1sign(I(t) − I1) |∇I(t)| = 0, I(0) = I0.

The corresponding optimal feedback law (section 1.2) for (1.3) is given by

V (t, x) = (I − δΔ)−1(sign(I(t) − I1)|I(t) − I1|p−1∇I(t)),(1.8)

where Δ is the Laplace operator. If δ = 0, then (1.8) reduces to a specific case of
(1.5). Because of the nonlocal operation (I − δΔ)−1 for determining the vector field
V at a given time t, the evaluation of (1.8) costs more in terms of its implementation
compared to that for (1.5).

The proposed algorithms are of the feedback form; i.e., the vector field V is
determined along with the reformed image I by integrating (1.1) with (1.5) or (1.8)
in time. Thus it is an alternative to the iterative methods discussed in [8, 4] and
references therein. If we solve for X(t) = X(t;x) at each x ∈ Ω,

d

dt
X(t) = V (t,X(t)), X(0) = x,(1.9)

then M(x) = X(T ;x) defines a mapping such that I1(x) = I0(M(x)) if I1 = I(T ).
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In [1, 15] the (stationary optical flow) optimization of the form

E(h) =

∫
Ω

[|I0(x− h(x)) − I1(x)|2 + C trace(∇hD(∇I0)∇h)] dx

over maps h : R2 → R2 with an appropriate matrix weight D is analyzed, and the
iterative schemes for finding the optimal map (M(x) = x − h(x)) are developed and
tested. We also refer to [2] for the alternative approaches and performance compar-
isons. Finally, we note that our algorithm does not require us to take the derivatives
of the images I0 and I1 directly.

The following is the key property of the proposed algorithms. Suppose I is a
Lipschitz solution of (1.6). By multiplying (1.6) by I(t)− I1 and integrating in x over
Ω, we obtain

d

dt

1

2

∫
Ω

|I(t) − I1|2 dx +

∫
Ω

1

T − t
|I(t) − I1|2Ψ(|∇I(t)|) dx = 0.

Thus, t → |I(t) − I1|L2(Ω) is decreasing and

lim inf
t→T

∫
Ω

|I(t) − I1|2Ψ(|∇I(t)|) dx = 0.

Moreover, if Ψ(|∇I(t, x)|) ≥ ω > 0 a.e. in (0, T ) × Ω, then

|I(t) − I1|L2 ≤
(
T − t

T

)ω

|I0 − I1|L2

and thus I(T ) = I1. Similarly, for (1.7),

d

dt

1

2

∫
Ω

|I(t) − I1|2 dx +

∫
Ω

|I(t) − I1|pΨ(|∇I(t)|) dx = 0.

If Ψ(|∇I(t, x)|) ≥ ω > 0 a.e. in (0, T ) × Ω and 1 ≤ p < 2, then |I(t) − I1|L2 = 0 in
a finite time, say τ > 0. Then, we scale the time by T

τ to obtain I(T ) = I1. Similar
results also hold for (1.3) and (1.8) (see section 1.2).

Remark 1. Note that any C1 solution to (1.1) satisfies

max
x∈Ω

I(t, x) = max
x∈Ω

I0(x)

for all t ≥ 0. Thus, in order to have I(T ) = I1, it is necessary to have

max
x∈Ω

I0(x) = max
x∈Ω

I1(x).

Otherwise, Ψ(|∇I(t, x)|) → 0 as t → ∞ on a subset of Ω, and thus I(t) does not
converge to I1 in a finite time. However, it is observed numerically that I(t) converges
to min(I1,max(I0)).

Remark 2. From the above estimate problem, (1.2) as well as (1.3) is the exit
problem with T = τ , and the exit time is given by

τ = inf

{
t :

∫
Ω

|∇I(t)| |I(t) − I1| dx = 0

}
.

That is, it is possible that it is terminated with a nontrivial subdomain Ω̃ such that
|∇I(τ, x)| = 0 and I(τ, x) = maxx∈Ω I(τ, x) = a constant on Ω̃.
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Remark 3. It should be noted that our problem is closely related to the so-called
Monge–Kantorovich mass transport problem in the form described in [3]: find a vector
field V that minimizes ∫ T

0

∫
Ω

ρ(t, x) |V (t, x)|2 dxdt

subject to

ρt + ∇ · (ρ V ) = 0,

ρ(0, x) = ρ0(x), and ρ(T, x) = ρ1(x).

In [3] an iterative method based on the augmented Lagrangian method is developed
for this optimal control problem. It is of interest here to construct a feedback solution
to the problem.

Through our numerical testing we observed the following:
• Algorithms (1.5) in general are very efficient, using the numerical integrations

outlined in section 2, and work very well for short-range motion including
expansion and redistribution. However, for long-range motion we observed
cases with a nontrivial subdomain Ω̃ such that |∇I(τ, x)| = 0, x ∈ Ω̃.

• Algorithms (1.8) cost more in general but produce smoother motion represen-
tations. Also, they work well for long-range motion including large transport.
Throughout our numerical tests we did not observe the constant subdomain
cases (see Remark 2). However, the convergence of this algorithm is slower
in general compared to that for (1.5).

These observations are not surprising because the level-set equation (1.6) works
well for the front propagation but may result in a constant subdomain for algo-
rithm (1.5). Because of the nonlocal operation of (1.8), constant regions are pre-
vented, but τ can be ∞ for algorithm (1.8). In conclusion, algorithms (1.5) and (1.8)
should be used in the combined manner such that (1.8) is first employed to capture
the long-range motions and (1.5) is then used for faster convergence and an accurate
representation for the localized motions. This combination is implemented for our
numerical tests and is quite effective.

An outline of the paper is as follows. In section 2 we describe numerical integration
methods we used to implement the proposed algorithms (1.5) as well as (1.8) and
present our numerical tests and findings. In section 3 we present the well-posedness
of the proposed algorithm. We conclude the section with the optimality of (1.5) and
analysis for the regularized version (1.8).

1.1. Optimality. The feedback solution (1.5) is optimal in the following sense.
Consider the optimal control problem

min

∫ τ

0

∫
Ω

[
α(|∇I(t)|)

q
|V (t)|q +

β(|∇I(t)|)
p

|I(t) − I1|p
]
dxdt

subject to (1.1), where 1
p + 1

q = 1 and τ ≥ 0 is the exit time defined by

τ = inf

{
t :

∫
Ω

β(|∇I|) |I(t) − I1|p = 0

}
.

Nonnegative functions α, β should be chosen so that

β(s)

s
=

(
α(s)

s

)1−p
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and β = Ψ, where Ψ appears in (1.6)–(1.7). For example, we have the specific cases

α(s) = 1, β(s) = sp, and α(s) = β(s) = s.

In our experiments we used

β(s) = Ψ(s) =
s

max(c, s)
=

⎧⎪⎨⎪⎩
s

c
if s ≤ c,

1 if s ≥ c

for some c > 0, and the corresponding α is given by

α(s) =

⎧⎨⎩
cq−1s if s ≤ c,

sq if s ≥ c.

First, we claim that V(I) = 1
2

∫
Ω
|I(x) − I1(x)|2 satisfies the formal Hamilton–Jacobi

equation

min
V

∫
Ω

[
−(VI , V · ∇I) +

α(|∇I|)
q

|V |q +
β(|∇I|)

p
|I − I1|p

]
dx = 0,(1.10)

where (VI , φ) = (I − I1, φ). In fact, without loss of generality we let V = c ∇I
|∇I| for

almost every x in Ω. Then

J = −(VI , V · ∇I) +
α(|∇I|)

q
|V |q = −c|∇I| (I − I1) +

α(|∇I|)
q

|c|q(1.11)

is minimized when

c = (|∇I|α−1(|∇I|)|I − I1|)
1

q−1 sign(I − I1)

and

min J = −1

p
|∇I|pα− 1

q−1 (|∇I|)|I − I1|p

for almost every x in Ω. Since 1
q−1 = p− 1, if we let

Ψ(s) = β(s) = spα(s)1−p and Φ(s) = sp−2α(s)1−p,

then the feedback form

V = V (I) = |I − I1|p−1sign(I − I1)Φ(|∇I|)∇I

as defined by (1.5) attains the minimum in (1.11), and V satisfies (1.10).
Next, we argue the optimality. Let W ∈ W 1∞((0, τ) × Ω). Then (1.1) has a

unique solution I ∈ W 1,∞((0, τ)); e.g., see [4]. We assume that τ is an exit time.
Since V = V (I) as above minimizes J a.e. in Ω, thus

d

dt
V(I(t)) = −(I − I1,W · ∇I)

=

∫
Ω

−
[
α(|∇I|)

q
|W |q +

β(|∇I|)
p

|I − I1|p − δ(W,V (I))

]
dx,
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where δ(Ŵ , V (I)) > 0 if Ŵ ∈ Rd and δ(Ŵ , V (I)) = 0 if Ŵ = V (I). Hence we have∫ τ

0

∫
Ω

[
α(|∇I|)

q
|W |q +

β(|∇I|)
p

|I − I1|p
]
dxdt

=

∫
Ω

1

2
|I0 − I1|2 dx +

∫ τ

0

∫
Ω

δ(W,V (I)) dxdt.

Therefore (1.5) is optimal.

1.2. Regularization. In this section we discuss the regularized versions of (1.3)
and (1.8). First, we can show that V(I) = 1

p

∫
Ω
|I(x) − I1(x)|p satisfies the (formal)

Hamilton–Jacobi equation

min
V

∫
Ω

[
−(VI , V · ∇I) +

1

2
(|V |2 + δ |∇V |2)

+
1

2
((I − δΔ)−1(|I − I1|p−1sign(I(t) − I1)∇I), |I − I1|p−1sign(I(t) − I1)∇I)

]
dx = 0,

(1.12)

where (VI , φ) = (|I − I1|p−1sign(I − I1), φ). In fact, it is easy to see that

V = (I − δΔ)−1(sign(I − I1)|I − I1|p−1 ∇I)

attains the minimum (0) of the quadratic form in (1.12). Thus, the corresponding
optimal feedback law is given by (1.8), and its optimality can be argued using exactly
the same arguments as in section 1.1.

In general we consider

V (t, x) = G(|I(t) − I1|p−1sign(I(t) − I1)∇I(t)),(1.13)

where

G : L2(Ω)d → L2(Ω)d is a bounded, positive operator.

For example,

GV = k0 V (x) +

∫
Ω

k(|x− y|)V (y) dy,

with a smoothing kernel k ≥ 0 and k0 ≥ 0. For (1.8) we have

G = (I − εΔ)−1.

Suppose that I is a Lipschitz solution of (1.1) with (1.13). Then

d

dt

1

p

∫
Ω

|I(t)−I1|p dx+(G(|I−I1|p−1sign(I−I1) ∇I), |I−I1|p−1sign(I−I1)∇I) = 0.

Thus, t → |I − I1|Lp is decreasing. Moreover, if (GV, V )L2 ≥ γ |V |2L2 for some γ > 0,
then

d

dt

1

p

∫
Ω

|I(t) − I1|p dx +

∫
Ω

γ |I(t) − I1|2p−2|∇I|2 dx ≤ 0.

Hence, if |∇I(t)|2 ≥ ω > 0 a.e. and 1 ≤ p < 2, then |I(t) − I1|Lp = 0 in a finite time
τ > 0.
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2. Numerical integration and testing. In this section we discuss the numer-
ical integration of the proposed methods and present testing results. We use the
Gudnov-type scheme (see, e.g., [12, 16]) for the Hamilton–Jacobi equation on a fixed
Cartesian grid with uniform mesh-size h of the square Ω = (0, 1) × (0, 1), and time
step-size Δt > 0 (satisfying the CFL condition); i.e.,

0 =
Ik+1 − Ik

Δt
+ ck⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ

(√
[max((D−

x )i,jIk,−(D+
x )i,jIk, 0)]2 + [max((D−

y )i,jIk,−(D+
y )i,jIk, 0)]2

)
for ck > 0,

Ψ

(√
[min((D−

x )i,jIk,−(D+
x )i,jIk, 0)]2 + [min((D−

y )i,jIk,−(D+
y )i,jIk, 0)]2

)
for ck < 0

with

ck = |Ik − I1|p−1(Ik − I1).

If we use the first order backward and forward difference

(D−
x )i,jI =

Ii,j − Ii−1,j

h
, (D+

x )i,jI =
Ii+1,j − Ii,j

h
,

(D−
y )i,jI =

Ii,j − Ii,j−1

h
, (D+

y )i,jI =
Ii,j+1 − Ii,j

h
,

then this is a monotone scheme, and its convergence can be argued, for example, as
in [7, 12].

We use the third order WENO (weighted essential nonoscillatory) scheme [10] to
evaluate the forward and backward differences (D−

x )i,jI
k, (D+

x )i,jI
k and (D−

y )i,jI
k,

(D+
y )i,jI

k. It is advantageous to use the higher order scheme to obtain accurate spatial
discretization and reduce the CFL number requirement for the time step-size Δt. We
refer to [11] and references therein for further discussion on approximation methods
for the Hamilton–Jacobi equation. For the implementation of (1.1) with (1.8) we use
the upwinding method based on WENO differences.

2.1. Test results. In our calculations we use (1.5) and (1.7) with p = 5
4 and

Ψ(|∇I|) =
|∇I|

max(c, |∇I|) ,

where c > 0 is appropriately chosen (we choose c = 0.5 in our computations). Let
Ω = (0, 1) × (0, 1) and set h = 0.01.

Example 1. The first example [4] is

I(t) =

⎧⎪⎪⎨⎪⎪⎩
2

3
(x + y) − 1

3
t if x + y ≥ 1,

1

3
(x + y) +

1

3
− 1

3
t if x + y ≤ 1,
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Fig. 1. Evolution of deforming images from I0 to I1, using algorithm (1.5).

and I0 = I(0) and I1 = I(1). In this example the constant field

V0 =

⎧⎪⎪⎨⎪⎪⎩
(

1

2
,
1

2

)
if x + y > 1,

(1, 1) if x + y ≤ 1

is a solution to problem (1.1). Our algorithm (1.5) with c ≤
√

2
3 produces a solution

V (t, x) = c(t)

⎧⎪⎪⎨⎪⎪⎩
(

1

2
,
1

2

)
if x + y > 1,

(1, 1) if x + y ≤ 1,

with

c(t) =
9

2

((
1

3

) 3
4

− 3

4
t

) 1
3

.

Example 2. This example is a redistribution of image I0 defined on an ellipse to
image I1 defined on a rotated and resized ellipse:

I0 = max(0, .041 − 2(x− .5)2 − (y − .5)2),

I1 = max(0, .041 − (x− .5)2 − 3(y − .4)2).

We compare the resulting motions using algorithms (1.5) and (1.8). In Figure 1
we show level curves {x ∈ Ω : I(t, x) = .001} at uniform time units and the net
motion by arrows. The net motion is defined by M(x) − x ∈ R2 on the support of
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Fig. 2. Evolution of deforming images from I0 to I1, using algorithm (1.8).

I0. The actual trajectory X(t;x) from (1.9) is an oriented curved arc. In Figure 2
the corresponding results for algorithm (1.8) are shown. Algorithm (1.8) is actually
terminated by algorithm (1.5) as described in introduction. Algorithm (1.8) results
in a smoother motion representation.

For the remaining examples we used the combined algorithms as described in the
introduction, i.e., algorithm (1.8) terminated by algorithm (1.5).

Example 3. This example is the same as in Example 2, with noise in I1. We
add i.i.d. (independently and identically distributed) noise uniformly distributed on
.041 (−.1, .1) to I1 at each pixel. We apply prefilter I1 by (I − 1.e−4 Δ)−1 I1. It is
observed that the final I(τ) deformed image from I0 is much smoother that the target
prefiltered noisy image I1 due to the smooth vector field V (·, x) ∈ H2(Ω). Effects of
noise can be noticed in Figure 3 compared to Figure 2 (noise-free) but the algorithm
performs very well with large noise in the data.

Example 4. This example is for the transport and the redistribution of an image
I0 defined on an ellipse to I1 defined on a circle:

I0 = max(0, .041 − 2(x− .5)2 − (y − .5)2),

I1 = max(0, .041 − 4(x− .6)2 − 4(y − .4)2).

The resulting level curves {x ∈ Ω : I(t, x) = .001} at uniform time units and the net
motion by arrows are shown in Figure 4.

Example 5. This example is for the disjointly supported image I0:

I0 = max(0, .041 − 4(x− .6)2 − 4(y − .4)2, .041 − 4(x− .4)2 − 4(y − .6)2)

merging into the connected image I1 as I1 = I0 in Example 2. In Figure 5 the
two disjointed level-sets {x ∈ Ω : I(t, x) = .005} merge into the center of I1. The
support of I(t, x) remains disconnected under algorithm (1.8) and attached by the
algorithm (1.5) phase.
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Fig. 3. Evolution of deforming images from I0 to I1, with noise.
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Fig. 4. Evolution of deforming images from I0 to I1, for Example 4.

Example 6. We tested our algorithm against a consecutive frame of the Yosemite
fly-through image sequences by Lynn Quann at SRI. The sequence is generated by
taking an aerial image of Yosemite valley and texture mapping it onto a depth map
of the valley. It is a benchmark for optimal flow methods. The interest of this test
is that one can give a quantitative evaluation of optimal flow methods; for example,
the web page http://www.cs.brown.edu/people/black/ contains the files with ground
truth flow fields and hints on how the errors should be computed. We have 256× 256
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Fig. 5. Evolution of deforming images from I0 to I1 with geometrical change.

Table 1

Comparison between results reported in [2, 1] with 100% density and our result.

Technique Average Error Standard Deviation
Horn and Schunck (original) 31.69◦ 31.18◦

Horn and Schunck (modified) 9.78◦ 16.19◦

Nagel 10.22◦ 16.51◦

Anandan (unthresholded) 13.36◦ 15.64◦

Uras et al. (unthresholded) 8.94◦ 15.61◦

Singh (step 2) 10.03◦ 13.13◦

Alvarez et al. 5.53◦ 7.40◦

Our method 9.24◦ 10.77◦

pixels, and we select Δx = 1 and normalize the images so that the maximum intensity
is one. The sequence of images used for our testings and the resulting net motion are
shown in Figure 6. The correct flow field and the estimated flow field are plotted on
the top of each other for comparison.

The angular error is calculated in the same way as in [2] using

Error = arccos

(
ucue + vcve + 1√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)
,

where (uc, vc) denotes the correct flow and (ue, ve) is the estimated flow. Our method
performs better than the other methods except the one in [1] (see Table 1). As you
can see from Figure 6, the majority of errors happen in the cloud region. We have
the angular error 4.36◦ with standard deviation 3.86◦ if we exclude the cloud region.

3. Well-posedness. In this section we show the well-posedness of the proposed
algorithm (1.5). A similar analysis can be done for algorithm (1.8) without much
modification. For the clarity of our discussions we assume Ω = (0, 1)d, and we discuss
the periodic boundary condition for I throughout this section. First we consider the
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Fig. 6. Yosemite fly-through images and optical flow.

regularized problem

It + φ(I − I1)ψ(|∇I|) = εΔI, I(0) = I0,(3.1)

where ε > 0, φ : R → R is a monotone increasing bounded Lipschitz function with
φ(0) = 0, and ψ : R+ → R+ is a Lipschitz continuous function with ψ(0) = 0.

Let

X = {I ∈ H1(Ω) : I is Ω periodic},

V = {I ∈ H2(Ω) : I, ∇I are Ω periodic}.

It can be proved (e.g., see [9]) that A on X defined by

AI = −εΔI + φ(I − I1)ψ(|∇I|)
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satisfies

(AI1 −AI2, I1 − I2)X ≥ ε

2
|I1 − I2|2V − ω |I1 − I2|2X

for some ω > 0 and A : V → V ∗ = L2(Ω) maximum [14], where X is the pivoting
space. Note that for I ∈ V

∇[φ(I − I1)ψ(|∇I|)] = φ′(I − I1) (J − J̄)ψ(|J |) + φ(I − I1)ψ
′(|J |) J

|J | · ∇J,(3.2)

where J = ∇I and J̄ = ∇I1. Thus,

|φ(I(·) − I1)ψ(|∇I(·)|)|L2(0,T ;X) ≤ M |I(·)|L2(0,T ;V )

for some M . It follows from [14] that there exists a unique solution I(·) to (3.1) in
H1(0, T ;X) ∩ L2(0, T ;H3(Ω)) ∩ C(0, T ;H2(Ω)).

Let q ≥ 2. Multiplying (3.1) by |I|q−2I and integrating in x over Ω, we obtain

d

dt

∫
Ω

|I|q dx +

∫
Ω

[q |I|q−2Iφ(I − I1)ψ(|∇I|) + q(q − 1)ε |I|q−2|∇I|2] dx = 0.

Since |φ(I − I1)ψ(|∇I|)| ≤ γ |∇I| for some γ in Ω, thus

d

dt

∫
Ω

|I|q dx ≤
∫

Ω

qγ2

4(q − 1)ε
|I|q dx.

Hence

|I(t)|Lq(Ω) ≤ e
γ2

4(q−1)ε
t |I(0)|Lq(Ω).

By letting q → ∞, we obtain

|I(t)|L∞(Ω) ≤ |I(0)|L∞(Ω).(3.3)

Note that, from (3.2), J = ∇I satisfies

Jt + φ′(I − I1) (J − J̄) + φ(I − I1)ψ
′(|J |) J

|J | · ∇J = εΔJ.(3.4)

Let q ≥ 2. Multiplying (3.4) by q |J |q−2J and integrating over Ω, we obtain

d

dt

∫
Ω

|J |q dx +

∫
Ω

[q |J |q−2(E1 + E2) · J dx− qε |J |q−2(J · ΔJ)] dx = 0,

where

E1 = φ′(I − I1) (J − J̄)ψ(|J |),

E2 = φ(I − I1)ψ
′(|J |) J

|J | · ∇J.

By Green’s theorem,

−
∫

Ω

|J |q−2(J · ΔJ) dx =

∫
Ω

[
|J |q−2|∇J |2 +

q − 2

2
|J |q−4|∇|J |2|2

]
dx = 0.
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Let |ψ′| ≤ c1 and 0 ≤ φ′ ≤ c2. Note that

|J |q−2J · E2 ≤ c1
2
|J |q−2|∇|J |2| ≤ ε

q − 2

2
|J |q−4|∇|J |2|2 +

c21
4ε(q − 2)

|J |q

and

|J |q−2J · E1 = φ′(|J |q − |J |q−2J · J̄)ψ(|J |) ≤ c1c2|J̄ |∞|J |q.

Hence we have

d

dt

∫
Ω

|J |q dx ≤
∫

Ω

q

(
c1c2|J̄ |∞ +

c21
4ε(q − 2)

)
|J |q dx

and thus

|J(t)|L∞(Ω) ≤ ec1c2|J̄|∞t|J(0)|L∞(Ω).(3.5)

Similarly, for İ = dI
dt we have

İt + φ′(I − I1) İψ(|J |) + φ(I − I1)ψ
′(|J |) J

|J | · ∇İ = εΔİ ,

assuming I0 ∈ V . By using the same arguments as above, it can be shown that

|İ(t)|L∞(Ω) ≤ |İ(0)|L∞(Ω).(3.6)

From estimate (3.2) it is not necessary to assume that φ is bounded. Moreover,
in the above it is implicitly assumed that ψ′(|J |) J

|J| is a.e. defined. For the case

ψ(|J |) = |J | it is not necessary that such a derivative exists. Thus, we consider
a family of regularizations ψδ(|J |) =

√
δ2 + |J |2 − δ for δ > 0. It can be shown

that the estimates (3.3), (3.5), and (3.6) hold uniformly in δ > 0. Let {Iδ} be the
corresponding solution to (3.1) with ψ = ψδ and a fixed ε > 0. Then {Iδ} is bounded in
W 1,∞((0, T )×Ω)∩L2(0, T ;V ). Hence it has a weak star–weak convergent subsequence
to the limit I ∈ W 1,∞((0, T )×Ω)∩L2(0, T ;V ) as δ → 0+, and I is the unique solution
to (3.1).

Now we prove that a family of functions {Iε}, which are the solution to (3.1) for
ε > 0, has a convergent subsequence to the limit I ∈ W 1,∞((0, T )×Ω) as ε → 0+ and
that I is a viscosity solution [6, 5] to

It + φ(I − I1)ψ(|∇I|) = 0, I(0) = I0.(3.7)

That is, for all ζ ∈ C1((0, T ) × Ω) if V − ζ attains a local maximum at (t0, x0) ∈
(0, T ) × Ω, then

ζt + φ(I − I1)ψ(|∇ζ|) ≤ 0 at (t0, x0),(3.8a)

and if V − ζ attains a local minimum at (t0, x0) ∈ (0, T ) × Ω, then

ζt + φ(I − I1)ψ(|∇ζ|) ≥ 0 at (t0, x0).(3.8b)

First, we note that from (3.3), (3.5)–(3.6)

|Iε|W 1,∞((0,T )×Ω) is bounded uniformly in ε > 0.
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Thus there exists a subsequence of Iε (denoted by the same symbol) that converges
to I ∈ W 1,∞((0, T ) × Ω), where the convergence is uniform in (0, T ) × Ω. Next, it
can be shown (see, e.g., [9]) that for all ζ ∈ C2((0, T ) × Ω) if Iε − ζ attains a local
maximum (minimum, respectively) at (t0, x0) ∈ Rn, then

ζt + φ(Iε − I1)ψ(|∇ζ|) − εΔζ ≤ 0 (≥ 0, respectively)(3.9)

at (t0, x0). We prove (3.8a) first for ζ ∈ C2((0, T ) × Ω). Assume that for ζ ∈
C2((0, T )×Ω) V ε−ζ has a local maximum at x0 ∈ Ω. We can choose ξ ∈ C∞((0, T )×
Ω) such that ∇ξ(t0, x0) = 0 and Iε−(ζ−ξ) has a strict local maximum at (t0, x0). For
ε > 0 sufficiently small, Iε− (ζ− ξ) has a local maximum at some (tε, xε) ∈ (0, T )×Ω
and (tε, xε) → (t0, x0) as ε → 0+. From (3.9),

ζt + φ(Iε − I1)ψ(|∇ζ|) − εΔζ ≤ 0

at (tε, xε). We conclude (3.8a), since Iε(tε, xε) → I(t0, x0), ∇ζ(tε, xε) −∇ξ(tε, xε) →
∇ζ(t0, x0) − ∇ξ(t0, x0) = ∇ζx(t0, x0), and εΔ(ζ − ξ)xx(tε, xε) → 0 as ε → 0. For
ζ ∈ C1((0, T ) × Ω) exactly the same argument is applied to the convergent sequence
ζn ∈ C2((0, T ) × Ω) to ζ in C1((0, T ) × Ω) to prove (3.8a).

The uniqueness of the viscosity solution to (3.7) is established in [6, 5].
Theorem. Assume that φ : R → R is a monotone increasing Lipschitz function

with φ(0) = 0, and that ψ : R+ → R+ is a Lipschitz continuous function with ψ(0) =
0. Equation (3.7) has a unique viscosity solution I ∈ W 1,∞((0, T )×Ω), provided that
I0, I1 ∈ W 1,∞(Ω).
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Abstract. We study optimal design problems for three-dimensional curved rods and for shells
under minimal regularity assumptions for the geometry. The results that we establish concern the
existence of optimal shapes and the sensitivity analysis. We also compute some numerical examples
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1. Introduction. The scientific literature concerning the modeling of curved
mechanical structures currently offers a variety of mathematical models for the study
of the deformation of such elastic bodies under the impact of various types of internal
or external forces and tractions. We refer just to the monographs of Ciarlet [11],
Trabucho and Viaño [19], and Antman [2], where very rich material can be found for
investigations in this direction.

It is a natural question now to develop a research program concerning the opti-
mization of such objects, including numerical experiments. It should be mentioned
that there exist several works of interest discussing such problems, including Chenais
and Rousselet [10], Rousselet [16], Myslinski, Piekarski, and Rousselet [14], Sprekels
and Tiba [17], and Ignat, Sprekels, and Tiba [12].

In this article, we attempt an analysis of general optimization problems associated
with curved rods and shells. The generality of our setting is related to the consid-
eration of a general performance index, of general constraints on the geometry, the
relaxation of the regularity assumptions, and the implementation of some numerical
experiments. In particular, we are assuming just C2-regularity, instead of the usual
C3-hypotheses from literature. For shells, we obtain this by using the generalized
Naghdi-type model introduced in Sprekels and Tiba [18]. For rods, this is achieved
by replacing the classical Frenet frame with a new general algebraic construction that
will be introduced in section 2. Other variants of local coordinates systems associated
with three-dimensional (3D) curves under low regularity conditions may be found in
Cartan [7] (the Darboux frame) or in Ignat, Sprekels, and Tiba [13], from which we
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take the linear model used here. It consists of a system of nine ODEs with null bound-
ary conditions, written in the weak form, which corresponds to the clamped rods case.
Other boundary conditions may also be considered. Comparing with the regularity
assumptions from the modeling process, we see that the optimization hypotheses are
minimal. Let us also mention that both models use the Timoshenko assumption and
allow for shear and Poisson effects (i.e., the deformation of the cross section). They
generalize the classical Naghdi model for shells, Ciarlet [11], and the model studied
by Arunakirinathar and Reddy [3] and Chapelle [8] for curved rods.

Our approach allows us to minimize within the class of curved rods of a prescribed
length, which is a natural condition in applications. The prescribed length is also
preserved by the variations employed here, according to section 4. We also show how
to avoid certain degenerate cases: rods of zero length or with multiple points (see
(2.15) below).

Also note that, besides the fact that we have general constraints on the geom-
etry, in certain important examples the parametrization used here allows us to re-
express them in a convex way. The optimization problems considered in this paper
are nonconvex, but the convexity of the constraint set is very helpful in the numerical
experiments.

The plan of the paper is as follows. We start with the theoretical discussion
of optimization problems for curved rods. In section 2, we indicate the necessary
preliminaries and the formulation of the problem. In section 3, we prove the existence
of the solution (while uniqueness is not valid, in general), and in section 4 we perform
a sensitivity study.

A similar program is carried out in sections 5, 6, and 7, in connection with the
study of optimal shell configurations. Our basic assumption is that the geometry of
the shell can be described by the graph of some mapping in C2(ō), where o ⊂ R2 is
a bounded Lipschitz domain; that is, the use of local charts is avoided. While this
setting still allows for many applications, it is also helpful as it reduces the complexity
of the problem and of the notation.

We underline that, in order to prove the existence of optimal shapes, coercivity
inequalities of Korn type, which are uniform with respect to the geometry, have to
be established (in sections 3 and 6). In particular, in the case of shells the extension
property in Lipschitz domains plays an essential role (see Adams [1]).

In the last section, we present some numerical experiments for optimization prob-
lems for 3D curved rods. We underline that it is rather difficult to construct academic
examples for geometric optimization problems in three dimensions that also allow a
mechanical interpretation. Their computational complexity is quite large, and it seems
that here such 3D examples are solved for the first time in the scientific literature.
Moreover, the fact that the computed optimal solution has a clear physical interpre-
tation in some of the examples provides a strong validation of the model and of the
optimization and approximation methods used here. The numerical treatment of the
optimization of shells (which is not considered here) requires very special numerical
approximation methods.

2. Description of the curved rods problem. Let θ̄ = (θ1, θ2, θ3) ∈ Ck[0, L]3,
k ∈ N, be a 3D Jordan curve of length L > 0, and let t̄ = (t1, t2, t3) ∈ Ck−1[0, L]3

be its tangent vector. We shall always assume that θ̄ originates in the origin of the
coordinates system and that it is parametrized with respect to its arc length; i.e.,
|t̄(x3)|R3 = 1 ∀x3 ∈ [0, L].

Then, alternatively, we may consider ϕ ∈ Ck−1[0, L] and ψ ∈ Ck−1[0, L] to be
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some spherical coordinates of a unit vector given by (sinϕ cosψ, sinϕ sinψ,
cosϕ) ∈ Ck−1[0, L], which we denote again by t̄(x3) = t̄(ϕ(x3), ψ(x3)). The corre-
sponding 3D curve, depending on ϕ , ψ, is obtained by

θ̄(x3) =

x3∫
0

t̄(τ) dτ , x3 ∈ [0, L] .(2.1)

The arbitrary mappings ϕ , ψ will play the role of the minimization parameters (con-
trols) in the optimization problems to be studied in sections 3 and 4. Further condi-
tions, called constraints, may be imposed on them later.

Notice that although the polar coordinates may not be uniquely determined in
certain cases, relation (2.1) with arbitrary ϕ , ψ generates a rich class of 3D regular
curves having Ck-regularity, which is enough for optimization applications. Later, we
will have k = 2.

One advantage of the form (2.1) is that the curve is automatically parametrized
with respect to its arc length, and that a local frame may be defined by purely
algebraic means,

n̄ = (cosϕ cosψ , cosϕ sinψ , − sinϕ) ,(2.2)

b̄ = (− sinψ , cosψ , 0) ,(2.3)

in all points of the curve.
We denote by A the orthogonal matrix having the columns t̄, n̄, b̄. The geometric

meaning of this construction is that we perform a rotation of the global axis system,
corresponding to the angles ϕ and ψ and indicated by A, i.e., t̄ = A(1, 0, 0)T , n̄ =
A(0, 1, 0)T , b̄ = A(0, 0, 1)T .

Remark 2.1. It is possible to apply (2.1)–(2.3) to absolutely continuous regular
(i.e., with nonzero tangent) curves, after a reparametrization with respect to the arc
length. Although we employ the same notation, the vectors n̄ , b̄ are different, in
general, from the normal and binormal vectors of the classical Frenet frame obtained
under stronger regularity assumptions; see Bloch [5]. Other useful variants of local
frames under low smoothness hypotheses may be found in Cartan [7], and Ignat,
Sprekels, and Tiba [13].

We introduce the open set (which may be compared with a horizontal “cylinder”
of nonconstant thickness)

Ω =
⋃

x3∈]0,L[

(
ω(x3) × {x3}

)
⊂ R3,(2.4)

where the cross section ω(x3) ⊂ R2 , x3 ∈ [0, L], is a bounded, but not necessarily
simply connected, domain such that ω(x3) ⊃ ω, with an open set ω ⊂ R2 satisfying
the symmetry relations

0 =

∫
ω

x1 dx1 dx2 =

∫
ω

x2 dx1 dx2 =

∫
ω

x1 x2 dx1 dx2 .(2.5)

The curved rod Ω̃ associated with θ̄ is obtained by the one-to-one nonlinear geomet-
rical transformation F : Ω → Ω̃,

(x1, x2, x3) = x̄ ∈ Ω �→ Fx̄ = x̃ = (x̃1, x̃2, x̃3)

= θ̄(x3) + x1 n̄(x3) + x2 b̄(x3) ∈ Ω̃ ∀ x̄ ∈ Ω ,(2.6)

where Ω̃ = {x̃ = F x̄ ; x̄ ∈ Ω} .
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The fact that F is one-to-one follows from (2.10), (2.11) below. In the scientific
literature (Trabucho and Viaño [19]), Ω̃ is also called a “tube,” in view of the possible
presence of holes in ω( · ). In what follows, we will always assume that ϕ,ψ ∈ C1[0, L],
i.e., k = 2. Then we get〈

t̄(x3) , t̄
′(x3)

〉
R3

=
〈
n̄(x3) , n̄

′(x3)
〉

R3
=
〈
b̄(x3) , b̄

′(x3)
〉

R3
= 0 ,(2.7)

where 〈· , ·〉R3 denotes the Euclidean inner product in R3. This yields the “equations
of motion” of the considered local frame:

t̄′(x3) = a(x3) b̄(x3) + β(x3) n̄(x3) ,

b̄′(x3) = − a(x3) t̄(x3) + c(x3) n̄(x3) ,(2.8)

n̄′(x3) = −β(x3) t̄(x3) + c(x3) b̄(x3) ,

with a , β , c ∈ C[0, L] expressing the curvature and torsion properties of the curved
rod.

The Jacobian of F at x̄ ∈ Ω, denoted by J(x̄) = DF (x̄), is given by

J(x̄) =

⎡⎣ n1(x3) b1(x3) t1(x3) + x1 n
′
1(x3) + x2 b

′
1(x3)

n2(x3) b2(x3) t2(x3) + x1 n
′
2(x3) + x2 b

′
2(x3)

n3(x3) b3(x3) t3(x3) + x1 n
′
3(x3) + x2 b

′
3(x3)

⎤⎦ .(2.9)

By (2.8), (2.9), we have

det J(x̄) = 1 − β(x3)x1 − a(x3)x2 ∀ x̄ ∈ Ω̄ .(2.10)

Remark 2.2. Relations (2.7)–(2.10) require the existence of second-order deriva-
tives for θ̄ (or of first-order derivatives for ϕ , ψ). The results proved in the next
sections show that these assumptions, together with the continuity property for the
derivatives, are also sufficient. The same is true for the case of shells; see sections 5–7.
For the modeling process, various ways to relax the geometric regularity assumptions
have been proposed by Blouza [6], Ignat, Sprekels, and Tiba [13], and Sprekels and
Tiba [18].

Usually, in the scientific literature a stronger regularity is required for the par-
ametrization of rods or shells. In the case of the curved rods, the key point in our
approach is the use of special local bases as in (2.1)–(2.3) or as in Ignat, Sprekels, and
Tiba [13].

If ω(x3) , x3 ∈ [0, L], is contained in a sufficiently small disk in R2, then we may
assume that

det J(x̄) ≥ c > 0 ∀ x̄ ∈ Ω̄ ,(2.11)

which justifies the introduction of the curved rod Ω̃ via the geometric transformation
F in (2.6); see Ciarlet [11, Thm. 3.1-1].

We assume that the rod is clamped at both ends, and that it is subjected to body
forces f̃ ∈ L2(Ω̃)3 (weight, electromagnetic field, etc.), as well as to surface tractions
g̃ ∈ L2(Σ̃)3 on the lateral surface Σ̃ of the rod. On the “inside” lateral face of Ω̃ (i.e.,
corresponding to possible holes), we take g̃ ≡ 0.

Denote by ȳ : Ω̃ → R3 the corresponding displacement of each point x̃ ∈ Ω̃. In
Ignat, Sprekels, and Tiba [13], the general geometrical assumption that

ȳ(x̃) = τ̄(x3) + x1 N̄(x3) + x2 B̄(x3) ∀ x̃ ∈ Ω̃ ,(2.12)
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with x̄ = (x1 , x2 , x3) = F−1(x̃) and τ̄ , N̄ , B̄ ∈ H1
0 (0, L) being unknown functions,

has been imposed. This is a special case of the so-called polynomial approximation of
the displacement; see Trabucho and Viaño [19]. Then, the following boundary value
problem is obtained from the elasticity problem, where we also introduce the notation
bi, i = 1, 3, for later use:

B(ȳ, v̄) = λ̃b1(ȳ, v̄) + μ̃b2(ȳ, v̄) + 2 μ̃b3(ȳ, v̄)(2.13)

= λ̃

∫
Ω

3∑
i,j=1

[
Ni(x3)h1i(x̄) + Bi(x3)h2i(x̄)

+
(
τ ′i(x3) + x1 N

′
i(x3) + x2 B

′
i(x3)

)
h3i(x̄)

][
Mj(x3)h1j(x̄)

+Dj(x3)h2j(x̄) +
(
μ′
j(x3) + x1 M

′
j(x3) + x2 D

′
j(x3)

)
h3j(x̄)

] ∣∣∣ det J(x̄)
∣∣∣ dx̄

+ μ̃

∫
Ω

∑
i<j

[
Ni(x3)h1j(x̄) + Bi(x3)h2j(x̄) +

(
τ ′i(x3) + x1 N

′
i(x3)

+x2 B
′
i(x3)

)
h3j(x̄) + Nj(x3)h1i(x̄) + Bj(x3)h2i(x̄)

+
(
τ ′j(x3) + x1 N

′
j(x3) + x2 B

′
j(x3)

)
h3i(x̄)

][
Mi(x3)h1j(x̄) + Di(x3)h2j(x̄)

+
(
μ′
i(x3) + x1 M

′
i(x3) + x2 D

′
i(x3)

)
h3j(x̄) + Mj(x3)h1i(x̄) + Dj(x3)h2i(x̄)

+
(
μ′
j(x3) + x1 M

′
j(x3) + x2 D

′
j(x3)

)
h3i(x̄)

]∣∣∣ det J(x̄)
∣∣∣ dx̄

+ 2 μ̃

∫
Ω

3∑
i=1

[
Ni(x3)h1i(x̄) + Bi(x3)h2i(x̄) +

(
τ ′i(x3) + x1 N

′
i(x3)

+x2 B
′
i(x3)

)
h3i(x̄)

][
Mi(x3)h1i(x̄) + Di(x3)h2i(x̄)

+
(
μ′
i(x3) + x1 M

′
i(x3) + x2 D

′
i(x3)

)
h3i(x̄)

] ∣∣∣ det J(x̄)
∣∣∣ dx̄

=

3∑
l=1

∫
Ω

fl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)
|det J(x̄)| dx̄

+
3∑

i,j=1

3∑
l=1

∫
∂Ω

gl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)
|det J(x̄)|

×
√
νi(x̄) gij(x̄) νj(x̄)dτ .

Above, λ̃ ≥ 0 , μ̃ > 0 are the Lamé coefficients of the material; we have the matrices
(hij(x̄)) = J(x̄)−1, (gij(x̄)) = (gij(x̄))−1, and (gij(x̄)) = J(x̄)T J(x̄); and μ̄ , M̄ , D̄ ∈
H1

0 (0, L)3 are arbitrary test functions with v̄(x̄) = μ̄(x3) + x1 M̄(x3) + x2 D̄(x3).
Further details, and the proof of the coercivity of the bilinear functional B( · , · ) :
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H1
0 (0, L)9 × H1

0 (0, L)9 → R given by (2.13), may be found in Ignat, Sprekels, and
Tiba [13], where different local bases are used. This yields the existence and the
uniqueness of the solution ȳ of (2.13) in H1

0 (0, L)9. Equation (2.13) is derived via
(2.12) from the usual displacement approach to curved rods (see Trabucho and Viaño
[19, Chap. I]):

3∑
i,j=1

∫
Ω̃

σij(ū) eij(v̄) dx̃ =

3∑
l=1

[∫
Ω̃

f̃l v̄l dx̃ +

∫
Σ̃

g̃l v̄l dτ̃

]

∀ v̄ ∈
{
w̄ ∈ H1(Ω̃) ; w̄ = 0 on F (ω(0) × {0}) ∪ F (ω(L) × {L})

}
with the constitutive law (the stress/strain relation) of linearized elasticity (also
known as Hooke’s law),

σ(ū) = (σij(ū))i,j=1,3 =
(
λ̃ epp(ū) δij + 2 μ̃ eij(ū)

)
i,j=1,3

.

In what follows, we shall suppose that ω(x3) = ω ∀x3 ∈ [0, L], with ω satisfying (2.5).
For given f̄ , ḡ, a general shape optimization problem associated with (2.13) is

(P) min
ϕ,ψ

{
Π(ϕ,ψ) = j

(
θ̄(ϕ,ψ) , ȳ(ϕ,ψ)

)
= j(θ̄, ȳ)

}
,

subject to θ̄ ∈ K, where K ⊂ C2[0, L]3 is a closed bounded subset, and ȳ = (τ̄ , N̄ , B̄) ∈
H1

0 (0, L)9 is obtained as the solution of (2.13). The condition θ̄ ∈ K represents the
natural way to impose restrictions on the geometry of the rod in (P). It gives an
implicit constraint on ϕ,ψ ∈ C1[0, L]. We assume that the mappings j : C2[0, L]3 ×
H1

0 (0, L)9 → R and Π : C1[0, L]2 → R satisfy some regularity properties, to be
imposed later. An important example for a cost functional j is the quadratic case.
For instance, if

j(θ̄, ȳ) = |τ1|2H1
0 (0,L) + |τ2|2H1

0 (0,L) + |τ3|2H1
0 (0,L) ,(2.14)

then (P) aims at finding the shape of the curved rod that minimizes the displacement
of the line of centroids under prescribed forces and tractions. This is a natural safety
requirement in many applications.

Concerning the constraints to which the curved rod may be submitted, we un-
derline that our formalism automatically ensures a prescribed length L > 0. This
eliminates possible trivial cases, such as a constant θ̄ in [0, L], and is also important
from the optimization point of view, since otherwise the cost may depend on L. A
simple sufficient condition under which θ̄ has no multiple points (i.e., there are no
values x1

3, x
2
3 ∈ [0, L] , x1

3 = x2
3, such that θ̄(x1

3) = θ̄(x2
3)) is

0 ≤ ϕ(x3) ≤ π

2
− ε , x3 ∈ [0, L] ,(2.15)

with ε > 0 small. This is due to the fact that (2.1) gives θ′3(x3) = t3(x3) = cosϕ(x3) >
0 in [0, L]; i.e., θ3 is a strictly increasing function in [0, L]. Similar other conditions
may easily be formulated in accordance with the desired applications. They may
be used, for instance, in problems concerning the optimization of strings, where the
periodicity condition (for θ1, θ2)

L∫
0

t1 dx3 =

L∫
0

t2 dx3 = 0(2.16)
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is also important.

Notice that relations (2.14), (2.15) correspond to convex optimization problems,
while relation (2.16) is nonlinear in ϕ,ψ and, consequently, the corresponding set K
is nonconvex. Relation (2.11) should also be included in the definition of K.

Remark 2.3. A very simple variant of representation of the unit tangent vector
is t̄ = (u1, u2,

√
1 − u2

1 − u2
2), but this already assumes a prescribed sign for t3 and

requires the more restrictive hypothesis

u2
1 + u2

2 ≤ 1 − ε

for the differentiability of the local frame. However, under this representation relation
(2.16) becomes linear, which may be useful in some applications.

3. Existence of optimal curved rods. We prove the following continuous
dependence result.

Theorem 3.1. Assume that ϕn → ϕ , ψn → ψ, strongly in C1[0, L]. If ȳn , y̌
denote the solutions to (2.13) associated with (ϕn , ψn) and (ϕ , ψ), respectively, then

ȳn → y̌ strongly in H1
0 (0, L)9 .(3.1)

Proof. Clearly,

t̄n = (cosψn sinϕn , sinψn sinϕn , cosϕn)

→ t̄ = (cosψ sinϕ , sinψ sinϕ , cosϕ)(3.2)

in C1[0, L]3. Then, (2.1) shows that θ̄n → θ̄ in C2[0, L]3. By (2.2), (2.3), and with
obvious notation, we get that n̄n → n̄ and b̄n → b̄ in C1[0, L]3.

From (2.8) it is easy to infer that

an = 〈t̄′n , b̄n〉R3 → a = 〈t̄′ , b̄〉R3 strongly in C[0, L] .(3.3)

We also have βn → β and cn → c in C[0, L].

Relation (2.10) shows that

det Jn(x̄) → det J(x̄) in C(Ω̄),(3.4)

and from (2.11) we infer that {det Jn(x̄)} is bounded from below by some positive
constant.

Moreover, (2.9) implies that Jn(x̄) → J(x̄) in C(Ω̄)9 and, likewise, that J−1
n (x̄) →

J−1(x̄), by (3.4) and the above observations. In particular, we have

hn
ij(x̄) → hij(x̄) in C(Ω̄) ∀ i, j = 1, 3 .(3.5)

Let Bn denote the bilinear functional (2.13) with the coefficients hn
ij , det Jn.

Lemma 3.2. There are c1 > 0 , c2 > 0 such that

Bn(ȳ, ȳ) ≥ c1|ȳ|2H1
0 (0,L)9 − c2|ȳ|2L2(0,L)9(3.6)

for any ȳ ∈ H1
0 (0, L)9 and any n ∈ N.
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Proof. By (3.4) and (2.11), we have

Bn(ȳ, ȳ) ≥ μ̃ c

∫
Ω

∑
i<j

[
Ni h

n
1j + Bi h

n
2j +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
hn

3j

+Nj h
n
1i + Bj h

n
2i +

(
τ ′j + x1 N

′
j + x2 B

′
j

)
hn

3i

]2

dx̄

+ 2 μ̃ c

∫
Ω

3∑
i=1

[
Ni h

n
1i + Bi h

n
2i +

(
τ ′i + x1 N

′
i + x2B

′
i

)
hn

3i

]2

dx̄ .

From the uniform boundedness of the coefficients due to (3.5), and using standard
binomial inequalities, we find that

1

μ̃ c
Bn(ȳ, ȳ) ≥ 1

2

∫
Ω

∑
i<j

[(
τ ′i + x1 N

′
i + x2 B

′
i

)
hn

3j +
(
τ ′j + x1 N

′
j + x2 B

′
j

)
hn

3i

]2

dx̄

+

∫
Ω

3∑
i=1

[(
τ ′i + x1 N

′
i + x2 B

′
i

)
hn

3i

]2

dx̄ − c̃|ȳ|2L2(0,L)9 .

We use the following algebraic identity:

1

2

[(
z1 h

n
32 + z2 h

n
31

)2

+
(
z2 h

n
33 + z3 h

n
32

)2

+
(
z1 h

n
33 + z3 h

n
31

)2
]

+
3

2

[
z2
1(hn

31)
2 + z2

2(hn
32)

2 + z2
3(hn

33)
2

]

=
1

2

(
z2
1 + z2

2 + z2
3

)[
(hn

31)
2 + (hn

32)
2 + (hn

33)
2

]
+

1

2

(
z1 h

n
31 + z2 h

n
32

)2

+
1

2

(
z1 h

n
31 + z3 h

n
33

)2

+
1

2

(
z2 h

n
32 + z3 h

n
33

)2

,

with zi := τ ′i + x1 N
′
i + x2 B

′
i , i = 1, 3. It follows that

1

μ̃ c
Bn(ȳ, ȳ) ≥ 1

4

∫
Ω

3∑
i=1

(
τ ′i + x1 N

′
i + x2 B

′
i

)2 3∑
i=1

(hn
3i)

2 dx̄− c̃ |ȳ|2L2(0,L)9 .(3.7)

A direct calculus allows us to find hn
ij and to check that, for some k > 0,

3∑
i=1

(hn
3i)

2 =
[
det Jn

]−2 3∑
i=1

(tni )2 =
[
det Jn

]−2

≥ k > 0(3.8)

since |t̄n|R3 = 1.
Relations (3.7), (3.8) give

1

μ̃ c
Bn(ȳ, ȳ) ≥ k

4

∫
Ω

3∑
i=1

(
τ ′i + x1 N

′
i + x2 B

′
i

)2

dx̄ − c̃ |ȳ|2L2(0,L)9 .
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Performing the computations in the right-hand side and integrating with respect to
x1 , x2, we obtain the inequality (3.6) by means of (2.5).

Proof of Theorem 3.1 (continued). We use a contradiction argument to show that
the functionals Bn are uniformly coercive. We assume that there is a sequence εn → 0
and a sequence ỹn ∈ H1

0 (0, L)9 , |ỹn|H1
0 (0,L)9 = 1, such that

0 ≤ Bn(ỹn, ỹn) ≤ εn|ỹn|2H1
0 (0,L)9 .(3.9)

Let ŷ be the weak limit of ỹn in H1
0 (0, L)9, which may be supposed to exist.

We give a detailed computation for the last integral in the definition of Bn(ỹn, ỹn):

In = 2 μ̃

∫
Ω

3∑
i=1

[
Ñn

i hn
1i + B̃n

i hn
2i +

(
τ̃n

′

i + x1 Ñ
n′

i + x2 B̃
n′

i

)
hn

3i

]2

detJn dx̄

= 2 μ̃

∫
Ω

3∑
i=1

[
Ñn

i h1i + B̃n
i h2i +

(
τ̃n

′

i + x1 Ñ
n′

i + x2 B̃
n′

i

)
h3i

]2

detJ dx̄

+ 2 μ̃

∫
Ω

3∑
i=1

[
Ñn

i

(
hn

1i

√
det Jn − h1i

√
det J

)
+ B̃n

i

(
hn

2i

√
det Jn − h2i

√
det J

)

+
(
τ̃n

′

i + x1 Ñ
n′

i + x2 B̃
n′

i

)(
hn

3i

√
det Jn − h3i

√
det J

)]

×
[
Ñn

i

(
hn

1i

√
det Jn + h1i

√
det J

)
+ B̃n

i

(
hn

2i

√
det Jn + h2i

√
det J

)
+
(
τ̃n

′

i + x1 Ñ
n′

i + x2 B̃
n′

i

)(
hn

3i

√
det Jn + h3i

√
det J

)]
dx̄ .

Here, ỹn = (τ̃n, Ñn, B̃n) belongs to the unit ball in H1
0 (0, L)9. The uniform conver-

gence of the coefficients (see (3.4), (3.5)) shows that the last integral converges to
zero. The weak lower semicontinuity of quadratic forms gives

lim inf
n→∞

In = lim inf
n→∞

2μ̃

∫
Ω

3∑
i=1

[
Ñn

i h1i + B̃n
i h2i +

(
τ̃n

′

i + x1 Ñ
n′

i + x2 B̃
n′

i

)
h3i

]2

× det Jdx̄

≥ 2 μ̃

∫
Ω

3∑
i=1

[
N̂i h1i + B̂i h2i +

(
τ̂ ′i + x1 N̂

′
i + x2 B̂

′
i

)
h3i

]2

det J dx̄ ,

where (τ̂ , N̂ , B̂) ∈ H1
0 (0, L)9 is the detailed notation of ŷ.

Computing the other terms in a similar way, we get

(3.10)

lim inf
n→∞

Bn(ỹn, ỹn) ≥ 2 μ̃

∫
Ω

3∑
i=1

[
N̂i h1i + B̂i h2i

+
(
τ̂ ′i + x1 N̂

′
i + x2 B̂

′
i

)
h3i

]2

det J dx̄
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+ λ̃

∫
Ω

3∑
i,j=1

[
N̂i h1i + B̂i h2i +

(
τ̂ ′i + x1 N̂

′
i + x2 B̂

′
i

)
h3i

]

×
[
N̂j h1j + B̂j h2j +

(
τ̂ ′j + x1 N̂

′
j + x2 B̂

′
j

)
h3j

]
det J dx̄

+ μ̃

∫
Ω

∑
i<j

[
N̂i h1j + B̂i h2j +

(
τ̂ ′i + x1 N̂

′
i + x2 B̂

′
i

)
h3j

+ N̂j h1i + B̂j h2i +
(
τ̂ ′j + x1 N̂

′
j + x2 B̂

′
j

)
h3i

]2

det J dx̄

= B(ŷ, ŷ) .

By assumption (3.9) and by (3.10), we have B(ŷ, ŷ) = 0.
It is known that such a relation yields ŷ = 0 (see, for instance, Lemma 2.3 in

[13]).
We again use inequality (3.9) with Lemma 3.2:

εn ≥ Bn(ỹn, ỹn) ≥ c1 − c2|ỹn|2L2(0,L)9 ,(3.11)

since |ỹn|H1
0 (0,L)9 = 1.

Notice that ỹn → ŷ = 0 strongly in L2(0, L)9, by the above argument. Then,
combining (3.10) and (3.11), we obtain the contradiction 0 ≥ c1. We conclude that
there is some δ > 0 such that, ∀ n ≥ 1,

Bn(ȳ, ȳ) ≥ δ|ȳ|2H1
0 (0,L)9 ∀ ȳ ∈ H1

0 (0, L)9 .(3.12)

Let us fix v̄ = ȳn in the state equations (2.13) corresponding to Bn( · , · ). Taking
(3.12) into account, we immediately obtain that {ȳn} is bounded in H1

0 (0, L)9. We
may take a subsequence such that ȳn → y̌ weakly in H1

0 (0, L)9. Due to the uniform
convergence of the coefficients hn

ij , det Jn , g
ij
n , one may pass to the limit in (2.13)

and see that y̌ is indeed the solution to (2.13) associated with (ϕ , ψ).
The last step of the proof is to show that the convergence is valid in the strong

topology of H1
0 (0, L)9. We subtract the equations corresponding to (τn, Nn, Bn)

(resp., (τ̌ , Ň , B̌)), we intercalate advantageous terms, and, finally, we take test func-
tions of the form (τn, Nn, Bn) − (τ̌ , Ň , B̌) ∈ H1

0 (0, L)9. We write in detail just the
simplest term:

2 μ̃

∫
Ω

3∑
i=1

[
Nn

i hn
1i + Bn

1 hn
2i +

(
τn

′

i + x1 N
n′

i + x2 B
n′

i

)
hn

3i

]

×
[
(Nn

i − Ňi)h
n
1i + (Bn

i − B̌i)h
n
2i +

(
τn

′

i − τ̌ ′i + x1(N
n′

i − Ň ′
i) + x2(B

n′

i − B̌′
i)
)
hn

3i

]

×det Jn dx̄− 2 μ̃

∫
Ω

3∑
i=1

[
Ňi h1i + B̌i h2i +

(
τ̌ ′i + x1 Ň

′
i + x2 B̌

′
i

)
h3i

]

×
[
(Nn

i − Ňi)h1i + (Bn
i − B̌i)h2i +

(
τn

′

i − τ̌ ′i + x1(N
n′

i − Ň ′
i) + x2(B

n′

i − B̌i)
′
)
h3i

]
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×det J dx̄ = 2 μ̃

∫
Ω

3∑
i=1

[
(Nn

i − Ňi)h1i + (Bn
i − B̌i)h2i

+
(
τn

′

i − τ̌ ′i + x1(N
n′

i − Ň ′
i) + x2(B

n′

i − B̌′
i)
)
h3i

]2

det J dx̄

+ 2 μ̃

∫
Ω

3∑
i=1

×
[
Nn

i h1i + Bn
i h2i +

(
τn

′

i + x1 N
n′

i + x2 B
n′

i

)
h3i

]

×
[
(Nn

i − Ňi)(h
n
1i − h1i) + (Bn

i − B̌i)(h
n
2i − h2i) +

(
τn

′

i − τ̌ ′i + x1(N
n′

i − Ň ′
i)

+x2(B
n′

i − B̌′
i)
)
(hn

3i − h3i)

]
det J dx̄

+ 2 μ̃

∫
Ω

3∑
i=1

[
Nn

i h1i + Bn
i h2i +

(
τn

′

i + x1 N
n′

i + x2 B
n′

i

)
h3i

]

×
[
(Nn

i − Ňi)h
n
1i + (Bn

i − B̌i)h
n
2i +

(
τn

′

i − τ̌n
′

i + x1(N
n′

i − Ň ′
i) + x2(B

n′

i − B̌′
i)
)
hn

3i

]
×
[
det Jn − det J

]
dx̄

+ 2 μ̃

∫
Ω

3∑
i=1

[
Nn

i (hn
1i − h1i) + Bn

i (hn
2i − h2i) +

(
τn

′

i + x1 N
n′

i + x2 B
n′

i

)
(hn

3i − h3i)

]

×
[
(Nn

i − Ňi)h
n
1i + (Bn

i − B̌i)h
n
2i

+
(
τn

′

i − τ̌ ′i + x1(N
n′

i − Ň ′
i) + x2(B

n′

i − B̌′
i)
)
hn

3i

]
detJn dτ̄ .

All the terms above, except the first one after the equality sign (the quadratic one),
converge to zero due to the weak convergence of (τn, Nn, Bn) and to the uniform
convergence of the coefficients. Similar computations may be performed for all the
integrals in the variational equations, and we conclude that

lim
n→∞

B(ȳn − y̌ , ȳn − y̌) = 0 .(3.13)

By (3.12), (3.13) the proof is finished.
Corollary 3.3. If K ⊂ C2[0, L]3 is generated by a compact in C1[0, L]3 subset

of {ϕ,ψ} and j : C2(0, L)3 ×H1
0 (0, L)9 → R is lower semicontinuous, then the shape

optimization problem (P) admits at least one optimal curved rod solution in K.
Example 3.4 The functional (2.14) satisfies the above conditions, and the con-

straint (2.15), supplemented by boundedness conditions on ψ and ϕ′ , ψ′, provides a
simple case when Corollary 3.3 may be applied.

4. Sensitivity analysis of curved rods. We first study some differentiability
properties of the mapping (ϕ,ψ) ∈ C1[0, L]2 �→ ȳ ∈ H1

0 (0, L)9, with ȳ being the
solution of (2.13) corresponding to (ϕ,ψ). We consider (ϕλ, ψλ) = (ϕ + λ γ , ψ +
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λ ξ) ∈ C1[0, 1]2 , λ ∈ R+, to be some variation around (ϕ,ψ), and we denote by
ȳλ = (τ̄λ, N̄λ, B̄λ) ∈ H1

0 (0, L)9 the corresponding solution of (2.13). Similarly, we
denote by t̄λ, θ̄λ, n̄λ, b̄λ, aλ, βλ, cλ, Jλ, h

λ
ij , g

ij
λ all the quantities defined in section 2,

starting from (ϕλ, ψλ). Notice that, by our construction, the perturbed curved rod θ̄λ
still has length L and is parametrized with respect to its arc length, i.e., |t̄λ|R3 = 1.

It is elementary, though tedious, to check that all the below listed limits (com-
puted in the indicated “range” spaces) and operators exist and satisfy the indicated
properties:

lim
λ→0

t̄λ − t̄

λ
= t̃(γ, ξ) , t̃ : C1[0, L]2 → C1[0, L]3 ,(4.1)

lim
λ→0

θ̄λ − θ̄

λ
= θ̃(γ, ξ) , θ̃ : C1[0, L]2 → C2[0, L]3 ,(4.2)

lim
λ→0

n̄λ − n̄

λ
= ñ(γ, ξ) , ñ : C1[0, L]2 → C1[0, L]3 ,(4.3)

lim
λ→0

b̄λ − b̄

λ
= b̃(γ, ξ) , b̃ : C1[0, L]2 → C1[0, L]3 ,(4.4)

lim
λ→0

aλ − a

λ
= ã(γ, ξ) , ã : C1[0, L]2 → C[0, L] ,(4.5)

lim
λ→0

βλ − β

λ
= β̃(γ, ξ) , β̃ : C1[0, L]2 → C[0, L] ,(4.6)

lim
λ→0

cλ − c

λ
= c̃(γ, ξ) , c̃ : C1[0, L]2 → C[0, L] ,(4.7)

lim
λ→0

det Jλ − det J

λ
= D̃(γ, ξ) , D̃ : C1[0, L]2 → C(Ω̄) ,(4.8)

lim
λ→0

Jλ − J

λ
= J̃(γ, ξ) , J̃ : C1[0, L]2 → C(Ω̄)9 ,(4.9)

lim
λ→0

J−1
λ − J−1

λ
= Ĩ(γ, ξ) , Ĩ : C1[0, L]2 → C(Ω̄)9 ,(4.10)

lim
λ→0

hλ
ij − hij

λ
= h̃ij(γ, ξ) , h̃ij : C1[0, L]2 → C(Ω̄) ,(4.11)

lim
λ→0

gijλ − gij

λ
= g̃ij(γ, ξ) , g̃ij : C1[0, L]2 → C(Ω̄) .(4.12)

All the operators t̃, θ̃, ñ, b̃, ã, β̃, c̃, D̃, J̃ , Ĩ, h̃ij , g̃
ij are linear and bounded in the indi-

cated spaces. For instance, relation (4.1) reads in full detail as

lim
λ→0

λ−1
[(

sinϕλ cosψλ, sinϕλ sinψλ, cosϕλ

)
−
(

sinϕ cosψ, sinϕ sinψ, cosϕ
)]

=
(
γ cosϕ cosψ − ξ sinϕ sinψ , γ cosϕ sinψ + ξ sinϕ cosψ , − γ sinϕ

)
.

It is valid in C1[0, L]3; i.e., a similar relation may be written with respect to the
derivatives of the above vector functions in [0, L]. The linear operator t̃ : C1[0, L]2 →
C1[0, L]3, associated with ϕ,ψ ∈ C1[0, L], is

t̃(γ, ξ) =

⎡⎢⎢⎣
cosϕ cosψ − sinϕ sinψ

cosϕ sinψ sinϕ cosψ

− sinϕ 0

⎤⎥⎥⎦
[

γ

ξ

]
∀ (γ, ξ) ∈ C1[0, L]2 .
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By Theorem 3.1, we also have that

ȳλ → ȳ strongly in H1
0 (0, L)9 .(4.13)

In order to prove the differentiability properties of ȳλ, we subtract the equations for
ȳλ , ȳ, divide by λ, and intercalate advantageous terms. Later, we shall also fix test
functions of the form λ−1(ȳλ − ȳ) ∈ H1

0 (0, L)9.
In the right-hand side of (2.13), it is possible to pass to the limit,

lim
λ→0

{
3∑

l=1

∫
Ω

fl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)det Jλ − det J

λ
dx̄(4.14)

+
3∑

i,j=1

3∑
l=1

∫
∂Ω

gl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)

×
det Jλ

√
νi(x̄) gijλ νj(x̄) − det J

√
νi(x̄)gijνj(x̄)

λ
dτ

}

=

3∑
l=1

∫
Ω

fl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)
D̃(γ, ξ) dx̄

+
3∑

i,j=1

3∑
l=1

∫
∂Ω

gl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)[
D̃(γ, ξ)

√
νi gij νj

+ detJ
νi g̃

ij(γ, ξ)νj

2
√
νi gij νj

]
dτ .

We also write the corresponding transformation of the simplest term (i.e., of b3( · , · ))
in Bλ( · , · ), the bilinear functional (2.13) obtained from (ϕλ, ψλ):

1

λ

{
2 μ̃

∫
Ω

3∑
i=1

[
Nλ

i hλ
1i + Bλ

i hλ
2i +

(
τλ

′

i + x1 N
λ′

i + x2 B
λ′

i

)
hλ

3i

]
(4.15)

×
[
Mi h

λ
1i + Di h

λ
2i +

(
μ′
i + x1 M

′
i + x2 d

′
i

)
hλ

3i

]
det Jλ dx̄

− 2 μ̃

∫
Ω

3∑
i=1

[
Ni h1i + Bi h2i +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h3i

]

×
[
Mi h1i + Di h2i +

(
μ′
i + x1 M

′
i + x2 D

′
i

)
h3i

]
det J dx̄

}

= 2 μ̃

∫
Ω

3∑
i=1

[
Nλ

i −Ni

λ
h1i +

Bλ
i −Bi

λ
h2i

+

(
τλ

′

i − τ ′i
λ

+ x1
Nλ′

i −N ′
i

λ
+ x2

Bλ′

i −B(i
′

λ

)
h3i

]

×
[
Mi h1i + Di h2i +

(
μ′
i + x1 M

′
i + x2 D

′
i

)
h3i

]
det J dx̄
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+ 2 μ̃

∫
Ω

3∑
i=1

[
Nλ

i h1i + Bλ
i h2i +

(
τλ

′

i + x1 N
λ′

i + x2 B
λ′

i

)
h3i

]

×
[
Mi

hλ
1i − h1i

λ
+ Di

hλ
2i − h2i

λ
+
(
μ′
i + x1 M

′
i + x2 D

′
i

) hλ
3i − h3i

λ

]
det J dx̄

+ 2 μ̃

∫
Ω

3∑
i=1

[
Nλ

i

hλ
1i det Jλ − h1i det J

λ
+ Bλ

i

hλ
2i det Jλ − h2i det J

λ

+
(
τλ

′

i + x1 N
λ′

i + x2 B
λ′

i

) hλ
3i det Jλ − h3i det J

λ

]

×
[
Mi h

λ
1i + Di h

λ
2i +

(
μ′
i + x1 M

′
i + x2 D

′
i

)
hλ

3i

]
dx̄ .

The terms b1( · , · ) and b2( · , · ) appearing in (2.13) (after replacing ϕ and ψ by
ϕλ , ψλ) can be handled exactly as in (4.15). By summing up (4.14) and (4.15)
(including the terms obtained from b1 and b2), we get the relation

B
(
ȳλ − ȳ

λ
, v̄

)
= Zλ(v̄)(4.16)

for any test function v̄ = (μ̄, M̄ , D̄) ∈ H1
0 (0, L)9, and with some linear bounded

operator Zλ : H1
0 (0, L)9 → R for any λ ∈ R+. More precisely, we have

Zλ(v̄) =

3∑
l=1

∫
Ω

fl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)
D̃(γ, ξ) dx̄

+
3∑

i,j=1

3∑
l=1

∫
∂Ω

gl(x̄)
(
μl(x3) + x1 Ml(x3) + x2 Dl(x3)

)[
D̃(γ, ξ)

√
νi gij νj

+ detJ
νi g̃

ij(γ, ξ) νj

2
√
νi gij νj

]
dτ + 2 μ̃

∫
Ω

3∑
i=1

[
Nλ

i h1i + Bλ
i h2i +

(
τλ

′

i + x1 N
λ′

i

+x2 B
λ′

i

)
h3i

][
Mi

hλ
1i − h1i

λ
+ Di

hλ
2i − h2i

λ
+ (μ′

i + x1 M
′
i

+x2 D
′
i)
hλ

3i − h3i

λ

]
det J dx̄ + 2 μ̃

∫
Ω

3∑
i=1

[
Nλ

i

hλ
1i det Jλ − h1i det J

λ

+Bλ
i

hλ
2i det Jλ − h2i det J

λ
+
(
τλi + x1 N

λ′

i

+x2 B
λ′

i

) hλ
3i det Jλ − h3i det J

λ

] [
Mi h

λ
1i + Di h

λ
2i + (μ′

i + x1 M
′
i

+x2 D
′
i)h

λ
3i

]
dx̄ + Ẑλ(v̄) .

The operator Ẑλ : H1
0 (0, L)9 → R is obtained from the terms b1( · , · ) and b2( · , · )

as explained after (4.15). We do not write it explicitly to save space. The relations
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(4.14), (4.15) show that the following estimate is valid:

|Zλ(v̄)| ≤ C|v̄|H1
0 (0,L)9(4.17)

with some constant independent of λ > 0. Here, we use the differentiability properties
of the coefficients, given in (4.1)–(4.12), and the convergence of ȳλ, according to (4.13).

By fixing v̄ = λ−1(ȳλ−ȳ), relations (4.16) and (4.17) show that { ȳλ−ȳ
λ } is bounded

in H1
0 (0, L)9 for λ > 0, by the coercivity of B. We may take a weakly convergent

subsequence

ȳλ − ȳ

λ
→ ŷ , weakly in H1

0 (0, L)9 .(4.18)

As in the previous section, one may see that the convergence is valid in the strong
topology of H1

0 (0, L)9. The equation in variations has the form

B(ŷ, v̄) = Z(v̄) ∀ v̄ ∈ H1
0 (0, L)9 ,(4.19)

with Z(v̄) = limλ→0 Zλ(v̄), which exists by the above discussion. Z depends linearly
and boundedly on (γ, ξ) ∈ C1[0, L]2.

Note that (4.19) has a unique solution ŷ ∈ H1
0 (0, L)9. We have proved the fol-

lowing result.
Proposition 4.1. The mapping (ϕ,ψ) ∈ C1[0, L]2 �→ ȳ ∈ H1

0 (0, L)9 is Gâteaux
differentiable, and the derivative ŷ satisfies (4.19).

We introduce now the so-called adjoint system, with unknowns T̄ = (R̄, P̄ , Q̄) ∈
H1

0 (0, L)9 and defined by

B(T̄ , v̄) = ∇2 j(θ̄, ȳ)(v̄) ∀ v̄ ∈ H1
0 (0, L)9 .(4.20)

In (4.20), we assume that j : C2[0, L]3 ×H1
0 (0, L)9 → R is Fréchet differentiable and

that ∇2j denotes the second component of ∇j or, equivalently, the partial Fréchet dif-
ferential with respect to ȳ. The existence and uniqueness of a solution T̄ ∈ H1

0 (0, L)9

to (4.20) is obvious, due to the coercivity and boundedness of B( · , · ).
Proposition 4.2. If j is Fréchet differentiable, then the directional derivative

of the cost functional Π in problem (P) at the point (ϕ,ψ) ∈ C1[0, L]2 and in the
direction (γ, ξ) ∈ C1[0, L]2 is given by

∇Π(ϕ,ψ) (γ, ξ)

= ∇1j(θ̄, ȳ) θ̃(γ, ξ) +

3∑
l=1

∫
Ω

fl(x̄)
(
Rl(x3) + x1 Pl(x3) + x2 Ql(x3)

)
D̃(γ, ξ) dx̄

+
3∑

i,j=1

3∑
l=1

∫
∂Ω

gl(x̄)
(
Rl(x3) + x1 Pl(x3) + x2 Ql(x3)

)
D̃(γ, ξ)

√
νi gijνj dτ

+

3∑
i,j=1

3∑
l=1

∫
∂Ω

gl(x̄)
(
Rl(x3) + x1 Pl(x3) + x2 Ql(x3)

)
×det J

1√
νi gijνj

νig̃
ij(γ, ξ)νj dτ

− 2 μ̃

∫
Ω

3∑
i=1

[
Ni h1i + Bi h2i +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h3i

]
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×
[
Pi h̃1i(γ, ξ) + Qi h̃2i(γ, ξ) +

(
R′

i + x1 P
′
i + x2 Q

′
i

)
h̃3i(γ, ξ)

]
det J dx̄

− 2 μ̃

∫
Ω

3∑
i=1

[
Ni h̃1i(γ, ξ) + Bi h̃2i(γ, ξ) +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h̃3i(γ, ξ)

]

×
[
Pi h1i + Qi h2i +

(
R′

i + x1 P
′
i + x2 Q

′
i

)
h3i

]
det J dx̄

− 2 μ̃

∫
Ω

3∑
i=1

[
Ni h1i + Bi h2i +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h3i

]

×
[
Pi h1i + Qi h2i +

(
R′

i + x1 P
′
i + x2 Q

′
i

)
h3i

]
D̃(γ, ξ) dx̄

− λ̃

∫
Ω

3∑
i,j=1

[
Ni h1i + Bi h2i +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h3i

]

×
[
Pj h̃1j(γ, ξ) + Qj h̃2j(γ, ξ) +

(
R′

j + x1 P
′
j + x2 Q

′
j

)
h̃3j(γ, ξ)

]
detJ dx̄

− λ̃

∫
Ω

3∑
i,j=1

[
Ni h̃1i(γ, ξ) + Bi h̃2i(γ, ξ) +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h̃3i(γ, ξ)

]

×
[
Pj h1j + Qj h2j +

(
R′

j + x1 P
′
j + x2 Q

′
j

)
h3j

]
detJ dx̄

− λ̃

∫
Ω

3∑
i,j=1

[
Ni h1i + Bi h2i +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h3i

]

×
[
Pj h1j + Qj h2j +

(
R′

j + x1 P
′
j + x2 Q

′
j

)
h3j

]
D̃(γ, ξ) dx̄

− μ̃

∫
Ω

∑
i<j

[
Ni h1j + Bi h2j +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h3j + Nj h1i + Bj h2i

+
(
τ ′j + x1 N

′
j + x2 B

′
j

)
h3i

]

×
[
Pi h̃1j(γ, ξ) + Qi h̃2j(γ, ξ) +

(
R′

i + x1 P
′
i + x2 Q

′
i

)
h̃3j(γ, ξ) + Pj h̃1i(γ, ξ)

+Qj h̃2i(γ, ξ) +
(
R′

j + x1 P
′
j + x2 Q

′
j

)
h̃3i(γ, ξ)

]
detJ dx̄

− μ̃

∫
Ω

∑
i<j

[
Ni h̃1j(γ, ξ) + Bi h̃2j(γ, ξ) +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h̃3j(γ, ξ)
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+Nj h̃1i(γ, ξ) + Bj h̃2i(γ, ξ) +
(
τ ′j + x1 N

′
j + x2 B

′
j

)
h̃3i(γ, ξ)

]

×
[
Pi h1j + Qi h2j +

(
R′

i + x1 P
′
i + x2 Q

′
i

)
h3j + Pj h1i + Qj h2i

+
(
R′

j + x1 P
′
j + x2 Q

′
j

)
h3i

]
det J dx̄

− μ̃

∫
Ω

∑
i<j

[
Ni h1j + Bi h2j +

(
τ ′i + x1 N

′
i + x2 B

′
i

)
h3j

+Nj h1i + Bj h2i +
(
τ ′j + x1 N

′
j + x2 B

′
j

)
h3i

]

×
[
Pi h1j + Qi h2j +

(
R′

i + x1 P
′
i + x2 Q

′
i

)
h3j + Pj h1i + Qj h2i

+
(
R′

j + x1 P
′
j + x2 Q

′
j

)
h3i

]
D̃(γ, ξ) dx̄ .(4.21)

Remark 4.3. In order to compute (4.21), from (ϕ,ψ) and (γ, ξ) ∈ C1[0, L]2,
one has to compute θ̄ ∈ C2[0, L]3 by (2.1), ȳ = (τ̄ , N̄ , B̄) ∈ H1

0 (0, L)9 by (2.13),
T̄ = (R̄, P̄ , Q̄) ∈ H1

0 (0, L)9 by (4.20), and use (4.1)–(4.12), where γ , ξ enter effectively.
See the explicit form of t̃(γ, ξ) given after (4.12). Writing all the operators in (4.1)–
(4.12) explicitly, and replacing them in (4.21), would give the “full” expression for
∇Π(ε, ψ)(γ, ξ), which we do not write down to save space. Since spaces of continuous
functions are taken into account, it is not advantageous to rewrite (4.21) by using
adjoint operators.

Note also that the above argument holds if ϕ,ψ, γ, ξ are only piecewise continu-
ously differentiable. This is important for the numerical experiments in section 8.

Remark 4.4. Assuming that the cross section of the rod is not constant, one
may study optimization problems with respect to the cross section as well, under
appropriate regularity conditions.

Let C = {(ϕ,ψ) ∈ C1[0, L]2 ; θ̄(ϕ,ψ) ∈ K} and u0 = (ϕ0, ψ0) ∈ C be arbitrarily
fixed. We denote by

T (C;u0) =
{
u ∈ C1[0, L]2 ; u = lim

n→∞
λn(un − u0) , λn ≥ 0 , un ∈ C , and un → u0

}
the cone of tangents to C at u0 (see Barbu and Precupanu [4]). It is known that if C is

convex (see examples (2.15), (2.16) and Remark 2.3), then T (C;u0) =
⋃

λ>0 λ(C − u0).
Corollary 4.5. Assume that u∗ = (ϕ∗, ψ∗) is a (local) optimum point for (P).

Then the following statements are valid:
(i) If Π is Fréchet differentiable on C1[0, L]2, then

∇Π(ϕ∗, ψ∗)(γ, ξ) ≥ 0 ∀ (γ, ξ) ∈ T (C;u∗) .

(ii) If C is convex, then the directional derivative of Π satisfies

∇Π(ϕ∗, ψ∗)(γ, ξ) ≥ 0 ∀ (γ, ξ) ∈ C − u∗ .
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Remark 4.6. Corollary 4.5 gives the standard first-order optimality conditions for
problem (P) (see Tröltzsch [20]). Relations (4.21), (4.20), etc., indicate the explicit
calculation of the directional derivative of the cost functional and will be used in the
last section in the numerical experiments.

5. Formulation of the shell optimization problem. Let o ⊂ R2 denote
a bounded domain, not necessarily simply connected, with Lipschitz boundary ∂o.
Define

Ω = o× ] − ε , ε[⊂ R3

for some “small” ε > 0. We denote by (x1, x2) ∈ o and x3 ∈ ]−ε, ε[ , x̄ = (x1, x2, x3) ∈
Ω the independent variables.

Let p : o → R be a C2(ō) mapping, whose graph represents the middle surface S
of a shell. We introduce the geometrical transformation

F : Ω → R3 ,

F (x̄) = π̄(x1, x2) + x3 n̄(x1, x2) ,(5.1)

with π̄ = (π1, π2, π3) = (x1, x2, p(x1, x2)), and with n̄ = (n1, n2, n3) denoting the
normal vector to S in the point π̄(x1, x2). Since the tangent vectors ∂π̄

∂x1
= (1, 0, p1)

and ∂π̄
∂x2

= (0, 1, p2), with p1 = ∂p
∂x1

and p2 = ∂p
∂x2

, are always linearly independent, we

may take n̄ as the normalization of ∂π̄
∂x1

∧ ∂π̄
∂x2

, that is,

n̄ =
1√

1 + p2
1 + p2

2

(−p1,−p2, 1) .(5.2)

Assume that ∂o = γ̄0 ∪ γ̄1, with γ0 , γ1 being nonoverlapping open parts of ∂o such
that meas (γ0) > 0, and let Γ0 := γ0×] − ε, ε[ , Γ1 := ∂Ω \ Γ0. We introduce the
notation

Ω̂ := F (Ω) , Γ̂0 := F (Γ0) , Γ̂1 := F (Γ1) .

We argue later (see (5.9)) that F is a homeomorphism for small ε, and the open

set Ω̂ will represent a shell. We assume that body forces f̂ ∈ L2(Ω̂)3 and surface
tractions ĝ ∈ L2(Γ̂1)

3 act on the shell. Our main mechanical assumption is that the
corresponding displacement û ∈ V (Ω̂) = {v̂ ∈ H1(Ω̂)3 ; v̂|Γ̂0

= 0} has the form

û(x̂) = ū(x1, x2) + x3 r̄(x1, x2) , x ∈ Ω̂ .(5.3)

Here, x̄ = (x1, x2, x3) = F−1(x̂) ∈ Ω and ū = (u1, u2, u3) , r̄ = (r1, r2, r3) belong to
the Hilbert space

V (o) = {v̄ = (v1, v2, v3) ∈ H1(o)3 ; v̄|γ0 = 0} ,(5.4)

equipped with the norm

|v̄|V (o) :=

∫
o

(
|∇v1|2 + |∇v2|2 + |∇v3|2

)
dx1dx2 .

If we denote by Ṽ (Ω̂) the subspace of V (Ω̂) defined by (5.3), (5.4), we can see that
Ṽ (Ω̂) can simply be identified with V (o)×V (o), and we shall do this repeatedly later
in this paper.
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Clearly, ū represents the displacement of the middle surface S of the shell, while
r̄ is the modification of the points along the normal n̄(x1, x2), assumed to remain on
a line. The form (5.3) allows for both dilation and contraction of the elastic material;
it is a generalization of the classical Naghdi model (see Ciarlet [11] and Blouza [6]).

The Jacobian J = DF of F is given by

J(x̄) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 + x3

∂n1

∂x1
x3

∂n1

∂x2
n1

x3
∂n2

∂x1
1 + x3

∂n2

∂x2
n2

p1 + x3
∂n3

∂x1
p2 + x3

∂n3

∂x2
n3

⎤⎥⎥⎥⎥⎥⎥⎦ .(5.5)

As |n̄|2
R3 = 1, we get 〈n̄ , ∂n̄

∂xi
〉R3 = 0 , i = 1, 2, which shows that ∂n̄

∂xi
can be generated

by ∂π̄
∂x1

and ∂π̄
∂x2

. We get the relations

∂n̄

∂x1
(x1, x2) =

∂n1

∂x1

∂π̄

∂x1
+

∂n2

∂x1

∂π̄

∂x2
,(5.6)

∂n̄

∂x2
(x1, x2) =

∂n1

∂x2

∂π̄

∂x1
+

∂n2

∂x1

∂π̄

∂x2
,(5.7)

which are special cases of the equations of motion of the local frame on the surface S;
see Cartan [7]. The coefficients ∂ni

∂xα
, i = 1, 3 , α = 1, 2, are related to the curvatures

of S.
Equalities (5.5)–(5.7) yield

det J(x̄) =

[
1 + x3

(
∂n1

∂x1
+

∂n2

∂x2

)
+ x2

3

(
∂n1

∂x1

∂n2

∂x2
− ∂n1

∂x2

∂n2

∂x1

)]

×
√

1 + p2
1 + p2

2 .(5.8)

Since p ∈ C2(ō), for “small” ε > 0 we get that

det J(x̄) ≥ c > 0 ∀ x̄ ∈ Ω .(5.9)

Let us notice that (5.9) justifies the definition of the shell Ω̂ via the transformation
F ; see Ciarlet [11, Thm. 3.1-1].

We denote the elements of J(x̄)−1 by

J(x̄) = (hij(x̄))i,j=1,3 .(5.10)

In Sprekels and Tiba [18], the following generalized Naghdi model is obtained:

B ((ū, r̄) , (μ̄, ρ̄))

= λ̃

∫
Ω

{
3∑

i=1

[(
∂ui

∂x1
+ x3

∂ri
∂x1

)
h1i +

(
∂ui

∂x2
+ x3

∂ri
∂x2

)
h2i + ri h3i

]}

×
{

3∑
j=1

[(
∂μj

∂x1
+ x3

∂ρj
∂x1

)
h1j +

(
∂μj

∂x2
+ x3

∂ρj
∂x2

)
h2j + ρj h3j

]}
|det J(x̄)| dx̄
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+ 2 μ̃

∫
Ω

3∑
i=1

[(
∂ui

∂x1
+ x3

∂ri
∂x1

)
h1i +

(
∂ui

∂x2
+ x3

∂ri
∂x2

)
h2i + ri h3i

]

×
[(

∂μi

∂x1
+ x3

∂ρi
∂x1

)
h1i +

(
∂μi

∂x2
+ x3

∂ρi
∂x2

)
h2i + ρi h3i

]
|det J(x̄)| dx̄

+ μ̃

∫
Ω

∑
1≤i<j≤3

[(
∂ui

∂x1
+ x3

∂ri
∂x1

)
h1j +

(
∂ui

∂x2
+ x3

∂ri
∂x2

)
h2j + ri h3j

+

(
∂uj

∂x1
+ x3

∂rj
∂x1

)
h1i +

(
∂uj

∂x2
+ x3

∂rj
∂x2

)
h2i + rj h3i

]

×
[(

∂μi

∂x1
+ x3

∂ρi
∂x1

)
h1j +

(
∂μi

∂x2
+ x3

∂ρi
∂x2

)
h2j + ρi h3j

+

(
∂μj

∂x1
+ x3

∂ρj
∂x1

)
h1i +

(
∂μj

∂x2
+ x3

∂ρj
∂x2

)
h2i + rj h3i

]
|det J(x̄| dx̄

=

∫
Ω

3∑
l=1

fl(μl + x3 ρl) |det J(x̄)| dx̄ +

∫
Γ1

3∑
l=1

3∑
i,j=1

gl(μl + x3 ρl) |det J(x̄)|

×
√
νi(x̄) gij(x̄) νj(x̄) dτ ∀ (μ̄, ρ̄) ∈ V (o)2 .(5.11)

Here, f̄(x̄) = f̂(Fx̄) , ḡ(x̄) = ĝ(Fx̄) , x̄ ∈ Ω, we use the assumed form (5.3) of the
displacement, and μ̄ ∈ V (o) , ρ̄ ∈ V (o) are arbitrary test functions. The coefficients
gij are obtained by (

gij(x̄)
)
i,j=1,3

= J(x̄)−1
[
J(x̄)T

]−1

,(5.12)

and (νi(x̄))i=1,3 is the unit outside normal to Γ1 at x̄ ∈ Γ1.
The coercivity of B on V (o) × V (o) was proved by Sprekels and Tiba [18] for ε

small enough. This gives the existence and the uniqueness of the solution (ū, r̄) ∈
V (o) × V (o) to (5.11).

For given f̄ and ḡ (defined in a sufficiently large ball in R3), we consider the
following general shape optimization problem associated with (5.11):

(P′) min
p

{
Π(p) = j

(
ȳ(x1, x2) , p(x1, x2)

)}

with ȳ(x1, x2) = (ū(x1, x2), r̄(x1, x2)) ∈ V (o)2 given by (2.11), and subject to the
“control” constraint p ∈ K ⊂ C2(ō), closed and bounded. Notice that (5.9) should be
included in the definition of K. The mapping j : V (o)2 × C2(o) → R satisfies certain
regularity properties to be described later. One classical example is the quadratic
case

2j(ȳ, p) = |u1|2V (o) + |u2|2V (o) + |u3|2V (o) .(5.13)

Then (P′) aims at finding the shape of the shell (the surface S) that minimizes the
displacement of the middle surface under prescribed body forces and tractions.
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Concerning the constraints to which the shell itself may be submitted and which
are abstractly written as p ∈ K, there is a large variety of examples. We just list

0 ≤ p(x1, x2) ∀ (x1, x2) ∈ o(5.14)

(pointwise constraints), ∫
o

p(x1, x2) dx1 dx2 ≥ c(5.15)

(integral constraints). A special integral constraint is to prescribe limits for the area
of S: ∫

o

√
1 + p2

1 + p2
2 ≥ β .(5.16)

Although all the examples (5.13)–(5.16) have a convex nature, the shape optimization
problem (P′) is strongly nonconvex, since the dependence p �→ ȳ is nonlinear. (P′) is
a control-into-coefficients problem.

6. Existence of optimal shells. First we prove the following continuous de-
pendence result.

Theorem 6.1. Assume that pn : ō → R and pn → p in C2(ō). If ȳn = (ūn, r̄n)
and ȳ = (ū, r̄) are the solutions of (5.11) corresponding to pn , p, then ȳn → ȳ strongly
in V (o)2 for sufficiently small ε > 0.

Relations (5.1), (5.2), (5.5), and (5.8) give (with obvious notation)

n̄n → n̄ in C1(ō)3 ,(6.1)

Fn = π̄n + x3 n̄n → F = π̄ + x3 n̄ in C1(Ω̄)3 ,(6.2)

Jn → J in C(Ω̄)9 ,(6.3)

det Jn → det J in C(Ω̄) .(6.4)

Notice that

J(x̄) =

⎡⎣ 1 0 n1

0 1 n2

p1 p2 n3

⎤⎦
⎡⎢⎣ 1 + x3

∂n1

∂x1
x3

∂n1

∂x2
0

x3
∂n2

∂x1
1 + x3

∂n2

∂x2
0

0 0 1

⎤⎥⎦ = S R =: S(I + x3 M)

(6.5)

(new matrix notation).
Similarly, we have

Jn = Sn Rn = Sn(I + x3 Mn) .(6.6)

A simple calculus gives

S−1
n =

1√
1 + (pn1 )2 + (pn2 )2

⎡⎣ nn
3 − nn

2 pn2 nn
1 pn2 −nn

1

nn
2 pn1 nn

3 − nn
1 pn1 −nn

2

−pn1 −pn2 1

⎤⎦
−→ 1√

1 + p2
1 + p2

2

⎡⎣ n3 − n2 p2 n1 p2 −n1

n2 p1 n3 − n1 p1 −n2

−p1 −p2 1

⎤⎦ = S−1 ,
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strongly in C1(ō). Moreover,

R−1
n = (I + x3 Mn)−1 = I − x3 Mn + x2

3 M
2
n − x3

3 M
3
n + . . .(6.7)

for ε small. Clearly, we have

Mn =

⎡⎢⎢⎢⎢⎢⎣
∂nn

1

∂x1

∂nn
1

∂x2
0

∂nn
2

∂x1

∂nn
2

∂x2
0

0 0 0

⎤⎥⎥⎥⎥⎥⎦ −→ M =

⎡⎢⎢⎢⎢⎢⎣
∂n1

∂x1

∂n1

∂x2
0

∂n2

∂x1

∂n2

∂x2
0

0 0 0

⎤⎥⎥⎥⎥⎥⎦(6.8)

in C(ō). Relations (6.7) and (6.8) show (by a passage to the limit in the infinite sum,
n → ∞) that R−1

n → R−1 in C(Ω̄)9 for ε small.
Then, (6.6) and the above argument give

J−1
n −→ J−1 in C(Ω̄)9 .(6.9)

In particular, we have that

hn
ij(x̄) −→ hij(x̄) in C(Ω̄) ∀ i, j = 1, 3 ,(6.10)

gijn (x̄) −→ gij(x̄) in C(Ω̄) ∀ i, j = 1, 3 ,(6.11)

according to (5.10), (5.12), (6.3), and (6.4).
Let Bn denote the bilinear form B from (5.11) with coefficients hn

ij , det Jn. We
show that it has a coercivity constant independent of n ∈ N for ε > 0 small enough
(again independently of n).

Proposition 6.2. Assume that K is bounded in C2(ō) and that ε < ε(K) and
δ � ε are given positive numbers. There are c = c(K) > 0 and m = m(K) > 0 such
that

Bp(û, û) ≥ c
[
ε|ū|2V (o) + ε3|r̄|2V (o)

]
− m

δ

[
|r̄|2L2(o)3 + |ū|2L2(o)3

]
(6.12)

for any p ∈ K and any û ∈ H1(Ω̂)3 given by (5.3).
The constant ε(K) > 0 depends on ci > 0, i = 1, 2, defined below in (6.23) and

in Lemma 6.3. It should be small enough such that (5.8) is fulfilled, which is possible
due to the boundedness of K in C2(ō). The precise significance of ε(K) , c(K) , m(K)
is indicated in the proof.

The notation Bp( · , · ) signifies the bilinear functional (5.11) associated with some
p ∈ K. We prove Proposition 6.2 only for the case ū, r̄ ∈ H1

0 (o)3 = V (o), in order to
avoid more technical arguments related to the extension of û to H1

0 (R)3.
Proof. We consider the mapping w̄ ∈ H1(Ω)3, given by

w̄(x1, x2, x3) = ū(x1, x2) + x3 r̄(x1, x2) ,(6.13)

such that û(x̂) = w̄(F−1x̂) , x̂ ∈ Ω̂ , x̄ = F−1x̂ ∈ Ω. We denote

S+ = [ε , ε + δ] × ō , S− = [−ε− δ , −ε] × ō .(6.14)
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We extend w̄ to Ω ∪ S+ ∪ S− by w̃|Ω = w̄, and

w̃(x̄) = δ−1{[(ε + δ) − x3] ū(x1, x2) + ε (ε + δ − x3) r̄(x1, x2)}(6.15)

for x̄ ∈ S+,

w̃(x̄) = δ−1 {(ε + δ + x3) ū(x1, x2) − ε (ε + δ + x3) r̄(x1, x2)}(6.16)

for x̄ ∈ S−.
Then, we may extend w̃ by 0 to R3 as ū, r̄ ∈ H1

0 (o)3. In the general case of a
partially clamped shell, one has to use an extension procedure around o ⊂ R2, too
(for instance, the Calderon extension (Adams [1]), since ∂o is assumed Lipschitzian).

We may assume that Fp, i.e., the transformation (5.1) associated with any p ∈ K,
is still one-to-one on Ω∪S+ ∪S−, since ε+ δ is “small” and K is bounded (see (5.8)).
We denote

Σ+
p := Fp(S

+) , Σ−
p := Fp(S

−) .(6.17)

Above, the index p ∈ K puts into evidence the dependence on p of the geometrical
transformation and of the sets. We introduce the extension of û ∈ H1(Ω̂p)

3 by

ũ(x̂) = w̃
(
F−1
p (x̂)

)
.(6.18)

Clearly, it holds that ũ ∈ H1
0 (Ω̂p ∪ Σ+

p ∪ Σ−
p ).

As K is bounded in C2(ō), there is a ball O in R3 such that O ⊃ Ω̂p ∪ Σ+
p ∪ Σ−

p

for any p ∈ K. We may extend ũ by 0 to O so that ũ ∈ H1
0 (O). We have

Bp(û, û) + μ̃

∫
Σ+

p ∪Σ−
p

3∑
i,j=1

∣∣∣êij(ũ)
∣∣∣2 dx̂ ≥ μ̃

∫
O

3∑
i,j=1

∣∣∣êij(ũ)
∣∣∣2 dx̂

since λ̃ ≥ 0 , μ̃ ≥ 0. Korn’s inequality, applied to the last integral, gives that

Bp(û, û) ≥ c|ũ|2H1
0 (O) − μ̃

∫
Σ+

p ∪Σ−
p

3∑
i,j=1

∣∣∣êij(ũ)
∣∣∣2 dx̂

≥ c|ũ|2
H1(Ω̂p)

− μ̃

∫
Σ+

p ∪Σ−
p

3∑
i,j=1

∣∣∣êij(ũ)
∣∣∣2 dx̂ ,(6.19)

with c > 0 being independent of p ∈ K.
We have to estimate the last term in (6.19). To this end, we compute∫

Σ+
p ∪Σ−

p

∣∣∣∣ ∂ũi

∂x̂j

∣∣∣∣2 dx̂ =

∫
Σ+

p ∪Σ−
p

〈(
∂w̃i

∂x1
(x̄(x̂)) ,

∂w̃i

∂x2
(x̄(x̂)) ,

∂w̃i

∂x3
(x̄(x̂))

)
,
(
dp1j(x̂) , dp2j(x̂) , dp3j(x̂)

)〉2

R3

dx̂

=

∫
S+∪S−

〈(
∂w̃i

∂x1
,
∂w̃i

∂x2
,
∂w̃i

∂x3

)
,
(
hp

1j , h
p
2j , h

p
3j

)〉2

R3

|detJp|dx̄ ,
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where (dpij)i,j=1,3 := DF−1
p (x̂) , (hp

ij)i,j=1,3 := J−1
p (x̄), and where we have performed

a standard change of variables in the integral (see Sprekels and Tiba [18] for a detailed
calculation). Notice that the extension of hp

ij to S+ ∪ S− is obvious by (5.5).
As {det Jp} , {hp

ij} are bounded for p ∈ K, we have to estimate the gradient of w̃

in L2(S+ ∪ S−). We compute it in S+, for example:

∂w̃

∂xα
= δ−1

[
(ε + δ − x3)

∂ū

∂xα
+ ε (ε + δ − x3)

∂r̄

∂xα

]
, α = 1, 2 ,(6.20)

∂w̃

∂x3
= − δ−1(ū + ε r̄) .(6.21)

Thus, we get ∣∣∣∣ ∂w̃∂x3

∣∣∣∣
L2(S+∪S−)3

≤
√

2δ−
1
2 |ū|L2(ω)3 +

√
2ε δ−

1
2 |r̄|L2(ω)3 .

For α = 1, 2, we have∣∣∣∣ ∂w̃∂xα

∣∣∣∣
L2(S+∪S−)3

≤
√

2√
3
δ

1
2

∣∣∣∣ ∂ū∂xα

∣∣∣∣
L2(o)3

+

√
2√
3
ε δ

1
2

∣∣∣∣ ∂r̄∂xα

∣∣∣∣
L2(o)3

.(6.22)

Consequently, we can find some c1 > 0, independent of p ∈ K, such that

Bp(û, û) ≥ c|û|2
H1(Ω̂p)

− c1

[
δ|ū|2V (o) + ε2 δ|r̄|2V (o) + δ−1|ū|2L2(o)3 + ε2 δ−1|r̄|2L2(o)3

]
.(6.23)

Lemma 6.3. If Ω̂p = Fp(Ω), there are c2 > 0 , c3 ∈ R, independent of p ∈ K,
such that

|û|2
H1(Ω̂p)

≥ c2

[
ε|ū|2V (o) + ε3|r̄|2V (o)

]
− c3 ε|r̄|2L2(o)3 , ∀ û(x̂) = w̄(F−1

p x̂) ∈ H1(Ωp) ,

for ε ≤ ε0 and with ε0 > 0 independent of p ∈ K.
Proof. The proof of this lemma is quite technical, and we quote Sprekels and Tiba

[18, sect. 3] in this respect. It is possible to check that all the constants appearing there
may be chosen independently of p ∈ K. We indicate here just a precise quantitative
argument that replaces the qualitative proof of Lemma 3.3 in Sprekels and Tiba [18],
in order to preserve the control of the constants. We have

|û|2
H1(Ω̂p)

=

∫
Ω

3∑
i,j=1

[(
∂ui

∂x1
+ x3

∂ri
∂x1

)
hp

1j(x̄) +

(
∂ui

∂x2
+ x3

∂ri
∂x2

)
hp

2j(x̄)

+ ri(x̄)hp
3j(x̄)

]2

|det Jp(x̄)| dx̄ ,(6.24)

after the change of variables via Fp : Ω → Ω̂p.
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We define the quadratic form

Qp(ū, r̄) = 2 ε

∫
o

3∑
i,j=1

(
∂ui

∂x1
hp,0

1j +
∂ui

∂x2
hp,0

2j + r1 h
p,0
3j

)2√
1 + p2

1 + p2
2 dx1 dx2

+
2 ε3

3

∫
o

3∑
i,j=1

(
∂ri
∂x1

hp,0
1j +

∂ri
∂x2

hp,0
2j

)2√
1 + p2

1 + p2
2 dx1 dx2 ,(6.25)

and we estimate it first. Here, (hp,0
ij ) are the elements of the matrix S−1

p (see (6.5),
(6.6)); that is, they constitute an approximation of (hp

ij). Taking into account the

structure of S−1
p , we get

∂ri
∂x1

=
p1√

1 + p2
1 + p2

2

(
∂ri
∂x1

hp,0
13 +

∂ri
∂x2

hp,0
23

)
+

1√
1 + p2

1 + p2
2

(
∂ri
∂x1

hp,0
11 +

∂ri
∂x2

hp,0
21

)
,(6.26)

and similarly for ∂ri
∂x2

, ∂ui

∂xα
, i = 1, 3 , α = 1, 2.

Then, simple algebraic manipulations in (6.25), (6.26), involving the triangle in-
equality (and the fact that the coefficients of the parentheses in the right-hand side
of (6.26) are less than one), put into evidence a constant, independent of p ∈ K, such
that

Qp(ū, r̄) ≥ c
(
ε|ū|2V (o) + ε3|r̄|2V (o) − ε|r̄|2L2(o)3

)
, c > 0 .(6.27)

Taking the difference between (6.24) and (6.25), estimates similar to those of Sprekels
and Tiba [18, sect. 3] show that it will be dominated by the right-hand side in (6.27)
for ε small. This ends the proof of Lemma 6.3.

Combining this difference with (6.23), we get (6.12), for δ � ε, and the proof of
Proposition 6.2 is finished.

Proposition 6.4. Let K̃ ⊂ K be a compact subset. There are ε̂ > 0 such that
for ε < ε̂ there is cε > 0, independent of p ∈ K̃, and

Bp(û, û) ≥ cε

[
|ū|2V (o) + |r̄|2V (o)

]
, û(x̂) = w̄(F−1

p (x̂)) ∈ H1(Ω̂p)(6.28)

for any p ∈ K̃.
Proof. We fix ε̂ and ε < ε̂ , δ � ε, such that (6.12) is valid.
Assume that (6.28) is false; i.e., there is no cε > 0 with the indicated property.

Therefore, for any a > 0, there is pa ∈ K and ūa , r̄a , ûa(x̂) = w̄a(F
−1
pa

(x̂)) such that

0 ≤ Bpa
(ûa, ûa) ≤ a

[
|ūa|2V (o) + |r̄a|2V (o)

]
.(6.29)

In (6.29), we can assume that |(ūa, r̄a)|V (o)2 = 1, and, consequently, that Bpa(ûa, ûa)
→ 0 for a → 0. Moreover, we can suppose that ūa → û , r̄a → r̂, both weakly in V (o),
and pa → p̂ ∈ K̃ strongly in C2(ō), due to the compactness of K̃. In particular, we

get ha
ij → ĥij strongly in C(Ω̄), where (ha

ij)i,j=1,3 = J−1
pa

, (ĥij)i,j=1,3 = J−1
p̂ .

It is simple to see, due to the uniform convergence of the coefficients ha
ij , that

Bpa
(ûa, ûa) − Bp̂(ûa, ûa) → 0(6.30)
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(see (5.11)). The weak lower semicontinuity in H1(o)3×H1(o)3 of Bp̂( · , · ) and (6.29),
(6.30) show that

0 ≥ lim inf
a→0

Bpa(ûa, ûa) = lim inf
a→0

Bp̂(ûa, ûa) ≥ Bp̂

(
(û , r̂) ; (û , r̂)

)
≥ 0 .(6.31)

Clearly, (6.31) shows that Bp̂((û , r̂) ; (û , r̂)) = 0, and the coercivity of Bp̂ gives
û = 0 , r̂ = 0, according to Sprekels and Tiba [18]. We conclude that ūa → 0 , r̄a → 0,
both weakly in V (o) and strongly in L2(o)3.

We combine (6.29) and (6.12) to obtain that

a ≥ c
[
ε|ūa|2V (o) + ε2|r̄a|2V (o)

]
− m

δ

[
|r̄a|2L2(o)3 + |ūa|2L2(o)3

]
≥ c ε3 − m

δ

[
|r̄a|2L2(o)3 + |ūa|2L2(o)3

]
.

Taking a → 0, we get the contradiction

0 ≥ c ε3,

which ends the proof.
Proof of Theorem 6.1. We note that the assumptions of Proposition 6.4 are fulfilled

and that (6.28) is valid for {pn}, for any n ∈ N. Then, if we fix (μ̄, ρ̄) = ȳn = (ūn, r̄n)
in (5.11) with p = pn, we get immediately that {ȳn} is bounded in V (o)2. We may
assume that ūn → ū , r̄n → r̄, both weakly in V (o), on a subsequence. Due to the
uniform convergence of the coefficients, one may pass to the limit in (5.11) and see
that ȳ = (ū, r̄) is indeed the solution of (5.11) associated with p. As the solution of
(5.11) is unique, ȳ is the weak limit of the whole sequence.

Now, we have to show that the convergence is valid in the strong topology of V (o)2.
We subtract the equations corresponding to ȳn , ȳ; we intercalate advantageous terms
(see the last step in the proof of Theorem 3.1) and; finally, we take test functions
of the form ȳn − ȳ ∈ V (o)2. As the difference of the corresponding right-hand sides
converges to 0 (by the above weak convergence property), a detailed calculus gives
that

lim
n→∞

Bp(ȳn − ȳ, ȳn − ȳ) = 0 .(6.32)

By (6.28), (6.32), the proof is finished.
Corollary 6.5. If K ⊂ C2(ō) is compact and j : V (o)2 × C2(ō) → R is lower

semicontinuous, then the shape optimization problem (P′) admits at least one optimal
solution p ∈ K.

7. Sensitivity analysis for shells. We investigate some differentiability prop-
erties of the mapping p ∈ C2(ō) �→ ȳ ∈ V (o)2 defined by (5.11). We consider
p + λ q , λ ∈ R+, and q ∈ C2(ō), a small perturbation of p ∈ C2(ō), and we de-
note by ȳλ = (ūλ, r̄λ) ∈ V (o)2 the corresponding solution of (5.11). Similarly, we
denote by n̄λ ∈ C1(ō)3 , Fλ ∈ C1(Ω̄)3 , Jλ ∈ C(Ω̄)9 , hλ

ij ∈ C(Ω̄) , gijλ ∈ C(Ω̄) , Bλ,
etc., all the quantities defined in section 5, starting from pλ = p + λ q. We shall
simply write B for Bp.

It is elementary, though tedious, to check that the below listed limits and linear
and bounded operators exist in the indicated spaces:

lim
λ→0

n̄λ − n̄

λ
= ñ(q) , ñ : C2(ō) → C1(ō)3 ,(7.1)
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lim
λ→0

Jλ − J

λ
= J̃(q) , J̃ : C2(ō) → C(Ω̄)9 ,(7.2)

lim
λ→0

J−1
λ − J−1

λ
= Ĩ(q) , Ĩ : C2(ō) → C(Ω̄)9 ,(7.3)

lim
λ→0

hλ
ij − hij

λ
= h̃ij(q) , h̃ij : C2(ō) → C(Ω̄) ,(7.4)

lim
λ→0

det Jλ − det J

λ
= D(q) , D : C2(ō) → C(Ω̄) ,(7.5)

lim
λ→0

gijλ − gij

λ
= g̃ij(q) , g̃ij : C2(ō) → C(Ω̄) .(7.6)

By Theorem 6.1, we also know that

ȳλ −→ ȳ strongly in V (o)2 .(7.7)

Now, we subtract the equations for ȳλ and for ȳ, we divide by λ, and we prove that
it is possible to take λ → 0. In the right-hand side, we have

lim
λ→0

{∫
Ω

3∑
l=1

fl(μl + x3 ρl)
det Jλ − det J

λ
dx̄

+

∫
Γ1

3∑
l=1

3∑
i,j=1

gl(μl + x3 ρl)
det Jλ

√
νi g

ij
λ νj − det J

√
νi gij νj

λ
dτ

}

=

3∑
l=1

∫
Ω

fl(μl + x3 ρl)D(q) dx̄

+
3∑

l=1

3∑
i,j=1

∫
Γ1

gl(μl + x3 ρl)

[
D(q)

√
νi gij νj + detJ

νi g̃
ij(q) νj

2
√
νi gij νj

]
dτ .(7.8)

Here v̄ = (μ̄, ρ̄) ∈ V (o)2 is an arbitrary test function.
As the computation of 1

λ [Bλ−B] is quite lengthy, we write in detail just the terms
from the bilinear functionals associated with the coefficient 2 μ̃, namely,

1

λ

{∫
Ω

3∑
i=1

[(
∂uλ

i

∂x1
+ x3

∂rλi
∂x1

)
hλ

1i +

(
∂uλ

i

∂x2
+ x3

∂rλi
∂x2

)
hλ

2i + rλi hλ
3i

]

×
[(

∂μi

∂x1
+ x3

∂ρi
∂x1

)
hλ

1i +

(
∂μi

∂x2
+ x3

∂ρi
∂x2

)
hλ

2i + ρi h
λ
3i

]
|det Jλ|dx̄

−
∫

Ω

[(
∂ui

∂x1
+ x3

∂ri
∂x1

)
h1i +

(
∂ui

∂x2
+ x3

∂ri
∂x2

)
h2i + rih3i

]

×
[(

∂μi

∂x1
+ x3

∂ρi
∂x1

)
h1i +

(
∂μi

∂x2
+ x3

∂ρi
∂x2

)
h2i + ρih3i

]
|det J |dx̄

}

=

∫
Ω

3∑
i=1

[(
∂

uλ
i −ui

λ

∂x1
+ x3

∂
rλi −ri

λ

∂x1

)
h1i +

(
∂

uλ
i −ui

λ

∂x2
+ x3

∂
rλi −ri

λ

∂x2

)
h2i +

rλi − ri
λ

h3i

]
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×
[(

∂μi

∂x1
+ x3

∂ρi
∂x1

)
h1i +

(
∂μi

∂x2
+ x3

∂ρi
∂x2

)
h2i + ρih3i

]
|det J |dx̄

+

∫
Ω

3∑
i=1

[(
∂uλ

i

∂x1
+ x3

∂rλi
∂x1

)
hλ

1i det Jλ − h1i det J

λ

+

(
∂uλ

i

∂x2
+ x3

∂rλi
∂x2

)
hλ

2i det Jλ − h2i det J

λ
+ rλi

hλ
3i det Jλ − h3i det J

λ

]

×
[(

∂μi

∂x1
+ x3

∂ρi
∂x1

)
hλ

1i +

(
∂μi

∂x2
+ x3

∂ρi
∂x2

)
hλ

2i + ρih
λ
3i

]
dx̄

+

∫
Ω

3∑
i=1

[(
∂uλ

i

∂x1
+ x3

∂rλi
∂x1

)
h1i +

(
∂uλ

i

∂x2
+ x3

∂rλi
∂x2

)
h2i + rλi h3i

]
(7.9)

×
[(

∂μi

∂x1
+ x3

∂ρi
∂x1

)
hλ

1i − h1i

λ
+

(
∂μi

∂x2
+ x3

∂ρi
∂x2

)
hλ

2i − h2i

λ
+ ρi

hλ
3i − h3i

λ

]
|det J |dx̄ .

According to (7.4), (7.5), and (6.10) the last two integrals are of the form Zλ(ȳλ , v̄) ,
and there is a constant independent of λ > 0 such that the bilinear forms Zλ satisfy

|Zλ(ȳλ , v̄| ≤ C|ȳλ|V (o)2 |v̄|V (o)2 .(7.10)

Applying the same technique to all of the terms of Bλ − B, (7.8)–(7.10) give

B
( ȳλ − ȳ

λ
, v̄
)

= Z̃λ(ȳλ, v̄) ∀ v̄ ∈ V (o)2 ,(7.11)

where Z̃λ is obtained by adding together all the terms from (7.8)–(7.10).
By fixing v̄ = ȳλ−ȳ

λ in (7.11), and taking into account (7.10) and (7.7), we see

that { ȳλ−ȳ
λ } is bounded in V (o)2, due to Proposition 6.4. We may take a weakly

convergent subsequence,

ȳλ − ȳ

λ
→ ŷ weakly in V (o)2 ,(7.12)

and we can pass to the limit in (7.11). The obtained equation in variations has the
form

B(ŷ, v̄) = Z(v̄) ∀ v̄ ∈ V (o)2 ,(7.13)

where Z(v̄) = limλ→0 Z̃λ(ȳλ, v̄) and Z : V (o)2 → R is a linear bounded functional.
Notice that (7.13) has a unique solution ŷ ∈ V (o)2, due to (6.28). We thus have
proved the following proposition.

Proposition 7.1. The mapping p ∈ C2(ō) �→ ȳ ∈ V (o)2 given by (5.11) is
Gâteaux differentiable, and the directional derivative ŷ satisfies (7.13).

We introduce now the so-called adjoint system with unknowns s̄ = (ā , b̄) ∈ V (o)2,

B(s̄ , v̄) = ∇1j(ȳ , p)(v̄) ∀ v̄ ∈ V (o)2 .(7.14)

The existence and the uniqueness of the solution to (7.14) are clear due to the prop-
erties of B. We have assumed that j is Fréchet differentiable on V (o)2 × C2(ō), and
∇1j, ∇2j denote the partial differentials with respect to ȳ , p.
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Proposition 7.2. If j is Fréchet differentiable, then the directional derivative
of the cost functional Π in problem (P′), at the point p ∈ C2(ō) and in the direction
q ∈ C2(ō), is given by

∇Π(p)q = ∇2j(ȳ , p)q + Z(s̄) .(7.15)

Proof.

lim
λ→0

Π(p + λq) − Π(p)

λ
= ∇2j(ȳ , p)q + ∇1j(ȳ , p)ŷ ,

by the chain rule and Proposition 7.1. Moreover, by (7.14), (7.13), we have

∇1j(ȳ , p)ŷ = B(s̄ , ŷ) = B(ŷ , s̄) = Z(s̄) .

Remark 7.3. In order to compute (7.15) from p , q ∈ C2(ō), one has to compute ȳ
by (5.11), s̄ by (7.14), and Z by (7.13). The computation of Z is standard (see (7.9),
(7.8)) but tedious, and we do not detail it here.

Corollary 7.4. Assume that p∗ is a (local) optimal shape for (P′), that ȳ∗ is
the associated deformation, and that all the above assumptions are fulfilled. Then

(i) If K ⊂ C2(ō) is convex, we have

∇2j(ȳ
∗ , p∗)q + Z(s̄) ≥ 0 ∀ q ∈ K − p∗ .

(ii) If K is not convex, we have

∇2j(ȳ
∗ , p∗)q + Z(s̄) ≥ 0 ∀ q ∈ T (K , p∗) .

Remark 7.5. Corollary 7.4 gives the standard optimality conditions for problem
(P′). The directional derivative obtained in Proposition 7.2 may be used, in principle,
in the numerical computations, as in the case of the curved rods. However, the
coercivity properties of the bilinear functional Bp are valid just for small thickness
ε, and the coercivity constant depends in a very bad manner, namely like ε3 (see
Proposition 6.2 or Sprekels and Tiba [18]). This shows that instabilities (the locking
problem) may appear in the numerical experiments and special numerical schemes
are to be used. The interested reader may consult Chenais and Paumier [9] and
Pitkäranta and Leino [15] for a discussion on the approximation of the state equation
(5.11).

8. Numerical experiments. In the papers of Ignat, Sprekels, and Tiba [12],
[13], many numerical examples concerning the deformation of 3D curved rods and
the optimization of planar arches are reported. Here, we concentrate on the problem
discussed in sections 2–4. Namely, we assume that a certain field of forces acting
on “any possible curved rod” is given (see (8.4)–(8.7) below), and we search for the
geometry which produces the minimum value for some cost functional. The cost
considered in the examples is related to various components of the deformation τ̄ of the
line of centroids of the curved rod. The “locking phenomenon,” specific to numerical
computations involving thin structures (see [9], [15]), is avoided in our experiments
by allowing the thickness of the curved rod to be “larger” than the division that we
consider for the interval [0, L] , L = 4π

√
2. Namely, we have divided the interval [0, L]

into 100 equal parts and we have taken the cross section of the curved rod to always
be given by a disk with radius R = 0.3. For the integrals over the cross section,
the usual change of variables to polar coordinates leads to the integration over the
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rectangle [0, R]× [0, 2π], which allows the use of simple numerical integration formulae
corresponding to the discrete grids. We have divided it into 8, respectively, 80, parts
and we have used Simpson’s iterative formula.

In general, as initial iteration to the optimization algorithm, we have considered
the spiral, lying on the cylinder x2

1 + x2
2 = 1, given by

ϕ0(x3) =
π

4
, ψ0(x3) =

π

2
+

x3√
2
, x3 ∈ [0, L] .(8.1)

A simple calculus shows that the rod parametrization corresponding to (8.1) is

θ̄(x3) =

(
cos

x3√
2
, sin

x3√
2
,
x3√

2

)
, x3 ∈ [0, L] .(8.2)

Deformations for this example of a curved rod, under the action of various body forces,
have been computed in Ignat, Sprekels, and Tiba [13]. The Lamé constants taken into
account are λ = 50 , μ = 100. The solution of the state system (2.13) in the Sobolev
space H1

0 (0, L)9 is approximated by linear splines from V 9
h , where h = 10−2L is the

division norm of [0, L], and where

Vh = {vh ∈ C[0, L] ; vh(0) = vh(L) = 0 , vh is piecewise linear in [0, L]} .(8.3)

The same matrix governs the discrete equations for both (2.13) and the adjoint system
(4.20). We underline that finding the matrix (which has to be recomputed in each
optimization iteration) is the most time-consuming step of the algorithm. This is due
to the 3D character of the objects that we are studying. The model (2.13) provides a
dimension reduction up to ODEs, and this is reflected in that the coefficients involve
the computation of many integrals over the cross section. One can compute the
gradient of the cost functional and use projected gradient methods for the optimization
of the geometry of the 3D rods, as explained in section 4. We have used the Uzawa
algorithm combined with the Armijo line search rule for the minimization of the cost.

A first class of examples is obtained when the force f̄ = (0, 0, f3) with the variants

f3(x3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
10, x3 ∈

[
0,

L

2

]
,

−10, x3 ∈
]
L

2
, L

]
,

(8.4)

f3(x3) ≡ 10 in [0, L] ,(8.5)

f3(x3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
10, x3 ∈

[
0,

L

2

]
,

0, x3 ∈
]
L

2
, L

]
,

(8.6)

f3(x3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x3 ∈

[
0,

L

2

]
,

10, x3 ∈
]
L

2
, L

]
.

(8.7)
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Fig. 1.

The control problem has the cost functional Π = 1
2 |τi|2L2(0,L) with i = 2, 3 (compare

with (2.14)) and state equation (2.13) with various f̄ chosen as above. We have also
imposed the constraint (2.15), with ε = π

8 , to avoid the appearance of self-intersecting
curves. We have neglected (2.11), but it may be checked a posteriori that detJ = 0.

In all the cases (8.4)–(8.7), the vertical column, which corresponds to ϕ ≡ 0,
was the geometric solution of the given problem. Indeed, the vertical column is the
most resistant structure with respect to vertical forces as in (8.4)–(8.7). In this case
also, the lateral displacements τ1 , τ2 are several orders of magnitude smaller than the
vertical displacement.

Figure 1 shows the initial and the final geometries, obtained in one or two itera-
tions. In Figures 2–5, the values of τ3 (in the final iteration) are shown, and one can
see their dependence on the forces (8.4)–(8.7), respectively.

The fact that these examples have a clear physical interpretation provides a val-
idation of the model and of the approximation and optimization procedures that we
are using.

In another set of numerical tests, we have considered f̄ = 10b̄ (recall (2.3)). Again
the initial iteration was given by (8.1) (or (8.2)) or by the following perturbation of
it,

ϕ0(x3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π

4
+ 0, 1, x3 ∈

[
0,

L

2

]
,

π

4
− 0, 1, x3 ∈

]
L

2
, L

]
,

(8.8)

and the objective functional was the same as above.
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Notice that, under our parametrization, it is very simple to change the initial
iteration, which is an important advantage in nonconvex optimization problems. The
main property of this choice of f̄ is that it always acts in the horizontal plane, although
in various directions. It is also very easy to construct, under our approach. For the
constraints, we have taken ε = 0 in (2.15). This allows horizontal curves as well,
but self-intersections may appear (which indeed was the case). That is, in this set
of experiments (2.11) is violated. In the examples that we have computed, a clear
decrease in the cost was observed and the tendency was to produce a horizontal curve
as the solution. Although self-intersections are present, horizontal curves will deform
just in the horizontal plane under the action of f̄ = 10b̄. That is, a mechanical
interpretation is still possible (and due to this, it was necessary to allow ε = 0 in
(2.15)).

An interesting feature of this type of experiment was that the optimal ϕ has a
bang-bang structure. Figures 6 and 7 show this for when the initial iteration was
given by (8.8) and (8.1), respectively.

In general, one experiment took between two and three hours, on a powerful
Compaq GS80 workstation.
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Abstract. We consider stability with respect to two measures of a difference inclusion, i.e.,
of a discrete-time dynamical system with the push-forward map being set-valued. We demonstrate
that robust stability is equivalent to the existence of a smooth Lyapunov function and that, in fact,
a continuous Lyapunov function implies robust stability. We also present a sufficient condition for
robust stability that is independent of a Lyapunov function. Toward this end, we develop several
new results on the behavior of solutions of difference inclusions. In addition, we provide a novel
result for generating a smooth function from one that is merely upper semicontinuous.
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1. Introduction. The close connection between robustness of stability prop-
erties for differential equations and the existence of Lyapunov functions has been
implicit in the literature since the result of Kurzweil [13]. In particular, Kurzweil
exploited the inherent robustness of asymptotic stability of the origin for differential
equations defined by a continuous right-hand side in order to demonstrate the ex-
istence of a smooth Lyapunov function. Since Kurzweil, robustness of the assumed
stability property has played a key role in deriving Lyapunov functions. Results on the
existence of Lyapunov functions for asymptotically stable closed sets became available
in the 1960s in the works of Hoppensteadt [7] and Wilson [23]. These results were
extended by Lin, Sontag, and Wang [15] to consider asymptotic stability of closed sets
for locally Lipschitz differential equations subject to disturbances. Recently, Clarke,
Ledyaev, and Stern [4] demonstrated the existence of a smooth Lyapunov function
for upper-semicontinuous differential inclusions with an asymptotically stable origin.

Rather than considering differential inclusions, we will consider the difference
inclusion

x+ ∈ F (x), x ∈ G,(1.1)

where G ⊆ Rn is open. Difference inclusions are a natural way to consider difference
equations subject to disturbances or controlled difference equations. One may consider
a set-valued map as

x+ ∈ F (x) := f(x,V),

where V is a set of disturbances or the admissible control set. We use φ ∈ S(x) to
denote a solution of the difference inclusion (1.1) from initial condition x ∈ G, i.e., a
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function satisfying φ(0, x) = x and

φ(k + 1, x) ∈ F (φ(k, x)) ∀k ∈ Z≥0.

Whereas in the continuous-time case a solution was an absolutely continuous function,
in the discrete-time case solutions are sequences of points. Solutions are defined for
all k ∈ Z≥0 when F (·) maps G to subsets of G, which is the discrete-time counterpart
to forward completeness for continuous-time systems.

In the 1970s, Lakshmikantham and Salvadori [14] demonstrated a locally Lip-
schitz Lyapunov function for a differential equation under the assumption of stability
with respect to two measures, a concept first introduced by Movchan [17]. Stability
with respect to two measures can be seen to cover uniform global or local asymptotic
stability of a point, prescribed motion, or closed set. In fact, Teel and Praly [22,
Proposition 1] (following [15, Proposition 2.5]) demonstrated that KL-stability with
respect to two measures is equivalent to uniform stability and global boundedness
coupled with uniform global attractivity (both properties being defined in an appro-
priate two-measure sense). In Proposition 2.2 we show that this property carries over
to the discrete-time case.

A smooth Lyapunov function for output stability, a special case of stability with
respect to two measures where one of the measures is the norm of the output function,
was presented by Sontag and Wang [20, Theorem 2]. Teel and Praly [22] extended
these results to consider the existence of a smooth Lyapunov function under the
assumption of KL-stability with respect to two measures for differential inclusions. It
is this last result by Teel and Praly [22, Theorem 1] that we propose to develop in the
discrete-time case, namely, the equivalence of robustness of KL-stability with respect
to two measures for a difference inclusion and the existence of a smooth Lyapunov
function. This is the result of Theorem 2.7.

In Theorem 2.8 we present a result stating that when the set-valued map defining
the difference inclusion (1.1) is compact and nonempty, a continuous Lyapunov func-
tion is sufficient to demonstrate robustness. This result has important implications in
robustness analysis. The authors used this fact in [11, Theorem 14] to demonstrate
robustness for a (discontinuous) difference equation. Frequently, in model predictive
control, a continuous Lyapunov function is assumed (see Mayne et al. [16]) which
guarantees robustness of stability. Recently, Grimm et al. [6] presented several ex-
amples where model predictive control is nonrobust. Intuitively, these results follow
from the lack of a continuous Lyapunov function.

A question of great interest over many years is the so-called converse Lyapunov
question, namely, what stability requirements guarantee the existence of a Lyapunov
function? We see from Theorem 2.7 that, for KL-stability with respect to two mea-
sures, this question is reduced to that of finding sufficient conditions for robustness.
The result of Theorem 2.10 states that if the difference inclusion x+ ∈ F (x) is KL-
stable, the set-valued map F (x) is nonempty and compact for each x ∈ G, and F (·)
is continuous, then the KL-stability is robust. In [9] and [10], other sufficient con-
ditions were presented for robustness of KL-stability. For example, KL-stability is
robust when using a single measurement function that is a proper indicator function
for a compact attractor. Each of these sufficient conditions then allows us to state a
converse Lyapunov theorem.

Previous converse Lyapunov theorems for discrete-time systems appeared in books
by Agarwal [1, Theorem 5.12.5] and Stuart and Humphries [21, Theorem 1.7.6], where
uniform global asymptotic stability of the origin or a compact attractor for a locally
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Lipschitz single-valued mapping yields a locally Lipschitz Lyapunov function. Nešić,
Teel, and Kokotović [18] demonstrated the equivalence of uniform global asymptotic
stability of the origin for a difference equation (with no regularity) and the existence
of a Lyapunov function (with no regularity).

Jiang and Wang [8, Theorem 1] showed that uniform global asymptotic stability to
a closed set A for a difference equation with disturbances is equivalent to the existence
of a smooth Lyapunov function under the assumption that the difference equation is
continuous. The assumption of continuity on the difference equation (and compactness
of the set of allowable disturbances) gives rise to a continuous set-valued map. This
result can then be seen to be a special case of Theorem 2.7 and Theorem 2.10 with
ω1(·) = ω2(·) = | · |A, where |x|A := infa∈A |x− a|.

The authors [11] demonstrated that global asymptotic stability of a point for an
upper-semicontinuous difference inclusion implied the existence of a smooth Lyapunov
function. This result follows from the results presented here and in [10] (see also [9]).

We will require two sets of technical results, heretofore unknown in the literature.
In section 5 we develop results pertaining to difference inclusions which parallel those
found in the work of Filippov [5] for differential inclusions. Specifically, we prove
results on closeness of solutions under perturbations (Lemmas 5.1 and 5.2) as well
as on uniform convergence of sequences of solutions (Lemma 5.3). The second novel
technical result involves smoothing nonsmooth functions on a given open domain. As
in much previous work (e.g., [13], [15], [22], and [23]), we first construct a Lyapunov
function satisfying the desired decrease condition, but with a rather weak regularity
property, and then apply a smoothing result to obtain the smooth Lyapunov function
without destroying the decrease property. In the past, these smoothing results applied
to continuous functions. In section 3, we present a novel smoothing theorem which
obtains a smooth function from one that is upper semicontinuous.

2. Smooth Lyapunov functions and robustness. We now turn to precise
statements of our results. Recall that a function α : R≥0 → R≥0 is of class-K if it
is continuous, zero at zero, and strictly increasing. A function is of class-K∞ if, in
addition to being class-K, it is unbounded. A function β : R≥0 × R≥0 → R≥0 is said
to belong to class-KL if, for each t ≥ 0, β(·, t) is of class-K and, for each s ≥ 0, β(s, ·)
is nonincreasing and limt→∞ β(s, t) = 0.

Definition 2.1. Let ωi : G → R≥0, i = 1, 2, be continuous functions. Let F (·)
be a set-valued map from G to subsets of G. We say that the difference inclusion
x+ ∈ F (x) is KL-stable with respect to (ω1, ω2) on G if there exists a function β ∈ KL
such that for every initial condition x ∈ G all solutions φ ∈ S(x) satisfy

ω1(φ(k, x)) ≤ β(ω2(x), k) ∀k ∈ Z≥0.(2.1)

Note that appropriate choices for the measurement functions ω1(·) and ω2(·) as
well as the domain G allow us to recover several classical stability notions. For in-
stance, global asymptotic stability of the origin (for a given difference inclusion evolv-
ing in Rn) corresponds to taking G = Rn and the measurement functions ω1(x) =
ω2(x) = |x| for all x ∈ Rn. Other stability notions, such as local asymptotic stability
or partial state stability, can be covered by appropriately choosing the domain and
measurement functions.

Lin et al. [15, Proposition 2.5] demonstrated that KL-stability with respect to
(| · |A, | · |A) (where A is a closed set) is equivalent to uniform stability and uniform
attractivity of the set A (i.e., KL-stability is equivalent to uniform global asymptotic
stability of the set A). Teel and Praly [22, Proposition1] extended this result to the
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consideration of the general two-measure case; that is, KL-stability with respect to
two measures is equivalent to uniform stability and global boundedness coupled with
uniform global attractivity, where these properties are defined in an appropriate two-
measure sense. This result also holds in the discrete time. The details are similar to
the continuous-time result and may be found in [9].

Proposition 2.2. Let ωi : G → R≥0, i = 1, 2, be continuous and let F (·) be a
set-valued map from G to subsets of G. The following are equivalent:

1. The difference inclusion x+ ∈ F (x) is KL-stable with respect to (ω1, ω2) on
G.

2. The following hold:
(a) (Uniform stability and global boundedness): There exists a function γ ∈

K∞ such that, for each x ∈ G, all solutions φ ∈ S(x) satisfy

ω1(φ(k, x)) ≤ γ(ω2(x)) ∀k ∈ Z≥0.

(b) (Uniform global attractivity): For each r, ε > 0, there exists K(r, ε) > 0
such that, for each x ∈ G, all solutions φ ∈ S(x) satisfy

ω2(x) ≤ r, k ≥ Z≥K =⇒ ω1(φ(k, x)) ≤ ε.

For a continuous function σ : G → R≥0 we define the σ-perturbation of F (·) as

Fσ(x) :=
{
v ∈ Rn : v ∈ {η} + σ(η)B, η ∈ F

(
x + σ(x)B

)}
.(2.2)

We denote the solution set of the difference inclusion x+ ∈ Fσ(x) starting from an
initial condition x ∈ G by Sσ(x). We will use B (or B) to denote the open (or closed)
unit ball in Rn. For two sets O1 and O2, we denote the intersection of O1 and the
complement of O2 by O1\O2.

The following set will be used in what follows:

A :=

{
ξ ∈ G : sup

k∈Z≥0,φ∈S(ξ)

ω1(φ(k, ξ)) = 0

}
.(2.3)

In most cases the set A will be nonempty, but we observe that this is not necessary
for the following results to hold. When A is empty, we define |x|A = infa∈A |x− a| to
be infinite.

For stability with respect to (ω, ω) (ω : G → R≥0 continuous) the closed set A is

A := {x ∈ G : ω(x) = 0} .

This follows from the previous definition (2.3) by examining the KL-estimate defining
stability. Specifically, if

ω(φ(k, x)) ≤ β (ω(x), k) ∀x ∈ G, φ ∈ S(x), k ∈ Z≥0,

then, for ξ ∈ G, ω(ξ) = 0 if and only if supk∈Z≥0,φ∈S(ξ) ω(φ(k, ξ)) = 0.
Our robustness definition is defined relative to the above σ-perturbation.
Definition 2.3. Let F (·) be a set-valued map from G to subsets of G. We say

that the difference inclusion x+ ∈ F (x) is robustly KL-stable with respect to (ω1, ω2)
on G if there exists a continuous function σ : G → R≥0 such that

1. for all x ∈ G, {x} + σ(x)B ⊂ G;
2. for all x ∈ G\A, σ(x) > 0;
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3.

A = Aσ :=

{
ξ ∈ G : sup

k∈Z≥0, φ∈Sσ(ξ)

ω1(φ(k, ξ)) = 0

}
; and(2.4)

4. the difference inclusion x+ ∈ Fσ(x) is KL-stable with respect to (ω1, ω2) on
G.

In what follows, we denote the exponential function by e.
Definition 2.4. A function V : G → R≥0 is said to be a Lyapunov function

with respect to (ω1, ω2) on G for the difference inclusion x+ ∈ F (x) if there exist
α1, α2 ∈ K∞ such that for all x ∈ G,

α1(ω1(x)) ≤ V (x) ≤ α2(ω2(x)),(2.5)

sup
f∈F (x)

V (f) ≤ V (x)e−1, and(2.6)

V (x) = 0 ⇐⇒ x ∈ A.(2.7)

We claim that the above decrease condition (2.6) can be stated as

sup
f∈F (x)

V (f) ≤ V (x) − α(V (x)) ∀x ∈ G,(2.8)

where α : R≥0 → R≥0 is continuous and positive definite. However, we prefer (2.6)
because of the symmetry with the continuous time decrease condition

sup
ω∈F (x)

〈∇V (x), ω〉 ≤ −V (x),

which yields an exponential decrease of the Lyapunov function along trajectories. The
following claim is proved in section 8.

Claim 1. Suppose we are given functions V : G → R≥0, α : R≥0 → R≥0, and
α1, α2 ∈ K∞ satisfying (2.5), (2.7), and (2.8). Then there exist W : G → R≥0 and
functions α̂1, α̂2 ∈ K∞ such that for all x ∈ G

α̂1(ω1(x)) ≤ W (x) ≤ α̂2(ω2(x)),(2.9)

sup
f∈F (x)

W (f) ≤ e−1W (x), and(2.10)

W (x) = 0 ⇐⇒ x ∈ A.(2.11)

Prior to stating our first result we require two definitions related to set-valued
maps.

Definition 2.5. The set-valued map F (·) is said to be upper semicontinuous on
(the open set) O if for each x ∈ O and ε > 0 there exists δ > 0 such that, for all
ξ ∈ O satisfying |x− ξ| < δ, we have F (ξ) ⊆ F (x) + εB.

We point out that the concept of upper semicontinuity for a set-valued map is
not the same as that for extended real-valued functions. In fact, for f : Rn → Rn,
the set-valued map x �→ {f(x)} is upper semicontinuous if and only if x �→ f(x) is
continuous.

Definition 2.6. We say that the set-valued map F (·) satisfies the basic condi-
tions on G if F (·) is upper semicontinuous on G and, for each x ∈ G, F (x) is nonempty
and compact.
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In continuous time the “basic conditions” also require convexity of F (x) for each
x ∈ G. This is necessary to guarantee solutions of the differential inclusion ẋ ∈ F (x)
(see [5]). Obviously, solutions to the difference inclusion x+ ∈ F (x) will exist so long
as F (x) is nonempty.

With all the necessary definitions in hand, we may state under what conditions
robust stability is equivalent to the existence of a Lyapunov function. The following
is the discrete-time analogue of [22, Theorem 1] and is proved in section 6.

Theorem 2.7. Let F (·) mapping G to subsets of G satisfy the basic conditions
on G. Then, for the difference inclusion x+ ∈ F (x), there exists a smooth Lyapunov
function with respect to (ω1, ω2) on G if and only if the inclusion is robustly KL-stable
with respect to (ω1, ω2) on G.

Remark 1. We note that (2.4) and (2.7) were not required in the corresponding
definitions of robustness and a Lyapunov function in [22]. The addition of (2.4) to
the definition of robustness significantly simplifies the proof. In order to maintain the
equivalence of robustness and the existence of a Lyapunov function, one would then
expect that an extra property is required of V (·). This property is (2.7). This is not
unreasonable as, in the case of a single measure, we see that the upper and lower
bounds (2.5) actually imply (2.7).

It is possible to weaken the conditions of Theorem 2.7 and still maintain the ne-
cessity. This means that, in order to demonstrate robustness, it is only necessary to
exhibit a continuous Lyapunov function (rather than a smooth one). Furthermore,
note that we can drop the regularity requirement on the set-valued map. This al-
lows application of the theorem, for example, to the consideration of discontinuous
difference equations.

Theorem 2.8. Let F (·) mapping G to subsets of G be compact and nonempty,
and suppose we have a continuous Lyapunov function. Then x+ ∈ F (x) is robustly
KL-stable with respect to (ω1, ω2) on G.

Since Lyapunov functions can sometimes be difficult to find, we would like a
sufficient condition for robustness that is independent of having a Lyapunov function.
Intuitively, if the set-valued map F (·) of (1.1) is sufficiently regular, robustness should
follow since small perturbations will lead to small deviations. In fact, continuity of
F (·) outside of the set A is sufficient.

Definition 2.9. We say the set-valued map F (·) is continuous on (the open set)
O if, in addition to being upper semicontinuous on O, for each x ∈ O and ε > 0 there
exists δ > 0 such that, for z ∈ O satisfying |z − x| < δ, we have F (x) ⊆ F (z) + εB .

The following theorem is the discrete-time counterpart of [22, Theorem 2] and is
proved in section 7.

Theorem 2.10. Let F (·) be a set-valued map from G to subsets of G satisfying
the basic conditions on G and continuous on an open set containing G\A. Under these
conditions, if x+ ∈ F (x) is KL-stable with respect to (ω1, ω2) on G, then the inclusion
is robustly KL-stable with respect to (ω1, ω2) on G.

3. Smoothing functions. Frequently one wishes to prove that certain assump-
tions such as asymptotic stability of a set or asymptotic controllability to a set imply
the existence of a function satisfying certain boundedness and decrease properties, as
well as a given regularity property. Typically, one constructs a function which satis-
fies all the given properties (i.e., boundedness and decrease properties) excepting the
desired regularity property. One may then take the additional step of “smoothing”
the constructed function without destroying the boundedness or decrease properties.
Such techniques were first used by Kurzweil [13] and Wilson [23]. Throughout this
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section, we take O to be an open set.
We will smooth nonsmooth functions via an integration which involves a change

of variables. We will require the following assumption on the function we wish to
smooth.

Assumption 1. The function V : O → R≥0 is such that
1. V (·) is upper semicontinuous and locally bounded on O,
2. V (x) > 0 implies that there exists δ > 0 such that |z−x| < δ implies V (z) > 0.

Define

A := {x ∈ O : V (x) = 0}.(3.1)

We observe that, under the above assumption on V (·), the set O\A is open. Note
that we need not assume that A is nonempty.

We will also require an assumption on the “smoothing perturbation.”
Assumption 2. The smooth function σ : O\A → R>0 satisfies the following:
1. for each x∗ ∈ A and ε > 0 there exists δ > 0 such that

x ∈ O\A , |x− x∗| ≤ δ =⇒ σ(x) ≤ ε,(3.2)

2.

x ∈ O\A =⇒ {x} + σ(x)B ⊂ O.(3.3)

Item 1 implies that the function σ(·) can be continuously extended to the set A
by defining it to be identically zero on A. For the case where A is empty, item 1 is
trivially satisfied.

We define Vs : O → R≥0 as

Vs(x) := 0, x ∈ A,

Vs(x) :=

∫
V (x + σ(x)ξ)ψ(ξ) dξ, x ∈ O\A,

(3.4)

where ψ : Rn → [0, 1] is smooth, vanishes on Rn\B, and satisfies
∫
ψ(ξ)dξ = 1.

The following theorem is a generalization of [11, Theorem 20], where the smooth-
ing was carried out on Rn\{0}.

Theorem 3.1. Under Assumptions 1 and 2, the function Vs : O → R≥0 defined
by (3.4) is well defined, continuous on O, and smooth on O\A.

Proof. The properties of σ(·) and ψ(·) and the upper semicontinuity of V (·)
guarantee that the (Lebesgue) integral in (3.4) is well defined.

Continuity at A. Since Vs(x) ≡ 0 for x ∈ A, the function is clearly continuous
in the interior of A. It remains to check continuity at the boundary of A. Let x∗

belong to the boundary of A so that Vs(x
∗) = 0. Let ε > 0 be given. Since V (·) is

upper semicontinuous, there exists δ2 > 0 such that V (z) ≤ ε for all z ∈ O satisfying
|z−x∗| ≤ δ2. Since (3.2) holds, there exists δ > 0 such that {x}+σ(x)B ⊆ {x∗}+δ2B
for all |x−x∗| ≤ δ. Consequently, with the fact that

∫
ψ(ξ)dξ = 1, if |x−x∗| ≤ δ and

x ∈ O\A, then

Vs(x) =

∫
V (x + σ(x)ξ)ψ(ξ)dξ ≤ sup

z∈{x∗}+δ2B
V (z) ≤ ε;

i.e., Vs(x) is continuous for x in the boundary of A.
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Finally, if we can establish that Vs is smooth on O\A, then it will be continuous
on O.

Smoothness on O\A. For each x ∈ O\A, we perform a change of variables under
the integration with z = x + σ(x)ξ so that

Vs(x) = σ(x)−n

∫
V (z)ψ(σ(x)−1(z − x)) dz.

For notational purposes, we define h(x, z) := ψ(σ(x)−1(z − x)) so that, for each
x ∈ O\A,

Vs(x) = σ(x)−n

∫
V (z)h(x, z) dz.

For x, z ∈ O\A such that |z − x| > σ(x) we note that h(x, z) and all of its higher
order partial derivatives with respect to x vanish. From this, (3.4), and the fact that
ψ(·) and σ(·) are smooth (the latter on O\A) it follows that each of these partial
derivatives is continuous in x uniformly in z.

Because of the properties of σ(·), to establish smoothness of Vs(·) on O\A it is
enough to establish smoothness of

Ws(x) :=

∫
V (z)h(x, z) dz.

We note that, using the mean value theorem, for each x ∈ O\A, ε > 0, and v ∈ Rn,
there exists λ ∈ [0, 1] such that

Ws(x + εv) −Ws(x)

ε
=

∫
V (z)

h(x + εv, z) − h(x, z)

ε
dz

=

∫
V (z)〈∇h(x + ελv, z), v〉 dz

= r(x, ε, v) +

∫
V (z)〈∇h(x, z), v〉 dz,

where r(x, ε, v) :=
∫
V (z)〈∇h(x + ελv, z) −∇h(x, z), v〉dz.

Using that V (·) is locally bounded on O, (3.3), the fact that ∇h(x, z) = 0 when
|z−x| > σ(x), and the continuity of ∇h(·, z), which is uniform in z, for each ρ > 0 and
M > 0 there exists ε∗ > 0 such that if ε ∈ (0, ε∗] and |v| ≤ M , then |r(x, ε, v)| ≤ ρ.
It follows that Ws(·) is (Fréchet) differentiable (hence continuous) and

〈∇Ws(x), v〉 =

∫
V (z)〈∇h(x, z), v〉 dz.

Repeating this argument for higher order derivatives, we conclude that Ws(·) is
smooth on O\A.

The following lemma can be applied to the function Vs(·) obtained from Theo-
rem 3.1 in order to obtain a function that is smooth on the entire domain O. The
lemma appeared as [22, Lemma 17], which derives from [15, Lemma 4.3] and [13,
Theorem 6].

Lemma 3.2. Let A ⊂ O be a closed set, and assume that Vs : O → R≥0 is
continuous, the restriction of Vs to O\A is smooth, Vs(x) = 0 for all x ∈ A, and
Vs(x) > 0 for all x ∈ O\A. Then there exists a strictly convex function ρ ∈ K∞,
smooth on (0,∞), such that V := ρ ◦ Vs is smooth on O.
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Frequently, to construct the function σ(·) used in the integral smoothing of The-
orem 3.1, we will first specify a constraint which σ(·) must satisfy and then take a
smaller smooth function.

Lemma 3.3. Given a function σ2 : O → R>0 bounded away from zero on compact
subsets of O there exists a smooth function σ1 : O → R>0, also bounded away from
zero on compact subsets of O, such that, for all x ∈ O, σ1(x) ≤ σ2(x).

Proof. We let {Ui}∞i=1 be a locally finite open cover of O with U i a compact subset
of O and let {κi}∞i=1 be a smooth partition of unity on O subordinate to {Ui}. Define
εi := infξ∈Ui σ2(ξ),

σ1(x) :=

∞∑
i=1

κi(x)εi,

and, for each x ∈ O, Ix := {j : x ∈ Uj}. The set Ix is finite for each x ∈ O. We also
note that

max
j∈Ix

εj = max
j∈Ix

inf
ξ∈Uj

σ2(ξ) ≤ σ2(x).

Since U i is a compact subset of O for each i and σ2(·) is bounded away from zero on
compact subsets of O, we have εi > 0 for each i. Thus σ1(x) > 0 for all x ∈ O. Also,

σ1(x) ≤ max
j∈Ix

εj ≤ σ2(x).

Finally, σ1 is smooth on O, inheriting this property from the κi.

4. Set-valued maps. Prior to stating our novel results for difference inclusions,
we require certain facts from set-valued analysis. Our primary sources for set-valued
analysis include the books by Aubin and Cellina [2], Aubin and Frankowska [3], Fil-
ippov [5], and Kisielewicz [12].

Given a set-valued map F (·) from an open set O ⊂ Rn to subsets of Rn, we define
the mapping of a compact set M by

F (M) :=
⋃
ξ∈M

F (ξ).

We also define the composition of two set-valued maps F (·) and G(·) to be

F (G(x)) :=
⋃

w∈G(x)

F (w),

and we denote the n-times composition of F (·) with itself by Fn(·) (e.g., F (F (x)) =
F 2(x)).

The following is well known. See, for example, [12, Proposition 2.3].
Claim 2. Let F (·) be an upper-semicontinuous set-valued map from O to subsets

of Rn, let M ⊂ O be compact, and let F (x) be compact for all x ∈ O. Then the set
F (M) is compact.

For δ ≥ 0, we define the δ-perturbation of the set-valued map F (·) by

Fδ(x) := F
(
{x} + δB

)
+ δB

and the δ-inflation of a set M by

Mδ := M + δB.
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The following claim, which is not difficult to prove, extends the concept of upper
semicontinuity to the consideration of compact sets rather than merely points.

Claim 3. Let F (·) be an upper-semicontinuous set-valued map from O to subsets
of Rn and let M ⊂ O be compact. Then for every ε > 0 there exists δ > 0 such that

Fδ(Mδ) ⊆ F (M) + εB .

Claim 4. Let F (·) be an upper-semicontinuous set-valued map from O to subsets
of Rn. Let k ∈ Z>0, i ∈ {1, 2, . . . , k}, and Si compact subsets of O. Then there exist
ρ ∈ K∞ and c > 0 such that for every δ ∈ (0, c]

Fδ(Siδ) ⊆ F (Si) + ρ(δ)B.

Proof. For a particular Si, let ε > 0. Then, from the result of Claim 3, there
exists δi > 0 such that Fδi(Siδ) ⊆ F (Si) + εB. For fixed ε > 0, let δ̄i(ε) be the
supremum of all applicable δi(ε). Therefore,

Fδ̄i(ε)(Siδ̄i(ε)
) ⊆ F (Si) + εB.

We note that δ̄i(ε) is positive and nondecreasing, but not necessarily continuous.
Choose αi ∈ K such that αi(r) ≤ kδ̄i(r) for all r ∈ R≥0 with k ∈ (0, 1). Let
ci := limr→∞ αi(r) and ρi(r) := α−1

i (r) for all r ∈ [0, ci). Then ρi is continuous, zero
at zero, strictly increasing, and is defined on [0, ci). Given δi < ci, let ε = ρi(δi).
Then δi < δ̄i(ε) and

Fδi(Siδ) ⊆ F (Si) + ρi(δi)B.

Let c∗ := mini∈{1,...,k}{ci} and, for each r ∈ [0, c∗), let ρ̂(r) := maxi∈{1,...,k} ρi(r).

Then, for each i ∈ {1, 2, . . . , k}, Fδ(Siδ) ⊆ F (Si) + ρ̂(δ)B for all δ ∈ (0, c∗). Finally,
let ρ ∈ K∞ be such that ρ(r) ≥ ρ̂(r) for all r ∈ [0, 1

2c
∗]. Therefore, with c := 1

2c
∗,

Fδ(Siδ) ⊆ F (Si) + ρ(δ)B ∀δ ∈ (0, c].

Claim 5. Suppose F (·) is an upper-semicontinuous set-valued map from O to
subsets of Rn and that, for each x ∈ O, F (x) is nonempty and compact. Let M be a
compact set in O and K ∈ Z>0. Assume F k(M) ⊂ O for all k ∈ {1, . . . ,K}. Then
there exist ρ̃ ∈ K∞ and c̃ > 0 such that, for every δ ∈ (0, c̃] and k ∈ {1, . . . ,K},

F k
δ (Mδ) ⊆ F k(M) + ρ̃(δ)B.

Proof. Define the compact sets S0 := M , S1 := F (M), . . . , Sk := F k(M). Let
ρ ∈ K∞ and c > 0 come from Claim 4. Without loss of generality, assume ρ(s) ≥ s
for all s ∈ R≥0. Let c̃ > 0 be such that ρk−1(c̃) < c and define ρ̃(r) := ρk(r) for all
r ∈ [0, c) (where ρk(·) is the k-times composition of ρ(·) with itself). From Claim 4
we may write

Fδ(Mδ) = Fδ(S0 + δB) ⊆ F (M) + ρ(δ)B.

Since δ < c̃, we have that ρ(δ) < c.
Assume the result holds for k−1; i.e., F k−1

δ (Mδ) ⊆ F k−1(M)+ρk−1(δ)B. Noting
that δ ≤ ρk−1(δ) < c we may write

F k
δ (Mδ) = Fδ

(
F k−1
δ (Mδ)

)
⊆ Fδ

(
F k−1(M) + ρk−1(δ)B

)
⊆ Fρk−1(δ)

(
F k−1(M) + ρk−1(δ)B

)
⊆ F k(M) + ρk(δ)B

= F k(M) + ρ̃(δ)B,
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where the final subset is obtained by appealing to Claim 4.
We will need to apply the lemmas in the following section to the difference inclu-

sion defined by x+ ∈ Fσ(x) with Fσ(·) as in (2.2). To do this, we need to know that
Fσ(·) satisfies the basic conditions.

Claim 6. If F (·) is a set-valued map from G to subsets of G satisfying the basic
conditions on G, and σ : G → R≥0 satisfies item 1 of Definition 2.3, then Fσ(·)
satisfies the basic conditions on G.

Proof. That Fσ(x) is nonempty follows from F (x) nonempty. Similarly, Fσ(x) be-
ing compact follows from F (x) compact, the compactness of the closed unit ball, F (·)
upper semicontinuous, and the fact that upper-semicontinuous maps send compacts
to compacts (see Claim 2).

Appealing to Claim 3 with M := {x} + σ(x)B and any ε > 0 there exists δ > 0
such that F (Mδ) = F

(
{x} + (σ(x) + δ)B

)
⊆ F

(
{x} + σ(x)B

)
+ εB. Let εσ = δ

2 > 0.

Then, since σ(·) is continuous, there exists δσ ∈ (0, δ
2 ] such that if |x− z| < δσ, then

|σ(x) − σ(z)| < εσ = δ
2 . Therefore, {z} + σ(z)B ⊆ {x} + (σ(x) + δ)B and

F
(
{z} + σ(z)B

)
⊆ F

(
{x} + σ(x)B

)
+ εB;

i.e., Fσ(·) is upper semicontinuous on G.

5. Difference inclusions. In this section we present three new results for dif-
ference inclusions which will be necessary for the proofs of the results presented in
section 2.

The first result makes use of a perturbed difference inclusion. Let F (·) map an
open set O ⊂ Rn to subsets of Rn, let δ ≥ 0, and consider

x+ ∈ Fδ(x) := F (x + δB) + δB, x ∈ O.(5.1)

We denote the solution set of (5.1) from the point x ∈ Rn by Sδ(x). This result is
similar to a result on closeness of solutions for differential inclusions (see, for example,
[5, section 8, Corollary 2]).

Lemma 5.1. Let O be open, ω : O → R≥0 be continuous, and F (·) map O to
subsets of Rn satisfy the basic conditions on O. Let the triple (K, ε,M) be such that
K ∈ Z>0, ε > 0, M ⊂ O compact, and F k(M) ⊂ O for all k ∈ {1, . . . ,K}. Under
these conditions, there exists δ > 0 such that for every x ∈ Mδ

1. every solution ψ ∈ Sδ(x) satisfies ψ(k, x) ∈ O for k ∈ {0, . . . ,K}, and
2. for every ψ ∈ Sδ(x) there exists x̄ ∈ M and φ ∈ S(x) such that for all

k ∈ {0, . . . ,K} we have

|ω(ψ(k, x)) − ω(φ(k, x̄))| ≤ ε.(5.2)

Proof. The first item follows from Claim 5 and the fact that F k(M) is compact
for each k ∈ Z>0.

If the second item is not true, then no matter how small we pick δ, there is an
initial condition in Mδ and a solution to x+ ∈ Fδ(x) starting at this initial condition
such that, no matter which initial condition in M and solution of x+ ∈ F (x) we pick,
the condition (5.2) is violated for some k ∈ {0, . . . ,K}. In particular, there exist
sequences xi ∈ M1/i and ψi ∈ S1/i(xi) such that, no matter which initial condition
in M and solution of x+ ∈ F (x) we pick, the condition (5.2) is violated for some
k ∈ {0, . . . ,K}. The sequence xi has a subsequence, which we will not relabel,
converging to a point f∗

0 ∈ M . Associated with this subsequence is a sequence of
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points ψi(1, xi) ∈ F1/i(xi). This sequence has a converging subsequence and, from
the upper semicontinuity of F and compactness of F (f∗

0 ), its accumulation point,
denoted f∗

1 , belongs to F (f∗
0 ). Continuing in this way we get a sequence of initial

conditions xi ∈ M1/i and a sequence of solutions ψi ∈ S1/i(xi) such that xi → f∗
0 ∈ M

and ψi(k, xi) → f∗
k ∈ F (f∗

k−1). Now with the solution φ ∈ S(f∗
0 ) given by φ(k, f∗

0 ) =
f∗
k ∈ F (φ(k − 1, f∗

0 )) for all k ∈ {1, . . . ,K}, and using the continuity of ω, condition
(5.2) holds for all i sufficiently large. This is a contradiction and thus proves the
lemma.

We will require the following lemma on closeness of solutions for difference inclu-
sions defined by continuous set-valued maps.

Lemma 5.2. Suppose F (·) is a set-valued map from O to subsets of Rn continuous
on an open set O1 ⊆ O and that, for each x ∈ O, F (x) is compact and nonempty.
Furthermore, suppose ω : O → R≥0 is continuous. For each triple (K, ε, x0) such that
K ∈ Z>0, ε > 0, and x0 ∈ O, and for each solution φ ∈ S(x0) such that φ(k, x0) ∈ O1

for all k ∈ {0, . . . ,K} there exists a δ > 0 such that, for every x ∈ {x0} + δB, there
exists a solution ψ ∈ S(x) such that, for all k ∈ {0, . . . ,K + 1},

|ω(φ(k, x0)) − ω(ψ(k, x))| ≤ ε.

Proof. Define the compact set

C := {φ(k, x0)} ⊂ O1 ⊆ O ∀k ∈ {0, . . . ,K} .

For the given ε > 0, since ω(·) is continuous, there exists δω > 0 such that r ∈ C and
|s−r| ≤ δω imply |ω(s)−ω(r)| ≤ ε. Without loss of generality, we also impose δω ≤ ε
and C + δωB ⊂ O1.

From the continuity of F (·) at φ(K,x0), there exists δK ∈ (0, δω] such that for all
z ∈ O satisfying |z − φ(K,x0)| ≤ δK we have F (φ(K,x0)) ⊆ F (z) + δωB. Similarly,
from the continuity of F (·) at φ(K − 1, x0), there exists δK−1 ∈ (0, δω] such that for
all z ∈ O satisfying |z−φ(K−1, x0)| ≤ δK−1 we have F (φ(K−1, x0)) ⊆ F (z)+δKB.
We repeat this procedure until we reach the initial point x0. From the previous step
we will have a δ1 ∈ (0, δω]. Then, from the continuity of F (·) at x0, there exists a
δ0 ∈ (0, δω] such that, for all z ∈ O,

|z − x0| ≤ δ0 =⇒ F (x0) ⊆ F (z) + δ1B.(5.3)

From (5.3), for any x ∈ {x0} + δ0B there exists a point ψ(1, x) ∈ F (x) such that

|φ(1, x0) − ψ(1, x)| ≤ δ1.(5.4)

This follows from (5.3) since |x− x0| ≤ δ0, so that φ(1, x0) ∈ F (x0) ⊆ F (x) + δ1B.
Since (5.4) holds, we see that there exists a point ψ(2, x) ∈ F (ψ(1, x)) such that

|φ(2, x0) − ψ(2, x)| ≤ δ2.

This follows from (5.4) since φ(2, x0) ∈ F (φ(1, x0)) ⊆ F (ψ(1, x)) + δ2B. That is, for
the point φ(2, x0), there exists an element in F (ψ(1, x)) (which we have called ψ(2, x))
that is no more than δ2 away from φ(2, x0).

We can repeat this procedure at each step until we get to φ(K + 1, x0).
Since, for each � ∈ {0, . . . ,K}, we imposed δ	 ≤ δω we see that, with ψ ∈ S(x)

constructed as above,

|ω(φ(k, x0)) − ω(ψ(k, x))| ≤ ε ∀k ∈ {0, . . . ,K + 1}.
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We present a lemma regarding sequences of solutions. This lemma is similar to
the continuous-time results found in [22, Lemmas 4 and 5], which derived from [5,
section 7, Theorem 3].

Lemma 5.3. Let F (·) mapping O to subsets of Rn satisfy the basic conditions
on O. Let x ∈ O be given and suppose that all solutions φ ∈ S(x) are defined and
belong to O for all k ≥ 0. Then each sequence {φn}∞n=1 of solutions in S(x) has a
subsequence converging to a function φ ∈ S(x) and the convergence is uniform on
each finite time interval.

Proof. From Claim 2 we know that for each k ∈ Z≥0 the set F k(x) is a compact
set. Since for all n and k, φn(k, x) ∈ F k(x), it follows that {φn}∞n=1 has a converging
subsequence {φ1m}∞m=1 such that φ1m(1, x) → f∗

1 =: φ(1, x). Similarly, {φ1m}∞m=1

has a converging subsequence {φ2m}∞m=1 such that φ2m(2, x) → f∗
2 =: φ(2, x), and so

on. In this way, we construct a subsequence which converges to a solution φ ∈ S(x),
and, for a finite time interval, this convergence is uniform.

6. Proof of Theorem 2.7. We demonstrate that robust KL-stability is a nec-
essary and sufficient condition for the existence of a smooth Lyapunov function with
respect to (ω1, ω2).

6.1. Sufficiency. One of the most useful lemmas regarding comparison functions
is frequently referred to as Sontag’s lemma on KL-estimates [19, Proposition 7]. This
lemma allows us to view asymptotic stability as exponential stability via a suitable
nonlinear scaling. The following lemma is a slight refinement of Sontag’s original
lemma wherein we specify the required regularity property of one of the K∞ functions.

Lemma 6.1. For each β ∈ KL and λ > 0, there exist α1, α2 ∈ K∞ such that α1(·)
is Lipschitz on its domain, continuously differentiable on (0,∞), α1(s) ≤ sα′

1(s) for
all s > 0, and α1(β(s, t)) ≤ α2(s)e

−λt for all (s, t) ∈ R≥0 × R≥0.

6.1.1. Bounds. Given βσ ∈ KL from the assumption of KL-stability with re-
spect to (ω1, ω2) for x+ ∈ Fσ(x), Lemma 6.1 yields α̂1, α̂2 ∈ K∞ such that

α̂1 (βσ(s, k)) ≤ α̂2(s)e
−2k ∀k ∈ Z≥0, ∀s ≥ 0.(6.1)

For each x ∈ G we define the function V1 : G → R≥0 by

V1(x) := sup
k∈Z≥0,φ∈Sσ(x)

α̂1(ω1(φ(k, x)))ek.(6.2)

We claim that

V1(x) = 0 ⇐⇒ x ∈ Aσ = A.(6.3)

To see this, note that if x ∈ Aσ, then, by definition (2.4), V1(x) = 0. Furthermore,
V1(x) = 0 implies that

0 = sup
k∈Z≥0,φ∈Sσ(x)

α̂1(ω1(φ(k, x))),

and, since α̂1 ∈ K∞, x ∈ Aσ = A.
It is easy to see that, for all x ∈ G,

V1(x) ≥ sup
φ∈Sσ(x)

α̂1(ω1(φ(0, x)))e0 = α̂1(ω1(x)), and(6.4)
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V1(x) ≤ sup
k∈Z≥0

α̂1(βσ(ω2(x), k))ek

≤ sup
k∈Z≥0

α̂2(ω2(x))e−k = α̂2(ω2(x)).(6.5)

For each x ∈ G and φ ∈ Sσ(x) we may write

V1(φ(j, x)) = sup
k∈Z≥0, ψ∈Sσ(φ(j,x))

α̂1 (ω1(ψ(k, φ(j, x)))) ek

≤ sup
k∈Z≥j , ψ∈Sσ(x)

α̂1(ω1(ψ(k, x)))ek−j

≤ sup
k∈Z≥0, ψ∈Sσ(x)

α̂1(ω1(ψ(k, x)))eke−j

= V1(x)e−j .

We note that w ∈ Fσ(x) implies the existence of φ ∈ Sσ(x) such that φ(1, x) = w.
Therefore, we may write

sup
f∈Fσ(x)

V1(f) ≤ e−1V1(x) ∀x ∈ G.(6.6)

6.1.2. Smoothing V1. We proceed to smooth the function V1(·) without de-
stroying the nature of the upper and lower bounds (6.4) and (6.5) and the decrease
condition (6.6). To do this, we will appeal to Theorem 3.1, which requires Assump-
tions 1 and 2 and uses a set A defined in (3.1) that, as a consequence of (6.3), is the
same as the set A of (2.3). Assumption 1 requires that V1(·) be upper semicontinuous
and that if V1(x) > 0, then V1(z) > 0 for z near x.

V1(·) is upper semicontinuous: We first show that for each x ∈ G\A there exists
a solution such that the supremum defining V1(·) is attained for some solution and
over a finite time interval.

Claim 7. Let x ∈ G be such that V1(x) > 0. Define

K(x) := −
⌊
ln

(
V1(x)

α̂2(ω2(x))

)⌋
+ 1.(6.7)

Then there exists φ̂ ∈ Sσ(x) such that, for every κ ≥ K(x),

V1(x) = max
k∈{0,...,κ}

α̂1

(
ω1(φ̂(k, x))

)
ek.(6.8)

Proof. It is obvious that

sup
k∈{0,...,κ},φ∈Sσ(x)

α̂1 (ω1(φ(k, x))) ek ≤ V1(x).(6.9)

We note that, for all x ∈ G\A,

e−κ ≤ e−K(x) ≤ V1(x)

α̂2(ω2(x))
e−1.
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Therefore, with (2.1) and (6.1), we may write

V1(x) = max

{
sup

k∈{0,...,κ},φ∈Sσ(x)

α̂1 (ω1(φ(k, x))) ek,

sup
k∈Z≥κ,φ∈Sσ(x)

α̂1 (ω1(φ(k, x))) ek

}

≤ max

{
sup

k∈{0,...,κ},φ∈Sσ(x)

α̂1 (ω1(φ(k, x))) ek, α̂2(ω2(x))e−κ

}

≤ max

{
sup

k∈{0,...,κ},φ∈Sσ(x)

α̂1 (ω1(φ(k, x))) ek, V1(x)e−1

}
,

which, together with (6.9), implies

V1(x) = sup
k∈{0,...,κ},φ∈Sσ(x)

α̂1 (ω1(φ(k, x))) ek

= sup
φ∈Sσ(x)

max
k∈{0,...,κ}

α̂1 (ω1(φ(k, x))) ek,

where we can pass to the “max” since the supremum is taken over a finite number of
elements. Now let {φ	}∞	=1 be a maximizing sequence of solutions in Sσ(x); i.e.,

V1(x) = lim
	→∞

max
k∈{0,...,κ}

α̂1 (ω1(φ	(k, x))) ek.

Since Fσ(·) satisfies the basic conditions (see Claim 6), we may appeal to Lemma 5.3
to see that a subsequence of {φ	(·, x)}∞	=1 converges uniformly on {0, . . . , κ} to some

solution φ̂ ∈ Sσ(x). Since the functions α̂1(·) and ω1(·) are continuous, we may write

V1(x) = max
k∈{0,...,κ}

α̂1

(
ω1(φ̂(k, x))

)
ek.

We now prove that V1(·) is upper semicontinuous. In order to obtain a contradic-
tion, suppose that there exist x ∈ G and a sequence {x	}∞	=1 of points in G converging
to x ∈ G such that

lim sup
	→∞

V1(x	) > V1(x) ≥ 0.

Without loss of generality, for all � and some η > 0

V1(x	) ≥ η.(6.10)

Define κ := sup	 K(x	). From (6.10), the continuity of α̂2 ◦ ω2(·), and the definition

of K(·) in (6.7), we see that κ < ∞. Let φ̂ ∈ Sσ(x	) come from Claim 7 so that

V1(x	) = max
k∈{0,...,κ}

α̂1

(
ω1(φ̂(k, x	))

)
ek.

Let ε > 0. Since Fσ(·) satisfies the basic conditions, we appeal to Lemma 5.1 with
the triple (κ, ε, x) and the continuity of α̂1 ◦ω1(·) to assert the existence of �ε so that,
for all � ≥ �ε, there exists ψ	 ∈ Sσ(x) such that

V1(x	) = max
k∈{0,...,κ}

α̂1

(
ω1(φ̂(k, x	))

)
ek ≤ ε + max

k∈{0,...,κ}
α̂1 (ω1(ψ	(k, x))) ek

≤ ε + V1(x).
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This implies lim sup	→∞ V1(x	) ≤ V1(x), which is a contradiction. In addition, it
also establishes continuity of V1(·) at each point x ∈ {ξ ∈ G : V1(ξ) = 0} since, for
each such x, we may write

0 ≤ lim sup
z→x

V1(z) ≤ V1(x) = 0.

Next we establish item 1 of Assumption 1.
Claim 8. If V1(x) > 0, then there exists δ > 0 such that |z − x| < δ implies

V1(z) > 0.
With this claim, we see that the set G\A is open.
Proof. If x ∈ G\A is such that ω1(x) > 0, then the result follows from the

continuity of ω1(·), the lower bound (6.4), and the fact that α̂1 ∈ K∞. So we just
need to consider points x ∈ G\A such that ω1(x) = 0. We first assert that

sup
f∈F (x)

V1(f) > 0.(6.11)

If this were not the case, then with the lower bound (6.4) and the fact that α̂1 ∈ K∞
we would have maxf∈F (x) ω1(f) = 0. Furthermore, with the decrease condition (6.6)
and F (x) ⊆ Fσ(x) we would have, for all f ∈ F (x),

sup
g∈F (f)

V1(g) ≤ e−1V1(f) = 0.

Iterating and using the condition ω1(x) = 0, we would have

sup
k∈Z≥0,φ∈S(x)

ω1(φ(k, x)) = 0;

i.e., x ∈ A, which is a contradiction.
We also have, according to the definition of robust KL stability, σ(x) > 0 for x ∈

G\A. Using the continuity of σ(·), there exists δ > 0 such that δ ≤ minq∈δB σ(x+ q).
It follows that

0 ∈
⋂

z∈δB

{z} + σ(x + z)B

and thus, for any z ∈ δB, we see that F (x) ⊆ F (x+ z + σ(x+ z)B). Now, using (6.6)
and (6.11), we have, for z ∈ δB,

e−1V1(x + z) ≥ sup
f∈Fσ(x+z)

V1(f) ≥ sup
f∈F (x)

V1(f) > 0,

which establishes the claim.
Finally, we need to construct a function σ2 : G\A → R>0 satisfying Assumption

2 and such that the smooth function V (·) of Theorem 3.1 retains bounds like (6.4)
and (6.5) and the decrease condition (6.6).

Construction of σ2:
Claim 9. There exists a smooth function σ1 : G\A → R>0 such that, for all

x ∈ G\A,

σ1(x) ≤ σ(x), and(6.12)

sup
f∈Fσ1 (x),f∈G\A

V1(f) ≤ e−1 inf
z∈σ1(x)B

V1(x + z) .(6.13)
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Proof. We define a function σ1 : G\A → R>0 by associating to each x ∈ G\A
one-half the supremum over all values σ̃1 satisfying

2σ̃1 ≤ min
q∈σ̃1B

σ(x + q).(6.14)

The existence of σ1(·) follows from continuity of σ(·) and the fact that σ(x) > 0 for all
x ∈ G\A. These properties for σ(·) also guarantee that σ1(·) is bounded away from
zero on compact subsets of G\A.

It follows from (6.14) that

σ1(x) ≤ σ(x) ∀x ∈ G\A,(6.15)

i.e., (6.12) holds. We further see that

σ1(x)B ⊆
⋂

z∈σ1(x)B

{z} + σ(x + z)B,

so that

F (x + σ1(x)B) ⊆
⋂

z∈σ1(x)B

F (x + z + σ(x + z)B).(6.16)

With the definition of Fσ(·), (6.15), and (6.16) we see that, for any z ∈ σ1(x)B,

Fσ1(x) ⊆ Fσ(x + z).(6.17)

From the decrease condition (6.6), we have

e−1V1(x + z) ≥ sup
f∈Fσ(x+z)

V1(f).

Taking the infimum on both sides and appealing to (6.17) we have

inf
z∈σ1(x)B

e−1V1(x + z) ≥ inf
z∈σ1(x)B

[
sup

f∈Fσ(x+z)(x+z)

V1(f)

]
≥ sup

f∈Fσ1(x)(x)

V1(f).

It is clear that this inequality and (6.15) hold for any function smaller than σ1(·), and
so we can smooth σ1(·) using Lemma 3.3 to prove the claim.

Let the function σa : G\A → R≥0 be given by

σa(x) := min

{
1,

1

2
sup

{
η : |z − x| ≤ η ⇒ |ω2(z) − ω2(x)| ≤ 1

2
ω2(x)

}}
(6.18)

and the function σb : G\A → R≥0 be given by

σb(x) := min

{
1,

1

2
sup

{
η : V1(x + ηB) ≥ α̂1

(
1

2
ω1(x)

)}}
.(6.19)

We then define, for each x ∈ G\A,

σ̄2(x) := min{σa(x), σb(x), σ1(x), |x|A}.(6.20)
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Before proceeding, we demonstrate that the function σ̄2(·) is bounded away from
zero on compact subsets of G\A. Since σ1(·) and | · |A are continuous and positive on
G\A, we need to establish this property only for σa(·) and σb(·).

We first note that ω2(x) > 0 for x ∈ G\A. Suppose not. If x /∈ A, then there
exists a solution φ ∈ Sσ(x) and a time k ∈ Z≥0 such that ω1(φ(k, x)) > 0. However,
from the stability estimate we see that 0 < ω1(φ(k, x)) ≤ βσ(ω2(x), 0) = 0, which is a
contradiction.

First we demonstrate that σa(·) is bounded away from zero on compact subsets
of G\A. Suppose not. Then there exists a compact set D ⊂ G\A, a sequence {xi}∞i=1

in D, and a sequence zi ∈ {xi} + σa(xi)B ⊂ {xi} + 1
iB such that

|ω2(zi) − ω2(xi)| >
1

2
ω2(xi).(6.21)

The sequence xi has an accumulation point x∗ ∈ D. Now, since x∗ ∈ D, we have
ω2(x

∗) > 0. Since ω2(·) is continuous we have, as i → ∞, |ω2(zi)− ω2(xi)| → 0 while
1
2ω2(xi) → 1

2ω2(x
∗) > 0. This contradicts (6.21).

Next we demonstrate that σb(·) is bounded away from zero on compact subsets
of G\A. Suppose not. Then there exist a compact set D ⊂ G\A, a sequence xi ∈ D,
and a sequence zi with |xi − zi| ≤ 1/i such that

V1(zi) < α̂1

(
1

2
ω1(xi)

)
.(6.22)

The sequence xi has an accumulation point x∗ ∈ D. Henceforth we use xi to denote
the converging subsequence, and zi the associated subsequence. Suppose ω1(x

∗) > 0.
Using the continuity of ω1(·), there exists i∗ such that ω1(zi) ≥ 1

2ω1(xi) for all i ≥ i∗

and thus

V1(zi) ≥ α̂1 (ω1(zi)) ≥ α̂1

(
1

2
ω1(xi)

)
,

which contradicts (6.22).
Alternatively, suppose ω1(x

∗) = 0. We make the following claim.
Claim 10. There exists c > 0 such that

V1(x
∗ + σ1(x

∗)B) ≥ c.(6.23)

Proof. Suppose not. Then, for all c > 0

inf
z∈σ1(x∗)B

V1(x
∗ + z) < c.

We note that this implies that if f ∈ F (x∗), then f ∈ A. Suppose not. Then, since
x∗ ∈ D ⊂ G\A, (6.13) implies that supf∈F (x∗) V1(f) = 0. However, appealing to
(6.3), we see that V1(f) = 0 if and only if f ∈ A.

From (6.6), we see that if f ∈ A, then

sup
f1∈F (f)

V1(f1) ≤ sup
f1∈Fσ(f)

V1(f1) ≤ e−1V1(f) = 0.

In other words, any solution starting from a point f ∈ F (x∗) is such that V1(·)
remains identically zero and, from (6.4), we see that ω1(·) also remains identically
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zero. Furthermore, with ω1(x
∗) = 0, it follows that any solution starting at x∗ is such

that ω1(·) remains identically zero so that x∗ ∈ A, which contradicts x∗ ∈ G\A.
For sufficiently large i we have zi ∈ {x∗} + σ1(x

∗)B and, since ω1(x
∗) = 0, we

have α̂1

(
1
2ω1(xi)

)
≤ c so that, with (6.23),

V (zi) ≥ α̂1

(
1

2
ω1(xi)

)
,

which contradicts (6.22).
Let the function σ2 : G\A → R>0 come from the application of Lemma 3.3 to

the function σ̄2(·) defined in (6.20) so that σ2(·) is smooth and positive on G\A. We
see that σ2(·) is such that, for a sequence of points xi ∈ G\A such that xi → x∗ ∈
A, we have σ2(xi) → 0, since σ2(x) ≤ |x|A. We also note that x ∈ G\A implies
{x}+σ2(x)B ⊂ G. This follows from the fact that x ∈ G\A implies {x}+σ1(x)B ⊂ G
(which stems from the fact that σ2(x) ≤ σ1(x) ≤ σ(x) and the definition of robust
KL stability). Consequently, σ2(·) satisfies Assumption 2.

Let ψ : Rn → R≥0 be smooth, vanish outside Rn\B, and satisfy
∫
ψ(ξ)dξ = 1.

For x ∈ G\A we define

Vs(x) :=

∫
V1(x + σ2(x)ξ)ψ(ξ) dξ.

For x ∈ A we let Vs(x) = 0. That Vs(·) is smooth on G\A and continuous on G follows
from Theorem 3.1.

Using (6.18) and σ2(x) ≤ σa(x) for all x ∈ G\A, we see that

Vs(x) ≤ max
z∈{x}+σ2(x)B

α̂2(ω2(z)) ≤ α̂2

(
3

2
ω2(x)

)
.

From (6.19) and σ2(x) ≤ σb(x) for all x ∈ G\A, we have

Vs(x) ≥ α̂1

(
1

2
ω1(x)

)
.

We now check that an appropriate decrease condition holds for Vs(·). Suppose
x /∈ A and f ∈ F (x) is such that f ∈ A. Then it is obvious that Vs(f) ≤ e−1Vs(x).
If x ∈ A, by definition of A this implies that f ∈ A for all f ∈ F (x). Therefore,
Vs(f) = 0 = e−1Vs(x). It remains to check the decrease condition for x, f /∈ A.

Making use of (6.6), the result of Claim 9, and the fact that σ2(·) ≤ σ1(·), we
may write

max
f∈F (x)

Vs(f) = max
f∈F (x)

∫
V1(f + σ2(f)ξ)ψ(ξ) dξ ≤

∫
max

f∈Fσ2 (x)
V1(f)ψ(ξ) dξ

≤ e−1

∫
min

z∈σ2(x)B
V1(x + z)ψ(ξ) dξ ≤ e−1

∫
V1(x + σ2(x)ξ)ψ(ξ) dξ

= e−1Vs(x).(6.24)

Let ρ ∈ K∞ come from Lemma 3.2 and define V (x) := ρ ◦ Vs(x). Then we may
write

V (x) ≤ ρ ◦ α̂2

(
3

2
ω2(x)

)
=: α2(ω2(x)), and

V (x) ≥ ρ ◦ α̂1

(
1

2
ω1(x)

)
=: α1(ω1(x)).
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Since ρ ∈ K∞ is convex, ρ(e−1s) ≤ e−1ρ(s) for all s ∈ R≥0. Consequently,
following (6.24), we may write

max
f∈F (x)

V (f) = ρ

(
max

f∈F (x)
Vs(f)

)
≤ ρ(Vs(x)e−1) ≤ ρ(Vs(x))e−1

= V (x)e−1.

6.2. Necessity. We note that in order to demonstrate that robust KL-stability
follows from a smooth Lyapunov function, we actually only make use of a continuous
Lyapunov function. Furthermore, the upper semicontinuity of the set-valued map
F (·) is not used. This, then, is the result of Theorem 2.8 as well as the necessity of
Theorem 2.7

We assume we have a continuous function V : G → R≥0 and functions α1, α2 ∈
K∞ such that, for every x ∈ G,

α1(ω1(x)) ≤ V (x) ≤ α2(ω2(x)),(6.25)

max
f∈F (x)

V (f) ≤ e−1V (x),(6.26)

and V (x) = 0 if and only if x ∈ A. Since V (·) is continuous on G and bounded away
from zero on compact subsets of G\A, we see that G\A is open.

Let ε > 0 satisfy (1 + ε)2e−1 < 1. Since V (·) is continuous, for each x ∈ G\A
there exists δ̃1 > 0 such that for all ξ ∈ G

|x− ξ| ≤ δ̃1 =⇒ |V (x) − V (ξ)| ≤ εV (x).(6.27)

For each x ∈ G\A let δ1(x) be one-half the supremum over all δ̃1 ≤ 1 such that (6.27)
holds and, for x ∈ A, let δ1(x) = 0. Then δ1(·) is bounded away from zero on compact
subsets of G\A. Suppose not. Then there exists a compact set D ⊂ G\A, a sequence
of points xi ∈ D, and an accumulation point x∗ ∈ D such that δ1(xi) → 0 as xi → x∗

and

|V (zi) − V (xi)| > εV (xi),(6.28)

where zi ∈ {xi} + δ(xi)B. Since δ(xi) → 0 we may pick a subsequence (which we do
not relabel) such that δ(xi) < 1

i , which implies that |zi − xi| ≤ 1
i . Since x∗ ∈ D,

V (x∗) > 0. With the continuity of V (·), as i → ∞, |V (zi) − V (xi)| → 0 while

V (xi) → V (x∗) > 0,

which contradicts (6.28).

For every x ∈ G let δ2(x) be the supremum over all δ̂ ≤ 1 such that {x}+2δ̂B ⊂ G.

Since G is open, δ̂ always exists and satisfies δ̂ > 0. Moreover δ2(·) is bounded away
from zero on compact subsets of G. Suppose not. Then there exists D ⊂ G compact
and a sequence {xi}∞i=1 such that xi ∈ D and the sequence has an accumulation point
x∗ ∈ D such that δ2(xi) → 0, and for each i there exists zi ∈ {xi} + 1

2δ2(xi)B so
that zi /∈ G. We pick a subsequence (without relabeling) such that δ(xi) <

1
2i . Since

G is open and D ⊂ G is compact, x∗ is in the interior of G, and consequently, for i
sufficiently large, {x∗}+ 1

iB ⊂ G. Therefore, again for i sufficiently large, we see that

zi ∈ {xi} +
1

2i
B ⊂ {x∗} +

1

i
B,
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which is a contradiction.
For each x ∈ G we define

δ(x) := min {δ1(x), δ2(x), |x|A}

and note that x ∈ A implies δ(x) = 0. That δ(·) is bounded away from zero on
compact subsets of G\A follows from the fact that δ2(x) is bounded away from zero
on compact subsets of G and that δ1(x) and |x|A are bounded away from zero on
compact subsets of G\A.

Let the function σ : G → R≥0 come from the application of Lemma 3.3 to the
function δ(·) on G\A and define σ(x) = 0 for x ∈ A. The restriction of σ(·) to G\A
is smooth and, for all x ∈ G\A, σ(x) > 0, satisfying item 2 in Definition 2.3. Since
δ(x) ≤ |x|A for all x ∈ G, it follows that σ(·) is continuous on G. Since δ(x) ≤ δ2(x),
{x}+σ(x)B ⊂ G for all x ∈ G, satisfying item 1 of Definition 2.3. It remains to check
items 3 and 4 of Definition 2.3.

Since σ(x) ≤ δ1(x) for all x ∈ G\A, we may write

V (ξ + σ(ξ)B) ≤ (1 + ε)V (ξ) .(6.29)

Then, using the definition of Fσ(x) in (2.2), the bound (6.29), the decrease (6.26),
and (6.27) we may write, for x ∈ G\A,

max
f∈Fσ(x)
f∈G\A

V (f) ≤ (1 + ε) max
f∈F (x+σ(x)B)

f∈G\A

V (f) ≤ (1 + ε)e−1 max
z∈{x}+σ(x)B

V (z)

≤ (1 + ε)2e−1V (x).(6.30)

We can see that (6.30) holds for all x ∈ G by considering the two remaining cases.
First, suppose x ∈ A; then, by the definition of A and the fact that σ(x) = 0 for
x ∈ A, f ∈ A, (6.30) is trivially satisfied. Second, suppose x /∈ A and f ∈ A, then
(6.30) is again satisfied since 0 ≤ (1 + ε)2e−1V (x). Let λ := (1 + ε)2e−1 < 1. From
(6.30), we see that, for any x ∈ G and φ ∈ Sσ(x), we may write

V (φ(k, x)) ≤ λkV (x) ∀k ∈ Z≥0.

If x ∈ A, then V (x) = 0 and, using (6.25), we may write, for any φ ∈ Sσ(x),

α1(ω1(φ(k, x))) ≤ V (φ(k, x)) ≤ V (x)λk = 0 ∀k ∈ Z≥0,

which implies that x ∈ Aσ; i.e.,

sup
k∈Z≥0,φ∈Sσ(x)

ω1(φ(k, x)) = 0 ∀x ∈ A.

Furthermore, if x ∈ Aσ, then x ∈ A as a consequence of S(x) ⊆ Sσ(x). Consequently,
A = Aσ and item 3 of Definition 2.3 is satisfied.

Now, using the upper and lower K∞ bounds (6.25) on the Lyapunov function we
may write, for all x ∈ G, φ ∈ S(x), and k ∈ Z≥0,

α1(ω1(φ(k, x))) ≤ V (φ(k, x)) ≤ λkV (x) ≤ λkα2(ω2(x)).

Inverting α1(·) we obtain

ω1(φ(k, x)) ≤ α−1
1

(
α2(ω2(x))λk

)
=: βσ(ω2(x), k);

i.e., x+ ∈ Fσ(x) is KL-stable with respect to (ω1, ω2) on G, satisfying item 4 of
Definition 2.3. Therefore x+ ∈ F (x) is robustly KL-stable with respect to (ω1, ω2) on
G.
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7. Proof of Theorem 2.10. If we can demonstrate that there exists a con-
tinuous Lyapunov function, the result of Theorem 2.8 yields that the KL-stability
is robust. Toward this end, we will define a (Lyapunov) function that is similar to
(6.2), with the only difference being that the solution set under consideration in (6.2)
is for the perturbed difference inclusion x+ ∈ Fσ(x). Here, however, we are not as-
suming robust KL-stability. Rather, we are assuming KL-stability of x+ ∈ F (x) and
continuity of F (·) on G\A.

In particular, we apply Lemma 6.1, with λ = 2, to the function β ∈ KL defining
the stability estimate in order to obtain functions α1, α2 ∈ K∞ such that α1(β(s, k)) ≤
α2(s)e

−2k for all (s, k) ∈ R≥0 × R≥0. We define our Lyapunov function as

V (x) := sup
k∈Z≥0,φ∈S(x)

α1(ω1(φ(k, x)))ek ∀x ∈ G.(7.1)

We can then obtain appropriate upper and lower bounds, the required decrease
condition, upper semicontinuity of V (·) on G, and continuity of V (·) on A by following
the proof given in section 6.1. We note that the result of Claim 7 also holds. Therefore,
in order to appeal to Theorem 2.8 it remains to show that V (·) as defined by (7.1) is
lower semicontinuous on G\A.

Lower semicontinuity of V (·) on G\A: Let x ∈ G\A. Appealing to Claim 7, there

exists φ̂ ∈ S(x) and K(x) ∈ Z≥0 such that

V (x) = max
k∈{0,...,K(x)}

α1

(
ω1(φ̂(k, x))

)
ek.

Let κ ∈ {0, . . . ,K(x) − 1} be the smallest integer such that φ̂(κ + 1, x) ∈ A or, if

φ̂(k, x) ∈ G\A for all k ∈ {0, . . . ,K(x)}, let κ = K(x). We see that

max
k∈{0,...,K(x)}

α1

(
ω1(φ̂(k, x))

)
ek = max

k∈{0,...,κ}
α1

(
ω1(φ̂(k, x))

)
ek

since, if K(x) �= κ, then φ̂(k, x) ∈ A for k ∈ {κ, . . . ,K(x)}, which implies that, for

those k, ω1(φ̂(k, x)) = 0.

Since F (·) is continuous on G\A and since φ̂(k, x) ∈ G\A for all k ∈ {0, . . . , κ},
given any ε > 0, Lemma 5.2 yields a δ > 0 such that, for any x̄ ∈ {x} + δB, there
exists a solution ψ ∈ S(x̄) such that we may write

V (x) = max
k∈{0,...,κ}

α1

(
ω1(φ̂(k, x))

)
ek

≤ max
k∈{0,...,κ}

α1

(
ω1(ψ(k, x̄))

)
ek

+ max
k∈{0,...,κ}

∣∣∣α1

(
ω1(φ̂(k, x))

)
− α1

(
ω1(ψ(k, x̄))

)∣∣∣ ek
≤ sup

k∈Z≥0

α1

(
ω1(ψ(k, x̄))

)
ek + ε

≤ V (x̄) + ε.

Therefore, V (·) is lower semicontinuous at x; i.e., lim infz→x V (z) ≥ V (x).

8. Proof of Claim 1. In order to simplify the presentation, we define

V +(x) := sup
f∈F (x)

V (f) ∀x ∈ G.
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We will use W+
1 and W+ for the same purpose.

Let g ∈ K∞ be such that g′(·) is nondecreasing, g′(s) ≥ 1 for all s ≥ 0, and such
that there exists γ ∈ K∞ such that

α(s) (exp(g(s)) − 1) ≥ γ(s) ∀s ≥ 0.

We define ρ(s) := exp(g(s)) − 1 and note that

ρ′(s) = (ρ(s) + 1) g′(s) ≥ ρ(s) .

The equality shows that ρ′(·) is nondecreasing, so that, by the mean value theorem,

ρ(V +(x)) − ρ(V (x)) ≤ ρ′(V +(x))[V +(x) − V (x)] ∀x ∈ G.

For all x ∈ G we define W1(x) := ρ(V (x)). It is obvious that W1(x) = 0 if and
only if x ∈ A. For all s ≥ 0 let μ(s) := 1

2 min
{
s, γ ◦ ρ−1(s)

}
so that μ ∈ K∞.

With this definition we observe that (Id − μ) ∈ K∞. Now, for every x ∈ G either
ρ(V +(x)) ≤ 1

2ρ(V (x)) or ρ(V +(x)) ≥ 1
2ρ(V (x)). In the first case

W+
1 (x) := ρ(V +(x)) ≤ 1

2
ρ(V (x)) =

1

2
W1(x) ≤ W1(x) − μ(W1(x)),(8.1)

while, in the latter case, we may write

W+
1 (x) −W1(x) = ρ(V +(x)) − ρ(V (x)) ≤ ρ′(V +(x))

[
V +(x) − V (x)

]
≤ −ρ′(V +(x))α(V (x)) ≤ −ρ(V +(x))α(V (x))

≤ −1

2
ρ(V (x))α(V (x)) ≤ −1

2
γ(V (x))

= −1

2
γ ◦ ρ−1(W1(x)) ≤ −μ(W1(x)) .(8.2)

Combining (8.1) and (8.2) we have W+
1 (x) ≤ W1(x) − μ(W1(x)) for all x ∈ G.

We require the following lemma, which appeared as [9, Lemma 2.4].
Lemma 8.1. If � > 1 and ϕ ∈ K∞ satisfies (ϕ − Id) ∈ K∞, then there exists

α̃ ∈ K∞ such that α̃ ◦ ϕ(s) = �α̃(s) for all s ≥ 0.
Define ϕ ∈ K∞ as ϕ(s) := (Id − μ)−1(s) for all s ≥ 0. We note that ϕ(·) is

well defined by virtue of (Id − μ) ∈ K∞. From the definition of ϕ(·) we see that,
for all s ≥ 0, s − ϕ−1(s) = μ(s) or, equivalently, ϕ(s) − s = μ ◦ ϕ(s). Therefore,
(ϕ− Id) ∈ K∞. Let � = e1 > 1 and let α̃ ∈ K∞ come from Lemma 8.1. For all x ∈ G
we define W (x) := α̃(W1(x)). We may then write

W+(x) = α̃(W+
1 (x)) ≤ α̃ (W1(x) − μ(W1(x)))

= α̃(ϕ−1(W1(x))) = e−1α̃(W1(x)) = e−1W (x) ∀x ∈ G.

Finally, we define the functions α̂1, α̂2 ∈ K∞ by α̂1 := α̃◦ρ◦α1 and α̂2 := α̃◦ρ◦α2

so that (2.9) holds.
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Abstract. We derive a stationary filter for the best linear mean square filter (BLMSF) of
continuous-time Markovian jump linear systems (MJLS). It amounts here to obtain the convergence
of the error covariance matrix of the BLMSF to a stationary value under the assumption of mean
square stability of the MJLS and ergodicity of the associated Markov chain θt. It is shown that there
exists a unique solution for the stationary Riccati filter equation, and this solution is the limit of the
error covariance matrix of the BLMSF. The advantage of this scheme is that it is easy to implement
since the filter gain can be performed offline, leading to a linear time-invariant filter.
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1. Introduction. Markovian jump linear systems (MJLS) have been the subject
of extensive research over the last few years, and the associated literature is now fairly
extensive (see, e.g., [2], [4], [5], [10], [11], [12], [13], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [35], [36], [43], [44], [50], and references
therein). Since its inception, this class of models has an intimate connection with
systems which are vulnerable to abrupt changes in their structure, which includes,
for instance, safety-critical and high-integrity systems (e.g., aircraft, chemical plants,
nuclear power station, robotic manipulator systems, large scale flexible structures
for space stations such as antenna, solar arrays, etc.). This, in turn, has led to
applications in a variety of fields (see, e.g., [3], [12], [21], [22], [33], [34], [39], [42], [44],
[1], [48], [49], [51], and references therein), which illustrate the breadth of possibilities
of applications of MJLS. For instance, it is said in [48] that the results achieved by
MJLS, when applied to the synthesis problem of wing deployment of an uncrewed air
vehicle, were quite encouraging.

Filtering theory has been widely celebrated as a great achievement in stochastic
systems theory and is of fundamental importance in application. The appearance of
seminal papers such as [8], [9], [32], [40], and [53] gave an enormous impetus to the
theory. Although the theoretical machinery available to deal with nonlinear estimation
problems is by now rather considerable (see, e.g., [37] for an overview of the classical
results and [15] for a nice introduction), there are yet many challenging questions
in this area. One of these is the fact that the description of the optimal nonlinear
filter can rarely be given in terms of a closed finite system of stochastic differential
equations, i.e., the so-called finite filters; the exceptions are, for instance, the classical
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of the State of Sâo Paulo-FAPESP grant 03/06736-7, by PRONEX grant 015/98, and IM-AGIMB.

http://www.siam.org/journals/sicon/44-3/43625.html
†National Laboratory for Scientific Computing—LNCC/CNPq, Av. Getulio Vargas 333,
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Kalman filter, those described in [52], and Benes’ class. More recently, the concept of
estimation algebra, proposed initially in [7], has been used to enlarge this class in [55].
Unfortunately, this is what happens with the optimal nonlinear filter for our MJLS
model (see, e.g., [45]). In view of this, the best linear mean square filter (BLMSF) for
our MJLS model has been derived in [30]. This filter provides some of the desirable
features of the Kalman filter.

With some simplifications in the MJLS model, finite filters have been derived.
For instance, with the simplification that the observation process is not fed by the
state, in [2] a finite filter is derived. Another finite-dimensional related paper is [53],
but here the variable to be estimated is just the Markov chain (the state variable is
assumed accessible). In the nonlinear setting, this problem has been studied in [56]
for a small noise observation scenario, without requiring knowledge of the generator of
the Markov chain, and asymptotic optimality is proved. See also, e.g., [19], [20], [23],
[24], [51], and references therein, for some recent related results. For the case in which
the associated Markov chain is assumed to be accessible, i.e., the operation mode is
known for every t ≥ 0, H∞ filtering and the robust Kalman filtering for uncertain
MJLS (including the time-lag case) has been studied, for instance, in [17], [18], [41],
and [47].

In this paper, we make a further foray into the problem of linear estimation for
the class of MJLS. The BLMSF derived in [30] is a function of the error covariance
matrix whose dynamics is governed by two matrix differential equations: one asso-
ciated with the second moment of the state variable and the other associated with
the second moment of the estimator. Our aim here is to work out a certain matrix
Riccati differential equation for the error covariance matrix of the BLMSF and show
that the unique solution of this matrix Riccati differential equation converges to the
unique solution of an algebraic Riccati equation, under the hypotheses of mean square
stability of the system and ergodicity of the Markovian process θt. In the spirit of
the Kalman filter theory, when using the algebraic Riccati equation, instead of the
differential Riccati equation, for the BLMSF, we call this filter the stationary BLMSF.
In addition to interest in its own right, it is a well-known fact that stationary filters
have, prima facie, the desirable advantage of being easier to implement. Finally, the
discrete-time counterpart of our problem was already contemplated in [13] and has
inspired our work.

A brief outline of the content of this paper is as follows. In section 2, we fix the
notation and recall a few notions and facts which can be found in [14]. The MJLS
model is described in section 3. A Riccati-like differential equation for the BLMSF is
derived in section 4. Finally, an asymptotic analysis is carried out in section 5.

2. Notation and preliminaries. We shall denote by Rn the n-dimensional
Euclidean space and by B(Rn,Rm) the normed bounded linear space of all m × n
matrices with B(Rn) := B(Rn,Rn). For L ∈ B(Rn), L′ will indicate the transpose
of L. As usual, L ≥ 0 (L > 0) will mean that the symmetric matrix L ∈ B(Rn) is
positive semidefinite (positive definite), respectively. In addition, we set B(Rn)+ :=
{L ∈ B(Rn);L = L′ ≥ 0}. We use R+ to denote the interval [0,∞), and by L ⊗
K ∈ B(Rsn,Rrm) we mean the Kronecker product for any L ∈ B(Rs,Rr) and K ∈
B(Rn,Rm). We recall also that for L ∈ B(Rn) and K ∈B(Rm) the Kronecker sum
is defined as L⊕K := L⊗ Im + In ⊗K ∈ B(Rnm) (see, e.g., [6]). For Di ∈ B(Rn),
i = 1, . . . , N , diag(Di) stands for an Nn×Nn matrix, where the matrices Di are put
together corner-to-corner diagonally, with all the other entries being zero, and 1{·} for
the Dirac measure. In addition, we denote by Re{λi(T )} the real part of the eigenvalue
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λi(T ) of the operator T and write generically Re{λ(T )} < 0 if all its eigenvalues have
real part less than zero. Furthermore, Hn,m represents the linear space composed of all
sequences of N matrices V = (V1, . . . , VN ) with Vi ∈ B(Rn,Rm), for i = 1, . . . , N , and,
for simplicity, we define Hn := Hn,n. Also, we shall define Hn+ := {V = (V1, . . . , VN );
Vi ≥ 0 for i = 1, . . . , N}. Finally, we shall write, for V = (V1, . . . , VN ) ∈ Hn and

S = (S1, . . . , SN ) ∈ Hn , that V ≥ S if V − S = (V1 − S1, . . . , VN − SN ) ∈ Hn+

, and
that V > S if Vi − Si > 0 for i = 1, . . . , N .

As usual, we define H := L2(Ω,F ,P), the Hilbert space of all square integrable
r.v.’s in the probability space (Ω,F ,P), equipped with the inner product 〈x, y〉 =
Ex′y. Convergence here will be in the quadratic mean (q.m.) sense, i.e., a sequence
{x(n)} converges to x if ‖x(n)− x‖2 → 0. We define also H0 = {x ∈ H|Ex = 0}, the
closed subspace of all centered r.v.’s of H and therefore a Hilbert space. In addition,
x ∈ H and y ∈ H are said to be orthogonal (from now on x⊥y) if 〈x, y〉 = 0.

For any stochastic process y(t) ∈ H0, we define Hy
t := L{y(s), 0 ≤ s ≤ t}, the

space of all linear combinations
∑

i αiy(ti), where ti < t and q.m. limits of these
combinations (a closed subspace) such that Hy

s ⊂ Hy
t ⊂ Hy := Hy

∞ for s ≤ t. We
recall that if {y(t)} is q.m. continuous, then Hy is a separable Hilbert space, and as
a fundamental property of a Hilbert space, any z ∈ H0 has a unique decomposition
(cf. [14, p. 45]), z = ẑ + z̃, where ẑ = P

y
t z ∈ Hy

t and z̃⊥Hy
t , where P

y
t denotes

the projection operator which projects each element of H0 onto Hy
t . Moreover, we

have the following properties (cf. [14, p. 45]): (i) ‖z − P
y
t z‖ = miny∈Hy

t
‖z − y‖, and

therefore ẑ = P
y
t z is the linear minimum mean square error estimator of z given Hy

t ,
i.e., the best linear estimator is the projection of z onto Hy

t ; (ii) z̃ = z − ẑ⊥Hy
t .

3. The model. Let (Ω,F , {Ft}t∈R+ ,P) be a stochastic basis (a complete prob-
ability space, carrying its natural filtration {Ft}t∈R+) on which all the processes in
this work are defined. Let us consider the class of hybrid dynamical systems modeled
by the following MJLS:

dx(t) = Aθtx(t)dt + Cθtdw0(t), x(0) = x, t ∈ R+,(3.1)

dy(t) = Hθtx(t)dt + Gθtdw(t), y(0) = 0,(3.2)

where {x(t)} denotes the state vector in Rn (signal process), and {y(t)} denotes the
output process in Rm, which generates the observational information that is available
at time t, i.e., Hy

t . Furthermore, we assume the following:
(A1) θ = {(θt, Ft), t ∈ R+} is a nonobserved homogeneous Markov process

with right continuous trajectories and taking values on the finite set S :=
{1, 2, . . . , N}. We assume the following:

P (θt+h = j | θt = i) =

{
λijh + o(h), i �= j,
1 + λiih + o(h), i = j,

where Λ := [(λij)] is the stationary N ×N transition rate matrix of {θt} with
λij > 0, i �= j, and λi = −λii =

∑
j : j �=i λij < ∞, i.e., the process is supposed

to be conservative (see, e.g., [38]). In addition, defining pij(t) = P (θt+s = j |
θs = i) and pi(t) = P (θt = i) for i, j = 1, . . . , N and denoting P(t) := [pij(t)]
and p(t) := (p1(t), . . . , pN (t))′, it is well known, under the hypothesis of the
homogeneity of the process θ = {(θt, Ft), t ∈ R+}, that d

dtP(t) = P(t)Λ,

P(0) = I, and d
dtp(t) = Λ′p(t). Moreover, we assume that {(θt,Ft), t ∈ R+}

has initial distribution {v(i); i = 1, . . . , N}.
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(A2) W0 = {(w0(t),Ft), t ∈ R+} and W = {(w(t),Ft), t ∈ R+} are statistically
mutually independent Wiener processes in Rr and Rp, respectively.

(A3) x1{θ0=i}, i = 1, . . . , N , are second order r.v.’ s with E[x1{θ0=i}] = μi and
E[xx′1{θ0=i}] = Vi.

(A4) x(0) and {θt} are independent of {w0(t)} and {w(t)}.
(A5) GiG

′
i > 0 for i = 1, . . . , N .

In addition, notice that Aθt , Cθt , Hθt , and Gθt are random matrices such that, for
θt = i, i ∈ S, they assume the values Ai ∈ B(Rn), Ci ∈ B(Rr,Rn), Hi ∈ B(Rn,Rm),
and Gi ∈ B(Rp,Rm), respectively.

4. The Riccati differential equation (RDE). In order to derive the station-
ary filter for (3.1)–(3.2), we need first to work out a Riccati differential equation for
the main result concerning the best linear mean square filter obtained in [30]. First,
define zi(t) := x(t)1{θt=i} ∈ Rn, z(t) := (z1(t)

′, . . . , zN (t)′)′ ∈ RNn, ẑi(t) := P
y
t zi(t),

ẑ(t) := (ẑ1(t)
′, . . . , ẑN (t)′)′, z̃i(t) := zi(t) − ẑi(t), z̃(t) := (z̃1(t)

′, . . . , z̃N (t)′)′ =
z(t)− ẑ(t), and P(t) := E[z̃(t)z̃(t)′]. Furthermore, Z(t) := diag(Zi(t)) with Zi(t) :=
E[zi(t)zi(t)

′] ∈ B(Rn), Zt := (Z1(t), . . . , ZN (t)) ∈ Hn, and Ẑ(t) := E[ẑ(t)ẑ(t)′].

With these definitions, we clearly have x(t) =
∑N

i=1 zi(t), x̂(t) := P
y
t x(t) =

∑N
i=1 ẑi(t),

and x̃(t) = x(t) − x̂(t) =
∑N

i=1[zi(t) − ẑi(t)] =
∑N

i=1 z̃i(t).
In addition, we shall be using the notation

A := Λ
′ ⊗ In + diag(Ai) ∈ B(RNn),(4.1)

H := [H1, . . . , HN ] ∈ B
(
RNn ,Rm

)
,(4.2)

Gp
t := [

√
p1(t)G1, . . . ,

√
pN (t)GN ] ∈ B

(
RNp ,Rm

)
(4.3)

so that

0 < Gp
tG

p′
t =

N∑
j=1

GjG
′
jpj(t) ∈ B(Rm).

Define also the innovations process {ν(t)} as

ν(t) := y(t) −
∫ t

0

m̂(s) ds,

where m̂(t) = P
y
t [Hθtx(t)] =

∑N
i=1 Hiẑi(t), or

dν(t) = dy(t) −Hẑ(t) dt.

Theorem 4.1. For system (3.1)–(3.2), the best linear mean square estimator x̂(t)
is given by the following filter:

x̂(t) =

N∑
i=1

ẑi(t),

where

dẑ(t) = Aẑ(t) dt + P(t)H ′(Gp
tG

p′
t )−1dν(t),(4.4)

ẑ(0) = μ := (μ′
1, . . . , μ

′
N )′,(4.5)
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with

P(t) := Z(t) − Ẑ(t) ∈ B(RNn)+,

where

·
Zi(t) = AiZi(t) + Zi(t)A

′
i +

N∑
j=1

Zj(t)λji + CiC
′
ipi(t),(4.6)

Zi(0) = Vi ≥ 0, i = 1, . . . , N,(4.7)

and
·
Ẑ(t) = AẐ(t) + Ẑ(t)A′

+ Ẑ(t)H ′(Gp
tG

p′
t )−1HẐ(t)(4.8)

+Z(t)H ′(Gp
tG

p′
t )−1HZ(t)

with Ẑ(0) = μμ′, and

A = A− Z(t)H ′(Gp
tG

p′
t )−1H.(4.9)

Proof. See Theorem 4.1 in [30].
Notice that in (4.4) the term P(t) is obtained as the difference of two terms

(Z(t)− Ẑ(t)) which are derived via (4.6) and (4.8). Our first step then is to obtain a
Riccati differential equation for P(t) as follows.

Lemma 4.2. P(t) satisfies the following matrix Riccati differential equation:
·

P(t) = AP(t) + P(t)A′ − P(t)H ′(Gp
tG

p′
t )−1HP(t) + CtC′

t + V(Zt),(4.10)

P(0) = P0 ≥ 0,

with Ct := diag(
√

pi(t)Ci), Zt := (Z1(t), . . . , ZN (t)), where Zi(t) is solution of (4.6),
and V(Zt) is defined by

V(Zt) : =

⎡⎢⎢⎣
∑N

j=1 Zj(t)λj1 · · · 0
...

. . .
...

0 · · ·
∑N

j=1 Zj(t)λjN

⎤⎥⎥⎦(4.11)

− (Λ′ ⊗ In)Z(t) − Z(t)(Λ′ ⊗ In)′.

Moreover, V(Zt) ≥ 0 and is a linear operator.
Proof. Let us first prove that V(.) is a linear operator and V(Zt) ≥ 0. For

any Q = (Q1, . . . , QN ) ∈ Hn+, R = (R1, . . . , RN ) ∈ Hn+, α and β ∈ R, it is
straightforward to show that V(αQ + βR) = αV(Q) + βV(R). Now, defining dDt =[
x(t)′d(1{θt=1})· · ·x(t)′d(1{θt=N})

]′ ∈ RNn, one can show that E[dDtdD′
t] = V(Zt) dt,

by using Lemma 4.3 in [29]. Then, for any constant vector v ∈ RNn,

v′V(Zt)v dt = v′E [dDtdD′
t] v

= E
[
‖dD′

tv‖
2
]

≥ 0

and therefore V(Zt) ≥ 0. Now, by the definition of Z(t), we have

·
Z(t) = [diag(Ai)]Z(t) + Z(t)[diag(Ai)]

′ + CtC′
t

+

⎡⎢⎢⎣
∑N

j=1 Zj(t)λj1 · · · 0
...

. . .
...

0 · · ·
∑N

j=1 Zj(t)λjN ,

⎤⎥⎥⎦ ,
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and bearing in mind the definition of V(Zt) and A, we have

·
Z(t) = AZ(t) + Z(t)A′ + CtC′

t + V(Zt).

Now from (4.8) and (4.9), we have

·
Ẑ(t) = AẐ(t) + Ẑ(t)A′

+
[
Z(t) − Ẑ(t)

]
H ′(Gp

tG
p′
t )−1H

[
Z(t) − Ẑ(t)

]
.

Finally, bearing in mind that P(t) = Z(t) − Ẑ(t), we get

·
P(t) = AP(t) + P(t)A′ − P(t)H ′(Gp

tG
p′
t )−1HP(t) + CtC′

t + V(Zt),

which proves the lemma.
In the next section we shall use the following definition of mean square stability.
Definition 4.3. A linear system with a Markovian jump parameter is mean

square stable (MSS) if for any initial condition x0 and initial distribution {v(i), i =
1, . . . , N}, there exist q ∈ Rn and Q ∈ B(Rn)+ independent of x0 such that

(a) ‖E[x(t)] − q‖ −→ 0 as t −→ ∞;
(b) ‖E[x(t)x(t)′] −Q‖ −→ 0 as t −→ ∞.
Finally, we shall also need the following notation. Define the operators ϕ and ϕ̂ in

the following way: for V = (V1, . . . , VN ) ∈ Hn,m, with Vi = (vi1, . . . , vin), vij ∈ Rm,

ϕ(Vi) =

⎡⎢⎣vi1...
vin

⎤⎥⎦ ∈ Rmn and ϕ̂(V ) =

⎡⎢⎣ϕ(V1)
...

ϕ(VN )

⎤⎥⎦ ∈ RNmn.

Furthermore, for vi := ϕ(Vi) and V := ϕ̂(V ), i = 1, . . . , N , we define

ϕ̂−1

⎡⎢⎣ v1

...
vN

⎤⎥⎦ :=
[
ϕ̂−1

1 (V) · · · ϕ̂−1
N (V)

]
=

[
ϕ−1(v1) · · · ϕ−1(vN )

]
.

That is, ϕ is a mapping that stacks up the columns of a matrix from left to right and
makes a long vector out of the matrix.

5. Asymptotic analysis of the RDE. In this section, we obtain our main
result concerning the asymptotic behavior of the matrix Riccati differential equation
(4.10). We shall show that, under the assumption of ergodicity of the process {θt} and
of mean square stability of (3.1), the unique solution of the matrix Riccati differential
equation (4.10) converges to the unique solution of an algebraic Riccati equation.

The main result reads as follows.
Theorem 5.1. Assume that system (3.1) is MSS, according to Definition 4.3,

and {θt} is ergodic. Then for any Z0 = (Z1(0), . . . , ZN (0)) ∈ Hn, with Zi(0) ≥ 0,
i = 1, . . . , N , and P0 ≥ 0 we have that P(t) → P exponentially fast with P the unique
positive semidefinite solution of the algebraic Riccati equation (ARE):

AP + PA′ − PH ′(GG′)−1HP + CC′ + V(Q) = 0,(5.1)
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where A−PH ′(GG′)−1H is a stable matrix,

C := diag(
√
πiCi), G := [

√
π1G1 · · ·

√
πNGN ] ,

with {πi; i = 1, . . . , N} the limit distribution of θt, Q := (Q1, . . . , QN ), with Qi

the limit of Zi(t), in the sense that ‖Zi(t) − Qi‖ → 0 as t → ∞, where Qi =
ϕ̂−1
i (−F−1ϕ̂(R1, . . . ,RN )) with F := Λ′ ⊗ In2 + diag(Ai ⊕Ai) and Ri = CiC

′
iπi.

Proof. The idea of the proof runs as follows. First, notice that from Lemma
5.1 in [31], (4.10) has a unique positive semidefinite solution. We have to prove
then, existence and uniqueness of a positive semidefinite solution, P, for the algebraic
Riccati equation (5.1). Now, proving that P(t) → P is tantamount to proving that
there exist lower and upper bound functions P�(t) and P �(t) for P(t), i.e., P�(t) ≤
P(t) ≤ P �(t), and these functions squeeze asymptotically P(t) to P.

From Proposition 5.7 of [29], if system (3.1) is MSS, then Re(λ(F)) < 0, where
F = Λ′ ⊗ In2 + diag(Ai ⊕ Ai). But from Proposition 4.3 of [29], if Re(λ(F)) < 0,
then Re(λ(A)) < 0. Therefore, we conclude that matrix A in (4.10) is stable. Now,
from Theorem 4.1 in [31] (see also Theorem 4.1 in [54]), it follows that there exists a
unique positive semidefinite solution P to (5.1) and, furthermore, A−PH ′(GG′)−1H
is stable.

Now, from Proposition 5.6 of [29], under the assumption of mean square stability
of system (3.1), ‖Zi(t) −Qi‖ → 0 as t → ∞, where Qi = ϕ̂−1

i (−F−1ϕ̂(R1, . . . ,RN ))
with Ri = CiC

′
iπi. In addition, notice that V(Zt) = V(Z1(t), . . . , ZN (t)) →

V(Q1, . . . , QN ) = V(Q) as t → ∞, with V(Zt) defined by (4.11), since V(Zt) is a
linear bounded operator.

Finally, from Lemmas 6.1 and 6.4 in the appendix, there exist matrices P�(t) and
P �(t) such that

P�(t) ≤ P(t) ≤ P �(t)

and

lim
t→∞

P�(t) = lim
t→∞

P �(t) = P

exponentially fast and, consequently, we have limt→∞ P(t) = P, which completes the
proof.

Remark 1. Bearing in mind that for the case in which there is no jump (N = 1)
we have that V(Q) = 0, it is not difficult to show that in this case our filter reduces
to the Kalman filter.

Remark 2. Some preliminary simulations for the discrete-time case can be found
in [13]. This includes some comparison with the IMM algorithm (the interacting
multiple model algorithm) derived in [4]. However, for a better assessment of the full
potentialities of our filter in applications, exhaustive simulations of adequate examples,
and comparison with other approximation of the infinite-dimensional filter is required.
For instance, it would be interesting to carry out exhaustive simulations in order to
compare the nonstationary filter with the stationary one, and a certain PEM filter
(polymorphic estimator filter), which can be found in [51].

6. Appendix. We assume here the hypothesis of Theorem 5.1. In addition,
we assume the results regarding existence and uniqueness of a positive semidefinite
solution, P, for the algebraic Riccati equation (5.1), including the fact that A −
PH ′(GG′)−1H is stable.
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In order to prove the following results we shall rewrite the matrix Riccati equation
(4.10) in a more convenient way. Defining Tt := P(t)H ′K−1

t and Kt := Gp
tG

p′
t , (4.10)

is given by
·
P(t) = (A− TtH)P(t) + P(t) (A− TtH)

′
+ TtKtT

′
t + CtC′

t + V(Zt),

P(0) = E
[
z̃0z̃

/
0

]
≥ 0.

In addition, since the Markovian process {θt} is ergodic by the assumption, there
exist limit probabilities {πi; i = 1, . . . , N}, which do not depend upon the initial

distribution, with
∑N

i=1 πi = 1, satisfying the following inequalities:

max
i

|pij(t) − πj | ≤ αe−βt and max
i

|pj(t) − πj | ≤ αe−βt

for some positive constants α and β; therefore, pij(t) → πj and pj(t) → πj , exponen-
tially fast, as t → ∞. Thus,

Gp
t =

[√
p1(t)G1, . . . ,

√
pN (t)GN

]
→ [

√
π1G1, . . . ,

√
πNGN ] = G

and

Ct = diag(
√
pi(t)Ci) → diag(

√
πiCi) = C.

So, as t → ∞, we have Gp
tG

p′
t → GG′ and CtC′

t + V(Zt) → CC′ + V(Q) exponentially
fast.

Lemma 6.1. Let P �(t) be the solution of the matrix differential equation given by

·
P �(t) = AP �(t) + P �(t)A′ + T∞KtT

′
∞ + CtC′

t + V(Zt),(6.1)

P �(0) = P(0) = E
[
z̃0z̃

/
0

]
≥ 0,

where A := A − T∞H, T∞ := PH ′K−1 with P a solution of (5.1), and K :=
GG′ with G := [

√
π1G1, . . . ,

√
πNGN ]. Then P �(t) ≥ P(t) for any t ∈ [0,∞) and

limt→∞ P �(t)= P.
Proof. Define P̃ �(t) := P �(t) − P(t). Then

·
P̃ �(t) = AP̃ �(t) + P̃ �(t)A′ + (Tt − T∞)Kt (Tt − T∞)

′
,(6.2)

P̃ �(0) = 0.

Let Φ�(t, s) be the transition matrix associated with A, i.e., Φ�(t, s) = eA(t−s).
Then, the solution of (6.2) is given by

P̃ �(t) =

∫ t

0

Φ�(t, s) (Ts − T∞)Ks (Ts − T∞)
′
Φ�(t, s)′ ds.

Since Kt > 0 for all t ∈ [0,∞), we have P̃ �(t) ≥ 0 and, consequently, P �(t) ≥ P(t).
Now, let us consider the solution of (6.1). Defining W(t) := T∞KtT

′
∞ + CtC′

t +V(Zt),
we get from (6.1)

P �(t) = Φ�(t, 0)P(0)Φ�(t, 0)′ +

∫ t

0

Φ�(t, s)W(s)Φ�(t, s)′ ds.(6.3)

Since A is stable, Φ�(t, 0) = eAt → 0 as t → ∞. Defining

I(t) :=

∫ t

0

Φ�(t, s)W(s)Φ�(t, s)′ ds,
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it is clear that limt→∞P
�(t) exists if and only if limt→∞I(t) exists. Now we shall show

that this limit does exist. First observe that

∂

∂s
[Φ�(t, s)W(s)Φ�(t, s)′] = −AΦ�(t, s)W(s)Φ�(t, s)′(6.4)

+ Φ�(t, s)
·
W(s)Φ�(t, s)′

−Φ�(t, s)W(s)Φ�(t, s)′A′.

Integrating both sides of (6.4), we have

AI(t) + I(t)A′ = Φ�(t, 0)W(0)Φ�(t, 0)′ +

∫ t

0

Φ�(t, s)
·
W(s)Φ�(t, s)′ ds−W(t).(6.5)

Since Φ�(t, 0) → 0 and W(t) → T∞KT ′
∞ + CC′ + V(Q) as t → ∞, it follows that

limt→∞ I(t) exists if and only if limt→∞
∫ t

0
Φ�(t, s)

·
W(s)Φ�(t, s)′ ds exists. To show

that this limit does exist, first observe that∥∥∥∥∫ t

0

eA(t−s)
·
W(s)eA

′(t−s) ds

∥∥∥∥ ≤ μ2

∫ t

0

e−2α(t−s)‖
·
W(s)‖ ds

≤ μ2

∫ ∞

0

e−2α(t−s)‖
·
W(s)‖ds.

Define f(t) := e−2αt and g(t) := ‖
·
W(t)‖. Then∥∥∥∥∫ t

0

eA(t−s)
·
W(s)eA

′(t−s) ds

∥∥∥∥ ≤ μ2

∫ ∞

0

f(t− s)g(s) ds,

= μ2(f ∗ g)(t),

where (f ∗ g)(t) stands for the convolution of f and g.
Clearly f(t) ∈ L1(R

+). Let us now show that g(t) ∈ L1(R
+),

‖
·
W(t)‖ ≤ ‖T∞‖2

∥∥∥∥ d

dt
Kt

∥∥∥∥ +

∥∥∥∥ d

dt
[CtC′

t]

∥∥∥∥ +

∥∥∥∥ d

dt
V(Zt)

∥∥∥∥ .
We are going to show that ‖ d

dtKt‖, ‖ d
dt [CtC′

t]‖, and ‖ d
dtV(Zt)‖ belong to L1(R

+),

and, consequently, ‖ d
dtW(t)‖ ∈ L1(R

+).

It is straightforward to show that |ṗj(t)| ≤ maxj |pj(t)− πj |
∑N

i=1 |λij |, and since
maxj |pj(t)− πj | ≤ αe−βt for some constants α > 0 and β > 0, we have that |ṗj(t)| ∈
L1(R

+).

Now ‖ d
dtKt‖ ≤

∑N
j=1 ‖GjG

′
j‖|ṗj(t)| and ‖ d

dt (CtC′
t)‖ = ‖diag(CiC

′
iṗi(t))‖ ≤

‖diag(‖CiC
′
i‖|ṗi(t)|)‖ = max1≤i≤N{‖CiC

′
i‖|ṗi(t)|}, so ‖ d

dtKt‖ ∈ L1(R
+) and

‖ d
dt (CtC′

t)‖ ∈ L1(R
+). As for ‖ d

dtV(Zt)‖, we have∥∥∥∥ d

dt
V(Zt)

∥∥∥∥ ≤
∥∥∥∥∥diag

(
N∑
l=1

·
Zl(t)λli

)∥∥∥∥∥ + ‖(Λ′ ⊗ In)diag(
·
Zi(t))‖

+ ‖diag(
·
Zi(t))(Λ

′ ⊗ In)′‖

≤
∥∥∥∥∥diag

(
N∑
l=1

‖
·
Zl(t)‖ |λli|

)∥∥∥∥∥ + 2 ‖(Λ′ ⊗ In)‖ ‖diag(‖
·
Zi(t)‖)‖

≤ max
i

{
N∑
l=1

‖
·
Zl(t)‖ |λli|

}
+ 2 ‖(Λ′ ⊗ In)‖max

i
{‖

·
Zi(t)‖}.
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Define |λ|max := maxi,j{|λij |}. Then ‖ d
dtV(Zt)‖ ≤ γ maxi{‖Żi(t)‖} with γ :=

N |λ|max + 2‖(Λ′ ⊗ In)‖ > 0. So, it suffices to prove that ‖
·
Zi(t)‖ ∈ L1(R

+) to have
that ‖ d

dtV(Zt)‖ ∈ L1(R
+).

But from Proposition 5.7 in [29], we have

ϕ̂(
·
Zt) = F ϕ̂(Zt) + ϕ̂(R(t)),(6.6)

where R(t) := [R1(t), . . . , RN (t)] with Ri(t) := CiC
′

ipi(t). Now taking the derivative
on both sides of (6.6), we have

d

dt
ϕ̂(

·
Zt) = F ϕ̂(

·
Zt) + ϕ̂(Ṙ(t)).

Now define u(t) := ϕ̂(
·
Zt), so

u̇(t) = Fu(t) + ϕ̂(Ṙ(t)),

whose solution is

u(t) = eFtu(0) +

∫ t

0

eF(t−s)ϕ̂(Ṙ(s)) ds.

Thus

‖u(t)‖ ≤ ‖eFt‖ ‖u(0)‖ +

∫ t

0

‖eF(t−s)‖‖ϕ̂(Ṙ(s))‖ ds

≤ ‖eFt‖ ‖u(0)‖ +

∫ ∞

0

‖eF(t−s)‖‖ϕ̂(Ṙ(s))‖ ds.

Since F is stable, we have ‖eFt‖ ≤ α1e
−β1t with α1 > 0 and β1 > 0. Also,

‖ϕ̂(Ṙ(t))‖ ∈L1(R
+), because ‖ϕ̂(Ṙ(t))‖= (

∑N
i=1 ki(ṗi(t))

2)
1
2 ≤ maxj |ṗi(t)|(

∑N
i=1 ki)

1
2

for some constants ki > 0. Therefore,

‖u(t)‖ ≤ α1 ‖u(0)‖ e−β1t + α1

∫ ∞

0

e−β1(t−s)‖ϕ̂(Ṙ(s))‖ ds.(6.7)

Defining h1(t) := e−β1t ∈ L1(R
+) and h2(t) := ‖ϕ̂(Ṙ(t))‖ ∈ L1(R

+) and bearing in
mind that the integral on the right-hand side of (6.7) is (h1 ∗ h2)(t) ∈ L1(R

+) (cf.
[46, Theorem 8.14, p. 170]) we show that ‖ϕ̂[Ż1(t), . . . , ŻN (t)]‖ ∈ L1(R

+). Finally,
we have ‖Żi(t)‖ ∈ L1(R

+), for all i, and maxi{‖Żi(t)‖} ∈ L1(R
+) and, consequently,

‖ d
dtV(Zt)‖ ∈ L1(R

+), which proves that ‖ d
dtW(t)‖ ∈ L1(R

+).
Now, since f(t) ∈ L1(R

+) and g(t) ∈ L1(R
+), we have that (f ∗ g)(t) ∈ L1(R

+)
(cf. [46, Theorem 8.14, p. 170]), and so

lim
t→∞

∥∥∥∥∫ t

0

eA(t−s)
·
W(s)eA

′(t−s) ds

∥∥∥∥ = 0,

that is, ∫ t

0

eA(t−s)
·
W(s)eA

′(t−s) ds → 0 as t → ∞

which proves that limt→∞ I(t) exists. Defining limt→∞ I(t) = limt→∞ P �(t) := P
�

and taking limits on both sides of (6.5), we obtain

AP
�

+ P
�
A

′ = lim
t→∞

∫ t

0

eA(t−s)
·
W(s)eA

′(t−s)ds−
[
T∞KT ′

∞ + CC′ + V(Q)
]
.(6.8)
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Finally, (6.8) becomes

(A− T∞H)P
�

+ P
�
(A− T∞H)

′
+ T∞KT ′

∞ + CC′ + V(Q) = 0.(6.9)

Notice that P is also a solution of (6.9) because, replacing P
�

by P in (6.9), and
taking into account that T∞ = PH ′K−1, we have

AP + PA′ − PH ′ (GG′)−1
HP + CC′ + V(Q) = 0,

which is (5.1).
Since A − T∞H is stable, the algebraic Riccati equation (6.9) admits a unique

solution. Therefore, we must have P
�

= P. In short, we have limt→∞ P �(t) = P and
P �(t) ≥ P(t).

Lemma 6.2. Let Zi(t) and Zi(t) be solutions of matrix differential equations
given, respectively, by

·
Zi(t) = AiZi(t) + Zi(t)A

′
i +

N∑
j=1

Zj(t)λji + CiC
′
ipi(t),(6.10)

Zi(0) = Vi ≥ 0

and
·
Z̄i(t) = AiZ̄i(t) + Z̄i(t)A

′
i +

N∑
j=1

Z̄j(t)λji + CiC
′
iαi(t),(6.11)

Z̄i(0) = Vi ≥ 0,

where αi(t) = infs∈[0,∞){pi(t + s)}. Then, for all t > 0, we have Zi(t) ≥ Z̄i(t).
Proof. First observe that pi(t) ≥ αi(t) and that for 0 ≤ s ≤ t, αi(t) ≥ αi(s), i.e.,

αi(t) is a nondecreasing function of t. Moreover, αi(t) → πi exponentially fast, as
t → ∞, because pi(t) → πi exponentially fast. Next, from Lemma 4.1 in [29], under
positive semidefinite initial conditions, (6.10) and (6.11) admit positive semidefinite
solution for all t, which can be obtained by successive approximations. Then Zi(t) ≥ 0
and Z̄i(t) ≥ 0 for all t.

To see this, notice that (6.11) can be rewritten as

·
Z̄i(t) =

(
Ai +

1

2
λiiI

)
Z̄i(t) + Z̄i(t)

(
Ai +

1

2
λiiI

)′

+

N∑
j=1, j �=i

Z̄j(t)λji + CiC
′
iαi(t),

Z̄i(0) = Vi ≥ 0.

Now let Φi(t, s) be the transition matrix associated with Ai + 1
2λiiI, i.e., Φi(t, s) =

e(Ai+
1
2λiiI)(t−s). Then the solution Z̄i(t) will be given by

Z̄i(t) = Φi(t, 0)ViΦ
′
i(t, 0)

+

∫ t

0

Φi(t, s)

⎡⎣ N∑
j=1, j �=i

Z̄j(s)λji + CiC
′
iαi(s)

⎤⎦Φ
′
i(t, s)ds.

Since αi(t) ≥ 0 for all t, and since Z̄j(t)λji ≥ 0 for all t and i �= j, we have that

N∑
j=1, j �=i

Z̄j(u)λji + CiC
′
iαi(u) ≥ 0 for all u ≥ 0.
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We shall now show that Zi(t) ≥ Z̄i(t). (6.10) can be rewritten as

·
Zi(t) =

(
Ai +

1

2
λiiI

)
Zi(t) + Zi(t)

(
Ai +

1

2
λiiI

)′

+

N∑
j=1, j �=i

Zj(t)λji + CiC
′
ipi(t),

Zi(0) = Vi ≥ 0.

Define Ri(t) := Zi(t) − Z̄i(t). Then, we get

·
Ri(t) =

(
Ai +

1

2
λiiI

)
Ri(t) + Ri(t)

(
Ai +

1

2
λiiI

)′

+

N∑
j=1, j �=i

Rj(t)λji + CiC
′
i [pi(t) − αi(t)] ,

Ri(0) = 0.

Since CiC
′
i[pi(t) − αi(t)] ≥ 0, because pi(t) ≥ αi(t) for all t, the solution Ri(t)

is obtained in the same way as we did for the solution of Z̄i(t) and possesses the
same properties as those of Z̄i(t). So, Ri(t) ≥ 0, which proves that Zi(t) ≥ Z̄i(t),
completing the proof of lemma.

Lemma 6.3. Let Zt = (Z1(t), . . . , ZN (t)) ∈ Hn+, and let Zt = (Z̄1(t), . . . , Z̄N (t))
∈ Hn+. Then V(Zt) ≥ V(Zt) for all t ≥ 0, where V(Zt) is defined by (4.11).

Proof. We have shown that V(Zt) is a linear operator and that V(Zt) ≥ 0 for
all Zt = (Z1(t), . . . , ZN (t)) ∈ Hn+. From the previous lemma, Zt − Zt ≥ 0. Then,
0 ≤ V(Zt −Zt) = V(Zt) − V(Zt), which is equivalent to saying that V(Zt) ≥ V(Zt),
completing the proof.

Lemma 6.4. Let P�(t) be the solution of the Riccati differential equation given by

·
P�(t) = (A− T�(t)H)P�(t) + P�(t) (A− T�(t)H)

′
(6.12)

+T�(t)K̄tT
′
�(t) + C̄tC̄

′
t + V(Zt),

P�(0) = 0,

where T�(t) := P�(t)H
′K̄−1

t , K̄t := ḠtḠ
′
t, Ḡt := [

√
α1(t)G1 . . .

√
αN (t)GN ], C̄t :=

diag(
√
αi(t)Ci), V(Zt) is the linear operator defined by (4.11) applied to

Zt = (Z̄1(t), . . . , Z̄N (t)), the solution of the matrix differential equation given by
(6.11), and αi(t) = infs∈[0,∞){pi(t + s)}. Then, for 0 ≤ s ≤ t, P�(s) ≤ P�(t). In ad-
dition, P�(t) ≤ P(t) for all t ∈ [0,∞) and limt→∞ P�(t) = P, where P is the solution
of (5.1).

Proof. First, observe that, for all t, CtC′
t ≥ C̄tC̄

′
t ≥ 0 and Kt ≥ K̄t ≥ 0. Also

from the previous lemma, V(Zt) ≥ V(Zt) ≥ 0. In addition, from the exponential
speed of convergence of αi(t) to πi, we have that C̄tC̄

′
t → CC′, V(Zt) → V(Q), and

K̄t → K = GG′ exponentially fast as t → ∞.
Also, for 0 ≤ s ≤ t, P�(s) ≤ P�(t), from Lemma 5.2 in [54].
Let us now prove that P�(t) ≤ P(t) for all t ∈ [0,∞). In order to do that we

rewrite (6.13) in the following way:

·
P�(t) = (A− TtH)P�(t) + P�(t) (A− TtH)

′

+ C̄tC̄
′
t + V(Zt) + TtK̄tT

′
t − (Tt − T�(t)) K̄t (Tt − T�(t))

′
.
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Defining P̃�(t) := P(t) − P�(t), we have

·
P̃�(t) = (A− TtH) P̃�(t) + P̃�(t) (A− TtH)

′

+Tt

[
Kt − K̄t

]
T ′
t +

[
CtC′

t − C̄tC̄
′
t

]
+
[
V(Zt) − V(Zt)

]
+ (Tt − T�(t)) K̄t (Tt − T�(t))

′
,

P̃�(0) = P(0) ≥ 0.

Let Φ(t, s) be the transition matrix associated with A− TtH. Then

P̃�(t) = Φ(t, 0)P(0)Φ′(t, 0)

+

∫ t

0

Φ(t, s)
{
Ts

[
Ks − K̄s

]
T ′
s +

[
CsC′

s − C̄sC̄
′
s

]
+
[
V(Zs) − V(Zs)

]
+ (Ts − T�(s)) K̄s (Ts − T�(s))

′}
Φ′(t, s)ds.

Since P(0) ≥ 0, Kt − K̄t ≥ 0, CtC′
t − C̄tC̄

′
t ≥ 0, V(Zt) − V(Zt) ≥ 0, and

(Tt − T�(t))K̄t(Tt − T�(t))
′ ≥ 0 because K̄t ≥ 0 for all t ≥ 0, we have P̃�(t) ≥ 0,

which proves that P(t) ≥ P�(t).
Now, since P�(t) is a nondecreasing function of t and is bounded above by P,

because P�(t) ≤ P(t) ≤ P �(t) and limt→∞ P �(t) = P, we have that limt→∞ P�(t)
exists. So, there exists a matrix P �, such that P�(t) → P � as t → ∞. Now, due to
the monotonicity and convergence of P�(t), it is a classical result that Ṗ�(t) → 0 as
t → ∞. Therefore, P � is the solution of the algebraic Riccati equation given by(

A− T �H
)
P � + P �

(
A− T �H

)′
+ T �KT

′
� + CC′ + V(Q) = 0,

where T � = P �H
′(GG′)−1. But the above equation can be rewritten as

AP � + P �A′ − P �H
′ (GG′)−1

HP � + CC′ + V(Q) = 0.(6.13)

Since (6.13) is equivalent to (5.1), we have, from the unicity of solution of (5.1),
P � = P. Therefore, limt→∞ P�(t) = P.
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Abstract. When dealing with the control of a large number of interacting systems, the fact
that the flow of information has to be limited becomes an essential feature of the control design. The
first consequence of the limited information flow constraint is that the signals that the controllers
and the systems exchange have to be quantized. Though quantization has already been extensively
considered in the control literature, its analysis from the point of view of the information flow demand
has been considered only recently.

Limiting the information flow between a plant and a controller will necessarily lead to a perfor-
mance degradation of the feedback loop, and we expect a trade-off between the achievable perfor-
mance and the amount of information exchange allowed in the loop.

Most of the success of modern digital communication theory in the last 50 years is due to the con-
tributions of information theory, which proposed a symbolically based analysis of the communication
channel performance. The same goal is much more difficult to reach in digital control theory.

This paper proposes an attempt toward this direction. The main contribution of this paper is to
provide a complete analysis of the trade-off between performance and information flow in the simple
case of the stabilization of a scalar linear system by means of a memoryless quantized feedback map.
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1. Introduction. Stabilization by quantized feedback controllers has been widely
investigated in the last few years (see [2, 3, 6, 7, 9, 16, 20, 21, 22, 23, 25, 26] and refer-
ences therein). There are two different situations in which quantization appears to be
a central feature in the control design. The first is related to control systems in which
either the sensor’s or the actuator’s limitations impose the condition that their mea-
sures or their commands can take a limited number of different values. In this case,
the number of quantization levels provides a measure of the sensor or of the actuator
complexity. Another situation in which quantization plays an important role is when
plants and controllers exchange information through digital communication channels
with a limited capacity. In this last case, the measures and the commands need to
be quantized before being communicated and the number of quantization levels is
strictly related to the information flow between the components of the control system
and so to the capacity required to transmit the control information.

Two different approaches have been proposed in the literature for solving the
control problem with a quantized feedback. The first approach considers memoryless
feedback quantizers. In particular in [6] there is a first mathematical analysis of
control systems with uniform quantized feedback, while in [26, 2] a first bound of the
number of quantization intervals needed to stabilize a linear system is proposed. In
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[7] logarithmic quantizers are shown to yield the Lyapunov stability. In [9] a chaos-
based quantized controller was proposed and a first comparison between uniform,
logarithmic, and chaotic quantized feedback controllers was presented in the scalar
case. In [23] performance of uniform quantized feedback controllers is analyzed for
general linear systems.

The second approach considers quantized feedback controllers with an internal
state. In particular [3] proposes a stabilization technique in which the quantizer is
scaled according to the state growth. In [25] this technique is used to show the
relation between the degree of instability of the system to be controlled and the
number of quantization levels of the feedback quantizer. The same relation was found
independently in [20] in a different context.

In general the analysis of memoryless quantized feedback controllers is difficult,
while the results become quite neat for quantized feedback controllers with infinite
memory. Notice that, while it is reasonable to allow a memory structure on sensors and
actuators when designing control systems under communication constraint [25, 20],
in situations in which quantization is due to the poor quality of sensors or actuators,
only the memoryless quantized feedback controller becomes a reasonable model.

This paper considers memoryless quantized controllers for which, as we men-
tioned, a mathematical analysis is more complicated. The relation between controller
complexity and controller performance is investigated by using theoretical information
and combinatorial techniques. One of the main contributions of this paper is to show
that the controller performance has to be described by two conflicting parameters, one
evaluating the steady state and the other evaluating the transient of the controlled
system. Roughly speaking we proved that, for a fixed controller complexity, a good
steady state implies a bad transient and vice versa.

More precisely, in this paper we consider the stabilization problem for discrete
time linear systems with a one-dimensional state, namely, a system described by the
equation

xt+1 = axt + ut.

While in the classical control setting this stabilization problem is completely trivial
and there is little to be said, in the memoryless quantized feedback setting nontrivial
issues already come up in this simple situation. In this setup, a memoryless quantized
feedback is a control law ut = k(xt), where k(·) is a quantized (i.e., piecewise constant)
map. Let N be the number of distinct values which k(·) is allowed to take. The
number N will provide a measure of the information flow in the feedback loop. In the
literature referenced above several different quantized stabilizing strategies have been
proposed in this context. Moreover in [2, 26] the minimum value of N (as a function
of |a|) has been found, ensuring the existence of a memoryless quantized controller
yielding stability (but not convergence) of the system.

The aim of this paper is to compare different quantized control strategies pro-
posed in the literature in terms of complexity and performance and to establish a
number of results showing fundamental limitations of quantized control. To be more
precise about performance, notice first that, if the original system is unstable, a state
feedback with finitely many quantization intervals can only yield so-called practi-
cal stabilization, namely, the convergence of any initial state belonging to a bigger
bounded region I into another smaller target region of the state space J . The ratio C
between the measure of the starting region and the target region is called contraction,
and it provides a description of the steady state properties of the closed loop system.
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Beyond C, the expected time T needed to shrink the state of the plant from the start-
ing set to the target set will measure the transient controller performance. Notice
that these two parameters represent a particular way of evaluating the steady state
and the transient performance of the controller. There are other possible choices. For
instance, it is possible to evaluate the transient by means of a quadratic-like index.
Some preliminary investigations show that the techniques proposed in this paper can
also be applied in this setup and yield similar trade-off results.

We will evaluate the relations between the parameters N,C, T, and a in a series of
different stabilization strategies. In all cases we will see that, for fixed a, as C grows,
either N has to grow or T has to grow. However, different strategies exhibit different
growth rates of the two parameters N and T . In all cases an increasing value of |a|
either requires an increase in N or yields a degradation of C and T . These results
extend the relations between N and |a| proposed in [2, 26] and complete the analysis
started in [9], where, however, the parameter T was interpreted as the sup norm of the
entrance time and where a stronger notion of stability was considered. The relations
between the parameters N,C, T pointed out in the examples are in accordance with
some fundamental bounds which are proved in the second part of the paper, proving
in this way the optimality of the proposed quantized controller synthesis techniques.

Now we present an outline of the contents of this paper and of our main results.
In section 2, we present all basic definitions and notation. In particular we introduce
the concepts of stability and almost stability, and we state precisely the problems
we want to solve. Moreover, we introduce some basic tools from the ergodic theory
of piecewise affine maps. Using these we show that the expected entrance time T is
always finite if we have almost stability.

Section 3 is devoted to the introduction and the discussion of a general stabiliza-
tion strategy based on nesting an initial given quantized stabilizer.

Section 4 is devoted to the analysis of some examples. We show that, by nesting
the quantized deadbeat controller in a suitable way, we can obtain a variety of different
quantized stabilizers, which can be analyzed in terms of the parameters N and T as
functions of a and C. There are three particularly significant cases. The first is the
quantized deadbeat control which is obtained by using uniform quantized feedback.
In this case N grows linearly in C and |a| and T tend to the constant 1. The second
is the logarithmic quantized feedback strategy. In this case, instead, both N and
T grow logarithmically in C. The latter is the chaotic quantized feedback strategy.
In this last case only almost stability can be achieved and N tends to the constant
�|a|� while T grows linearly in C. Notice that the first and the last strategies present
dual characteristics of N and T as functions of C. It is interesting to observe that,
if we take any linear feedback ut = kxt, with k ∈ R, such that the linear closed loop
system xt+1 = (a+k)xt is asymptotically stable, then the expected entrance time T of
this controlled system is such that T/ logC tends to a constant which is a decreasing
function of |a + k|. Hence the logarithmic regime corresponds to the performance
which can be obtained through the allocation of the eigenvalue inside the unit circle
and the absolute value of this eigenvalue determines the logarithmic rate.

In section 5, we obtain universal bounds relating T , N , and C for fixed |a|. The
main results are presented in Theorems 3 and 4 and Corollaries 3 and 2. All these
results, except Theorem 4, need the assumption |a| > 2. Corollary 3 says two things:
First, in order to obtain expected entrance time T growing at most logarithmically
with respect to C, we need a number of quantization intervals N growing at least
logarithmically with respect to C. Second, if we use a number of quantization intervals
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N growing at most logarithmically with respect to C, we obtain expected entrance
times T growing at least logarithmically with respect to C. Moreover, the corollary
furnishes a quantitative trade-off between the two ratios T/ logC and N/ logC which
turns out to be interesting if related to the previous comment on the logarithmic
regime which can be obtained in the linear feedback case. Another consequence of
the results presented in this section is that the chaos-based stabilization strategy is
somehow optimal since its performance cannot be improved without paying this with
a greater information flow. Finally, Theorem 5 shows that any stabilization strategy
yielding stability has the ratio N/ logC bounded from below.

To prove the results in section 5 we need to use the tools of combinatorial analysis
of the symbolic dynamics associated with piecewise affine maps. This is developed
in section 6, which contains the deeper mathematical result of this paper, which is
Theorem 6. This theorem provides a new bound on the number of the paths on a graph
with possibly infinite uncountable edges, when this graph has some specific properties.
This theorem is very general and has potential applications in other situations such
as the analysis of quantized feedback systems when the state is multidimensional [10].

We conclude this introduction with a few remarks to emphasize the reasons why
we limited our analysis to scalar state space systems. From an application viewpoint,
these may be seen as a relatively uninteresting family of systems to be considered.
However, this simple case already contains all the interesting issues of the coupling
between control and information and mathematically leads to nontrivial problems.
The completeness of the results obtained in this paper, because of the simplified
setup we choose, will provide the guidelines for future investigations on more general
situations (see [10]). Observe finally that first order systems can be considered as
simplified models of more general systems and that one important case in which
control under communication constraint is relevant is just when many simple systems
have to be controlled by a unique centralized controller.

Notation. We present here some notation which will be used in this paper. If
A and B are two sets, then A \ B := {a ∈ A : a �∈ B}. Given a map f : A → B and
B1 ⊆ B we define

f−1(B1) := {a ∈ A : f(a) ∈ B1}.

The symbol AN denotes the set of all sequences taking values on the set A, while the
symbol A∗ denotes the set of all finite words over the alphabet A. The symbol #A
denotes the cardinality of A.

The symbol R+ denotes the set of all positive real numbers. If a ∈ R+, then
�a� means the minimum integer greater than or equal to a, and log a is the natural
logarithm of a. Given a, b ∈ R, a∧ b and a∨ b denote the minimum and the maximum
between a and b, respectively. Given K ⊆ R, K denotes the closure of K, while ∂K
denotes the boundary set of K.

Let I be an interval in R. Given any function f : I → R we define

supp (f) := {x ∈ I : f(x) �= 0}.

For any J ⊆ I we denote by 1J the function defined on I which is 1 in J and 0 on
I \ J , and it is called the indicator function of J . With the symbol L1(I) we mean
the set of absolutely integrable functions which is a normed space with the norm

||f ||1 :=

∫
I

|f(x)|dx ∀f ∈ L1(I).
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If P : L1(I) → L1(I) is a linear continuous operator, then the symbol ||P||1 denotes
the induced norm of P. The symbol L∞(I) means the set of bounded functions on I
which is a normed space as well. A function f ∈ L1(I) such that f(x) ≥ 0 for all x ∈ I
and such that ||f ||1 = 1 is called a density function on I. It induces a probability
measure on I which will be denoted by Pf , while the symbol Ef will denote the
expected value with respect to Pf . The probability measure and the expected value
with respect to a uniform Lebesgue measure on I will be simply denoted by the
symbols P and E, respectively.

2. Problem statement. Consider the following discrete-time, one-dimensional
linear model:

xt+1 = axt + ut,(1)

where a ∈ R. Most of the paper is devoted to the stabilization problem, and so it is
assumed that |a| > 1. Some results, however, hold true also for stable systems and so
for |a| ≤ 1.

Let k : R → R be a piecewise constant function with only finitely many disconti-
nuities. If we use k as a static feedback in system (1), namely, we let ut = k(xt), we
obtain the closed loop system

xt+1 = Γ(xt),(2)

where Γ(x) := ax + k(x) is a piecewise affine map with a fixed slope a. Autonomous
systems such as (2) in which Γ is piecewise affine can exhibit very wild behavior.
Their dynamical properties were extensively studied in the past [15, 18, 5, 24].

Remark. In fact, the definition we gave is not precise if we do not define what
happens at the boundary points of the intervals. We assume there is a finite family
of disjoint open intervals Ih such that D := ∪hIh is dense in R and that k(x) = uh

for every x ∈ Ih. In this way the associated closed loop map is defined as a map

(3) Γ : D → R,

Γ(x) = ax + uh if x ∈ Ih.

In order to consider iterations of Γ we need to restrict the domain by considering

Ω =

∞⋂
n=0

Γ−n (D) .(4)

It is clear that Γ(Ω) ⊆ Ω. Notice that R \ Ω is a countable subset of R, and since
most of the questions considered in this paper are related to mean properties, it will
be sufficient to consider Γ as a map defined on Ω, disregarding all the orbits which
will eventually get to a discontinuity point.

However, in those situations in which it is necessary to understand how the dy-
namics is defined at the boundaries, it is necessary to define the dynamics of Γ on all
R. This is done by considering, for any x0 ∈ R, the left and right limits of Γ(x) for
x → x0 denoted by Γ(x0−) and Γ(x0+), and by defining the enlarged set of orbits as

XΓ =
{
(xt) ∈ RN | xt+1 = Γ(xt+) or xt+1 = Γ(xt+) ∀t ∈ N

}
.(5)

The subset XΓ ∩ ΩN consists of the orbits of Γ on Ω, and it is in bijection with Ω
through the initial condition.
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It is obvious that, by using quantized feedback controllers, only a “practical sta-
bility” can be obtained as detailed in the following definitions.

Definition (invariance and almost invariance).Given a closed interval I, we say
that I is Γ-invariant if every orbit (xt) of Γ with x0 ∈ I is such that xt ∈ I for every t.
It is almost Γ-invariant if the assertion above is true for almost every initial condition
x0 with respect to the Lebesgue measure. When an interval I is invariant or almost
invariant we will use in any case the notation Γ : I → I.

Definition (stability and almost stability). Given two closed intervals J ⊆ I,
we say that Γ is (I, J)-stable if I and J are invariant by Γ and if for every orbit (xt)
of Γ with x0 ∈ I, there exists an integer t ≥ 0 such that xt ∈ J . We say that Γ
is almost (I, J)-stable if I and J are almost invariant and the convergence to J as
defined above occurs for almost all initial conditions in the orbit x0 ∈ I with respect
to the Lebesgue measure. A quantized feedback map k : R → R is said to be (almost)
(I, J)-stabilizing if the corresponding closed loop map Γ is (almost) (I, J)-stable.

Remark. With regard to almost invariance and almost stability, it is sufficient to
work with Γ on the set Ω as defined in (4). The concepts of invariance and stability also
depend on the dynamics on boundary points, and so the orbits have to be considered
as defined in (5).

Assume that Γ is almost (I, J)-stable. The first entrance time function

T(I,J) : I ∩ Ω → N ∪ {+∞}

is defined by

T(I,J)(x) = inf
{
n ∈ N | Γnx ∈ J

}
=

∞∑
n=1

1I\J(Γnx).(6)

We put T(I,J)(x) := +∞ if Γtx �∈ J for all t. Notice that the map T(I,J) is always
finite exactly when we have stability, while it is almost surely finite when we have
almost stability.

Remark. Notice that, if we want to extend the function T(I,J) to all I, we cannot
use definition (6). Indeed, there is a possible ambiguity for orbits touching discon-
tinuity points since, given x ∈ I, there can be infinitely many orbits having x as an
initial condition and, therefore, Γnx is not uniquely defined. In this case definition (6)
should be replaced as follows: we say that T(I,J)(x) = n if every orbit (xt) ∈ XΓ such
that x0 = x is such that xt ∈ J for any t ≥ n, and if there exists an orbit (xt) ∈ XΓ

such that x0 = x and such that xn−1 �∈ J .
The expected value of the entrance time with respect to a density function f on

I is given by

Ef (T(I,J)) =

∫
I

T(I,J)(x)f(x)dx.

It is clear that

Ef (T(I,J)) =

∫
I

[ ∞∑
n=1

1I\J(Γnx)f(x)

]
dx =

∞∑
n=1

nPf [T(I,J) = n] =

∞∑
n=0

Pf [T(I,J) > n].

In what follows, for any given (almost) (I, J)-stabilizing quantized feedback k yielding
an (almost) (I, J)-stable piecewise affine closed loop map Γ, we will use the symbol
T(k) or T(Γ) to denote the relative expected entrance time E(T(I,J)) with respect
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to the uniform density function on I. Notice that this quantity depends only on the
restriction of Γ to I \ J , and so we can assume that Γ is defined only on I \ J . For
this reason the right parameter measuring the information flow will be the number of
quantization intervals in I \ J , which will be denoted by the symbol N(k) or N(Γ).
Finally the ratio between the length of I and the length of J will be called the
contraction rate and will be denoted by C(k) or C(Γ).

The performance analysis of the quantized stabilization consists of determining,
for a given C > 1, N ∈ N, and T > 0, whether there exists or not a (almost) stabilizing
quantized feedback k such that C(k) = C, N(k) = N , and T(k) = T , or, in other
words, estimating the set

A := {(C,N, T ) : there exists k such that C(k) = C, N(k) = N, T(k) = T}.

Remark. The analysis proposed in this paper can be extended to a family of more
general performance measures. Let

V : I → R

be such that 0 ≤ V (x) ≤ 1 for every x ∈ I, and V (x) = 0 for every x ∈ J . Another
measure of the transient properties of the closed loop system is the following number:

E

( ∞∑
n=0

V (Γnx)

)
.

It is clear that, if V (x) = 1I\J(x), then the previous cost coincides with the expected
entrance time in J . If V (x) is a general continuous function, then for any α ∈ [0, 1]
we have that

α1I\J(α)(x) ≤ V (x) ≤ 1I\J(x),

where J(α) := {x ∈ I : V (x) ≤ α}. This fact implies that

αE(TJ(α)) ≤ E

( ∞∑
n=0

V (Γnx)

)
≤ E(T(I,J)).

This shows that the dependence of this generalized performance index and of the
expected entrance time on the parameters C(Γ) and N(Γ) will be similar.

2.1. The Perron–Frobenius operator for piecewise affine maps. In this
subsection we recall some standard results on the ergodic theory of piecewise affine
maps, and we will present a first preliminary result asserting that the expected en-
trance time is always finite for almost (I, J)-stable piecewise affine maps.

Let Γ : I → I be a piecewise affine map with a fixed slope a and assume here that
|a| > 1. It is a standard fact that Γ induces a linear transformation

PΓ : L1(I) → L1(I)

called the Perron–Frobenius operator associated with Γ which is uniquely defined by
the following duality relation:∫

I

(g ◦ Γ)(x)f(x)dx =

∫
I

g(x)(PΓf)(x)dx(7)
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for all g ∈ L∞(I), f ∈ L1(I). It can be shown that the operator PΓ is bounded with
||PΓ||1 ≤ 1, and it maps probability densities onto probability densities. An important
interpretation of PΓ is as follows. If we have a continuous random variable X defined
on I whose density is f , then the density of the transformed random variable X ◦ Γ
is PΓf . A final important property of the Perron–Frobenius operator PΓ is that
PΓn = Pn

Γ .
The relevance of the Perron–Frobenius operator in our investigations is due to

the fact that

Pf

[
T(I,J) > n

]
=

∫
I\J

Pn
Γf(x)dx,

which follows by iterating (7) and by taking g(x) = 1I\J(x). This shows that the
asymptotics of this operator and so its spectral properties will be relevant for our
purposes.

We have the following result.
Lemma 1. Let Γ be almost (I, J)-stable. If h(x) ∈ L1(I) is an invariant density

of PΓ, then

supp h ⊆ J.

Proof. First we show that, since J is invariant by Γ, the fact that supp f ⊆ J
implies that supp Pk

Γf ⊆ J . Indeed, if K ⊆ I \ J , then Γ−1(K) ⊆ I \ J , and so∫
K

(PΓf)(x)dx =

∫
Γ−1(K)

f(x)dx = 0.

We show now that, if h is invariant by PΓ, then h1J and h1I\J are also invariant by
PΓ. Indeed for any g ∈ L∞(I), f ∈ L1(I) we have that∫

I

g(x)(PΓh1J)(x)dx =

∫
J

g(x)(PΓh1J)(x)dx =

∫
J

g(x)(PΓh)(x)dx

=

∫
I

g(x)1J(x)(PΓh)(x)dx =

∫
I

g(x)(h1J)(x)dx,

where in the first equality we used the fact that supp h1J ⊆ J . This shows that h1J

is invariant. Since both h and h1J are invariant, so is h1I\J , as well.
Finally, if we assume by contradiction that there exists a nonzero invariant density

of PΓ not supported inside J , then for the above considerations, there also exists a
nonzero invariant density supported inside I \ J . Let us call it h0. We can find
δ > 0 and a subset K ⊆ I \ J of nonzero Lebesgue measure such that h0(x) > δ
for every x ∈ K. Consequently, h0 − δ1K is a nonnegative function. Therefore,
Pn

Γ (h0 − δ1K) = h0 − Pn
Γ (δ1K) is also nonnegative for all n ≥ 0. Since h0 is 0 on J ,

it follows that Pn
Γ1K is 0 on J for every n. This implies that∫

Γ−n(J)

1K(x)dx =

∫
J

(Pn
Γ1K)(x)dx = 0,

which implies that K ∩ Γ−n(J) has zero Lebesgue measure for all n ≥ 0, which
contradicts the almost (I, J)-stability of Γ.
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To obtain a good characterization of the spectral properties of PΓ we need to
restrict the type of densities to be considered. Let BV(I) ⊆ L1(I) be the subspace
of L1(I) constituted by the bounded variation functions on the interval I. More
precisely, if we define the variation of a function f as

∨
f := sup

{
n−1∑
i=1

|f(xi+1) − f(xi)| xi ∈ I, x1 < x2 < · · · < xn

}
,

then

BV(I) :=
{
f : I → R :

∨
f < ∞

}
.

Now equip the space BV(I) with a new norm

|||f ||| :=
∨

f + ||f ||1.

It is a classical fact that PΓ(BV(I)) ⊆ BV(I) and that PΓ|BV(I) is bounded with
respect to the norm ||| · |||. Using the Lasota–Yorke inequality [15] and the spectral
theorem of Ionescu-Tulcea and Marinescu [12], the following facts can be shown to
hold true.

(i) Let σ1 be the set of eigenvalues of modulus 1 of PΓ seen as an operator on
L1(I). Then this set is a finite multiplicative group. Moreover, each of these
eigenvalues has a finite dimensional eigenspace contained in BV(I).

(ii) The Perron–Frobenius operator PΓ on BV(I) admits the following decompo-
sition:

PΓ =
∑
λ∈σ1

λQλ + R,(8)

where Qλ are finite rank operators on BV(I), and R is a bounded operator
on BV(I) such that
(a) Qλ ◦R = R ◦Qλ = 0 for all λ ∈ σ1;
(b) Qλ ◦Qλ′ = 0 for all λ, λ′ ∈ σ1 such that λ �= λ′;
(c) Qλ ◦Qλ = Qλ for all λ ∈ σ1;
(d) |||Rn||| ≤ cγn for all n ∈ N, where c is a positive constant and 0 < γ < 1.

An important consequence of the above results is that the spectrum of PΓ in
BV(I) is composed of a finite set of eigenvalues on the unit circle (with finite dimen-
sional eigenspaces) and of another part contained in a disk of radius strictly smaller
than 1.

We now state and prove the main result of this section.
Proposition 1. Let Γ be an almost (I, J)-stable piecewise affine map. Then,

there exists a constant K > 0 such that

Ef (T(I,J)) ≤ K|||f |||

for every probability density f ∈ BV(I).
Proof. Notice preliminarily that there exists ν ∈ N such that λν = 1 for every

λ ∈ σ1. This implies that

Pν
Γ =

∑
λ∈σ1

Qλ + Rν .
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This implies that for any density f ∈ BV(I) we have that Qλf is invariant by Pν
Γ .

Since Pν
Γ is the Perron–Frobenius operator for the map Γν which is almost (I, J)-

stable, then, by Lemma 1, we have that supp Qλf ⊆ J . Using this fact and for-
mula (8), we obtain

Pf [T(I,J) > n] =

∫
I\J

(Pn
Γf)(x)dx =

∫
I\J

(Rnf)(x)dx ≤ cγn|||f |||

and hence

Ef (T(I,J)) =

+∞∑
n=0

Pf [T(I,J) > n] ≤ c

1 − γ
|||f |||.

3. Nested quantized feedback strategies. Consider the linear discrete time
system (1), where |a| > 1, and consider two intervals J ⊆ I. We want to stabilize it
through a quantized state feedback, i.e., we want to find a quantized feedback map
k such that the closed loop system (2) drives (almost) any initial state x0 ∈ I into a
state evolution which, after a transient, enters the interval J . Several solutions to this
problem can be proposed. In fact, we will show that, starting from a base quantized
feedback, it is possible to construct a family of quantized feedbacks by iterating the
base one.

More precisely, suppose that we have found an (I, J)-stabilizing quantized feed-
back k1(x) and a (J,K)-stabilizing quantized feedback k2(x). Then it is clear that
the quantized feedback

k(x) =

{
k1(x) if x ∈ I \ J,
k2(x) if x ∈ J \K

(9)

will be (I,K)-stabilizing. The analogous conclusion is less straightforward in case we
start from almost stabilizing quantized feedbacks. In what follows we will show that
this is indeed the case, namely, if k1(x) is almost (I, J)-stabilizing and k2(x) is almost
(J,K)-stabilizing, then k(x) is almost (I,K)-stabilizing.

Let Γ : I → I be an almost (I, J)-stable piecewise affine map with a fixed slope
a such that |a| > 1, and let PΓ be the Perron–Frobenius operator associated with Γ.
From any density function f ∈ L1(I) it is possible to define a probability measure μ
on J as the image of the measure Pf through the map

ψ(x) := ΓT(I,J)(x)(x),

where T(I,J)(x) is the first entrance time function of Γ. More precisely, if A ⊆ J is a
measurable set, then

μ(A) := Pf

[
ψ−1(A)

]
.(10)

The following result gives important information on the measure μ.
Proposition 2. For any density f ∈ L1(I), the measure μ defined in (10)

is absolutely continuous with respect to the Lebesgue measure and its corresponding
density h is given by

h = 1Jf +

+∞∑
j=1

1JPΓ

(
1I\JPj−1

Γ f
)
.(11)
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Moreover, there exists a constant H > 0 only depending on Γ such that

|||h||| ≤ H|||f ||| ∀f ∈ BV(I).

Proof. Let A ⊆ J be a measurable set. Then

(12) μ(A) = Pf [ψ−1(A)] =

+∞∑
j=0

Pf

[
ψ−1(A) ∩ {T(I,J)(x) = j}

]
=

+∞∑
j=0

Pf

[
Γ−j(A) ∩ {T(I,J)(x) = j}

]
= Pf [A] +

+∞∑
j=1

Pf

[
Γ−j(A) ∩ Γ−j+1(I \ J)

]
.

Notice that

Pf

[
Γ−j(A) ∩ Γ−j+1(I \ J)

]
=

∫
I

1Γ−j(A)(x)1Γ−j+1(I\J)(x)f(x)dx

=

∫
I

1Γ−1(A)(x)
[
1I\J(x)Pj−1

Γ f(x)
]
dx

=

∫
A

PΓ

(
1I\JPj−1

Γ f
)
(x)dx =

∫
A

hj(x)dx,

where hj(x) := 1J(x)PΓ(1I\JPj−1
Γ f)(x). Using this relation in (12) and the fact that

hj(x) are nonnegative we obtain, by Fatou’s lemma, that

μ(A) = Pf [A] +

+∞∑
j=1

∫
A

hj(x)dx =

∫
A

⎡⎣1J(x)f(x) +

+∞∑
j=1

hj(x)

⎤⎦ dx,
which shows that the series

∑+∞
j=1 hj(x) converges in the L1 sense. Hence, the function

h, defined in (11), is in L1 and μ is absolutely continuous with respect to the Lebesgue
measure with density h.

We now show that there is also a convergence in the norm ||| · ||| if f ∈ BV(I).
First notice that, by the Yorke inequality [15, Formula (6.1.12)], for all g ∈ BV(I) we
have ∨

(g1J) ≤ 2
∨

g +
2

|I| ||g||1,

which implies that

|||g1J ||| ≤ 2
∨

g +

(
1 +

2

|I|

)
||g||1 ≤

(
2 +

2

|I|

)
|||g|||.

Using the previous inequality we can argue that

|||1JPΓ(1I\JPj−1
Γ f)||| ≤

(
2 +

2

|I|

)
|||PΓ||| · |||1I\JPj−1

Γ f |||.(13)

Using the spectral decomposition for PΓ we can estimate this last term as

|||1I\JPj−1
Γ f ||| = |||Rj−1f ||| ≤ cγj−1|||f |||,(14)
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where we used the same arguments used in Proposition 1. Putting together estimates
(13) and (14), we finally obtain that sum (11) indeed converges in the norm ||| · |||
and, moreover, we have that∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣
+∞∑
j=1

1JPΓ

(
1I\JPj−1

Γ f
)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤
(

2 +
2

|I|

)
|||PΓ|||c
1 − γ

|||f ||| ,

which yields the thesis.
From the previous proposition and from Proposition 1 we can argue that the

composed quantized feedback k(x) defined in (9) is always almost (I,K)-stabilizing.
The previous result can also be used to obtain an estimate of the expected entrance
time T(k). Let T(I,J)(x) for k1, and let T(J,K)(x) be the first entrance time function
for k2. It is clear that the first entrance time function T(I,K)(x) of the quantized
feedback k is given by

T(I,K)(x) = T(I,J)(x) + T(J,K)

(
Γ
T(I,J)(x)
1 (x)

)
.

This implies that

Ef (T ) =

∫
J

T(I,J)(x)f(x)dx +

∫
J

T(J,K)

(
Γ
T(I,J)(x)
1 (x)

)
f(x)dx

= Ef (T(I,J)) + Eh(T(J,K)),

where h is the probability density on J obtained form f as shown in the previous
proposition.

This shows a way to estimate the expected entrance time of k(x). As far as
the number of quantization intervals is concerned, it is clear that we have simply
that N(k) = N(k1) + N(k2). Finally, the contraction rate of the overall quantized
feedback is the product of the contraction rates of the component quantized feedbacks,
i.e., C(k) = C(k1)C(k2).

The previous considerations can be used to obtain a class of (almost) stabilizing
quantized feedbacks starting from one. Indeed, assume that k(x) is an (almost) (I, J)-
stabilizing quantized feedback with contraction rate C(k) = C, N(k) quantization
intervals, and expected entrance time T(k). Let

F (x) :=
x

C
+ β

be an affine map such that J = F (I). It is clear that the quantized feedback

F ◦ k ◦ F−1 : F (I) → F (I)

is (almost) (F (I), F 2(I))-stabilizing. Observe that the corresponding closed loop
map is F ◦ Γ ◦ F−1. The same construction can be iterated, obtaining for every
i = 0, 1, . . . , τ − 1 the quantized feedback F i ◦ k ◦ F−i which is (almost) (F i(I),
F i+1(I))-stabilizing. The quantized feedback defined by

k(τ)(x) := F i ◦ k ◦ F−i(x) if x ∈ F i(I) \ F i+1(I)

will be (almost) (I, F τ (I))-stabilizing with the contraction rate C(k(τ)) = C(k)τ and
N(k(τ)) = τN(k) quantization intervals. As far as the expected entrance time T(k(τ))
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is concerned, it is difficult in general to estimate its dependence on the number τ of
iterations.

Consider the map

Ψ : I → I : x �→ F−1 ◦ ΓT(I,J)(x)(x),(15)

where T(I,J)(x) is the first entrance time function for k. It follows from Proposition
2 that Ψ transforms absolutely continuous measures into themselves so that also in
this case we can consider the associated Perron–Frobenius operator

PΨ : L1(I) → L1(I).

It is easy to see that

PΨf = C−1(h ◦ F ),

where h is the density which is obtained from f as shown in (11).
It is clear from the previous considerations that

T
(
k(τ)
)

=

τ−1∑
i=0

EPi
Ψf

(
T(I,J)

)
,(16)

where f is the uniform probability density on I. From Propositions 2 and 1 we obtain

T
(
k(τ)
)
≤

τ−1∑
i=0

K|||Pi
Ψf ||| ≤

τ−1∑
i=0

KHi|||f ||| ≤ K

H − 1
Hτ |||f |||.(17)

This is not a very good estimate, since we expect that in many situations the growth
should be linear in τ . For instance, if the uniform density on I is invariant, then we
have that T(k(τ)) = τT(k). In this case from a triple (C,N, T ) ∈ A we can obtain a
sequence of triples (Cτ , τN, τT ) ∈ A for all τ ∈ N. This method will be used in the
following subsections to obtain three specific quantized feedback strategies.

In general we cannot guarantee that Ψ will possess invariant probability densities,
and it seems to be very difficult to obtain estimates which are better than (17). Notice
that indeed Ψ is also a piecewise affine map but in general with an infinite number of
continuity intervals. For this type of maps the theory is quite weak: invariant prob-
ability densities are not guaranteed to exist, and we may lose the spectral structure
of the corresponding Perron–Frobenius operator we had in the finite case (see [4] for
more details). There is, however, a case in which things go smooth, namely, when
T (x) is bounded. In this case Ψ is an expanding piecewise affine map with only a
finite number of continuity intervals, and in this case invariant densities do exist and
the Perron–Frobenius operator PΨ admits the usual spectral decomposition (8). In
this case we have the following result.

Proposition 3. Assume that T (x) is bounded. Then, there exist a probability
density f and a bounded sequence {aτ} such that

T
(
k(τ)
)

= τEf (T ) + aτ .(18)

Proof. Let f be the uniform probability density on I. Moreover, let ν ∈ N be
such that λν = 1 for every λ ∈ σ1, and let Q =

∑
λ Qλ. Observe that for all j ∈ N
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we have QPj
Ψ = Pj

Ψ − Rj and that QPν
Ψ = Q. This implies that if we decompose

j = lν + r, with l ∈ N and r ∈ {0, . . . , ν − 1}, we have that

Pj
Ψ = QPr

Ψ + Rj .

Define

f = Q

⎛⎝1

ν

ν−1∑
j=0

Pj
Ψf

⎞⎠ .

Then, if τ − 1 = lν + r, we have that

τ−1∑
j=0

Pj
Ψf − τf = lQ

⎛⎝ν−1∑
j=0

Pj
Ψf

⎞⎠+ Q

⎛⎝ r∑
j=0

Pj
Ψf

⎞⎠+

τ−1∑
j=0

Rjf − τf

= (lν − τ)f + Q

⎛⎝ r∑
j=0

Pj
Ψf

⎞⎠+

τ−1∑
j=0

Rjf.

Notice that ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(lν − τ)f + Q

⎛⎝ r∑
j=0

Pj
Ψf

⎞⎠+

τ−1∑
j=0

Rjf

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ ν|||f |||

+ |||Q|||

⎛⎝ν−1∑
j=0

|||Pj
Ψ|||

⎞⎠ |||f ||| + C

1 − γ
|||f |||

is bounded in τ . Observe finally that

|T(k(τ)) − τEf (T )| =

∣∣∣∣∣∣
∫
I

T (x)

⎛⎝τ−1∑
j=0

Pj
Ψf(x) − τf(x)

⎞⎠ dx

∣∣∣∣∣∣
≤
∫
I

T (x)

∣∣∣∣∣∣
τ−1∑
j=0

Pj
Ψf(x) − τf(x)

∣∣∣∣∣∣ dx.
The result now follows by applying Proposition 1.

This has the following consequence. If the triple (C,N, T ) is in A and corresponds
to a situation in which the entrance time function is bounded, then we can obtain
a sequence of triples (Cτ , τN, τT + aτ ) ∈ A for all τ ∈ N, where T is the expected
entrance time with respect to a suitable probability density, and {aτ} is a bounded
sequence.

4. Three stabilizing quantized feedback strategies. The method presented
in the previous section will be used in the following subsections to obtain three specific
quantized feedback strategies. In what follows we assume for simplicity that I =
[−1, 1] and J = [ε, ε] with ε ≤ 1, and so we have that C = 1/ε. In this section we
will simply write C,N,T dropping the explicit dependence from k. All probabilistic
considerations in this section will be carried on with respect to the uniform probability
on I.
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Fig. 1. The map Γ associated with the quantized feedback defined in (19).

4.1. Deadbeat quantized feedback strategy. The first strategy, which has
been analyzed in detail by Delchamps in [6], consists of approximating the one-step
deadbeat controller k(x) := −ax by its quantized version, i.e., by a uniform quantized
function k(x) such that −ax− ε ≤ k(x) ≤ −ax + ε. One possibility is to take

k(x) := −(2h + 1)ε for h
2ε

a
< x ≤ (h + 1)

2ε

a
,(19)

which yields the closed loop map Γ(x) illustrated in Figure 1.
This controller drives any state belonging to I into J in one step. In this case we

have that

N = 2

⌈
|a|C − 1

2

⌉
∼ |a|C

and that

T =
∞∑

n=1

P[TJ ≥ n] = P[TJ ≥ 1] = 1 − P[J ] = 1 − 1/C,

where f(C) ∼ g(C) means that f(C)/g(C) tends to 1 as C → ∞.
Using the nesting strategy presented above we can construct a τ -step deadbeat

quantized feedback simply iterating the one-step deadbeat quantized feedback. We
only need to pay attention to the fact that the uniform density in I is invariant with
respect to the map Ψ defined in (15). This happens if |a|(C − 1)/2 is an integer.
Assume that this is the case, and denote it by n. We obtain a triple contraction rate,
quantization intervals, and expected entrance time equal to(

2n + |a|
|a| , 2n,

2n

2n + |a|

)
∈ A.
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Using the strategy presented above, we can iterate the construction τ times, obtaining
in this way a sequence of triples((

2n + |a|
|a|

)τ

, 2τn, τ
2n

2n + |a|

)
∈ A, n, τ ∈ N,

which provides a family of quantized feedbacks parameterized by the two integers τ
and n. We are mainly interested in understanding what asymptotic behavior can be
obtained of N and T as C → ∞. To this aim observe that

N/|a|
TC1/T

=

(
2n + |a|

|a|

)− |a|
2n

∈ [1/e, 1].

Making the change of variable

C =

(
2n + |a|

|a|

)τ

, n =
|a|
2

(
C

1
τ − 1

)
,(20)

we obtain

N/|a| = τ
(
C

1
τ − 1

)
,

T = τ
(
1 − C− 1

τ

)
,

where τ is any function of C that by (20) can be chosen arbitrarily subject to the fact
that τ(C)/ logC is bounded from above. If in particular τ is fixed, we obtain

N/|a| ∼ τC
1
τ ,

T ∼ τ.

If instead we think of τ as a possible function of C, we can distinguish two different
patterns of behavior: the case when τ(C)/ logC → 0 and the case when τ(C) ∼
K logC. In the first case we have that

N/|a| ∼ TC1/T,(21)

and moreover N/ logC → ∞, namely, we have a superlogarithmic growth of the num-
ber of quantization intervals, while the expected entrance time has a sublogarithmic
growth T/ logC → 0. In the second situation when τ(C) ∼ K logC we have that
both N and T grow logarithmically in C. More precisely, we have that

N/|a| ∼ K
(
e1/K − 1

)
logC,(22)

T ∼ K
(
1 − e−1/K

)
logC.

4.2. Logarithmic quantized feedback strategy. The second strategy is based
on the quantized feedback (we assume a > 0, the case a < 0 being completely
analogous)

k(x) =

{
−a + 1 if ε ≤ x ≤ 1,

+a− 1 if −1 ≤ x ≤ −ε,
(23)
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Fig. 2. The map Γ associated with the quantized feedback defined in (23).

where

ε =
a− 1

a + 1
.

In this way we obtain an almost (I, J)-stabilizing quantized feedback, where I = [−1, 1]
and J = [−ε, ε]. The graph of closed loop map Γ(x) is illustrated in Figure 2.

In this case we have a contraction rate 1/ε and two quantization intervals. The
expected entrance time can be found by noticing that

Γ−n(I \ J) = [−1,−εn] ∪ [εn, 1],

where εn = 1 − 2/(a + 1)an, which implies that the expected entrance time is

∞∑
n=0

P[T(I,J) > n] =

∞∑
n=0

P[Γ−n(I \ J)] =
2

a + 1

∞∑
n=0

a−n =
2a

a2 − 1
.

In general, when we do not restrict to positive a, we obtain a triple contraction rate,
quantization intervals, the expected entrance time equal to(

|a| − 1

|a| + 1
, 2,

2|a|
|a|2 − 1

)
∈ A.

Using the strategy presented above, we can iterate the construction τ times. In
this case it is less obvious to show that the Lebesgue measure is invariant with respect
to the map Ψ defined from Γ as in (15). To show this, observe preliminarily that if
we assume that Γ(x) = x for all x ∈ J , then

lim
n→∞

Γn(x) = ΓT(I,J)(x)(x) for almost all x ∈ I,
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which implies that Γn(x) converges to ΓT(I,J)(x)(x) in distribution. Observe moreover
that if the density function fn of the random variable Γn(x) is of the form

fn(a) =

{
αn if a ∈ J,

βn if a ∈ I \ J,

then also fn+1 has the same structure with αn+1 = 2βn/|a|+αn, and βn+1 = βn/|a|.
This implies that

lim
n→∞

fn(a) =

{
1/ε if a ∈ I1,

0 if a ∈ I0 \ I1

from which we can argue that the Lebesgue measure is invariant with respect to the
map Ψ.

These facts allow us to obtain a sequence of triples((
|a| + 1

|a| − 1

)τ

, 2τ,
2|a|

|a|2 − 1
τ

)
∈ A, τ ∈ N.

Making the change of variable

C =

(
|a| + 1

|a| − 1

)τ

, τ =
logC

log(|a| + 1) − log(|a| − 1)
,

we obtain

N/|a| =
2

|a|
logC

log(|a| + 1) − log(|a| − 1)
,

T =
2|a|

|a|2 − 1

logC

log(|a| + 1) − log(|a| − 1)
.

These expressions motivate the fact that this quantized feedback is called a logarithmic
quantizer. The strategy obtained in this way coincides with the one proposed in [7, 9]
which yields a Lyapunov stability.

4.3. Chaotic quantized feedback strategy. In [9] another possible quantized
feedback yielding almost stability has been proposed. This control strategy exploits
the chaotic behavior of the state evolution inside I = [−1, 1] produced by the feedback
map

k0(x) := −(2h + 1) for
2

a
h < x ≤ 2

a
(h + 1),(24)

when we have that |a| ≥ 2. In this way we have that, for almost every initial condition
x0, the state evolution xt is maintained inside the interval I and is dense in this
interval. For this reason xt will visit the interval J = [−ε, ε]. Therefore, if we modify
this feedback map in J as follows:

k(x) =

{
k0(x) if x ∈ I \ J,
k1(x) if x ∈ J,

(25)

where k1(x) is any quantized feedback making J invariant (take for instance k1(x) =
εk0(x/ε)), we obtain that the state will move chaotically inside I until it enters the
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Fig. 3. The map Γ associated with the quantized feedback defined in (25).

interval J , and there it will be entrapped. In this way we obtain a feedback map
requiring

N = �|a|�

quantization intervals. The closed loop map Γ(x) is shown in Figure 3 in the case
a = 2.

In this case the evaluation of the expected entrance time can be done using Markov
chain techniques. Assume that ε = 2−n. It is clear that, for evaluating the expected
entrance time, we can refer to the system with feedback k0(x). Define the sets Ii :=
[−i2−n,−(i − 1)2−n] ∪ [(i − 1)2−n, i2−n], i = 1, . . . , 2n. In this way we have that
J = I1. Assuming that the initial state x0 is uniformly distributed in I, we can argue
that

P[x0 ∈ Ii] = 2−n.

The initial distribution is described by the row vector

π := 2−n [ 1 1 · · · 1 1 ] ∈ R1×2n

.

Assuming that the iterated state xt is uniformly distributed in each quantization
interval Ii, the structure of the closed loop map Γ0(x) = ax+ k0(x) ensures also that
the updated state xt+1 = Γ0(xt) will be uniformly distributed in each quantization
interval. Moreover, we have that

P[xt+1 ∈ Ij |xt ∈ Ii] = Πij ,
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where Πij is the i, j-element of the matrix

Π =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0 1 1
0 0 0 0 · · · 1 1 0 0
...

...
...

...
. . .

...
...

...
...

0 0 1 1 · · · 0 0 0 0
1 1 0 0 · · · 0 0 0 0
1 1 0 0 · · · 0 0 0 0
0 0 1 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 1 0 0
0 0 0 0 · · · 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R2n×2n

.

Then (see [13]) the expected first entrance time in the state 1 is given by the formula

T = E
(
T(I,J)

)
=

d

dz
w(z)|z=1,

where

w(z) :=
πΠ(z)e1

eT1 Π(z)e1

and where Π(z) :=
∑

n≥0 Πnzn and e1 := [1 0 · · · 0]T . Since πΠ = π, then

πΠ(z) :=
1

1 − z
π.

It can be seen that

eT1 Π(z)e1 = 1 + 2−n zn

1 − z
,

obtaining in this way

w(z) =
1

zn + (1 − z)2n

and

T =
d

dz
w(z)|z=1 = 2n − n.

In this way we obtained the triple

(2n, 2, 2n − n) ∈ A.

Using the strategy presented above we can iterate this construction τ times. It can
be shown that in this case also the Lebesgue measure is invariant with respect to
the closed map Ψ defined from Γ as in (15). To show this we use the same kind
of reasoning used in the previous subsection. Again, by defining Γ in such a way
that Γ(x) = x for all x ∈ J , we have that the random variable Γn(x) converges to
ΓT(I,J)(x)(x) in distribution. Observe moreover that if the density function fn of the
random variable Γn(x) is constant in each quantization interval Ii, then it can be
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shown that fn+1 has also the same property. This implies that the limit density will
also be a function which is constant in each set Ii and particularly in J . From this we
can argue that the Lebesgue measure is invariant with respect to the map Ψ. These
facts allow us to obtain a sequence of triples

(2τn, τ2, τ2n − τn) ∈ A, n, τ ∈ N.

The previous reasoning can be extended to any situation in which |a| is an integer.
In this case we can obtain the sequence of triples

(|a|τn, τ |a|, τ |a|n − τn) ∈ A, n, τ ∈ N,

which provides a family of quantized feedbacks parameterized by the two integers τ, n.
We are mainly interested in understanding what asymptotic behavior can be obtained
for N and T as C → ∞. To this aim observe that

T
N
|a|C

|a|
N

= 1 − n

|a|n ∈
[
1 − 1

e log |a| , 1
]
.

Making the change of variable

C = |a|τn, n =
logC

τ log |a| ,(26)

we obtain that

N/|a| = τ,

T = τC
1
τ − logC

log |a| ,

where τ is any function of C that, by (26), can be chosen arbitrarily subject to the
fact that τ(C)/ logC is bounded from above. If in particular τ is fixed, we obtain

N/|a| = τ,

T ∼ τC
1
τ .

If instead we think of τ as a possible function of C, we can distinguish the case when
τ(C)/ logC → 0 and the case when τ(C) ∼ K logC. In the first case we have that

T ∼ N

|a|C
|a|
N ,(27)

and moreover N/ logC → 0, namely, a sublogarithmic growth of the number of quan-
tization intervals, while the expected entrance time has a superlogarithmic growth
T/ logC → ∞. In the second situation when τ(C) ∼ K logC we have that both N
and T grow logarithmically in C. More precisely, we have that

N/|a| = K logC,(28)

T =

(
Ke1/K − 1

log |a|

)
logC.

Chaotic stabilizers can also be considered for nonintegers slopes a. Some prelim-
inary results in this case have been obtained in [9]. In [8] the following more refined
result is proved.
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Theorem 1. Let a be such that |a| > 2, I = [−1, 1], and J = [−ε, ε], where
0 < ε < 1. There exists an almost (I, J)-stabilizing quantized feedback k : I → R such
that

N = �|a|� + 1,

T ≤ KC,

where K is a positive constant only depending on a.
Remark. The following table summarizes the properties of the different quantized

feedback strategies.

N/|a| T

τ -step
deadbeat

quantizer τC
1
τ τ

Logarithmic

quantizer
2

|a|
logC

log(|a| − 1) − log(|a| + 1)

2|a|
|a|2 − 1

logC

log(|a| − 1) − log(|a| + 1)

τ -step
chaotic

quantizer τ τC
1
τ

This table highlights the relations between the parameters |a|, N , C, and T . In
all cases it is possible to see that the steady state performance parameter C and
transient performance parameter T are conflicting; namely, for fixed |a| and N , an
increasing value of C implies an increasing value of T and vice versa. Moreover, both
the performance parameters are improved when N is increased and are worsened when
|a| is increased. A qualitative description of the relations between the parameters |a|,
N , C, and T is given in Figure 4.

This suggests that looking for the stabilizing quantized feedback with minimal
quantization intervals is a rather naive approach to the quantized control
problem. Indeed, in case we do not consider the transient performance described
by the parameter T , the optimal strategy would be clearly the chaos-based one. How-
ever, this provides only a partial view of the problem, since in fact the different
strategies provide closed loop systems with different trade-off relations between the
performance parameters T and C.

5. Bounds of the performance of a quantized feedback system. In this
section we will present some general bounds involving the parameters
C(Γ), N(Γ), and T(Γ). These will be obtained by means of a symbolic represen-
tation of the dynamical system and using basic combinatorial arguments.

5.1. Symbolic descriptions of the dynamical system. Let Γ : I → I be
a piecewise affine map with a fixed slope a. Let J ⊆ I be another almost invariant
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Fig. 4. The qualitative relations between the parameters |a|, N , C, and T . The parameter
C describes the steady state performance, the parameter 1/T describes the transient performance,
the curves describe the trade-off between these two parameters for fixed N and |a|. Different curves
refer to different values of N and |a|.

interval. We can write

J = J1 ∪ J2 ∪ · · · ∪ JM , I = I1 ∪ I2 ∪ · · · ∪ IN ∪ J,

where the Ih’s and the Jl’s are disjoint open intervals on which Γ is affine. In what
follows, we will use the shorthand notation C = C(Γ), N = N(Γ), and T = T(Γ). In
this section, we will always consider Γ defined on the set Ω as defined in (4). Define
the finite sets

I = {I1, I2, . . . , IN}, J = {J1, J2, . . . , JM},

and define a map ψ : Ω → (I ∪ J )N by

ψ(x)n = ωn if Γn(x) ∈ ωn .(29)

Notice that the above map is well defined by the way in which Ω has been defined.
Consider the language Σ∗(Γ) over the alphabet I ∪J which is the subset of (I ∪J )∗

consisting of all the finite words appearing in the infinite sequences in the range of
ψ. If |a| > 1, then Γ locally expands and, as a consequence, the map ψ is injective.
Indeed, it follows from (29) that x ∈ ω0 ∩ · · · ∩Γ−nωn for every n. On the other hand
it follows from the simple bound (33) that the length of this interval goes to 0 for
n → +∞, which yields injectivity. This implies that all the dynamical and statistical
properties of the map Γ can be read out from the language Σ∗(Γ). Notice, for further
use, the following properties of simple verification.
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1. ω0ω1 · · ·ωn ∈ Σ∗(Γ) if and only if ω0 ∩ Γ−1ω1 ∩ · · · ∩ Γ−nωn �= ∅.
2. For all ω0ω1 · · ·ωn ∈ Σ∗(Γ) the map Γn+1 is affine on the interval ω0∩Γ−1ω1∩

· · · ∩ Γ−nωn.
3. If ω0ω1 · · ·ωn and ν0ν1 · · · νm are in Σ∗(Γ) and none of the two happens to be

the initial subword of the other, then the two intervals ω0∩Γ−1ω1∩· · ·∩Γ−nωn

and ν0 ∩ Γ−1ν1 ∩ · · · ∩ Γ−mνm are disjoint.
As we mentioned above, language Σ∗(Γ) contains all the dynamical and statistical

properties of the map Γ. In particular this is true for the expected entrance time.
Indeed, as the following lemma shows, the expected entrance time can be estimated
by knowing how the number of words in Σ∗(Γ) grows with respect to their length.
More precisely, denote by γn the number of distinct words in sublanguage Σ∗(Γ)∩I∗

of length n, i.e.,

γn := #
{
ω0ω1 · · ·ωn−2ωn−1 ∈ Σ∗(Γ) ∩ I∗}.(30)

Then we have the following result.
Lemma 2. Given any n ∈ N we have that

P
[
T(I,J) = n

]
≤ P[J ]

γn
|a|n ,(31)

P
[
T(I,J) ≥ n

]
≥ P[I \ J ] − P[J ]

n−1∑
k=1

γk
|a|k .(32)

Proof. As mentioned above, the family of intervals of the form

ω0 ∩ Γ−1(ω1) ∩ · · · ∩ Γ−(n−1)(ωn−1) ∩ Γ−n(ωn), ω0, . . . , ωn−1 ∈ I, ωn ∈ J

constitutes a partition of the set of points of I which end inside J in exactly n steps.
Moreover, since Γn is affine on each of these intervals, it follows that

P
[
ω0 ∩ Γ−1(ω1) ∩ · · · ∩ Γ−(n−1)(ωn−1) ∩ Γ−n(ωn)

]
≤ P[J ]

|a|n .(33)

Therefore, if we let

γ̃n := #{ω0ω1 · · ·ωn−2ωn−1 ∈ Σ∗(Γ) | ω0ω1 · · ·ωn−2ωn−1 ∈ I∗ and ωn−1 ∈ J } ,

we can argue that

P[T(I,J) = n] ≤ P[J ]
γ̃n+1

|a|n ≤ P[J ]
γn
|a|n ,

where we used the fact that for all n ≥ 1 we have that γ̃n+1 ≤ γn.
We prove now the second assertion by induction on n. The assertion is trivial for

n = 1. Assume by induction that the assertion holds for n, and let us prove it for
n + 1. We can now write

P
[
T(I,J) ≥ n + 1

]
= P
[
T(I,J) ≥ n

]
− P
[
T(I,J) = n

]
≥ P
[
T(I,J) ≥ n

]
− P[J ]

γn
|a|n

≥ P[I \ J ] − P[J ]

n−1∑
k=1

γk
|a|k − P[J ]

γn
|a|n

= P[I \ J ] − P[J ]

n∑
k=1

γk
|a|k .



840 FABIO FAGNANI AND SANDRO ZAMPIERI

Notice that P[J ] = C−1. This implies that formula (32) can be rewritten as

P
[
T(I,J) ≥ n

]
≥ 1 − C−1 − C−1

n−1∑
k=1

γk
|a|k(34)

from which we can argue that for any arbitrarily fixed n ∈ N we have that

T = E
(
T(I,J)

)
(35)

=

+∞∑
n=1

P
[
T(I,J) ≥ n] ≥

n∑
n=1

P[T(I,J) ≥ n
]
≥ n(1 − C−1) − C−1

n∑
n=1

n−1∑
k=1

γk
|a|k .

If we can establish upper bounds on γk, through (35), we can thus achieve lower
bounds on T. The following theorem provides the most relevant contribution of this
paper, since it presents a bound on the growth of γk depending on the number of
quantization intervals N. The proof of this theorem is very long, and it will be
presented in the last section.

Theorem 2. Assume that |a| > 2. Then

γk
|a|k ≤ 2

[
r∧k∑
s=1

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1,(36)

where r ∈ {1, . . . ,N} is independent of k, but may depend on the specific system,
while M depends only on |a|.

Remark. In symbolic dynamics [17] the set Ψ(Ω) (where the closure is to be
intended in the product topology of (I ∪J )N) is called shift. It can be shown that its
topological entropy is log |a|. As a consequence, for every ε > 0, there exists Mε > 0
such that

γk ≤ Mε(|a| + ε)k.(37)

This type of estimate is of no use for our purposes for two reasons: first because the
geometric growth rate |a| + ε causes a too quick growth in the double summation in
(35), making impossible any useful estimate, and second because it is not clear how
explicitly Mε depends on the map Γ. In fact, estimate (36) is uniform with respect
to all the possible piecewise affine maps having slope a and N quantization intervals.
Notice, moreover, that for large k (k ≥ max{N,N/Me}), (36) can be written as

γk ≤ (Mk)N|a|k,

where M is a suitable constant depending only on a. This is clearly a much better
estimate than (37).

Using Theorem 2 we obtain a lower bound estimate on T.

Corollary 1. For any n ∈ N we have that

T ≥ n
(
1−C−1

)
−2C−1

[
r∧n−1∑
s=1

(
n

s + 1

)(
r

s

)(
s

r

)s
](

NM

n− 1 ∧ NM
e

)n−1∧NM
e

.(38)
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Proof. From Theorem 2 we can argue that

n−1∑
k=1

γk
|a|k ≤ 2

n−1∑
k=1

r∧k∑
s=1

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
(

NM

k ∧ NM
e

)k∧NM
e

(39)

= 2

r∧n−1∑
s=1

n−1∑
k=s

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
(

NM

k ∧ NM
e

)k∧NM
e

≤ 2

r∧n−1∑
s=1

(
r

s

)(
s

r

)s
n−1
max
k=s

⎧⎨⎩
(

NM

k ∧ NM
e

)k∧NM
e

⎫⎬⎭
n−1∑
k=s

(
k − 1

s− 1

)

= 2

[
r∧n−1∑
s=1

(
n− 1

s

)(
r

s

)(
s

r

)s
](

NM

n− 1 ∧ NM
e

)n−1∧NM
e

,

where we used identity (88) and bound (93) of the appendix.
From (39) we can further obtain

n∑
n=1

n−1∑
k=1

γk
|a|k ≤ 2

n∑
n=1

r∧n−1∑
s=1

(
n− 1

s

)(
r

s

)(
s

r

)s
(

NM

n− 1 ∧ NM
e

)n−1∧NM
e

= 2

r∧n−1∑
s=1

n∑
n=s+1

(
n− 1

s

)(
r

s

)(
s

r

)s
(

NM

n− 1 ∧ NM
e

)n−1∧NM
e

≤ 2

r∧n−1∑
s=1

(
r

s

)(
s

r

)s
n

max
n=s+1

⎧⎨⎩
(

NM

n− 1 ∧ NM
e

)n−1∧NM
e

⎫⎬⎭
×

n∑
n=s+1

(
n− 1

s

)

= 2

[
r∧n−1∑
s=1

(
n

s + 1

)(
r

s

)(
s

r

)s
](

NM

n− 1 ∧ NM
e

)n−1∧NM
e

,

where again we used identity (88) and bound (93). From this (38) follows by a simple
substitution.

In the following subsections we will exploit the previous result to obtain bounds
describing the trade-off between the number of quantization intervals N and the ex-
pected entrance time T for a given almost (I, J)-stable piecewise affine map Γ with the
contraction rate C. Three situations will be distinguished. First, we will consider the
regime when N/ logC is sufficiently small. It contains the case when N/ logC → 0,
namely, the regime of sublogarithmic growth of N in C. The corresponding expected
entrance time T will exhibit a superlogarithmic growth in C. The second case con-
sidered will be a sort of a dual of the first one, since we will assume that T/ logC
is sufficiently small. It contains the case when T/ logC → 0, namely, the regime of
sublogarithmic growth of T in C. This time the corresponding number of quantiza-
tion intervals N will exhibit a superlogarithmic growth in C. From these two cases
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we will then be able to study in detail a third situation, the logarithmic regime, which
is when both N and T exhibit a logarithmic growth. In this case, we will establish
quantitative bounds relating the ratios N/ logC and T/ logC.

5.2. The regime of sublogarithmic growth of N in C. In this subsection
we will assume that N/ logC is small enough. In this case it is convenient to proceed
the estimates in (38) as follows:

r∧n−1∑
s=1

(
n

s + 1

)(
r

s

)(
s

r

)s

≤
r∧n−1∑
s=0

(
n

s + 1

)(
r

s

)
=

(
n + r

r + 1

)
=

n

r + 1

(
n + r

r

)

≤ 1√
π

n

r + 1

(
1 +

n

r

)r

er ≤ n

(
1 +

n

N

)N

eN,

where we used bound (91), the fact that 2
(r+1)

√
π

≤ 1 and that
(
1 + n

r

)r
er is an

increasing function in r. We obtain in this way

T ≥ n

[
1 − C−1 −

(
1 +

n

N

)N

ANC−1

]
,(40)

where A := e(
M
e +1). We are now ready to prove the following result.

Theorem 3. There exist K1 > 0, β1 > 0, and C1 > 1 such that

C ≥ C1 and
N

logC
≤ β1 =⇒ T ≥ K1NC1/N.(41)

Proof. If in (40) we choose n =
⌈
DNC1/N

⌉
for some constant D > 0 which will

be fixed later, we have that

T

NC1/N
≥
⌈
DNC1/N

⌉
NC1/N

⎡⎣1 − C−1 −
(

1 +

⌈
DNC1/N

⌉
N

)N

ANC−1

⎤⎦(42)

≥ D

⎡⎣1 − C−1 −
(

1 +
DNC1/N + N

N

)N

ANC−1

⎤⎦
= D

[
1 − C−1 −

(
2C−1/N + D

)N
AN

]
.

Assume now that N ≤ β logC for some β which will be chosen later. This implies
that

(2C−1/N + D)A ≤ (2e−1/β + D)A.

By choosing β and D small enough, we obtain that (2e−1/β +D)A ≤ 1/2. Let β1 and
D1 be possible solutions of the this inequality. In this situation, we can argue that

T

NC1/N
≥ D1[1 − C−1 − (1/2)N] ≥ D1[1/2 − C−1],

and so there exist C1 > 1 and K1 > 0 such that (41) holds true.
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Theorem 3 will be important for later results on the logarithmic regime. Notice,
moreover, that the bound established in Theorem 3 resembles relation (27) between
the expected entrance time and the number of quantization intervals that can be
obtained when using the nested chaotic scheme proposed in subsection 4.3. However,
there is a difference and in fact the bound provided by Theorem 3 is not tight in this
case. Consider for simplicity the case in which τ = 1, so that we have a simple chaotic
quantized feedback. In this case we have N = �|a|� quantization intervals and this,
by Theorem 3, yields the bound

T ≥ K1C
1/�|a|�.

However, this is not a good bound since we expect in this case that T ∼ C. In fact,
this bound can be improved in this particular case by using Proposition 5 that is a
modification of Theorem 2 in which r is fixed equal to 1.

Corollary 2. There exist K1 > 0 and C1 > 1 such that

C ≥ C1 and N = �|a|� =⇒ T ≥ K1C.

Proof. By Proposition 5 we can argue that

γk
|a|k ≤ 2

(
NM

k ∧ NM
e

)k∧NM
e

≤ 2e
NM
e = 2e

�|a|�M
e .

Let A := e
�|a|�M

e . Then, by (35) this implies that

T ≥ n
(
1 − C−1

)
− C−12

(
n

2

)
A = n

[
1 − C−1 − C−1(n− 1)A

]
.

Let n = �DC� for some constant D > 0 which will be fixed later. We have that

T

C
≥ D

[
1 − C−1 − (�DC� − 1)AC−1

]
≥ D

[
1 − C−1 −DA

]
,

and this implies the thesis.

5.3. The regime of sublogarithmic growth of T in C. In this subsection,
we will assume instead that T/ logC is small enough. In this case, it is convenient to
proceed the estimates in (38) as follows:

r∧n−1∑
s=1

(
n

s + 1

)(
r

s

)(
s

r

)s

≤ 1√
π

n−1∑
s=1

(
n

s + 1

)(
1 +

r − s

s

)s

es
(
s

r

)s

=
1√
π

n−1∑
s=1

(
n

s + 1

)
es ≤ 1√

π

n∑
s=0

(
n

s

)
es−1

= 1√
eπ

(1 + e)n,

where again we used bound (91). We thus obtain

T ≥ n
(
1 − C−1

)
− C−1 2√

eπ
(1 + e)n

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e

(43)
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≥ n
(
1 − C−1

)
− C−1An−1

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e

,

where A := 2(1+e)2

e
√
π

, and where the last inequality holds if n ≥ 2. We are now ready

to prove the following result.
Theorem 4. There exist K2 > 0, γ2 > 0, and C2 > 1 such that

C ≥ C2 and
�T�
logC

≤ γ2 =⇒ N ≥ K2�T�C
1

�T� .(44)

Proof. We first show that we can find C ′ > 1 and γ > 0 such that

C ≥ C ′ and
�T�
logC

≤ γ =⇒ �T� ≤ NM

e
.(45)

Assume by contradiction that �T� > NM/e. Then, choosing n := �T� + 1, it follows
from (35) and (43) that

T ≥ (�T�+1)
(
1−C−1

)
−C−1A�T�e

NM
e ≥ (�T�+1)

(
1−C−1

)
−C−1 (eA)

�T�
,(46)

which implies that

0 ≥ C(�T� − T + 1) − (eA)
�T� − �T� − 1(47)

≥ C − (eA)
�T� − �T� − 1

≥ C − (eA)
γ logC − γ logC − 1 = C − Cγ log eA − γ logC − 1.

If we choose γ < (log eA)−1, it is clear that there exists C ′ > 1 such that

C − Cγ log eA − γ logC − 1 > 0

for all C ≥ C ′. For such values of C (47) cannot hold. Hence (45) must hold.
Assume now that (45) holds true and choose again n := �T� + 1 in (43). Then

we obtain

T ≥ (�T� + 1)
(
1 − C−1

)
−
(

NMA

�T�

)�T�
C−1.(48)

Solving with respect to N, we obtain

N ≥ �T�
AM

[C(�T� − T + 1) − �T� − 1]1/�T� ≥ �T�
AM

[C − �T� − 1]1/�T�(49)

≥ �T�
AM

[C − γ logC − 1]1/�T� .

Observe finally that

lim
C→∞

C − γ logC − 1

C
= 1,
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which implies that for any ε > 0 there exists C ′′ > 0 such that C−γ logC−1 > (1−ε)C
for all C > C ′′. From this we can argue that

N ≥ �T�
AM

[(1 − ε)C]1/�T� ≥ 1 − ε

AM
�T�C1/�T�.

By letting K2 := 1−ε
AM , C2 := C ′ ∨ C ′′, and γ2 := γ, we have thus proved the

thesis.
Also in this case it is interesting to compare the bound provided by the previous

theorem with relation (21) between the number of quantization intervals and the
expected entrance time that can be obtained when using the nested strategy proposed
in subsection 4.1. In this case this comparison shows that, up to a multiplication by
a constant, the bound is tight.

5.4. The logarithmic regime. We have the following direct consequence of
previous theorems.

Corollary 3. There exist C0 > 1 and two functions F,G : R+ → R+ which are
decreasing and converging to 0 at +∞ such that for all C > C0 we have that

N

logC
≥ F

(
�T�
logC

)
and

�T�
logC

≥ G

(
N

logC

)
.(50)

Proof. Notice first that the function f :]0, 1] → R : x �→ xe1/x is strictly decreas-
ing, and its image is [e,+∞). Let C0 := C1 ∨ C2, where C1, C2 are the constants
introduced, respectively, in Theorems 3 and 4. Define the function

F (x) =

{
1 ∧ β1 if 0 ≤ x ≤ K1f(1 ∧ β1),

f−1(x/K1) if x > K1f(1 ∧ β1),

where K1 and β1 are the constants provided by Theorem 3. This function is decreasing
such that F (+∞) = 0. We want to show that if C > C0, then

N

logC
≥ F

(
�T�
logC

)
.

If N/ logC > 1 ∧ β1, then

N

logC
> max

x∈R+

F (x) ≥ F

(
�T�
logC

)
.

If instead N/ logC ≤ 1 ∧ β1, then by Theorem 3 we can argue that

T

logC
≥ K1

N

logC
C1/N = K1f

(
�N�
logC

)
,

which implies that

N

logC
≥ f−1

(
T

K1 logC

)
= F

(
T

logC

)
.

In the same way it can be shown that

�T�
logC

≥ G

(
N

logC

)
,
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Fig. 5. The grey region in this figure represents the set in which the pairs (N/ logC,T/ logC)
cannot belong.

where

G(x) =

{
1 ∧ γ2 if 0 ≤ x ≤ K2f(1 ∧ β1),

f−1(x/K2) if x > K2f(1 ∧ γ2),

where K2 and γ2 are the constants provided by Theorem 4.

Remark. The constraint provided by the previous corollary is illustrated in Fig-
ure 5 which shows explicitly the region in which the pairs (N/ logC,T/ logC) cannot
belong. Observe moreover that the functions F (x) and G(x) in the previous corollary
which determine the boundary of this region tend to 0 as the function f(x) = xe1/x.
This is in agreement with the behavior of the logarithmic regime exhibited in the
nesting of both deadbeat quantized feedbacks and chaotic quantized feedbacks (see
(22) and (28)). This implies that, up to multiplicative constants, our bounds appear
to be quite tight and that the examples presented in section 4 cannot be improved
much.

5.5. The case when |a| ≤ 2. All previous results have been obtained under
the assumption |a| > 2. In fact, part of the results presented in this subsection can be
extended to the case |a| ≤ 2. Indeed, in this case, using the second part of Theorem 6,
we obtain the estimate

γk
2k

≤
[
r∧k∑
s=1

(
k + s− 1

2s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

.
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By similar arguments used to deal with the case |a| > 2, we obtain

T ≥ n(1 − C−1) − C−12

[
r∧n−1∑
s=1

(
n + s

2s + 1

)(
r

s

)(
s

r

)s
]

×
(

NM

n− 1 ∧ NM
e

)n−1∧NM
e (

2

|a|

)n−1

for all n ∈ N. Observing that

r∧n−1∑
s=1

(
n + s

2s + 1

)(
r

s

)(
s

r

)s

≤ 1√
π

n−1∑
s=1

(
2n− 1

2s + 1

)
es ≤ 1√

π

n−1∑
s=1

(
2n− 1

2s + 1

)
e2s+1

≤ 1√
π

(1 + e)2n−1,

we thus obtain

T ≥ n(1 − C−1) − C−1 2√
π

(1 + e)2n−1

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e (

2

|a|

)n−1

≥ n(1 − C−1) − C−1An−1

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e

,

where A := 4(1+e)3

|a|√π
and where the last inequality holds if n ≥ 2. The previous in-

equality looks exactly like (43). This immediately implies that Theorem 4 also holds
true for |a| ≤ 2. We can instead only recover a part of Corollary 3: (50) remains true
for small values of γ, as it is easy to see from the proof we gave.

5.6. Stabilizing quantized feedbacks. In this section, we will show that quan-
tized control strategies yielding stability or even almost stability, but with only a
countable subset of points never entering inside J , require a number of quantization
intervals which grows at least logarithmically in C. The result is based on Theorem 7
which is given in the last section.

Theorem 5. If Γ is almost (I, J)-stable and if the set of points in I never
entering inside J is at most countable, then there exists β > 0, only depending on a
such that

N/ logC ≥ β

for all C > 1.
Proof. Using (87) we can argue that

n−1∑
k=1

γk
|a|k ≤ e

N
e

+∞∑
k=0

(
k + 2N − 1

2N − 1

)(
2

|a|

)k

=
e

N
e(

1 − 2
|a|

)2N
=

(
e1/e|a|2

(|a| − 1)2

)N

.

By letting A := e1/e|a|2
(|a|−1)2 , from (34) we can argue that

P
[
T(I,J) ≥ n

]
≥ 1 − C−1 −ANC−1 ≥ 1 − C−1(1 + A)N.(51)
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Since Γ is almost stable, by Proposition 1 we have that E(T(I,J)) < +∞, which implies
that

lim
n→∞

P
[
T(I,J) ≥ n

]
= 0.

From this and (51) we can argue that 1 − C−1(1 + A)N ≤ 0, which implies that

N ≥ logC

log(1 + A)
.

6. Estimation of paths in a class of weighted graphs. For proving our
main result, namely Theorem 2, we introduce a class of weighted graphs and propose
a method for bounding the number of paths on this graphs. In the last section, we will
show how this bound can be used for proving Theorem 2. We use this strategy which
considers this graph abstraction because the general result we are going to prove is
useful to deal with more general situations, such as quantized controller with memory
or the case in which the state of the system is multidimensional (see [10]).

Consider a direct graph G on a vertex set X (which is not necessarily finite or
countable). For any choice of X1, . . . ,Xk ⊂ X we define Fk[x1 ∈ X1, . . . ,xk ∈ Xk] to
be the set of paths x1 · · ·xk ∈ X ∗ on the graph G such that x1 ∈ X1, . . . ,xk ∈ Xk.

Assume the graph G has the following structure. We assume there exist a finite
partition

X = X1 ∪ X2 ∪ · · · ∪ XN ,

a subset XP ⊆ X , and a function q : X →]0, 1[ with the following properties.
(A) There exist numbers q1, . . . , qN ∈]0, 1[ such that

q(x) ≤ qi ∀x ∈ Xi,
q(x) = qi ∀x ∈ XP,i := XP ∩ Xi.

(B) There exist positive numbers D1 and α1 such that, for every x′ ∈ X , X ′′ ⊆ X ,
and k ≥ 2,

#Fk[x1 = x′ ,x2 , . . . ,xk−1 ∈ X ,xk ∈ X ′′] ≤ D1
q(x′)

infx′′∈X ′′ q(x′′)
αk−2

1 .

(C) There exist positive numbers D2 and α2 such that, for every x′ ∈ X , i ∈
{1, . . . ,N}, and k ≥ 2,

#Fk[x1 = x′ ,x2 , . . . ,xk−1 ∈ X \ XP ,xk ∈ Xi] ≤ D2α
k−2
2 .

Then, if we define

γk,h = sup
x′∈XP,h

#Fk[x1 = x′,x2 , . . . ,xk ∈ X ], h = 1, . . . ,N,

γk =

N∑
h=1

γk,h,

(52)

we have the following result.
Theorem 6. We have the following bounds.
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(1) If α1 > α2, then

γk
αk

1

≤ 2

[
r∧k∑
s=1

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1.(53)

(2) If α1 ≤ α2, then

γk
αk

2

≤
[
r∧k∑
s=1

(
k + s− 1

2s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1.(54)

The constant r ∈ {1, . . . ,N} is independent of k, but may depend on the specific graph,
while M depends only on the constants D1, D2, α1, α2.

The proof of the previous theorem is quite lengthy. For this reason we prefer to
divide it into various steps.

Remark. As specified in the previous theorem M depends only on the constants
D1, D2, α1, and α2, and r depends on the specific graph. These conditions can be
exchanged and the same bounds can be shown to hold true in which instead r depends
only on the constants D1, D2, α1, and α2, and M depends on the specific graph.
However, this exchange makes the bounds useless in general. Only in the specific
situation considered in Proposition 5 does this point of view yield some advantages.

6.1. The proof of Theorem 6: Hierarchies of paths. Assume with no loss
of generality that the subsets X1,X2, . . . ,XN are ordered in such a way that

q1 ≥ q2 ≥ · · · ≥ qN.

For any choice of integers

0 = N0 < N1 < · · · < Nr−1 < Nr = N,

we can partition XP into the subfamilies

X 1
P : = {XP,N0+1, . . . ,XP,N1

} , X 2
P := {XP,N1+1, . . . ,XP,N2

} , . . . ,(55)

X r
P : = {XP,Nr−1+1, . . . ,XP,Nr}

and consider, moreover,

X l+
P :=

r⋃
j=l

X j
P ,

X l := (X \ XP ) ∪ X l
P ,

X l+ := (X \ XP ) ∪ X l+
P .

For each k ∈ N, h = 1, . . . ,N, and l = 1, . . . , r, r + 1 define

γk,h,l := sup
x′∈XP,h

#Fk[x1 = x′,x2, . . . ,xk ∈ X l+].

From these definitions it follows that X 1+
P = XP , X 1+ = X , and X (r+1)+ := X \ XP .

This implies that γk,h,1 = γk,h.
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We present now two bounds on γk,h,l which will be used in what follows. The first
bound is based on the decomposition of the paths in Fk[x1 = x′,x2, . . . ,xk ∈ X l+]
according to the last exit from X l

P among the indices j = 2, . . . , k

Fk

[
x1 = x′,x2, . . . ,xk ∈ X l+

]
={

k⋃
j=2

Nl⋃
s=Nl−1+1

Fk

[
x1 = x′,x2, . . . ,xj−1 ∈ X l+,xj ∈ XP,s,xj+1, . . . ,xk ∈ X (l+1)+

]}

×
⋃

Fk

[
x1 = x′,x2, . . . ,xk ∈ X (l+1)+

]
.

Applying property (B) it follows that, for all l = 1, . . . , r,

γk,h,l ≤
k∑

j=2

Nl∑
s=Nl−1+1

sup
x′∈XP,h

#Fj

[
x1 = x′,x2, . . . ,xj−1 ∈ X l+,xj ∈ XP,s

]
(56)

× sup
x′′∈XP,s

#Fk−j+1

[
xj = x′′,xj+1, . . . ,xk ∈ X (l+1)+

]
+ sup

x′∈XP,h

#Fk

[
x1 = x′,x2, . . . ,xk ∈ X (l+1)+

]
≤

k∑
j=2

Nl∑
s=Nl−1+1

D1
qh
qs

αj−2
1 γk−j+1,s,l+1 + γk,h,l+1.

The second bound is based on the decomposition of the paths in
Fk[x1 = x′,x2, . . . ,xk ∈ X l+] according to the first entrance in X l+

P among the
indices j = 2, . . . , k:

Fk

[
x1 =x′,x2, . . . ,xk ∈ X l+

]
=⎧⎨⎩

k⋃
j=2

N⋃
s=Nl−1+1

Fk

[
x1 =x′,x2, . . . ,xj−1 ∈ X \ XP ,xj ∈ XP,s,xj+1, . . . ,xk ∈ X l+

]⎫⎬⎭
×
⋃

Fk

[
x1 = x′,x2, . . . ,xk ∈ X \ XP

]
.

Applying property (C) it follows that

γk,h,l ≤
k∑

j=2

N∑
s=Nl−1+1

sup
x′∈XP,h

Fj

[
x1 = x′,x2, . . . ,xj−1 ∈ X \ XP ,xj ∈ XP,s

]
(57)

× sup
x′′∈XP,s

Fk−j+1

[
xj = x′′,xj+1, . . . ,xk ∈ X l+

]
+ sup

x′∈XP,h

Fk

[
x1 = x′,x2, . . . ,xk ∈ X \ XP

]
≤

k∑
j=2

N∑
s=Nl−1+1

D2α
j−2
2 γk−j+1,s,l + D2α

k−1
2 .

Notice that the previous bound holds true for l = 1, . . . , r, r + 1.
Define

δk,l :=

N∑
h=Nl−1+1

γk,h,l, δ̃k,l :=

Nl−1∑
h=Nl−2+1

γk,h,l l = 1, . . . , r, r + 1,
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which imply that δk,r+1 = 0 for all k ∈ N. Observe that from (56) we can argue that

δk,l ≤
N∑

h=Nl−1+1

⎛⎝ k∑
j=2

Nl∑
s=Nl−1+1

D1
qh
qs

αj−2
1 γk−j+1,s,l+1 + γk,h,l+1

⎞⎠
≤

k∑
j=2

D1

∑N
h=Nl−1+1 qh

qNl

αj−2
1

Nl∑
s=Nl−1+1

γk−j+1,s,l+1 +

Nl∑
h=Nl−1+1

γk,h,l+1

+

N∑
h=Nl+1

γk,h,l+1 ≤ D1βl

k∑
j=2

αj−2
1 δ̃k−j+1,l+1 + δ̃k,l+1 + δk,l+1

= D1βl

k−2∑
j=0

αj
1δ̃k−j−1,l+1 + δ̃k,l+1 + δk,l+1 ,

where we define

βl :=

N∑
h=Nl−1+1

qh

qNl

.(58)

On the other hand (57) implies that

δ̃k,l ≤ D2(Nl−1 −Nl−2)

⎛⎝ k∑
j=2

αj−2
2 δk−j+1,l + αk−1

2

⎞⎠ ,

which using the convention

δ0,l = 1, l = 1, . . . , r, r + 1,

is equivalent to

δ̃k,l ≤ D2ΔNl−1

k+1∑
j=2

αj−2
2 δk−j+1,l = D2ΔNl−1

k−1∑
j=0

αj
2δk−j−1,l,

where we defined ΔNl := Nl −Nl−1.
Summarizing we have the following two inequalities holding for k ≥ 1:

δk,l ≤ D1βl

k−2∑
j=0

αj
1δ̃k−j−1,l+1 + δ̃k,l+1 + δk,l+1, l = 1, . . . , r,

δ̃k,l ≤ D2ΔNl−1

k−1∑
j=0

αj
2δk−j−1,l, l = 1, . . . , r, r + 1.

(59)

Now define the sequences ηk,l, η̃k,l for k = 0, 1, 2, . . . and l = 1, . . . , r, r + 1 by letting
ηk,r+1 = δk,r+1 = 0 for k = 0, 1, . . ., and satisfying, for every k ≥ 0, the following
recursive relations:

ηk,l = D1βl

k−2∑
j=0

αj
1η̃k−j−1,l+1 + η̃k,l+1 + ηk,l+1,(60)

η̃k,l = D2ΔNl−1

k−1∑
j=0

αj
2ηk−j−1,l.
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Notice that from the above recursive relations it follows that η0,l = 1 for every l.
This implies in particular that δk,l ≤ ηk,l for every k and l. In what follows we will
estimate ηk,l by using the zeta transforms formalism.

Let

ηl(z) :=

+∞∑
k=0

ηk,lz
k, η̃l(z) :=

+∞∑
k=0

η̃k,lz
k.

Then by some standard manipulations from (60) we obtain

ηl(z) = D1βl
z

1 − α1z
η̃l+1(z) + η̃l+1(z) + ηl+1(z),

η̃l(z) = D2ΔNl−1
z

1 − α2z
ηl(z),

(61)

which yields

ηl(z) =

{[
D1βl

z

1 − α1z
+ 1

]
D2ΔNl

z

1 − α2z
+ 1

}
ηl+1(z).

By iterating this formula we obtain

η1(z) =

r∏
l=1

{[
D1βl

z

1 − α1z
+ 1

]
D2ΔNl

z

1 − α2z
+ 1

}
,(62)

where we used the fact that ηr+1(z) = 1.

6.2. The proof of Theorem 6: Combinatorial bounds. We now want to
estimate the coefficients ηk,1 of η1(z). We recall that γk = δk,1 ≤ ηk,1. In order to
obtain such bounds we will first need to work out some combinatorics.

Bounds on the coefficients of elementary symmetric polynomials. Con-
sider the following polynomial in the indeterminates x and y:

p(x, y) :=

r∏
l=1

{[
βlx + 1

]
αly + 1

}
=

r∑
s=0

s∑
σ=0

p̄σ,sx
σys.(63)

The aim of this part of the section is to determine bounds on the coefficients p̄σ,s if
we assume that

r∑
l=0

αl ≤ α,

r∑
l=0

βl ≤ β.

Consider preliminarily the polynomial

r∏
l=1

{αly + 1} =

r∑
s=0

prs(α1, . . . , αr)y
s.(64)

The polynomials prs(α1, . . . , αr) are called elementary symmetric polynomials [11],
and they can be expressed by the formula

prs(α1, . . . , αr) =
∑

1≤l1<···ls≤r

s∏
j=1

αlj .
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We have the following first elementary result.
Lemma 3. Assume that

∑r
l=0 αl ≤ α. Then

prs(α1, . . . , αr) ≤
(
r

s

)(
α

r

)s

.(65)

Proof. We will actually prove that bound (65) holds true, and it is attained when
αi = α/r for all i = 1, . . . , r. For r = 2 it can be proven directly. For the general
case, it is sufficient to notice that

prs(α1, α2, . . . , αr)

= pr−2
s (α3, . . . , αr) + p2

1(α1, α2)p
r−2
s−1(α3, . . . , αr) + p2

2(α1, α2)p
r−2
s−2(α3, . . . , αr)

≤ pr−2
s (α3, . . . , αr) + p2

1

(
α1+α2

2 , α1+α2

2

)
pr−2
s−1(α3, . . . , αr)

+ p2
2

(
α1+α2

2 , α1+α2

2

)
pr−2
s−2(α3, . . . , αr)

= prs
(
α1+α2

2 , α1+α2

2 , α3, . . . , αr

)
.

We come back to the problem of finding bounds on the coefficients p̄σ,s of poly-
nomial (63).

Lemma 4. For every 1 ≤ s ≤ r and 0 ≤ σ ≤ s, the following bound holds:

p̄σ,s ≤
(
s

σ

)(
β

s

)σ (
r

s

)(
α

r

)s

.(66)

Proof. Observe first that

p(x, y) =

r∏
l=1

{
[βlx + 1]αly + 1

}
=

r∑
s=0

prs
(
α1(1 + β1x), . . . , αr(1 + βrx)

)
ys.

Moreover, we have that

prs
(
α1(1 + β1x), . . . , αr(1 + βrx)

)
=

∑
1≤l1<···ls≤r

s∏
j=1

αlj

s∏
j=1

(1 + βljx)

=
∑

1≤l1<···ls≤r

s∏
j=1

αlj

s∑
σ=0

psσ(βl1 , . . . , βls)x
σ,

from which we can argue that, using Lemma 3,

p̄σ,s =
∑

1≤l1<···ls≤r

psσ(βl1 , . . . , βls)

s∏
j=1

αlj ≤
(
s

σ

)(
β

s

)σ ∑
1≤l1<···ls≤r

s∏
j=1

αlj

=

(
s

σ

)(
β

s

)σ

prs(α1, . . . , αr) ≤
(
s

σ

)(
β

s

)σ (
r

s

)(
α

r

)s

.

To apply the result provided by the previous lemma to our problem, we need to
have bounds on

∑r
l=1 ΔNl and

∑r
l=1 βl. While it is evident that

r∑
l=1

ΔNl = N,
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it is less clear how to bound the other sum. This will depend indeed on the way the
subfamilies X i

P are selected. It follows from (58) that

(67)

βl =

r−l∑
k=0

Nl+k∑
h=Nl+k−1+1

qh

ql
≤

r−l∑
k=0

ΔNl+k

qNl+k−1+1

qNl

=
qNl−1+1

qNl

r−l∑
k=0

ΔNl+k

qNl+k−1+1

qNl−1+1
.

Choose inductively the numbers Nl as follows:

Nl = max

{
k ≥ Nl−1 + 1 | qk ≥ 1

2
qNl−1+1

}
.(68)

In this way we have that

qNl−1+1

qNl

≤ 2,
qNl+k−1+1

qNl−1+1
≤ 2−k.

Inserting in (67), we thus obtain

βl ≤ 2

r−l∑
k=0

ΔNl+k2
−k ∀l = 1, . . . , r,(69)

which implies that

r∑
l=1

βl ≤ 2

r∑
l=1

r−l∑
k=0

ΔNl+k2
−k = 2

r−1∑
k=0

(
r−k∑
l=1

ΔNl+k

)
2−k ≤ 2N

r−1∑
k=0

2−k ≤ 4N.

Hence it follows from Lemma 3 that in our case the coefficients p̄σ,s can be bounded
as

p̄σ,s ≤
(
r

s

)(
s

σ

)(
ND2

r

)s(
4ND1

s

)σ

.(70)

Bounds on the coefficients of the power series. Define the coefficients aσ,sk

by (
1

1 − α1z

)σ (
1

1 − α2z

)s

=

+∞∑
k=0

aσ,sk zk.(71)

The aim of this part of the section is to determine bounds on the coefficients aσ,sk .
Simple combinatorial manipulation shows that

aσ,0k =

(
k + σ − 1

σ − 1

)
αk

1 ∀σ ≥ 1 ∀k ≥ 0.(72)

In general we have the bound given by the following lemma.
Lemma 5. Assume that α1 > α2. Then, for every s ≥ 0, σ ≥ 1, and k ≥ 0, we

have

0 ≤ aσ,sk ≤
(

α1

α1 − α2

)s

aσ,0k .
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Proof. We start by proving that

aσ,1k ≤ α1

α1 − α2
aσ,0k

by induction on k. It is trivial if k = 0. Assume it to be true for k − 1 (with k ≥ 1),
and let us prove it for k. Then

aσ,1k =

k∑
h=0

aσ,0h αk−h
2 =

k∑
h=0

(
h + σ − 1

σ − 1

)
αh

1α
k−h
2

=

k−1∑
h=0

(
h + σ − 1

σ − 1

)
αh

1α
k−h
2 +

(
k + σ − 1

σ − 1

)
αk

1 = α2a
σ,1
k−1 +

(
k + σ − 1

σ − 1

)
αk

1 .

Using the induction we obtain

aσ,1k ≤ α2α1
α1 − α2

aσ,0k−1 +

(
k + σ − 1

σ − 1

)
αk

1 =

[
α2

α1 − α2

(
k + σ − 2

σ − 1

)

+

(
k + σ − 1

σ − 1

)]
αk

1 =

[
α2

α1 − α2

k

k + σ − 1
+ 1

](
k + σ − 1

σ − 1

)
αk

1

≤
[

α2

α1 − α2
+ 1

](
k + σ − 1

σ − 1

)
αk

1 =
α1

α1 − α2
aσ,0k .

Finally assume that the assertion of the lemma holds true for s− 1. Then

aσ,sk =

k∑
h=0

aσ,s−1
h αk−h

2 ≤
(

α1

α1 − α2

)s−1 k∑
h=0

aσ,0h αk−h
2 =

(
α1

α1 − α2

)s−1

aσ,1h

≤
(

α1

α1 − α2

)s

aσ,0h .

6.3. The proof of Theorem 6: The final step. We now want to use the
estimates obtained above for bounding the coefficients ηk,1.

From (62) we can argue that

(73)

η1(z) =

r∑
s=0

s∑
σ=0

p̄σ,s

(
1

1 − α1z

)σ (
1

1 − α2z

)s

zσ+s =

r∑
s=0

s∑
σ=0

p̄σ,s

+∞∑
h=0

aσ,sh zh+σ+s

=

r∑
s=0

s∑
σ=0

+∞∑
k=σ+s

p̄σ,sa
σ,s
k−σ−sz

k =

+∞∑
k=0

r∧k∑
s=0

s∧k−s∑
σ=0

p̄σ,sa
σ,s
k−σ−sz

k,

where p̄σ,s was defined in (63) and aσ,sk in (71). Hence we have

ηk,1 =

r∧k∑
s=0

s∧k−s∑
σ=0

p̄σ,sa
σ,s
k−σ−s.
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Decompose ηk,1 as follows:

ηk,1 = η′k,1 + η′′k,1,

where

η′k,1 =

r∧k∑
s=1

s∧k−s∑
σ=1

p̄σ,sa
σ,s
k−σ−s, η′′k,1 =

r∧k∑
s=0

p̄0,sa
0,s
k−s.(74)

Assume now that α1 > α2, and fix

M :=
8D1

α1
∨ 2D2

α1 − α2
∨ D2

α2
.(75)

Inserting bounds of Lemmas 4 and 5, we now obtain

η′k,1
αk

1

=

r∧k∑
s=1

s∧k−s∑
σ=1

p̄σ,s
aσ,sk−σ−s

αk
1

≤
r∧k∑
s=1

s∧k−s∑
σ=1

(
s

σ

)(
r

s

)(
4ND1

s

)σ (
ND2

r

)s(
α1

α1 − α2

)s(
k − s− 1

σ − 1

)
αk−σ−s

1

αk
1

≤
r∧k∑
s=1

s∧k−s∑
σ=1

(
r

s

)(
s

σ

)(
s

r

)s(
NM

2s

)s+σ (
k − s− 1

σ − 1

)

≤
[
r∧k∑
s=1

(
r

s

)(
s

r

)s s∧k−s∑
σ=1

(
s

σ

)(
k − s− 1

σ − 1

)]
r∧k
max
s=1

s∧k−s
max
σ=0

{(
NM

2s

)s+σ
}
.

Observe that

s∧k−s
max
σ=0

{(
NM

2s

)s+σ
}

=

(
NM

2s

)s∨(NM

2s

)2s∧k

and that by (93),

r∧k
max
s=1

{(
NM

2s

)s}
≤
(

NM/2

k ∧ NM
2e

)k∧NM
2e

r∧k
max
s=1

{(
NM

2s

)2(s∧ k
2 )
}

≤
(

NM

k ∧ NM
e

)k∧NM
e

,

which implies

r∧k
max
s=1

,
s∧k−s
max
σ=0

{(
NM

2s

)s+σ
}

≤
(

NM

k ∧ NM
e

)k∧NM
e

.

From this fact and using the combinatorial identity (89), we obtain

η′k,1
αk

1

≤
[
r∧k∑
s=1

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

.(76)

On the other hand, assuming k ≥ 1, similar computations show that
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η′′k,1
αk

1

=

r∧k∑
s=1

p̄0,s

a0,s
k−s

αk
1

=

[
r∧k∑
s=1

(
r

s

)(
ND2

r

)s(
k − 1

s− 1

)
α−s

2

]
αk

2

αk
1

≤
[
r∧k∑
s=1

(
r

s

)(
NM

r

)s(
k − 1

s− 1

)]

≤
[
r∧k∑
s=1

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
]

max
1≤s≤r∧k

{(
NM

s

)s}
,

which yields

η′′k,1
αk

1

≤
[
r∧k∑
s=1

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

.(77)

Putting together (76) and (77), we obtain the final bound

γk
αk

1

≤ ηk,1
αk

1

≤ 2

[
r∧k∑
s=1

(
k − 1

s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

,

which proves Theorem 6 in the case when α1 > α2. Observe that M depends only on
the parameters α1, α2, D1, and D2.

In the case when α2 ≥ α1, we replace the estimate in Lemma 5 with

0 ≤ aσ,sk ≤
(
k + s + σ − 1

s + σ − 1

)
αk

2 ∀s + σ ≥ 1 ∀k ≥ 0(78)

and fix

M =
8D1

α2
∨ 2D2

α2
.

Similar computations show that, for k ≥ 1, we can estimate

γk
αk

2

≤ ηk,1
αk

2

≤
[
r∧k∑
s=1

s∧k−s∑
σ=0

(
r

s

)(
s

σ

)(
NM

2r

)s(
NM

2s

)σ (
k − 1

s + σ − 1

)]
(79)

≤
[
r∧k∑
s=1

(
k + s− 1

2s− 1

)(
r

s

)(
s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

.

The proof of Theorem 6 is now complete.

7. Proof of Theorem 2. The aim of this section is to obtain a representation
of the language Σ∗(Γ) by a finite state automaton or equivalently by a graph. This
will be called a Markov representation of the language. Then we will show that this
representation satisfies conditions (A), (B), and (C) of the previous section, and so
we will be in a position to apply the estimates proposed there.
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7.1. The Markov representation. Assume Γ : I → I is any piecewise affine
map. The graph representation of the language Σ∗(Γ) can be constructed as follows.
We define as the set of vertices the set V := Σ∗(Γ) and as set of edges E the set given
by

(ω0ω1 · · ·ωn−1 → ω0ω1 · · ·ωn−1ωn) ∈ E ⇐⇒ ω0ω1 · · ·ωn−1ωn ∈ Σ∗(Γ).(80)

Moreover, we introduce the following labeling ξ : E → I ∪ J on the edges:

ξ(ω0ω1 · · ·ωn−1 → ω0ω1 · · ·ωn−1ωn) = ωn.

Notice that Σ∗(Γ) coincides with the set of all the labeled words associated with the
finite paths on the graph starting from the empty word ε. This representation of
Σ∗(Γ) will be called a Markov representation. This can be simplified by considering
an equivalence relation on the vertices. With each finite word ω0ω1 · · ·ωn ∈ Σ∗(Γ) we
associate its symbolic future

futΣ(ω0ω1 · · ·ωn) =
{
ω0ω1 · · ·ωk | ω0 = ωn and ω0ω1 · · ·ωnω1 · · ·ωk ∈ Σ∗(Γ)

}
,

which is a subset of Σ∗(Γ). More roughly, the symbolic future of a word ω0ω1 · · ·ωn

is the set of words whose concatenation with ω0ω1 · · ·ωn is in Σ∗(Γ).
Consider also the geometric future which is

fut(ω0ω1 · · ·ωn) = Γn(ω0 ∩ Γ−1ω1 ∩ . . . ∩ Γ−nωn).

The following result is in [5].
Proposition 4. Let ω0ω1 · · ·ωn and ν0ν1 · · · νm be two words in Σ∗(Γ). Then

(81)

fut(ω0ω1 · · ·ωn) = fut(ν0ν1 · · · νm) ⇐⇒ futΣ(ω0ω1 · · ·ωn) = futΣ(ν0ν1 · · · νm).

Now define X to be the quotient of the set Σ∗(Γ) by the equivalence relation

ω′
0 · · ·ω′

n ≡ ω′′
0 · · ·ω′′

m ⇔ futΣ(ω′
0 · · ·ω′

n) = futΣ(ω′′
0 · · ·ω′′

m).(82)

The elements of X will be called states and will be denoted by the symbol x. The
symbol 〈ω0ω1 · · ·ωn〉 represents the state consisting of the equivalent class which con-
tains the word ω0ω1 · · ·ωn. States representable by words of length 1 will be called
principal states. The equivalence relation defining X ensures that any state x ∈ X has
a well-defined geometric future fut(x). In fact, the geometric future fut(x) uniquely
determines the state x. Edges and labels can be naturally redefined on X to obtain a
new labeled graph denoted by G which is still a Markov representation of Σ∗(Γ) and
so, with the property that the labeled sequences associated with the finite paths on
G, starting from empty word, corresponds to all the possible sequences in Σ∗(Γ).

Notice that there is an edge connecting a state x′ to another state x′′ labeled with
ω if and only if fut(x′′) = Γ(fut(x′)) ∩ ω. This shows that the Markov representation
G has the property that the terminal state of any edge is determined by its initial
state and by its label. This means that G is a deterministic automaton. This implies
in particular that there is a one to one correspondence between paths x1x2 · · ·xk on
the graph G starting from a principal state and words in Σ∗(Γ). In order to count the
number of words in Σ∗(Γ) of length k, it will thus be equivalent to count the paths
in G of the same length k.
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Fig. 6. The map Γ of Example 1 and the graph G describing the language associated with its
dynamics.

Example 1. We provide here a simple example which should clarify the concepts
introduced so far. Consider the piecewise affine map Γ : [−1, 1] → [−1, 1] defined as
follows:

Γ(x) :=

{
ax + 1 if − 1 < x < 0,
ax− 1 if 0 < x < 1,

where a = 1+
√

5
2 . The map Γ(x) is shown in Figure 6. Let I0 :=] − 1, 0[, and let

I1 :=]0, 1[. For this particular choice of a we have that the set of states is finite:

X =
{
〈I0〉, 〈I1〉, 〈I0I0〉, 〈I1I1〉

}
.

The graph G is shown in Figure 6.

7.2. Properties of the Markov representation. Assume Γ : I → I is a
piecewise affine map and that J ⊆ I is another invariant interval as in the setting
of section. We now want to show that the just introduced Markov representation
restricted to Σ∗(Γ)∩I∗ (we are using the notation established in section 5.1) satisfies
properties (A), (B), and (C) introduced in the previous section. To this aim we define

XP :=
{
〈I1〉, 〈I2〉, . . . , 〈IN〉

}
,

Xi :=
{
〈ω0ω1 · · ·ωkIi〉 ∈ X | ω0ω1 · · ·ωk ∈ Σ∗(Γ) ∩ I∗} =

{
x ∈ X | fut(x) ⊆ Ii

}
,

X :=

N⋃
i=1

Xi =
{
x ∈ X | fut(x) ⊆ I \ J

}
,

q : X → ]0, 1[ : x �→ q(x) := P
[
fut(x)

]
,
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and the graph G which coincides with the graph G restricted to the set of states X .
By taking qi = P[Ii], we have that property (A) holds true. The next two lemmas

will show that properties (B) and (C) also hold true with α1 = |a|, α2 = 2, D1 = |a|,
and D2 = 1.

Lemma 6. Let x′ ∈ X , X ′′ ⊆ X , and let k ≥ 2. Then

#Fk

[
x1 = x′,x2, . . . ,xk−1 ∈ X ,xk ∈ X ′′] ≤ P

[
fut(x′)

]
infx′′∈X ′′ P

[
fut(x′′)

] |a|k−1.

Proof. Notice that the intervals of the form

fut(x′) ∩ Γ−1fut(x2) ∩ · · · ∩ Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk), x2, . . . ,xk ∈ X ,

constitute a family of disjoint subsets of fut(x′). This shows that

P[fut(x′)] ≥
∑

x2,...,xk−1∈X
xk∈X′′

P
[
fut(x′) ∩ Γ−1fut(x2) ∩ · · ·

∩Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk)
]
.

Notice, moreover, that Γk−1 is affine on each of these intervals and that

Γk−1
(
fut(x′) ∩ Γ−1fut(x2) ∩ · · · ∩ Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk)

)
= fut(xk).

This implies that

P
[
fut(x′) ∩ Γ−1fut(x2) ∩ · · · ∩ Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk)

]
≥ infx′′∈X ′′ P[fut(x′′)]

|a|k−1

if x′x2 · · ·xk−1xk ∈ Fk[x1 = x′,x2, . . . ,xk−1 ∈ X ,xk ∈ X ′′], and it is 0 otherwise.
This yields the result.

Lemma 7. Let x′ ∈ X , and let i = 1, . . . ,N. Then

#Fk[x1 = x′,x2, . . . ,xk−1 ∈ X \ XP ,xk ∈ Xi] ≤ 2k−2.

Proof. As mentioned above, there is an edge connecting a state x′ to another
state x′′ with label ω if and only if fut(x′′) = Γ(fut(x′))∩ω. Since the map Γ is affine
on fut(x′), Γ(fut(x′)) is an interval, and so at most two followers of a state can be
nonprincipal. The result follows by applying this argument.

It follows from Lemmas 6 and 7 that the graph G satisfies properties (A), (B), and
(C), and hence Theorem 6 holds true in this case. Notice that this yields Theorem 2,
since γk defined in (30) coincides with γk defined in (30). Indeed, in this case we have
that

γk,h = #Fk[x1 = 〈Ih〉,x2 , . . . ,xk ∈ X ],

so that γk =
∑

h γk,h coincides with the number of paths of length k in the graph
G, starting from a principal state and always remaining in X . This, by the previous
discussion, corresponds to the number of distinct subwords in Σ∗(Γ)∩I∗ of length k.
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7.3. Estimation of the number of paths in the chaotic case. As mentioned
in the remark after Theorem 6, in bound (53) we can fix r instead of the constant M .
More precisely, instead of fixing the contraction factor equal to 1/2 in (68) we can
choose any δ ∈]0, 1[. In this case, instead of (70), we obtain

p̄σ,s ≤
(
r

s

)(
s

σ

)(
ND2

r

)s(
ND1

sδ(1 − δ)

)σ

.(83)

In the case α1 > α2, the only consequence on the subsequent computations is that the
factor 1

δ(1−δ) will enter in definition (75) of M . On the other hand, the number r also

depends on the contraction factor δ. An important situation in which it is possible to
take advantage of this degree of freedom is the following.

If we fix δ := qN/q1 ∧ 1/2, then r = 1, and in this way we obtain a simplified
bound on γk in which, however, the constant M is a decreasing function of δ. In order
to obtain an effective bound we need to have a bound from above on M , and so a
bound from below on qN/q1. In the context of piecewise affine maps this means that
we need to have a bound from below on δ = P[IN]/P[I1]. An interesting situation in
which this is possible is when N = �|a|�, namely, for the chaotic quantized stabilizers.

Proposition 5. Let |a| > 2, and let N = �|a|�. There exist constants C1 > 1
and M > 0, depending only on |a| such that if C > C1, then

γk
|a|k ≤ 2

(
NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1.(84)

Proof. For the arguments presented above, we need only to prove that there exist
constants δ1 > 0 and C1 > 1, depending only on |a| such that

C ≥ C1 ⇒ P[IN]

P[I1]
≥ δ1.

First notice that 1 ≥ P[Γ(I1)] ≥ |a|P[I1], from which we can argue that P[I1] ≤ 1/|a|.
Moreover,

P[IN] = 1 − P[J ] −
N−1∑
h=1

P[Ih] ≥ 1 − C−1 − (N − 1)P[I1] ≥ 1 − C−1 − �|a|� − 1

|a| ,

and hence

P[IN]

P[I1]
≥ P[IN]

1/|a| ≥ |a| − |a|C−1 − �|a|� + 1
C→∞−→ |a| − �|a|� + 1 > 0.

This proves the result.

7.4. Estimation of the number of paths in the stable case. In this section,
we will propose a bound on γk which holds true when Γ is (I, J)-stable or when Γ
is almost (I, J)-stable but with only a countable subset of points in I never entering
inside J . To obtain this bound we need the following lemma.

Lemma 8. Assume that there exists a state x ∈ X such that there exist two
distinct paths in the graph G both starting and ending in x and not passing by x in
any intermediate step (simple loops through x). Then there is an uncountable set of
points in I never entering inside J .
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Proof. The proof is based on a general argument on the symbolic description of a
one-dimensional expansive map as Γ which consists in constructing a sort of inverse
of the map ψ defined in (29); see [5].

Given any loop ν = xx1 · · ·xk−1x in G, if we consider the open interval

Kν = fut(x) ∩ Γ−1(fut(x1)) ∩ · · · ∩ Γ−(k−1)(fut(xk−1)) ∩ Γ−k(fut(x)) ,

we have that Γk is affine on Kν , and Γk(Kν) = fut(x). In particular it follows that

P[Kν ] = P[fut(x)]|a|−k.(85)

We now set some notation: if ν1 = xx1
1 · · ·x1

k1−1x and ν2 = xx2
1 · · ·x2

k2−1x are two
loops through x, we define the concatenation of ν1 and ν2 as the new loop

ν = ν1 ∧ ν2 = xx1
1 · · ·x1

k1−1xx2
1 · · ·x2

k2−1x.

Assume that there are two distinct simple loops ν1 and ν2 of length k1 and k2, re-
spectively, through x. The corresponding open intervals K1 and K2 as defined above
are then disjoint. Define now a map Υ : {1, 2}N → I in the following way: given a
sequence (an) ∈ {1, 2}N, consider the set

Ka1
∩ Γ−ka1

(
Ka2

)
∩ Γ−ka1

−ka2

(
Ka3

)
∩ · · · =

+∞⋂
n=1

Γ
−

n−1∑
j=1

kaj (
Kan

)
.(86)

Since

q⋂
n=1

Γ
−

n−1∑
j=1

kaj (
Kan

)
is simply the closure of the open interval K associated with the loop νa1∧νa2∧· · ·∧νaq ,
it follows that it is nonempty and that, by (85), its size decreases by a factor

|a|
−

n−1∑
j=1

kaj

.

Hence this implies that the set in (86) consists of exactly one point x. We then put
Υ((an)) = x. Call Δ = Υ({1, 2}N). A standard argument of symbolic dynamics of
one-dimensional maps now show that there exists Δ1 ⊆ Δ, at most countable, such
that the counterimage set Υ−1(x) is a singleton for every x ∈ Δ\Δ1. Indeed, it follows
by the definition that the only points x which have more than one counterimage (and
in fact exactly two) are those in the union of boundaries of the intervals

q⋂
n=1

Γ
−

n−1∑
j=1

kaj (
Kan

)
,

namely, those in the subset

Δ1 =

+∞⋃
q=1

⋃
a1,...aq

∂

⎛⎝ q⋂
n=1

Γ
−

n−1∑
j=1

kaj (
Kan

)⎞⎠ ,
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which is clearly at most countable. Finally, the subset of points in Δ which will never
enter inside Δ1,

Δ2 =

+∞⋂
k=0

Γ−k(Δ \ Δ1),

is clearly uncountable.
We claim that no point in Δ2 will ever enter inside J . Notice first that, by

construction, Δ2 ⊆ Ω. Now take x ∈ Δ2, and let (an) ∈ {1, 2}N be such that
Υ(an) = x. Then

Γka1 (Υ(an)) = Υ(ãn),

where (ãn) is a sequence defined by ãn = an+1 for all n ∈ N. This implies in particular
that Γka1 (x) ∈ Δ2 by the way Δ2 has been defined. Hence we have that for every
x ∈ Δ2 either Γk1(x) or Γk2(x) is also in Δ2. If, by contradiction, n0 exists such that
Γnx ∈ J for every n ≥ n0, we could find for sure n1 ≥ n0 such that y = Γn1x ∈ Δ2∩J .
Since Δ2 ⊆ K1 ∪K2 it would follow that y ∈ ∂K1 ∪ ∂K2, which is absurd by the way
Δ2 has been defined.

Theorem 7. Assume that Γ is almost (I, J)-stable with an at most countable
subset of points in I never entering inside J . Then

γk
2k

≤
(
k + 2N − 1

2N − 1

)
e

N
e ∀k ≥ 1.(87)

Proof. Decompose the set XP into maximal subfamilies X 1
P ,X 2

P , . . . ,Xm
P in such

a way that two principal states belong to the same family if and only if there exists
a loop in G connecting them. Also we can assume the families are ordered in such a
way that if there exists a path from x1 ∈ X i

P to x2 ∈ X j
P , then i ≤ j. Let Ni be the

cardinality of X i
P . We thus have N =

∑m
i=1 Ni.

Given now any path ν of length k inside the graph G starting from a principal
state, we can always split it as

ν = ν1μ1ν2μ2 · · · νmμm,

where νi is a path connecting two principal states in X i
P , while νi is a path only

consisting of nonprincipal states. Assume νi has length k1
i and that μi has length k2

i .
We thus have

k =

m∑
i=1

k1
i +

m∑
i=1

k2
i .

The number of ways we can split k in the sum above is equal to(
k + 2m− 1

2m− 1

)
.

Once the numbers k1
i and k2

i have been fixed, we notice that the path νi can be chosen
in Ni distinct ways corresponding to the ways we can choose the initial principal state.
This follows from the fact that from any principal state in X i

P there is exactly one
path reaching another element in X i

P because otherwise there would be two distinct
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simple loops in G contradicting the result in Lemma 8. Notice that using the fact that∑m
i=1 Ni = N, by Lemma 3, the number of ways we can choose the family of paths

ν1, ν1, . . . , νm is bounded from above by

m∏
i=1

Ni ≤
(

N

m

)m

≤ e
N
e .

Once all the paths νi have been chosen, the remaining paths μi can be chosen in at
most 2k

2
i distinct ways. Hence the number of ways we can choose the family of paths

μ1, μ1, . . . , μm is bounded from above by 2k. We thus have the thesis.

8. Conclusions. In this paper, some stabilizing quantized feedback strategies
are proposed and their different properties in terms of performance and communi-
cation requirements are compared. These strategies are based on nesting one base
quantized feedback. The performance, defined as the expected time needed to get
from a big initial state set into a smaller target state set, is analyzed by using the
concept of the Perron–Frobenius operator associated with a nonlinear transformation.

The second part of the paper is devoted to the search of general bounds which
could highlight the trade-off existing between performance and information flow re-
quired by a quantized control technique. This investigation is based on a symbolic
representation of the closed loop nonlinear system. In this way the system is de-
scribed by a Markov chain with possibly infinite states. Counting the paths on the
graph which represents the Markov chain, it is possible to obtain bounds on the per-
formance which yield to some interesting trade-off relations. This method is based on
a technical result which is expressed in terms of general Markov chains and its proof,
though quite long, is based on basic combinatorial relations.

It is our hope that, as information theory has been a successful symbolic technique
to treat digital communication, a symbolic technique will be the right tool to deal with
digital control as well. In fact, although this paper deals only with the static control of
linear scalar systems, the symbolic method proposed here seems to be very promising
for treating more general situations. In [10] the same method is applied for treating
both the case in which a memory structure is allowed on the controller and the case
in which the system is multidimensional. We hope that this method will be useful to
solve other questions which remain open. In our opinion the most important ones are
the following.

1. In most of the contributions on control with communication constraint pro-
posed in the literature it is assumed that the channels are digital with a finite
rate but are noiseless. In the future investigations it will be important to
allow the presence of errors in the data exchange between the plant and the
controller.

2. In our opinion more attention has to be devoted to the control problem with
communication constraint in those situations in which there are more inter-
acting agents to be controlled to achieve a joint control objective. In this
case the communication constraint have to be imposed on the data which are
exchanged by the differently located agents.

3. In this paper, we have been able to analyze the performance of some simple
quantized feedback strategies. It remains to obtain an algorithm able to pro-
vide an approximate performance evaluation for any given specific quantized
feedback. In our opinion a promising method could be based on the ap-
proximation of the Perron–Frobenius operator by a finite state Markov chain
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which is connected with the so-called Ulam conjecture (see [19] and references
therein).

Appendix: Some useful elementary combinatorics. In the paper, we use
some elementary properties of the binomials. The first one is

m∑
j=0

(
l + j

j

)
=

(
m + l + 1

m

)
,(88)

which follows by iterating the elementary identity(
m + l + 1

m

)
=

(
m + l

m

)
+

(
m + l

m− 1

)
.

Another useful formula follows by comparing the binomial coefficients of the term
zk in the polynomial identity

(1 + z)n1
(
1 + z−1

)n2
= (1 + z)n1+n2z−n2 ,

which yields

(n1−k)∧n2∑
j=0

(
n1

k + j

)(
n2

j

)
=

(
n1 + n2

k + n2

)
.(89)

Another useful formula is given by the following series of inequalities which holds true
for all n,m ≥ 1 [1, p. 113]:(

n + m

m

)
≤

√
1

2π

(
1

n
+

1

m

)(
1 +

n

m

)m(
1 +

m

n

)n

(90)

≤

√
1

2π

(
1

n
+

1

m

)(
1 +

n

m

)m

em ≤

√
1

2π

(
1

n
+

1

m

)
en+m.

From (90) we can argue that for all n ≥ 0 and m ≥ 1,(
n + m

m

)
≤ 1√

π

(
1 +

n

m

)m

em.(91)

Finally consider the function

f(x) :=

(
A

x

)Bx

.

This is a unimodal function having a unique maximum in xM = A
e . This implies that

for all x̄ > 0, we have

max
0<x≤x̄

f(x) = f(x̄ ∧ xM ) =

(
A

x̄ ∧ A
e

)B(x̄∧A
e )

.(92)

Observe, moreover, that for all x̂ > 0, we have(
A

x

)B(x∧x̂)

≤
(

A

x ∧ x̂

)B(x∧x̂)

,
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which implies that

max
0<x≤x̄

(
A

x

)B(x∧x̂)

≤ max
0<x≤x̄

(
A

x ∧ x̂

)B(x∧x̂)

= max
0<x≤x̄∧x̂

f(x) =

(
A

x̄ ∧ x̂ ∧ A
e

)B(x̄∧x̂∧A
e )

.

(93)
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FAITHFUL REPRESENTATIONS FOR CONVEX
HAMILTON–JACOBI EQUATIONS∗

FRANCO RAMPAZZO†

Abstract. When a Hamiltonian H = H(t, x, p) is convex in the adjoint variable p, the corre-
sponding Hamilton–Jacobi equation

ut + H(t, x, ux) = 0(0.1)

is known to be the Bellman equation of a suitable optimal control problem. Of course, the latter is
not unique, so it is interesting to select a good optimal control problem among those representing
(0.1). We call such a representation faithful if (i) it involves a dynamics which is locally Lipschitz
continuous in the state variable—so that a unique trajectory corresponds to any given control and
initial point—and (ii) the Lagrangian displays the same regularity as H in the x variable. The main
result of the present paper establishes the existence of faithful representations for a large class of
Hamiltonians, including those for which the standard comparison theorems (of viscosity solution
theory) are valid. Moreover, our investigation includes t-measurable Hamiltonians as well.

If a faithful control-theoretical representation does exist (and (0.1) enjoys uniqueness properties),
one can infer sharp regularity results for the solution of (0.1) just by studying the regularity of the
value function of the associated optimal control problem. A further application consists of a simple
interpretation of the front propagation phenomenon in terms of optimal trajectories of the underlying
minimum problem.

Key words. HJ equations, representation of Hamiltonians, parameterization of set-valued maps

AMS subject classifications. 70H20, 49J24, 35E10
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1. Introduction.

1.1. Some notation and conventions. We shall call modulus any increasing,
continuous function ω : [0,+∞[→ [0,+∞[ such that ω[0] = 0. A local modulus will be
a continuous map ω : [0,+∞[×[0,+∞[→ [0,+∞[ that is increasing in the first variable
and is a modulus in the second variable. The closed ball of Rn of radius R ≥ 0 will
be denoted by BR, and B will stand in place of B1. For each map ϕ : Rn → R∪+∞,
the domain of ϕ, i.e., the subset of those v ∈ Rn such that ϕ(v) < +∞, will be
denoted by dom(ϕ(·)). For any map H : [0, T ] × Rn × Rn → R, H∗ will denote the
conjugate map with respect to the third variable; that is, we shall set

H∗(t, x, v)
.
= sup

p∈Rn

{p · v −H(t, x, p)}

for all (t, x, v) ∈ [0, T ] × Rn × Rn.
If w = w(y1, . . . , yq) is a map of many (possibly vector-valued) variables, for any

i = 1, . . . , q we shall use wyi to denote the gradient with respect to the yi variable. It
will be clear by the context whether this has to be intended in the sense of viscosity
solution theory.
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MIUR COFIN project “Metodi di viscositá, metrici e di teoria del controllo in equazioni alle derivate
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1.2. Statement of the problem. For every (t, x) ∈ [0, T ] × Rn let us consider
the Bolza optimal control problem

(Pt,x)

minimize
∫ T

t
l(s, y(s), a(s))ds + g(y(T )),

ẏ(s) = f(s, y(s), a(s)),

y(t) = x,

where the controls a(·) (are measurable maps on [t, T ] and) take values in some subset
A of a Euclidean vector space and the Lagrangian-dynamics pair (l, f) verify suitable
hypotheses which will be made precise later. The function g will be assumed contin-
uous, even though weaker assumptions could be considered (see Remark 2.1 below).

The Bellman–Cauchy problem corresponding to the family of optimal control
problems {Pt,x, (t, x) ∈ [0, T ] × Rn} is defined as the Hamilton–Jacobi equation

ut + H(t, x, ux) = 0 in ]0, T [×Rn(1.1)

with the initial condition

u(0, x) = g(x) ∀x ∈ Rn,(1.2)

where

H(t, x, p)
.
= sup

a∈A
{p · f(t, x, a) − l(t, x, a)}.(1.3)

As is well known, the connection between the Bolza problems (Pt,x) and the
initial value problem (1.1)–(1.2) relies on the fact that if V (t, x) is the value function
of (Pt,x), that is,

V (t, x) = inf
a(·)

∫ T

t

l(s, y(s), a(s))ds + g(y(T )),(1.4)

then the map u(t, x) = V (T − t, x) is a solution (e.g., viscosity [BCD] or minmax [Su]
solution) of (1.1)–(1.2). Notice, in particular, that the Hamiltonian is convex in the
gradient variable.

Let us consider the converse question. Suppose the Cauchy problem (1.1)–(1.2)
is given, with only the information that H is convex in the gradient variable (plus
other technical conditions which guarantee existence and uniqueness of solutions to
(1.1)–(1.2)). Then it is natural to wonder whether (1.1)–(1.2) is the Bellman–Cauchy
problem of a family {Pt,x, (t, x) ∈ [0, T ] × Rn} of optimal control problems. This
means that one looks for a triple (A, f, l) such that (1.3) is verified. Such a triple will
be called a (control theoretical ) representation of H.

It is easily seen that if a representation of H exists, then infinitely many others
exist.1 So, we may consider a further question, namely, that of choosing a represen-
tation verifying some given properties.

1For instance, the map H(p) = |p| is the Hamiltonian corresponding to the trivial optimal control
problem

minimize
∫ T

t
(1 − |a(s)|)ds,

ẏ(s) = a(s), a(s) ∈ [−1, 1],
y(t) = x.

On the other hand, for every pair (h(·), k(·)) of positive maps, H(p) = |p| is also the Hamiltonian of
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Indeed, this is our aim, which, loosely speaking, consists of finding representations
that allow both uniqueness of trajectories of f (for any given control) and a Lagrangian
with the same x-regularity as the given Hamiltonian.

In order to define the problem let us begin by stating properties (A1)–(A3) be-
low, which are the properties we wish to be satisfied by a family of optimal control
problems. They will imply certain conditions on H, which have to be considered as
sort of minimal assumptions for our problem.

Given a family {Pt,x, (t, x) ∈ [0, T ]× Rn} of Bolza optimal control problems, we
shall consider the following hypotheses on the triple (A, f, l):

(A1) There exists a constant Q such that

|f(t, 0, a, )|, |l(t, 0, a)| ≤ Q

for all t ∈ [0, T ] and a ∈ A.
(A2) The maps f and l are continuous from [0, T ] × Rn × A into Rn and R,

respectively, and for every R > 0 there exists a nonnegative number ER such that

|f(t, x, a) − f(t, y, a)| ≤ ER|x− y|,(1.5)

|l(t, x, a) − l(t, y, a)| ≤ ν[R, |x− y|](1.6)

for all (t, x, a), (t, y, a) ∈ [0, T ] × BR ×A, where ν is a suitable local modulus.
(A3) There is C > 0 such that

|f(t, x, a)| ≤ C(1 + |x|)

for all (t, x, a) ∈ [0, T ] × Rn ×A.
From a control theoretical viewpoint these are rather standard hypotheses for the

triple (A, f, l). In turn, it is straightforward to verify that they imply the following
properties for the Hamiltonian H defined in (1.3):

(H1) For any (t, x) ∈ [0, T ] × Rn, the map q 	→ H(t, x, q) is convex from Rn into
R.

(H2) There exist local moduli ω1, ω2, and ω3 such that for any R > 0, one has

|H(t, x, p) −H(t, y, p)| ≤ ω1[R, |x− y|(1 + |p|)](1.7)

and

|H(t, x, p) −H(s, x, p)| ≤ |p|ω2[R, |t− s|] + ω3[R, |t− s|](1.8)

for all x, y ∈ BR, p ∈ Rn, and t, s ∈ [0, T ].
(H3) There exists a constant C such that

|H(t, x, p) −H(t, x, q)| ≤ C(1 + |x|)|p− q|(1.9)

for all (t, x) ∈ [0, T ] × Rn and p, q ∈ Rn.
(H4) For every R > 0, there exists a nonnegative number NR such that

|H∗(t, x, v)| ≤ NR

for all (t, x) ∈ [0, T ] × BR and v ∈ dom(H∗(t, x, ·)).

the (much more involved) optimal control problem

minimize
∫ T

t

h(y(s))

a2(s)
ds,

ẏ(s) =
a(s)k(y(s))

1+|a(s)|k(y(s))
· 1−a2(s)

1+a2(s)
, a(s) ∈ R,

y(t) = x.
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1.3. Aim. Assumptions (H1)–(H4), beyond being necessary for (A1)–(A3) (see
Remark 2.2), are in fact verified with

ω1[R, s] = ER(s + ν[R, s]).

That is, the local modulus of continuity (in x) of H turns out to coincide—up to a sum
with a linear mapping and a multiplication by a positive number, both depending on
the radius R—with the local modulus of l. We say that H inherits the same continuity
(in x) from l.

For a given Hamiltonian H verifying (H1)–(H4), we wish to find a representa-
tion (A, f, l) such that f is locally Lipschitz continuous in x—so that uniqueness of
trajectories is guaranteed—and l has the same kind of continuity (in x) as H.

To be more precise, this means that we are looking for a triple (A, f, l) verifying
(A1)–(A3) with

ν[R, s] = PR(s + ω1[R, s])

for suitable coefficients PR(≥ 0).
Remark 1.1. Up to now, the major contribution to the representation’s issue

for convex Hamiltonians could be found in Ishii [Is2]. As a matter of fact, in [Is2]
representations were provided such that both f and l turn out to have a modulus of
continuity equal to (ω1)

1
2 (while the control set turns out to be infinite-dimensional).

This implies, for instance, that even in the quite regular case when ω1[R, s] = L · s,
f and l turn out to be just 1

2 -Holder continuous in x. In particular, the Lagrangian
is less regular than the Hamiltonian, and the Cauchy problems for the control vector
field f in general admit multiple solutions (for each control). On the contrary, in
such a situation our result implies that both the dynamics f and the Lagrangian l are
locally Lipschitz continuous in the state variable.

Remark 1.2. Problems with no convexity were investigated, e.g., by Ishii in [Is3]
and by Evans and Souganidis in [ES]. Both papers aimed toward a representation
of the solution in terms of an (Elliot–Kalton) upper or lower value of a suitable
differential game. The dynamics of Ishii’s representation involves infinite-dimensional
control sets for the opponents in the game and displays a sort of Lipschitz continuity
on compact sets. Instead the Lagrangian is just continuous. On the other hand, in [ES]
Hamiltonians as well as initial data are restricted to Lipschitz continuous, bounded,
functions. When referred to the case with convexity these results are weaker than
ours. However, a comparison actually does not make sense because of the greater
generality of the problems treated in [Is3] and [ES]. As a matter of fact, the lack of
convexity could well be a serious drawback in the attempt to give a representation
with a Lagrangian as regular (in x) as the Hamiltonians—apart from the Lipschitz
bounded case treated in [ES].

1.4. Main results and an outline of the paper. The main contribution of
this paper—see Theorems 2.1 and 2.2 below—consists of accomplishing the twofold
program of finding a locally Lipschitz continuous dynamics f and a Lagrangian l that
preserves the same kind of continuity (in x) of the Hamiltonian. Moreover, the control
set A in our representation turns out to be particularly simple, namely, the unit ball
of Rn. Lastly (see section 6) we can prove extensions of these results to Hamiltonians
measurably dependent on t.

As a first consequence of such results, many statements in the literature that
have been proved for a Hamiltonian displaying an explicit control-theoretical form
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as in (1.3) can now be updated by considering Hamiltonians H that merely verify
(H1)–(H4) (and, for some specific purposes, a further technical hypothesis (H5)).
Furthermore, some results concerning the solution of the Cauchy problem (1.1) can
be sharpened by means of the control-theoretical representation we are providing. For
instance, this is the case of the regularity of the solution to (1.1), which is addressed
in section 5. Finally, already known results may be interpreted as facts concerning
the optimal trajectories of the underlying optimal control problem, as it happens for
the phenomenon of front propagation (see section 5).

As for the proof of the main result, let us remark that it is based essentially
on the following arguments. First, in Theorem 3.2 below we establish (by means
of an argument based on Kakutani’s fixed point theorem) that under hypotheses
(H1)–(H4) the multifunction that maps (t, x) into F (t, x)

.
= dom(H∗(t, x, ·)) is locally

Lipschitz continuous in x (and an analogous fact holds in the case of Hamiltonians
measurable in t). Theorem 3.3 yields a global version of this result. Observe that the
presence of the local modulus ω1 in (H2) would suggest an (at most) ω1-regularity
for this multifunction rather than the local Lipschitz continuity actually obtained by
means of our results. Secondly, we exploit a parameterization theorem for convex
multifunctions proved in [O] (see also [Lo]). According to this theorem, if F (t, x) is
a convex multifunction satisfying suitable regularity assumptions, then there exists a
map f : [0, T ] × Rn × B → Rn displaying an akin regularity and verifying F (t, x) =
f(t, x,B) for all (t, x). Finally, by (H4) one proves that l displays the same kind of
continuity (in x) as H.

The outline of the paper is as follows. In section 2 we state the main result (The-
orem 2.1) and a version of it involving global regularity. In section 3 we establish that
the multivalued map (t, x) 	→ dom(H∗(t, x, ·)) is (continuous and) locally Lipschitz
continuous in x. Subsequently, a global version of this result is proven as well. In
section 4 we conclude the proof of the main result by exploiting the parameterization
theorem for multifunctions mentioned above. Section 5 is devoted to applications to
regularity questions and to a control theoretical interpretation of the front propaga-
tion phenomenon. Finally, in section 6, we extend the results of the previous sections
to the case when H is just measurable in the variable t.

2. The main result. In the next theorem we shall also consider the following
hypothesis on the Hamiltonian H.

(H5) For every R > 0 there exists KR > 0 such that for every (t, x) ∈ [0, T ] ×BR

and every v ∈ dom(H∗(t, x, ·)), one has

argmaxp{p · v −H(t, x, p)} ∩BKR
�= ∅.

Here argmaxp{p · v − H(t, x, p)} denotes the set of values of p where the map p 	→
p · v −H(t, x, p) attains its maximum.

Theorem 2.1. Let us consider a Hamiltonian H verifying hypotheses (H1)–(H4).
Then there exist a dynamics f = f(t, x, a) satisfying (A1)–(A3) and a continuous
Lagrangian l = l(t, x, a), with the control set A coinciding with the unit ball B, such
that

H(t, x, p) = sup
a∈B

{p · f(t, x, a) − l(t, x, a)} ∀(t, x, p) ∈ [0, T ] × Rn × Rn.(2.1)

Furthermore, if hypothesis (H5) is in force as well, then (A2) turns out to be satisfied
with ν[R, s]

.
= ω1[R, (1 + KR)s] + DRs for suitable coefficients DR.
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Remark 2.1. As we have already pointed out in the introduction, the main point
of Theorem 2.1 consists of the fact that, on one hand, f turns out to be locally Lipschitz
continuous (in x), even in the case when H is not locally Lipschitz continuous (in x),
and, on the other hand, l turns out to inherit the regularity (in x) of H. Finally,
the control set A turns out to be quite simple, namely, it coincides with the unit ball
of Rn.

The following theorem is a global version of the previous one.
Theorem 2.2. Let H verify (H1)–(H5), where we assume that ω1 is a modulus

(i.e., it is independent of R) and there exists a constant K such that KR = K for all
R ≥ 0. Then there exist a dynamics f and a Lagrangian l such that

H(t, x, p) = sup
a∈B

{p · f(t, x, a) − l(t, x, a)} ∀(t, x, p) ∈ [0, T ] × Rn × Rn(2.2)

holds true, and (A1)–(A3) are satisfied, with the control set A coinciding with the unit
ball B, ER independent of R, and, for all R ≥ 0, ν[R, s] = ν(s) = ω1[(1 + K)s + Ds]
for a suitable D ≥ 0.

Remark 2.2 (on hypotheses (H1)–(H4)). Assumptions (H1)–(H4) are necessary if
we look for a representation (A, f, l) verifying (A1)–(A3). Moreover, they guarantee
the (existence and) uniqueness of a viscosity solution to the Cauchy problem (1.1)–
(1.2) (see, e.g., [CL]).

Let us observe that by assuming (H3) we are confining our investigation to Hamil-
tonians which are (convex and) Lipschitz continuous in the adjoint variable (not nec-
essarily uniformly with respect to x). Moreover, (H4) prescribes the boundedness of
the conjugate map H∗, locally with respect to (t, x). This is motivated by the fact
that, on one hand, we are looking for control-theoretical representations (f, l, A) of H
such that both the sets f(t, x,A) and l(t, x,A) are bounded, not necessarily uniformly
with respect to t and x. And, on the other hand, the sets f(t, x,A) and l(t, x,A) fi-
nally will coincide with dom(H∗(t, x, ·)) and (H∗(t, x,Rn))\{∞}, respectively. As a
matter of fact, we regard this paper as a first step of a wider program which shall allow
for more general conditions on H. These should include superlinearity in the adjoint
variable, which in turn would force one to look for representations with noncompact
(possibly unbounded) control sets.

Finally, let us notice that assumption (H2) is quite standard for comparison (and
hence uniqueness) results for a viscosity solution of (1.1); see, e.g., [BCD] and [Ba].
(However, let us remark that there are boundary value problems for which (H2) is
no longer sufficient to guarantee uniqueness of the solution. In this case, a faithful
representation of the Hamiltonian could be still exploited in order to provide a rep-
resentation of all solutions of the boundary value problem, as, e.g., in [So], where the
Hamiltonian is a control-theoretical one.)

Remark 2.3 (on hypothesis (H5)). Let us point out that, unlike hypotheses (H1)–
(H4), hypothesis (H5) is not necessary for the existence of a representation (A, f, l)
verifying (A1)–(A3), i.e., for the theses of Theorems 2.1 and 2.2 to hold true. For
instance, let us consider the Hamiltonian

H̃(x, p) = (1 + p2)
1
2 − 1 − ψ(x),

where ψ is just a continuous function. It is straightforward to verify that this Hamil-
tonian satisfies hypotheses (H1)–(H4), but it does not satisfy hypothesis (H5). On the
other hand, it is easy to check that the triple

(Ã, f̃ , l̃) = ([−1, 1], a, 1 − (1 − a2)
1
2 + ψ(x))
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is a representation of H verifying (A1)–(A3), that is,

H̃(x, p) = sup
a∈[−1,1]

{p · a− l̃(x, a)}.

At present we are unable to foresee how (H5) could be weakened, so we leave this
question as an open problem.

Remark 2.4. Let us just mention that the representation question can also be
addressed by considering only calculus of variations problems (see, e.g., [L] and also
[G]) at the cost of allowing the extended Lagrangian H∗. Of course there is an intimate
relation between the two approaches: roughly speaking, in the control-theoretical
approach one is looking for a dynamics-Lagrangian pair so that, in particular, the
forbidden velocities, that is, those mapped to +∞ by H∗, are not contained in the
dynamics.

3. The map (t, x) �→ dom(H∗(t, x, ·)). In this section we prove that the (con-
vex) multifunction F (t, x)

.
= dom(H∗(t, x, ·)) is Lipschitz continuous in x. As a matter

of fact, the proofs of Theorems 2.1 and 2.2, given in the next section, will be based es-
sentially on the Lipschitz continuity of F and on the application of a parameterization
theorem for convex-valued multifunctions; see Theorem 4.1 below.

Let us consider the set-valued map

(t, x) 	→ F (t, x)
.
= dom(H∗(t, x, ·)),

which is defined on [0, T ] × Rn.
Lemma 3.1. The set-valued map F has nonempty, convex, compact values.
Proof. Since for every (t, x) ∈ [0, T ] × Rn the map v 	→ H∗(t, x, v) is convex,

proper (i.e., not everywhere equal to +∞), lower semicontinuous, and bounded on its
domain, F (t, x) is a nonempty, convex, closed subset of Rn(see, e.g., [RW]). Moreover,
hypothesis (H3) implies that F (t, x) ⊂ BC(1+|x|) for every (t, x) ∈ [0, T ]×Rn. Hence,
for every (t, x) ∈ [0, T ] × Rn, F (t, x) is a compact convex subset of Rn.

Throughout this paper the Hausdorff distance between two nonempty, compact
subsets A,B ⊂ Rn will be denoted by δ(A,B); that is, we set

δ(A,B)
.
= max

{
max
a∈A

d(a,B), max
b∈B

d(b, A)

}
.

Let us recall that δ is a metric on the class K of nonempty, compact subsets of Rn.
In what follows, a multivalued map F with compact values from [0, T ] × Rn into
Rn is said to be Lipschitz continuous (resp., continuous) if it is Lipschitz continuous
(resp., continuous) when considered as a (univalued) map from Rn into the set K
endowed with the metric δ. Actually, for maps with compact values, these definitions
are equivalent to the usual ones (see [AC]).

F is said to be locally Lipschitz continuous if it is Lipschitz continuous on compact
subsets of [0, T ] × Rn.

Theorem 3.2. Let us assume hypotheses (H1)–(H4). Then, the set-valued map
x 	→ F (t, x) is locally Lipschitz continuous in x, uniformly in t. That is, for every
R > 0, there exists a number MR ≥ 0 such that

δ(F (t, x), F (t, y)) ≤ MR|x− y|(3.1)

for all x, y ∈ BR and t ∈ [0, T ].
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Moreover, for every R > 0, there exists a number M̃R ≥ 0 such that

δ(F (t, x), F (s, x)) ≤ M̃Rω2[R, |t− s|](3.2)

for every x ∈ BR and t, s ∈ [0, T ]. In particular, for each x ∈ Rn, t 	→ F (t, x) is
continuous.

In order to prove Theorem 2.2 we also need the following version of the previous
result, which involves the global Lipschitz continuity of the map x 	→ F (t, x).

Theorem 3.3. Let us assume that hypotheses (H1)–(H5) are verified with both
the local modulus ω1 and the parameter KR being in fact independent of R (that is,
ω1 is a modulus, and there exists a constant K such that KR = K for all R ≥ 0.)
Then, the set-valued map x 	→ F (t, x) is Lipschitz continuous in x, uniformly in t,
that is, (3.1) holds true, and there exists a constant M such that MR = M for all R.

Finally, let us state a simple property of the map H∗ that will be used to prove
both the regularity of the Lagrangian l and the global issue stated in Theorem 3.3.

Proposition 3.4. Assume hypotheses (H1)–(H5), and fix R > 0. Then, for all
t ∈ [0, T ], x, y ∈ BR, and v ∈ F (t, x), w ∈ F (t, y), one has

|H∗(t, x, v) −H∗(t, y, w)| ≤ ω1[R, (1 + KR)|x− y|] + KR|v − w|.

Moreover, for all t, s ∈ [0, T ], x ∈ BR, and v ∈ F (t, x), w ∈ F (s, x), one has

|H∗(t, x, v) −H∗(s, x, w)| ≤ ω2[R,KR|t− s|] + ω3[R, |t− s|] + KR|v − w|.

Proof of Theorem 3.2. Let us prove (3.1). Assume by contradiction that there
exist sequences (xn), (yn) in BR such that xn �= yn for every n and

lim
n→∞

δ(F (t, xn), F (t, yn))

|xn − yn|
= +∞.(3.3)

Up to the identification of the sequence (xn, yn) with a suitable subsequence, con-
dition (3.3) yields either the existence of a selection vn ∈ F (t, xn)\F (t, yn) verifying

lim
n→∞

d(vn, F (t, yn))

|xn − yn|
= +∞(3.4)

or the existence of a selection v′n ∈ F (t, yn)\F (t, xn) verifying

lim
n→∞

d(v′n, F (t, xn))

|xn − yn|
= +∞.(3.5)

Suppose that (3.4) is actually verified ((3.5) implying perfectly symmetric considera-
tions). Then, for any selection wn ∈ F (t, yn), one has

lim
n→∞

|vn − wn|
|xn − yn|

= +∞.(3.6)

Setting

pn
.
=

vn − wn

|vn − wn||xn − yn|
,
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one obtains

ω1[R, |xn − yn|(1 + |pn|)] = ω1[R, |xn − yn| + 1]

≥ H(t, xn, pn) −H(t, yn, pn)

≥ pn · vn −H∗(t, xn, vn)

− max
w∈dom(H∗(t,yn,·))

{pn · w −H∗(t, yn, w)}.(3.7)

In order to achieve a contradiction, let us choose wn to be a fixed point of the
map

ηn(w)
.
= argmax

{
(vn − w) · ξ

|xn − yn||vn − w| −H∗(t, yn, ξ), ξ ∈ dom(H∗(t, yn, ·))
}
.

In view of Lemma 3.5 (where one sets ϕ = H∗(t, yn, ·) and r = |xn − yn|), such a
point does exist. Hence one has

(vn − wn) · wn

|xn − yn||vn − wn|
−H∗(t, yn, wn) ≥ (vn − wn) · ξ

|xn − yn||vn − wn|
−H∗(t, yn, ξ)(3.8)

for all ξ ∈ dom(H∗(t, yn, ·)). By (3.7)–(3.8) and hypothesis (H4) one obtains

ω1[R, 2R + 1] ≥ ω1[R, |xn − yn| + 1]

≥ pn · (vn − wn) −H∗(t, xn, vn) + H∗(t, yn, wn) ≥ pn · (vn − wn) − 2NR,(3.9)

which is a contradiction, for the right-hand side tends to +∞ while the left-hand side
is bounded.

In order to prove (3.2) one has to exploit the same arguments with suitable
adjustments: more precisely, one has to replace the sequences xn, yn with sequences
tn, sn ∈ [0, T ], and the vn and wn must belong to F (tn, x) and F (sn, x), respectively.
Moreover, the quantities |xn − yn| have to be replaced with ω2[R, |tn − sn|]. In
particular, one has

lim
n→∞

vn − wn

ω2[R, |tn − sn|]
= +∞

instead of (3.6). Setting

pn
.
=

vn − wn

|vn − wn|ω2[R, |tn − sn|]

one can conclude by arguing as in the first part.
Proof of Theorem 3.3. If ω1 and K do not depend on R, in order to prove global

Lipschitz continuity let us argue as in the previous proof until estimate (3.9), except
for the fact that now (xn) and (yn) lie in Rn. In particular, the last inequality of (3.9)
is no longer valid. Yet, it is not restrictive to assume that |xn − yn| ≤ 1

2K . Hence, in
view of Proposition 3.4—where we take ω1 and K independent of R—one has

|H∗(t, yn, wn) −H∗(t, xn, vn)| ≤ ω1

[
1 + K

2K

]
+ K|vn − wn|.

Hence

ω1

[
1

2K
+ 1

]
≥ |vn − wn|

|xn − yn|
− ω1

[
1 + K

2K

]
−K|vn − wn|.(3.10)
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Now, if |vn −wn| is bounded, we contradict (3.6). If, on the contrary, (a subsequence
of) |vn − wn| tends to infinity, by the previous estimate we have

ω1

[
1

2K
+ 1

]
≥ −ω1

[
1 + K

2K

]
+ K|vn − wn|,(3.11)

which is a contradiction, in that the left-hand side is bounded while the right-hand
side diverges.

Proof of Proposition 3.4. Let pv be an element of argmaxp{p · v − H(t, x, p)}.
In view of hypothesis (H5) we can choose pv such that the inequality |pv| ≤ KR is
verified. Hence,

H∗(t, x, v) −H∗(t, y, w) ≤ pvv −H(t, x, pv) − pvw + H(t, y, pv)

≤ KR|v − w| + ω1[R, (1 + KR)|x− y|].

In an analogous way one obtains the same estimate for H∗(t, y, w) − H∗(t, x, v), so
the first inequality is proved. The proof of the estimate in the t-variable is akin, so
we omit it.

Lemma 3.5. Let r > 0 and let ϕ : Rn → R ∪ {+∞} be a convex, lower semi-
continuous, proper map such that dom(ϕ) is compact. Let v ∈ Rn\dom(ϕ) and let us
consider the set-valued map η : dom(ϕ) → P(dom(ϕ)) defined by

η(w)
.
= argmax

{
(v − w) · ξ
r|v − w| − ϕ(ξ), ξ ∈ dom(ϕ)

}
.

Then η has a fixed point, that is, there exists w̄ ∈ dom(ϕ) such that w̄ ∈ η(w̄).
Proof. The map η has compact convex values. Moreover, since ϕ is continuous

on its domain, η is upper semicontinuous (and is defined on a compact convex subset
of Rn). Then the lemma follows from Kakutani’s fixed point theorem (see, e.g.,
[AC]).

4. Proofs of Theorems 2.1 and 2.2. To prove Theorems 2.1 and 2.2 we
are going to exploit the parameterization result for convex multifunctions proved in
[O] (see also [Lo]). This result involves measurability in t, which will be useful in
section 6 in order to address the case with t-measurable Hamiltonians. In particular
t-measurable moduli will be utilized. We call t-measurable modulus every map w :
[0, T ] × [0, ∗∞[→ [0, ∗∞[ such that for every r ∈ [0, ∗∞[ the map t 	→ w[t, r] is
measurable and for every t ∈ [0, 1] the map r 	→ w[t, r] is a modulus. Similarly, a local
t-measurable modulus will be a map w : [0, ∗∞[×[0, T ] × [0, ∗∞[→ [0, ∗∞[, increasing
in the first variable and such that for every R ∈ [0, ∗∞[ the map (t, r) 	→ w[R, t, r] is
a t-measurable modulus.

Let us recall that a multifunction M : [0, T ] → Rn is called measurable if for every
open subset V ⊂ Rn the preimage

M−1(V )
.
= {t ∈ [0, T ] : M(t) ∩ V �= ∅}

is a measurable subset of [0, T ]).
Let us consider a multivalued map F : [0, T ] × Rn → Rn verifying the following

hypotheses.
Hypotheses (HF ):
(a) for every (t, x) ∈ [0, T ] × Rn, F (t, x) is a nonempty, compact, convex subset

of Rn;
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(b) for every x ∈ Rn the multifunction t 	→ F (·, x) is measurable;
(c) there exists a t-measurable local modulus w such that for every R > 0 and for

almost every t ∈ [0, T ] one has

δ(F (t, x), F (t, y)) ≤ w[R, t, |x− y|](4.1)

for all x, y ∈ BR.
Theorem 4.1 (see [O], Thm. 1). Let F verify hypotheses (HF ), and let us set

M(t, x)
.
= max {1, |v| : v ∈ F (t, x)}.

Then there exists a function f : [0, T ] × Rn × B such that
(i) F (t, x) = f(t, x,B) for all x ∈ Rnand for a.e. t ∈ [0, T ];
(ii) f(·, x, u) is measurable for every (x, u) ∈ Rn × B;
(iii) there exists N ≥ 0 such that for all R > 0 one has

|f(t, x, u) − f(t, y, v)| ≤ N(w[R, t, |x− y|] + M(t, x)|u− v|)

for all x, y ∈ BR and for a.e. t ∈ [0, T ].
Moreover, if F and w are continuous, then f is continuous as well.
Remark 4.1. Actually, this theorem was proved (in [O]) under a hypothesis of

uniform continuity, which means that in fact the map w is a t-measurable modulus.
However, it is easy to verify (by direct inspection of the original proof) that the local
statement of the present version can be proved by just replacing moduli with local
moduli.

Proofs of Theorems 2.1 and 2.2. By Theorem 3.2 the multifunction F (t, x) =
dom(H∗(t, x, ·)) is continuous and agrees with the hypotheses of Theorem 4.1, with
w[R, t, r]

.
= MR · r. Hence there exists a vector field f which verifies (A2) with A = B

and such that F (t, x) = f(t, x,B) for all x and a.e. t ∈ [0, T ].
Setting

l(t, x, a)
.
= H∗(t, x, f(t, x, a)) ∀(t, x, a) ∈ [0, T ] × Rn × B,

we get (2.1). Moreover, if hypothesis (H5) is in force, Proposition 3.4 and Theorem 4.1
imply the last part of the thesis. Notice that, since A = B is compact, (A1) is verified
as well. Finally, let us prove that f satisfies the linear growth condition (A3). Indeed
(H3) implies

|H(t, x, p)| ≤ C(1 + |x|)|p| + |H(t, x, 0)|(4.2)

for every (t, x, p) ∈ [0, T ]×Rn ×Rn. For any (t, x, a) ∈ [0, T ]×Rn ×B and λ > 0 let
us take p = λf(t, x, a), thus obtaining

λf2(t, x, a) − l(t, x, a) ≤ |H(t, x, λf(t, x, a))|(4.3)

≤ λC(1 + |x|)|f(t, x, a)| + |H(t, x, 0)|.

If f(t, x, a) = 0, we are done. Otherwise, by dividing both members in (4.3) by
λ|f(t, x, a)| and letting λ go to +∞ one obtains

|f(t, x, a)| ≤ C(1 + |x|).

In view of Theorem 3.3, Theorem 2.2 can be proved in a similar way.
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5. Some applications. Let us present two simple instances on how the repre-
sentation results proved in the previous sections can be exploited both to sharpen and
to interpret some facts concerning (1.1).

5.1. Regularity of the solutions of (1.1)–(1.2). The first issue concerns the
regularity of the solutions to (1.1)–(1.2), which, in view of the representation results
in section 2 (and of the uniqueness of the solution), is nothing but the regularity of
the corresponding value function.

Let us begin by briefly recalling some well-known facts concerning the value func-
tion of an optimal control problem. Besides (A1)–(A3), let us assume the following
hypothesis on the final cost g:

(A4) The map g is continuous, that is, it verifies

|g(x) − g(y)| ≤ νg[R, |x− y|]

for all x, y ∈ Rn and a suitable local modulus νg.
Let us consider the value function V = V (t, x) defined in (1.4) and the connected

Hamiltonian

H(t, x, p)
.
= sup

a∈A
{p · f(t, x, a) − l(t, x, a)}.(5.1)

Theorem 5.1. Let us assume hypotheses (A1)–(A4). Then the map u(t, x)
.
=

V (T − t, x) is continuous on [0, T ]×Rn, and, for any R > 0, there exists a coefficient
LR ≥ 0 such that

|u(t, x) − u(t, y)| ≤ LR (|x− y| + ν[R, |x− y|] + νg[LRR,LR|x− y|]),
|u(t, x) − u(s, x)| ≤ LR (|t− s| + ν[R,LR|s− t|] + νg[LRR,LR|t− s|])

for all (t, x), (t, y), (s, x) ∈ [0, T ] × BR. Moreover, u is the unique viscosity solution
of the Cauchy problem (1.1)–(1.2).

We omit the proof of the regularity of V (and hence of u), which is standard and
based essentially on Gronwall’s lemma. For the uniqueness result see, e.g., [CL, Thm.
VI.I]

As a corollary of Theorems 2.1 and 5.1 we obtain the following regularity result.
Theorem 5.2. Assume hypotheses (H1)–(H5) and let the initial datum g satisfy

(A4). Then, for any R > 0 there exists a coefficient CR ≥ 0 such that the solution
u(t, x) of (1.1)–(1.2) verifies

|u(t, x) − u(t, y)| ≤ CR

(
|x− y| + ω1[R, |x− y|] + νg[CRR,CR|x− y|]

)
,

|u(t, x) − u(s, x)| ≤ CR (|t− s| + ω1[R,CR|s− t|] + νg[CRR,CR|t− s|])

for all (t, x), (t, y) ∈ [0, T ] × BR.
Example. Roughly speaking, this theorem shows that the solution preserves the

(x-)continuity of both the Hamiltonian H and the datum g. For instance, if ω1(η)
.
=

|η|α, α ≤ 1, and g is β-Holder continuous, then the solution u turns out to be γ-Holder
continuous, with γ = min {α, β}. As an example, consider the Cauchy problem in
[0, T ] × R:

ut + H̃(x, ux) = 0, u(0, x) = 0,(5.2)

where

H̃(x, p) = |x · p| − |x| 12 .
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It is straightforward to check that the map

v(t, x) = 2|x| 12 (1 − e−
t
2 )(5.3)

is a viscosity solution of (5.2), and well-known uniqueness results imply that no other
solutions do exist. Since

|H(x, p) −H(y, p)| ≤ |x− y|(1 + |p|) + [|x− y|(1 + |p|)] 1
2

and g = 0, Theorem 5.2 establishes that for any R > 0 and for all (t, x), (t, y) ∈
[0, T ] × BR the solution of 5.2 satisfies

|v(t, x) − v(y, t)| ≤ CR(|x− y| + |x− y| 12 )

for a suitable positive number CR. On the other hand, by the explicit expression (5.3)
we know that this indeed is the case, with CR = 2, for every R.

Let us note that neither the available results based on direct PDE methods nor
the application of the representation provided in [Is2] would yield such sharpness in
the regularity estimates. Indeed, on one hand, PDE arguments are mainly concerned
with local Lipschitz continuity (see, e.g., [Ba], [CL], [Le]). On the other hand, the
results in [Is2], when applied to the present example, give at most2 1

4 -Holder regularity
for the solution (see Remark 1.1).

Example. An even more elementary but significative example is provided by the
transport equation

ut + ux · f(x) − l(x) = 0, u(0, x) = g(x),

where we assume that f(x) and l(x) verify (A2)–(A3) and g is continuous. Denoting
the solution at time s of the Cauchy problem

ẏ = f(y), y(0) = x,

by y(x, s) one can straightforwardly check that

u(t, x) = g(y(x,−t)) +

∫ t

0

l(y(x,−s))ds

is the unique viscosity solution of this problem. Moreover, in view of Remark 2.2, the
involved Hamiltonian verifies hypotheses (H1)–(H5), with ω1[R, s] = ERs + ν[R, s].
So, comparing the actual regularity of u with the one which can be deduced by
Theorem 5.2, we see that the latter is as sharp as possible.

Remark 5.1. As observed in the introduction, since Theorems 2.1 and 2.2 concern
just the Hamiltonian H, results for different boundary value problems could be ob-
tained as well. Similarly, the case where the datum g is no longer continuous, possibly
equal to +∞—which includes optimal control problems with endpoint constraints—
also could be treated (by exploiting the notion of semicontinuous solution; see, e.g.,
[BJ91] and [Fr]).

2We use the expression “at most” because the fact remains that in general no uniqueness of
trajectories—for a given control—would be guaranteed.
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5.2. Front propagation. A second issue where a representation result can be
applied concerns the phenomenon of front propagation. Let us begin with a definition.
Let G be a class of real continuous functions on Rn.

Definition 5.3. We say that the pair (H,G) verifies the front propagation prop-
erty if

(i) for every g belonging to G the Cauchy problem

ut + H(t, x, ux) = 0 in ]0, T [ × Rn,

u(0, x) = g(x) ∀x ∈ Rn

has a unique (viscosity) solution, say ug;
(ii) if k ∈ R and g, g̃ ∈ G are such that

Λk
g(0)

.
= {x ∈ Rn : g(x) < k} = {x ∈ Rn : g̃(x) < k} .

= Λk
g̃(0),

Γk
g(0)

.
= {x ∈ Rn : g(x) = k} = {x ∈ Rn : g̃(x) = k} .

= Γk
g̃(0),

then

Λk
g(t)

.
= {x ∈ Rn : ug(t, x) < k} = {x ∈ Rn : ug̃(t, x) < k} .

= Λk
g̃(t),

Γk
g(t)

.
= {x ∈ Rn : ug(t, x) = k} = {x ∈ Rn : ug̃(t, x) = k} .

= Γk
g̃(t)

for every t ∈ [0, T ].
In other words, this condition states that the propagations of the k-level and the

k-sublevel sets depend only on the k-sublevel set and the k-level set of the initial data.
It is straightforward to check that property (ii) holds true for all k as soon as it is
valid for one particular value of k. As is well known, a crucial role is played by the
following homogeneity assumption:

(H-hom) For each λ ≥ 0 one has

H(t, x, λp) = λH(t, x, p)(5.4)

for all (t, x, p) ∈ [0, T ] × Rn × Rn.
In fact, if the Hamiltonian H verifies hypotheses (H1)–(H3) and (H-hom) and

G is the set of uniformly continuous functions, then the pair (H,G) has the front
propagation property (see, e.g., [BSS]). Thanks to the representation results of the
previous sections—which can be applied here, for (H-hom) implies (H4) and (H5)—
we can now give a simple control-theoretical explanation to this phenomenon, with G
equal to the set of (not necessarily uniformly) continuous maps.

Remark 5.2. A control-theoretical interpretation of the front propagation phe-
nomenon is nothing new: indeed it was originally proposed in [ES]. However, though
the Hamiltonian is allowed to be nonconvex, the regularity assumptions therein as-
sumed are much stronger than those considered here. In particular, they include the
global Lipschitz continuity of H in (x, p), which in a representation like (1.3) means
that f has to be bounded; see, for instance, assumption (1.1) in [So] in the context of
front propagation along normal directions.

In section 6 we shall show that the front propagation property is still valid for
Hamiltonians measurable in the variable t.

Theorem 5.4. Let us assume (H1)–(H3), and let G .
= C(Rn). Then the following

are equivalent:
(i) H verifies (H-hom);
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(ii) there exists a representation (A, f, l) of H satisfying (A1)–(A3), with l equal
to zero;

(iii) for every (t, x) ∈ [0, T ] × Rn, the conjugate map v 	→ H∗(t, x, v) is constant
equal to zero on its domain.
Moreover, they imply the following:

(iv) for all R > 0 the local modulus ω1[R, ·] is in fact a linear mapping;
(v) the pair (H, G) verifies the front propagation property.
Proof. Since H is convex, the equivalence of (i) and (iii) is straightforward.

Moreover, let us observe that (iii) trivially implies hypotheses (H4) and (H5), so
Theorem 2.1 applies. Hence (ii) follows from (iii), since l was defined by l(t, x, a) =
H∗(t, x, f(t, x, a)). The fact that (ii) implies (iii) and (iv) is straightforward as well.

Let us prove that (ii) implies (v). Assume by contradiction that there exist initial
data g and g̃, both belonging to G, and a point (t, x) ∈]0, T ] × Rn such that Λ0

g(0) =
Λ0
g̃(0), Γ0

g(0) = Γ0
g̃(0), while the corresponding solutions of (5.4) verify ug(t, x) = 0,

ug̃(t, x) �= 0. Let us recall that ug(t, x) = Vg(T − t, x) and ug̃(t, x) = Vg̃(T − t, x),
where the value functions Vg and Vg̃ are defined as follows:

Vg(T − t, x)
.
= inf g(y(T )), ẏ(s) = f(s, y(s), a(s)), y(T − t) = x,

Vg̃(T − t, x)
.
= inf g̃(y(T )), ẏ(s) = f(s, y(s), a(s)), y(T − t) = x.

Let â be an optimal control for the datum g, which means

Vg(T − t, x) = g(ŷ(T )),

˙̂y(s) = f(s, ŷ(s), a(s)), y(T − t) = x.

(This control exists, for f(s, y,B) = domH∗(t, x, ·) is convex for every (s, y). How-
ever this is not crucial, for one could as well consider an ε-optimal control.) Now
0 = Vg(T − t, x) = g(ŷ(T )), which implies g̃(ŷ(T )) = 0. Hence it cannot happen
that Vg̃(T − t, x) = ug̃(t, x) > 0, for one would get g̃(ŷ(T )) = 0 < Vg̃(T − t, x).
In a similar way, the case when ug̃(t, x) < 0 produces a contradiction. Finally,
with the same arguments one proves that it cannot happen that ug(t, x) > 0 while
ug̃(t, x) < 0.

6. t-measurable Hamiltonians. The results presented in the previous sections
may be extended, substantially in their full strength, to the case where the Hamil-
tonian H is measurable in the variable t. The aim of this section is to present the
corresponding statements and to point out some needed changes in the assumptions
and in the proofs.

6.1. The value function and the Bellman equation. Aiming toward repre-
sentations of t-measurable Hamiltonians, we have to consider optimal control problems
where the data f and l are measurable in t. Accordingly, let us replace assumptions
(A1)–(A3) with the following ones:

(A1′) There exists a constant Q such that

|f(t, 0, a)|, |l(t, 0, a)| ≤ Q

for almost all t ∈ [0, T ] and a ∈ A.
(A2′) The maps f and l are continuous in (x, a) from [0, T ]×Rn ×A into Rn and

R, respectively, and verify conditions

|f(t, x, a) − f(t, y, a)| ≤ ER|x− y|,(6.1)

|l(t, x, a) − l(t, y, a)| ≤ ν[R, |x− y|](6.2)
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for all (t, x, a), (t, y, a)∈ [0, T ] × BR ×A, where ν is a suitable local modulus.
(A3′) There is C > 0 such that

f(t, x, a) ≤ C(1 + |x|)

for all (x, a) ∈ [0, T ] × Rn ×A and almost every t ∈ [0, T ].
Proposition 6.1. The regularity results stated in Theorem 5.1 are still valid

under the weaker hypotheses (A1′), (A2′), (A3′), and (A4).
The proof of this proposition does not present substantial new difficulties with

respect to the case where the data are continuous.
A uniqueness result analogous to the one stated in Theorem 5.1 holds true for

t-measurable Hamiltonians as well, but some care is needed. To begin with, we cannot
exploit the classical notion of viscosity solution, for the Hamiltonian H in (5.1) is now
merely measurable in the t-variable. A suitable notion of solution for this case was
introduced by Ishii in [Is2]. Successively, Lions and Perthame [LP87] provided three
equivalent versions of this notion (see also [BJ87]). Recently (see [BR]) density results
have been proved for this concept of solution. For the sake of self-consistency, let us
recall the notion of subsolution, in one of the versions provided in [LP87].

Definition 6.2. A continuous map u : [0, T ] × Rn is a viscosity subsolution
of (1.1) at (t0, x0) ∈ [0, T ] × Rn if for every C1 map φ defined in a neighborhood of
(t0, x0) and b ∈ L1(0, T ) such that (t0, x0) is a local maximum for

u(t, x) +

∫ t

0

b(s)ds− φ(x)

one has

lim
δ↓0+

ess inf
|t−t0|<δ

inf {H(t, x, s, p) − b(t) : |x− x0| ≤ δ, |p−∇φ(x0)| ≤ δ, |s− u(t0, x0)| ≤ δ}

≤ 0.

The definition of viscosity supersolution is perfectly symmetric, and a map is a
viscosity solution if it is both a subsolution and a supersolution.

Again, it is not difficult to prove that the map u(t, x)
.
= V (T − t, x) is a viscosity

solution of the Cauchy problem (1.1)–(1.2).

6.2. A representation theorem for t-measurable Hamiltonians. In order
to state a representation result for t-measurable Hamiltonians we shall assume suitable
hypotheses. It turns out that we have to make only the obvious change due to the
lack of continuity in t. Precisely we shall consider those hypotheses, which we label
(H1′)–(H5′), respectively, that are obtained from (H1)–(H5) by replacing [0, T ] with
any full-measure subset. (Of course, condition (1.8), which would imply continuity in
t, is no longer assumed.)

In the new framework, the representation Theorems 2.1 and 2.2 assume the fol-
lowing forms, respectively.

Theorem 6.3. Let us consider a Hamiltonian H verifying hypotheses (H1′)–
(H4′). Then there exist a dynamics f = f(t, x, a) satisfying (A1′)–(A3′) and a La-
grangian l = l(t, x, a) (continuous in (x, a) for almost every t ∈ [0, T ]), with the
control set A coinciding with the unit ball B, such that

H(t, x, p) = sup
a∈B

{p · f(t, x, a) − l(t, x, a)}(6.3)
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for almost all t ∈ [0, T ] and for all (x, p) ∈ Rn×Rn. Furthermore, if hypothesis (H5′)
is in force as well, then l verifies (A2′), with ν[R, s]

.
= ω1[R, (1 + KR)s] + DRs, for

suitable coefficients DR.
Theorem 6.4. Let H verify (H1′)–(H5′), with ω1 being a modulus (i.e., inde-

pendent of R) and the numbers KR being equal to a constant K for all R. Then there
exist a dynamics f and a Lagrangian l such that

H(t, x, p) = sup
a∈B

{p · f(t, x, a) − l(t, x, a)}(6.4)

holds true for almost all t ∈ [0, T ] and for all (x, p) ∈ Rn × Rn, conditions (A1′)–
(A3′) are satisfied, and, moreover, the control set A coincides with the unit ball B.
Furthermore, ER turns out to be independent of R, and ν(s) = ω1[(1 +K)s+Ds] for
a suitable D ≥ 0.

Proofs of Theorems 6.3 and 6.4. In view of Theorem 4.1, once we have proved
that for every x the map t 	→ F (t, x) = domH∗(t, x, ·) is measurable (see definition
in section 5) we are done. Indeed the parts of Theorems 3.2 and 3.3 concerning the
variable x remain unchanged.

To prove that the map t 	→ F (t, x) is measurable we need some sharper result from
set-valued analysis. Let us fix x ∈ Rn. Then (see, e.g., [RW]) by the measurability of
t 	→ H(t, x, p), the measurability of t 	→ H∗(t, x, v) follows, for each v ∈ Rn.

Moreover, the multivalued map

t 	→ epi[H∗(t, x, ·)] .
= {(u, r) ∈ Rn × R : r ≥ H∗(t, x, u)}

turns out to have a Castaing representation (un, rn) (see, e.g., [RW]).
Hence (un) is a Castaing representation of the map t 	→ F (t, x), which therefore

turns out to be measurable (see, e.g., [RW]).

6.3. Regularity of solutions for t-measurable Hamiltonians. By the pre-
vious considerations it turns out that Theorem 5.2 on the regularity of solutions is still
valid for t-measurable Hamiltonians verifying hypotheses (H1′)–(H5′) (plus some ex-
tra condition such that the uniqueness of the solution is guaranteed). Let us point out
that the latter can be achieved either according to [Is1] (e.g., by imposing hypothesis
(A6) therein) or by following the approach in [BR], which relies on the approximability
of H by continuous Hamiltonians.

6.4. Front propagation for t-measurable Hamiltonians. Thanks to the
representation provided by Theorem 6.3, the front propagation phenomenon can be
studied for t-measurable Hamiltonians as well, as soon as the latter verify (H1′)–
(H3′). For this purpose let us consider the following weakened version of assumption
(H-hom):

(H′-hom) For each λ ≥ 0 one has

H(t, x, λp) = λH(t, x, p)(6.5)

for all (t, x, p) ∈ [0, T ]\N × Rn × Rn where N has measure zero.
With an unchanged proof with respect to Theorem 5.4, one obtains the following

result.
Theorem 6.5. Let us assume (H1′)–(H3′), and let G .

= C(Rn). Then the follow-
ing are equivalent:

(i) H verifies (H′-hom);
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(ii) there exists a representation (f, l) of H satisfying (A1′)–(A3′), with l equal
to zero in [0, T ]\N × Rn × B, for a suitable subset N of measure zero;

(iii) there is a zero measure subset N such that, for every (t, x) ∈ [0, T ]\N ×Rn,
the conjugate map v 	→ H∗(t, x, v) is constant equal to zero on its domain.
Moreover, each of them implies the following two conditions:

(iv) for all R > 0 the modulus ω1[R, ·] is in fact a linear mapping;
(v) the pair (H, G) verifies the front propagation property.

Acknowledgment. The author is indebted to Michel Valadier, who suggested
an argument related to the measurability issue in Theorems 6.3 and 6.4.
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Abstract. Controllability and kinematic modeling notions are investigated for a class of me-
chanical control systems. First, low-order controllability results are given for the class of mechanical
control systems. Second, a precise connection is made between those mechanical systems which are
dynamic (i.e., have forces as inputs) and those which are kinematic (i.e., have velocities as inputs).
Interestingly and surprisingly, these two subjects are characterized and linked by a certain intrinsic
vector-valued quadratic form that can be associated to an affine connection control system.
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1. Introduction. The determination of useful necessary and sufficient condi-
tions for local controllability of nonlinear systems remains an open problem, although
significant progress has been made [2, 4, 19, 20, 34, 36]. In this paper, we investigate
local controllability for a class of nonlinear systems with a rich geometric structure,
namely, affine connection control systems. For these systems, we provide first-order
(in the sense that the conditions involve first derivatives of the system data) local
controllability conditions. The results use a certain intrinsic vector-valued quadratic
form. The use of vector-valued quadratic forms in control theory has been noticed in
the context of optimal control (which has, of course, a relationship with controllabil-
ity) by Agrachev [3], and they have been utilized explicitly for providing conditions
for local controllability by Basto-Gonçalves [6] and Hirschorn and Lewis [21]. Other
uses of vector-valued quadratic forms in control are outlined in [10]. The controllabil-
ity conditions we provide in section 4 bear a strong resemblance to the more general
conditions of Hirschorn and Lewis [21], but we are able to provide more detail in this
case because of the additional structure of the class of systems under consideration.

Affine connection control systems are a slight generalization of a class of me-
chanical control systems, namely, those which are Lagrangian with kinetic energy
Lagrangian, and possibly with nonholonomic constraints. An initial systematic inves-
tigation of the local controllability properties of this class of systems was undertaken
by Lewis and Murray [27].

The conditions for local accessibility in this work are characterized geometrically
by the same authors [28] by utilizing the characterization of the so-called symmetric
product provided by Lewis [24]. However, the sufficient conditions for local con-
trollability provided by Lewis and Murray, following Sussmann [36], are not entirely
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satisfactory. One of the reasons for this is that these conditions are not feedback-
invariant. The consequences of the lack of feedback invariance can be seen even in
very simple examples, where a system can fail the sufficient condition test but still
be controllable. This points out the need to better understand local controllability,
and one way to do this is to obtain conditions which are not dependent on a choice
of basis for the input distribution. It is this that we do in this paper, at least for
systems whose controllability can be determined by brackets of low order.

A second objective of this paper is to characterize affine connection control sys-
tems in terms of equivalent lower-dimensional kinematic (or driftless) systems. The
interest in low-complexity representations of affine connection control systems can
be related to numerous previous efforts, including work on hybrid models for motion
control systems [9], motion description languages [30], consistent control abstractions
[32], hierarchical steering algorithms [31], and maneuver automata [18]. The key
advantage of a low-complexity or reduced-order representation is the subsequent sim-
plification of various control problems, including planning, stabilization, and optimal
control.

In section 5, we introduce and characterize the notion of kinematic reductions as a
reduced-order modeling technique adapted to affine connection control systems. This
novel concept extends and unifies previous results by Lewis [25] and Bullo and Lynch
[13]; see also the motivating work [5, 29, 15]. A kinematic model for an affine con-
nection control system is one such that every controlled trajectory for the kinematic
model can be realized as a trajectory, with a possible reparameterization, of the full
affine connection control system with some appropriate control. We also introduce
and characterize the notion of maximally reducible affine connection control systems.
For such systems, every trajectory of the affine connection control system, starting
from initial velocities in the input distribution, can be implemented as a controlled
trajectory of a maximal kinematic reduction. Some open problems concerning in-
verse kinematics and sufficient conditions for controllability are presented by Cortés,
Mart́ınez, and Bullo [16].

As a third contribution of this paper, the existence of, and the controllability
properties of, kinematic reductions are related to the low-order controllability prop-
erties of the corresponding affine connection control system. Interestingly, all these
concepts are characterized in terms of the vector-valued quadratic form mentioned
above. Insightful relationships are established and presented in Figure 5.4. We illus-
trate our results with some example systems. For instance, it appears that numerous
(but not all) interesting mechanical devices satisfying the low-order sufficient con-
trollability condition are also kinematically controllable. This is surprising because
the concept of kinematic controllability is not a priori related to the conditions for
low-order controllability. We refer to [12] for a catalog of examples.

One of the byproducts of the intrinsic formulation of the controllability and kine-
matic reduction results we give is that they provide a fairly complete characterization
of what can be done. The incompleteness of the characterizations we give results from
a possible degeneracy of the vector-valued quadratic forms. Here, one will generally
have to go to higher-order conditions for controllability. Sometimes it is possible to
give results using quadratic forms, even in degenerate cases, and this is being explored
in a paper by Tyner and Lewis [39], currently in preparation.

Let us briefly describe the layout of the paper. We begin in section 2 with a general
discussion of affine connection control systems, giving clear statements of the results
of Lewis and Murray [27]. Background on vector-valued quadratic forms is presented
in section 3, along with the construction of a vector-valued quadratic form that can
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be associated with an affine connection control system. Our controllability results are
motivated, stated, and proved in section 4. Similarly, our kinematic reductions are
discussed in section 5. In this section are also presented a couple of physical examples,
and a discussion of the relationships between low-order controllability and kinematic
reductions.

2. Affine connection control systems. The basic differential geometric nota-
tion we use is that of [1]. When it is convenient to do so, we shall use the summation
convention where summation over repeated indices is implied. For a vector bundle
π : E → Q, 0q will denote the zero vector in the fiber Eq. Objects will be assumed
real analytic (which we simply call “analytic”) unless otherwise stated. We denote by
Γ(E) the set of analytic sections of the vector bundle π : E → Q. Thus, in particular,
Γ(TQ) is the set of analytic vector fields on a manifold Q. The set of analytic func-
tions on a manifold Q we denote by F(Q). We will assume the reader is familiar with
affine differential geometry to the extent that it is used in [27]. An excellent reference
is [22]. Affine connection control systems represent a class of mechanical control sys-
tems. We shall not devote any space to the physics involved in this representation,
but refer to [27] for a few words along these lines. These issues are addressed also in
the books [8, 11].

We begin with the essential definitions for affine connection control systems and
provide definitions for what Lewis and Murray call “configuration controllability.”
Then we give the results of those authors which provide a launching point for what
we do in the present paper. We provide fairly strong statements of the results of Lewis
and Murray—stronger in fact than the original statements. All that we say, however,
is readily implicit in the calculations of their original work.

2.1. Basic definitions. In this paper, an affine connection control system is a
5-tuple Σ = (Q,∇,D,Y , U), where

1. Q is an analytic, finite-dimensional, manifold,
2. ∇ is an analytic affine connection on Q,
3. D is a constant-rank analytic distribution on Q having the property that ∇

restricts to D (i.e., ∇XY ∈ Γ(D) for all Y ∈ Γ(D) and for all X ∈ Γ(TQ)),
4. Y = {Y1, . . . , Ym} is a collection of analytic vector fields on Q taking values

in D, and
5. U ⊂ Rm.

The distribution D will not concern us much here, and we allow it in order to
correctly model systems with nonholonomic constraints [26]. The essential geometry
of our results is captured by thinking of D = TQ. We will frequently be interested only
in 4-tuples (Q,∇,D,Y ) satisfying the above conditions. Let us therefore agree to call
this an affine connection precontrol system. This notion will be useful in discussions
of properties of affine connection control systems that are independent of the control
set U .

Associated with an affine connection control system Σ = (Q,∇,D,Y , U) is the
set of second-order control equations

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(γ(t))(2.1)

on Q. Thus a controlled trajectory for Σ is taken to be a pair (γ, u), where
1. γ : I → Q and u : I → U are both defined on the same interval I ⊂ R,
2. u is locally integrable,
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3. γ′(t) ∈ Dγ(t) for a.e. t ∈ I, and
4. (γ, u) together satisfy (2.1).

We denote by conv(U) and aff(U) the convex hull and affine hull, respectively, of
U ⊂ Rm. Thus conv(U) is the smallest convex set in Rm containing U , and aff(U)
is the smallest affine subspace (i.e., shifted subspace) containing U . The control set
U is proper (resp., almost proper) if 0 ∈ int(conv(U)) (resp., if aff(U) = Rm and
0 ∈ conv(U)). (One may verify that for a control-affine system the property of the
control set being almost proper is exactly that which ensures that the Lie algebra rank
condition is equivalent to the reachable set having nonempty interior.) We denote by
Y the input distribution, so that

Yq = spanR{Y1(q), . . . , Ym(q)}.

More generally if V ⊂ Γ(TQ), then we denote by V the distribution generated by
the vector fields V : Vq = spanR{X(q)| X ∈ V }. We also denote by Γ(V) the set of
analytic vector fields taking values in V . We make no a priori assumptions on the
constancy of the rank of any of the distributions we encounter, including the input
distribution Y.

Remark 1. Our allowing a distribution to have variable rank has consequences
for the choice of generators. Let us make some comments on this. Consider a family
Y of analytic vector fields, letting Y be the distribution generated as above. Then
Γ(Y) is a submodule of Γ(TQ). If Y has constant rank, then it is true that the vector
fields Y generate this submodule. This is essentially due to a theorem of Swan [38].
However, if the rank of Y is not constant (more precisely, locally constant), then it
can be the case that the vector fields Y are not generators for Γ(Y). However, we
shall always require that our families of vector fields have the property that they are
generators for the submodule of sections of the induced distribution. Locally, and in
the analytic setting, this can be done without loss of generality, due to the Noetherian
property of the ring of analytic functions.

Let us clearly state our controllability definitions. First we provide notation for
the reachable sets. For T > 0 and q0 ∈ Q, let

RΣ
TQ(q0, T ) = {γ′(T )| (γ, u) is a controlled trajectory on [0, T ] with γ′(0) = 0q0}

and let RΣ
TQ(q0,≤ T ) =

⋃
0≤t≤T RΣ

TQ(q0, t). These are therefore reachable states in
TQ starting from zero initial velocity at the configuration q0. We also consider the
reachable configurations, which we denote by

RΣ
Q(q0, T ) = τQ(RΣ

TQ(q0, T )), RΣ
Q(q0,≤ T ) = τQ(RΣ

TQ(q0,≤ T )),

where τQ : TQ → Q is the tangent bundle projection. Note that since D is invariant
under ∇ and since the input vector fields are D-valued, solutions of (2.1) with initial
conditions in D remain in D. In the following definition, intD(·) means the interior
in the relative topology on D ⊂ TQ.

Definition 2.1. Let Σ = (Q,∇,D,Y , U) be an affine connection control system
and let q0 ∈ Q.

(i) (Q,∇,D,Y ) is accessible from q0 if, for every almost proper control set,
there exists T > 0 such that intD(RΣ

TQ(q0,≤ t)) �= ∅ for t ∈ (0, T ].
(ii) (Q,∇,D,Y ) is configuration accessible from q0 if, for every almost proper

control set, there exists T > 0 such that int(RΣ
Q(q0,≤ t)) �= ∅ for t ∈ (0, T ].

(iii) Σ is small-time locally controllable (STLC) from q0 if there exists T > 0
such that 0q0 ∈ intD(RΣ

TQ(q0,≤ t)) �= ∅ for t ∈ (0, T ].
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(a) (Q,∇,D,Y ) is properly small-time locally controllable (properly
STLC) from q0 if Σ is STLC from q0 for every proper control set U .

(b) (Q,∇,D,Y ) is small-time locally uncontrollable (STLUC) from q0
if Σ is not STLC from q0 for any compact control set U .

(iv) Σ is small-time locally configuration controllable (STLCC) from q0 if there
exists T > 0 such that 0q0 ∈ int(RΣ

Q(q0,≤ t)) �= ∅ for t ∈ (0, T ].
(a) (Q,∇,D,Y ) is properly small-time locally configuration control-

lable (properly STLCC) from q0 if Σ is STLCC from q0 for every proper
control set U .

(b) (Q,∇,D,Y ) is small-time locally configuration uncontrollable
(STLCUC) from q0 if Σ is not STLCC from q0 for any compact control
set U .

Remark 2.

1. Note that we are careful in these definitions to distinguish between those
notions of controllability that depend only on the geometry of the affine connection
precontrol system (Q,∇,D,Y ) and those that also depend on the character of the
control set U . Hirschorn and Lewis [21] illustrate various situations where the exact
nature of the control set must be accounted for in the controllability analysis. For
this reason we try to be careful about the exact manner in which the control set is
considered.

2. A consequence of the classical theory of accessibility [37] is that for an affine
connection precontrol system (Q,∇,D,Y ), the reachable sets for (Q,∇,D,Y , U) have
nonempty interior for all almost proper control sets if and only if the reachable sets
have nonempty interior for some almost proper control set.

3. It is clear that STLC implies STLCC and that STLCUC implies STLUC.
The converse implications are generally false. What’s more, even the relationships
between STLCC and STLC on the reachable set are not completely understood at
this time.

2.2. Review of existing results. Let us briefly review the results of [27]. These
results rely on the symmetric product defined by the affine connection ∇ by 〈X : Y 〉 =
∇XY + ∇XY . First let us provide a description of the set of points accessible from
the zero vector 0q in the tangent space TqQ. We let Σ = (Q,∇,D,Y , U) be an affine
connection control system. As above, we denote by Y the distribution generated by
the vector fields Y , and we now define a sequence Sym(k)(Y), k ∈ N, of distributions
by

Sym(1)(Y)q = Yq + spanR{〈Ya : Yb〉| a, b ∈ {1, . . . ,m}},
Sym(k)(Y)q = Sym(k−1)(Y)q

+ spanR{〈Ya : Yb〉| Ya ∈ Γ(Sym(k1)(Y)), Yb ∈ Γ(Sym(k2)(Y)), k1 + k2 = k − 1}.

The smallest distribution containing these distributions we denote by Sym(∞)(Y), and

we note that 〈X : Y 〉 ∈ Γ(Sym(∞)(Y)) for each X,Y ∈ Γ(Sym(∞)(Y)). The integrable

distribution generated by Sym(∞)(Y) we denote by Lie(∞)(Sym(∞)(Y)). Since this
distribution is integrable, through each point q0 ∈ Q there is an immersed maximal
integral manifold Λq0 with the property that TqΛq0 = Lie(∞)(Sym(∞)(Y))q for each
q ∈ Λq0 . Note that since we are only thinking of local controllability, we may shrink
Q so that Λq0 is an embedded submanifold, and thus TqΛq0 has its usual definition.

With this notation, we have the following theorem which describes the reachable
set from 0q0 ∈ TQ. Note that the description we provide here is a little more complete
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than that originally given by Lewis and Murray, but what we state here is certainly
implicit in the original paper.

Theorem 2.2. Let Σ = (Q,∇,D,Y , U) be an affine connection control system

with U almost proper. Let Λq0 be the maximal integral manifold of Lie(∞)(Sym(∞)(Y))
through q0 ∈ Q, which we assume without loss of generality to be an embedded sub-
manifold of Q. Let S(Y, q0) be the vector bundle over Λq0 whose fiber at q ∈ Λq0 is

Sym(∞)(Y)q. We have the following statements.
(i) There exists T > 0 such that for each t ∈ (0, T ], RΣ

TQ(q0,≤ t) is contained
in S(Y, q0) and contains a nonempty open subset of S(Y, q0).

(ii) In particular, there exists T > 0 such that for each t ∈ (0, T ], RΣ
Q(q0,≤ t)

is contained in Λq0 and contains a nonempty open subset of Λq0 .
Theorem 2.2 obviously leads to the following corollary.
Corollary 2.3. An affine connection precontrol system (Q,∇,D,Y )

(i) is accessible from q0 if and only if Sym(∞)(Y)q0 = Dq0 , and

(ii) is configuration accessible from q0 if and only if Lie(∞)(Sym(∞)(Y))q0 =
Tq0Q.

Now we turn to local configuration controllability. Let P (Y ) denote the set of
iterated symmetric products of vector fields in Y . A product P0 ∈ P (Y ) is bad when
it is composed of an even number of each of the vector fields from Y and is otherwise
good . The degree of P0 ∈ P (Y ) is the total number of vector fields from Y which
participate in P0, counting multiplicities. Thus, for example, 〈Ya : 〈Yb : Yb〉〉 is good
and of degree 3, and 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad and of degree 4. Let Sm be the
symmetric group on m symbols. For P0 ∈ P (Y ) and σ ∈ Sm, let σ(P0) ∈ P (Y ) be
obtained by permuting the occurrences of the vector fields from Y by σ. For example,
if P0 = 〈Ya : 〈Yb : Yc〉〉 and if σ = ( 1 2 3

2 3 1 ), then σ(P0) = 〈Yb : 〈Yc : Ya〉〉. With this
notation, we have the following definition.

Definition 2.4. An affine connection precontrol system (Q,∇,D,Y ) satisfies
the good/bad hypothesis at q0 if, for each bad symmetric product P0 ∈ P (Y ), there
exist good symmetric products P1, . . . , Pk ∈ P (Y ) of degree strictly less than P0 and
such that

∑
σ∈Sm

σ(P0)(q0) =

k∑
j=1

cjPj(q0)

for some c1, . . . , ck ∈ R.
The following result of Lewis and Murray [27] is derived from a result of Sussmann

[36]. Again, we provide a somewhat more thorough statement of the result than is
given in [27].

Theorem 2.5. Let Σ = (Q,∇,D,Y , U) be an affine connection control system
with U proper, and let q0 ∈ Q. If (Q,∇,D,Y ) satisfies the good/bad hypothesis at
q0 ∈ Q, then there exists T > 0 such that for each t ∈ (0, T ] the set RΣ

TQ(q0,≤ t)
contains a neighborhood of 0q0 in the vector bundle S(Y , q0) over Λq0 .

The result essentially says that when the good/bad hypothesis is satisfied, the
system is locally controllable when restricted to its reachable set. In particular, we
have the following corollary.

Corollary 2.6. Let Σ = (Q,∇,D,Y , U) be an affine connection control system
with U proper and such that the precontrol system (Q,∇,D,Y ) satisfies the good/bad
hypotheses at q0 ∈ Q. Then

(i) Σ is locally controllable at q0 if it is locally accessible at q0, and
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(ii) Σ is locally configuration controllable at q0 if it is locally configuration ac-
cessible at q0.

The above results all follow from a detailed analysis of the Lie algebra of vector
fields associated with the control system (2.1) when it is thought of as a control-affine
system with state manifold TQ. The results reflect the fact that, when evaluated at
zero velocity points, this Lie algebra structure simplifies enormously. We shall exploit
this further when we prove our main results in section 4. We remark that the structure
of the Lie algebra at points of nonzero velocity is not currently well understood.

3. Vector-valued quadratic forms. In our controllability analysis we are led
to investigate symmetric bilinear maps B : V × V → W from a finite-dimensional
R-vector space V into a finite-dimensional R-vector space W . In this section we first
look at such objects in general, and then we construct a specific such object associated
to an affine connection control system. Some other control theoretic problems where
vector-valued quadratic forms arise are given by Bullo et al. [10].

3.1. Basic definitions and properties. Let V and W be finite-dimensional
R-vector spaces and let Σ2(V ;W ) denote the set of symmetric R-bilinear maps from
V × V to W . For B ∈ Σ2(V ;W ), we define QB : V → W by QB(v) = B(v, v). For
λ ∈ W ∗, we define λB : V × V → R by λB(v1, v2) = 〈λ;B(v1, v2)〉.

Definition 3.1. Let B ∈ Σ2(V ;W ).
(i) B is definite if there exists λ ∈ W ∗ such that λB is positive-definite.
(ii) B is essentially indefinite if, for each λ ∈ W ∗, λB is either

(a) zero or
(b) neither positive nor negative-semidefinite.

The following properties of symmetric bilinear maps will be important for us.
The proof follows more or less directly from the definitions.

Lemma 3.2. Let V and W be finite-dimensional R-vector spaces with B ∈
Σ2(V ;W ). Suppose that V �= {0}. The following statements hold:

(i) if W = {0}, then B is essentially indefinite;
(ii) if W �= {0}, then B is essentially indefinite if and only if

0 ∈ intaff(image(QB))(conv(image(QB)));

(iii) if W �= {0}, then B is definite if and only if there exists a hyperplane P
through 0 ∈ W such that

(a) image(QB) lies on one side of P and
(b) image(QB) ∩ P = {0}.

The matter of deciding whether a vector-valued quadratic form is essentially in-
definite is known to be NP-complete, at least in the case when dim(W ) > 1.1

The following result gives some properties of R-valued quadratic forms that will
be useful in our discussion. We refer to Hirschorn and Lewis [21] for a proof.

Lemma 3.3. Let V be a finite-dimensional R-vector space and let B ∈ Σ2(V ; R).
For a basis V = {v1, . . . , vn} for V , let [B]V be the n × n matrix representation of
B. The following statements are equivalent:

(i) there exists a basis V for V for which the sum of the diagonal entries in
the matrix [B]V is zero;

(ii) there exists a basis V for V for which the diagonal entries in the matrix
[B]V are all zero;

(iii) B is essentially indefinite.

1This was pointed out to the authors by a reviewer for [10].
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3.2. Vector-valued quadratic forms and affine connection control sys-
tems. Let Σ = (Q,∇,D,Y , U) be an affine connection control system and let q ∈ Q.
If Sq ⊂ TqQ is a subspace, then we define BYq (Sq) : Yq×Yq → TqQ/Sq as the TqQ/Sq-
valued symmetric, bilinear mapping on Yq given by

BYq (Sq)(v1, v2) = πSq (〈V1 : V2〉(q)),(3.1)

where V1 and V2 are vector fields extending v1, v2 ∈ Yq, and where πSq : TqQ →
TqQ/Sq is the canonical projection. Note that BYq (Sq) is not necessarily well-defined.

Lemma 3.4. If Yq ⊂ Sq, then BYq
(Sq) is well-defined.

Proof. We need to show that the definition in (3.1) does not depend on the
extensions V1 and V2 of v1 and v2. This will follow if πSq

(〈V1 : V2〉(q)) depends only
on the values of V1 and V2 at q, and not on their derivatives. Let φ1, φ2 ∈ F(Q) and
compute

〈φ1V1 : φ2V2〉 = φ1φ2〈V1 : V2〉 + φ1(LV1
φ2)V2 + φ2(LV2φ1)V1.

Thus πSq (〈φ1V1 : φ2V2〉(q)) = φ1(q)φ2(q)πSq (〈V1 : V2〉(q)), showing that πSq (〈V1 :
V2〉(q)) does not depend on the derivatives of V1 and V2 at q, and so the result
follows.

Remark 3. Note that (TqQ/Sq)
∗ � ann(Sq). Therefore, the definition of λBYq (Sq),

λ ∈ (TqQ/Sq)
∗ is concrete in that one needs to worry about objects in the quotient.

If Y has constant rank, then one can define a TQ/Y-valued quadratic form BY

globally by

BY(V1, V2) = πY(〈V1 : V2〉)

for V1, V2 ∈ Γ(Y), where πY : TQ → TQ/Y is the projection.

4. Controllability results. In this section we undertake the formulation and
discussion of novel controllability results. Our objective is to obtain controllability
conditions that are independent of the basis for the input distribution Y. We achieve
this by means of controllability tests that do not entail good/bad conditions but rather
are expressed in terms of properties of a vector-valued quadratic form. Before we state
the results we need some preliminary constructions.

4.1. Constructions concerning vanishing input vector fields. We let Σ =
(Q,∇,D,Y , U) be an analytic affine connection control system and we let q0 ∈ Q.
One of the generalizations we wish to allow is the case when q0 may not be a regular
point for the distribution Y generated by Y . In this case the vector fields Y cannot be
linearly independent at q0. It may also happen that even if q0 is a regular point for Y,
the vector fields may still not be linearly independent. For example, if one wishes to
globally define a control system for which the input distribution Y has constant rank
but is not trivial, then one will necessarily have to choose more input vector fields
than rank(Y), implying that the input vector fields will never be linearly independent.
It will be convenient to organize the vector fields in Y in a manner consistent with
these possibilities. The following result gives a useful way of doing this.

Lemma 4.1. Let (Q,∇,D,Y = {Y1, . . . , Ym}) be an analytic affine connection
precontrol system with q0 ∈ Q. There exists T ∈ GL(m; R) with the property that if
Ỹa = T b

aYa, a ∈ {1, . . . ,m}, then
(i) {Ỹ1(q0), . . . , Ỹk(q0)} form a basis for Yq0 and

(ii) the vector fields Ỹk+1, . . . , Ỹm vanish at q0.
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Proof. We let k = dim(Yq0). Since Y generates Y, we may find R ∈ GL(m; R)
with the property that if Xa = Rb

aYb, a ∈ {1, . . . ,m}, then {X1(q0), . . . , Xk(q0)} form
a basis for Yq0 . Now let Lq0 : Rm → Yq0 be defined by Lq0(u) =

∑m
a=1 u

aXa(q0). Let
uk+1, . . . ,um ∈ Rm be a basis for ker(Lq0) and define S ∈ GL(m; R) by

S =
[

e1 · · · ek uk+1 · · · um

]
.

It is then clear that if we take Ỹa = Sb
aXb, a ∈ {1, . . . ,m}, then {Ỹ1(q0), . . . , Ỹk(q0)}

form a basis for Yq0 , and that Ỹk+1, . . . , Ỹm vanish at q0. Now we take T = RS.

Remark 4.

1. If the vector fields Y are linearly independent at q0, then one may take
T = Im in the lemma.

2. Suppose that we have a control set U for (Q,∇,D,Y ). If we take T ∈
GL(m; R) and Ỹ = {Ỹ1, . . . , Ỹm} as in the lemma, and if we define Ũ = {T−1u| u ∈
U}, this gives an affine connection control system Σ̃ = (Q,∇,D, Ỹ , Ũ). Clearly
the controlled trajectories for Σ = (Q,∇,D,Y , U) and Σ̃ agree, so we can without
loss of generality assume that the input vector fields for an affine connection control
system satisfy conditions (i) and (ii) of the lemma. Input vector fields satisfying these
conditions at q0 will be said to be adapted at q0.

Let X,Y ∈ Γ(Q). If X(q0) = 0q0 , then the expression 〈X : Y 〉(q0) may be verified
(in coordinates, for example) to depend only on the value of Y at q0. That is to say,
we may define a linear map symX : Tq0Q → Tq0Q by v → 〈X : V 〉(q0), where V is any
extension of v ∈ Tq0Q. If Y is adapted at q0, then we denote by Zq0(Y ) the set of
linear maps symYa , a ∈ {k + 1, . . . ,m}, where k = dim(Yq0). For an R-vector space
W , an arbitrary subset L of linear transformations of W , and a subspace S ⊂ W , we
denote by 〈L , S〉 the smallest subspace of W containing S and which is an invariant
subspace for each of the linear maps from L . One readily verifies that 〈L , S〉 is
generated by vectors of the form

L1 ◦ · · · ◦ Lk−1(v), L1, . . . , Lk−1 ∈ L , v ∈ S, k ∈ N.(4.1)

We will be interested in subspaces of the form 〈Zq0(Y ), Sq0〉, where Sq0 is a subspace
of Tq0Q. In order for such constructions to make sense (in that they are independent
of the choice of adapted family of vector fields) the subspace Sq0 should have some
properties.

Lemma 4.2. Let Σ = (Q,∇,D,Y , U) and Σ̃ = (Q,∇,D, Ỹ , Ũ) be affine connec-
tion control systems satisfying

(i) Y = Ỹ and

(ii) Y and Ỹ are adapted at q0.

Then 〈Zq0(Ỹ ), Sq0〉 = 〈Zq0(Y ), Sq0〉 for any subspace Sq0 containing Yq0 .

Proof. We write Y = {Y1, . . . , Ym} and Ỹ = {Ỹ1, . . . , Ỹm̃}. Since Y = Ỹ, we must
have

Ỹα =

m∑
a=1

Λa
αYa, α ∈ {1, . . . , m̃},

for functions Λa
α : Q → R, a ∈ {1, . . . ,m}, α ∈ {1, . . . , m̃}. (Here we make use

of the assumption stated in Remark 1.) Assume that dim(Yq0) = k so that both

{Y1(q0), . . . , Yk(q0)} and Ỹ1(q0), . . . , Ỹk(q0)} are bases for Yq0 and so that Yk+1, . . . , Ym
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and Ỹk+1, . . . , Ỹm̃ all vanish at q0. Note that 〈Zq0(Y ), Sq0〉 is generated by those
tangent vectors at q0 of the form

symYa�−1
◦ · · · ◦ symYa1

(v), a1, . . . , a�−1 ∈ {k + 1, . . . ,m}, 	 ∈ N, v ∈ Sq0 .

We will show by induction on 	 that each of these generators lies in 〈Zq0(Ỹ ), Sq0〉.
This is clearly true for 	 = 1, so suppose it true for 	 = j and let aj ∈ {k + 1, . . . ,m}.
Then for any V ∈ Γ(TQ), we have

〈Yaj
: V 〉 = 〈Λα

aj
(Ỹα) : V 〉 = Λα

a 〈Ỹα : V 〉 +

m̃∑
α=1

(LV Λα
aj

)Ỹα,

from which we ascertain that

symYaj
=

m̃∑
α=k+1

Λα
aj

(q0)symỸα
+

k∑
α=1

Ỹα(q0) ⊗ dα
aj

(q0),

since Λα
a (q0) = 0 for α ∈ {1, . . . , k} and a ∈ {k + 1, . . . ,m}. Therefore, by the

induction hypothesis, we conclude that

symYaj
◦ symYaj−1

◦ · · · ◦ symYa1
(v) ∈ 〈Zq0(Ỹ ), Sq0〉.

This shows that 〈Zq0(Y ), Sq0〉 ⊂ 〈Zq0(Ỹ ), Sq0〉. The opposite inclusion follows as

above, but swapping Y and Ỹ .
The preceding result shows the invariance of the definition of a subspace on the

choice of adapted generators for Y. The next result gives the same conclusion for a
vector-valued quadratic form.

Lemma 4.3. Let Σ = (Q,∇,D,Y , U) and Σ̃ = (Q,∇,D, Ỹ , Ũ) be affine connec-
tion control systems satisfying

(i) Y = Ỹ and

(ii) Y and Ỹ are adapted at q0.
If Sq0 ⊂ Tq0Q is a subspace containing Yq0 , then BỸq0

(Sq0) = BYq0
(Sq0).

Proof. As in the proof of Lemma 4.2 we have

Ỹα =

m∑
a=1

Λa
αYa, α ∈ {1, . . . , m̃},

for functions Λa
α : Q → R, a ∈ {1, . . . ,m}, α ∈ {1, . . . , m̃}. We then compute

〈Ya : Yb〉 = Λα
aΛβ

b 〈Ỹα : Ỹβ〉 +

m̃∑
α,β=1

Λβ
b (LỸβ

Λα
a )Ỹα

+

m̃∑
α,β=1

Λα
a (LỸα

Λβ
b )Ỹβ + Λα

aΛβ
b S

δ(Ỹα, Ỹβ)Ỹδ.

The lemma follows directly from this formula since the terms in Γ(Y) will go to zero
when projected by πSq0

since Yq0 ⊂ Sq0 .

4.2. Main results. Our main results may now be stated. Let us first state a
sufficient condition for controllability.
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Theorem 4.4. Let (Q,∇,D,Y ) be an analytic affine connection precontrol sys-
tem, and suppose that Y is adapted at q0 ∈ Q. Suppose that

(i) Sym(∞)(Y)q0 = 〈Zq0(Y ),Sym(2)(Y)〉, and
(ii) BYq0

(〈Zq0(Y ),Yq0〉) is essentially indefinite.
Then (Q,∇,D,Y ) is properly STLC from q0 if it is accessible from q0, and is properly
STLCC from q0 if it is configuration accessible from q0.

Proof. The proof essentially follows from Theorem 2.5. However, the extension
to allow singular points for the input distribution Y does not follow directly from
Theorem 2.5 but requires some manipulations with the variational cone, which we
will not go into here. The idea, in essence, is that if an input vector field vanishes
at the reference point, then directions generated by symmetric products using these
vector fields come “for free.” Since these symmetric products are simply applications
of a linear map, this explains the presence of the invariant subspace characterizations
of the tangent space to the reachable set. We refer to [21, Lemma 7.2] for the details
behind this, noting that the discussion in that paper builds on concepts presented in
[36, 7]. A consequence of these discussions, once they are specialized to our setting,
is the following result.

Lemma 4.5. Let (Q,∇,D,Y = {Y1, . . . , Ym}) be an analytic affine connection
precontrol system for which Y is adapted at q0 ∈ Q. Assume the following:

(i) Sym(∞)(Y) = 〈Zq0(Y ),Sym(2)(Y)q0〉;
(ii) there exist m̃ ≥ m and a full-rank matrix T ∈ Rm×m̃ such that if Ỹα =

T a
αYα, then

m̃∑
a=1

〈Ỹα : Ỹα〉(q0) ∈ 〈Zq0(Y ),Yq0〉.

Then (Q,∇,D,Y ) is properly STLC from q0 if it is accessible from q0 and is properly
STLCC from q0 if it is configuration accessible from q0.

We shall show that if the hypotheses of Theorem 4.4 are satisfied at q0, then the
hypotheses of Lemma 4.5 are satisfied for some possibly different collection of input
vector fields. From this the conclusion of Theorem 4.4 will follow.

For brevity let us denote Sq0 = 〈Zq0(Y ),Yq0〉 and B = BYq0
(Sq0). First we

need to find an appropriate collection of input vector fields. Choose v1, . . . , v� ∈ Yq0

such that 0q0 + Sq0 ∈ Sym(∞)(Y)q0/Sq0 lies in the interior of the convex hull of the
vectors B(v1, v1), . . . , B(v�, v�). That this is possible is guaranteed by the hypotheses
of Theorem 4.4 and by Lemma 3.2. If necessary, add vectors v�+1, . . . , vk̃ such that
the vectors v1, . . . , vk̃ span Yq0 . It now follows that the vectors B(v1, v1), . . . , B(vk̃, vk̃)

contain 0q0 + Sq0 ∈ Sym(∞)(Y)q0/Sq0 in the interior of their convex hull. Thus the
vectors v1, . . . , vk̃ may be rescaled by strictly positive constants (for simplicity, let us
denote the rescaled vectors also by v1, . . . , vk̃) so that

k̃∑
α=1

B(vα, vα) = 0q0 + Sq0 ∈ Sym(∞)(Y)q0/Sq0 .(4.2)

It is now possible to define vector fields Ỹ = {Ỹ1, . . . , Ỹm̃} such that, if dim(Yq0) = k,
then

1. Ỹk̃+a = Yk+a, a ∈ {1, . . . ,m− k}, and

2. Ỹα =
∑k

a=1 T̃
a
αYa, α ∈ {1, . . . , k̃}, for a full-rank matrix T̃ ∈ Rk×k̃.
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Clearly this then implies the existence of a full-rank matrix T ∈ Rm×m̃ such that
Ỹα = T a

αYa, α ∈ {1, . . . , m̃}. From (4.2) it immediately follows that (Q,∇,D,Y )
satisfies the hypotheses of Lemma 4.5, and so Theorem 4.4 follows.

Remark 5. Our use of the vector fields Zq0(Y ) from Y that vanish at q0 is similar
in spirit to how the vanishing of the drift vector appears in the work of Sussmann [36]
and Bianchini and Stefani [7]. The idea is that brackets generated by such vanishing
vector fields can be achieved “for free,” without invoking bad brackets.

A necessary condition for controllability is the following.
Theorem 4.6. Let (Q,∇,D,Y ) be an analytic affine connection precontrol sys-

tem for which Y is adapted at q0 ∈ Q. Suppose that
(i) q0 is a regular point for Y and
(ii) BYq0

(Yq0) is definite.
Then (Q,∇,D,Y ) is STLCUC from q0.

Proof. We work locally. Therefore, we may assume the vector fields {Y1, . . . , Ym}
are linearly independent in a neighborhood of q0. First we show that the system is not
STLC from q0 using calculations of Hirschorn and Lewis [21]. We will not provide here
a self-contained justification for all of our computations, since they take considerable
space, but we refer to the paper [21]. The calculation uses the Chen–Fliess–Sussmann
series [14, 17, 35]. For an analytic control-affine system

ξ′(t) = f0(ξ(t)) +

m∑
a=1

ua(t)fa(ξ(t)), ξ(t) ∈ M,

on a manifold M with a compact control set, and for an analytic function φ, the
Chen–Fliess–Sussmann series gives the following formula for the value of φ along a
controlled trajectory (ξ, u):

φ(ξ(t)) =
∑
J

UJ(t)fJφ(ξ(0)).

The sum is over multi-indices J = (a1, . . . , ak) in {0, 1, . . . ,m},

UJ(t) =

∫ t

0

uak
(tk)

∫ tk

0

uak−1
(tk−1)· · ·

∫ t2

0

ua1(t1) dt1 . . . dtk−1 dtk

and

fJφ = fa1fa2 · · · fak
φ.

We adopt the convention that u0 = 1. We also regard an affine connection control
system as a control-affine system in the usual manner by taking f0 to be the geodesic
spray for ∇ and f1, . . . , fm to be the vertical lifts of Y1, . . . , Ym [27].

The function we evaluate is defined as follows. We let λ be an analytic covector
field defined in a neighborhood of q0 with the following properties:

1. λ annihilates the distribution Y;
2. λ(q0)BYq0

|Yq0 is negative-definite.
By a linear input transformation one can ensure that the input vector fields diagonalize
λ(q0)BYq0

with the diagonal entries being −1. We assume this input transformation
to have been made. We then define a function φλ : TQ → R by φλ(vq) = λ(q) · vq,
and we also define

Φ+
λ = {vq ∈ TQ| φλ(vq) > 0}, Φ−

λ = {vq ∈ TQ| φλ(vq) < 0}.
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Note that in any neighborhood V of 0q0 in TQ, the sets V ∩ Φ−
λ and V ∩ Φ+

λ will
be nonempty, since φλ is linear on the fibers of TQ. Therefore, we can show that
(Q,∇,D,Y ) is STLUC from q0 by showing that φλ has constant sign along any
controlled trajectory. One may directly verify that φλ has the following properties:

1. faφλ, a ∈ {1, . . . ,m}, is zero in a neighborhood of 0q0 ;
2. adk

f0
faφλ(0q0) = 0, a ∈ {1, . . . ,m}, k ∈ N;

3. [fa, [f0, fa]]φλ(0q0) = −1, a ∈ {1, . . . ,m} (this and the next fact use the
formula [fa, [f0, fb]] = verlift(〈Ya : Yb〉), a, b ∈ {1, , . . . ,m});

4. [fa, [f0, fb]]φλ(0q0) = 0, a, b ∈ {1, . . . ,m}, a �= b.
For an input u : [0, T ] → U , let us define

‖u‖2,t = max
{(∫ t

0

|ua(t)|2
)1/2∣∣∣ a ∈ {1, . . . ,m}

}
.

The calculations of Hirschorn and Lewis [21] now immediately give the following
inequality for φλ(γ′(t)) along a controlled trajectory (γ, u) for an affine connection
control system like that under consideration here:

φλ(γ′(t)) ≥ 1

2
(‖u‖2,t)

2 − |E(t)|.

According to the analysis in Hirschorn and Lewis, the map t → E(t) satisfies the
bound |E(t)| ≤ tE0(‖u‖2,t)

2 for some E0 > 0. For t sufficiently small, this shows that
φλ(γ′(t)) has constant sign. This shows that (Q,∇,D,Y ) is STLCUC from q0.

Now let us show that our above constructions also preclude the system from being
locally configuration controllable. Choose a coordinate chart (V, χ) for Q around q0
with the following properties: (1) χ(q0) = 0 and (2) dqn(q0) = λ(q0). Let us define a
function ψλ on the coordinate domain V by ψλ(q) = qn such that the sets

Ψ+
λ = {q ∈ Q| ψλ(q) > 0}, Ψ−

λ = {q ∈ Q| ψλ(q) < 0}

each intersect any neighborhood of q0 ∈ Q. Along any nontrivial trajectory t → γ(t)
we have

dψλ(γ(t))

dt

∣∣∣
t=0

= dψλ(γ′(0)) = φλ(γ′(0)) < 0.

Since ψλ(q0) = 0, this means that, for sufficiently small t, ψλ(γ(t)) < 0, and this
shows that the points in Ψ+

λ are not reachable in small time, and so Σ is not locally
configuration controllable.

Remark 6. The spirit of the preceding proof is that of the single-input necessary
condition appearing as Proposition 6.3 in the paper by Sussmann [35]. However, the
modifications to the multi-input case by Hirschorn and Lewis [21] require some care.

Let us provide an example that nicely illustrates Theorems 4.4 and 4.6. This
example is a slight modification of an example in [33].

Example 1. We take Q = R2 with (x, y) the usual Cartesian coordinates. We
choose the affine connection on R2 with all vanishing Christoffel symbols except for
Γy
xx = x. We choose the single-input vector field Y = ∂

∂x . We also take D = TQ.
One then readily computes

〈Y : Y 〉 = 2x
∂

∂y
, 〈Y : 〈Y : Y 〉〉 = 2

∂

∂y
.

We consider two cases.
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1. q0 = (0, y), y ∈ R: We readily see that BYq0
(〈Zq0(Y ),Yq0〉) is identically

zero, and so essentially indefinite. We also have Sym(2)(Y)q0 = Tq0Q. Therefore,
Theorem 4.4 shows that (Q,∇,D, {Y }) is properly STLC from q0.

2. q0 �= (0, y), y ∈ R: Here we use spanR{ ∂
∂y} as a model for Tq0Q/Yq0 . Thus

both Yq0 and Tq0Q/Yq0 are one-dimensional, and so BYq0
(Yq0) is essentially a quadratic

function on R. This quadratic function is then exactly ξ → 2xξ2. This function is
definite, so Theorem 4.6 implies that the system is STLCUC from q0.

Thus this example has the rather degenerate feature of being controllable on
the y-axis but being uncontrollable at every point in a neighborhood of the y-axis.
Note that this example is also a counterexample to a single-input result of one of the
authors [23]. There it was stated that a single-input affine connection control system
is STLCC if and only if the dimension of the configuration space is one. We see here
that this is false. However, what is true is that a single-input affine connection control
system is STLCC at all points in an open subset of configuration space if and only if
the configuration space has dimension one.

5. Reductions of affine connection control systems. The controllability
results of section 4 turn out to apply to a great many examples. That is to say, many
interesting physical examples may be shown to be controllable or uncontrollable using
these results. What is not obvious is that many of these systems are describable, in
some sense, by a driftless system. This effectively simplifies the system, making certain
control design tasks, especially motion planning, considerably simpler. In this section
we introduce the framework for discussing these simplifications.

The objective in this section is then to relate second-order systems to first-order
systems. In order to do this, one must be aware that the allowable inputs for the
two classes of systems cannot be the same. For example, a trajectory for a first-order
system using a discontinuous input will be continuous in configuration, but not in
velocity. These velocity discontinuities are not allowed for second-order systems with
bounded inputs. Therefore, we need to fix a set of inputs to use in each case, and
they need to differ, essentially, by one integration. To be specific, we let Ukin be the
collection of locally absolutely continuous controls, and we let Udyn be the collection
of locally integrable controls. The former will be used for first-order systems and the
latter for second-order systems. In all cases, we allow controls to be defined on an
arbitrary interval I ⊂ R.

5.1. Kinematic reductions. In this section, in order to emphasize the differ-
ence between the two kinds of systems we are comparing, we shall denote an affine
connection control system by Σdyn = (Q,∇,D,Y ,Rm). A driftless system is a triple
Σkin = (Q,X = {X1, . . . , Xm̃}, U ⊂ Rm̃). The associated control system is then

γ′(t) =

m̃∑
α=1

ũα(t)Xα(γ(t)),(5.1)

so that a controlled trajectory is a pair (γ, ũ), where
1. γ : I → Q and ũ : I → U are both defined on the same interval I ⊂ R,
2. ũ ∈ Ukin, and
3. (γ, ũ) together satisfy (5.1).

A driftless system (Q,X , U) is STLC from q0 if the set of points reachable from q0
contains q0 in its interior, and a pair (Q,X ) is properly STLC from q0 if (Q,X , U) is
STLC from q0 for every proper U . With our underlying assumption of analyticity, it is
well known that (Q,X ) is properly STLC from q0 if and only if Lie(∞)(X)q0 = Tq0Q.
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First we define what we mean by a kinematic reduction.
Definition 5.1. Let Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm) be an affine

connection control system with Y having constant rank. A driftless system Σkin =
(Q,X = {X1, . . . , Xm̃},Rm̃) is a kinematic reduction of Σdyn if

(i) X is a constant-rank subbundle of D and
(ii) for every controlled trajectory (γ, ukin) for Σkin with ukin ∈ Ukin, there exists

udyn ∈ Udyn such that (γ, udyn) is a controlled trajectory for Σdyn.
The rank of the kinematic reduction Σkin is the rank of X.

Thus kinematic reductions are driftless systems whose controlled trajectories,
at least for controls in Ukin, can be followed by controlled trajectories of Σdyn.
Let us characterize kinematic reductions. To do so, recall that with our constant-
rank assumptions, given an affine connection ∇ and a family of vector fields Y =
{Y1, . . . , Ym} on Q, we may globally define BY as at the end of section 3.2. This also al-
lows us to define a map QBY

: Γ(TQ) → Γ(TQ/Y) by QBY
(X)(q) = BY(q)(X(q), X(q)).

With this notation, we have the following result.
Theorem 5.2. Let Σdyn = (Q,∇,D,Y ,Rm) be an affine connection control

system with Y of constant rank and let Σkin = (Q,X ,Rm̃) be a driftless system with
X of constant rank. The following statements are equivalent:

(i) Σkin is a kinematic reduction of Σdyn;

(ii) Sym(1)(X) ⊂ Y;
(iii) X ⊂ Y and QBY

|X = 0.
Proof. (i) =⇒ (ii) Let X ∈ Γ(X) such that X = φαXα for some φ1, . . . , φm̃ ∈

F(Q). For q ∈ Q, define controls ũ1, ũ2 ∈ Ukin by ũ1 = (φ1(q), . . . , φm̃(q)) and
ũ2 = (1 + t)ũ1. Let (γ1, ũ1) and (γ2, ũ2) be the corresponding controlled trajectories

of Σkin satisfying γ1(0) = γ2(0) = q. Thus γ′
i(t) =

∑m̃
α=1 ũ

α
i (t)Xα(γi(t)), i ∈ {1, 2}.

We compute

∇γ′
1(t)

γ′
1(t) =

m̃∑
α,β=1

∇ũα
1 (t)Xα(γ1(t))ũ

β
1 (t)Xβ(γ1(t))

=

m∑
α,β=1

ũα
1 (t)ũβ

1 (t)∇Xα(γ1(t))Xβ(γ1(t)) + ˙̃u
β

1 (t)Xβ(γ1(t)).

Evaluating this at t = 0 gives

∇γ′
1(t)

γ′
1(t)

∣∣
t=0

=

m̃∑
α,β=1

ũα
1 (0)ũβ

1 (0)∇XαXβ(q) + ˙̃u
β

1 (0)Xβ(q) = ∇XX(q).

Similarly, for γ2 we have

∇γ′
2(t)

γ′
2(t)

∣∣
t=0

= ∇XX(q) + X(q).

Therefore, since Σkin is a kinematic reduction of Σdyn, we have ∇XX(q),∇XX(q) +
X(q) ∈ Yq, or simply X,∇XX ∈ Γ(Y) since the above constructions can be performed
for all X ∈ Γ(X) and q ∈ Q. Therefore, for X,Y ∈ Γ(X) we have the polarization
identity,

〈X : Y 〉 =
1

2

(
〈X + Y : X + Y 〉 − 〈X : X〉 − 〈Y : Y 〉

)
∈ Γ(Y),(5.2)

which gives (ii).
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(ii) =⇒ (iii) From the definition of BY we readily see that QBY
|X = 0 exactly

means that 〈X : X〉 = 2∇XX ∈ Γ(Y) for each X ∈ Γ(X). From this observation, the
current implication follows easily by employing the formula for 〈X : Y 〉 in (5.2).

(iii) =⇒ (i) As in the preceding step, we see that the condition QBY
|X = 0 is

equivalent to asserting that ∇XX ∈ Γ(Y) for each X ∈ Γ(X). By (5.2) this implies
that 〈Xα : Xβ〉 ∈ Γ(Y) for α, β ∈ {1, . . . , m̃}. Let ukin ∈ Ukin and let (γ, ukin) be the
corresponding controlled trajectory for Σkin. We then have

∇γ′(t)γ
′(t) = uα

kin(t)uβ
kin(t)∇Xα(γ(t))Xβ(γ(t)) + u̇α

kin(t)Xα(γ(t)).

We note that

uα
kin(t)uβ

kin(t)∇Xα(γ(t))Xβ(γ(t)) =
1

2
uα

kin(t)uβ
kin(t)〈Xα(γ(t)) : Xβ(γ(t))〉.

Since Xα, 〈Xα : Xβ〉 ∈ Γ(Y) it now follows that ∇γ′(t)γ
′(t) ∈ Yγ(t), implying that

there exists a control udyn ∈ Udyn such that (γ, udyn) is a controlled trajectory for
Σdyn.

Of particular interest are kinematic reductions of rank one: (Q, {X1},R). In this
case, any vector field of the form X = φX1, where φ ∈ F(Q) is nowhere vanishing, is
called a decoupling vector field . From Theorem 5.2 we have the following description
of a decoupling vector field.

Corollary 5.3. A vector field X is a decoupling vector field for Σdyn =
(Q,∇,D,Y ,Rm) if and only if X,∇XX ∈ Γ(Y).

It is the notion of a decoupling vector field that was initially presented by Bullo
and Lynch [13], and which is generalized by our idea of a kinematic reduction.

Remark 7. While in general, even when a kinematic reduction exists, it will
not be easy to find, it turns out that in practice many examples exhibit kinematic
reductions in a more or less obvious way. We shall see this in the examples below.
Note that condition (iii) of Theorem 5.2 provides a set of algebraic equations that
can, in principle, be solved to identify decoupling vector fields. This was discussed by
Bullo and Lynch [13].

Next, let us consider affine connection control systems endowed with multiple
kinematic reductions. It is interesting to characterize when the concatenation of
controlled trajectories of the kinematic reductions gives rise to a controlled trajectory
for the affine connection control system. Given two curves γ1 and γ2 on Q, let γ1 ∗ γ2

be their concatenation. The following lemma follows immediately from the definition
of a kinematic reduction.

Lemma 5.4. Consider an affine connection control system Σdyn =(Q,∇,D,Y ,Rm)
with two kinematic reductions Σkin,1 = (Q,X1,R

m1) and Σkin,2 = (Q,X2,R
m2). For

i ∈ {1, 2}, let (γi, ukin,i) be a controlled trajectory for Σkin,i defined on the interval
[0, Ti] with ukin,i ∈ Ukin. There exists a control udyn ∈ Udyn such that (γ1 ∗ γ2, udyn)
is a controlled trajectory for Σdyn if and only if γ′

1(T1) = γ′
2(0).

Motivated by this result we make the following definition.
Definition 5.5. An affine connection control system Σdyn = (Q,∇,D,Y ,Rm)

is kinematically controllable from q0 ∈ Q (KC from q0 ∈ Q) if there exists a finite
collection

Σkin,1 = (Q,X1,R
m1), . . . ,Σkin,k = (Q,Xk,R

mk)

of kinematic reductions for Σdyn such that (Q,X1 ∪ · · · ∪Xk) is properly STLC from
q0.
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f1

f2F

h

Fig. 5.1. Planar rigid body with thruster.

Remark 8.

1. For analytic systems, the condition that (Q,X1∪· · ·∪Xk) be properly STLC

from q0 is equivalent to the condition that Lie(∞)(X1 + · · · + Xk)q0 = Tq0Q, where
X1 + · · · + Xk denotes the fiberwise sum of the distributions X1, . . . ,Xk.

2. If an affine connection control system Σdyn = (Q,∇,D,Y ,Rm) is kinemat-
ically controllable from q0, then it is STLCC from q0. This fact is proved in Propo-
sition 5.10 below, and we refer to section 5.3 for a discussion of the relationships
between the various notions of controllability introduced in this paper.

3. Suppose the affine connection control system Σdyn = (Q,∇,D,Y ,Rm) is
kinematically controllable from all q ∈ Q. A standard control problem is to find a
controlled trajectory connecting two given configurations q1, q2 ∈ Q, starting and end-
ing with zero velocity. Lemma 5.4 says that this can be done for Σdyn by concatenating
integral curves of decoupling vector fields where each segment is reparameterized to
start and end at zero velocity. This is the viewpoint of Bullo and Lynch [13].

Example 2. We consider a planar rigid body with a variable-direction thruster
as shown in Figure 5.1. The system has configuration manifold SE(2). We use
coordinates (x, y, θ) defined as follows. Let {e1, e2} be an orthonormal frame in E2

fixed at O ∈ E2, and let {f1, f2} be a body orthonormal frame attached to the
center of mass and with the property that the vector f1 points in the direction of
the line connecting the center of mass with the point of application of the force (see
Figure 5.1). Then (x, y) denote the position of the center of mass with respect to O,
and θ is defined so that f1 = R(θ)e1 with R(θ) the matrix giving a positive rotation
by θ in E2. With respect to these coordinates, the kinetic energy of the system is
determined by the Riemannian metric

g = mdx⊗ dx + mdy ⊗ dy + Jdθ ⊗ dθ,

where m is the mass of the body, and J is its inertia about the center of mass. Since
the coefficients of this Riemannian metric are independent of the coordinates, the
Christoffel symbols for the corresponding Levi-Civita affine connection are zero. As
shown by Lewis and Murray [27], Newton’s law with the force F as shown in Figure 5.1
is equivalent to (2.1) if the affine connection ∇ is the Levi-Civita connection associated
with g and if the vector fields {Y1, Y2} are chosen as follows:

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
, Y2 = − sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
− h

J

∂

∂θ
.
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Fig. 5.2. Decoupling motions for the planar rigid body: X1 on the left and X2 on the right.

The system is unconstrained so we take D = TQ.
We claim that the vector fields X1 = mY1 and X2 = mY2 are decoupling vector

fields. Clearly, they are sections of Y. We also compute

∇X1
X1 = 0, ∇X2X2 =

mh cos θ

J

∂

∂x
+

mh sin θ

J

∂

∂y
.

Therefore ∇X1X1,∇X2X2 ∈ Γ(Y), showing that X1 and X2 are indeed decoupling
vector fields.

Let us explore the implications of the existence of these decoupling vector fields.
Since X1 and X2 are decoupling vector fields, we may follow their integral curves. In
Figure 5.2 we show motions of the body along sample integral curves of X1 and X2.
In actuality, one can follow not only the integral curves of the decoupling vector fields
but also any reparameterization of these vector fields. With this in mind, one has the
following possible methodology for moving the body around in the plane:

1. Given q1, q2 ∈ Q, find a concatenation of the integral curves of X1 and X2

that connects q1 with q2. (This is possible since Lie(∞)(X) = TQ.)
2. Reparameterize each segment of the preceding concatenated curve so that

each segment has zero initial and final velocity.
3. Because of Lemma 5.4, the resulting reparameterized curve can be followed

by controlled trajectories of Σdyn.
This method for motion planning is explained in detail in [11, Chapter 13].

5.2. Maximally reducible systems. If Σkin = (Q,X = {X1, . . . , Xm̃},Rm̃) is
a kinematic reduction of Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm), then, by definition,
any controlled trajectory of Σkin may be followed by a controlled trajectory of Σdyn.
In this section we wish to consider the possibility of the converse statement. The
following definition, and the attendant Theorem 5.7 below, are due to Lewis [25].

Definition 5.6. An affine connection control system Σdyn = (Q,∇,D,Y =
{Y1, . . . , Ym},Rm) with Y of constant rank is maximally reducible to Σkin = (Q,X =
{X1, . . . , Xm̃},Rm̃) if Σkin is a kinematic reduction of Σdyn and if for every controlled
trajectory (γ, udyn) for Σdyn satisfying γ′(0) ∈ Xγ(0), there exists a control ukin ∈ Ukin

such that (γ, ukin) is a controlled trajectory for Σkin.
Before we proceed to characterize maximally reducible systems, let us illustrate

that a system may not be maximally reducible to a given kinematic reduction.
Example 3 (Example 2 cont’d). We claim that the affine connection control

system corresponding to the planar rigid body with a thruster is not maximally re-
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ducible to either of the kinematic reductions Σkin,1 = (Q,X1 = {X1},R) or Σkin,2 =
(Q,X2 = {X2},R) exhibited in Example 2. We shall exhibit this explicitly for Σkin,1

and leave the other case to the reader.
Consider the control t → u(t) = (0, 1) ∈ Udyn, along with the initial condition

γ′(0) = ((0, 0, 0), (1, 0, 0)) ∈ TQ. We have γ′(0) ∈ X1,γ(0), where X1 is the distribution
generated by the vector field X1. If Σdyn is to be maximally reducible to Σkin,1, then
we should have γ′(t) ∈ X1,γ(t) for each t > 0. To show that this is not the case,
consider the governing equations for the system with the given control:

ẍ = − sin θ

m
, ÿ =

cos θ

m
, θ̈ = −h

J
.

Clearly the solution to this ordinary differential equation is not a reparameterization
of the integral curve for X1 through γ(0) since the latter is given by t → (t, 0, 0).
Thus it cannot be that γ′(t) ∈ X1,γ(t) for each t > 0.

Now let us establish when an affine connection control system is in fact maxi-
mally reducible to some driftless system. Note that in the statement of the following
theorem, the driftless systems to which Σdyn is maximally reducible are characterized
sharply.

Theorem 5.7. An affine connection control system Σdyn = (Q,∇,D,Y =
{Y1, . . . , Ym},Rm), with Y of constant rank, is maximally reducible to Σkin = (Q,X =
{X1, . . . , Xm̃},Rm̃) if and only if the following two conditions hold:

(i) X = Y;

(ii) Sym(∞)(Y) = Y.
Proof. In the proof it is convenient to understand that the second-order sys-

tem (2.1) on Q is equivalent to the first-order system on TQ given

Υ′(t) = Z(Υ(t)) +

m∑
a=1

ua(t)verlift(Ya)(Υ(t))(5.3)

for a curve Υ on TQ, where Z is the geodesic spray for ∇ and verlift(Ya) ∈ Γ(TTQ)
denotes the vertical lift of Ya. This is discussed in Lewis and Murray [27]. Further,
one may easily verify that a vector field X is a section of a distribution D if and
only if verlift(X) is tangent to D ⊂ TQ. Also, Lewis [24] shows that condition (ii) is
equivalent to the assertion that Y be geodesically invariant, by which we mean that
geodesics γ : I → Q satisfying γ′(t0) ∈ Yγ(t0) for some t0 ∈ I satisfy γ′(t) ∈ Yγ(t)

for all t ∈ I. Clearly, geodesic invariance of Y is equivalent to Y being an invariant
submanifold for Z.

First suppose that Σdyn is maximally reducible to a driftless system Σkin. Let
γ : [0, T ] → Q be a geodesic so that (γ′, 0) is a controlled trajectory for Σdyn. If we
ask that γ′(0) ∈ X, then Definition 5.6 implies that there exists ukin ∈ Ukin such that
(γ, ukin) is a controlled trajectory of Σkin. Indeed, ukin is defined by

γ′(t) =

m̃∑
α=1

uα
kin(t)Xα(γ(t))

and so is smooth. Further, this implies that X is geodesically invariant. The remainder
of this part of the proof will be directed towards showing that X = Y.

Let ea be the ath standard basis vector for Rm and let ua : [0, T ] → Rm be the
control defined by ua(t) = ea. Let Υ: [0, T ] → TQ be an integral curve for the



904 FRANCESCO BULLO AND ANDREW D. LEWIS

vector field Z + verlift(Ya), so that (Υ, ua) satisfies (5.3). By Definition 5.6, Υ must
be tangent to X. Since X is geodesically invariant, Z is tangent to X, and therefore
verlift(Ya) must be tangent to X. This implies that Y ⊂ X.

To show that X ⊂ Y we employ the following lemma.
Lemma 5.8. If a distribution D is geodesically invariant for an affine connection

∇, then for each q ∈ Q and each X ∈ Dq there exist T > 0 and a smooth curve
γ : [0, T ] → Q with the following properties:

(i) γ′(t) ∈ Dγ(t) for t ∈ (0, T ];
(ii) ∇γ′(0)γ

′(0) = X.
Proof. Let (U, χ) be a normal coordinate chart [22, Proposition 8.4] with χ(q) = 0.

In such a chart the Christoffel symbols for ∇ satisfy Γi
jk(0) + Γi

kj(0) = 0, i, j, k ∈
{1, . . . , n}. Let T̃ > 0 be small if necessary and let γ̃ : [0, T̃ ] → Q be the geodesic
satisfying γ̃′(0) = X. Let us denote the local representative of γ̃ in our normal coor-

dinate chart by t → (q̃1(t), . . . , q̃n(t)). We must then have ¨̃q
i
(0) = 0, i ∈ {1, . . . , n},

since γ̃ is a geodesic and we are using normal coordinates. Since D is geodesically
invariant, γ̃′(t) ∈ Dγ̃(t) for t ∈ (0, T̃ ]. Now define τ : [0, T̃ ] → [0, 1

2 T̃
2] by τ(t) = 1

2 t
2.

Let T = 1
2 T̃

2, define γ : [0, T ] → Q by γ = γ̃ ◦ τ , and denote by t → (q1(t), . . . , qn(t))
the local representative of γ. Then we have

q̇i(t) =
2t ˙̃q

i
(t)

T
, i ∈ {1, . . . , n},

q̈i(0) = ˙̃q
i
(0), i ∈ {1, . . . , n}.

Since γ̃′(0) = X the result follows, and the proof of the lemma is complete.
Now let q ∈ Q and X ∈ Xq. Choose a curve γ : [0, T ] → Q as in the lemma.

Define a smooth map ukin : [0, T ] → Rm̃ by asking that it satisfy

γ′(t) =

m̃∑
α=1

uα
kin(t)Xα(γ(t)).

Then (γ, ukin) is a controlled trajectory for Σkin. Therefore, by Definition 5.6, there
exists a map udyn : [0, T ] → Rm such that (γ′, udyn) is a controlled trajectory for
(TQ,XΣdyn

,Rm). Indeed, since γ′ is smooth, udyn will also be smooth. Furthermore,
we have

X = ∇γ′(0)γ
′(0) =

m∑
a=1

ua
dyn(0)Ya(γ(0)).

This shows that X ⊂ Y, which completes the proof of the “only if” part of the theorem.
Now suppose that parts (i) and (ii) of the theorem hold. Let us work locally, so we

may as well assume that the vector fields {Y1, . . . , Ym} and {X1, . . . , Xm̃} are linearly
independent (and so m̃ = m). First, part (ii) implies that Y is an invariant subman-
ifold for the system (TQ,XΣdyn

,Rm), since verlift(Ya), a ∈ {1, . . . ,m}, is tangent to
Y. If (Υ, udyn) is a controlled trajectory of (TQ,XΣdyn

,Rm), then Υ: [0, T ] → TQ

is absolutely continuous, and so γ � τQ ◦ Υ is also absolutely continuous. In fact,
Υ = γ′, and so not only is γ absolutely continuous but γ′ is also absolutely continuous.
If we further suppose that γ′(0) ∈ Yγ(0), then γ′(t) ∈ Yγ(t) for t ∈ [0, T ]. We may then
define ukin : [0, T ] → Rm̃ by γ′(t) = uα

kin(t)Xα(γ(t)), which uniquely defines ukin since
(TQ,XΣdyn

,Rm) leaves Y, and hence X, invariant. It is clear that ukin is absolutely
continuous.
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Fig. 5.3. The robotic leg.

Finally, let (γ, ukin) be a controlled trajectory for Σkin. Thus γ′ is absolutely
continuous. Since Y, and therefore X, are geodesically invariant, ∇γ′(t)γ

′(t) ∈ Yγ(t)

for t ∈ [0, T ]. Thus we may write

∇γ′(t)γ
′(t) =

m∑
a=1

ua
dyn(t)Ya(γ(t)),

which defines udyn : [0, T ] → Rm. It is clear that u is locally integrable, and this
completes the proof.

Remark 9. Note that all driftless systems to which a given affine connection
control system Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm) is maximally reducible are
essentially the same, by which we mean that for two such driftless systems, Σkin =
(Q,X = {X1, . . . , Xm},Rm) and Σ̃kin = (Q, X̃ = {X̃1, . . . , X̃m̃},Rm̃), we have X =
X̃. Thus, without loss of generality, we may take (Q, {Y1, . . . , Ym},Rm) as the system
to which Σdyn is maximally reducible. For this reason, it makes sense to simply say
that Σdyn is maximally reducible if it is maximally reducible to some driftless system.

Let us give an example of a system that is maximally reducible.

Example 4. We consider the robotic leg system depicted in Figure 5.3. The
configuration space for the system is Q = R+ × S1 × S1, and the coordinates we use
are (r, θ, ψ), as indicated in Figure 5.3. The Riemannian metric for the system is

g = m(dr ⊗ dr + r2dθ ⊗ dθ) + Jdψ ⊗ dψ,

where m is the mass of the particle on the end of the extensible massless leg, and J
is the moment of inertia of the base rigid body about the pivot point. The nonzero
Christoffel symbols for the associated affine connection are Γr

θθ = −r and Γθ
rθ = Γθ

θr =
1
r . Lewis and Murray [27] show that if we define Y1 and Y2 by

Y1 =
1

mr2

∂

∂θ
− 1

J

∂

∂ψ
, Y2 =

1

m

∂

∂r
,

then the equations of motion for the system are of the form (2.1), where ∇ is the
Levi-Civita connection associated with g. There are no constraints on the system, so
we take D = TQ.



906 FRANCESCO BULLO AND ANDREW D. LEWIS

STLC

STLCC

KC MR-KC

Fig. 5.4. Relationships between various forms of controllability for affine connection control
systems.

One readily computes

〈Y1 : Y1〉 = − 2

m2r3

∂

∂r
, 〈Y1 : Y2〉 = 0, 〈Y2 : Y2〉 = 0.

This shows that Y is geodesically invariant. Thus the corresponding affine connection
control system Σdyn is maximally reducible to (Q, {Y1, Y2},R2).

Since Sym(∞)(Y) = Y for an affine connection control system that is maximally
reducible to a driftless system, by Remark 8(2) such an affine connection control

system, if analytic, is STLCC from q ∈ Q if and only if Lie(∞)(Y)q = TqQ. Thus we
make the following definition.

Definition 5.9. A maximally reducible affine connection control system Σdyn =
(Q,∇,D,Y ,Rm) is maximally reducibly kinematically controllable from q0 ∈ Q
(MR-KC from q0) if (Q,Y ) is properly STLC from q0.

5.3. Relationships to controllability. The appearance in Theorem 5.2 of the
vector-valued quadratic form BY raises questions about how the notion of kinematic
reductions is related to the low-order controllability results of section 4. In this section
we describe the proper relationships. In [12] counterexamples are provided to show
that one cannot generally improve on the relationships presented here.

Let Σdyn = (Q,∇,D,Y ,Rm) be an affine connection control system. First let us
list the various types of controllability we have at hand for Σdyn from a point q0 ∈ Q:

1. small-time local controllability (STLC);
2. small-time local configuration controllability (STLCC);
3. kinematic controllability (KC);
4. maximal reducible kinematic controllability (MR-KC).

The relationships between these concepts are demonstrated in Figure 5.4. Let us show
that these implications do indeed hold.

Proposition 5.10. For an analytic affine connection control system Σdyn =
(Q,∇,D,Y ,Rm) and for q0 ∈ Q, the implications of Figure 5.4 hold.

Proof. The implications STLC =⇒ STLCC and MR-KC =⇒ KC follow directly
from the definitions of the various notions of controllability involved. Thus we need
only show that KC =⇒ STLCC. We let

Σkin,1 = (Q,X1,R
m1), . . . ,Σkin,k = (Q,Xk,R

mk)

be a collection of kinematic reductions for which Lie(∞)(X1 + · · · + Xk)q0 = Tq0Q,
where X1 + · · · + Xk denotes the fiberwise sum of the distributions X1, . . . ,Xk. Let
X = X1 ∪ · · · ∪Xk. Note that since Xi ⊂ Y, Σdyn is STLCC from q0 if (Q,∇,D,X )
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is properly STLCC from q0. Select vector fields Xa1
, . . . , Xa�

from the family X
such that {Xa1(q0), . . . , Xa�

(q0)} is a basis for Xq0 . For brevity, let us denote by
B ∈ Σ2(Yq0 ;Tq0Q/Yq0) the vector-valued quadratic form BY(q0). By Theorem 5.2
we know that QB |Xi,q0 = 0, i ∈ {1, . . . , k}. It therefore follows that for each λ ∈
ann(Yq0), λB(Xaj (q0), Xaj (q0)) = 0, j ∈ {1, . . . , 	}. From Lemma 3.3 this means that
λB is essentially indefinite, and since this holds for every λ ∈ ann(Yq0), B is itself
essentially indefinite. Therefore, by Theorem 4.4, (Q,∇,D,X ) is properly STLCC if

Lie(∞)(X)q0 = Tq0Q. The result now follows directly.

Remark 10. Note that all implications in Figure 5.4 are local. There are implica-
tions for global notions of controllability that follow from the local notions, but we do
not consider this in a systematic way, as the understanding of global controllability
of affine connection control systems is, as yet, poor.
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Abstract. Local exponential stability and local robustness for limit cycle solutions of ordinary
differential equations can be verified using the characteristic multipliers. These well-known results
are here generalized to a class of infinite-dimensional systems. Stability and robustness are now
verified using certain invertibility conditions on the linear equations that are obtained when the
system is linearized along the limit cycle. The new criterion reduces to the classical condition on
the characteristic multipliers when we consider a finite-dimensional system which is perturbed by a
bounded but possibly infinite-dimensional operator. The computation of a robustness margin, i.e.,
a bound on the maximally allowed perturbation, is also considered.
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1. Introduction. Autonomous oscillations appear frequently in physical sys-
tems [4]. Such oscillations may appear naturally as in population dynamics and the
motion of the planets or through intentional engineering design such as in electronic
and mechanical oscillators. The system models used to generate such periodic solu-
tions are often based on finite-dimensional ordinary differential equations (ODE). The
robustness of these mathematical models is an important topic of investigation. For
example, if a population model predicts an oscillatory solution, will there remain a
nearby oscillation if unmodeled species are taken into account? Similarly, will an elec-
tronic oscillator function in the presence of stray capacitances and other unmodeled
dynamics?

There is rich literature treating stability and robustness of periodic solutions of
autonomous ODE. Stability and perturbation results were obtained early in [11, 2]
and are discussed in many books on ODE theory and periodic systems; see, e.g., [3, 6,
4, 17]. These stability and robustness criteria are stated as a condition on the char-
acteristic multipliers corresponding to the variational system which is obtained when
the system is linearized around the nominal periodic solution. By using an extension
of the implicit function theorem it is possible to determine bounds on the allowed
perturbation [10, 4]. An extension of the stability results to infinite-dimensional sys-
tems has been obtained in [12]; see also [4]. Here we consider the above questions
for systems consisting of a feedback interconnection of a linear time invariant (LTI)
transfer function with a nonlinear function. No assumption is made on the dimension
of the transfer function. This class of systems appear frequently in control applica-
tions under the name of the Luré system. Our main results are stated as invertibility
conditions for certain linear operators corresponding to the variational system that
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appear when the system is linearized along the periodic trajectory. This allows us to
obtain robustness results that can be verified using techniques from robust control.

There are to our knowledge only a few results on robustness of oscillations in
autonomous systems. A recent contribution by Georgiou and Smith considers robust-
ness of a one-dimensional relaxation oscillator consisting of a relay hysteresis and an
integrator [5]. By using the gap metric topology and suitably chosen function spaces
they can prove that there remains an oscillatory solution (not necessarily periodic)
as long as the perturbation of the integrator is sufficiently small in the gap topol-
ogy. Varigonda extended the result to a new case in [14]. Yakubovich gave sector
conditions for oscillatory solutions of a class of nonlinear systems in [15]. In [13],
Stokes consider functional differential equations perturbed by an operator that vanish
asymptotically as time tends to infinity.

The results obtained in this paper are different from the above in both the as-
sumptions on the system and the obtained results. We consider a class of continuously
differentiable systems and provide conditions which guarantee existence of an expo-
nentially stable periodic solution for a general class of perturbations.

2. Problem formulation. We consider the following class of infinite-dimensional
systems:

y(t) =

∫ t

−∞
h(t− τ, θ)ϕ(y(τ), θ) dτ,(2.1)

where the impulse response function h(t, θ) and the nonlinearity ϕ(y, θ) are C1 with
respect to both arguments. We will state the exact assumptions on these functions
below, but for now it is enough to think of the system as a feedback interconnection
of an exponentially stable LTI plant and a memoryless nonlinearity. The system is
called nominal when θ = 0 and we assume the nominal system has a nontrivial isolated
T0-periodic solution y0(t) = y0(t+ T0) ∀t. Such solutions are called limit cycles. The
case when h(t, θ) is finite-dimensional when θ = 0 and infinite-dimensional for θ �= 0
is particularly interesting in applications because system design and system modeling
are often done based on finite-dimensional approximations. The theory developed in
this paper allows the systems analyst to rigorously verify that a modeled or designed
limit cycle will also appear in the true infinite-dimensional system. The parameter
θ should be viewed as a scaling of a class of infinite-dimensional perturbations. A
typical case is illustrated in Figure 2.1, where S0 denotes a finite-dimensional system
with a periodic solution, Δ is a perturbation described by some norm bound, and θ
scales the perturbation. In the next section we make some further connections to the
standard models of robust control.

S0

θΔ

Fig. 2.1. S0 is a low-dimensional nominal system with limit cycle solution and θΔ is an
infinite-dimensional but bounded perturbation. We derive conditions on S0 that ensure existence of
a stable limit cycle when θ is bounded away from zero.

We also note that the classical model

ẋ(t) = f(x(t), θ),(2.2)
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where f is C1, a special case of system (2.1). Indeed, (2.2) can be written as ẋ =
Ax + ϕ(x, θ), where A is stable and ϕ(x, θ) = f(x, θ) − Ax. Hence, the system can
be represented as in (2.1) with y = x and h(t, θ) = eAtν(t), where ν(t) is the unit
step function. We assume that when θ = 0, then (2.2) has a nontrivial T0-periodic
solution x0. Conditions for existence and exponential stability of limit cycles are
in the classical literature derived using the linearization of (2.2) along the nominal
periodic solution

v̇ = f ′
x(x0(t), 0)v.

This system cannot be asymptotically stable since v(t) = f(x0(t), 0) is a nontrivial
solution. This means that the monodromic matrix defined as Φ(T0, 0), where

d

dt
Φ(t, 0) = f ′

x(x0(t), 0)Φ(t, 0), Φ(0, 0) = I,

has at least one eigenvalue at 1. The eigenvalues of Φ(T0, 0) are called the character-
istic multipliers of f ′

x(x0(t), 0). We have thus seen that one characteristic multiplier
must be 1. It can be proven that if λ = 1 is a simple characteristic multiplier of
f ′
x(x0(t), 0), then for all sufficiently small θ there exists a periodic solution xθ with

period Tθ, which both are C1 functions with respect to θ. Moreover, if all other char-
acteristic multipliers are strictly inside the unit disc, then xθ is locally exponentially
stable. Proofs and exact formulations of these results can be found in [4, 3].

In this paper we extend the classical results to systems of the form (2.1). The de-
velopment bears some similarities with the classical finite-dimensional theory. There
will be, just as in the finite-dimensional case, a neutrally stable mode in the lineariza-
tion of the dynamics (2.1) along the periodic solution. The classical results were
derived using the implicit function theorem in a suitably chosen coordinate system,
where the coordinate corresponding to the neutrally stable mode of the linearized
dynamics can be removed. Here we use similar ideas in an operator setting. To prove
exponential stability we use the concept stability defect, which allows us to move the
neutrally stable mode into the unstable region, and then the implicit function the-
orem can be used. To prove structural robustness we use a version of the implicit
function theorem that only require right invertibility of the linearized dynamics and
thus overcome the problem with the neutrally stable mode.

2.1. Notation and assumptions. For a large part of this paper we consider a
version of system (2.1) where the period time is normalized to 1. It is then natural to
consider as solution space the set of continuous 1-periodic functions equipped with the
norm ‖v‖C(1) = supt∈[0,1] |v(t)|, which here is denoted by C(1). For computational
reasons we will state many of our results in terms of operators defined on L2(1),
the space of locally square integrable 1-periodic functions with the norm ‖v‖2

L2(1)
=∫ 1

0
|v(t)|2 dt. All our main results can, due to this choice of function space, be verified

using methods from linear quadratic optimization.
The exponentially weighted L2 space (α > 0)

L2α[0,∞) =

{
e(t) ∈ L2[0,∞) :

∫ ∞

0

e2αt|e(t)|2 dt < ∞
}

(2.3)

will be used to define and prove exponential stability. The norm on the usual L2[0,∞)
space is denoted as ‖ · ‖ while the norm on L2α[0,∞) is denoted and defined as
‖v‖α = (

∫∞
0

e2αt|v(t)|2 dt)1/2. The spatial norm will always be the Euclidean norm
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|v| = (
∑n

i=1 v
2
i )

1/2. At several places we consider the space C(1) × R with the norm
‖(v, T )‖C(1)×R = (‖v‖2

C(1) + |T |2)1/2. Similarly, L2(1)×R is equipped with the norm

‖(v, T )‖L2(1)×R = (‖v‖2
L2(1)

+ |T |2)1/2.
We also use that the characteristic multipliers (the Floquet multiplier) of a peri-

odic matrix A(t) = A(t + T0) are the eigenvalues of the monodromy matrix Φ(T0, 0),
where

d

dt
Φ(t, 0) = A(t)Φ(t, 0), Φ(0, 0) = I.

The impulse response function in (2.1) is assumed to be a strictly proper expo-
nentially stable system with the decay rate α.

Definition 2.1 (strictly proper exponentially stable system (SPES)). The im-
pulse response function h : R+ → Rp is exponentially stable if there exists ε > 0
such that eεth(t) ∈ L1[0,∞). It is exponentially stable with the decay rate α if
eαth(t) ∈ L1[0,∞). We further say that h is a strictly proper exponentially stable
system if additionally the differential of h has the form

dh(t) = ḣc(t) dt +

∞∑
k=0

hkδ(t− tk) dt,

where δ(·) denotes the Dirac impulse, 0 = t0 < t1 < t2 · · · , and

eεtḣc ∈ L1[0,∞),

∞∑
k=0

eεtk |hk| < ∞

for some ε > 0. If h is SPES, then the system output y(t) =
∫ t

−∞ h(t − τ)v(τ) dτ
belongs to C(1) for v ∈ C(1) and is differentiable with

ẏ(t) = h(0)v(t) +

∫ t

−∞
dh(t− τ)v(τ)

= h(0)v(t) +

∫ t

−∞
ḣc(t− τ)v(τ) dτ +

∞∑
k=0

hkv(t− tk),

which also belongs to C(1). As the norm on the convolution operators defined by h
and dh we use

‖h‖1 =

∫ ∞

0

|h(t)| dt,

‖dh‖1 =

∫ ∞

0

|ḣc(t)| +
∞∑
k=0

|hk|.
(2.4)

If h is SPES with the decay rate α, then the Laplace transforms H(s) and sH(s)
are (i) analytic in Re s > −α, (ii) continuous on −α+ iR, and (iii) bounded such that
for Re s ≥ −α we have max(|sH(s, θ)|, |H(s, θ)|) ≤ b for some number b.

Remark 1. The norms in (2.4) provide bounds on the induced norm of the
convolution operators defined by h and dh in all applications of the paper. Sometimes
we use the spaces L2[0,∞) and L2(1) and then better estimates on the induced norm
can be obtained for systems involving convolution with h.

The results of the following lemma will be used in the paper.
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Lemma 2.2. Suppose h is a strictly proper exponentially stable system. Then
(a) ‖tdh(t)‖1 < ∞,
(b) h(t) is a bounded function which converges to zero with exponential rate, i.e.,

|h(t)| ≤ ce−εt for some c, ε > 0,
(c) if the decay rate is α, then eαth(t) ∈ L2[0,∞).
We let L(V1, V2) denote the vector space of bounded linear operators that map a

normed vector space V1 into another normed vector space V2. The induced norm of
F ∈ L(V1, V2) is denoted by ‖F‖V1→V2

unless V1 = V2 = L2 in which case we use the
simplified notation ‖F‖.

Next follows some terminology from nonlinear functional analysis; see, for exam-
ple, [1] for further reference. Let V1, V2, V3 be normed vector spaces and let U1 ⊂ V1,
U2 ⊂ V2 be open subsets. A nonlinear operator F : U1 → V3 is said to be continuously
differentiable (C1) if there exists a continuous operator F ′ : U1 → L(V1, V3) such that

lim
u→u0

‖F (u) − F (u0) − F ′(u0)(u− u0)‖V3

‖u− u0‖V1

= 0(2.5)

for each u0 ∈ U1. The derivative F ′ is called the Fréchet derivative. If F is a C1

function of two variables, i.e., F : U1 × U2 → V3, then the partial derivatives are
denoted by F ′

ui
: U1 × U2 → L(Vi, V3) for i = 1, 2.

The kernel and the image of a linear operator L ∈ L(V, V ) are defined as KerL =
{v ∈ V : Lv = 0} and ImL = {Lv : v ∈ V }. The codimension of ImL is the dimension
of the quotient space V/ImL. An operator L ∈ L(V, V ) is called a Fredholm operator
if KerL and the codimension of ImL both are finite-dimensional.

2.2. Summary of problem formulation. We consider system (2.1) under the
following assumption.

Assumption 1. For system (2.1) we assume that
(i) the impulse response function h(t, θ) and the nonlinearity ϕ(y, θ) are defined

for all θ on an open interval Iθ, which contains 0;
(ii) ϕ is continuously differentiable with respect to both arguments;
(iii) h is continuously differentiable with respect to θ and SPES with the decay

rate α for every θ ∈ Iθ;
(iv) there exists a T0-periodic solution y0 of (2.1) for the case when θ = 0.
In order to define exponential stability of systems of the form (2.1) we consider

a system without perturbation. An absolutely continuous function y0(t) is called a
T -periodic solution of the system equation if y0(t) = y0(t + T ) ∀t and

y0(t) =

∫ t

−∞
h(t− τ)ϕ(y0(τ)) dτ ∀t.(2.6)

To introduce the notion of local exponential stability of a given T -periodic solution
y0(t), we consider the non-steady-state version of (2.6), defined as

y(t) = f(t) +

∫ t

0

h(t− τ)ϕ(y(τ)) dτ, t ≥ 0.(2.7)

In (2.7), f(·) represents initial conditions and external disturbances. The choice

f0(t) =

∫ 0

−∞
h(t− τ)ϕ(y0(τ)) dτ(2.8)
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gives the T -periodic solution y0(t), since (2.7) has a unique solution for any locally
integrable function f(·).

By exponential stability of the solution y0 we will mean that for all f close to f0

the solution y of (2.7) will converge exponentially to y0.
Definition 2.3. The T -periodic solution y0 is said to be locally exponentially

stable if there exist α > 0, δ > 0, and c > 0 such that for any f satisfying the
condition

|f(t) − f0(t)| ≤ δ ∀t ≥ 0;(2.9)

the corresponding solution y of (2.7) satisfies the inequality∫ ∞

0

e2αt|y(t) − y0(t + d)|2 dt + |d|2 ≤ c

∫ ∞

0

e2αt|f(t) − f0(t)|2 dt(2.10)

for some d ∈ R.
The presence of the phase shift parameter d in (2.10) is necessary. It can be shown

that with d fixed at d = 0, no nonequilibrium solution y0 of (2.6) satisfies (2.10).
The following problem is considered in the paper.
Problem 1. Given Assumption 1, derive a sufficient condition for the existence

of an open interval Iθ ⊂ Iθ around the origin with the property that for each θ ∈ Iθ,
there exists a unique exponentially stable periodic solution y(t, θ) of (2.1) with period
T (θ) and with the property that y(t, θ) and T (θ) are C1 in θ with y(t, 0) = y0(t) and
T (0) = T0.

Remark 2. We often use the notation yθ(t) := y(t, θ) and Tθ := T (θ) for brevity.
We will also derive a numerical procedure to verify a bound on θ for which there

exists an exponentially stable periodic solution of (2.1) with orbit and period time
within a given prespecified tolerance of the nominal solution. To do this we will
normalize the nominal period time by the transformation t/T0 → t, which gives the
nominal dynamics

y0(t) =

∫ t

−∞
T0h(T0(t− τ), 0)ϕ(y0(τ), 0) dτ.

Hence, by redefining T0h(T0t, 0) → h(t, 0) we can assume T0 = 1. A general T -periodic
solution of (2.1) can thus be written as

y(t) =

∫ t

−∞
Th(T (t− τ), θ)ϕ(y(τ), θ) dτ,(2.11)

where y is the trajectory with period normalized to 1 and T is the period time. For
the normalized dynamics in (2.11) we use an equivalent formulation of Assumption 1.

Assumption 2. For system (2.11) we assume (i)–(iii) in Assumption 1 together
with

(iv′) there exists a 1-periodic solution y of (2.11) for the case when θ = 0 and
T = 1.

An advantage with the model class (2.11) is that we separate the orbit from the
period time so the problem is to determine the existence of a pair (yθ, Tθ) correspond-
ing to each θ.

Problem 2 (robustness margin). Assume (y0, 1) ∈ C(1) × R is a nominal
solution to (2.11) and let Z = {(y, T ) ∈ C(1) ×R : ‖y − y0‖2

C(1) + |T − 1|2 ≤ r2
0}. A

robustness margin is a bound θ > 0 such that for each |θ| ≤ θ, there exists a unique
exponentially stable solution (yθ, Tθ) ∈ Z to (2.11) (here we assume [−θ, θ] ⊂ Iθ).
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3. Main results. Our first result provides a solution to Problem 1 for the case
when the nominal system is finite-dimensional.

Theorem 3.1. Suppose Assumption 1 holds and consider the system in (2.1)
when h(t, 0) = CeAtBν(t), where ν(·) is the unit step function and Reλ(A) < −α. If
the characteristic multipliers of Acl(t) = A + Bϕ′

y(y0(t), 0)C can be sorted as

1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| and α < − log |λ2|
T0

,

then for all sufficiently small θ there exists a unique (modulo time translation) ex-
ponentially stable limit cycle solution y(t, θ) to (2.1) with period T (θ) and with the
property that y(t, θ) and T (θ) are C1 in θ with y(t, 0) = y0(t) and T (0) = T0. More-
over, the exponential decay rate in (2.10) can be chosen to be α.

The proof of Theorem 3.1 and most other results in this section are collected in
the appendix. The proof builds on results presented in sections 3.1–3.4.

We consider two examples. The first shows that the classical finite-dimensional
result is completely recovered by Theorem 3.1 and the second treats an uncertainty
model from robust control.

Example 1. System (2.2) can equivalently be written in the form (2.1) with y = x,
ϕ(y, θ) = f(y, θ)−Ay, and h(t, θ) = eAtν(t), where ν(·) is the unit step function and
A is any Hurwitz matrix. Hence, since Acl(t) = A +Bϕ′

y(y0(t), 0)C = f ′
x(y0(t), 0), it

follows that the condition on the characteristic multipliers in Theorem 3.1 is the same
as the classical criterion discussed in [3, 4]. Theorem 3.1 hence gives an extended
interpretation of the well-known finite-dimensional perturbation result.

H(s, θ)

ϕ(y, θ)
y

H11 H12

H21 H22

θΔ

Fig. 3.1. Block diagram corresponding to the perturbed system in (2.1).

Example 2. In order to understand how our model class in (2.1) relates to
standard uncertain system models from robust control we consider the block diagram
in Figure 3.1. The transfer function

H(s) =

[
H11(s) H12(s)

H21(s) H22(s)

]
∈ RH∞

is assumed to be exponentially stable with the decay rate α, i.e., the poles belong to the
half space Re s < −α. This system corresponds to (2.1) with1 h(t, θ) = L−1(H(s, θ)),
where

H(s, θ) = H11(s) + θH12(s)Δ(s)(I − θH22(s)Δ(s))−1H21(s).(3.1)

1Here L denotes the Laplace transform.
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The following result is a corollary to Theorem 3.1.
Corollary 3.2. Assume
(i) H(s, θ) in (3.1) is SPES with the decay rate α for θ ∈ Iθ,
(ii) ϕ is C1 with respect to both arguments,
(iii) for θ = 0 the system has a nontrivial T0-periodic solution y0,
(iv) H11(s) = C1(sI − A1)

−1B1, where Reλ(A1) < −α and the characteristic
multipliers of Acl(t) = A1 + B1ϕ

′
y(y0(t), 0)C1 can be sorted as

1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| and α < − log |λ2|
T0

.

Then there exists a unique (modulo time translation) exponentially stable limit cycle
solution for all sufficiently small θ. Moreover, the exponential decay rate in (2.10)
can be chosen to be α and the same continuity property as in Theorem 3.1 holds.

We will next present a solution of Problem 2. At the same time we will touch
upon some of the ideas behind the proof of Theorem 3.1. We will discuss the existence
of solution and exponential stability separately and then combine them into our main
small-gain theorem in section 3.3. We finally consider the case when the nominal
system is finite-dimensional in section 3.4. This is where we derive the condition on
the characteristic multipliers that is used to prove Theorem 3.1.

3.1. Existence of solution. To prove the existence of a periodic solution to
the perturbed system we consider the system equation in the normalized time (2.11).
This equation involves well-defined function spaces and the existence of solution is
proven using an implicit function theorem that only requires right invertibility of
the partial derivative with respect to the trajectory. To obtain a robustness bound
we need to estimate the region in which the right inverse exists and for this we use
Lemma 3.3. The robustness result in Lemma 3.4 is proven using Lemma 5.2 in the
appendix, which is our basic result on local existence of solution.

First introduce the Banach spaces

Xy = C(1), XT = R, Xz = Xy ×XT ,

the open set Xθ = Iθ, and the operator F : Xz ×Xθ → Xy, which for each z = (y, T )
is defined as

F (z, θ)(t) = y(t) −
∫ t

−∞
Th(T (t− τ), θ)ϕ(y(τ), θ) dτ.(3.2)

By Assumption 2, we have F (z0, 0) = 0 for z0 = (y0, 1). To solve Problem 2 we need
to show that for all |θ| ≤ θ there exists a pair zθ = (yθ, Tθ) ∈ Z such that

F (zθ, θ) = 0.(3.3)

This equation simply states that zθ is a solution of (2.11). An important part of the
proof of Theorem 3.1 is to use an implicit function theorem stated in the appendix.
It shows that if F ′

z(z0, 0) has a bounded right inverse, then there exists a solution
zθ to (3.3) for all θ in some neighborhood of θ = 0. To estimate the size of this
neighborhood and to ensure that zθ ∈ Z we need to explore more structure of the
operator equation (3.3). We proceed formally and differentiate the equality in (3.3),
which gives

dz

dθ
= −F ′

z(z(θ), θ)
†F ′

θ(z(θ), θ),(3.4)
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where F ′
z(z(θ), θ)

† denotes the right inverse. To evaluate the right inverse for an
arbitrary solution (zθ, θ) we use the following lemma.

Lemma 3.3. Let V1, V2 be Banach spaces and assume H0 ∈ L(V1, V2) has a right
inverse G0 ∈ L(V2, V1). Then for each Δ ∈ L(V1, V2) with ‖Δ‖V1→V2 < 1/‖G0‖V2→V1 ,
there exists G ∈ L(V2, V1) such that (H0 +Δ)G = I. One possible choice for this right
inverse is

G = G0(I + ΔG0)
−1.

Proof. Since H0G0 = I, it follows that (H0 + Δ)G0(I + ΔG0)
−1 = I. The right

inverse G = G0(I + ΔG0)
−1 is bounded with

‖G‖V2→V1
≤ ‖G0‖V2→V1

1 − ‖Δ‖V1→V2 · ‖G0‖V2→V1

.

Hence, if we let Δ̄(z, θ) = F ′
z(z, θ) − F ′

z(z0, 0), then (3.4) becomes

dz

dθ
= −F ′

z(z0, 0)†(I − Δ̄(z(θ), θ)F ′
z(z0, 0)†)−1F ′

θ(z(θ), θ)(3.5)

which is well defined when

sup
z∈Z,|θ|≤θ

‖Δ̄(z, θ)‖Xz→Xy · ‖F ′
z(z0, 0)†‖Xy→Xz

< 1.

This small-gain condition will generally give rise to conservative estimates. It is our
experience that better estimates can be obtained by extending the operators to the
corresponding L2-spaces on which norm bounds can be computed efficiently:

F̃ ′
θ : Z × Iθ → L(X̃θ, X̃y),

F̃ ′
z : Z × Iθ → L(X̃z, X̃y),

Δ̃ : Z × Iθ → L(X̃z, X̃y),

where

X̃θ = R,

X̃y = L2(1), X̃T = R,

X̃z = X̃y × X̃T .

(3.6)

It is easy to show that we have the block representations

F̃ ′
z(z, θ) =

[
F̃ ′
y(z, θ) F̃ ′

T (z, θ)
]

=
[
I − Ls(z, θ) y1(z, θ)

]
,

Δ̃(z, θ) =
[
Δ̃1(z, θ) Δ̃2(z, θ)

]
=

[
Ls(z0, 0) − Ls(z, θ) y1(z, θ) − y1(z0, 0)

]
,

(3.7)

where

(Ls(z, θ)v)(t) =

∫ t

−∞
Th(T (t− τ), θ)ϕ′

y(y(τ), θ)v(τ) dτ,

(y1(z, θ))(t) =

∫ t

−∞
h(T (t− τ), θ)ϕ(y(τ), θ) dτ

+

∫ t

−∞
T (t− τ) dh(T (t− τ), θ)ϕ(y(τ), θ).

(3.8)

The operator Δ̄ : [Δ̄1 Δ̄2] : Z × Iθ → L(Xy, Xz) is defined in exactly the same way

as Δ̃ but on a different function space. We have the following lemma.
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Lemma 3.4. Suppose Assumption 2 holds and let F̃ ′
z(z, θ) and Δ̃(z, θ) be defined

as in (3.6)–(3.8). If

(i) F̃ ′
z(z0, 0) has a bounded right inverse denoted F̃ ′

z(z0, 0)†,

(ii) supz∈Z,|θ|≤θ ‖Δ̃(z, θ)‖X̃z→X̃y
· ‖F̃ ′

z(z0, 0)†‖X̃y→X̃z
< 1,

(iii) supz∈Z,|θ|≤θ ‖F̃ ′
z(z0, 0)†(I − Δ̃(z, θ)F̃ ′

z(z0, 0)†)−1F̃θ(z, θ)‖X̃θ→Xz
< r0

θ
,

then there exists a unique (modulo time translation) solution zθ = (yθ, Tθ) ∈ Z
to (2.11) for all |θ| ≤ θ.

3.2. Exponential stability. To prove exponential stability we consider a lin-
earization of the nonsteady state dynamics in (2.7). The linearized model does not
have a stable inverse due to a neutrally stable mode which is identified in Proposi-
tion 3.5. In order to prove convergence we remove the effect of the neutrally stable
mode by compensating with a term corresponding to the phase delay. This leads us
to define the notion stability defect in Definition 3.6. The main stability result in
Theorem 3.7 is proven in the appendix.

We derive a sufficient condition for exponential stability by using the standard
implicit function theorem. In order to obtain an appropriate topology on which
Frechét derivatives can be defined we introduce the vector space V = {v : v ∈
L2α[0,∞) ∩ L∞[0,∞)} with the norm ‖v‖V = max(‖v‖α, ‖v‖∞). The first norm
is used to define the exponential decay while it is the second that allow us to compute
the derivative. We let Xy = V , Xd = R, and Xz = Xy ×Xd and consider the operator
Ψ : Xz ×Xy → Xy, which for each pair z = (δy, d) ∈ Xz and δf ∈ Xy is defined as

(3.9) (Ψ((δy, d), δf))(t)

= y0(t + d) + δy(t) −
∫ t

0

h(t− τ)ϕ(y0(τ + d) + δy(τ)) dτ − f0(t) − δf(t),

where y0 is a T -periodic solution of (2.7) and f0 is defined in (2.8). Note that the
equation Ψ(z, δf) = 0 is equivalent to (2.7) with f(t) = f0(t) + δf(t) and y(t) =
y0(t+d)+δy(t). In particular, we know from (2.6) that Ψ(0, 0) = 0. We need to show
that for any δf in some neighborhood of 0 there exists a unique pair z = (δy, d) ∈ Xz

such that Ψ((δy, d), δf) = 0 and such that the bound (2.10) holds. The first condition
follows from the implicit function theorem if we can prove that the Frechét derivative
with respect to the first argument, Ψ′

z(0, 0), has a bounded inverse. To prove that
each such triplet (δy, d, δf) satisfies the exponential decay condition in (2.10) we use

the extension of the derivative to L2α-space. With X̃y = L2α[0,∞), X̃d = R, and

X̃z = X̃y × X̃d the extension Ψ̃′
z(0, 0) ∈ L(X̃z, X̃y) is defined as

Ψ̃′
z(0, 0) =

[
Ψ̃′

y(0, 0) Ψ̃′
d(0, 0)

]
=

[
I − L e

]
,(3.10)

where L ∈ L(L2α,L2α) and e ∈ L(R,L2α) are defined as

(Lv)(t) =

∫ t

0

h(t− τ)ϕ′(y0(τ))v(τ) dτ(3.11)

and

e(t) =

∫ 0

−∞
h(t− τ)ϕ′(y0(τ))ẏ0(τ) dτ.(3.12)
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In the proof of Theorem 3.7 we shall show that (3.10) is the correct derivative by using

Proposition 3.5 and that e ∈ L2α[0,∞). The proof also shows that if Ψ̃′
z(0, 0) has a

bounded inverse, then the exponential decay condition in (2.10) holds and, moreover,
that the original operator Ψ′

z(0, 0) has a bounded inverse (which proves the existence
of (δy, d)).

The operator I −L does not have a bounded inverse which follows from the next
lemma.

Proposition 3.5. If y0 �= const is a T -periodic solution of (2.6) and L and e
are defined as in (3.11)–(3.12), then ẏ0 ∈ (I − L)−1e.

Proof. Let us differentiate y0(t) in (2.6). This gives

ẏ0(t) =
d

dt

∫ t

−∞
h(t− τ)ϕ(y0(τ)) dτ

= h(0)ϕ(y0(t)) +

∫ t

−∞
dh(t− τ)ϕ(y0(τ))

= h(0)ϕ(y0(t)) + lim
T→−∞

[−h(t− τ)ϕ(y0(τ))]
t
T +

∫ t

−∞
h(t− τ)ϕ′(y0(τ))ẏ0(τ) dτ

= e(t) +

∫ t

0

h(t− τ)ϕ′(y0(τ))ẏ0(τ) dτ,

where we used that limT→−∞ h(t − T )ϕ(y0(T )) = 0 since h is exponentially stable
and continuous, see Lemma 2.2.

From this result it follows that e �∈ Im (I − L) and one expects that (3.10) has a
bounded inverse if (I − L) has codimension 1. To make this precise we introduce the
notion of α-defect of the operator L.

Definition 3.6. Let L ∈ L(X ,X ) be a bounded operator on a Banach space X .
Suppose that I − L is a Fredholm operator with Ker(I − L) = 0. Then the stability
defect def (L) is defined as the codimension of the subspace

XL = {(I − L)u : u ∈ X} ⊂ X .

For L ∈ L(X̃y, X̃y) in (3.11) the stability defect is called α-defect, denoted by defα(L),

due to the underlying space X̃y = L2α[0,∞).
Theorem 3.7. The T -periodic solution y0 of (2.6) is exponentially stable if

defα(L) = 1 for L defined in (3.11).
It will be convenient in computations to work with operators defined on L2 instead

of L2α. If eαth(t) ∈ L1[0,∞), then the next lemma shows that the α-defect can be
computed on L2 by using the operator Lα : L2[0,∞) → L2[0,∞) defined by

(Lαv)(t) =

∫ t

0

hα(t− τ)ϕ′(y0(τ))v(τ) dτ,(3.13)

where hα(t) = eαth(t).
Lemma 3.8. With L : L2α → L2α and Lα : L2 → L2 defined in (3.11) and (3.13),

respectively, we have defα(L) = def (Lα).
Proof. The proof is easy and is given in [8].

3.3. A small-gain theorem. We will next combine the results in sections 3.1
and 3.2 to obtain a solution of Problem 2. First we derive a condition for exponential
stability of all solutions zθ = (yθ, Tθ) ∈ Z of (2.11) by proving that all possible
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linearizations have α-defect 1. This is done in Lemma 3.9 which is a zero exclusion
principle that is valid because the stability defect is robust to small perturbations.

Since we will do all computations in L2-space this leads us to consider the oper-
ators Lα : Z × Iθ → L(L2,L2) defined by

(Lα(z, θ)v)(t) =

∫ t

0

Thα(T (t− τ), θ)ϕ′
y(y(τ), θ)v(τ) dτ,(3.14)

where hα(t, θ) = eαth(t, θ). The nominal operator L0
α = Lα(z0, 0) (where z0 = (y0, 1))

is in our applications easy to work with. If defα(L) = 1, then Im (I − L) is a closed
subspace and it follows by the Banach inverse theorem that there exists c > 0 such
that

‖(I − L0
α)v‖ ≥ c‖v‖ ∀v ∈ L2.(3.15)

We will use this bound in the next lemma, which shows that the α-defect is robust to
perturbations of the system.

Lemma 3.9. Suppose Assumption 2 holds. Let Lα : Z × Iθ → L(L2,L2) be
defined as in (3.14) and let L0

α = Lα(z0, 0) and ΔLα(z, θ) = Lα(z, θ) − L0
α. If

(i) def (L0
α) = 1,

(ii) there exists 0 < ε < c such that

sup
z∈Z,|θ|≤θ̄

‖ΔLα(z, θ)‖ ≤ c− ε,

where c > 0 satisfies (3.15),
then def (Lα(z, θ)) = 1 for all z ∈ Z and |θ| ≤ θ. In particular, every 1-periodic
solution (y, T ) ∈ Z of (2.11) is exponentially stable.

The next theorem, which solves Problem 2, follows from Lemmas 3.4 and 3.9.
Theorem 3.10. Suppose Assumption 2 holds and let F̃ ′

z(z, θ) and Δ̃(z, θ) be
defined as in (3.6)–(3.8). Further let Lα(z, θ) be defined as in (3.14) and define L0

α =
Lα(z0, 0) and ΔLα(z, θ) = Lα(z, θ) − L0

α. If

(i) F̃ ′
z(z0, 0) has a bounded right inverse denoted by F̃ ′

z(z0, 0)†,

(ii) supz∈Z,|θ|≤θ ‖Δ̃(z, θ)‖X̃z→X̃y
· ‖F̃ ′

z(z0, 0)†‖X̃y→X̃z
< 1,

(iii) supz∈Z,|θ|≤θ ‖F̃ ′
z(z0, 0)†(I − Δ̃(z, θ)F̃ ′

z(z0, 0)†)−1F̃θ(z, θ)‖X̃θ→Xz
< r0

θ
,

(iv) def (L0
α) = 1,

(v) there exists 0 < ε < c such that

sup
z∈Z,|θ|≤θ̄

‖ΔLα(z, θ)‖ ≤ c− ε,(3.16)

where c > 0 satisfies (3.15),
then there exists a unique (modulo time translation) exponentially stable solution
(yθ, Tθ) ∈ Z to (2.11) for all θ ∈ [−θ, θ].

3.4. Estimation of norms. We here consider the case when the nominal system
in (2.11) is finite-dimensional. This means that h(t, 0) = CeAtBν(t), where A is
Hurwitz and ν(t) is the unit step function. In this case all conditions in Theorem 3.10
can be verified numerically. We show how right invertibility and the condition on the
stability defect can be proven in the finite-dimensional case in Propositions 3.12 and
3.14, respectively. These two results are the foundation for the proof of Theorem 3.1.
We also discuss how to estimate some of the relevant norms in Theorem 3.10.
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3.4.1. Right invertibility of F̃
′
z(z0,0). We first derive a state-space realization

of the operator F̃ ′
z(z0, 0) : (v, δT ) �→ w in (3.6)–(3.8).

Lemma 3.11. Let h(t, 0) = CeAtBν(t). Then the Frechét derivative

F̃ ′
z(z0, 0) =

[
I − Ls(z0, 0) y1(z0, 0)

]
,

where

(Ls(z0, 0)v)(t) =

∫ t

−∞
h(t− τ, 0)ϕ′

y(y0(τ), 0)v(τ) dτ,

(y1(z0, 0))(t) =

∫ t

−∞
h(t− τ, 0)ϕ(y0(τ), 0) dτ +

∫ t

−∞
(t− τ) dh(t− τ, 0)ϕ(y0(τ), 0)

has the state space realization F̃ ′
z(z0, 0) : (v, δT ) �→ w defined by

ẋ = Ax + Bϕ′
y(y0, 0)v + ẋ0δT, x(1) = x(0), w = v − Cx,(3.17)

where ẋ0(t) = Ax0(t) + Bϕ(y0(t), 0) is the nominal 1-periodic state trajectory.
Proof. It is straightforward to see that Ls(z0, 0) : v �→ w1 has the state space

realization

ẋ1 = Ax1 + Bϕ′
y(y0, 0)v, x1(1) = x1(0), w = v − Cx1.

In order to obtain a state-space realization for y1(z0, 0) we notice that

(y1(z0, 0))(t) = C

∫ t

−∞
(I + (t− τ)A)eA(t−τ)Bϕ(y0(τ)) dτ

= C

∫ t

−∞
eA(t−τ)

(
d

dτ

∫ τ

−∞
eA(τ−s)Bϕ(yo(s)) ds

)
dτ.

Hence y1(z0, 0) : δT → w2 has the state-space realization

ẋ2 = Ax2 + ẋ0δT, x2(1) = x2(0), w2 = Cx2.

If we let x = x1 + x2, then we obtain the state-space realization in (3.17).
The next proposition shows that the right invertibility condition (i) in Theo-

rem 3.10 follows from the classical finite-dimensional condition on the character-
istic multipliers of the system matrix for the linearized dynamics Acl(t) = A +
Bϕ′

y(y0(t), 0)C. Note that one characteristic multiplier must be equal to 1 since
d
dt ẋ0(t) = Acl(t)ẋ0(t), which implies that ẋ0(0) = Φcl(1, 0)ẋ0(0) due to the periodic-
ity of ẋ0.

Proposition 3.12. Consider the operator F̃ ′
z(z0, 0) defined in (3.6)–(3.8) in the

finite-dimensional case when h(t, 0) = CeAtBν(t), where A is Hurwitz. If n−1 of the
characteristic multipliers of Acl(t) = A + Bϕ′

y(y0(t), 0)C are different from 1, then

F̃ ′
z(z0, 0) has a bounded right inverse. One possible right inverse is F̃ ′

z(z0, 0)† : w �→
(v, δT ) defined by

ẋ = (A + Bϕ′
y(y0, 0)C)x + Bϕ′

y(y0, 0)w + ẋ0kx(0), x(1) = x(0),

(v, δT ) = (w + Cx, kx(0)),
(3.18)
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where the row vector k must be chosen such that 1 �∈ eig(Φcl(1, 0) + ẋ0(0)k), e.g.,
k = ẋ0(0)T . Here Φcl(t, 0) is the transition matrix corresponding to Acl.

Proof. The operator F̃ ′
z(z0, 0) can be represented by the state-space realization

in (3.17). We proceed formally and construct a candidate right inverse by using
v = w + Cx in the first equation of (3.17) and δT = kx(0). This gives rise to a map
w �→ (v, δT ) defined by (3.18). In order for this to be well defined on L2(1) it is
necessary that the following equation have a solution for all w ∈ L2(1):

x(0) = (Φcl(1, 0) + ẋ0(0)k)x(0) +

∫ 1

0

Φcl(1, τ)Bϕ′
y(y0(τ), 0)w(τ) dτ,

where we used that
∫ 1

0
Φcl(1, τ)ẋ0(τ) dτkx(0) = ẋ0(0)kx(0). Since span{ẋ0(0)} =

Ker (I−Φcl(1, 0)) it follows that there exists a vector k such that I−Φcl(1, 0)− ẋ0(0)k
is invertible. Indeed, one possible choice is k = ẋ0(0)T . It is now easy to see that
when the initial condition of (3.18) is the same as that of (3.17) then the composition
of (3.17) with (3.18) is the identity operator. This proves the existence of a right
inverse.

3.4.2. Verification of condition (iii) in Theorem 3.10. To verify condition
(iii) in Theorem 3.10 we exploit the structure of the operators. It follows from (3.18)
in Proposition 3.12 that the nominal right inverse will have the block structure

F̃ ′
z(z0, 0)† =

[
1 + G1

G2

]
.(3.19)

Indeed, if we assume k = ẋ0(0), then the initial condition of (3.18) must be

x(0) = (I − Φcl(1, 0) − kkT )−1

∫ 1

0

Φcl(1, τ)Bcl(τ)w(τ) dτ.

If we let

g1(t, τ) =

{
(Γ(t)Φcl(1, t) + C)Φcl(t, τ)Bcl(τ), t > τ,

Γ(t)Φcl(1, τ)Bcl(τ), t < τ,

g2(t, τ) = k(I − Φcl(1, 0) − kkT )−1Φcl(t, τ)Bcl(τ),

where Bcl(t) = Bϕ′
y(y0(t), 0) and Γ(t) = C(Φcl(t, 0) + ẋ0(t)k)(I −Φcl(1, 0)− kkT )−1,

then we have the representation

(F̃ ′
z(z0, 0)†w)(t) = (w(t) + (g1 ∗ w)(t), (g2 ∗ w)(1))

which corresponds to the block structure in (3.19). Here

(gi ∗ w)(t) =

∫ 1

0

gi(t, τ)w(τ) dτ, i = 1, 2.(3.20)

We will also use the strictly proper part defined by

(Gspw)(t) = ((g1 ∗ w)(t), (g2 ∗ w)(1)).(3.21)

We have the following result.
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Proposition 3.13. Define2

γ̃1 = ‖F̃ ′
z(z0, 0)†‖X̃y→X̃z

, γ̃2 = ‖Gsp‖X̃y→Xz
,

γ̃Δ = sup
z∈Z,|θ|≤θ

‖Δ̃(z, θ)‖X̃z→X̃y
,

γΔ1 = sup
z∈Z,|θ|≤θ

‖Δ̄1(z, θ)‖Xy→Xy , γΔ2 = sup
z∈Z,|θ|≤θ

‖Δ̄2(z, θ)‖XT→Xy ,

γ̃θ = sup
z∈Z,|θ|≤θ

‖F̃ ′
θ(z, θ)‖X̃θ→X̃y

, γθ = sup
z∈Z,|θ|≤θ

‖F ′
θ(z, θ)‖Xθ→Xy .

A sufficient condition for (iii) in Theorem 3.10 is(
(γ2

Δ1
+ γ2

Δ2
)1/2

1 − γΔ1

+ 1

)
γ̃2 · γ̃θ

1 − γ̃Δ · γ̃1
+

γθ
1 − γΔ1

<
r0

θ
.(3.22)

Proof. We start to derive a bound on the norm for fixed z ∈ Z and θ ∈ Iθ. We
will use the block representations

F̃ ′
z0

†
:= F̃ ′

z(z0, 0)† =

[
1 + G1

G2

]
, Gsp =

[
G1

G2

]
, Δ̃ = [Δ̃1 Δ̃2],

where G1 and G2 are defined in terms of the convolutions (3.20) and Δ̃ is defined as
in (3.7). We have

F̃ ′
z0

†
(I + Δ̃ F̃ ′

z0

†
)−1 =

[
(I + Δ̃1)

−1

0

]
− (I + Δ̃1)

−1

[
Δ̃1 Δ̃2

0 0

]
Gsp(I + Δ̃ F̃ ′

z0

†
)−1

+Gsp(I + Δ̃ F̃ ′
z0

†
)−1(3.23)

which follows since by the identity A−1 −B−1 = B−1(B −A)A−1 we have

(I + Δ̃ F̃ ′
z0

†
)−1 − (I + Δ̃1)

−1 = −(I + Δ̃1)
−1(Δ̃1G1 + Δ̃2G2)(I + Δ̃ F̃ ′

z0

†
)−1

= −(I + Δ̃1)
−1Δ̃Gsp(I + Δ̃ F̃ ′

z0

†
)−1.

From (3.23) we get

(3.24) ‖ F̃ ′
z0

†
(I + Δ̃ F̃ ′

z0

†
)−1F̃ ′

θ‖X̃θ→Xz
≤

‖F ′
θ‖Xθ→Xy

1 − ‖Δ̄1‖Xy→Xy

+

(
(‖Δ̄1‖2

Xy→Xy
+ ‖Δ̄2‖2

Xθ→Xy
)1/2

1 − ‖Δ̄1‖Xy→Xy

+ 1

)
‖Gsp‖X̃y→Xz

‖F̃ ′
θ‖X̃θ→X̃y

1 − ‖Δ̃‖X̃z→X̃y
‖F̃ ′†z0‖X̃y→X̃z

.

Note that some induced norms are over the original X-spaces (C(1)), others are over
the X̃-spaces (L2(1)), and some are from X̃-space to X-space. If we optimize over
z ∈ Z and |θ| ≤ θ, we see from (3.24) that (3.22) is sufficient for (iii) in Theorem
3.10.

The computation of γ̃Δ-γ̃θ in Proposition 3.13 depends very much on the uncer-
tainty structure and must be treated on a case-by-case basis. For γ̃1 and γ̃2 it is
possible to derive systematic algorithms for computing bounds on these parameters.

2Recall that the operators Δ̄ and ˜Δ are both defined as in (3.6)–(3.8), but on different spaces.
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3.4.3. Computation of γ̃1. For a given choice of k we compute

γ̃1 = ‖F̃ ′
z(z0, 0)†‖X̃y→X̃z

= ‖F̃ ′
z(z0, 0)†‖L2(1)→L2(1)×R

by solving the optimization problem

γ̃2
1 = inf γ2 subject to J(x,w, γ) ≤ 0 ∀(x,w) ∈ L,(3.25)

where

J(x,w, γ) = |kx(0)|2 +

∫ 1

0

(|w + Cx|2 − γ2|w|2) dt

L = {(x,w) ∈ L2(1) : ẋ(t) =Acl(t)x(t) +Bcl(t)w(t) + ẋ0(t)kx(0), x(1) =x(0)}

and Acl(t) = A + Bϕ′
y(y0(t), 0)C and Bcl(t) = Bϕ′

y(y0(t), 0). We obtain an upper

bound by using LQ optimal control techniques. If we let Q0 = kT k, Q = CTC,
S = CT , R = (1−γ2)I, then γ is an upper bound on the optimization problem (3.25),

i.e., γ > ‖F̃ ′
z(z0, 0)†‖X̃y→X̃z

if and only if there exists ε > 0 such that

sup
(x,w)∈L

x(0)TQ0x(0) +

∫ 1

0

(xTQx + 2xTSw + wTRw) dt ≤ −ε|x(0)|2.(3.26)

Necessary and sufficient conditions for this condition to hold can be obtained from
the Pontryagin maximum principle. The full details are given in [8].

3.4.4. Computation of γ̃2. In the linear systems theory the H2-norm can be
used to estimate the ‖·‖L2→L∞ norm of a transfer function. We will here estimate the
corresponding norm for the strictly proper operator Gsp in (3.21). By the convolution

formula in (3.21) and the definition of X̃y and Xz, we get

‖Gspw‖Xz = ‖Gspw‖C(1)×R ≤ (‖G1‖2
L2(1)→C(1) + ‖G2‖2

L2(1)→R)1/2‖w‖L2(1),

where

‖G1‖2
L2(1)→C(1) := max

t∈[0,1]

∫ 1

0

|g1(t, s)|2 ds,

‖G2‖2
L2(1)→R :=

∫ 1

0

|g2(1, s)|2 ds.

Hence, we get the bound

γ̃2 = ‖Gsp‖X̃y→Xz
= ‖Gsp‖L2(1)→C(1)×R ≤ (‖G1‖2

L2(1)→C(1) + ‖G2‖2
L2(1)→R)1/2.

(3.27)

3.4.5. Verification of the α-defect. We will next derive a condition for the
α-defect to be 1 in the finite-dimensional case.

Proposition 3.14. Consider the operator L defined in (3.11) in the finite-
dimensional case when h(t) = CeAtBν(t), where Reλ(A) < −α. If the characteristic
multipliers of Acl(t) = A + Bϕ′(y0(t))C can be sorted as

1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|,
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then defα(L) = 1 for α ∈ (0,− log |λ2|
T ).

We next discuss how to verify conditions (iv) and (v) in Theorem 3.10. For
condition (iv) we introduce L0 ∈ L(L2,L2) defined by

(L0v)(t) =

∫ t

0

h(t− τ, 0)ϕ′(y(τ), 0)v(τ) dτ.

If h(t, 0) = CeAtBν(t), then defα(L0) = 1 if the condition in Proposition 3.14 holds,
which by Lemma 3.8 implies def (L0

α) = 1.
To verify condition (v) in Theorem 3.10 we need to derive a bound c > 0 (as large

as possible) such that (3.15) holds, i.e.,

‖(I − L0
α)v‖ ≥ c‖v‖ ∀v ∈ L2[0,∞),(3.28)

where L0
α = Lα(z0, 0) is defined as in (3.14) with hα(t, 0) = Ce(A+αI)tBν(t). The

condition (3.28) holds if there exists ε > 0 such that∫ ∞

0

(xTCTCx− 2xTCT v + (1 − c2)vT v) dt ≥ ε(‖x‖2 + ‖v‖2)(3.29)

for all (x, v) ∈ {(x, v) ∈ L2[0,∞) : ẋ(t) = (A+αI)x(t) +Bcl(t)v(t), x(0) = 0}, where
Bcl(t) = Bϕ′(y0(t), 0). Several equivalent conditions for the last inequality to hold
are given in [16].

4. Numerical example. We consider the Wien bridge oscillator in Figure 4.1.
The model is adopted from [9]. If we let x1 = vC1

and x2 = vC2
, the voltages over C1

x1

x2

C1

C2

R1

R2

Fig. 4.1. The Wien bridge oscillator.

and C2 be the state variables, then the system equation becomes

ẋ1 =
1

C1R1
(−x1 + x2 − ϕ(x2)),

ẋ2 = − 1

C2R1
(−x1 + x2 − ϕ(x2)) −

1

C2R2
x2,

where ϕ(·) is the model of the operational amplifier. With the values C1 = C2 = 1,
R1 = R2 = 1/6.32, and

ϕ(y) = 3.234y − 2.195y3 + 0.666y5
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Fig. 4.2. A period of the 1-periodic solution to the Wien bridge oscillator. Only the output

y = x2 is shown.

we obtain the 1-periodic solution in Figure 4.2. The nominal system can be written
as

y(t) =

∫ t

−∞
h(t− τ)ϕ(y(τ)) dτ,

where h(t) = CeAtBν(t). Here ν(·) is the unit step function and

A =
1

6.32

[
−1 1

1 −2

]
, B =

1

6.32

[
−1

1

]
, C = [0 1].

We will investigate robustness to additive uncertainties of the form

H(s, θ) = H(s) + θΔ(s),

where H(s) = C(sI − A)−1B and Δ(s) is a stable transfer function. For r0 = 0.01
we will show that θ̄ = 0.0007 is a robustness margin. We let the exponential decay
parameter be α = 0.7. We assume

sup
|T−1|≤r0

‖Δ(s/T )‖C(1)→C(1) ≤ 1, sup
|T−1|≤r0

‖(s/T )Δ′(s/T )‖C(1)→C(1) ≤ 1,

sup
|T−1|≤r0

‖Δ((s− α)/T )‖H∞ ≤ 1, sup
|T−1|≤r0

‖((s− α)/T )Δ′((s− α)/T )‖H∞ ≤ 1.

We start to verify conditions (i)–(iii) in Theorem 3.10. The characteristic multipliers
of Acl = A + Bϕ′(y0(t))C are 1 and 0.24, which by Proposition 3.12 implies that

F̃ ′
z(z0, 0) has a bounded right inverse. It also motivates the choice of α since α =

0.7 < −log|λ2|/T0 = 1.43.
We next need to compute bounds on the norms in Proposition 3.13.
• We obtain the bound γ̃1 = ‖F̃ ′

z(z0, 0)†‖X̃y→X̃z
≤ 9.0 by verifying (3.26).

• The bound γ̃2 = ‖Gsp‖X̃y→Xz
≤ 17.0 is obtained using (3.27).

• γ̃θ = supz∈Z, |θ|≤θ̄ ‖F̃ ′
θ(z, θ)‖X̃θ→X̃y

≤ sup‖y−y0‖C(1)≤r0 ‖ϕ(y)‖L2(1) ≈ 0.6032.

• γθ = supz∈Z, |θ|≤θ̄ ‖F ′
θ(z, θ)‖Xθ→Xy

≤ sup‖y−y0‖C(1)≤r0 ‖ϕ(y)‖C(1) ≈ 1.072.

The norm of the operator Δ̃ requires more work. This operator can be represented
as (z = (y, T ))

Δ̃(z, θ)(v, δT ) = Δ̃1(y, T, θ)v + Δ̃2(y, T, θ)δT

= [H(s/T, θ)ϕ′(y) −H(s)ϕ′(y0)]v

+ [(s/T )H ′(s/T, θ)ϕ(y) − sH ′(s)ϕ(y0)]δT.
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For each z = (y, T ) ∈ Z and |θ| ≤ θ̄ we use the bounds

‖Δ̃1(z, θ)‖L2(1)→L2(1) ≤ ‖H(s/T ) −H(s)‖H∞ · ‖ϕ′(y)‖C(1)

+ ‖H(s)‖H∞ · ‖ϕ′(y) − ϕ′(y0)‖C(1) + θ̄‖ϕ′(y)‖C(1) =: N1(z),

‖Δ̃2(z, θ)‖R→L2(1) ≤ ‖(s/T )H ′(s/T ) − sH ′(s)‖H∞ · ‖ϕ(y)‖L2(1)

+ ‖sH ′(s)‖H∞ · ‖ϕ(y) − ϕ(y0)‖L2(1) + θ̄‖ϕ(y)‖L2(1) =: N2(z).

(4.1)

Hence using (4.1) we get

γ̃Δ = sup
z∈Z,|θ|≤θ̄

‖Δ̃(z, θ)‖X̃z→X̃y
= sup

z∈Z,|θ|≤θ̄

‖Δ̃(z, θ)‖L2(1)×R→L2(1)

≤ sup
z∈Z,|θ|≤θ̄

√
‖Δ̃1(z, θ)‖2

L2(1)→L2(1)
+ ‖Δ̃2(z, θ)‖2

R→L2(1)

≤ sup
z∈Z

√
N1(z)2 + N2(z)2 ≤ 0.0194,

where the last inequality was obtained numerically.
To obtain the remaining norms we use convolution representations of Δ̄1 and

Δ̄2. If we let hΔ̄(z,θ)(t, s) be the convolution kernel corresponding to the operator
H(s/T, θ)ϕ′(y(t))−H(s, 0)ϕ′(y0(t)) defined on C(1) and gΔ̄(z,θ)(t) correspond to the
function sH ′(s, 0)ϕ(y0)− (s/T )H ′(s/T, θ)ϕ(y) ∈ C(1), then we can write (z = (y, T ))

(Δ̄1(z, θ)v)(t) =

∫ 1

0

hΔ̄(z,θ)(t, s)v(s) ds,

(Δ̄2(z, θ)δT )(t) = gΔ̄(z,θ)(t)δT.

Note that

hΔ̄(z,θ)(t, s) = hz(t, s) − hz0(t, s) + θδT (t, s)ϕ′(y(s)),

where δT (t, s) is the weighting function corresponding to Δ(s/T ) and

hz(t, s) =

{
TC(I − eAT )−1eAT (t−s)Bϕ′(y(s)), t > s,

TC(I − eAT )−1eAT eAT (t−s)Bϕ′(y(s)), t < s.

Similarly, we have

gΔ̄(z,θ)(t) =

∫ 1

0

(gz(t, s) − gz0(t, s) + θδ̂T (t, s)ϕ(y(s))) ds,

where δ̂T (t, s) is the weighting function corresponding to (s/T )Δ(s/T ) and

gz(t) =

{
TC̃(I − eÃT )−1eÃT (t−s)B̃ϕ′(y(s)), t > s,

T C̃(I − eÃT )−1eÃT eÃT (t−s)B̃ϕ′(y(s)), t < s

and

Ã =

[
A I

0 A

]
, B̃ =

[
0

B

]
, C̃ = −[CA C].



928 ULF T. JÖNSSON AND ALEXANDRE MEGRETSKI

We get

γΔ1 = sup
z∈Z

sup
|θ|≤θ̄

‖Δ̄1(z, θ)‖C(1)→C(1) = sup
z∈Z

sup
|θ|≤θ̄

‖hΔ̄(z,θ)‖1 ≤ 0.0226

and similarly

γΔ2 = sup
z∈Z

sup
|θ|≤θ̄

‖Δ̄2(z, θ)‖R→C(1) = sup
z∈Z

sup
|θ|≤θ̄

‖gΔ̄(z,θ)‖C(1) ≤ 0.0053.

Hence, we have

γ̃Δ · γ̃1 = sup
z∈Z,|θ|≤θ

‖Δ̃(z, θ)‖X̃z→X̃y
· ‖F̃ ′

z(z0, 0)†‖X̃y→X̃z
= 0.0194 · 9 = 0.175 < 1,

which verifies condition (ii). For condition (iii) we use (3.22) in Proposition 3.13. We
have ((

(γ2
Δ1

+ γ2
Δ2

)1/2

1 − γΔ1

+ 1

)
γ̃2 · γ̃θ

1 − γ̃Δ · γ̃1
+

γθ
1 − γΔ1

)
θ

r0
≈ 0.9667.

It remains to verify the exponential stability conditions (iv)–(v) in Theorem 3.10.
Condition (iv) follows from Proposition 3.14 since λ2 = 0.24. Next we compute a
bound on c > 0 such that (3.28) holds. A bound can be obtained by verifying (3.29)
using [16], which results in the bound c = 0.0735. In order to verify (3.16) we use
that

ΔLα(z, θ) = H((s− α)/T ) ◦ ϕ′(y) −H(s− α) ◦ ϕ′(y0) + θΔ((s− α)/T )ϕ′(y).

We get the bound

sup
z∈Z, |θ|≤θ̄

‖ΔLα(z, θ)‖≤ sup
|T−1|≤r0

‖H((s−α)/T )−H(s−α)‖H∞ sup
‖y−y0‖C(1)≤r0

‖ϕ′(y)‖C(1)

+ ‖H(s− α)‖H∞ sup
‖y−y0‖C(1)≤r0

‖ϕ′(y) − ϕ′(y0)‖C(1) + θ̄ sup
‖y−y0‖C(1)≤r0

‖ϕ′(y)‖C(1)

= 0.0210 ≤ c = 0.074,

which proves that condition (v) in Theorem 3.10 is true. We have thus shown that
θ̄ = 0.0007 is a robustness margin when r0 = 0.01. The question is whether this
bound is conservative. We simulated the system with Δ(s) = 10

s+10 . For θ̂ = 0.001 we

get a perturbation r̂ = (‖y − y0‖2
C(1) + |T − 1|2)1/2 ≈ 0.01. Hence, the gap between

the true robustness margin and the estimated is not at larger than θ̂/θ ≈ 1.4. Table 1
shows the results of several numerical experiments.

5. Concluding remarks. We have proven that a well-known condition for ro-
bustness of limit cycles of finite-dimensional systems is also valid when the system is
perturbed by a sufficiently small dynamic perturbation. We also showed how bounds
on a robustness margin can be estimated using a number of small-gain conditions.

The robustness conditions in this paper are to a large extent formulated as in-
vertibility conditions on operators defined in L2 spaces. An existence result and
a perturbation bound as in Lemma 3.4 are easier to derive in the Banach space
C(1). However, the resulting conditions gave much more conservative bounds for
our numerical example in section 4. It is in particular the small-gain condition
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Table 1

Results of numerical examples. θ is the bound computed using our results and θ̂ is obtained by
simulating with Δ(s) = 10/(s+ 10). The gap θ̂/θ is an upper bound on how conservative our bound
possibly can be.

r0 r0/(‖y0‖2
C(1)

+ 1)1/2 θ θ
‖H‖H∞

θ̂ θ̂
‖H‖H∞

θ̂/θ

0.01 0.93% 0.0007 0.21% 0.001 0.3% 1.4

0.02 1.83% 0.0011 0.33% 0.0019 0.6% 1.7

0.03 2.8% 0.0012 0.36% 0.0026 0.8% 2.2

supz∈Z,|θ|≤θ ‖Δ̃(z, θ)‖X̃z→X̃y
· ‖F̃ ′

z(z0, 0)†‖X̃y→X̃z
< 1 that is much less conservative

and also easier to verify in L2(1).
The problem of computing robust stability bounds for limit cycles is an important

and challenging problem that is still in its infancy. The results provided in this paper
are valid for a fairly large class of systems that appear frequently in applications. By
using a minimum of structure in the problem we obtain a set of small gain conditions
that can be used to estimate a robustness margin. The verification of the small gain
conditions are involved and it is desirable to find conditions that can be verified with
less effort.

Appendix: Proofs. We here collect several of the proofs in the paper. We start
to state a version of the implicit function theorem suitable for our purposes. We then
provide proofs for our main results using the following sequence of implications:

Proposition 3.14

Proposition 3.12

Theorem 3.10 Theorem 3.1
Lemma 3.9

Lemma 3.4

Theorem 3.7

Lemma 5.2

Here Lemma 5.2 gives a sufficient condition for existence of a periodic solution
locally. The upper implications are results on the existence of a periodic solution and
the lower implications are results on exponential stability. Next follows the implicit
function theorem, which is used to prove Lemmas 5.2 and 3.4.

Theorem 5.1. Let V1, V2, V3 be Banach spaces and suppose F : U1 × U2 → V3

is C1, where U1 ⊂ V1 and U2 ⊂ V2 are open. Assume F (u10, u20) = 0 for some
u10 ∈ U1 and u20 ∈ U2. If F ′

u1
(u10, u20) has a bounded right inverse, then there exists

a neighborhood U20 of u20 and a C1 function E : U20 → U1 such that

F (E(u2), u2) = 0

for all u2 ∈ U20. To estimate the size of U20 assume G0 is a bounded right inverse of
H0 = Du1F (u10, u20) and

B1
r1(u10) = {u1 : ‖u1 − u10‖ ≤ r1} ⊂ U1,

B2
r2(u20) = {u2 : ‖u2 − u20‖ ≤ r2} ⊂ U2,

Br(u0) = B1
r1(u10) ×B2

r2(u20) ⊂ U1 × U2
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are such that

Lr = sup
u∈Br(u0)

‖F ′
u1

(u) − F ′
u1

(u0)‖,

Lr1 = sup
u1∈B1

r1
(u10)

‖F ′
u1

(u1, u20) − F ′
u1

(u10, u20)‖,

Lr2 = sup
u∈Br(u0)

‖F ′
u2

(u)‖

satisfy

Lr‖G0‖ < 1,(5.1)

Lr2‖G0‖
1 − Lr1‖G0‖

r2 ≤ r1.(5.2)

Then we can use U20 = B2
r2(u20) and E(u2) ∈ B1

r1(u10) for all u2 ∈ B2
r2(u20).

Proof. We only sketch on a proof. The easiest way to prove the first part of the
theorem is to use the standard implicit function theorem. Let Ûk = Uk−uk0, k = 1, 2,
and F̂ : Û1 × Û2 → V3 be defined as

F̂ (û1, û2) = F (u10 + G0û1, u20 + û2).

We have F̂ (0, 0) = 0 and F̂ ′
û1

(0, 0) = I. Hence, it follows from the standard implicit

function theorem that there exists a neighborhood Û20 of 0 and a unique C1 function
Ê : Û20 → Û1 such that F̂ (Ê(û2), û2) = 0 for all û2 ∈ Û20; see, e.g., [1]. The first claim
of the theorem follows by using U20 = Û20 + u20 and E(u2) = u10 + G0Ê(u2 − u20).

It remains to verify that the estimate U20 = B2
r2(u20) is valid. The following

sketch of this part also provides the idea behind a more constructive way of proving the
theorem. We continue to use the translated variables and theˆnotation, e.g., B̂1

r1(0) =

{û1 : ‖û1‖ ≤ r1} = Br1(u10) − u10 but now with F̂ (û1, û2) = F (u10 + û1, u20 + û2).
The idea is to consider the fixed point iteration

xk+1 = L(xk, û2) := G0(F̂
′
û1

(0, 0)xk − F̂ (xk, û2)).

If we can prove the existence of a fixed point x = Ê(û2), then this implies that
F̂ (Ê(û2), û2) = 0. We use the following inequalities.

(i) For any pairs (x2, û2) ∈ B̂r(0), (x1, û2) ∈ B̂r(0) we have

‖L(x2, û2) − L(x1, û2)‖ ≤ Lr‖G0‖ · ‖x2 − x1‖ < ‖x2 − x1‖,

where the second inequality follows from (5.1).
(ii) For all (x, û2) ∈ B̂r(0) we have

‖L(x, û2)‖ ≤ ‖G0‖ · ‖F̂ ′
û1

(0, 0)x− F̂ (x, 0)‖ + ‖G0‖ · ‖F̂ (x, û2) − F̂ (x, 0)‖
≤ ‖G0‖(Lr1‖x‖ + Lr2‖û2‖) ≤ ‖G0‖(Lr1r1 + Lr2r2) ≤ r1,

where the last inequality follows from (5.2).
These two inequalities show that L(·, û2) is a contraction on B̂1

r1(0) for each û2 ∈
B̂r2(0), which proves the existence of the function Ê(·) on B̂2

r2(0). The C1 property

of Ê(·) on B̂2
r2(0) can be proven fairly easily.
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Lemma 5.2 on the existence of a solution. Recall the notation X̃y = L2(1)

and X̃z = L2(1) × R. We have the following lemma.
Lemma 5.2. Suppose Assumption 2 holds and let z0 = (y0, 1). If the operator

F̃ ′
z(z0, 0) ∈ L(X̃z, X̃y) defined by

(F̃ ′
z(z0, 0)(v, δT ))(t) = ((I − Ls)v)(t) − y0

1(t)δT,

(Lsv)(t) =

∫ t

−∞
h(t− τ, 0)ϕ′

y(y0(τ), 0)v(τ) dτ,

y0
1(t) =

∫ t

−∞
h(t−τ, 0)ϕ(y(τ), 0) dτ+

∫ t

−∞
(t− τ) dh((t− τ), 0)ϕ(y(τ), 0)

has a bounded right inverse, then for each sufficiently small θ ∈ R there exists yθ ∈
C(1) and Tθ > 0 that satisfies (2.11). The perturbed solution yθ = y(θ), Tθ = T (θ)
are C1 functions of θ such that y(0) = y0 and T (0) = 1. The perturbed solution is
unique modulo phase delays (time translation).

Proof. Let F : Xz × Xθ → Xy be defined as in (3.2). By assumption we have
F (z0, 0) = 0. The following conclusion follows from Theorem 5.1 with V1 = U1 =
Xz = C(1) × R, V2 = Xθ = R, U2 = Iθ, and V3 = Xy = C(1): if F ′

z(z0, 0) has a
bounded right inverse, then there exists a zθ = (yθ, Tθ) ∈ Xz satisfying F (zθ, θ) = 0
for all θ ∈ (−θ0, θ0), where θ0 > 0 is some sufficiently small number. In other words,
there exists a periodic solution of (2.11) for all sufficiently small θ. The C1 condition
on zθ also follows from Theorem 5.1.

The Fréchet derivative of F with respect to its first argument at (z0, 0) is defined
as

(F ′
z(z0, 0)(v, δT ))(t) = v(t) −

∫ t

−∞
h(t− τ, 0)ϕ′

y(y0(τ), 0)v(τ) dτ − y0
1(t)δT.

We will show that the existence of a bounded right inverse to F̃ ′
z(z0, 0) implies the

existence of a bounded right inverse to F ′
z(z0, 0), which proves Lemma 5.2. Note that

these operators are defined in exactly the same way but on different spaces.
For notational convenience, we let

Hs := F̃ ′
z(z0, 0) =

[
I − Ls y0

1

]
∈ L(L2(1) × R,L2(1)).

We have the topological inclusion C(1) ↪→ L2(1) since ‖v‖L2(1) ≤ ‖v‖C(1) for all v ∈
C(1). This shows that the restriction Hs|C(1)×R = F ′

z(z0, 0). By assumption, there
exists a right inverse of Hs, i.e., a bounded linear operator Gs : L2(1) → L2(1) × R
such that

(HsGs)w = w ∀w ∈ L2(1).

We will show that G = Gs|C(1) is a bounded right inverse of Hs|C(1)×R. Let w ∈ C(1);
then

w = (Hs ◦G)w = Hs(G1w,G2w) = (I − Ls)G1w + y0
1G2w,

which shows that G1w = w + LsG1w − y0
1G2w ∈ C(1). To prove boundedness we

start with the second component. We have

‖G2‖C(1)→R = sup{|G2w| : ‖w‖C(1) ≤ 1, w ∈ C(1)}
≤ sup{|G2w| : ‖w‖L2(1) ≤ 1, w ∈ C(1)}
≤ sup{|Gs

2w| : ‖w‖L2(1) ≤ 1, w ∈ L2(1)} = ‖Gs
2‖L2(1)→R.
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For the first component we use

‖G1w‖C(1) = ‖w + LsG1w − y1G2w‖C(1)

≤ ‖w‖C(1) + ‖Ls‖L2(1)→C(1) · ‖Gs
1‖L2(1)→L2(1)‖w‖L2(1)

+ ‖y0
1‖C(1) · ‖G2‖C(1)→R‖w‖C(1)

≤ (1 + ‖Ls‖L2(1)→C(1) · ‖Gs
1‖L2(1)→L2(1) + ‖y0

1‖C(1)·‖Gs
2‖L2(1)→R)‖w‖C(1).

Note that ‖Ls‖L2(1)→C(1) is finite because we have (here H = Lh, L denotes the
Laplace transform, Hn denotes the nth row of H, and ŵk is the kth Fourier coefficient
of w)

∣∣∣ ∫ t

−∞
h(t− τ)w(τ) dτ

∣∣∣ =
∣∣∣ ∞∑
k=−∞

H(i2πk)ŵke
−i2πkt

∣∣∣ ≤ ∞∑
k=−∞

p∑
n=1

∣∣∣Hn(i2πk)ŵk

∣∣∣
≤

p∑
n=1

( ∞∑
k=−∞

|Hn(i2πk)|2
)1/2( ∞∑

k=−∞
|ŵk|2

)1/2

≤
( p∑

n=1

‖Hn‖2

)
‖w‖L2(1),

where ‖Hn‖2
2 =

∑∞
k=−∞ |Hn(i2πk)|2 < ∞, which follows since the SPES property of

h can be used to show that |Hn(i2πk)| ≤ const/k for all n = 1, . . . , p. Hence,

‖Ls‖L2(1)→C(1) ≤
( p∑

n=1

‖Hn‖2

)
· ‖ϕ′

y(y0, 0)‖C(1).

We have thus shown that F ′
z(z0, 0) has a bounded right inverse F ′

z(z0, 0)†=F̃ ′
z(z0, 0)†|Xy ,

which, as we pointed out earlier, proves the existence.
Next we discuss the uniqueness. First notice that for each choice of right inverse

the proof of Theorem 5.1 results in a unique solution that we can write as u1 =
EG0(u2). The solution is thus only unique modulo the particular choice of right
inverse. To understand the implication for the perturbed solution we consider (for
arbitrary θ)

F ′
z(zθ, 0) = [I − Ls(zθ, θ) y1(zθ, θ)] ∈ L(C(1) × R, C(1)),

where Ls(zθ, θ) and y1(zθ, θ) are defined as in (3.8). We will next show that

KerF ′
z(zθ, θ) = (ẏθ, 0)

whenever the operator has a right inverse. This follows since, for any time transla-
tion d,

yθ(t + d) =

∫ t

−∞
h(t− τ, θ)ϕ(yθ(τ + d), θ) dτ.

Differentiation with respect to d at d = 0 gives

ẏθ(t) =

∫ t

−∞
h(t− τ, θ)ϕ′

y(yθ(τ), θ)ẏθ(τ) dτ = (Ls(zθ, θ)ẏθ)(t).

This shows that ẏθ is an eigenfunction of Ls(zθ, θ) corresponding to the eigenvalue 1.
We obtain the following necessary (and sufficient) condition for F ′

z(zθ, θ) to have a
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bounded right inverse:
(i) 1 is a simple eigenvalue of Ls(zθ, θ), which implies that Im (I −Ls) has codi-

mension 1 since Ls(zθ, θ) is a compact operator;
(ii) y1 �∈ Im (I − Ls).

Hence, under the assumption of the theorem KerF ′
z(z0, 0) = (ẏ0, 0). The implication

is that the degree of freedom in the choice of the right inverse corresponds to the
time translation of the nominal periodic solution. The limit cycle is a one-dimensional
manifold whenever the right inverse exists and this implies that our perturbed solution
zθ = (yθ, Tθ) is unique modulo time translation. A region of uniqueness can be proven
using similar Lipschitz properties as was used in the proof of Theorem 5.1.

Proof of Lemma 3.4. We start by repeating some of the discussions in section 3.1.
Let F : Xz ×Xθ → Xy be defined as in (3.2). A solution z(θ) = (y(θ), T (θ)) to

F (z(θ), θ) = 0(5.3)

corresponds to a 1-periodic solution of (2.11). Differentiation of (5.3) gives

F ′
z(z(θ), θ)

dz

dθ
= −F ′

θ(z(θ), θ).

Now consider the operator F̃ ′
z : Z × Iθ → L(X̃z × X̃θ, X̃y) defined in (3.6)–(3.8). We

note that the restriction of F̃ ′
z to Xz ×Xθ satisfies F̃ ′

z(z(θ), θ)|Xz
= F ′

z(z(θ), θ). By

assumption F̃ ′
z(z0, 0) has a bounded right inverse F̃ ′

z(z0, 0)†, which by the proof of

Lemma 5.2 implies that F̃ ′
z(z0, 0)|Xz = F ′

z(z0, 0) also has a bounded right inverse. In
view of Lemma 3.3, the continuity of F ′

z(z, θ) with respect to its arguments, and the
continuity of the perturbed solution z(θ), it follows that for sufficiently small θ there
exists a right inverse F ′

z(z(θ), θ)
† such that

dz

dθ
= −F ′

z(z(θ), θ)
†F ′

θ(z(θ), θ).(5.4)

In order to find a bound on θ for which this expression is valid we use Lemma 3.3. This
leads to expression (3.5), which can be formulated equally well using the extensions
of the operators to L2(1) space. We can thus write

dz

dθ
= −F̃ ′

z(z0, 0)†(I − Δ̃(z(θ), θ)F̃ ′
z(z0, 0)†)−1F̃ ′

θ(z(θ), θ).(5.5)

Let Θ be the set of θ ∈ [−θ̄, θ̄] such that there exists a solution z(θ) ∈ Z to (5.3).
We use a homotopic argument based on the following observations to prove Θ =
[−θ̄, θ̄]:

(a) 0 ∈ Θ since z(0) = z0 ∈ Z;
(b) if [0, θ] ∈ Θ, then (similarly with [−θ, 0] ∈ Θ)

‖z(θ)− z0‖Xz ≤
∥∥∥∥∫ θ

0

F̃ ′
z(z0, 0)†(I − Δ̃(z(σ), σ)F̃ ′

z(z0, 0)†)−1F̃ ′
θ(z(σ), σ) dσ

∥∥∥∥
Xz

≤ θ̄ · sup
z∈Z, |θ|≤θ̄

‖F̃ ′
z(z0, 0)†(I − Δ̃(z, θ)F̃ ′

z(z0, 0)†)−1F̃ ′
θ(z(θ), θ)‖X̃θ→Xz

< r0;

(c) Θ is open as a subset of [−θ̄, θ̄] since for any θ∈Θ we have ‖Δ̃(z(θ), θ)‖X̃z→X̃y
<

1/‖F̃ ′
z(z0, 0)‖X̃y→X̃z

by condition (ii). Then F̃ ′
z(z(θ), θ) is right invertible by

Lemma 3.3, which by Lemma 5.2 implies the existence of a solution of (5.3) in
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a neighborhood of θ. An explicit lower bound on this interval can be obtained
since all derivatives are uniformly bounded in [−θ̄, θ̄] and Z. Indeed, we can
use the second part of the implicit function theorem in Theorem 5.1 to derive
a uniform bound on the neighborhood.3

Conclusions (a) and (c) imply that the set of θ such that there is a solution z(θ) ∈ Z
is nonempty and open as a subset of the interval [−θ, θ] and (b) shows that it must
be the full interval. Note that on the domain [−θ̄, θ̄] the solution of (5.5) is unique
and thus zθ is unique modulo the choice of right inverse F̃ ′

z(z0, 0)†. By the proof of
Lemma 5.2 this corresponds to a degree of freedom due to the time translation.

Proof of Theorem 3.7. We will use the standard implicit function theorem to
prove this result. The Frechét derivative of (3.9) is

(Ψ′
z(0, 0)(v, δd))(t) = ẏ0(t)δd + v(t) −

∫ t

0

h(t− τ)ϕ′(y0(τ))(ẏ0(τ)δd + v(τ)) dτ.

To prove that Ψ′
z(0, 0) has a bounded inverse we need to show that there exists c > 0

such that for each w ∈ V the equation

ẏ0(t)δd + v(t) −
∫ t

0

h(t− τ)ϕ′(y0(τ))(ẏ0(τ)δd + v(τ)) dτ = w(t)(5.6)

has a unique solution, which is bounded as ‖v‖2
V + |δd|2 ≤ c‖w‖2

V . Let us restrict
attention to solutions in L2α for a while. From the definition of L in (3.11) and from
the proof of Proposition 3.5 it follows that system (5.6) (now extended to L2α) can
be rewritten as

(I − L)v + eδd = w,(5.7)

where

e(t) =

∫ 0

−∞
h(t−τ)ϕ′(y0(τ))ẏ0(τ) dτ = ẏ0(t)−

∫ t

0

h(t−τ)ϕ′(y0(τ))ẏ0(τ) dτ ∈ L2α[0,∞).

The conclusion e(t) ∈ L2α[0,∞) follows since h is exponentially stable with the decay
rate α. Indeed, we have

eαte(t) =

∫ ∞

0

e−αseα(t+s)h(t + s)ϕ′(y0(−s))ẏ0(−s) ds.

This implies

‖e‖2
α ≤

∫ ∞

0

∫ ∞

0

e−αs1e−αs2 ds1 ds2‖eαth(t)‖2 · ‖ϕ′(y0)ẏ0‖2
∞

≤ 1

α2
‖eαth(t)‖2 · ‖ϕ′(y0)ẏ0‖2

∞,

which proves the claim since ‖eαth(t)‖ is bounded by Lemma 2.2(c).
By assumption defα(L) = 1, which implies that V1 = Im (I −L) has codimension

1. We thus have a direct sum decomposition L2α[0,∞) = V1 ⊕ V ⊥
1 , where V ⊥

1 is
one-dimensional. The following properties will be used.

3The implicit function theorem can be directly used to estimate a robustness margin using
computations in C(1). However, this generally leads to conservative bounds.
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(i) (I − L) : L2α[0,∞) → V1 has a bounded inverse, i.e., there exists γ > 0 such
that ‖(I − L)−1|V1‖ ≤ γ, which follows since when the domain of the inverse
is restricted to V1, the (closed) image of (I −L), then the inverse is bounded
by the Banach inverse theorem since Ker (I − L) = 0.

(ii) (I − PV1)e �= 0, where PV1 is the orthogonal projection onto V1. This follows
from Proposition 3.5 since (I − L)−1e �∈ L2α.

From (5.7) we obtain (I − PV1
)eδd = (I − PV1)w, which has a unique solution by (ii)

above. This gives the bound

|δd| ≤ c1‖w‖V , c1 = 1/‖(I − PV1
)e‖V .

With this δd, we have (I − L)v = w − eδd ∈ V1, which has a unique solution by (i)
above. Moreover, we immediately get the norm bound

‖v‖α ≤ γ‖w − eδd‖α ≤ γ(‖w‖α + |δd| · ‖e‖α) ≤ γ(1 + c1‖e‖α)‖w‖V .

However, we need a bound in terms of the norm ‖ · ‖V . A ‖ · ‖∞ bound is obtained
from the following derivation:

‖v‖∞ = ‖Lv + w − eδd‖∞ ≤ ‖L‖L2α→L∞ · ‖v‖α + ‖w‖∞ + c1‖e‖∞ · ‖w‖V
≤ (‖L‖L2α→L∞γ(1 + c1‖e‖α) + c1‖e‖∞ + 1)‖w‖V ,

where the norm ‖L‖L2α→L∞ is bounded since h is SPES, see Lemma 3 in [7] for a
related proof. Hence, we have ‖v‖V ≤ c2‖w‖V , where

c2 = max(γ(1 + c1‖e‖α), ‖L‖L2α→L∞γ(1 + c1‖e‖α) + c1‖e‖∞ + 1).

This together with the previous bound on |δd| shows that Ψ′
z(0, 0) has a bounded

inverse. In fact, we have shown Ψ′
z(0, 0)−1 : Xy → Xz satisfies ‖Ψ′

z(0, 0)−1‖Xy→Xz ≤ c,

where c = (c21 + c22)
1/2.

Boundedness of Ψ′
z(0, 0)−1 implies by the implicit function theorem that there

exists an open set V0 ⊂ Xy containing 0 and a C1 function E : V0 → Xz such that
Ψ(E(δf), δf) = 0 for all δf ∈ V0. It is no restriction to assume that V0 is convex since
otherwise we can consider a ball {v ∈ V : ‖v‖V ≤ η} ⊂ V0. We further have

E′(δf) = −Ψ′
z(E(δf), δf)−1Ψ′

δf (E(δf), δf) = Ψ′
z(E(δf), δf)−1.

We obtain the following bound in the X̃z = L2α × R-space:

‖δy‖2
α + |δd|2 = ‖E1(δf)‖2

α + |E2(δf)|2 = ‖E(δf) − E(0)‖2
L2α×R

=
∥∥∥∫ 1

0

E′(sδf) · δfds
∥∥∥2

L2α×R

≤ sup
s∈[0,1]

‖E′(sδf)‖2
L2α→L2α×R‖δf‖2

α

≤ sup
v∈V0

‖E′(v)‖2
L2α→L2α×R‖δf‖2

α

= sup
v∈V0

‖Ψ̃′
z(E(δf), δf)−1‖2

L2α→L2α×R‖δf‖2
α

for all δf ∈ V0. Here Ψ̃′
z ∈ L(X̃z, X̃y) is the extension of Ψ′

z to L2α. Since Ψ is C1 it
follows that for any ε > 0 we get the bound

‖δy‖2
α + |d|2 ≤ c(ε)2‖δf‖2

α
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by choosing V0 small enough, where

c(ε)2 = c̃21 + γ2(1 + c̃1‖e‖α)2 + ε, c̃1 = 1/‖(I − PV1)e‖α.

This proves the exponential stability inequality in (2.10).
Proof of Lemma 3.9. According to Theorem 3.7 we need to show that L = L0+ΔL

has α-defect 1. We have

‖(I − L0
α − ΔLα)v‖ ≥ ‖(I − L0

α)v‖ − ‖ΔLαv‖
≥ (c− ‖ΔLα‖)‖v‖ ≥ ε‖v‖,

where the last inequality follows from (3.16). Hence, we have shown that Ker (I −
L0
α −ΔLα) = 0 for all ‖ΔLα‖ ≤ c− ε. The proof follows if we in addition prove that

codim Im (I − L0
α − ΔLα) = 1. Since the codimension of Im(I − L0

α) is 1 it follows
that we can find v1 ∈ L2[0,∞) with ‖v1‖ = 1 and v1 ⊥ Im(I − L0

α). If we define
H : L2[0,∞) × R → L2[0,∞) by

H(v, t1) = (I − L0
α)v + ct1v1,

then H is a bijection and it follows from the Banach inverse theorem that it has a
bounded inverse. Since

‖(I − L0
α)v + ct1v1‖ ≥ c(‖v‖2 + |t1|2)1/2

we have ‖H−1‖ ≤ c−1. With ΔH(v, t1) = −ΔLαv we see that H + ΔH = H(I +
H−1ΔH) is invertible since ‖H−1ΔH‖ ≤ 1 − ε/c < 1. It follows that codim Im (I −
L0
α − ΔLα) = 1.

Proof of Proposition 3.14. From Lemma 3.8 it follows that we can equivalently
consider the operator Lα on L2 when deciding the stability defect. We will show

(i) Ker (I − Lα) = 0,
(ii) codim Im (I − Lα) = 1.

Conditions (i) and (ii) show that Lα is a Fredholm operator with index 1. From
Banach’s isomorphism theorem it follows that I −Lα is nonsingular. This proves the
theorem.

To prove (i) we assume that there exists nonzero v ∈ L2 such that (I −Lα)v = 0.
In the state-space domain this means that

ẋ = (A + αI)x + Bϕ′(y0(t))v, x(0) = 0, 0 = v − Cx

which implies that v = Cx and ẋ = (A + αI + Bϕ′(y0(t))C)x, x(0) = 0. This
contradicts the assumption that v is nonzero. Hence, Ker (I − Lα) = 0.

To prove (ii) we use (Im (I − Lα))⊥ = Ker (I − Lα)∗. One possible state-space
representation of the adjoint system v �→ w = (I − L∗

α)v is

ẋ = −(A + αI)Tx + CT v, x(∞) = 0,

w = v + ϕ′(y0(t))
TBTx.

Any v ∈ Ker (I − L∗
α) must satisfy v = −ϕ′(y0(t))

TBTx, where

ẋ = −(A + α + Bϕ′(y0(t))C)Tx, x(∞) = 0.(5.8)
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A result by Lyapunov shows that there exists a time-periodic coordinate transfor-
mation that turns system (5.8) into a linear system with constant coefficients; see,
e.g., [4]. It is no restriction to assume the new coordinates are chosen such that[

ż1

ż2

]
=

[
−α 0

0 A2

][
z1

z2

]
,

[
z1(∞)

z2(∞)

]
= 0,

where A2 ∈ C(n−1)×(n−1) has all its characteristic multipliers outside the unit disc
since −αT − log|λ2| > 0. If the coordinates are related as

x(t) = [P1(t) P2(t)],

[
z1(t)

z2(t)

]
,

where P (t) = [P1(t) P2(t)] is invertible and T is periodic, then we see that

Ker (I − Lα)∗ = {v(t) = −ϕ′(y0(t))
TBTP1(t)e

−αtz1(0) : z1(0) ∈ R}.

This is a one-dimensional space. Hence, we have shown that Ker (I − Lα) = 0 and
codim Im (I − Lα) = 1. This implies def (Lα) = 1, which by Lemma 3.8 implies
defα(L) = 1.

Proof of Theorem 3.1. First note that the characteristic multipliers do not change
if we normalize the nominal period time to T0 = 1 in (2.1). Existence of a solution in a

neighborhood of θ = 0 follows from Lemma 5.2 if F̃ ′
z(z0, 0) has a bounded right inverse.

From Proposition 3.12, we see that this is the case since n − 1 of the characteristic
multipliers are different from 1.

To prove exponential stability we consider the operator L in (3.11), which becomes

(L(θ)v)(t) =

∫ t

0

T (θ)h(T (θ)(t− τ), θ)ϕ′
y(yθ(τ), θ)v(τ) dτ.

It follows from Proposition 3.14 that L(0) has the α-defect 1. The same arguments
that we used to prove Lemma 3.9 shows that the α-defect remains constant for suf-
ficiently small θ since L(θ) depends continuously on θ. Hence, defα(L(θ)) = 1 for
sufficiently small θ, which by Theorem 3.7 proves exponential stability.
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Abstract. This paper provides a framework for deriving necessary conditions, in the form of
a maximum principle, for minimax optimal control problems. The distinguishing feature of these
problems is that the data depends on a vector α of unknown parameters, and “optimality” is defined
on a worst case basis, as α ranges over the parameter set A. The centerpiece, a minimax maximum
principle, is a set of optimality conditions for such problems. Here, the parameter set A is taken to
be an arbitrary compact metric space and the hypotheses imposed on the dynamics and endpoint
constraints are of an unrestrictive nature. The minimax maximum principle captures as special cases
necessary conditions for optimal control problems with minimax costs, for problems involving “semi-
infinite” endpoint constraints, and also a maximum principle for state constrained optimal control
problems.
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1. Introduction. The purpose of this paper is to derive, in a unified fashion,
necessary conditions of optimality for optimal control problems involving an unknown
vector parameter. In these problems, “optimality” is typically defined in terms of
worst case performance, i.e., the cost of a particular control strategy is that associated
with the strategy and a system response corresponding to the least favorable value of
the unknown parameter, and constraints are required to be satisfied for all values of
the unknown parameter.

Fix a compact metric space (A, ρA(., .)). Take functions f : [0, 1]×Rn×Rm×A →
Rn and g : Rn×A → R, a vector x0 ∈ Rn, a time dependent set Ω(t) ⊂ Rm, 0 ≤ t ≤ 1,
and a family of closed sets {C(α) ⊂ Rn | α ∈ A}.

A control function is a measurable function u : [0, 1] → Rm satisfying u(t) ∈ Ω(t)
a.e. The set of control functions is written U . A process (u, {x(.;α) | α ∈ A})
comprises a control function u and a family {x(.;α) ∈ W 1,1([0, 1];Rn) | α ∈ A} of
arcs satisfying, for each α ∈ A,{

ẋ(t;α) = f(t, x(t;α), u(t), α) a.e.
x(0;α) = x0.

The process is termed feasible if the x(.;α)s satisfy the terminal constraints

x(1;α) ∈ C(α) for all α ∈ A.

The optimization problem of interest in this paper, which will be referred to as the
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2005; published electronically September 15, 2005.
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general minimax optimal control problem, is as follows:

(P)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Minimize maxα∈A g(x(1;α), α)
over measurable functions u : [0, 1] → Rm such that

u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
and arcs {x(.;α) : [0, 1] → Rn | α ∈ A} such that, for each α ∈ A,

ẋ(t;α) = f(t, x(t;α), u(t), α) a.e. t ∈ [0, 1],
x(0;α) = x0 and x(1;α) ∈ C(α).

Briefly stated, the problem is to minimize supα∈A g(x(1;α), α) over feasible pro-
cesses (u, {x(.;α) | α ∈ A}).

A feasible process (ū, {x̄(.;α) | α ∈ A}) is said to be a strong local minimizer
when there exists ε > 0 such that

sup
α∈A

g(x(1;α), α) ≥ sup
α∈A

g(x̄(1;α), α)

for all feasible processes (u, {x(.;α), α ∈ A}) such that

‖x(.;α) − x̄(.;α)‖C ≤ ε for all α ∈ A .

The implications of our necessary conditions for various special cases of interest
will also be investigated.

Our framework permits the set A of unknown parameter values to be an arbi-
trary compact metric space. It therefore covers minimax optimal control problems in
which components of α comprise unknown gain values lying within specified bounds,
magnitudes of step disturbances, etc., important cases that would be excluded by the
requirement that A be a finite set.

The presence of, possibly, an infinite number of elements in A is the principal
source of difficulty in the derivation of necessary conditions for minimax optimal con-
trol problems. In case A is a finite set {α1, α2, . . . , αN}, the minimax optimal control
problems studied here can be reformulated as standard optimal control problems, for
which necessary conditions are already known. (See section 2.)

We comment on related earlier research. The most extensively studied minimax
optimal control problems are zero sum differential games, in which a minimizer is
chosen from a class of closed loop controls, appropriately defined, and the parameter
set A, from which a “worst case” element is selected, comprises open loop control
functions of an opposing player [1], [4]. The fact that differential games are posed
over closed loop controls gives them a quite different character to the problems studied
here, in which the choice variables are open loop controls. Analysis of solutions to
differential games is almost exclusively of a global nature, centering on the relationship
between the value of the differential game and the solutions to the Hamilton–Jacobi
equation; variants on the pontryagin maximum principle, such as featured in this
paper, have a limited role in the analysis of optimal feedback strategies.

Versions of the open loop minimax optimal control problem were previously in-
vestigated by Warga, in the context of “relaxed and hyper-relaxed adverse controls.”
Warga adopts a broader framework than ours, in which the parameter set can include
open control functions of an opposing player as well as finite dimensional vector pa-
rameters. Furthermore, he addresses questions of existence of solutions to minimax
optimal control problems and appropriate relaxation schemes as well as local optimal-
ity conditions. Our minimax maximum principle, involving a Hamiltonian averaged
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with respect to some measure, is implicit in the necessary conditions in ([11], Chapters
IX and X). Warga’s necessary conditions apply only in cases when the endpoint con-
straint sets are closed, convex sets with nonempty interiors and for smooth dynamics.
The necessary conditions of this paper are proved by quite different methods and
under significantly weaker hypotheses (for the minimax problems here considered).
Furthermore, we give new insights into the limits of validity of the kinds of neces-
sary conditions investigated here, by presenting some counterexamples where they no
longer apply. Optimality conditions akin to those of section 2 below are featured also
in [2], but only in the elementary case when the parameter set is a finite set and the
endpoint constraint is specified by a functional inequality. The role of measures to
estimate “gradients” of max functions is evident in the early Russian optimal control
literature [5] and is widely exploited in nonsmooth analysis, for example, in appli-
cations of nonsmooth analysis to derive optimality conditions for state constrained
optimal control problems [3].

Another point of contact with earlier work is semi-infinite programming. This is a
branch of nonlinear programming that aims to provide efficient computational meth-
ods for optimization problems, in which constraints must be satisfied for a continuum
of values of some parameter α. (See [8].) Minimax optimal control problems can be
reformulated, by introduction of additional variables, as semi-infinite programming
problems over function spaces with dynamic constraints.

One possible approach to the computation of solutions to a minimax optimal con-
trol problem is to approximate it by a (finite-dimensional) semi-infinite programming
problem by means of time discretization and to apply semi-infinite programming algo-
rithms. The emphasis in this paper is on structural properties of solutions to minimax
optimal control problems. But the necessary conditions of optimality we provide may
ultimately find application in convergence analysis of algorithms for minimax optimal
control, based on semi-infinite programming or other approaches.

We allow nonsmooth data and express necessary conditions in terms of “limiting
subdifferentials” and other constructs of nonsmooth analysis. We stress, however, that
it is the unrestrictive nature of the conditions that we place on the parameter set A,
“A is an arbitrary compact metric space,” which is the most significant feature of
our analysis. The main optimality conditions supplied here (the maximum principle
for the general minimax optimal control problem of section 3 and the implications
explored in section 5) are new, even when specialized to the smooth case.

Finally, some notation. Throughout, | . | denotes the Euclidean norm. We write
B for the closed unit ball in Euclidean space. BA(α, ε) denotes the set {α′ ∈
A | ρA(α, α′) ≤ ε}.

W 1,1([0, 1];Rn) is the space of absolutely continuous Rn-valued functions on [0, 1].
Take a compact metric space A. C(A) denotes the space of continuous real valued
functions on A. We write ||.||C for the supremum norm on this space. C∗(A) denotes
the topological dual of C(A) with the norm topology. We use the fact that elements
in C∗(A) can be identified with the space of Radon measures on the Borel subsets of
A. The dual norm of an element μ ∈ C∗(A) is written ||μ||T.V., a choice of notation
that reflects the fact that the dual norm of μ coincides with the total variation of the
Radon measure that represents μ.

The graph of a multifunction D : A � Rk is denoted by GrD,

GrD := {(a, d) ∈ A×Rk | d ∈ D(a)} .
For a given set E ⊂ Rd, dE(.) denotes the Euclidean distance function

dE(z) := infe∈E |z − e|.
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The limiting normal cone to a given closed set C ⊂ Rk at x ∈ Rk is the set

NC(x) :=
{
ξ ∈ Rn | ∃ ξi → ξ, xi

C→ x and {Mi} ⊂ R+

such that, for each i, ξi · (x− xi) ≤ Mi|x− xi|2 ∀ x ∈ C
}
.

Here “xi
C→ x” means “xi → x and xi ∈ C for all i.” Note that NC(x) = ∅, in the

case x /∈ C.

Take a function f : Rn → R∪{+∞} and a point x ∈ dom f . Here, dom f is taken
to be the set

dom f = {y ∈ Rn | f(y) < +∞} .

The epigraph set of f is the set

epi f := {(x, α) ∈ Rn ×R | α ≥ f(x)}.

The limiting subdifferential ∂f(x) of f : Rn → R ∪ {+∞} at a point x ∈ dom f is the
set

∂f(x) :=
{
η | (η,−1) ∈ Nepif (x, f(x))

}
.

The partial limiting subdifferential ∂xf(x, y) of an extended valued function f of
two variables x and y is the limiting subdifferential of x → f(x, y) for fixed y.

NC(x) and ∂f(x) are widely used constructs from nonsmooth analysis in optimal
control, that generalize classical notions of the set of outward normal vectors to a set
with smooth boundary and of the gradient of a continuously differentiable function.
They are also referred to as the normal cone and the subdifferential, respectively. For
a review of their properties (and historical comments), see, for example, [7], [9], [10].

2. The finite parameter set case. Necessary conditions for minimax prob-
lems involving an arbitrary compact metric space parameter set A will be derived by
approximating A by a finite set AN , by establishing properties of approximate mini-
mizers for problems involving AN , and passage to the limit. Necessary conditions for
problems with finite parameter sets have an important intermediate role then in the
proof of more general necessary conditions. This is one reason for attending to the
finite parameter set case at this early stage. But studying this special case also gives
insights into the necessary conditions we should expect to be valid in more general
circumstances.

We shall invoke the following hypotheses on the data for the general minimax
optimal control problem, in which (ū, {x̄(.;α) | α ∈ A}) is the strong local minimizer
under consideration. For some δ > 0,

(H1) The function f(., x, ., α) is L × Bm measurable for each (x, α) ∈ Rn × A.
(L denotes the Lebesgue subsets of [0, 1] and Bm denotes the Borel subsets
of Rm.) t � Ω(t) has a Borel measurable graph.

(H2) There exists a Borel measurable function kf : [0, 1] × Rm such that t →
kf (t, ū(t)) is integrable and, for each α ∈ A,

|f(t, x, u, α) − f(t, x′, u, α)| ≤ kf (t, u)|x− x′|

for all x, x′ ∈ x̄(t;α) + δB, u ∈ Ω(t), a.e. t ∈ [0, 1].
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(H3) The function g(., α) is Lipschitz continuous on x̄(1;α) + δB for all α ∈ A.
Define the Hamiltonian

H(t, x, p, u, α) := p · f(t, x, u, α).

Proposition 2.1. Let (ū, {x̄(.;α) | α ∈ A}) be a strong local minimizer for the
general minimax optimal control problem (P). Assume that A is a finite set and that,
for some δ > 0, hypotheses (H1)–(H3) are satisfied.

Then∫
H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα)

= max
u∈Ω(t)

∫
H(t, x̄(t;α), u, p(t;α), α) Λ(dα). a.e. t ∈ [0, 1],

for some Radon probability measure Λ ∈ C∗(A) and some family of arcs {p(.;α) ∈
W 1,1([0, 1];Rn) | α ∈ A} such that, for Λ – a.e. α ∈ A,

−ṗ(t;α) ∈ co ∂xH(t, x̄(t;α), ū(t), p(t;α), α) a.e.,

−p(1;α) ∈
⋃

0≤r≤1

{
rG0(x̄(1;α), α) + (1 − r)N(x̄(1;α), α)

}
(2.1)

and

suppΛ ⊂ {α | either G0(x̄(1;α), α) = ∅ or N(x̄(1;α), α) = ∅}.

Here,

G0(x, α) :=

{
∂xg(x, α) if g(x, α) = maxα′∈A g(x, α′)
∅ otherwise

and

N(x, α) := {ξ ∈ NC(α)(x) | |ξ| = 1}.

In condition (2.1), we allow the possibilities that (for some values of α) G0(x, α) =
∅ or N(x, α) = ∅. If G0(x, α) = ∅, then rG0(x, α) is defined only if r = 0; in this case
rG0(x, α) := {0}. If N(x, α) = ∅, then (1 − r)N(x, α) is defined only if r = 1; in this
case (1−r)N(x, α) := {0}. Thus (2.1) implies that if Λ({α}) > 0, then the parameter
α is “active” in either the endpoint constraint or in the objective, in the sense that

g(x̄(1, α), α) = max
α′∈A

g(x̄(1, α′), α′) or x̄(1 : α) ∈ bdyC(α) .

(bdyC(α) denotes the “boundary of the set C(α).”)
Proof of Proposition 2.1. List the elements in the finite set A as

A = {α1, α2, . . . , αN}.

Denote by x̄ = col {x̄(.;α1), x̄(.;α2), . . . , x̄(.;αN )} the collection of state trajectories
corresponding to ū. Then (ū, x̄) is a strong local minimizer for the standard optimal
control problem

(P̃)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Minimize g̃(x(1)) over u(.) satisfying

ẋ(t) = f̃(t, x(t), u(t)) a.e. t ∈ [0, 1],
x(0) = x̃0,

x(1) ∈ C̃,
u(t) ∈ Ω(t) a.e. t ∈ [0, 1] ,
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in which the N × n dimensional state vector is partitioned as

x = col {x1, x2, . . . , xN},
f̃(t, x, u) = col {f(t, xi, u, αi)}Ni=1,

C̃ = C(α1) × C(α2) × · · · × C(αN ),

x̃0 = col {x0, x0, . . . , x0},
g̃(x) = max

i
g(x(.;αi), αi).

Under the stated hypotheses, we deduce from the nonsmooth maximum principle
(see, for example, [10], Theorem 6.2.1)), with the help of the max rule ([10], Theo-
rem 5.5.2) to evaluate the limiting subdifferential of the cost function g̃, the following
information. There exist numbers λ1, . . . , λN ≥ 0, arcs q(.;αi) ∈ W 1,1, and elements
ξi ∈ NC(αi)(x(1;αi)), i = 1, 2, . . . , N , such that

(i)
N∑
i=1

H(t, x̄(t;αi), ū(t), q(t;αi), αi) = max
u∈Ω(t)

N∑
i=1

H(t, x̄(t;αi), u, q(t;αi), αi) a.e.

(ii)

N∑
i=1

(λi + |ξi|) = 1

and, for each i,

(iii)−q̇(t;αi) ∈ co ∂xH(t, x̄(t;αi), ū(t), q(t;αi), αi) a.e.,

(iv)−q(1;αi) ∈ λi∂xg(x̄(t;αi), αi) + ξi,

(v)λi = 0 if g(x̄(1;αi), αi) < max
j

g(x̄(1;αj), αj).

Define Λ to be the discrete probability measure

Λ =
N∑
i=1

(λi + |ξi|) δαi ,

in which δαi denotes the unit measure concentrated at α = αi. If α ∈ supp {Λ}, in
which case α = αi for some i such that (λi + |ξi|) > 0, define

p(t;αi) =
1

λi + |ξi|
q(t;αi).

If α /∈ supp {Λ}, choose the W 1,1 function p(.;α) arbitrarily.
All the assertions of the proposition can be confirmed for this choice of Λ and
{p(.;α) | α ∈ A}.

Note, in particular, that, if αi ∈ supp {Λ}, then

−p(1;αi) ∈ ri∂xg(x̄(1;αi), αi) + (1 − ri){ξ ∈ NC(αi)(x̄(1;αi)) | |ξ| = 1} .

Here, ri, 0 ≤ ri ≤ 1, is the number

ri =
λi

λi + |ξi|
.
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We also observe that, for each t ∈ [0, 1] and u ∈ Ω(t),

N∑
i=1

H(t, x̄(t;αi), u, q(t;αi), αi) =

∫
A
H(t, x̄(t;α), u, p(t;α), α) Λ(dα),

i.e., the maximization of the “averaged” Hamiltonian condition is satisfied. Finally,
note that for Λ – a.e. α ∈ A,

−ṗ(t;α) ∈ co ∂xH(t, x̄(t;α), ū(t), p(t;α), α),

by positive homogeneity.

3. A maximum principle for the general minimax optimal control prob-
lem. This section provides necessary conditions of optimality for the general minimax
optimal control problem (P) of section 1, when the parameter set A is an arbitrary
compact metric space.

Take (ū, {x̄(.;α) |α ∈ A}) to be the local minimizer for problem (P) of interest.
For α ∈ A, define the set

Q0(α) :=
{
p(.;α) ∈ W 1,1 | − ṗ(t;α) ∈ co ∂xH(t, x̄(t;α), ū(t), p(t;α), α) a.e.

and − p(1;α) ∈ ∪r∈[0,1] (rG0(x̄(1;α), α) + (1 − r)N(x̄(1;α), α)),

in which, for ε ∈ [0, 1],

Gε(x, α) :=

{
∂xg(x, α) if g(x, α) ≥ maxα′∈A g(x, α′) − ε
∅ otherwise

(3.1)

and

N(x, α) :=
{
ξ ∈ NC(α)(x) | |ξ| = 1

}
.(3.2)

(Only Gε=0(x, 0) is involved in the definition of Q0(α). Gε(x, α), with ε > 0, is
required for later analysis.)

The assertions of Proposition 2.1 can be expressed in terms of the set Q0(α) as
follows. If (ū, {x̄(.;α) | α ∈ A}) is a strong local minimizer and A is a finite set, then∫

A
H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα) =

max
u∈Ω(t)

∫
A
H(t, x̄(t;α), u, p(t;α), α) Λ(dα) a.e. t ∈ [0, 1]

for some Radon probability measure Λ ∈ C∗(A) and family of arcs {p(.;α) | α ∈ A}
such that

p(.;α) ∈ Q0(α) for Λ − a.e. α ∈ A.

(Note that Q0(α) may be empty unless α is “active” in the sense of our earlier re-
marks.) Unfortunately, the above optimality condition no longer remains valid in
general, when we allow A to be an arbitrary compact metric space. Confirmation is
provided by the counter examples of section 5. Indeed, standard variational techniques
break down when A is an infinite set, because the multifunction

Q0(.) : A → {subsets of W 1,1}
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may lack the requisite convexity and closure properties for limit taking. To derive
necessary conditions in this more general context, we need to replace Q0(α) with a
larger set, better matched to the limit taking operations involved.

Let (ū, {x̄(.;α) | α ∈ A}) be the process of interest. We embed Q0(.) in a family
of multifunctions {Qε(.)|ε ≥ 0} defined as follows. For any ε ≥ 0 and α ∈ A we define

Qε(α) :=
{
p(.;α) ∈ W 1,1 | conditions (a) and (b) below are satisfied

}
in which

(a)

−ṗ(t;α) ∈
⋃

x∈x̄(t;α)+εB

co ∂xH(t, x, ū(t), p(t;α), α) a.e.

(b)

−p(1;α) ∈
⋃

x∈x̄(1;α)+εB

⋃
r∈[0,1]

(rGε(x, α) + (1 − r)N(x, α))

The sets Gε(x, α) and N(x, α) appearing in these conditions were defined in (3.1)
and (3.2).

The defining properties of the “costate” arcs p(.;α) will now include the condition

p(.;α) ∈ Q0(α),

where

Q0(α) :=
⋂
ε>0

co

( ⋃
α′∈BA(α,ε)

Qε(α
′)

)
.(3.3)

Here co denotes “convex closure” with respect to the strong W 1,1 topology. Note that
the right side is a subset of W 1,1([0, 1];Rn). This relationship involves a multifunction
that is obtained from the multifunction α � Q0(α) by enlarging its graph. The
enlargement is carried out in such a manner that the new multifunction has closed
graph and convex values.

In certain cases, notably when the data is smooth and the right endpoint con-
straints are absent,

Q0(α) = Q0(α).

But in many cases of interest, Q0(α) is a strict subset of its “closed, convexified”
counterpart. We discuss these points in section 5.

We now come to the main result of this paper, namely a maximum principle for
the general minimax optimal control problem. Here, as usual, the Hamiltonian is

H(t, x, p, u, α) := p · f(t, x, u, α).

The following hypotheses will be invoked, in which (ū, {x̄(.;α) | α ∈ A}) is the
strong local minimizer for (P) of interest. For some δ > 0,

(S1) The function f(., x, ., .) is L×Bm×BA measurable for each x ∈ Rn. (BA de-
notes the Borel subsets of A.) t � Ω(t) has a Borel measurable graph.



MINIMAX OPTIMAL CONTROL 947

(S2) There exists kf ∈ L1 and cf > 0 such that

|f(t, x, u, α) − f(t, x′, u, α)| ≤ kf (t)|x− x′| and |f(t, x, u, α)| ≤ cf

for all x, x′ ∈ x̄(t;α) + δB, u ∈ Ω(t) and α ∈ A, a.e. t ∈ [0, 1].
(S3) g is continuous and there exists kg > 0 such that

|g(x, α) − g(x′, α)| ≤ kg|x− x′|

for all x, x′ ∈ x̄(1;α) + δB and α ∈ A.
(S4) There exists θ : [0,+∞) → [0,+∞) such that lims↓0 θ(s) = 0 and, for all

α, α′ ∈ A,∫ 1

0

sup
x∈x̄(t)+δB, u∈Ω(t)

|f(t, x, u, α) − f(t, x, u, α′)| dt ≤ θ(ρA(α, α′)).

(S5) α → dC(α)(x) is continuous on A for each x ∈ Rn.
In the following theorem, A is an arbitrary compact metric space.
Theorem 3.1. Let (ū, {x̄(.;α) | α ∈ A}) be a strong local minimizer for (P).

Assume that, for some δ > 0, Hypotheses (S1)–(S5) are satisfied.
Then∫

H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα)

= max
u∈Ω(t)

∫
H(t, x̄(t;α), u, p(t;α), α) Λ(dα) a.e. t ∈ [0, 1],(3.4)

for some Radon probability measure Λ ∈ C∗(A) and family of arcs {p(.;α) ∈ W 1,1 | α ∈
A} such that, for Λ – a.e. α ∈ A,

p(.;α) ∈ Q0(α).(3.5)

(Recall the definition of Q0(α) in (3.3).)
Note that the right side of (3.5) may be empty for certain values of α. The set is

nonempty, however, on a set of full Λ measure.
Implicit in the optimality conditions is the assertion that the integrals in the

maximization of the Hamiltonian condition (3.4) are well-defined, i.e., the function
α → H(t, x̄(t;α), u, p(t;α), α) is Λ-integrable for each u ∈ Ω(t), a.e. t ∈ [0, 1].

We might expect that necessary conditions of optimality are valid for a hybrid
form of the minimax optimal control problem, in which the parameter set A separates
into the union of a “discrete” and a “continuous” set, and which specializes to a
version of Proposition 2.1 (valid under the stronger hypotheses of Theorem 3.1) and
Theorem 3.1 in the extreme cases “A is purely discrete” and “A is purely continuous.”
The following theorem supplies such conditions. We explore some consequences in
section 5.

Theorem 3.2. Let (ū, {x̄(.;α) | α ∈ A}) be a strong local minimizer for the
general minimax optimal control problem (P). Assume that Hypotheses (S1)–(S5) are
satisfied. Assume, furthermore, we can partition the compact metric space A into
disjoint sets

A = A(1) ∪ A(2),

in which A(1) is a compact metric space and A(2) is a finite set.
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Then∫
H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα)

= max
u∈Ω(t)

∫
H(t, x̄(t;α), u, p(t;α), α) Λ(dα) a.e. t ∈ [0, 1]

for some Radon probability measure Λ ∈ C∗(A) and family of arcs {p(.;α) ∈ W 1,1 | α ∈
A} such that

p(.;α) ∈ Q0(α) for Λ − a.e. α ∈ A(1)

and

p(.;α) ∈ Q0(α) for Λ − a.e. α ∈ A(2).

We conclude this section by stating a version of the foregoing theorems cover-
ing problems in which the endpoint constraints take the form of a finite collection
of functional inequality constraints, namely problems for which each C(α) has the
representation

C(α) = {x ∈ Rn | ψ(x, α) ≤ 0},(3.6)

for some function ψ : Rn×A → Rr. The inequalities are interpreted in a “component-
wise” sense. It will be assumed that, for some δ > 0, ψ satisfies the following hypoth-
esis:
(H) ψ is continuous and there exist kψ such that

|ψ(x, α) − ψ(x′, α)| ≤ kψ|x− x′| for all x, x′ ∈ x̄(1;α) + δB, α ∈ A.

Minor modifications to the proof of Theorems 3.1 and 3.2 yield the following
optimality condition for problems involving endpoint functional inequality constraints:

Theorem 3.3. Let (ū, {x̄(.;α) | α ∈ A}) be a strong local minimizer for (P).
Assume that the endpoint constraint sets {C(α) | α ∈ A} take the form of a collection
of functional inequality constraints (3.6) which satisfy Hypothesis (H). Then∫

H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα)

= max
u∈Ω(t)

∫
H(t, x̄(t;α), u, p(t;α), α) Λ(dα) a.e. t ∈ [0, 1],

for some Radon probability measure Λ ∈ C∗(A) and family of arcs {p(.;α) ∈ W 1,1 | α ∈
A} such that,

(a) if A is a finite set and Hypotheses (H1)–(H3) are satisfied, then

p(.;α) ∈ Qψ
0 (α) for Λ − a.e. α ∈ A.

(b) if A is a compact metric space and Hypotheses (S1)–(S4) are satisfied, then

p(.;α) ∈
⋂
ε>0

co

( ⋃
α′∈BA(α,ε)

Qψ
ε (α′)

)
for Λ − a.e. α ∈ A.
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(c) if Hypotheses (S1)–(S4) are satisfied and we can partition A ⊂ Rk into dis-
joint sets A = A(1) ∪A(2), in which A(1) is a compact metric space and A(2)

is a finite set, then

p(.;α) ∈
⋂
ε>0

co

( ⋃
α′∈BA(α,ε)

Qψ
ε (α′)

)
for Λ − a.e. α ∈ A(1)(3.7)

and

p(.;α) ∈ Qψ
0 (α) for Λ − a.e. α ∈ A(2).

In the above optimality conditions the set Qψ
ε (α), ε ≥ 0, shares the defining

relationships of Qε(α) (see (3.3)) in all respects except that the set N(x, α) in condi-
tion (b), namely

N(x, α) = {ξ ∈ NC(α)(x) | |ξ| = 1},

is replaced by the set

Nψ(x, α) :=

{∑
j

λj∇xψj(x, α) | (λ1, . . . , λr) ∈ S(r) such that λi = 0 if ψi(x, α) < 0

}
.

in which

S(r) :=

{
λ ∈ Rr | λi ≥ 0, i = 0, . . . , r and

r∑
i=0

λi = 1

}
.

It is a straightforward matter to derive variants on Theorem 3.3. We could, for
example, assume that the endpoint constraint sets C(α) take the form {x |ψ(x, α) ≤
0} for α ∈ A(2) and are arbitrary closed sets for α ∈ A(1). In this case the necessary
conditions will incorporate transversality conditions from both Theorems 3.2 and 3.3.

4. Discussion. Theorem 3.1 captures only a coarse version of Proposition 2.1
when specialized to the finite set case. This is because Proposition 2.1 asserts the
existence of costate arcs in the sets Q0(α), α ∈ A, with respect to which an “av-
eraged” maximum principle is valid. On the other hand, Theorem 3.1 asserts the
existence of costates with this property, chosen from the larger sets Q0(α), obtained
by convexifying the values of α → Q0(α) and closing its graph, in some sense. Mini-
max maximum principles involving Q0(α) provide significantly less information about
minimizers than those involving Q0(α). For further elucidation of this point, consider
the case of (P) when the endpoint constraint sets are

C(α) = {x | ψ(x, α) = 0} for all α ∈ A.

Here ψ : Rn × A → R is a given function. Assume that, for some fixed ᾱ, g(., ᾱ),
ψ(., ᾱ) and f(t, ., u, ᾱ) are smooth functions and that (ū, {x̄(.;α) | α ∈ A}) is a feasible
process for which

(A): gx(x̄(1; ᾱ), ᾱ) and ψx(x̄(1; ᾱ), ᾱ) are linearly independent.

Let n be the vector of unit length

n =
ψx(x̄(1; ᾱ), ᾱ)

|ψx(x̄(1; ᾱ), ᾱ)| .
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Then we easily calculate that

Q0(ᾱ) =
{
p(.; ᾱ) ∈ W 1,1 | − ṗ(t; ᾱ) = Hx and − p(1; ᾱ) ∈ co{gx,+n} ∪ co{gx,−n}

}
while Q0(ᾱ) contains the subset{

p(.; ᾱ) ∈ W 1,1 | − ṗ(.; ᾱ) = Hx and − p(.; ᾱ) ∈ co{gx,+n,−n}
}
.(4.1)

Here gx is evaluated at x̄(1; ᾱ).
Notice that the element p(.; ᾱ) ≡ 0 lies in the set (4.1), since −ṗ(t; ᾱ) = Hx is a

linear differential equation and 0 ∈ co{gx,+n,−n}. This means that the optimality
conditions of Theorem 3.1 are satisfied by any feasible process (ū, {x̄(.;α) |α ∈ A})
with the trivial choice of multipliers

Λ = δ{ᾱ} and p(.;α) ≡ 0 for all α ∈ A.

Theorem 3.1 therefore conveys no useful information about minimizers in this case.
By contrast, we have

(p(.; ᾱ) ≡ 0) /∈ Q0(ᾱ)

since, under the hypothesis (A), 0 /∈ co{gx,+n} ∪ co{gx,−n}; thus the optimality
conditions of Theorem 3.1 are not, in this case, automatically satisfied by any feasible
process (u, {x(.;α) | α ∈ A}).

On the other hand, consider a modification of the above special case, in which
the former equality endpoint constraints are replaced by inequality constraints

C(α) = {x | ψ(x, α) ≤ 0}

and assume that

ψ(x̄(1; ᾱ), ᾱ) = 0.

Then, under unrestrictive hypotheses,

Q0(ᾱ) = Q0(ᾱ)

=
{
p(.; ᾱ) ∈ W 1,1 | − ṗ(.; ᾱ) = Hx and − p(1; ᾱ) ∈ co{∇g, n}

}
.

Here, there is no loss of information in passing from Q0(ᾱ) to Q0(α).
These observations highlight the fact that the maximum principle for minimax

optimal control problems with parameter set a general compact metric space, The-
orem 3.1, will find primary application in situations where the endpoint constraints
(if they are present) take the form of functional inequality constraints and their gen-
eralizations. Theorem 3.1 is not well-suited to problems with endpoint equality con-
straints.1 It is therefore of interest to know whether Theorem 3.1 can be refined,

1Of course it can be argued that minimax problems of this nature are, broadly speaking, artificial:
often such problems will have no minimizers because of the absence of feasible processes, i.e., control
functions whose corresponding state trajectories satisfy the equality endpoint constraints for all
values of the parameter α. Nontrivial maximum principles covering those few cases of interest
involving equality endpoint constraints (e.g., cases where the equality constraints involve only those
aspects of the dynamics which do not depend on α) can be developed along the lines of Theorem 3.2.
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to provide necessary conditions for problems with parameter set a general compact
metric space, in which Q0(α) replaces Q0(α).

We now study two examples, the purpose of which is to demonstrate that this is
not possible, in the absence of additional hypotheses.

Example 4.1. Consider the problem⎧⎪⎪⎨⎪⎪⎩
Minimize supα∈[−1,+1] −|x(1) − α| over u(.) such that

ẋ(t) = u(t) a.e. t ∈ [0, 1],

x(0) = 0,

u(t) ∈ [−1,+1] a.e. t ∈ [0, 1] .

This is an example of the general minimax problem in which the parameter set
is the interval A = [−1, 1]. The cost function depends on α, but the dynamics do
not. We denote processes (u, x), since all state trajectories corresponding to a given
control function u coincide. Clearly, (ū ≡ 0, x̄ ≡ 0) is a minimizer.

Suppose that the assertions of Proposition 2.1 were valid here. Then there would
exist a probability measure Λ with support in{

α | − |x̄(1) − α| = maxα′∈[−1,+1] (−|x̄(1) − α′|)
}

= {0},(4.2)

and a family of costate arcs {p(.;α) |α ∈ A} such that p(.;α) ∈ Q0(α) for Λ – a.e.
α ∈ A and (3.3) is satisfied. But (4.2) implies that

Λ = δ{0}.

Thus, supp {Λ} = {0} and the only relevant value of α is α = 0. We calculate

Q0(α = 0) =

{
p ∈ W 1,1 | − ṗ = 0, − p(1) ∈ {−1} ∪ {+1}

}
= {p ≡ −1} ∪ {p ≡ +1}.

We have then, for each t ∈ [0, 1],∫
A
H(t, x̄(t), u, p(t;α), α) Λ(dα) =

{
+u if p(.;α = 0) ≡ +1

−u if p(.;α = 0) ≡ −1,

for any u ∈ [−1,+1] and any family of costate arcs {p(.;α) | α ∈ A} such that
p(.;α) ∈ Q0(α) for Λ – a.e. α ∈ A.

We see that u →
∫
A H(t, x̄(t), u, p(t), α) Λ(dα) cannot be maximized at u = ū(t)

for a.e. t ∈ [0, 1]. This shows that the assertions of Theorem 3.1 may fail to be true,
if A is allowed to be an infinite set. On the other hand,

{p(.;α = 0) ≡ 0} ∈ Q0(α = 0)

and so the maximization of the Hamiltonian condition is satisfied with Λ taken to
be the unit measure concentrated at α = 0 and with {p(.;α)|α ∈ A} an arbitrary
collection of W 1,1 functions such that p(.;α = 0) ≡ 0.

Example 4.1 involves nonsmooth data. The following more elaborate example
illustrates that we cannot replace p(α) ∈ Q0(α) by p(α) ∈ Q0(α), even for problems
with smooth data.
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Example 4.2. Consider the following example of the minimax optimal control
problem, in which the state x = (x1, x2) is a 2-vector and the control u is scalar:

(P)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Minimize maxα∈A g(x(1;α), α)

over (u, {x(.;α) | α ∈ A}) satisfying
ẋ(t;α) = f(t, x(t;α), u(t), α) a.e.,
u(t) ∈ Ω a.e.,
x(0;α) = x0 and x(1;α) ∈ C(α).

Here, x0 = col (0; 0), Ω = [−1,+1],

A =

[
1

3
,
2

3

]
∪ {1},

and, for each α ∈ [ 13 ,
2
3 ] ∪ {1}, f = col(f1, f2) is the function

f1(t, x, u, α) =

{
u if 0 ≤ t ≤ α
0 if α < t ≤ 1

f2(t, x, u, α) =

{
−u2 if 1

3 ≤ t ≤ 2
3

0 otherwise,

g(x, α) =

{
x2 if α = 1
−1 if α ∈ [ 13 ,

2
3 ]

and

C(α) =

{
{0} ×R if α ∈ [ 13 ,

2
3 ]

R×R if α = 1.

Noting the interpretation of this example provided below, we easily check that (ū ≡ 0,
{x̄(.;α) ≡ (0, 0) |α ∈ A}) is a minimizer. Suppose that∫

A
H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα)

= max
u

∫
A
H(t, x̄(t;α), u, p(t;α), α) Λ(dα) a.e. t ∈ [0, 1]

is satisfied for some probability measure Λ and family of arcs {p(. : α)} such that

p(.;α) ∈ Q0(α) Λ − a.e. α ∈ A.

Partition the adjoint arcs p(.;α) = (p1(.;α), p2(.;α)). Then for Λ – a.e. α ∈ [ 13 ,
2
3 ]

−ṗ1(.;α) ≡ 0, −ṗ2(.;α) ≡ 0
−p1(1;α) = m(α), −p2(1;α) = 0

in which m(α) is a Borel measurable function such that

m(α) = −1 or + 1 for all α ∈
[
1

3
,
2

3

]
.

Also

−ṗ1(. : α = 1) ≡ 0, −p1(1;α = 1) = 0
−ṗ2(. : α = 1) ≡ 0, −p2(1;α = 1) = +1.
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Writing a ∨ b := max{a, b}, we deduce from the maximization of the Hamiltonian
condition that

u →
∫

[ 13∨t, 23 ]

m(α) Λ(dα)u + u2χ[ 13 ,
2
3 ](t)Λ({1})

is maximized over [−1,+1] at u = 0 a.e. t ∈ [0, 1]. Here χD denotes the indicator
function of the set D. It follows that, for a.e. t ∈ [0, 1],∫

[ 13∨t, 23 ]

m(α) Λ(dα) = 0(4.3)

and Λ({1}) = 0. But (4.3) implies∫
[ 13 ,

2
3 ]

m(α) Λ(dα) = 0

and ∫
[t, 23 ]

m(α) Λ(dα) = 0

for all t ∈ F , where F is some countable dense subset of [ 13 ,
2
3 ]. But since sets of the

form [ 13 ,
2
3 ] and [t, 2

3 ] (for t ∈ F ) generate the Borel subsets of [ 13 ,
2
3 ], we see that∫

B

m(α) Λ(dα) = 0(4.4)

for all Borel sets B ∈ A. Let A± = {α | m(α) = ±1}. Since A− ∪ A+ = A and
||Λ||T.V. = 1, either Λ(A+) > 0 or Λ(A−) > 0. Without loss of generality assume
the former. Then ∫

B

m(α) Λ(dα) =

∫
B

Λ(dα) = Λ(A+) > 0,

when we select B = A+. This contradicts (4.4). It follows that a version of the
minimax maximum principle is not valid for this problem, in which

p(.;α) ∈ Q0(α) for Λ − a.e. α ∈ A.

The preceding example originates in an optimal control problem with pathwise
equality constraints

(P̃)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Minimize −
∫ 2

3
1
3

|u(t)|2 dt

s.t. ẋ(t) = u(t), a.e. t ∈ [0, 1],

x(0) = 0,

x(t) = 0 for 1
3 ≤ t ≤ 2

3 ,

u(t) ∈ R, a.e. t ∈ [0, 1].

which has been reformulated as an example of the general minimax optimal control
problem (P). The fact that we cannot derive a maximum principle involving the set
Q0(α) in the above example reflects the fact that measure multipliers can be used
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in necessary conditions for problems with pathwise equality constraints only in very
special circumstances.

Notice that the assertions of Theorem 3.1 are consistent with Example 4.2. In
this example

Q0(α) =
{
(p1(.;α) ≡ 0, p2(.;α)) | p2(.;α) ≡ m(α)

}
,

for Λ – a.e. α ∈ [ 13 ,
2
3 ], where m(.) is some Borel measurable function such that

m(α) ∈ {−1} ∪ {+1} Λ − a.e.

These sets are too small for the maximization condition on the “averaged” Hamilto-
nian to hold (for any choice of m(.)). On the other hand, for Λ – a.e. α ∈ [ 13 ,

2
3 ],

Q0(α) =
{
(p1(.;α) ≡ 0, p2(.;α)) | p2(.;α) ≡ m̃(α)

}
in which m̃(.) is some Borel measurable function such that

m̃(α) ∈ [−1,+1] Λ − a.e.

The maximization condition does hold (in a trivial sense), with respect to
(p1(.;α), p2(.;α))s chosen from this larger set; we can take (p1(.;α), p2(.;α)) ≡ (0, 0)
Λ – a.e.

5. Special cases. In this section, we examine implications of the minimax max-
imum principle for a number of special cases of interest. Utmost generality is not
a goal here; indeed, we often focus on smooth versions of the optimality conditions,
when the nonsmooth version could easily be derived, better to reveal their essential
character. Throughout, A is an arbitrary compact metric space.

Consider first the minimax optimal control problem with no right endpoint con-
straints,

(P1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Minimize maxα∈A g(x(.;α), α)
over measurable functions u : [0, 1] → Rm such that

u(t) ∈ Ω(t), a.e. t ∈ [0, 1]
and arcs {x(.;α) : [0, 1] → Rn | α ∈ A} such that, for each α ∈ A,

ẋ(t;α) = f(t, x(t;α), u(t), α) a.e. t ∈ [0, 1],
x(0;α) = x0.

The data for (P1) comprises a compact metric space A, functions g : Rn × A → R,
f : [0, 1]×Rn×Rm×A → Rn, a vector x0 ∈ Rn, and a time dependent set Ω(t) ⊂ Rm,
0 ≤ t ≤ 1.

General necessary conditions for (P1) follow directly from Theorem 3.1. We state
the conditions merely in the special case when the data are smooth.

Proposition 5.1. Let (ū, {x̄(.;α) | α ∈ A}) be a strong local minimizer for (P1).
Assume that, for some δ > 0, the Hypotheses (S1), (S2), and (S4) of section 3 are
satisfied. Assume, furthermore, that

(a) g is continuous, g(., α) is differentiable for each α ∈ A and gx is continuous.
(b) f(t, ., u, α) is continuously differentiable on a neighborhood of x̄(t;α) for all

u ∈ Ω(t) and α ∈ A, a.e. t ∈ [0, 1], and α → fx(t, x, u, α) is uniformly
continuous with respect to (t, x, u) ∈ {(t′, x′, u′) ∈ [0, 1] × Rn × Rm | u′ ∈
Ω(t′)}.
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Then ∫
H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα)

= max
u∈Ω(t)

∫
H(t, x̄(t;α), u, p(t;α), α) Λ(dα) a.e.

for some Radon probability measure Λ ∈ C∗(A) and some family of arcs {p(.;α) ∈
W 1,1([0, 1];Rn) | α ∈ A} such that

supp {Λ} ⊂
{
α ∈ A | g(x̄(1;α), α) = max

α′∈A
g(x̄(1;α′), α′)

}
and, for Λ – a.e. α ∈ A,

(i) −ṗ(t;α) = fT
x (t, x̄(t;α), ū(t), α) p(t;α) a.e.

(ii) −p(1;α) = gx(x̄(1;α), α).
Proof. Everything follows from Thm. 3.1, when we note that, if a function φ :

Rn → R is continuously differentiable on a neighborhood of a point x̄, then ∂φ(x̄) =
{φx(x̄)} and, under the stated hypotheses,

Q0(α) =

⎧⎨⎩
{
p′ ∈ W 1,1 | − ṗ′ = fT

x p′, −p′(1) = gx(x̄(1;α), α)
}

if g(x̄(1;α)) = maxα′∈A g(x̄(1;α′), α′)
∅ otherwise.

Consider next the optimal control problem with robust feasibility constraints:

(P2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Minimize g(x(1;α∗))
over measurable functions u : [0, 1] → Rm such that

u(t) ∈ Ω(t), a.e. t ∈ [0, 1]
and arcs {x(.;α) : [0, 1] → Rn | α ∈ A} such that, for each α ∈ A,

ẋ(t;α) = f(t, x(t;α), u(t), α) a.e. t ∈ [0, 1],
x(0;α) = x0 and ψ(x(1;α)) ≤ 0.

The data for (P2) comprises a set A ⊂ Rk, a point α∗ ∈ A, functions g : Rn → R
and f : [0, 1] × Rn × Rm ×A → Rn and ψ : Rn → Rr′ , a vector x0 ∈ Rn and a time
dependent set Ω(t) ⊂ Rm, 0 ≤ t ≤ 1. The endpoint functional inequality terminal
constraint is interpreted in the usual “componentwise” manner.

This is a formulation of optimal control problems involving an unknown parameter
α, in which α is expected to take its nominal value α∗. Here, it is appropriate to choose
a control to minimize the cost based on the system response for α = α∗. But our
choice of control is restricted by the requirement that, even if α deviates from α∗,
constraints on state variables must not be violated. Here, we regard values of α
different from α∗ as due to system degradation or failure, and “ψ(x(1;α)) ≤ 0 for all
α ∈ A” is the requirement that operational constraints (on displacements, velocities,
pressures, etc.) are satisfied, even in the event of breakdown.

For simplicity, we assume that the data are smooth and that there is a single
endpoint constraint (r′ = 1).

Proposition 5.2. Let (ū, {x̄(.;α) | α ∈ A}) be a strong local minimizer for (P2).
Assume that, for some δ > 0, Hypotheses (S1), (S2), and (S4) are satisfied. Assume,
furthermore, that r′ = 1 and

(a) g and ψ are continuously differentiable on x̄(1;α∗) + δB.
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(b) f(t, ., u, α) is continuously differentiable on a neighborhood of x̄(t;α) for all
u ∈ Ω(t) and α ∈ A, a.e. t ∈ [0, 1], and α → fx(t, x, u, α) is uniformly
continuous with respect to (t, x, u) ∈ {(t′, x′, u′) ∈ [0, 1] × Rn × Rm | u′ ∈
Ω(t′)}.

Then ∫
H(t, x̄(t;α), ū(t), p(t;α), α) Λ(dα) =

max
u∈Ω(t)

∫
H(t, x̄(t;α), u, p(t;α), α) Λ(dα) a.e. t ∈ [0, 1]

for some family of arcs {p(.;α) ∈ W 1,1([0, 1];Rn)}, a number r ∈ [0, 1] and a Radon
probability measure Λ ∈ C∗(A) such that

supp {Λ} ⊂
(
{α∗} ∪

{
α ∈ A | ψ(x̄(1;α)) = 0

})
,

and, for Λ – a.e. α ∈ A,
(i) −ṗ(t;α) = fT

x (t, x̄(t;α), ū(t), α) p(.;α) a.e. t ∈ [0, 1],

(ii) −p(1;α) =

{
ψx(x̄(1;α)) if α = α∗

rgx(x̄(1;α)) + (1 − r)ψx(x̄(1;α)) if α = α∗.

Proof. It might appear that the simplest way to prove Proposition 6.2 would be to
reformulate (P2) as a special case of the general minimax optimal control problem (P),
in such a manner that (ū, {x̄(.;α) | α ∈ A}) remains a minimizer, by setting

g(x, α) :=

{
g(x) if α = α∗

−K if α = α∗

and

C(α) := {x | ψ(x) ≤ 0} for all α.

Here, K is a positive number such that, for some δ′ > 0,

inf
{
g(x) | x ∈ x̄(1;α) + δ′B, α ∈ A

}
> −K.

This is not helpful, however, since α → g(x, α) violates the continuity hypothesis (S3)
for application of Theorem 3.1. Instead, we take a point b /∈ A and associate with (P2)
a general minimax problem with extended parameter set Ã := A∪{b}, in which g(x, α)
is the function

g(x, α) :=

{
g(x) if α = b

−K if α ∈ A

and in which f is the extension of the function f of (P2), to allow for α’s in A∪ {b},

f(t, x, u, α = b) := f(t, x, u, α∗).

The hypotheses are satisfied for the application of Theorem 3.2, with reference to the
process (ū, {x̄(.;α) | α ∈ A}), when we partition the extended parameter set as

Ã =
(
A1 := A

)
∪

(
A2 := {b}

)
.
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Straightforward calculations yield the following information: for α ∈ A

Q0(α) =

⎧⎨⎩
{q(.) | − q̇(t) = fT

x (t, x̄(t;α), ū(t), α)q(t),
− q(1) = ψx(x̄(1;α))} if ψ(x̄(1;α)) = 0

∅ if ψ(x̄(1;α)) < 0

and

Q0(α = b) = {q(.) | − q̇(t) = fT
x (t, x̄(t;α∗), ū(t), α∗)q(t), − q(1) = gx(x̄(1;α∗))} .

We deduce the existence of a Radon probability measure μ ⊂ C∗(A ∪ {b}) and arcs
{q(.;α) | α ∈ A} ∪ {q(.; b)} such that, for μ – a.e. α ∈ A,

−q̇(t;α) = fT
x (t, x̄(t;α), ū(t), α)q(t;α), −q(1;α) = ψx(x̄(1;α)),

if α ∈ A and

−q̇(t; b) = fT
x (t, x̄(t;α∗), ū(t), α∗)q(t; b), −q(1; b) = gx(x̄(1;α∗)).

Furthermore, u → H(t, u) is maximized over u ∈ Ω(t) at u = ū(t) for a.e. t ∈ [0, 1],
where

H(t, u) =

∫
A∪{b}

q(t;α) · f(t, x̄(t;α), u, α) μ(dα)

and

supp {μ} ⊂ {α ∈ A |ψ(x̄(1;α)) = 0} ∪ {b}.

Now choose

r =

{
μ({b})

μ({b})+μ({α∗}) if μ(b) > 0

0 otherwise,

p(.;α) :=

{
q(.;α) for α = α∗

rq(.; b) + (1 − r)q(.;α∗) for α = α∗.

Choose also the Radon measure Λ ∈ C∗(A),

Λ(E) :=

{
μ({b}) + μ(E) if α∗ ∈ E

μ(E) if α∗ /∈ E

for any Borel subset E of A. Notice that ||Λ||T.V. = ||μ||T.V. = 1, so Λ is a
probability measure. Clearly

supp {Λ} ⊂ {α∗} ∪ {α ∈ A |ψ(x̄(1;α)) = 0} .
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We have

H(t, u) =

(∫
{b}

+

∫
{α∗}

+

∫
A\{α∗}

)
q(t;α) · f(t, x̄(t;α), u, α) μ(dα)

=
(
μ({b})q(t; b) + μ({α∗})q(t;α)

)
· f(t, x̄(t;α∗), u, α∗)

+

∫
A\{α∗}

q(t;α) · f(t, x̄(t;α), u, α) μ(dα)

=
(
μ({b}) + μ({α∗})

)(
rq(t; b) + (1 − r)q(t;α∗)

)
· f(t, x̄(t;α∗), u, α∗)

+

∫
A\{α∗}

q(t;α) · f(t, x(t;α), u, α) μ(dα)

= Λ({α∗})p(t;α∗) ·f(t, x̄(t;α∗), u, α∗)+

∫
A\{α∗}

p(t;α) · f(t, x̄(t;α), u, α) Λ(dα)

=

∫
p(t;α) · f(t, x̄(t;α), u, α) Λ(dα).

It follows that

−ṗ(t;α) = fT
x p(t;α)

−p(1;α) = ψx(x̄(1;α))

for α = α∗. Also, by homogeneity,

−ṗ(t;α) = fT
x p(t;α)

−p(1;α) = rgx(x̄(1;α)) + (1 − r)ψx(x̄(1;α))

for α = α∗. The proof is complete.
Consider finally the state constrained optimal control problem,

(P3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Minimize g(x(1)) over measurable functions u : [0, 1] → Rn such that
ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0, 1],
x(0) = x0 and x(1) ∈ C,
u(t) ∈ Ω(t) a.e. t ∈ [0, 1],
h(t, x(t)) ≤ 0 t ∈ [0, 1].

This is a “parameter-free” version of (P) (the function f no longer depends on α), to
which has been appended an endpoint constraint and a pathwise state constraint

h(t, x(t)) ≤ 0 for all t ∈ [0, 1].

Here, C ⊂ Rn is a given set and h : [0, 1]×Rn → R is a given function. This standard
optimal control problem with state constraints would appear to have little relevance
to minimax optimal control. The connection is this; (P3) can be interpreted as a
minimax type optimal control problem to which the analytical tools of this paper are
applicable. This is demonstrated below.

Thus, studying the state constrained optimal control problem in the present con-
text establishes links between minimax optimal control and other well-established
areas of optimal control. It also makes clear that the task of deriving necessary con-
ditions of optimality for minimax problems is a challenging one, since it is at least as
difficult as deriving necessary conditions for state constrained optimal control prob-
lems.

Proposition 5.3. Let (ū, x̄) be a strong local minimizer for (P3). Assume that
for some δ > 0, the following hypotheses are satisfied.
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(a) f(., x, .) is L×B measurable for each x ∈ Rn. t � Ω(t) has Borel measurable
graph.

(b) There exist kf (t) ∈ L1 and cf > 0 such that

|f(t, x, u) − f(t, x′, u)| ≤ kf (t)|x− x′| and |f(t, x, u)| ≤ cf

for all x, x′ ∈ x̄(t)+δB and u ∈ U(t), a.e. t ∈ [0, 1]. Furthermore, f(t, ., u) is
continuously differentiable on a neighborhood of x̄(t) for all u ∈ Ω(t) a.e. t ∈
[0, 1].

(c) g is continuously differentiable on x̄(1) + δB.
(d) h is continuously differentiable.

Then there exists an arc p ∈ W 1,1([0, 1];Rn), λ ≥ 0, and a Radon measure μ ∈
C∗([0, 1]) such that

(i) λ + ‖μ‖T.V. + |p(1)| = 0

(ii) −ṗ = fT
x (t, x̄(t), ū(t)) . . .

(
p(t) +

∫
[0,t)

hx(s, x̄(s))μ(ds)
)

a.e.,

(iii) −(p(1) +
∫
[0,1]

hx(s, x̄(s))μ(ds)) ∈ λgx(x̄(1)) + NC(x̄(1))

(iv) supp {μ} ⊂ {t | h(t, x̄(t)) = 0}
and

u →
(
p(t) +

∫
[0,t)

hx(s, x̄(s)) μ(ds)
)
· f(t, x̄(t), u)

is maximized over u ∈ Ω(t) at u = ū(t), a.e. t ∈ [0, 1].
We see that the minimax maximum principle can be used to obtain the maxi-

mum principle for state constrained problems with a general right endpoint constraint
(cf. [10]).

Proof. We reformulate (P3) as a general minimax problem with parameter set
A = [0, 1] ∪ {2}. For all α ∈ [0, 1] set

f(t, x, u, α) :=

{
f(t, x, u) for 0 ≤ t ≤ α,
0 for t > α

g(x, α) := −K,

C(α) = {x | h(α, x) ≤ 0}.

Here, −K is a number strictly less than g(x̄(1)). Also set

f(t, x, u, α = 2) := f(t, x, u)

g(x, α = 2) := g(x),

C(α = 2) = C.

Clearly (ū, {x̄(.;α) | α ∈ A}) is a strong local minimizer for the general minimax
optimal control problem, with these identifications of the data, when

x̄(t;α) =

{
x̄(t) for 0 ≤ t ≤ α,

x̄(α) for t > α

for α ∈ [0, 1] and

x̄(.;α = 2) ≡ x̄(.).
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Now apply Theorem 3.3. (See also succeeding comments regarding the nature of the
endpoint constraints.) Let {p(.;α) |α ∈ [0, 1]} and p(.;α = 2) be the “costate arcs”
for this problem and let Λ ⊂ C∗([0, 1]∪{2}) be the Radon probability measure whose
existence is asserted in the theorem. Define μ′ ⊂ C∗([0, 1]) to be the restriction of Λ
to [0, 1]. Then

||μ′||T.V. ≤ 1.

We have, for 0 ≤ α ≤ 1,

−ṗ(t;α) =

{
fT
x (t, x̄(t), ū(t))p(t;α) for 0 ≤ t ≤ α,

0 for t > α,

−p(α;α) = hx(α, x̄(α))

and

−ṗ(t;α = 2) = fT
x (t, x̄(t), ū(t))p(t;α = 2),

−p(1;α = 2) ∈ λgx(x̄(1)) + (1 − λ){ξ ∈ NC(x̄(1)) | |ξ| = 1}.

Furthermore, ū(t) maximizes

u →
(

(1 − ‖μ′‖T.V.)p(t;α = 2) +

∫
[t,1]

p(t;α) μ′(dα)

)
· f(t, x̄(t), u)

over u ∈ Ω(t), a.e. t ∈ [0, 1], and

supp {μ′} ⊂ {α ∈ [0, 1] | h(α, x̄(α)) = 0}.

Let Φ(t, s) be the fundamental matrix for the linear equation ż(t) =
−fT

x (t, x̄(t), ū(t))z(t), i.e., for any s ∈ [0, 1], Φ(., s) solves d
dtΦ(t, s) =

−fT
x (t, x̄(t), ū(t))Φ(t, s) for 0 ≤ t ≤ 1 and Φ(s, s) = I.
Suppose ‖μ′‖T.V. < 1. Define

μ :=
1

1 − ‖μ′‖T.V.
μ′.

Then,

u →
(
p(t) +

∫
[0,t)

hx(s, x̄(s)) μ(ds)
)
· f(t, x̄(t), u)

is maximized over u ∈ Ω(t) at u = ū(t), a.e. t ∈ [0, 1], where

p(t) := p(t;α = 2) +

∫
[t,1]

p(t;α) μ(dα) −
∫

[0,t)

hx(α, x̄(α)) μ(dα).

We deduce from the differential equations for p(.;α = 2) and p(.;α), α ∈ [0, 1], that p
satisfies

p(t) = −Φ(t, 1)[λgx(x̄(1)) + (1 − λ)ξ]

−
∫

[t,1]

Φ(t, α)hx(α, x̄(α)) μ(dα) −
∫

[0,t)

hx(α, x̄(α)) μ(dα) for all t ∈ [0, 1] ,



MINIMAX OPTIMAL CONTROL 961

for some ξ ∈ {ξ′ ∈ NC(x̄(1)) | |ξ′| = 1}. It can be deduced from this relationship that
p(.) is an absolutely continuous function which satisfies

−ṗ(t) = fT
x (t, x̄(t), ū(t))

(
p(t) +

∫
[0,t)

hx(α, x̄(α)) μ(dα)

)
a.e. t ∈ [0, 1]

−
(
p(1) +

∫
[0,1]

hx(α, x̄(α)) μ(dα)

)
= λgx(x̄(1)) + (1 − λ)ξ

∈ λgx(x̄(1)) + NC(x̄(1)).

Notice that if ‖μ′‖T.V. = 0 and λ = 0, then |p(1)| = |ξ| = 1. Thus, the multi-
plier nondegeneracy condition is satisfied. We have confirmed the assertions of the
proposition in the case ‖μ′‖T.V. < 1.

It remains then to consider the case when ‖μ′‖T.V. = 1. Set μ = μ′. Now
condition (iv) in the theorem statement is valid with

p(t) =

∫
[t,1]

p(t;α) μ(dα) −
∫

[0,t)

hx(α, x̄(α)) μ(dα).

It can be deduced that p satisfies

−ṗ(t) = fT
x (t, x̄(t)ū(t))

(
p(t) +

∫
[0,t)

hx(α, x̄(α)) μ(dα)

)
a.e. t ∈ [0, 1]

−
(
p(1) +

∫
[0,1]

hx(α, x̄(α)) μ(dα)

)
= 0.

But

0 ∈ λgx(x̄(1)) + NC(x̄(1)),

when λ = 0. The assertions of the proposition have been confirmed in this case too,
and the proof is complete.

6. Proofs of Theorems 3.1–3.3. Our analysis will require some properties of
measures, summarized in the following proposition.

Proposition 6.1. Take a compact metric space A, a sequence {μi} of non-
negative Radon measures in C∗(A), a sequence {Di : A → Rn} of multifunctions
and a sequence of Borel measurable functions {γi : A → Rn}. Take also a measure
μ ∈ C∗(A) and a multifunction D : A → Rn. Assume that Gr D is compact,

D(α) is convex for each α ∈ A,(6.1)

lim sup
i→∞

Gr Di ⊂ Gr D,

γi(α) ∈ Di(α) μi – a.e. α ∈ A for i = 1, 2, . . .

and

μi → μ weakly∗.

Define ηi ∈ C∗(A;Rn) according to

ηi(dα) = γi(α)μi(dα) i = 1, 2, . . . .

Then,
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(i) Along a subsequence,

ηi → η weakly∗

for some η ∈ C∗(A;Rk) and some Borel measurable function γ such that

η(dα) = γ(α)μ(dα),

and

γ(α) ∈ D(α) μ− a.e.

(ii) Suppose A is expressible as a union of disjoint sets

A = A(1) ∪ A(2)

in which A(1) is compact metric space and A(2) is finite. Then the assertions
of part (i) remain valid when the hypothesis (6.1) is replaced by

D(α) is convex for each α ∈ A(1).

Proof. The proof, which is similar to that of ([10], Proposition 9.2.1), is
omitted.

6.1. Proof of Theorem 3.1. We observe at the outset that we can, without
loss of generality, replace (S2) and (S3) by stronger (global) hypotheses in which
δ = +∞, that is, we can require the stated conditions in (S2) to hold for all x, x′ ∈ Rn,
not merely in x, x′ ∈ x̄(t) + δB; likewise for (S3). This can always be arranged
by replacing f and g by their “localizations” (t, x, u, α) → f(t, trx̄(t),δ(x), u, α) and
(t, x, u, α) → g(t, trx̄(t),δ(x), α), in which try,δ(x) is the truncation function

try,δ(x) =

{
x if |x− y| < δ
y + δ(x− y)/|x− y| if |x− y| ≥ δ

.

The property that x̄ is a strong local minimizer is preserved under this modification
of the data. It is a consequence of the hypotheses, strengthened in this way that to
each u ∈ U and α ∈ A, there corresponds a unique state trajectory (on [0, 1] with
initial state x0). This we write x(.;α, u).

The following lemma brings together some useful facts, regarding the dependence
of the state trajectories on controls and parameters.

Let Δ : Rn ×Rn → R denote the Ekeland metric on U ,

Δ(u1, u2) := meas{t | u1(t) = u2(t)}.

Lemma 6.1. For any δ > 0, a finite subset Ã ⊂ A and ρ > 0 can be chosen such
that

(i)

sup
u∈U

sup
α∈A

inf
α′∈Ã

‖x(.;α, u) − x(.;α′, u)‖C < δ

(ii)

sup
α∈A

{
‖x(.;α, u) − x(.;α, u′)‖C | u, u′ ∈ U , Δ(u, u′) < ρ

}
< δ.
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These assertions are straightforward consequences of Filippov’s existence theorem.
(See, e.g., [10], Theorem 2.4.3.)

Take a sequence εi ↓ 0. For each i define Ji : U → R

Ji(u) := max
α∈A

{(
g(x(1;α, u), α) − max

α′∈A
g(x̄(1;α′), α′) + ε2i

)
∨ dC(α)(x(1;α, u))

}
.

Notice that Ji(u) ≥ 0 for all u ∈ U and Ji(ū) = ε2i . It follows that ū is an
ε2i -minimizer for the functional Ji on U .

For each i, Ji is continuous with respect to the Δ-metric topology. We deduce
from Ekeland’s theorem the existence of a control function vi, for each i, such that

Δ(vi, ū) ≤ εi

and

Ji(vi) + εiΔ(vi, vi) = min
u∈U

{
Ji(u) + εiΔ(vi, u)

}
.

We have

Ji(vi) > 0 for all i sufficiently large,

since (ū, {x̄(.;α) |α ∈ A}) is a strong local minimizer for (P) and by Lemma 6.1 (ii).

Fix i. For any finite subset Ã ⊂ A, which will be chosen presently, consider the
functional

JÃ
i (u) := max

α∈Ã

{(
g(x(1;α, u), α) − max

α′∈A
g(x̄(1;α′), α′) + ε2i

)
∨ dC(α)(x(1;α, u))

}
.

(6.2)

Take ρ > 0. According to Lemma 6.1, the finite subset Ã can be chosen such that

JÃ
i (u) ≥ Ji(u) − ρ2 for all u ∈ U .

Since vi is a minimizer for u → Ji(u) + εiΔ(vi, u) over U , it follows that vi is a

ρ2-minimizer for u → J Ã
i (u) + εiΔ(vi, u) over U . A second application of Ekeland’s

theorem then yields a control function ui ∈ U such that

Δ(vi, ui) ≤ ρ

and

JÃ
i (ui) + εiΔ(vi, ui) + ρΔ(ui, ui) = min

u∈U

{
JÃ
i (u) + εiΔ(vi, u) + ρΔ(ui, u)

}
.

By adding extra elements to the finite subset Ã and reducing ρ if necessary, we can

make the number |J Ã
i (ui)−Ji(vi)| arbitrary small. (See Lemma 6.1.) Since Ji(vi) > 0,

we can arrange that

JÃ
i (ui) > 0.

Write Ai in place of Ã and ρi in place of ρ, to emphasize their dependence on i.
We can carry out the above analysis for i = 1, 2, . . . . By adding extra elements

to each Ai and reducing each ρi, if necessary, we can arrange, also, that {Ai} is an
increasing sequence and ρi ↓ 0.

For clarity, we summarize relevant properties of the above constructs: for some
sequences εi ↓ 0 and ρi ↓ 0, sequences {ui} and {vi} in U and an increasing sequence
of finite subsets {Ai} of A, we have
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(i) JAi

i (ui) + εiΔ(vi, ui) + ρiΔ(ui, ui)

= minu∈U

{
JAi

i (u) + εiΔ(vi, u) + ρiΔ(ui, u)
}

for all i,

(ii) JAi

i (ui) > 0 for all i,
(iii) Δ(vi, ū) → 0 and Δ(ui, ū) → 0 as i → ∞.

For each i, list the elements in Ai,

A = {α1, . . . , αKi}

and write {xi(.;α) |α ∈ A} for the state trajectories corresponding to ui. Define

mi(t, u) :=

{
0 if u = vi(t),

1 otherwise,
and ni(t, u) :=

{
0 if u = ui(t),

1 otherwise.

With the help of these functions, we can express the minimizing property (i) of the
ui’s in control theoretic terms, as follows. For each i, (ui, {xi(.;αk) | k = 1, . . . ,Ki})
is a minimizer for the optimal control problem

(Pi)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize maxk=1,...,Ki

{(
g(x(1;αk), αk)

−maxα∈A g(x̄(1;α), α) + ε2i

)
∨ dC(αk)(x(1;αk))

}
+ εi

∫ 1

0
mi(t, u(t)) dt + ρi

∫ 1

0
ni(t, u(t)) dt

over measurable functions u and arcs {x(.;α1), . . . , x(.;αKi)} such that
u(t) ∈ Ω(t), a.e. t ∈ [0, 1]
and, for k = 1, . . . ,Ki,
ẋ(t;αk) = f(t, x(t;αk), u(t), αk), a.e. t ∈ [0, 1],
x(0;αk)(0) = x0.

Since ui → ū and vi → ū with respect to the Δ-metric, we know that

sup
α∈A

‖x̄(.;α) − x(.;α, ui)‖C → 0 as i → ∞.

Take an infinite sequence of control functions {ûj} ∈ U whose first element is ū. Using
similar reasoning to that employed in the proof of Proposition 2.1 (note the crucial
role of property (ii) above, to ensure multiplier nondegeneracy), we can deduce the
following information from the nonsmooth maximum principle (see, e.g., [10], Theo-
rem 6.2.1). For each i sufficiently large, there exist nonnegative numbers λi

1, . . . , λ
i
Ki

such that

Ki∑
k=1

λi
k = 1,

and a sequence ε′i ↓ 0 with the following properties. Define the discrete probability
measure

Λi =

Ki∑
k=1

λi
kδαi

k
.

Then, for each i sufficiently large and Λi – a.e. α ∈ A, there exists a costate arc pi(.;α)
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satisfying

(i)−ṗi(t;α) ∈ co ∂xH(t, x̄(t) + ε
′

iB, ū(t), pi(t;α), α)

(ii)−pi(1;α) ∈ co
⋃

x∈x̄(1;α)+ε′iB

⋃
r∈[0,1]

(
rGε′i

(x, α) + (1 − r)N(x, α)
)

where Gε′(α, x) ={
∂xg(x, α) if g(x, α) ≥ maxα′∈A g(x, α′) − ε′

∅ otherwise

and N(x, α) =
{
ξ ∈ NC(α)(x) | |ξ| = 1

}
(iii)

∫
A

∫ 1

0

pi(t;α) · [f(t, x̄(t;α), ûj(t), α) − f(t, x̄(t;α), ū(t), α)] dt Λi(dα) ≤ ε′i

for j = 1, 2, . . . .

By extracting a subsequence, we can arrange that

Λi → Λ weakly∗ as i → ∞

for some Radon probability measure Λ on the Borel sets of A.
Fix an integer N . We now apply the first part of Proposition 6.1, in which we

identify μ with Λ, μi with the Λi, and take

Di(α):={(ξ1, . . . , ξN )∈RN | ∃ p(.;α) ∈ Qε
′
i
(α) s.t. ξj = wj(p(.;α), α) for j=1, 2, . . . , N},

i = 1, 2, . . . , and

D(α) := {(ξ1, . . . , ξN ) | ∃ p(.;α) ∈ Q0(α) s.t. ξj = wj(p(.;α), α), j = 1, 2, . . . , N}.
(6.3)

Here,

wj(p(.), α) :=

∫ 1

0

p(t) · [f(t, x̄(t, α), ûj(t), α) − f(t, x̄(t, α), ū(t), α)] dt.

We deduce that∫
A

∫ 1

0

qN (t, α) · [f(t, x̄(t, α), ûj(t), α) − f(t, x̄(t, α), ū(t), α)] dt Λ(dα) ≤ 0(6.4)

for j = 1, 2, . . . , N , in which {qN (.;α) ∈ W 1,1 |α ∈ A} is some family of arcs such
that, for Λ – a.e. α ∈ A,

qN (.;α) ∈ Q0(α).

For each N , we can regard α → qN (.;α) as a representative of an equivalence class of
Λ – a.e. equal elements in the Hilbert space

X := L2
Λ(A;L2([0, 1];Rn))

with the inner product

(p, q)Λ =

∫
A

∫ 1

0

p(t;α) · q(t;α) dt Λ(dα).
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The sequence {α → qN (.;α)}∞N=1 is norm bounded and therefore has a weak limit,
which we write {α → p(.;α)}. But

{d ∈ X | d(α) ∈ Q0(α), Λ – a.e. α ∈ A}

is a strongly closed subset of X . Since it is convex, it is also weakly closed. It follows
that

p(.;α) ∈ Q0(α) Λ – a.e. α ∈ A.

By weak convergence, we deduce from (6.4) that∫ ∫ 1

0

p(t;α) · [f(t, x̄(t;α), ûj(t), α) − f(t, x̄(t;α), ū(t), α)] dt Λ(dα) ≤ 0(6.5)

for j = 1, 2, . . . .
In view of the Castaing representation theorem (see, e.g., [10], Theorem 2.2.7),

we can choose a subset T ⊂ (0, 1) of full measure and also the sequence of controls
functions above, {ûj}, to satisfy

⋃
j

∫
A
p(t;α) · f(t, x̄(t;α), ûj(t), α)Λ(dα) ⊃

∫
A
p(t;α) · f(t, x̄(t;α),Ω(t), α)Λ(dα)

(6.6)

for all t ∈ T . We can arrange that (6.5) remains valid when the countable set ûj(.)
is replaced by another countable set comprising all concatenations of a finite number
of segments of the original ûj ’s, with junction points belonging to a countable dense
subset S of [0, 1].

Define T ′ to be the set of full measure, comprising points in T which are also
Lebesgue points for

s →
∫

p(s;α)[f(s, x̄(s, α), ûj(s), α) − f(s, x̄(s, α), ū(s), α)] Λ(dα)(6.7)

for all j. Take any t ∈ T ′, w ∈ Ω(t) and β > 0, Then, in view of (6.6), there exists j
such that∫

A
p(t;α) · f(t, x̄(t), ûj(t), α)Λ(dα) ≥

∫
A
p(t;α) · f(t, x̄(t;α), w, α)Λ(dα) − β.(6.8)

Choose a sequence of intervals {[si, ti]}, containing t and with endpoints in the set S
and such that si → t and ti → t. Now let vi ∈ {ûj}∞j=1 for i = 1, 2, . . . , where

vi :=

{
ûj(t) if t ∈ [si, ti],

ū(t) otherwise.

Changing the order of integration, inserting ûj = vi in (6.5) and dividing across by
|ti − si| gives

1

|ti − si|

∫ ti

si

∫
p(s;α) · [f(s, x̄(s;α), ûj(s), α) − f(s, x̄(s;α), ū(s), α)] Λ(dα) dt ≤ 0
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for each i. Since t is a Lebesgue point of the mapping (6.7), it follows that∫
p(t;α) · [f(t, x̄(t;α), ûj(t), α) − f(t, x̄(t;α), ū(t), α)] Λ(dα) ≤ 0.

We conclude from (6.8) that∫
p(t;α) · [f(s, x̄(t;α), w, α) − f(t, x̄(t;α), ū(t), α)] Λ(dα) ≤ β.

But β > 0 is arbitrary. So∫
p(t;α) · [f(t, x̄(t;α), w, α) − f(t, x̄(t;α), ū(t), α)] Λ(dα) ≤ 0.

Since the above inequality holds for any t′ ∈ T ′, a set of full measure, and any
w ∈ Ω(t), the maximization of the Hamiltonian condition is confirmed. The proof is
complete.

6.2. Proof of Theorem 3.2. The assertions of Theorem 3.1 are expressed in
terms of selectors p(.;α) of the multifunction

α → Q0(α)

in order to guarantee that D(.), given by (6.3), has closed graph and convex values,
and thereby to justify application of part (i) of Proposition 6.1.

In the case when A can be decomposed into disjoint sets A = A(1)∪A(2) in which
A(2) is finite, essentially the same analysis leads to optimality conditions involving a
selector p(.;α) of the multifunction

α →
{

Q0(α) if α ∈ A(1),

Q0(α) if α ∈ A(2).
(6.9)

We do, however, now have to use part (ii) of Proposition 6.1 to justify (6.4), for some
selector pN (.;α) of the multifunction (6.9).

Also, to justify (6.5) (for some selector pN (.;α) of (6.9)), we must use the facts
that, if A(2) = {b1, . . . , bm}, then an element in

X = L2
Λ(A;L2([0, 1];Rn))

can be represented by an element in

X ′ = L2
Λ(A(1);L2([0, 1];Rn)) × L2([0, 1];Rn)m,

and the weak topology on X is compatible with the weak product topology on X ′. It
follows that, for the sequence {α → pN (.;α)}∞N=1 constructed at the end of the proof
of Theorem 3.1, we can arrange by subsequence extraction, that the limiting p(.;α)
satisfies p(.;α) ∈ Q0(α) for Λ – a.e. α ∈ A(2).

6.3. Proof of Theorem 3.3. The proof the minimax maximum principle for
problems with functional inequality endpoint constraints is along similar, but simpler,
lines to that of Example 4.1. The main difference is that, for each i, we replace the

cost function JÃ
i (u) (see (6.2)) of the earlier analysis by

J̃Ã
i (u) := max

α∈Ã

{(
g(x(1;α, u), α) − max

α′∈A
g(x̄(1;α′), α′)

)
∨ψ1(x̄(1;α, u), α, ) ∨ · · · ∨ ψr(x̄(1;α), α)

}
.(6.10)
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The proof is completed by examining properties of minimizers of perturbations of
these cost functions and passage to the limit as before.
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Abstract. The inclusion principle provides a mathematical framework for comparing behavior
of dynamic systems having different dimensions. Our main objective is to derive a canonical form
for larger systems (expansions) that are obtained by expanding smaller systems (contractions). The
form offers full freedom in selecting appropriate matrices for the expansion-contraction process. We
will broaden the form to include feedback and propose an explicit characterization of contractible
control laws subject to overlapping information structure constraints.
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1. Introduction. The inclusion principle for dynamic systems [1], which was
developed in the 1980s, is now a well-established mathematical framework for com-
paring systems having different dimensions (for a self-contained presentation of the
early results, see [2]). In particular, the principle has been established as a useful
tool in formulation of control laws for systems with overlapping information struc-
ture constraints [3, 4, 5, 6, 7, 8, 9, 10]. In the past decade, the research on the
inclusion principle has been focused on providing a wide variety of conditions for ex-
pansion and contraction of continuous, discrete-time, and stochastic dynamic systems
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20], which helped resolve both theoretical aspects
and practical benefits of the principle in control designs.

Expansion, being an intersection of aggregation [21] and restriction [1, 2, 3], raises
a question: What system properties are retained after the expansion-contraction pro-
cess has been completed [22]? Much progress has been made in identifying the con-
ditions that ensure the invariancy of controllability, observability, and stabilizability
in the expanded systems [23, 24, 25].

A central issue in the framework of overlapping decentralized control has been
the problem of contractibility of feedback control laws [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20]. When a system contains overlapping subsystems,
it is natural to add the locally available overlapping states to decentralized control in
order to improve the performance of the overall system. This fact gives rise to the
control design under overlapping information structure constraints, which is handled
by expanding the systems into a larger space where the overlapping subsystems appear
as disjoint. As a result of the expansion, overlapping decentralized control in the
expanded space can be chosen by standard methods which are available for disjoint
subsystems. After the selection is made, the expanded control law is contracted to the
original space for implementation. While flexibility of the inclusion principle has been
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greatly improved by the new conditions guiding the expansion-contraction process
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], the contractibility problem has not been
satisfactorily resolved. A failure of a condition to provide the required contractibility
of a control law is often hard to interpret; one is not sure if the choice of condition or
selection of control law is inappropriate, or if contractibility is not possible due to an
inherent structure of the system.

Our objective in this paper is to derive a canonical form for the inclusion principle
in the spirit of canonical forms for linear dynamical systems [26, 27, 28, 29, 30]. By
providing an explicit characterization of expanded systems, the form, as expected,
simplifies the study of invariant properties in the expansion-contraction process. The
proposed form involves expansion of inputs, outputs, and feedback control laws, thus
broadening in an essential way the scope of the canonical form derived previously
for state expansion only [1, 2]. A by-product of this fact is a complete resolution
of the contractibility problem of expanded control laws for both static and dynamic
controllers, which has a special significance in formulations of decentralized control
for complex systems under overlapping information structure constraints.

The present paper is organized as follows: In section 2 the inclusion and con-
tractibility of dynamic systems are formulated. Canonical forms for the inclusion
principle are established in section 3. In section 4, a problem related to overlap-
ping decentralized control is solved. Next the contractibility of dynamic controllers is
discussed in section 5. Finally, in section 6, we offer a few concluding remarks.

2. Inclusion and contractibility. Consider a pair of linear time-invariant sys-
tems

S :

{
ẋ = Ax + Bu,
y = Cx

(2.1)

and

S̃ :

{
˙̃x = Ãx̃ + B̃ũ,
ỹ = C̃x̃,

(2.2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are the state, input, and output of system S

at time t ≥ 0, and x̃(t) ∈ Rñ, ũ(t) ∈ Rm̃, ỹ(t) ∈ Rl̃ are those of S̃, and A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rl×n, Ã ∈ Rñ×ñ, B̃ ∈ Rñ×m̃, C̃ ∈ Rl̃×ñ are constant matrices.
Suppose

n ≤ ñ, m ≤ m̃, l ≤ l̃,

that is, S is smaller than S̃. Denote by x(t;x0, u) and y[x(t)] the state behavior and
the corresponding output of system S for a fixed input u(t) and for an initial state
x(0) = x0, respectively. Similar notation x̃(t; x̃0, ũ) and ỹ[x̃(t)] are used for the state
behavior and output of system S̃.

Let us link systems S and S̃ through the following transformations:

V : Rn −→ Rñ, L : Rm −→ Rm̃, T : Rl −→ Rl̃,(2.3)

where

rank(V ) = n, rank(L) = m, rank(T ) = l.(2.4)

Denote the unique pseudoinverses of V , L, and T by V +, L+, and T+, respectively,
and recall the definition of the inclusion principle [1, 2].
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Definition 2.1. The system S̃ includes the system S, that is, S is included by
S̃, if there exists a triplet (V,L, T ) satisfying (2.3) and (2.4) such that, for any initial
state x0 and any fixed u(t) of system S, the choice

x̃0 = V x0, ũ(t) = Lu(t) ∀t ≥ 0(2.5)

of the initial state x̃0 and input ũ(t) of the system S̃ implies

x(t;x0, u) = V +x̃(t; x̃0, ũ), y[x(t)] = T+ỹ[x̃(t)] ∀t ≥ 0.(2.6)

If the system S̃ includes the system S, then system S̃ is said to be an expansion of the
system S and system S is a contraction of system S̃.

The inclusion principle has been used to expand overlapping decentralized control
laws into a larger space, where they appear disjoint, design disjoint laws by known
methods, and contract them to the original space for implementation (see, e.g., [2]).
The central issue in the expansion-contraction process is the problem of contractibility
defined as follows [1, 4].

Definition 2.2. The control law

ũ = −K̃x̃ + ṽ

given for system S̃ is contractible to the control law

u = −Kx + v

for implementation in system S if one of the following two statements holds:
(a) The choice

x̃0 = V x0, ũ(t) = Lu(t)

implies

x(t;x0, u) = V +x̃(t; x̃0, ũ), LKx(t;x0, u) = K̃x̃(t; x̃0, ũ)(2.7)

for all t ≥ 0, any initial state x0, and any fixed input u(t) of system S.
(b) The choice

x̃0 = V x0, u = L+ũ

implies

x(t;x0, u) = V +x̃(t; x̃0, ũ), Kx(t;x0, u) = L+K̃x̃(t; x̃0, ũ)(2.8)

for all t ≥ 0, any initial state x0 of system S, and any fixed input ũ of system S̃.
It should be pointed out that both conditions in (a) and (b) above ensure that

the closed-loop system

˙̃x = (Ã + B̃K̃)x̃ + B̃ṽ

includes the closed-loop system

ẋ = (A + BK)x + Bv.

This property plays an important role in the application of the inclusion principle to
overlapping decentralized control.
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For the expansion-contraction and contractibility between systems S and S̃, the
conditions are provided in the following theorem [4].

Theorem 2.3. Given systems S and S̃, and transformations V , L, and T satis-
fying (2.3) and (2.4).

(i) System S̃ is an expansion of system S if and only if for all i = 1, 2, . . . , ñ⎧⎪⎪⎨⎪⎪⎩
V +(Ã− V AV +)iV = 0,
V +(Ã− V AV +)i−1(B̃L− V B) = 0,
(T+C̃ − CV +)(Ã− V AV +)i−1V = 0,
(T+C̃ − CV +)(Ã− V AV +)i−1(B̃L− V B) = 0.

(2.9)

(ii) The control law −K̃x̃ is contractible to the control law −Kx if and only if
either ⎧⎨⎩V +(Ã− V AV +)iV = 0,

V +(Ã− V AV +)i−1(B̃L− V B) = 0,
(LKV + − K̃)Ãi−1

[
V B̃L

]
= 0

i = 1, 2, . . . , ñ,(2.10)

or ⎧⎨⎩V +(Ã− V AV +)iV = 0,
V +(Ã− V AV +)i−1(B̃ − V BL+) = 0,
(KV + − L+K̃)Ãi−1

[
V B̃

]
= 0.

i = 1, 2, . . . , ñ,(2.11)

In applications, the inclusion principle relies heavily on the proper choice of ex-
panded matrices Ã, B̃, C̃, and K̃ which are restricted by the expandability and con-
tractibility conditions of Theorem 2.3. In a variety of situations, the conditions have
been hard to use since there are no simple rules for their interpretation, nor systematic
procedures for utilizing the conditions in the computation of expanded matrices. For
this reason, there are a few standard choices [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20] that have been repeatedly used in applications, while the full
freedom offered by the conditions has remained unexplored. Recently, to broaden the
scope of applications of the inclusion principle, new expansion-contraction conditions
have been proposed, which involve additional flexibility provided by the choice of
complementary matrices [14, 15, 16, 17, 18]. Even in this case, the conditions involve
an intricate relationship between powers of matrices that obscures the full flexibility
of the proposed choice.

In the next section we will establish a canonical form for the inclusion princi-
ple of dynamic system S. The canonical form parameterizes explicitly all expansion-
contraction matrices in the general setting of transformations V , L, T . Therefore, full
freedom of the inclusion principle is readily available for control design.

3. Canonical form. Motivated by the difficulties in characterizing expansion
matrices, we propose to derive a canonical form for the inclusion principle. The form
resolves the difficulties by providing an explicit parameterization of the expanded
system within the framework of expansion-contraction process. To show this, we
need the following two lemmas [31, 32].

Lemma 3.1. Given A ∈ Rn×n,B ∈ Rn×m, C ∈ Rl×n, and D ∈ Rl×m.
(i)

max
s∈C

rank

[
sI −A B

C D

]
= n
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if and only if

D = 0

and

max
s∈C

rank

[
sI −A B

C 0

]
= n.

(ii) Assume that (A,B) is controllable, i.e.,

rank
[
sI −A B

]
= n ∀s ∈ C.

Then

max
s∈C

rank

[
sI −A B

C 0

]
= n

if and only if

C = 0.

Lemma 3.2. Given A ∈ Rn×n,B ∈ Rn×m, C ∈ Rl×n. Then

CAiB = 0 for i = 0, 1, . . . , n− 1

if and only if

max
s∈C

rank

[
sI −A B

C 0

]
= n.

Proof. From the Kalman decomposition of a linear time-invariant system [26],
there exists nonsingular matrix X ∈ Rn×n such that

XAX−1 =

[ τ1 n− τ1

A11 A12

0 A22

]
}τ1
}n− τ1

, XB =

[
B1

0

]
}τ1
}n− τ1

, CX−1 =
[ τ1 n− τ1

C1 C2

]
,

where (A11,B1) is controllable, which implies

rank
[
B1 A11B1 · · · Aτ1−1

11 B1

]
= τ1.(3.1)

Since

rank
[
CB CAB · · · CAn−1B

]
= rank(C1

[
B1 A11B1 · · · An−1

11 B1

]
)

= rank(C1

[
B1 A11B1 · · · Aτ1−1

11 B1

]
),

so, the property (3.1) gives that CAiB = 0 for all i = 0, 1, . . . , n − 1 if and only if
C1 = 0.

On the other hand,

max
s∈C

rank

[
sI −A B

C 0

]
= (n− τ1) + max

s∈C
rank

[
sI −A11 B1

C1 0

]
= n +

(
max
s∈C

rank

[
sI −A11 B1

C1 0

]
− τ1

)
;
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thus, we have by using Lemma 3.1 that maxs∈C rank [sI−A B
C 0] = n if and only if

C1 = 0. Hence, Lemma 3.2 follows.
Now we are ready to present a canonical form for the expansion-contraction triplet

(Ã, B̃, C̃) under the inclusion principle as follows.
Theorem 3.3. Given systems S and S̃, and transformations V , L, T satisfying

(2.3) and (2.4), let the QR factorizations of V , L, and T be given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
U U

]T
V =

[
V11

0

]
}n
}ñ− n

, U ∈ Rñ×n, U ∈ Rñ×(ñ−n),

[
P P

]T
L =

[
L11

0

]
}m
}m̃−m

, P ∈ Rm̃×m, P ∈ Rm̃×(m̃−m),

[
S S

]T
T =

[
T11

0

]
}l
}l̃ − l

, S ∈ Rl̃×l, S ∈ Rl̃×(l̃−l),

(3.2)

where
[
U U

]
,
[
P P

]
, and

[
S S

]
are orthogonal, and V11, L11, and T11 are non-

singular. Then, system S̃ is an expansion of the system S if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V UW

] ⎡⎣ A 0 Ã13

Ã21 Ã22 Ã23

0 0 Ã33

⎤⎦[
V +

(UW )T

]
,

B̃ =
[
V UW

] ⎡⎣ B B̃12

B̃21 B̃22

0 B̃32

⎤⎦[
L+

PT

]
,

C̃ =
[
T S

] [ C 0 C̃13

C̃21 C̃22 C̃23

] [
V +

(UW )T

]
,

(3.3)

where W ∈ R(ñ−n)×(ñ−n) is an arbitrary orthogonal matrix, μ is an arbitrary integer
between 0 and ñ − n, and Ã13 ∈ Rn×(ñ−n−μ), Ã21 ∈ Rμ×n, Ã22 ∈ Rμ×μ, Ã23 ∈
Rμ×(ñ−n−μ), Ã33 ∈ R(ñ−n−μ)×(ñ−n−μ), B̃12 ∈ Rn×(m̃−m), B̃21 ∈ Rμ×m, B̃22 ∈
Rμ×(m̃−m), B̃32 ∈ R(ñ−n−μ)×(m̃−m), C̃13 ∈ Rl×(ñ−n−μ), C̃21 ∈ R(l̃−l)×n, C̃22 ∈
R(l̃−l)×μ, and C̃23 ∈ R(l̃−l)×(ñ−n−μ) are constant matrices with arbitrary elements.

Proof. It is easy to see that

V + =
[
V −1

11 0
][
U U

]T
, L+ =

[
L−1

11 0
][
P P

]T
, T+ =

[
T−1

11 0
][
S S

]T
.

In the following we prove the necessity first and then sufficiency.

Necessity. For any Ã ∈ Rñ×ñ, B̃ ∈ Rñ×m̃ and C̃ ∈ Rl̃×ñ, define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
U U

]T
Ã
[
U U

]
=

[ n ñ− n

Â11 Â12

Â21 Â22

]
}n
}ñ− n

,

[
U U

]T
B̃
[
P P

]
=

[ m m̃−m

B̂11 B̂12

B̂21 B̂22

]
}n
}ñ− n

,

[
S S

]T
C̃
[
U U

]
=

[ n ñ− n

Ĉ11 Ĉ12

Ĉ21 Ĉ22

]
}l
}l̃ − l

.

(3.4)
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Let the system S̃ be an expansion of the system S. By Theorem 2.3 and Lemma
3.2, we have that

max
s∈C

rank

[
sI − Ã + V AV + (Ã− V AV +)V B̃L− V B

V + 0 0

]
= ñ,

max
s∈C

rank

[
sI − Ã + V AV + V B̃L− V B

T+C̃ − CV + 0 0

]
= ñ,

which gives

max
s∈C

rank

[
sI − Ã ÃV − V A B̃L− V B
V + 0 0

]
= max

s∈C
rank

[
sI − Ã V B̃L

T+C̃ − CV + 0 0

]
= ñ.

Hence, by using (3.4) we get

max
s∈C

rank

⎡⎣sI − Â11 −Â12 Â11V11 − V11A B̂11L11 − V11B

−Â21 sI − Â22 Â21V11 B̂21L11

V −1
11 0 0 0

⎤⎦

= max
s∈C

rank

⎡⎣ sI − Â11 −Â12 V11 B̂11L11

−Â21 sI − Â22 0 B̂21L11

T−1
11 Ĉ11 − CV −1

11 T−1
11 Ĉ12 0 0

⎤⎦ = ñ,

that is,

max
s∈C

rank

[
sI − Â22 Â21V11 B̂21L11

−Â12 Â11V11 − V11A B̂11L11 − V11B

]

= max
s∈C

rank

[
sI − Â22 −Â21 B̂21L11

T−1
11 Ĉ12 T−1

11 Ĉ11 − CV −1
11 0

]
= ñ− n,

which, by means of Lemma 3.1, is equivalent to[
Â11V11 − V11A B̂11L11 − V11B

]
= 0, T−1

11 Ĉ11 − CV −1
11 = 0

and

max
s∈C

rank

[
sI − Â22 Â21 B̂21

Â12 0 0

]
= max

s∈C
rank

[
sI − Â22 Â21 B̂21

Ĉ12 0 0

]
= ñ− n

or, equivalently,

Â11 = V11AV −1
11 , B̂11 = V11BR−1

11 , Ĉ11 = T11CV −1
11 ,(3.5)

and

max
s∈C

rank

⎡⎣sI − Â22 Â21 B̂21

Â12 0 0

Ĉ12 0 0

⎤⎦ = ñ− n.(3.6)
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Now we only need to characterize Â22, Â21, Â12, B̂21, and Ĉ12 in (3.6). It is well
known [33] that there is an orthogonal matrix W ∈ R(ñ−n)×(ñ−n) and an integer μ
between 0 and ñ− n such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WT Â22W =

[ μ ñ− n− μ

Ã22 Ã23

0 Ã33

]
}μ
}ñ− n− μ

,

WT
[
Â21V11 B̂21L11

]
=

[ n m

Ã21 B̃21

0 0

]
}μ
}ñ− n− μ

,

(Ã22,
[
Ã21 B̃21

]
) is controllable.

(3.7)

Set

[
Â12

Ĉ12

]
W =

[ μ ñ− n− μ

Ã12 V11Ã13

C̃12 T11C̃13

]
}n
}l .

Then, (3.6) and Lemma 3.1 imply

Ã12 = 0, C̃12 = 0,

that is, [
Â12

Ĉ12

]
W =

[
0 V11Ã13

0 T11C̃13

]
.(3.8)

Hence, (3.3) follows directly from a simple calculation using (3.4), (3.5), (3.7), and
(3.8).

Sufficiency. Let (3.3) hold for an arbitrary orthogonal matrix W ∈ R(ñ−n)×(ñ−n),
an arbitrary integer μ between 0 and ñ−n, and arbitrary matrices Ã13 ∈ Rn×(ñ−n−μ),
Ã21 ∈ Rμ×n, Ã22 ∈ Rμ×μ, Ã23 ∈ Rμ×(ñ−n−μ), Ã33 ∈ R(ñ−n−μ)×(ñ−n−μ), B̃12 ∈
Rn×(m̃−m), B̃21 ∈ Rμ×m, B̃22 ∈ Rμ×(m̃−m), B̃32 ∈ R(ñ−n−μ)×(m̃−m), C̃13 ∈
Rl×(ñ−n−μ), C̃21 ∈ R(l̃−l)×n, C̃22 ∈ R(l̃−l)×μ, and C̃23 ∈ R(l̃−l)×(ñ−n−μ). A direct
calculation yields that

max
s∈C

rank

[
sI − Ã ÃV − V A B̃L− V B
V + 0 0

]

= max
s∈C

rank

⎡⎢⎢⎣
sI −A 0 −Ã13 0 0

−Ã21 sI − Ã22 −Ã23 Ã21 B̃21

0 0 sI − Ã33 0 0
I 0 0 0 0

⎤⎥⎥⎦
= n + μ + (ñ− n− μ) = ñ

and

max
s∈C

rank

[
sI − Ã V B̃L

T+C̃ − CV + 0 0

]

= max
s∈C

rank

⎡⎢⎢⎣
sI −A 0 −Ã13 I 0

−Ã21 sI − Ã22 −Ã23 0 B̃21

0 0 sI − Ã33 0 0

0 0 C̃13 0 0

⎤⎥⎥⎦
= n + μ + (ñ− n− μ) = ñ.
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Consequently, we obtain that

max
s∈C

rank

[
sI − Ã + V AV + (Ã− V AV +)V B̃L− V B

V + 0 0

]
= max

s∈C
rank

[
sI − Ã + V AV + V B̃L− V B

T+C̃ − CV + 0 0

]
= ñ.

Therefore, by Theorem 2.3 and Lemma 3.2 the system S̃ is an expansion of the system
S.

Since the expansion process underlying the above canonical form (3.3) involves
the inputs and outputs, it includes the canonical form obtained in [1] (see also [2]).

Remark 1. Let

M = Ã− V AV +, N = B̃ − V BL+, G = C̃ − TCV +.

Matrices M,N,G defined above are complementary matrices [1, 15]. Obviously, using
the same notation as in Theorem 3.3, we conclude that system S̃ is an expansion of
S if and only if ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M =
[
V UW

] ⎡⎣ 0 0 Ã13

Ã21 Ã22 Ã23

0 0 Ã33

⎤⎦[
V +

(UW )T

]
,

N =
[
V UW

] ⎡⎣ 0 B̃12

B̃21 B̃22

0 B̃32

⎤⎦[
L+

PT

]
,

G =
[
T S

] [ 0 0 C̃13

C̃21 C̃22 C̃23

] [
V +

(UW )T

]
,

that is, Theorem 3.3 established a canonical form for complementary matrices as well.
Remark 2. In the case that matrices V , L, and T are defined as

V =

⎡⎢⎢⎣
In1 0 0
0 In2 0
0 In2 0
0 0 In3

⎤⎥⎥⎦ , L =

⎡⎢⎢⎣
Im1

0 0
0 Im2

0
0 Im2 0
0 0 Im3

⎤⎥⎥⎦ , T =

⎡⎢⎢⎣
Il1 0 0
0 Il2 0
0 Il2 0
0 0 Il3

⎤⎥⎥⎦(3.9)

with

n1 + n2 + n3 = n, m1 + m2 + m3 = m, l1 + l2 + l3 = l,

n1 + 2n2 + n3 = ñ, m1 + 2m2 + m3 = m̃, l1 + 2l2 + l3 = l̃,

two classes of complementary matrices have been identified in [14, 15] such that system
S̃ includes system S; see (3.30) and (3.31) in [15]. These classes can be obtained by
choosing Ã, B̃, C̃ in (3.3) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [ A 0
X21 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [ B Y12

Y21 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [ C 0
Z21 Z22

] [
V +

UT

]
,

or

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [A X12

0 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [B Y12

0 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [ C Z12

Z21 Z22

] [
V +

UT

]
.
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Remark 3. The two special cases of aggregation and restriction, which have been
used extensively in the existing literature, can now by easily characterized by the
canonical form of Theorem 3.3.

• System S is an aggregation of system S̃ if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [A X12

0 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [B Y12

0 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [C Z12

0 Z22

] [
V +

UT

]
.

• System S is a restriction of system S̃ if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [ A 0
X21 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [ B 0
Y21 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [ C 0
Z21 Z22

] [
V +

UT

]
.

When the underlying space of an expansion is used to design control with infor-
mation structure constraints, then problems arise with control laws when they have
to be contracted for implementation in the original space. The explicit contractibility
conditions are provided by the following control law canonical form.

Theorem 3.4. Given systems S and S̃, and transformations V , L, T satisfying
(2.3) and (2.4), the control law

ũ = −K̃x̃

for system S̃ is contractible to the control law

u = −Kx

for system S if and only if one of the following two statements holds:
(a) Matrices Ã and B̃ of system S̃ are given by (3.3) and

K̃ =
[
L P

] [K 0 K̃13

0 0 K̃23

] [
V +

(UW )T

]
,(3.10)

where W is orthogonal and is the same as that in (3.3), and matrices K̃13 ∈
Rm×(ñ−n−μ) and K̃23 ∈ R(m̃−m)×(ñ−n−μ) have arbitrary elements.

(b) Matrices Ã and B̃ of system S̃ are given by (3.3) with

B̃12 = 0, B̃32 = 0

and

K̃ =
[
L P

] [ K 0 K̃13

K̃21 K̃22 K̃23

] [
V +

(UW )T

]
,(3.11)
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where W is orthogonal and is the same as that in (3.3), and matrices K̃13 ∈
Rm×(ñ−n−μ) and

[
K̃21 K̃22 K̃23

]
∈ R(m̃−m)×ñ have arbitrary elements.

Proof. The proof is similar to that of Theorem 3.3 and hence is omitted.
A corollary to Theorems 3.3 and 3.4, which delineates an important class of

contractible control laws [17], is now automatic.
Corollary 3.5. Given a system S and transformations V , L, T satisfying (2.3)

and (2.4), if matrices Ã and B̃ are given by (3.3) with μ = 0, then any control law
ũ = −K̃x̃ for system S̃ is contractible to the control law u = −Kx with K = L+K̃V
for system S.

Remark 4. The definition in [15, 16] for the contractibility is different from that
given in [4, 17, 19]. In [15, 16] it is defined that the control law ũ = −K̃x̃ for the
expanded system S̃ is contractible to the control law u = −Kx for system S if the
choice x̃0 = V x0 and ũ = Lu implies

Kx(t;x0, u) = L+K̃x̃(t; x̃0, ũ)

for any t ≥ 0, any initial state x0, and any fixed input u of system S. If such a
definition is used, then we can show that the control law ũ = −K̃x̃ for the expanded
system S̃ is contractible to the control law u = −Kx for system S if and only if
matrices Ã and B̃ of system S̃ are given by (3.3) and K̃ is given by (3.11).

It was observed in [15] that our ability to use generalized (system) decompositions
depends crucially not only on the choice of the transformation matrices V , R, and T ,
but also on the selection of the expansion-contraction matrices Ã, B̃, C̃, and K̃ of
expanded system S̃. All previous results enable such selection only partially because of
the usage of the forms of matrices Ã, B̃, C̃, and K̃ in system S̃ corresponding only with
some particular cases. Theorems 3.3 and 3.4 have established a canonical form for the
inclusion principle of dynamic system S, which explicitly parameterizes all admissible
expansion-contraction matrices Ã, B̃, C̃, and K̃ in system S̃ and thus provides full
freedom under the inclusion principle. Therefore, the significance of Theorems 3.3
and 3.4 is obvious. We hasten to add, however, that in choosing suitable expansions
in applications of the inclusion principle, the role of complementary matrices [16] is
indispensable.

An important issue in the expansion-contraction process has been the conditions
under which structural properties of expansions and contractions, such as controlla-
bility, observability, and stabilizability, remain invariant in the process. This issue
has been raised in [22, 23, 24] regarding controllability and observability, and general
conditions for their invariance have been formulated in [25]. To provide a compre-
hensive relationship between expansions and contractions using the present canonical
forms, let us state the following definitions [34].

Definition 3.6. Given a system S. The sets of the uncontrollable modes, the
unobservable modes, and the invariant zeros of system S are defined, respectively, by

Σc(A,B) := {λ ∈ C : rank[λI −A B] < n},

Σo(C,A) :=

{
λ ∈ C : rank

[
λI −A

C

]
< n

}
,

and

Σz(C,A,B) :=

{
λ ∈ C : rank

[
λI −A B

C 0

]
< max

s∈C
rank

[
sI −A B

C 0

]}
.
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Definition 3.7. Given A ∈ Rn×n, B ∈ Rn×m, let X be a nonsingular matrix
such that (X−1AX,X−1B) is in its controllability canonical form, i.e.,⎧⎪⎪⎨⎪⎪⎩X−1AX =

[ μ n− μ

A11 A12

0 A22

]
}μ
}n− μ

, X−1B =

[
B1

0

]
}μ
}n− μ

,

(A11, B1) is controllable.

Then the controllability subspace C(A,B) of (A,B) is defined as

C(A,B) = Range

(
X

[
Iμ
0

])
.

The desired result relating stability, controllability, observability, detectability,
and stability of the invariant zeros is provided by the following.

Theorem 3.8. Given a system S and transformations V , L, and T satisfying
(2.3) and (2.4), assume n < ñ, m < m̃, and l < l̃. Let C̄+ denote the closed right
half complex plane. Then, there exist matrices Ã, B̃, and C̃ such that the following
properties hold simultaneously:

System S̃ is an expansion of system S,(3.12)

σ(A) ⊂ σ(Ã), σ(Ã) ∩ C̄+ = σ(A) ∩ C̄+,(3.13)

Σc(Ã, B̃) = Σc(A,B),(3.14)

Σo(C̃, Ã) = Σ0(C,A),(3.15)

Σz(C,A,B) ⊂ Σz(C̃, Ã, B̃), Σz(C̃, Ã, B̃) ∩ C̄+ = Σz(C,A,B) ∩ C̄+.(3.16)

Hence, stability, controllability, stabilizability, observability, detectability, and the sta-
bility of the invariant zeros can be transmitted simultaneously from system S to system
S̃ under the inclusion principle.

Proof. Let U , P , and Q be the same as those in Theorem 3.3. Take μ = 0 in (3.3)
and define ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [A 0
0 A

] [
V +

UT

]
,

B̃ =
[
V U

] [B 0
0 B

] [
L+

PT

]
,

C̃ =
[
T S

] [C 0
0 C

] [
V +

UT

]
,

where

A =

⎡⎢⎢⎢⎣
λ1

λ2

. . .

λñ−n

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
b1 0
b2 0
... 0

bñ−n 0

⎤⎥⎥⎥⎦ , C =

[
c1 c2 · · · cñ−n

0 0 · · · 0

]

and

λ1 < λ2 < · · · < λñ−n < 0, b1c1 > 0, b2c2 > 0, . . . , bñ−ncñ−n > 0.
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It is easy to see that

σ(A) ⊂ C/C̄+, Σc(A,B) = Σo(C,A) = ∅, Σz(C,A,B) ⊂ C/C̄+.(3.17)

For Ã, B̃, and C̃ above, Theorem 3.3 implies that system S̃ is an expansion of system
S, the property (3.13) is obvious, and properties (3.14), (3.15), and (3.16) follow
directly from (3.17) and the following facts:{

σ(Ã) = σ(A) ∪ σ(A), Σc(Ã, B̃) = Σc(A,B) ∪ Σc(A,B),
Σo(C̃, Ã) = Σ(C,A) ∪ Σ(C,A), Σz(C̃, Ã, B̃) = Σz(C,A,B) ∪ Σz(C,A,B).

Remark 5. The result in [22] states that when using well-known particular forms
of aggregations and restrictions, controllability or observability of the original system
carries over to the expanded system, but not both. This result has been shown to be
false in [24], which is confirmed by Theorem 3.8. However, it is obvious from Theorem
3.3 that the result of [22] is true when m̃ = m and l̃ = l.

4. Overlapping decentralized control. A wide variety of applications of the
expansion-contraction concept relies on decentralized control with overlapping infor-
mation structure constraints. When a plant is composed of interconnected subsystems
that share common parts, decentralized control laws, which utilize the state variables
of the overlapping parts, are superior to disjoint decentralized control laws. This has
been the case in the platooning of vehicles on highways and in the air where state
variables are shared between adjacent vehicles [4, 9, 10, 35, 36]. Similarly, in electric
power systems tie-line information is used to control each individual power area by
decentralized control [2, 3, 7]. Another example is a plant which is overlapped by two
controllers for reliability enhancement. The controllers either simultaneously stabilize
the plant or individually, whenever one of them has failed [2, 37].

Assume that the system S is composed of two overlapping subsystems and is
represented by the matrices⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡⎢⎢⎢⎢⎣

n1 n2 n3

A11 A12 | A13

− −−− −|− −−−
A21 | A22 | A23

−−− −|− −−− −
A31 | A32 A33

⎤⎥⎥⎥⎥⎦
}n1

}n2

}n3

,

B =

⎡⎢⎢⎢⎢⎣

m1 m2 m3

B11 B12 | B13

− −−− −|− −−−
B21 | B22 | B23

−−− −|− −−− −
B31 | B32 B33

⎤⎥⎥⎥⎥⎦
}n1

}n2

}n3

,

C =

⎡⎢⎢⎢⎢⎣

n1 n2 n3

C11 C12 | C13

− −−− −|− −−−
C21 | C22 | C23

−−− −|− −−− −
C31 | C32 C33

⎤⎥⎥⎥⎥⎦
}l1

}l2

}l3

,

(4.1)

where the lines delineate the subsystems. Using standard linear transformations
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defined by matrices (3.9), we obtain the expanded matrices as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã =

⎡⎢⎢⎢⎢⎣

n1 n2 n2 n3

Ã11 Ã12 | Ã13 Ã14

Ã21 Ã22 | Ã23 Ã24

−−− −−− − −−− −−−
Ã31 Ã32 | Ã33 Ã34

Ã41 Ã42 | Ã43 Ã44

⎤⎥⎥⎥⎥⎦
}n1

}n2

}n2

}n3

,

B̃ =

⎡⎢⎢⎢⎢⎣

m1 m2 m2 m3

B̃11 B̃12 | B̃13 B̃14

B̃21 B̃22 | B̃23 B̃24

−−− −−− − −−− −−−
B̃31 B̃32 | B̃33 B̃34

B̃41 B̃42 | B̃43 B̃44

⎤⎥⎥⎥⎥⎦
}n1

}n2

}
n2

}n3

,

C̃ =

⎡⎢⎢⎢⎢⎣

n1 n2 n2 n3

C̃11 C̃12 | C̃13 C̃14

C̃21 C̃22 | C̃23 C̃24

−−− −−− − −−− −−−
C̃31 C̃32 | C̃33 C̃34

C̃41 C̃42 | C̃43 C̃44

⎤⎥⎥⎥⎥⎦
}l1
}l2

}l2
}l3

,

(4.2)

where the overlapping subsystems appear as disjoint.
An interesting idea was recently proposed in [15, 16] to use complementary ma-

trices in order to make the interconnection (off-diagonal) block matrices as sparse as
possible, thus enhancing decentralized control strategies for stabilization of the overall
system. Note that V , L, and T are given by (3.9), so, the matrices V +, L+, T+, U ,
P , and S in Theorem 3.3 are given by

V + =

⎡⎣In1 0 0 0
0 In2/2 In2/2 0
0 0 0 In3

⎤⎦ , L+ =

⎡⎣Im1 0 0 0
0 Im2/2 Im2/2 0
0 0 0 Im3

⎤⎦ ,

T+ =

⎡⎣Il1 0 0 0
0 Il2/2 Il2/2 0
0 0 0 Il3

⎤⎦
and

U =

⎡⎢⎢⎣
0n1×n2

In2/
√

2

−In2
/
√

2
0n3×n2

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
0m1×m2

Im2/
√

2

−Im2
/
√

2
0m3×m2

⎤⎥⎥⎦ , S =

⎡⎢⎢⎣
0l1×l2

Il2/
√

2

−Il2/
√

2
0l3×l2

⎤⎥⎥⎦ .

From Theorem 3.3 we have that all expansion matrices Ã, B̃, and C̃ of system S are
of the forms

(4.3)

Ã=

⎡⎢⎢⎣
In1 0 0 0

0 In2
0 W/

√
2

0 In2 0 −W/
√

2
0 0 In3 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
In1

0 0 0
0 In2/2 In2/2 0
0 0 0 In3

0 WT /
√

2 −WT /
√

2 0

⎤⎥⎥⎦,
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B̃ =

⎡⎢⎢⎣
In1 0 0 0

0 In2 0 W/
√

2

0 In2
0 −W/

√
2

0 0 In3 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
Im1 0 0 0
0 Im2/2 Im2

/2 0
0 0 0 Im3

0 Im2
/
√

2 −Im2
/
√

2 0

⎤⎥⎥⎦ ,

C̃ =

⎡⎢⎢⎣
Il1 0 0 0

0 Il2 0 Il2/
√

2

0 Il2 0 −Il2/
√

2
0 0 Il3 0

⎤⎥⎥⎦
⎡⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤⎥⎥⎦
⎡⎢⎢⎣
In1

0 0 0
0 In2

/2 In2
/2 0

0 0 0 In3

0 WT /
√

2 −WT /
√

2 0

⎤⎥⎥⎦ ,

where W ∈ Rn2×n2 is orthogonal, X44, X55, Xi5 (i = 1, . . . , 4), Yj4 and Z4j (j =
1, . . . , 5), X4k, and Y4k and Zk5 (k = 1, 2, 3) are arbitrary matrices with appropriate
dimensions, and in particular X44 ∈ Rμ×μ, X55 ∈ R(n2−μ)×(n2−μ), μ is an integer
between 0 and n2. Thus, by a direct computation using (4.3) we obtain

Ã14 = A13, Ã41 = A31, B̃14 = B13, B̃41 = B31, C̃14 = C13, C̃41 = C13.

Consequently, system S̃ is maximally sparsified if and only if⎧⎨⎩ Ã31 = 0, Ã32 = 0, Ã42 = 0, Ã23 = 0, Ã24 = 0, Ã13 = 0,
B̃31 = 0, B̃32 = 0, B̃42 = 0, B̃23 = 0, B̃24 = 0, B̃13 = 0,
C̃31 = 0, C̃32 = 0, C̃42 = 0, C̃23 = 0, C̃24 = 0, C̃13 = 0.

(4.4)

Now, the following problem is of interest.
Problem 1.Under what conditions does there exist an expansion S̃ of system S

having matrices (4.4)?
It has been mentioned in [15] that in some situation Problem 1 is solvable, but no

solvability conditions have been stated; Problem 1 cannot be solved simply by setting
Ã := V AV +, B̃ := V BL+, and C̃ := TCV +, because⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V AV + =

⎡⎢⎢⎢⎢⎣
A11 A12/2 | A12/2 A13

A21 A22/2 | A22/2 A23

−−− −−− − −−− −−−
A21 A22/2 | A22/2 A23

A31 A32/2 | A32/2 A33

⎤⎥⎥⎥⎥⎦,

V BL+ =

⎡⎢⎢⎢⎢⎣
B11 B12/2 | B12/2 B13

B21 B22/2 | B22/2 B23

−−− −−− − −−− −−−
B21 B22/2 | B22/2 B23

B31 B32/2 | B32/2 B33

⎤⎥⎥⎥⎥⎦,

TCV + =

⎡⎢⎢⎢⎢⎣
C11 C12/2 | C12/2 C13

C21 C22/2 | C22/2 C23

−−− −−− − −−− −−−
C21 C22/2 | C22/2 C23

C31 C32/2 | C32/2 C33

⎤⎥⎥⎥⎥⎦;

in fact, there are no general algorithms for producing such systems. We provide these
conditions by the following.

Theorem 4.1. Let the triplet (A,B,C) of system S be as in (4.1) and let matrices
V , L, and T be those of (3.9). Then, there exists an expansion S̃ of system S such
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that (4.4) holds if and only if

C(A22,
[
A21 −A23 B21 −B23

]
) ⊂ ker

⎛⎜⎜⎝
⎡⎢⎢⎣

A12

−A32

C12

−C32

⎤⎥⎥⎦
⎞⎟⎟⎠ .(4.5)

Furthermore, in the case that condition (4.5) is true, triplet (Ã, B̃, C̃) of the expanded
system S̃ is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã =

⎡⎢⎢⎢⎢⎣
A11 A12 | 0 A13

2A21 A22 | 0 0
−−− −−− − −−− −−−

0 0 | A22 2A23

A31 0 | A32 A33

⎤⎥⎥⎥⎥⎦,

B̃ =

⎡⎢⎢⎢⎢⎣
B11 B12 | 0 B13

2B21 B22 | 0 0
−−− −−− − −−− −−−

0 0 | B22 2B23

B31 0 | B32 B33

⎤⎥⎥⎥⎥⎦,

C̃ =

⎡⎢⎢⎢⎢⎣
C11 C12 | 0 C13

2C21 C22 | 0 0
−−− −−− − −−− −−−

0 0 | C22 2C23

C31 0 | C32 C33

⎤⎥⎥⎥⎥⎦.

(4.6)

Proof. Since (4.3) holds, hence Ã, B̃, and C̃ satisfy (4.4) if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 In2 0 −W/

√
2
]
⎡⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
In1

0
0 In2/2
0 0

0 WT /
√

2

⎤⎥⎥⎦ = 0,

[
0 0 In3 0

]
⎡⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

0
In2/2

0

WT /
√

2

⎤⎥⎥⎦ = 0,

[
0 In2

0 W/
√

2
]
⎡⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

0 0
In2/2 0

0 In3

−WT /
√

2 0

⎤⎥⎥⎦ = 0,

[
In1 0 0 0

]
⎡⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

0
In2/2

0

−WT /
√

2

⎤⎥⎥⎦ = 0,



A CANONICAL FORM FOR THE INCLUSION PRINCIPLE 985⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 I 0 −W/

√
2
]
⎡⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
I 0
0 I/2
0 0

0 I/
√

2

⎤⎥⎥⎦ = 0,

[
0 0 I 0

]
⎡⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

0
I/2
0

I/
√

2

⎤⎥⎥⎦ = 0,

[
0 I 0 W/

√
2
]
⎡⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

0 0
I/2 0
0 I

−I/
√

2 0

⎤⎥⎥⎦ = 0,

[
I 0 0 0

]
⎡⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

0
I/2
0

−I/
√

2

⎤⎥⎥⎦ = 0,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 I 0 −I/

√
2
] ⎡⎢⎢⎣

C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤⎥⎥⎦
⎡⎢⎢⎣
I 0
0 I/2
0 0

0 WT /
√

2

⎤⎥⎥⎦ = 0,

[
0 0 I 0

] ⎡⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤⎥⎥⎦
⎡⎢⎢⎣

0
I/2
0

WT /
√

2

⎤⎥⎥⎦ = 0,

[
0 I 0 I/

√
2
] ⎡⎢⎢⎣

C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0
I/2 0
0 I

−WT /
√

2 0

⎤⎥⎥⎦ = 0,

[
I 0 0 0

] ⎡⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤⎥⎥⎦
⎡⎢⎢⎣

0
I/2
0

−WT /
√

2

⎤⎥⎥⎦ = 0.

Thus, a simple calculation yields that there exists a triplet (Ã, B̃, C̃) of the form (4.3)
such that (4.4) holds if and only if

⎧⎪⎪⎨⎪⎪⎩
A22 = W

[
X44 X45

0 X55

]
WT ,[

A21 −A23 B21 −B23

]
= W

[
X41 X43 Y41 Y43

0 0 0 0

]
/
√

2

(4.7)
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and ⎡⎢⎢⎣
A12

−A32

C12

−C32

⎤⎥⎥⎦ =
√

2

⎡⎢⎢⎣
0 X15

0 X35

0 Z15

0 Z35

⎤⎥⎥⎦WT ,(4.8)

which is equivalent to condition (4.5).
Conversely, if condition (4.5) holds, then in (4.3) we can choose an orthogonal

matrix W such that

(WTA22W,WT
√

2
[
A21 −A23 B21 −B23

]
)

is in the controllability staircase form (4.7) [33] of (A22,
√

2
[
A21 −A23 B21 −B23

]
),

let μ be the dimension of its controllability subspace, and define

[
X44 X45

0 X55

]
,

[
X41 X43 Y41 Y43

]
, and

⎡⎢⎢⎣
X15

X35

Z15

Z35

⎤⎥⎥⎦
by equations (4.7) and (4.8) with X44 ∈ Rμ×μ and X55 ∈ R(n2−μ)×(n2−μ). Now
(X44, [X41 X43 Y41 Y43]) is controllable. In addition, define⎧⎪⎨⎪⎩

X25 = 0, X42 = 0, Y24 = 0, Y42 = 0, Z25 = 0, Z42 = 0,
Y14 = B12/

√
2, Y34 = −B32/

√
2, Z41 =

√
2C21, Z43 = −

√
2C23,[

Y44

Y54

]
= WTB22,

[
Z44 Z45

]
= C22W.

(4.9)

Then (4.6) follows.
Condition (4.5) can be verified easily using the well-known controllability staircase

form of linear systems (see, e.g., [33]). Theorem 4.1 defines a numerically stable
method for solving Problem 1.

5. Contractibility of dynamic controllers. Now, by capitalizing on the can-
onical form for state feedback laws, we want to present explicit solvability conditions
for contractibility of dynamic controllers. They are exhaustive and include the suffi-
cient conditions obtained in [17, 18].

Let us consider a dynamic controller for system S:

C :

{
ẇ = Fw + Gu + Jy, w(0) = w0,
u = Kw + Hy + v,

(5.1)

where w ∈ Rτ , u ∈ Rm, and y ∈ Rl are the state, input, and output of C. An
expansion C̃ of controller C is defined as

C̃ :

{
˙̃w = F̃ w̃ + G̃ũ + J̃ ỹ, w̃(0) = w̃0,
ũ = K̃w + H̃y + ṽ,

(5.2)

where w̃ ∈ Rτ̃ , ũ ∈ Rm̃, and ỹ ∈ Rl̃. We recall the following [18].
Definition 5.1. The controller C̃ for system S̃ is contractible to the controller

C for system S if there exist matrices V , L, T , D, and E satisfying (2.3) and (2.4)
and

rank(E) = τ, rank(D) = m(5.3)
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such that one of the following two statements holds:
(a) For any initial states x0 and w0 and any input u, the choice

x̃0 = V x0, w̃0 = Ew0, ũ = Lu

implies that{
x(t;x0, u) = V +x̃(t; x̃0, ũ), y[x(t)] = T+ỹ[x̃(t)],

w(t;w0, u) = E+w̃(t; w̃0, ũ), D(Kw + Hy) = K̃w̃ + H̃ỹ ∀t ≥ 0.

(b) For any initial states x0 and w0 and any input u, the choice

x̃0 = V x0, w̃0 = Ew0, u = L+ũ

implies that{
x(t;x0, u) = V +x̃(t; x̃0, ũ), y[x(t)] = T+ỹ[x̃(t)],

w(t;w0, u) = E+w̃(t; w̃0, ũ), Kw + Hy = D+(K̃w̃ + H̃ỹ) ∀t ≥ 0.

We shall now give an explicit characterization of contractibility of controller C̃
by the following.

Theorem 5.2. Given system S and transformation matrices V , L, T , D, and E
satisfying (2.3), (2.4), and (5.3), let the QR factorizations of V , L, and T be given by
(3.2). Furthermore, let the QR factorizations of matrices D and E be given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
X X

]T
D =

[
D11

0

]
}m
}m̃−m

, X ∈ Rm̃×m, X ∈ Rm̃×(m̃−m),

[
Y Y

]T
E =

[
E11

0

]
}τ
}τ̃ − τ

, Y ∈ Rτ̃×τ , Y ∈ Rτ̃×(τ̃−τ),

(5.4)

where
[
X X

]
and

[
Y Y

]
are orthogonal, and D11 and E11 are nonsingular. Then,

the controller C̃ for system S̃ is contractible to the controller C for system S if one
of the following four statements holds:

(a) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) and furthermore, F̃ , G̃,
J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤⎦[
E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G G̃12

G̃21 G̃22

0 G̃32

⎤⎦[
L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J 0

J̃21 J̃22

0 0

⎤⎦[
T+

ST

]
,

K̃ =
[
D X

] [K 0 K̃13

0 0 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [H 0
0 0

] [
T+

ST

]
.

(5.5)
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(b) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) with C̃21 = 0 and
C̃22 = 0. Furthermore, F̃ , G̃, J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤⎦[
E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G G̃12

G̃21 G̃22

0 G̃32

⎤⎦[
L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J J̃12

J̃21 J̃22

0 J̃32

⎤⎦[
T+

ST

]
,

K̃ =
[
D X

] [K 0 K̃13

0 0 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [H H̃12

0 H̃22

] [
T+

ST

]
.

(5.6)

(c) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) with B̃12 = 0 and
B̃32 = 0. Furthermore, matrices F̃ , G̃, J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤⎦[
E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G 0

G̃21 G̃22

0 0

⎤⎦[
L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J 0

J̃21 J̃22

0 0

⎤⎦[
T+

ST

]
,

K̃ =
[
D X

] [ K 0 K̃13

K̃21 K̃22 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [ H 0

H̃21 H̃22

] [
T+

ST

]
.

(5.7)

(d) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) with B̃12 = 0, B̃32 = 0,
C̃21 = 0, and C̃22 = 0. Furthermore, matrices F̃ , G̃, J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤⎦[
E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G 0

G̃21 G̃22

0 0

⎤⎦[
L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J J̃12

J̃21 J̃22

0 J̃32

⎤⎦[
T+

ST

]
,

K̃ =
[
D X

] [ K 0 K̃13

K̃21 K̃22 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [ H H̃12

H̃21 H̃22

] [
T+

ST

]
.

(5.8)
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In (a), (b), (c), and (d) above, Z ∈ R(τ̃−τ)×(τ̃−τ) is an arbitrary orthogonal ma-
trix, ν is an arbitrary integer between 0 and τ̃ − τ , and F̃13 ∈ Rτ×(τ̃−τ−ν), F̃21 ∈
Rν×τ , F̃22 ∈ Rν×ν , F̃23 ∈ Rν×(τ̃−τ−ν), F̃33 ∈ R(τ̃−τ−ν)×(τ̃−τ−ν), G̃21 ∈ Rν×m,

G̃22 ∈ Rν×(m̃−m), J̃12 ∈ Rτ×(l̃−l), J̃21 ∈ Rν×l, J̃22 ∈ Rν×(l̃−l), J̃32 ∈ R(τ̃−τ−ν)×(l̃−l),
K̃13 ∈ Rm×(τ̃−ν−τ), K̃21 ∈ R(m̃−m)×τ , K̃22 ∈ R(m̃−m)×ν , K̃23 ∈ R(m̃−m)×(τ̃−ν−τ),

H̃12 ∈ Rm×(l̃−l), H̃21 ∈ R(m̃−m)×l, and H̃22 ∈ R(m̃−m)×(l̃−l) are matrices with arbi-
trary elements.

Proof. Theorem 5.2 can be proved using Definitions 5.1(a) and (b) directly, hence
its proof is omitted.

Similarly, as in Remarks 2 and 3, if in Theorem 5.2, we take ν = 0 or ν = τ̃ − τ ,
then we can obtain some particular solvability conditions for contractibility of dynamic
controllers, which contain the results of [17, 18] as special cases.

6. Conclusions. A canonical form for expanded systems is proposed in the in-
clusion principle for dynamic systems. The main benefits of the form are as follows:

1. In Theorems 3.3 and 3.4 we have established canonical forms for expansion-
contraction matrices Ã, B̃, C̃, and K̃, which provide an explicit parameter-
ization of all expansion-contraction matrices. As a result, the full freedom
in selecting the expansion-contraction matrices can be exploited in system
analysis and design.

2. Theorem 3.8 provides a simple way to determine if stability, stabilizability,
controllability, detectability, observability, and the stability of the invariant
zeros carry over from a system S to its expansion S̃.

3. In Theorem 4.1, we solved Problem 1, which is central to overlapping decen-
tralized control and which has not been solved in full generality by existing
methods.

4. By Theorem 5.2 we broaden the class of dynamic controllers which are con-
tractible for implementation in the original system.

It is hoped that the proposed canonical form will simplify not only design of
overlapping decentralized control, but also design of reduced-order controllers [6, 23],
where the laws can be generated in the smaller space and then expanded for imple-
mentation in the original system.
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[19] S.S. Stankovic and D. Šiljak, Inclusion principle for linear time-varying systems, SIAM J.
Control Optim., 42 (2003), pp. 321–341.

[20] S.S. Stankovic, Inclusion principle for discrete-time time-varying systems, Dyn. Contin. Dis-
crete Impuls. Syst. Ser. A Math. Anal., 11 (2004), pp. 321–338.

[21] M. Aoki, Control of large scale dynamic systems by aggregation, IEEE Trans. Automat. Con-
trol, 13 (1968), pp. 246–253.

[22] K. Malinowski and M. Singh, Controllability and observability of expanded systems with
overlapping decompositions, Automatica J. IFAC, 21 (1985), pp. 203–208.

[23] G.J. Pappas, G. Laferriere, and S. Sastry, Hierarchically consistent control systems, IEEE
Trans. Automat. Control, 45 (2000), pp. 1144–1160.

[24] L. Bakule, J. Rodellar, J. Rossell, and P. Rubio, Preservation of controllability–
observability in expanded systems, IEEE Trans. Automat. Control, 46 (2001), pp. 1155–
1162.
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Abstract. We solve the suboptimal Nehari problem for a transfer function that has a state-space
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1. Introduction. The solution to the optimal Nehari problem is well known.
The vector-valued case was solved by Page [22] (see also Nikol’skĭı [20] and Peller
[23]):

inf
K(−s)∈H∞(L(U,Y ))

‖ G + K ‖∞ = ‖ HG ‖,

where G ∈ L∞(L(U, Y )), U, Y are separable Hilbert spaces, and HG is the Hankel
operator associated with the symbol G. The suboptimal problem is to find for any
σ >‖ HG ‖ all solutions K(−s) ∈ H∞(L(U, Y )) to

‖ G + K ‖∞ ≤ σ.

The suboptimal Nehari problem for functions on the disc has been solved in
Kheifets [18] (see also Peller [23]), but for control applications we require explicit
solutions in terms of state-space parameters of the continuous-time system as we
explain below.

A crucial step in many control problems is solving the suboptimal Nehari problem
for the stable case: G ∈ H∞(L(U, Y )). In Salamon [26] it was shown that any
G ∈ H∞(L(U, Y )) has a system-stable well-posed realization; i.e., there exists a state
space Z and (in general unbounded) operators A,B,C, where A is the infinitesimal
generator of a strongly continuous semigroup on the separable Hilbert space Z and
the following stability assumptions are satisfied:

C(sI −A)−1z ∈ H2(Y ), B∗(sI −A∗)−1z ∈ H2(U) ∀z ∈ Z.(1.1)

G is the transfer function of the well-posed linear system in the sense that

G(s) − G(α) = (α− s)C(sI −A)−1(αI −A)−1B

for all α and s in some open right half-plane. Conversely, every system-stable well-
posed linear system has a transfer function in H∞(L(U, Y )). Usually in control ap-
plications not G, but A,B, and C are given, and one wants a solution K in terms of
these state-space parameters.
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Recently, it has been shown in Curtain and Sasane [9] that if ρ(A) ∩ iR �= ∅, the
Nehari problem for a system-stable well-posed linear system can be reduced to solving
the Nehari problem for its reciprocal system which has bounded B and C operators.
(The reciprocal approach to well-posed linear systems was introduced in Curtain [10]
and [11].) Since problems with bounded B and C operators are technically simpler,
we first consider the special case of bounded input and output operators. The next
step is to use this special case to solve the general case.

Our approach to solving the suboptimal Nehari problem is to obtain solutions K
via the J-spectral factorization problem of finding X such that

P∗(iω)JσP(iω) = X(iω)J1X(iω)∗ for almost all ω ∈ R,(1.2)

where

P(s) :=

[
IY G(s)
0 IU

]
and Jσ :=

[
IY 0
0 −σ2IU

]
.

The candidate solution for X involves the solutions of the Lyapunov equations

AL1 + L1A
∗ = −BB∗, A∗L2 + L2A = −C∗C.(1.3)

The smallest bounded nonnegative solutions are LB , LC , the controllability and ob-
servability gramians of the system Σ(A,B,C, 0), respectively. These are not neces-
sarily the only bounded nonnegative solutions. Once it is shown that X is indeed a
solution to (1.2), the rest of the proof is relatively straightforward and one obtains a
solution in terms of the known system parameters A,B,C,L1, L2, and σ.

There have been several versions of this approach in the literature; all but one
(Curtain and Oostveen [6]) assume that A is the generator of an exponentially stable
C0-semigroup. We mention Curtain and Zwart [4], Glover, Curtain, and Parting-
ton [14], Ran [24], Curtain and Ran [2], Foias and Tannenbaum [13], Curtain and
Zwart [3], and Curtain and Ichikawa [5], who all treat the problem under the assump-
tion that A is the generator of an exponentially stable C0-semigroup and varying
additional assumptions.

For exponentially stable systems one can, since iR ⊂ ρ(A), verify directly that
(1.2) holds for all ω ∈ R. However, there exist many systems with a stable transfer
function for which A does not generate an exponentially stable C0-semigroup. This
motivated Curtain and Oostveen [6] to consider the class of system-stable systems
satisfying (1.1) with bounded B and C and finite-dimensional U and Y . Now as-
sumptions (1.1) provide no information about the spectrum of A and so it is not
possible to verify (1.2) by a direct calculation. Unfortunately, this point was over-
looked in [6]. We give an example of a system-stable system for which the candidate
solution X does not satisfy (1.2) for a certain pair of solutions L1, L2 to the Lya-
punov equations (1.3). This does not show that the claim in [6] is incorrect, since
the claim in [6] is made only for the smallest solutions LB and LC . However, this
counterexample does show that there is a gap in the proof in [6]. An easy remedy is to
make an additional assumption on the spectrum of A, e.g., assume that σ(A)∩ iR has
measure zero or that C+

0 ⊂ ρ(A). Our major contribution is to show that if U and Y
are finite-dimensional, then these assumptions are unnecessary. This new result has
consequences for the recent paper by Ball, Mikkola, and Sasane [1] on the Nehari–
Takagi problem, which is a generalization of the suboptimal Nehari problem. Using a
J-spectral factorization approach, they solve the suboptimal Nehari–Takagi problem
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for finite-dimensional U and Y under our assumptions (1.1) plus an assumption on
the spectrum of A. Our result shows that the latter assumption is redundant.

Summarizing, under the assumptions (1.1), for any σ > r1/2(L1L2) (here r(T ) is
the spectral radius of the operator T ) we give an explicit formula for a spectral factor
X satisfying (1.2) in terms of the system parameters A,B,C,L1, and L2 under either
of the following additional assumptions:

A1. σ(A) ∩ iR has measure zero.
A2. U and Y are finite-dimensional, and L1 and L2 are chosen to be the control-

lability and observability gramians LB and LC , respectively.
This leads to our second main result: a solution of the suboptimal Nehari problem
in terms of the system parameters A,B,C,L1, L2, and σ under either of the above
assumptions A1 or A2.

Our last main result is the extension of this result to the class of system-stable
well-posed linear systems satisfying the assumption ρ(A)∩ iR �= ∅ and either assump-
tion A1 or A2. We remark that in the well-posed case the standard formulas for the
solution need not be well-defined, but we obtain alternative explicit formulas in terms
of the reciprocal system as in Curtain and Sasane [9].

The paper is written to be as self-contained as possible. In section 2, we sum-
marize relevant known results on state linear systems and in section 3 we prove some
interesting new ones. Section 4 contains results on Riccati equations in terms of the
concepts of input and output stability and stabilizability. In addition, we study two
interesting Riccati equations connected to the Nehari problem. In section 5 we give an
example of a system-stable system for which the candidate solution X does not satisfy
(1.2) for a certain pair of solutions L1, L2 of the Lyapunov equations. However, we
show that in the case that L1 = LB and L2 = LC , we can always construct a spectral
factor of (1.2). We collect several of its properties that enable us to obtain a solution
of the suboptimal Nehari problem in section 6. In section 7, we obtain a parametriza-
tion of a family of solutions to the suboptimal Nehari problem for a system-stable
state linear system. Finally, in section 8 we recall the concepts of system-stable well-
posed linear systems and their reciprocals from [11]. Using the reciprocal approach
from [9] we extend our results to obtain an explicit solution of the suboptimal Nehari
problem for the class of system-stable well-posed linear systems under the assumption
that ρ(A) ∩ iR �= ∅ and either of the assumptions A1 or A2.

An interesting open question is whether our conclusions also hold if in assumption
A2 we allow U and Y to be infinite-dimensional. The existence of frequency domain
solutions is also known for this case (see Kheifets [18] or Peller [23]).

2. State linear systems: Known results. First we recall several known re-
sults for systems with bounded input and output operators. A is the generator of a
strongly continuous semigroup T (·) on a separable Hilbert space Z, B ∈ L(U,Z), C ∈
L(Z, Y ), D ∈ L(U, Y ) with U, Y separable Hilbert spaces. Following the terminology
in Curtain and Zwart [4] we call Σ(A,B,C,D) a state linear system. We now define
the transfer function and the characteristic function of a state linear system.

Definition 2.1. The transfer function G is defined as follows: G−D equals the
Laplace transform of CT (t)B on some right half-plane. We define the characteristic
function G for all s ∈ ρ(A) by G = D + C(sI −A)−1B.

Remark 2.2. For s in some right half-plane we have G = G, but they may differ
outside this region. For a counterexample see Curtain and Zwart [4, Example 4.3.8].
A more detailed discussion is given in Zwart [33].

We introduce a stability concept that is weaker than exponential stability but
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stronger than input-output stability. We will show that this is the right stability
concept for the Nehari problem.

Definition 2.3. The state linear system Σ(A,B,C,D) is system-stable if
• it is input stable: there exists a constant β > 0 such that for all u ∈

L2(0,∞;U), ‖
∫∞
0

T (t)Bu(t) dt‖2 ≤ β
∫∞
0

‖u(t)‖2 dt;
• it is output stable: there exists a constant γ > 0 such that for all z ∈ Z,∫∞

0
‖CT (t)z‖2 dt ≤ γ‖z‖2;

• it is input-output stable: the transfer function G ∈ H∞(L(U, Y )).
Remark 2.4. We note that other authors may require the additional assumption

that the semigroup be uniformly bounded for t > 0 for system stability (see Staffans
[30] or Mikkola [19, Definition 6.1.1]). The essential difference in our definition is that
we have made no stability assumptions on A and so it can have spectrum in the right
half-plane C+

0 .
Definition 2.5. The output map C : Z → L2(0,∞;Y ) of an output stable

state linear system Σ(A,B,C,D) is defined by (Cz) (t) := CT (t)z. The input map
B : L2(0,∞;U) → Z of an input stable state linear system is defined by

Bu :=

∫ ∞

0

T (s)Bu(s) ds.

The input and output stability properties are related to the existence of solutions to
Lyapunov equations (see Grabowski [15] and Hansen and Weiss [16]).

Lemma 2.6. The state linear system Σ(A,B,C,D) is input stable if and only
if the following controllability Lyapunov equation has a bounded nonnegative solution
L ∈ L(Z):

ALz + LA∗z = −BB∗z ∀ z ∈ D(A∗).(2.1)

In this case, the controllability gramian LB := BB∗ is the smallest bounded nonnega-

tive solution of (2.1) and L
1/2
B T (t)∗z → 0 as t → ∞ for all z ∈ Z.

The state linear system Σ(A,B,C,D) is output stable if and only if the following
observability Lyapunov equation has a bounded nonnegative solution L ∈ L(Z):

A∗Lz + LAz = −C∗Cz ∀ z ∈ D(A).(2.2)

In this case, the observability gramian LC := C∗C is the smallest bounded nonnegative

solution of (2.2) and L
1/2
C T (t)z → 0 as t → ∞ for all z ∈ Z.

The Hankel operator of a system is a fundamental concept.
Definition 2.7. For G ∈ L∞((−i∞, i∞);L(U, Y )) we define the Hankel opera-

tor with symbol G as the operator HG: H2(U) → H2(Y ) given by

HGf = Π(ΛGf−) for f ∈ H2(U),(2.3)

where ΛG is the multiplication map on L2((−i∞, i∞);U) induced by G, Π is the
orthogonal projection from L2((−i∞, i∞);U) onto H2(U), and f−(s) := f(−s).

Given h ∈ Lloc
1 ([0,∞);L(U, Y )), we define the (time-domain) Hankel operator Γh

associated with h for u ∈ Lloc
2 ([0,∞);U) with compact support by

(Γh)(t) :=

∫ ∞

0

h(t + τ)u(τ)dτ.(2.4)

There is a nice relationship between the time-domain and frequency-domain Hankel
operators.
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Lemma 2.8. Suppose that Σ(A,B,C, 0) is a system-stable system with impulse
response h(t) = CT (t)B and transfer function G.

1. Γh = CB and it is isomorphic to HG via

(̂Γhu)(iω) = (HGû) (iω) for u ∈ L2([0,∞);U).(2.5)

Moreover,

‖ HG ‖=‖ Γh ‖= r
1
2 (LBLC),(2.6)

where r denotes the spectral radius and LB , LC are the controllability and
observability gramians, respectively, of Σ(A,B,C, 0).

2. If σ > r
1
2 (L1L2), where L1, L2 are arbitrary bounded nonnegative solutions of

the Lyapunov equations (2.1), (2.2), respectively, then Nσ := (I− 1
σ2L1L2)

−1 ∈
L(Z). Moreover, W = NσL1 is nonnegative.

Proof. 1. See Oostveen [21, Lemma 7.1.5].
2. Now σ2 > r(L1L2) implies that the spectral radius of 1

σ2L1L2 is less than 1
and so I − 1

σ2L1L2 is boundedly invertible. Noting that L1 ≥ 0, the following shows
that W ≥ 0:

W =

(
I − 1

σ2
L1L2

)−1

L1 = L
1/2
1

(
I − 1

σ2
L

1/2
1 L2L

1/2
1

)−1

L
1/2
1 .

3. State linear systems: Some new results. In this section we develop sev-
eral new results for state linear systems that we use in what follows, many of which
are interesting in their own right.

First we examine the properties of the various concepts of stability from Definition
2.3 more closely.

Lemma 3.1. If Σ(A,B,C,D) is output stable with observability gramian LC , then
for all u ∈ Lloc

2 (R;U) with compact support

L
1/2
C

∫ t

−∞
T (t− s)Bu(s) ds → 0 as t → ∞.

Proof. Let τ > 0 be such that u(t) = 0 for t > τ . Then

L
1/2
C

∫ t

−∞
T (t− s)Bu(s) ds = L

1/2
C

∫ τ

−∞
T (t− τ)T (τ − s)Bu(s) ds

= L
1/2
C T (t− τ)z(τ),

where z(τ) =
∫ τ

−∞ T (τ − s)Bu(s) ds is independent of t. Lemma 2.6 now gives the
result.

We recall that the output of a state linear system Σ(A,B,C,D) with locally
square integrable inputs u with support bounded to the left is defined by

y(t) =

∫ t

−∞
CT (t− s)Bu(s) ds + Du(t).(3.1)

Output stability does not imply input-output stability, but we do have the following
partial result.

Lemma 3.2. If Σ(A,B,C,D) is output stable, then for inputs u ∈ Lloc
2 (R;U)

with compact support, the output given by (3.1) is in L2(R;Y ).
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Proof. Since u is square integrable we can assume without loss of generality that
D = 0. Since u has compact support, there exists a τ > 0 such that u(t) = 0 for
t > τ . We calculate the output y(t) for t > τ as

y(t) =

∫ τ

−∞
CT (t− τ)T (τ − s)Bu(s) ds

= CT (t− τ)

∫ τ

−∞
T (τ − s)Bu(s) ds = CT (t− τ)z(τ),

where

z(τ) :=

∫ τ

−∞
T (τ − s)Bu(s) ds.

Since Σ(A,B,C,D) is output stable we have∫ ∞

τ

‖ y(t) ‖2 dt =

∫ ∞

0

‖ CT (t)z(τ) ‖2 dt

≤ const. ‖ z(τ) ‖2< ∞.

Since the output of a state linear system is always locally square integrable and the
output has support bounded to the left by causality we have∫ ∞

−∞
‖ y(t) ‖2 dt =

∫ τ

−∞
‖ y(t) ‖2 dt +

∫ ∞

τ

‖ y(t) ‖2 dt < ∞.

We next examine the connection between the transfer function and the characteristic
function of a state linear system.

Definition 3.3. For an output stable state linear system we define Ĉ : Z →
H2(Y ) by Ĉz := Ĉz.

For an input stable state linear system we define B̂ for u ∈ U, z ∈ Z, s ∈ C+
0 by

〈B̂(s)u, z〉 := 〈u, B̂∗z(s̄)〉.
The following lemma shows that input or output stability ensures that the char-

acteristic function and the transfer function are equal on the set where they are both
defined. Parts of this lemma were shown for well-posed linear systems in [11, Lemma
2.3].

Lemma 3.4.

1. If the state linear system Σ(A,B,C,D) is output stable, then

G(s) = D + Ĉ(s)B ∀s ∈ C+
0 ,(3.2)

G(s) = D + C(sI −A)−1B = G(s) ∀s ∈ C+
0 ∩ ρ(A).(3.3)

Moreover, for all u ∈ U we have that (G −D)u ∈ H2(Y ).
2. If the state linear system Σ(A,B,C,D) is input stable, then (3.3) holds and

G(s) = D + CB̂(s) ∀s ∈ C+
0 .(3.4)

Moreover, for all u ∈ U, y ∈ Y we have that 〈(G −D)u, y〉 ∈ H2.

Proof. 1. Taking Laplace transforms of CT (·)z, we obtain C(sI −A)−1z = Ĉ(s)z

and G(s) = Ĉ(s)B + D for s in some right half-plane (see [4, Lemma 2.1.11]). Now

since Σ is output stable, Ĉz ∈ H2(Y ) for all z ∈ Z and so Ĉ is holomorphic in C+
0 and
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(3.2) holds. Again using that Ĉ is holomorphic on C+
0 , the equality Ĉ(s)(sI −A) = C

for s in some right half-plane extends to C+
0 . Thus for s ∈ C+

0 ∩ ρ(A) we have

Ĉ(s)(sI −A)(sI −A)−1B = C(sI −A)−1B,

which proves (3.3).
2. Similarly, input stability implies that V (s)z ∈ H2(U) for z ∈ Z, where

V (s)z := B∗(sI − A∗)−1z on some right half-plane. Then 〈u, V (s̄)z〉 = 〈B̂(s)u, z〉
for all z ∈ Z, u ∈ U . So for all s in some right half-plane we have

〈(sI −A)−1Bu, z〉 = 〈B̂(s)u, z〉,(3.5)

and letting z = C∗x, we obtain G = CB̂ + D on some right half-plane. Using that B̂
is holomorphic, we obtain (3.4). To show (3.3) choose z ∈ D(A∗), let x = (s̄I −A∗)z,
and substitute in (3.5) to obtain for s in some right half-plane

〈Bu, x〉 = 〈(sI −A)B̂(s)u, x〉.

This extends to s ∈ C+
0 since B̂ is holomorphic and to all x ∈ Z by continuity. Thus

(sI −A)B̂(s) = B ∀ s ∈ C+
0 ,(3.6)

which proves (3.3).
It turns out that the existence of boundary functions of H2 functions is crucial

in our later proofs. We recall some basic results from [25]. Let ω ∈ R and consider
for α > 0 the cone

Γα = {s ∈ C+
0 : |Im(s) − ω| < α Re(s)}.

If f ∈ H2(H), where H is a separable Hilbert space, then for almost all ω ∈ R and
all α > 0 the limit

lim
s→iω,s∈Γα

f(s)

exists. Such a limit is called a nontangential limit, and it associates with an H2(H)
function a function in L2(iR, H) (see [25, Theorems 4.6.B and 4.8.B]).

It is well known that if U and Y are finite-dimensional and for all u ∈ U we have
Gu ∈ H2(Y ), then G ∈ H2(L(U, Y )). Hence we obtain an almost everywhere defined
boundary function G : iR → L(U, Y ).

In the case where U and Y are infinite-dimensional we do have that for all u ∈ U
the function G(·)u has a boundary function in L2(iR;Y ). However, in general there
does not exist an almost everywhere defined function F : iR → L(U, Y ) such that
F (iω)u equals this boundary function (see Mikkola [19, Example 3.3.6] for a counter-
example).

If Σ(A,B,C,D) is input or output stable and σ(A) ∩ iR has measure zero, then
G(s) = G(s) on C+

0 ∩ ρ(A) by Lemma 3.4 and since G(s) → G(iω) as s → iω by
continuity of the map s �→ (sI − A)−1, we have G(s) → G(iω). So if Σ(A,B,C,D)
is input or output stable and σ(A) ∩ iR has measure zero, then G has an almost
everywhere defined operator-valued boundary function. From the above we obtain
the following.

Lemma 3.5. Let Σ(A,B,C,D) be input or output stable and assume that either
σ(A) ∩ iR has measure zero or U and Y are finite-dimensional. Then there exists an
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almost everywhere defined function G0 : iR → L(U, Y ) such that for almost all ω ∈ R

and all nontangential paths we have

G0(iω) = lim
s→iω

G(s).

Moreover, if iω ∈ ρ(A), then G0(iω) = G(iω).
Proof. This follows from the paragraphs preceding the lemma.
We prove the following lemma that will be useful later.
Lemma 3.6. Let f : C+

0 → L(U, Y ) be such that for every u ∈ U we have
f(·)u ∈ H2(Y ). Assume there exists a function f0 ∈ L∞(iR;L(U, Y )) such that for
all u ∈ U there exists a set Nu of measure zero such that for all ω ∈ R −Nu and all
nontangential paths we have

f0(iω)u = lim
s→iω

f(s)u.

Then f ∈ H∞(L(U, Y )).
Proof. Since f(·)u ∈ H2(Y ) we have the Poisson representation [25, Theorem

4.8.A]

f(a + ib)u =
1

π

∫
R

bf0(iω)u

(t− a)2 + b2
dt,

so we have (using that the Poisson kernel has integral one)

‖f(a + ib)u‖ ≤ 1

π

∫
R

‖f0(iω)u‖ b

(t− a)2 + b2
dt ≤ ess sup

t∈R

‖f0(it)‖ ‖u‖.

This shows that

sup
s∈C

+
0

‖f(s)‖ ≤ ess sup
t∈R

‖f0(it)‖

and since f is holomorphic we have f ∈ H∞(L(U, Y )).
Lemma 3.7. Let Σ(A,B,C,D) be output stable and assume that either σ(A)∩ iR

has measure zero or U and Y are finite-dimensional. Then for inputs with compact
support we have for almost all ω ∈ R

ŷ(iω) = G(iω)û(iω).(3.7)

Proof. We first prove the statement for the case that u is zero for negative time.
Now on some right half-plane we have

ŷ(s) = G(s)û(s).(3.8)

Since ŷ ∈ H2(Y ) by Lemma 3.2 (and causality) and G is holomorphic on C+
0 by

Lemma 3.4 this extends to C+
0 . By Lemma 3.5 we have G(s) → G(iω) in the operator

norm as s → iω. Since û ∈ H2(U) and ŷ ∈ H2(Y ), they converge to their boundary
functions as s → iω so we obtain (3.7). The general case follows by applying the
above to the function u(t) := u(t − τ) with output y(t) := y(t − τ), where y is the
output corresponding to u and τ is chosen such that u is zero for negative time.

In the proof of Lemma 3.8 we need to study systems defined on the positive time
axis only and with a given initial state. We summarize some known results for this
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type of system. For an input u ∈ Lloc
2 (0,∞;U) and initial state x0 ∈ X the state

x(t) ∈ X at time t ≥ 0 is defined by

x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s) ds.

If u is continuously differentiable and x0 ∈ D(A), then x as defined above is differen-
tiable and satisfies

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

The output of the state linear system is defined by

y(t) = Cx(t) + Du(t).

A state linear system is well-posed in the sense that for all t > 0 there exists a
K > 0 such that for all u ∈ Lloc

2 (0,∞;U) and all x0 ∈ X

‖x(t)‖2 +

∫ t

0

‖y(s)‖2 ds ≤ K

(
‖x0‖2 +

∫ t

0

‖u(s)‖2 ds

)
;

i.e., the map from the initial state and the input restricted to (0, t) to the state
at time t and the output restricted to (0, t) is continuous from X × L2(0, t;U) to
X × L2(0, t;Y ).

Lemma 3.8. Let Σ(A,B,C, 0) be output stable with observability gramian LC

and let ui ∈ Lloc
2 (R;U) be an input with compact support. Denote by yi the output of

Σ(A,B,C, 0) with input ui given by (3.1) and by yLC
i the output of Σ(A,B,B∗LC , 0)

with input ui given by the corresponding (3.1). Then we have the following:∫ ∞

−∞
〈y1(t), y2(t)〉 dt =

∫ ∞

−∞
〈u1(t), y

LC
2 (t)〉 dt +

∫ ∞

−∞
〈yLC

1 (t), u2(t)〉 dt.(3.9)

Proof. We first note that the integrals in (3.9) are well defined since yi ∈ L2(R;Y )

by Lemma 3.2 and the ui have compact support. Set zi(t) =
∫ t

−∞ T (t − s)Bui(s) ds
for i = 1, 2. If ui is continuously differentiable, then zi(t) is differentiable and

d

dt
〈z1(t), LCz2(t)〉

= 〈Az1(t) + Bu1(t), LCz2(t)〉 + 〈LCz1(t), Az2(t) + Bu2(t)〉
= 〈Bu1(t), LCz2(t)〉 + 〈LCz1(t), Bu2(t)〉 − 〈Cz1(t), Cz2(t)〉,

where we have used (2.2). On integrating the above we obtain

〈z1(t), LCz2(t)〉(3.10)

=

∫ t

−∞
〈u1(s), B

∗LCz2(s)〉 ds(3.11)

+

∫ t

−∞
〈B∗LCz1(s), u2(s)〉 ds−

∫ t

−∞
〈Cz1(s), Cz2(s)〉 ds.

=

∫ t

−∞
〈u1(s), y

LC
2 (s)〉 ds(3.12)

+

∫ t

−∞
〈yLC

1 (s), u2(s)〉 ds−
∫ t

−∞
〈y1(s), y2(s)〉 ds.
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From Lemma 3.1 we conclude that the left-hand side of (3.12) converges to zero as
t → ∞. This proves (3.9) for the case of continuously differentiable inputs, and the
general case follows by the following approximation argument. Let ui ∈ Lloc

2 (R;U) be
inputs with compact support and let un

i ∈ Lloc
2 (R;U) be continuously differentiable

inputs with compact support that converge to ui in L2(R;U). Let τ be such that ui

and un
i are equal to zero on (τ,∞), and assume that ui and un

i are zero on (−∞, 0).
By the well-posedness there exists a K(τ) such that∫ τ

−∞
‖yi(s) − yni (s)‖2 ds ≤ K(τ)

∫ τ

−∞
‖ui(s) − un

i (s)‖2 ds

and hence ∫ τ

−∞
‖yi(s) − yni (s)‖2 ds → 0 as n → ∞.

For zni (τ) :=
∫ τ

−∞ T (τ − s)Bui(s) ds we have∫ ∞

τ

‖yi(s) − yni (s)‖2 ds =

∫ ∞

0

‖CT (s) (zi(τ) − zni (τ)) ‖2 ds.

Since Σ(A,B,C, 0) is output stable, there exists a γ > 0 such that∫ ∞

τ

‖yi(s) − yni (s)‖2 ds ≤ γ ‖zi(τ) − zni (τ)‖2,

and by the well-posedness there exists a K(τ) such that

‖zi(τ) − zni (τ)‖2 ≤ K(τ)

∫ τ

−∞
‖ui(s) − un

i (s)‖2 ds.

Hence ∫ ∞

τ

‖yi(s) − yni (s)‖2 ds → 0 as n → ∞.

So we have yni → yi in L2(R;Y ). By the compact support of the inputs ui and un
i we

need only yn,LC
i → yLC

i in L2(−∞, τ ;Y ) to establish (3.9). This convergence follows
from the well-posedness as above. Using this (3.9) follows. The case that ui is not
zero on (−∞, 0) can be reduced to the case that this is the case by a time-shift as in
the proof of Lemma 3.7.

We also need to study anticausal outputs of state linear systems. The anticausal
output of the state linear system Σ(A,B,C,D) for an input u ∈ Lloc

2 (R;U) with
support bounded to the right is defined as

ya(t) :=

∫ ∞

t

CT (s− t)Bu(s) ds + Du(t).(3.13)

We have the following analogue of Lemma 3.2.
Lemma 3.9. If Σ(A,B,C,D) is output stable, then for inputs u ∈ Lloc

2 (R;U)
with compact support, the anticausal output given by (3.13) is in L2(R;Y ).

Proof. The proof is as in the proof of Lemma 3.2.
We have the following analogue of Lemma 3.7.
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Lemma 3.10. Let Σ(A,B,C,D) be output stable and assume that either σ(A)∩iR
has measure zero or U and Y are finite-dimensional. Then for inputs with compact
support we have for almost all ω ∈ R

ŷa(iω) = G(−iω)û(iω),(3.14)

where ya is the anticausal output of Σ(A,B,C,D) defined by (3.13).
Proof. This follows as in the proof of Lemma 3.7, but now by first assuming u

to be zero for positive time and using the Hardy space H2 over the left half-plane.
Details are as follows. We first prove the statement for the case that u is zero for
positive time. Now on some left half-plane we have

ŷa(s) = G(−s)û(s).(3.15)

Since ŷa ∈ H2(C
−
0 ;Y ) by Lemma 3.9 (and anticausality) and G is holomorphic on

C+
0 by Lemma 3.4 this extends to C−

0 . By Lemma 3.5 we have G(s) → G(iω) in the
operator norm as s → iω. Since û ∈ H2(C

−
0 ;U) and ŷa ∈ H2(C

−
0 ;Y ), they converge

to their boundary functions as s → iω so we obtain (3.14). The general case follows
by applying the above to the function u(t) := u(t+ τ) with output ya(t) := ya(t+ τ),
where y is the output corresponding to u and τ is chosen such that u is zero for
positive time.

The next result is a consequence of Lemma 3.8.
Lemma 3.11. Let Σ(A,B,C, 0) be input and output stable with observability

gramian LC and let ui ∈ Lloc
2 (R;U) be an input with compact support. Denote by

yi the output of Σ(A,B,C, 0) with input ui given by (3.1) and by yai the anticausal
output of Σ(A∗, LCB,B∗, 0) with input ui given by the corresponding (3.13). Then
we have yai ∈ L2(R;U) and the following:∫ ∞

−∞
〈y1(t), y2(t)〉 dt =

∫ ∞

−∞
〈ya1 (t), u2(t)〉 dt +

∫ ∞

−∞
〈u1(t), y

a
2 (t)〉 dt.(3.16)

Proof. Since Σ(A,B,C, 0) is input stable the system Σ(A∗, LCB,B∗, 0) is output
stable. Lemma 3.9 then implies that yai ∈ L2(R;U). Equation (3.16) follows from
(3.9) by an application of Fubini’s theorem and a change of variables.

Lemma 3.12. If Σ(A,B,C, 0) is input and output stable with the observability
gramian LC , then

〈LCBu, B̂(s)u〉 + 〈B̂(s)u, LCBu〉(3.17)

=‖ G(s)u ‖2 + 2Re s ‖L1/2
C B̂(s)u‖2 ∀ s ∈ C+

0 , u ∈ U.

Proof. We obtain a straightforward frequency domain identity from the Lyapunov
equation (2.2):

(s̄I −A∗)LC + LC(sI −A) = C∗C + 2Re s LC .

This leads to the following identity on some right half-plane:

B∗LC(sI −A)−1B + B∗(s̄I −A∗)−1LCB

= B∗(s̄I −A∗)−1C∗C(sI −A)−1B + 2Re sB∗(s̄I −A)−1LC(sI −A)−1B.

From this we obtain (3.17) for s in some right half-plane using Lemma 3.4. From

the input stability of Σ(A,B,C,D) we obtain that B̂ and G are holomorphic on C+
0 .
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From the appendix (Corollaries 9.1 and 9.4) it follows that all terms in (3.17) are
real-analytic on C+

0 . By the identity theorem for real-analytic functions we obtain
(3.17) for s ∈ C+

0 .
The next lemma is the main result of this section.
Lemma 3.13. Let Σ(A,B,C, 0) be input and output stable with the observability

gramian LC and assume that either σ(A) ∩ iR has measure zero or U and Y are
finite-dimensional. Then for almost all ω ∈ R, all u ∈ U , and all nontangential paths

lim
s→iω

Re s ‖ L
1/2
C B̂(s)u ‖2= 0.(3.18)

Proof. Let ui be locally square integrable with compact support. Let yi denote
the output of Σ(A,B,C, 0) for input ui from (3.1) and let yai denote the anticausal
output of Σ(A∗, LCB,B∗, 0) for input ui from the corresponding (3.13). By Fourier
transforming (3.16) we obtain∫ ∞

−∞
〈ŷ1(iω), ŷ2(iω)〉 dω =

∫ ∞

−∞
〈ŷa1 (iω), û2(iω)〉 dω +

∫ ∞

−∞
〈û1(iω), ŷa2 (iω)〉 dω.

From Lemmas 3.7 and 3.10 we obtain∫ ∞

−∞
〈G(iω)û1(iω),G(iω)û2(iω)〉 dω

=

∫ ∞

−∞
〈GLC(−iω)û1(iω), û2(iω)〉 dω +

∫ ∞

−∞
〈û1(iω),GLC(−iω)û2(iω)〉 dω,

where GLC is the transfer function of the system Σ(A∗, LCB,B∗, 0). Letting ui(t) =
f(t)v, where f is a scalar function with compact support and v ∈ U , we obtain∫ ∞

−∞
|f̂(iω)|2

(
〈GLC(−iω)v, v〉 + 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2

)
dω = 0.(3.19)

From (3.17) we obtain using GLC(s) = B̂(s̄)∗LCB that for all s ∈ C+
0

〈GLC(s̄)v, v〉 + 〈v,GLC(s̄)v〉 − ‖G(s)v‖2 = 2Re s ‖L1/2
C B̂(s)v‖2 ≥ 0.

Taking nontangential limits (which exist for all three terms on the left-hand side) we
obtain for almost all ω ∈ R

〈GLC(−iω)v, v〉 + 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2 ≥ 0.(3.20)

Combining (3.19) and (3.20) we obtain for almost all ω ∈ R

|f̂(iω)|2
(
〈GLC(−iω)v, v〉 + 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2

)
= 0.

Now let f : R → C be a function that has compact support and such that f̂(iω) �= 0
for almost all ω ∈ R (for example, the function equal to 1 on [0,1] and zero elsewhere).
Then we obtain for all v ∈ U and almost all ω ∈ R

〈GLC(−iω)v, v〉 + 〈v,GLC(−iω)v〉 − ‖G(iω)v‖2 = 0,

and comparing the above with (3.17) proves (3.18).
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It is an interesting open question whether Lemma 3.13 is true for infinite-
dimensional U and Y without the spectrum assumption.

We need the following property of the system Σ(A,B,B∗LC , 0) shown in Weiss
and Weiss [31, Theorem 11.1] (see also Oostveen [21, Lemma 4.2.6]).

Lemma 3.14. If Σ(A,B,C,D) is output stable and input-output stable with ob-
servability gramian LC , then Σ(A,−, B∗LC ,−) is output stable.

By duality we obtain the following.
Corollary 3.15. If Σ(A,B,C,D) is input stable and input-output stable with

controllability gramian LB, then Σ(A,LBC
∗,−,−) is input stable.

Lemma 3.13 has an easy corollary.
Corollary 3.16. Let Σ(A,B,C, 0) be a system-stable state linear system and

assume that either σ(A) ∩ iR has measure zero or U and Y are finite-dimensional.

Denote by B̂LB(s̄)∗ and ĈLC(s) the holomorphic extensions to C+
0 of CLB(sI−A∗)−1

and B∗LC(sI − A)−1, respectively. Then for almost all ω ∈ R, all u ∈ U , and all
nontangential paths

lim
s→iω

Re s ‖ L
1/2
C B̂LB(s)u ‖2= 0,(3.21)

lim
s→iω

Re s ‖ L
1/2
B Ĉ(s̄)∗y ‖2= 0,(3.22)

lim
s→iω

Re s ‖ L
1/2
B ĈLC(s̄)∗y ‖2= 0.(3.23)

Proof. Equation (3.21) follows from Lemma 3.13, since by Lemma 3.15, Σ(A,LBC
∗,

C, 0) is input stable and output stable and has observability gramian LC . Equation
(3.22) is the dual of (3.18), and (3.23) is the dual of (3.21).

4. Riccati equations. In this section we obtain some new results on stabiliz-
ability and Riccati equations for state linear systems that we will need in what follows.
First we introduce concepts of stabilizability from Curtain [10] that are refinements
of the definitions introduced in Curtain and Oostveen [7].

Definition 4.1. Σ(A,B,C,D) is output stabilizable if there exists an F ∈
L(Z,U) such that Σ(A + BF,B, [C;F ], 0) is output stable. Σ(A,B,C,D) is input
stabilizable if there exists an L ∈ L(Y,Z) such that Σ(A + LC, [B,L], C, 0) is input
stable.

The following are extensions of the results in Curtain and Oostveen [7]. In fact,
they are special cases of analogous results for the very large class of well-posed linear
systems in Mikkola [19]. Since the proofs there are not so accessible, we give simple
proofs here.

Theorem 4.2. If the state linear system Σ(A,B,C, 0) is output stabilizable, then
there exists a smallest bounded nonnegative solution of the control Riccati equation
for z ∈ D(A):

A∗Qz + QAz + C∗Cz −QBB∗Qz = 0.(4.1)

Moreover, for any bounded nonnegative solution, Σ(AQ, B, [C;−B∗Q], 0) is output
stable, where AQ = A−BB∗Q. If, in addition, Σ(A,B,C, 0) is input stabilizable, then
it is system-stable. If Σ(A,B,C, 0) is input stabilizable, then there exists a smallest
bounded nonnegative solution to the filter Riccati equation for z ∈ D(A∗):

APz + PA∗z − PC∗CPz + BB∗z = 0.(4.2)
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Moreover, for any bounded nonnegative solution, Σ(AP , [B,−PC∗], C, 0) is input sta-
ble, where AP = A− PC∗C. If, in addition, Σ(A,B,C, 0) is output stabilizable, then
it is system-stable.

Proof. The existence of a smallest bounded nonnegative solution to the Riccati
equation has been shown in Curtain and Oostveen [7]. In fact, it follows from [4,
Theorem 6.2.4], since output stabilizability implies optimizability. Next we note that
the output stability of Σ(AQ, B, [C;−B∗Q], 0) follows from the following equivalent
formulation of the Riccati equation:

A∗
QQz + QAQz + QBB∗Qz + C∗Cz = 0 for z ∈ D(A).(4.3)

This is the observability Lyapunov equation for Σ(AQ, B, [C;−B∗Q], 0), and Lemma
2.6 shows that it is output stable.

Next we observe that the input stabilizability guarantees the existence of a solu-
tion P to the dual filter Riccati equation (4.2). This in turn shows that the solutions to
the Lyapunov equations of the system Σ(AQ, B, [C;−B∗Q], 0) are Q and P (I+QP )−1

(we use the dual version of Lemma 9.4.10 in [4]). So this system is input stable (see
Lemma 2.6). So, from Theorem 3.4, we can write the transfer function [N;M] of the
closed-loop system on C+

0 in two ways:

[N;M] − [0; I] = ĈQB = [C;−B∗Q]B̂Q,

where ĈQz is the Laplace transform of [C;−B∗Q]TQ(t)z, 〈B̂Qu, z〉 is the Laplace
transform of 〈TQ(t)Bu, z〉 for all z ∈ Z and u ∈ U , and TQ is the semigroup generated
by AQ. We use this latter version of [N;M] to compute for s ∈ C+

0

[N(s);M(s)]∗[N(s);M(s)](4.4)

= B̂∗
Q(s)[C∗C + QBB∗Q]B̂Q(s) + I − B̂∗

Q(s)QB −B∗QB̂Q(s).

We then use the formulation (4.3) of the Riccati equation to obtain

C∗C + QBB∗Q = A∗
QQ + QAQ = (sI −AQ)∗Q + Q(sI −AQ) − 2Re s Q.

We substitute this into (4.4) and use the equality (3.6) applied to the closed-loop
system Σ(AQ, B, [C;−B∗Q], 0),

(s−AQ)B̂Q(s) = B for s ∈ C+
0 ,

to obtain

[N(s);M(s)]∗[N(s);M(s)] = I − 2Re s B̂∗
Q(s)QB̂Q(s).(4.5)

This shows that [N(s);M(s)]∗[N(s);M(s)] ≤ I for all s ∈ C+
0 . Thus [N;M] ∈

H∞(L(U, Y ⊕ U)).
We proceed to deduce some interesting properties of the spectrum of the closed-

loop generators AQ and AP on the right half-plane.
Lemma 4.3. Suppose that the state linear system Σ(A,B,C, 0) is input and output

stabilizable. Then for any bounded nonnegative solutions Q,P to the Riccati equations
(4.1), (4.2), respectively, the closed-loop generators have the following properties:

1. The closed-loop operators AQ = A − BB∗Q and AP = A − PC∗C have the
same spectrum and

(I + PQ)AQz = AP (I + PQ)z for z ∈ D(A).(4.6)
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2. Let Q1, Q2 be two bounded nonnegative solutions of (4.1). Then σ(AQ1
) =

σ(AQ2).
3. The spectra of the closed-loop generators AQ and AP in the closed right half-

plane are contained in the spectrum of A.
Proof. 1. First we prove (4.6). As in Curtain and Zwart [4, Lemma 4.1.24] we

have

Q : D(A) → D(A∗), P : D(A∗) → D(A).

So using (4.3) we obtain for z ∈ D(A)

(I + PQ)AQz

= AQz − P (A∗
QQz + QB∗BQ + CC)z

= (A− PC∗C)z −BB∗Qz − PA∗Qz

= AP z − P (A∗
P + C∗CP )Qz −BB∗Qz

= AP z + (APP + BB∗)Qz −BBQz from (4.2)

= AP (I + PQ)z.

Since P,Q are bounded nonnegative operators, (I + PQ) is boundedly invertible and
σ(AQ) = σ(AP ).

2. From part 1 it follows that σ(AQ1) = σ(AP ) = σ(AQ2
).

3. Suppose that λ ∈ C+
0 is in the point spectrum of AQ; i.e., AQx = λx for some

nonzero x ∈ D(A). Then from (4.3) we obtain

2 Reλ〈Qx, x〉 = 〈AQx,Qx〉 + 〈Qx,AQx〉
= −‖B∗Qx‖2 − ‖Cx‖2.

Since Q ≥ 0 and Re λ ≥ 0 we must have B∗Qx = 0 = Cx, which implies that

λx = AQx = Ax. So λ is in the point spectrum of A. Suppose now that μ ∈ C+
0 is in

the residual spectrum of AQ. Then by (4.6) μ̄ is in Pσ(A∗
Q) = Pσ(A∗

P ) and so there
exists a y ∈ D(A∗) such that A∗

P y = μy. Now (4.2) can be reformulated as

APPz + PA∗
P z = −PC∗CPz −BB∗z,(4.7)

and substituting z = y and taking the inner product with y gives

2 Reμ〈Py, y〉 = 〈A∗
P y, Py〉 + 〈Py,A∗

P y〉
= −‖B∗y‖2 − ‖CPy‖2.

Since Re μ ≥ 0 and P ≥ 0, we must have CPy = 0 = B∗y, which implies that

μy = A∗
P y = A∗y and so μ ∈ σ(A). Suppose now that λ ∈ C+

0 is in the continuous
spectrum of AQ. Then there exists a sequence xn ∈ D(A) with ‖xn‖ = 1 and
‖AQxn − λxn‖ → 0 as n → ∞. Substituting in (4.3) we obtain

〈AQxn − λxn, Qxn〉 + 〈Qxn, AQxn − λxn〉
= −‖B∗Qxn‖2 − ‖Cxn‖2 − 2 Reλ〈Qxn, xn〉.

Since Q ≥ 0 and Re λ ≥ 0, we deduce that ‖B∗Qxn‖2 ≤ 2‖Q‖ ‖xn‖ ‖AQxn−λxn‖ →
0 as n → ∞. Thus

‖Axn − λxn‖ ≤ ‖AQxn − λxn‖ + ‖BB∗Qxn‖ → 0
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as n → ∞. So λ is in the approximate point spectrum of A. The above shows that

ρ(AQ) ∩ C+
0 ⊂ ρ(A) ∩ C+

0 . Since by part 1 we have ρ(AQ) = ρ(AP ) this proves the
assertion.

In [6] it was discovered that two interesting Riccati equations play a role in the
solution to the Nehari problem.

Theorem 4.4. Let Σ(A,B,C, 0) be input and output stable and let L1, L2 be
arbitrary bounded nonnegative solutions to the Lyapunov equations (2.1), (2.2), re-

spectively. Let σ > r
1
2 (L1L2) and define Nσ := (I − σ−2L1L2)

−1. Then
1. W := NσL1 is a bounded nonnegative solution of the following Riccati equa-

tion for z ∈ D(A∗):

WA∗z + AWz − σ−2WC∗CWz + NσBB∗N∗
σz = 0;(4.8)

2. X := L2Nσ is a bounded nonnegative solution of the following Riccati equation
for z ∈ D(A):

A∗Xz + XAz − σ−2XBB∗Xz + N∗
σC

∗CNσz = 0;(4.9)

3. the closed-loop systems Σ(AW , [NσB;WC∗], C) and Σ(AX , B, [CNσ;B∗X])
are system-stable, where AW = A− σ−2WC∗C and AX = A− σ−2BB∗X;

4. σ(AX) ∩ C+
0 ⊂ σ(A) ∩ C+

0 and σ(AX) ∩ iR ⊂ σ(A) ∩ iR and the closed-loop
generators are related by AX = N−1

σ AWNσ.
Proof. 1. and 2. The proofs of Lemmas 4.1.24 and 8.3.2 in [4] show that

L1D(A∗) ⊂ D(A), L2D(A) ⊂ D(A∗), NσD(A) ⊂ D(A), and N∗
σD(A∗) ⊂ D(A∗).

Thus WD(A∗) ⊂ D(A) and XD(A) ⊂ D(A∗). That W satisfies (4.8) and X satisfies
(4.9) can be readily verified algebraically.

3. The conclusions about the stability of the closed-loop systems then follow
from Theorem 4.2, noting that Σ(A, 1/σB,CNσ) is input stable and output stabi-
lizable (with F = −1/σB∗X) and that Σ(A,NσB, 1/σC) is output stable and input
stabilizable (with L = −1/σWC∗).

4. Theorem 4.3 shows that σ(AX)∩C+
0 ⊂ σ(A)∩C+

0 and σ(AX)∩iR ⊂ σ(A)∩iR.
To relate AX and AW consider

AXN−1
σ = A(I − σ−2L1L2) − σ−2BB∗L2

= A− σ−2(AL1 + BB∗)L2

= A + σ−2L1A
∗L2

= A− σ−2L1(L2A + C∗C)

= (I − σ−2L1L2)A− σ−2L1C
∗C

= N−1
σ AW .

5. The spectral factor. As in [4] and [6] we shall approach the solution of the
Nehari problem for the input and output stable state linear system Σ(A,B,C, 0) with
transfer function G by solving the following J-spectral factorization problem: find X
such that

P(iω)∗JσP(iω) = X(iω)J1X(iω)∗ for almost all ω ∈ R,(5.1)

where

P(s) =

[
IY G(s)
0 IU

]
and Jσ =

[
IY 0
0 −σ2IU

]
.
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Here we introduce the candidate solution and give some properties. Let L1 and L2

be arbitrary bounded nonnegative solutions of the controllability and observability
Lyapunov equations, respectively. For σ > r

1
2 (L1L2) we define Nσ = (I−σ−2L1L2)

−1

and we introduce the state linear system

Σ

(
A, σ−2Nσ

(
L1C

∗ −σB
)
,

[
C

B∗L2

]
,

[
IY 0
0 σIU

])
.(5.2)

We denote the characteristic function of the state linear system (5.2) by X and its
transfer function by X and we prove the following lemma.

Lemma 5.1. Let

P(s) =

[
IY G(s)
0 IU

]
.

Then R(s) = P(s)∗JσP(s) − X(s)J1X(s)∗ satisfies the following for s ∈ ρ(A):

R(s)11 = −2σ−2Re sC(sI −A)−1NσL1(sI −A)−∗C∗,

R(s)12 = −2σ−2Re sC(sI −A)−1NσL1(sI −A)−∗L2B,

R(s)21 = R(s)∗12,

R(s)22 = −2Re sB∗(sI −A)−∗L2(sI −A)−1B

−2σ−2Re sB∗L2(sI −A)−1NσL1(sI −A)−∗L2B.

Proof. We only prove the formula for R(s)11; the proof for the other components
is similar. We have on some right half-plane

R(s)11 = I − X11(s)X11(s)
∗ + X12(s)X12(s)

∗

= −σ−4C(sI −A)−1WC∗CW (sI −A)−∗C∗

+σ−2C(sI −A)−1NσBB∗N∗
σ(sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C

= σ−2C(sI −A)−1
(
−σ−2WC∗CW + NσBB∗N∗

σ

)
(sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C.

Using (4.8) we obtain

R(s)11 = σ−2C(sI −A)−1 (−WA∗ −AW ) (sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C

= σ−2C(sI −A)−1 (W (sI −A)∗ + (sI −A)W − 2Re s W ) (sI −A)−∗C∗

−σ−2C(sI −A)−1WC∗ − σ−2CW (sI −A)−∗C

= −2σ−2Re s C(sI −A)−1NσL1(sI −A)−∗C∗.

It is clear from the above that if σ(A) ∩ iR has measure zero and L1, L2 are an
arbitrary pair of solutions to the Lyapunov equations, then X is a solution to (5.1).
If, in addition, (5.2) is input or output stable, then it follows from Lemma 3.5 that
X is a solution to (5.1). The following example shows that in general X need not
provide a spectral factor.

Example 5.2. We consider an example from Curtain and Sasane [8] (see also
Sasane [28]). The transfer function G0(s) = 1√

s2+1
was shown to have a realization
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Σ(A,B,B∗, 0) on the state space �2(Z), where A ∈ L(�2(Z)) and B ∈ �2(Z) are given
by

Ai,i+1 = −1/2, Ai+1,i = 1/2, Ai,j = 0 otherwise,

B0 = 1, Bi = 0 otherwise.

The spectrum of A is purely continuous and equals [−i, i]. The closed-loop system
Σ(A−BB∗, B,B∗, 0) is system-stable with the transfer function G(s) = 1

1+
√
s2+1

. It

is continuous on the imaginary axis and it satisfies

G(iω) + G(iω)∗ = 2G(iω)∗G(iω) for |ω| > 1,(5.3)

G(iω) = G(iω)∗ =
1

1 +
√

1 − ω2
for |ω| < 1.(5.4)

The Lyapunov equations have solutions L1 = L2 = 1/2 I, but note that it is known
from [28] that these are not the observability or controllability gramians. The advan-
tage of using these solutions is that the calculations are simple. In this specific case
the state linear system (5.2) is

Σ

(
A−BB∗, σ−2Nσ

[
B/2 −σB

]
,

[
B∗

B∗/2

]
,

[
1 0
0 σ

])
.

An easy calculation shows that for s ∈ ρ(A−BB∗) = ρ(A) = C − [−1, 1] we have

X(s) =

[
1 0
0 σ

]
+ α

[
2 −4σ
1 −2σ

]
G(s),

where α = 1
4σ2−1 . This, together with the stability properties of the state linear

systems and Lemma 3.5, shows that we have for almost all ω ∈ R

X(iω) =

[
1 0
0 σ

]
+ α

[
2 −4σ
1 −2σ

]
G(iω).

It is now easily shown using (5.3) that (5.1) holds for |ω| > 1 and using (5.4) that
(5.1) does not hold for |ω| < 1.

If we choose the smallest bounded nonnegative solutions to the Lyapunov equa-
tions we obtain stronger properties of the candidate spectral factor.

Lemma 5.3. If Σ(A,B,C, 0) is output and input-output stable and L2 = LC , the
observability gramian of the system Σ(A,B,C, 0), then (5.2) is output stable.

Proof. This follows from Lemma 3.14.
Lemma 5.4. If Σ(A,B,C, 0) is system-stable and either σ(A) ∩ iR has measure

zero or U and Y are finite-dimensional, and L1 = LB and L2 = LC , where LB , LC are
the controllability and observability gramians of the system Σ(A,B,C, 0), respectively,
then X satisfies (5.1).

Proof. It follows from Lemma 5.1 that on some right half-plane〈
R(s)

[
y
u

]
,

[
y
u

]〉
= − 2

σ2
Re s

(
‖α(s)y + β(s)u‖2 + σ2‖γ(s)u‖2

)
,(5.5)

where R is as in Lemma 5.1 and

α(s) = MσL
1/2
B (sI −A)−∗C∗, β(s) = MσL

1/2
B (sI −A)−∗LCB,

γ(s) = L
1/2
C (sI −A)−1B, Mσ = (I − 1

σ2
L

1/2
B LCL

1/2
B )−1/2.
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From the stability properties we can replace α, β, and γ in (5.5) by their holomorphic
extensions (Lemmas 3.4 and 3.14). Then as in Lemma 3.12, using the real-analyticity
property, it follows that the resulting equalities hold on C+

0 .
Using Lemma 3.13 and Corollary 3.16 we see that the right-hand side of (5.5)

converges to zero as Re s → 0 (here α, β, and γ are replaced by their holomorphic
extensions). From this we obtain the J-spectral factorization (5.1).

In the remainder of this section we collect some properties of the spectral factor
described by (5.2) and of its inverse system

Σ

(
A, σ−2

[
−L1C

∗ B
]
,

[
C

σ−1B∗L2

]
Nσ,

[
IY 0
0 σ−1IU

])
.(5.6)

We denote the characteristic function of the state linear system (5.6) by V and its
transfer function by V. It is the inverse of X in the following sense.

Lemma 5.5. Assume that Σ(A,B,C, 0) is input and output stable. Then for
s ∈ ρ(A) we have V(s)X(s) = I = X(s)V(s).

Proof. This follows from a straightforward calculation.
Lemma 5.6. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB, the

controllability gramian of the system Σ(A,B,C, 0). Then (5.6) is input stable.
Proof. This follows from Corollary 3.15.
Lemma 5.7. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB and

L2 = LC , the controllability and observability gramians of the system Σ(A,B,C, 0),
respectively. Then V(s)X(s) = I = X(s)V(s) for all s ∈ C+

0 .
Proof. From Lemmas 3.4, 5.3, 5.5, and 5.6 we have V(s)X(s) = I = X(s)V(s)

for all s ∈ C+
0 ∩ ρ(A). From Lemmas 5.3 and 5.6 both X and V are holomorphic on

C+
0 and so the equality extends to this domain.

Lemma 5.8. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB and
L2 = LC , the controllability and observability gramians of the system Σ(A,B,C, 0),
respectively. If either σ(A)∩ iR has measure zero or U and Y are finite-dimensional,
then V(iω)X(iω) = I = X(iω)V(iω) for almost all ω ∈ R.

Proof. This follows from Lemmas 5.3, 5.6, 5.7, and 3.5.
The (2,2) component of V plays a special role in what follows, and we need the
following extra properties.

Lemma 5.9. Assume that Σ(A,B,C, 0) is input and output stable. Then the sys-
tem Σ(A, σ−2B, σ−1B∗X,σ−1I) is input stable, and its characteristic function V22(s)
is invertible for s ∈ ρ(A) ∩ ρ(AX). Its inverse is the characteristic function of the
system-stable state linear system

Σ(AX , B,−σ−1B∗X,σI), with X = L2Nσ.(5.7)

Moreover, the transfer function V22(s) is invertible for s ∈ C+
0 , and its inverse is the

transfer function of (5.7).
Proof. The input stability follows from that of Σ(A,B,C, 0). The invertibility of

the characteristic function V22 is a simple calculation, and the stability property of
(5.7) follows from Theorem 4.4. The invertibility of the transfer function follows as
in Lemma 5.7.

Lemma 5.10. Assume that Σ(A,B,C, 0) is input and output stable and that ei-
ther σ(A)∩ iR has measure zero or U and Y are finite-dimensional. Then the bound-
ary function of V22 is almost everywhere invertible, and its inverse is the boundary
function of the transfer function of (5.7).
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Proof. This follows from Lemmas 5.9 and 3.5.
Dual results for X11(s) can be proved similarly.
Corollary 5.11. Assume that Σ(A,B,C, 0) is input and output stable. Then

the system Σ(A, σ−2WC∗, C, I) is output stable, and its characteristic function X11(s)
is invertible for s ∈ ρ(A) ∩ ρ(AW ). Its inverse is the characteristic function of the
system-stable state linear system

Σ(AW ,−σ−2WC∗, C, I), with W = NσL1.(5.8)

Moreover, the transfer function X11(s) is invertible for s ∈ C+
0 , and its inverse is the

transfer function of (5.8).
Corollary 5.12. Assume that Σ(A,B,C, 0) is input and output stable and

that either σ(A) ∩ iR has measure zero or U and Y are finite-dimensional. Then
the boundary function of X11 is almost everywhere invertible, and its inverse is the
boundary function of the transfer function of (5.8).

6. The central solution. We introduce the following state linear system

Σ(A∗
W , L2B,−σ−2CW, 0),(6.1)

where W is as in Theorem 4.4. We denote its characteristic function by Z and its
transfer function by Z. The candidate solution to the Nehari problem is given by
Kc(−s) = Z(s). The state linear system (6.1) has the following properties.

Lemma 6.1. If Σ(A,B,C, 0) is input and output stable, then the following hold:
1. The state linear system (6.1) is output stable.
2. The characteristic functions of the state linear system (6.1) and of the state

linear system Σ(A∗
X ,−σ−2XB,CL1, 0) coincide.

3. The state linear system Σ(A∗
X ,−σ−2XB,CL1, 0) is input stable.

4. For s ∈ ρ(A∗) ∩ ρ(A∗
W ) we have Z(s) = V21(s̄)

∗V−1
22 (s̄)∗.

Proof. 1. This follows from Theorem 4.4, part 3.
2. This is an easy calculation using Theorem 4.4, part 4.
3. This follows from Theorem 4.4, part 3.
4. This is a simple calculation.

The above shows that we have one realization of Z that is output stable and another
that is input stable. We now show that Z is in H∞ under the assumption A1.

Theorem 6.2. If Σ(A,B,C, 0) is system-stable and σ(A)∩ iR has measure zero,
then Z ∈ H∞(L(U, Y )) and with Kc(−s) = Z(s) we have

‖G + Kc‖∞ ≤ σ.

Proof. It follows from Lemma 6.1, part 4, and Theorem 4.4, part 4, that for
almost all ω ∈ R we have

Kc(iω) = V21(iω)∗V22(iω)−∗.(6.2)

From Lemma 5.1 we see that for almost all ω ∈ R we have

P(iω)∗JσP(iω) = X(iω)J1X(iω)∗.(6.3)

From (6.2) we obtain for almost all ω ∈ R[
G(iω) + Kc(iω)

I

]
= P(iω)V(iω)∗

[
0

V22(iω)−∗

]
.
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So

(G(iω) + Kc(iω))∗(G(iω) + Kc(iω)) − σ2I

=

[
G(iω) + Kc(iω)

I

]∗
Jσ

[
G(iω) + Kc(iω)

I

]
=

[
0

V22(iω)−∗

]∗
V(iω)P(iω)∗JσP(iω)V(iω)∗

[
0

V22(iω)−∗

]
=

[
0

V22(iω)−∗

]∗ [
I 0
0 −I

] [
0

V22(iω)−∗

]
,(6.4)

where in the last step we have used the spectral factorization (6.3). The above shows
that

‖G(iω) + Kc(iω)‖2 − σ2 = −‖V22(iω)−∗‖2,

and so for almost all ω ∈ R

‖G(iω) + Kc(iω)‖ ≤ σ,

which implies that G + Kc ∈ L∞(iR;L(U, Y )). Since G ∈ H∞(L(U, Y )) and by
Lemma 3.5 G coincides almost everywhere with the boundary function of G on the
imaginary axis, we have G ∈ L∞(iR;L(U, Y )) and thus Kc ∈ L∞(iR;L(U, Y )). From
this it follows that Z ∈ L∞(iR;L(U, Y )). This, together with the output stability of
the state linear system (6.1) from Lemma 6.1 using Lemmas 3.5 and 3.6, shows that
Z ∈ H∞(L(U, Y )). Thus with Kc(−s) = Z(s) we obtain ‖G + Kc‖∞ ≤ σ.

Our main result in this section is to show that under assumption A2, Z ∈ H∞
and Kc solves the suboptimal Nehari problem.

Theorem 6.3. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB and
L2 = LC , the controllability and observability gramians of the system Σ(A,B,C, 0),
respectively, and that U and Y are finite-dimensional. Then Z ∈ H∞(L(U, Y )) and
with Kc(−s) = Z(s) we have

‖G + Kc‖∞ ≤ σ.

Proof. The idea is to follow the lines of the proof of Theorem 6.2, replacing the
characteristic functions by their corresponding transfer functions. So all we need to
show is that the following two key properties hold for almost all ω ∈ R:

Z(iω) = V21(−iω)∗V−1
22 (−iω)∗,(6.5)

P(iω)∗JσP(iω) = X(iω)J1X(iω)∗.(6.6)

Since (6.6) has already been shown in Lemma 5.4, it remains to show only (6.5).
By Lemma 6.1, part 4, on some right half-plane we have Z(s) = V21(s̄)

∗V−1
22 (s̄)∗.

Using Lemma 6.1, part 1, Lemma 5.6, and Lemma 5.9 this equality holds on C+
0 (all

functions are holomorphic on C+
0 ). Lemmas 3.5 and 5.10 now give (6.5).

Under assumption A2 we can show that Z has a realization as a system-stable
state linear system.

Corollary 6.4. Assume that Σ(A,B,C, 0) is system-stable and that L1 = LB

and L2 = LC , the controllability and observability gramians of the system Σ(A,B,C, 0),
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respectively, and that U and Y are finite-dimensional. Then Σ(A∗
W , L2B,−σ−2CW, 0)

and Σ(A∗
X ,−σ−2XB,CL1, 0) are system-stable state linear systems.

Proof. We have already shown in Lemma 6.1 and Theorem 6.3 that Σ(A∗
W , LCB,

−σ−2CW, 0) is output and input-output stable. The input stability follows from the
identity

B∗LC(sI −AW )−1 = B∗LC(sI −A)−1 − σ−2B∗LC(sI −AW )−1WC∗C(sI −A)−1

and the fact B∗LC(sI−A)−1z ∈ H2(Y ) (Lemma 3.14), that B∗LC(sI−AW )−1WC∗ ∈
H∞(L(Y,U)) (the input-output stability shown earlier), and that C(sI − A)−1z ∈
H2(Y ) for all z ∈ Z. The proof for the other realization is similar.

7. Parametrization of solutions. First we give a parameterization of a family
of solutions to the Nehari problem in terms of the transfer function of (5.6) and an
H∞ parameter under assumption A2.

Theorem 7.1. Let Σ(A,B,C, 0) be system-stable with transfer function G and
let LB and LC be the controllability and observability gramians, respectively. Assume
that U and Y are finite-dimensional. For σ > r

1
2 (LBLC) define[

R1(s)
R2(s)

]
= V(s̄)∗

[
Q(−s)
IU

]
,(7.1)

where Q(−s) ∈ H∞(L(U, Y )). If ‖Q‖∞ ≤ 1, then K(−s) = R1(s)R2(s)
−1 ∈

H∞(L(U, Y )) and satisfies

‖K + G‖∞ ≤ σ.

We prove this in a series of lemmas.
Lemma 7.2. Under the assumptions of Theorem 7.1 we have the following. For

all s ∈ C+
0 and almost all s ∈ iR we have ‖V12(s)V

−1
22 (s)‖ < 1.

Proof. Consider the state linear system Σ(A, σ−1B,CNσ, 0), and denote its trans-
fer function by E. The control Riccati equation (4.1) corresponding to this system
is precisely (4.9). From the proof of Theorem 4.2, specifically by (4.5), we have
‖[N;M]‖∞ ≤ 1, where [N;M] is the transfer function of the closed-loop system
Σ(AX , σ−1B, [CNσ,−σ−1B∗X], [0; I]). It is easily calculated that V12(s)V

−1
22 (s) =

N(s). It also easily seen that N(s) = E(s)M(s) on some right half-plane. By stabil-
ity this extends to the right half-plane and by taking nontangential limits to almost
everywhere on the imaginary axis.

From the above inequality we obtain for almost all ω ∈ R that ‖N(iω)‖ ≤ 1. We
show that, in fact, strict inequality holds. Suppose, on the contrary, that ‖N(iω0)‖ =
1. Then there would exist a sequence un with norm one such that ‖N(iω0)un‖ → 1.
From the above H∞ bound we conclude that ‖M(iω0)un‖ → 0. Since for almost all
ω ∈ R we have N(iω) = E(iω)M(iω), we obtain ‖N(iω0)un‖ → 0. This gives the
desired contradiction.

We now extend this inequality to s ∈ C+
0 . From the above we know that

‖V12V
−1
22 ‖∞ = ‖N‖∞ ≤ 1. Suppose that there exists a point s0 ∈ C+

0 such that
‖V12(s0)V

−1
22 (s0)‖ = 1. Then ‖V12(s)V

−1
22 (s)‖ has a maximum in C+

0 and is there-
fore constant by the maximum modulus principle; see, e.g., [17, Theorem 3.13.1,
p. 100]. This implies that ‖V12(s)V

−1
22 (s)‖ = 1 for all s ∈ C+

0 . But then the bound-
ary function would have norm one almost everywhere, and we have shown that this
is not true.
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The next lemma ensures that K is well defined.
Lemma 7.3. Under the assumptions of Theorem 7.1, R2(s) is invertible for all

s ∈ C+
0 and almost all s ∈ iR.

Proof. Define P(s) := Q(−s̄)∗. Then P ∈ H∞(L(U, Y )), and ‖P‖∞ ≤ 1. Next,
using Lemma 7.2 we obtain ‖P(s)V12(s)V

−1
22 (s)‖ < 1. From this we see that (I +

P(s)V12(s)V
−1
22 (s))−1 = V22(s)(V22(s) + P(s)V12(s))

−1 exists. Hence T := (V22 +
PV12)

−1 exists. Since we have R2(s)
−1 = T(s̄)∗ we have that R2(s)

−1 exists.
Next we prove Theorem 7.1 under the assumption ‖Q‖∞ < 1.

Lemma 7.4. Theorem 7.1 is true for all Q(−s) ∈ H∞(L(U, Y )) with ‖Q‖∞ < 1.
Proof. We show that R−1

2 ∈ H∞(L(U)). This follows as the proof of Lemma
7.3 using that H∞ is a Banach algebra: from ‖PV12V

−1
22 ‖∞ < 1 we conclude that

(I + PV12V
−1
22 )−1 ∈ H∞, and using that V−1

22 ∈ H∞ by Lemma 5.9 it follows that
R−1

2 ∈ H∞(L(U)).
K(−s) := R1(s)R2(s)

−1 defines an L∞ function which satisfies ‖G + K‖∞ ≤ σ.
The proof is similar to that of Theorem 6.2.

Last we show that K(−s) ∈ H∞(L(U, Y )).
Since for all s ∈ C+

0 we have V(s)X(s) = I, we obtain

X11(s)V11(s) + X12(s)V21(s) = I

and

X11(s)V12(s) + X12(s)V22(s) = 0,

from which we obtain

V11(s) = X11(s)
−1 + V12(s)V22(s)

−1V21(s).

So

R1(s) = V21(s̄)
∗ + V11(s̄)

∗Q(−s)

= X11(s̄)
−∗Q(−s) + V21(s̄)

∗(I + V22(s̄)
−∗V12(s̄)

∗Q(−s))

= X11(s̄)
−∗Q(−s) + V21(s̄)

∗V22(s̄)
−∗R2(s)

= X11(s̄)
−∗Q(−s) + Kc(−s)R2(s),

and so

K(−s) = X11(s̄)
−∗Q(−s)R2(s)

−1 + Kc(−s).

Now Kc(−s) ∈ H∞ by Theorem 6.3, X−1
11 ∈ H∞ by Corollary 5.11, R2(s)

−1 ∈ H∞
as we proved above, and Q(−s) ∈ H∞ is given. So K(−s) ∈ H∞(U, Y ).

The proof for the case ‖Q‖∞ ≤ 1 follows the approach in [1].
Lemma 7.5. Theorem 7.1 is true for all Q(−s) ∈ H∞(L(U, Y )) with ‖Q‖∞ ≤ 1.
Proof. We first note that H∞ is weak-∗ closed in L∞. In the case of the unit disc

and the unit circle instead of the right half-plane and the imaginary axis, this follows
as in [27, p. 197]. The case we consider follows, using a Möbius transform.

Next we note that if a bounded sequence Fn in L∞ converges pointwise to F ∈
L∞, then Fn converges to F in the weak-∗ topology. In the case of the unit disc and
the unit circle instead of the right half-plane and the imaginary axis, this follows as
in [1, Proposition 2.3]. The case we consider follows, using a Möbius transformation.
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Using these two results, we prove the lemma. For t ∈ (0, 1) define Qt := tQ. Then
‖Qt‖ ≤ t < 1. Define Kt in terms of Qt. Then by Lemma 7.4 we have Kt ∈ H∞. If
t → 1, then for almost all ω ∈ R we have Kt(iω) → K(iω). Since Kt is bounded in
norm by ‖G‖∞ + σ, the limit function (which is well defined by Corollary 7.3) is in
L∞. By the above this implies that Kt converges to K in the weak-∗ topology. Since
H∞ is closed in the weak-∗ topology and Kt ∈ H∞, we obtain K ∈ H∞.

Remark 7.6. It is clear from the results in the previous section and from the
proof of Theorem 7.1 that the conclusions also hold under assumption A1: σ(A)∩ iR
has measure zero. In this case LB and LC can be replaced by arbitrary bounded
nonnegative solutions of the Lyapunov equations, and the assumption that U and Y
should be finite-dimensional is redundant.

8. Well-posed linear systems and reciprocals. In this section we solve the
suboptimal Nehari problem via the reciprocal system as in Curtain and Sasane [9].

First we briefly review the definitions of a well-posed linear system (see Weiss
[32], Staffans [29]). Given an L(U, Y )-valued function G that is holomorphic and
uniformly bounded on some right half-plane, there exist operators A,B,C such that

• A is the infinitesimal generator of a strongly continuous semigroup T (·) on a
separable Hilbert space Z;

• C ∈ L(D(A), Y ) is an admissible observation operator with respect to T (·); i.e.,
given τ > 0, there exists a γ > 0 such that∫ τ

0

‖CT (t)z‖2 dt ≤ γ‖z‖2 ∀ z ∈ D(A);

• B∗ ∈ L(D(A∗), U), and B is an admissible control operator for T (·); i.e., for
any τ > 0, there exists a β > 0 such that for all u ∈ L2(0, τ ;U)∥∥∥∥∫ τ

0

T (t− s)Bu(s) ds

∥∥∥∥2

≤ β

∫ τ

0

‖u(t)‖2 dt;

• The operators A,B,C should be such that

G(s) − G(α) = (α− s)C(sI −A)−1(αI −A)−1B(8.1)

for any α, s larger than the growth bound of the semigroup T .
A triple A,B,C that satisfies the above conditions is called a realization of the

function G. Such a realization is not unique. A well-posed linear system is specified
by operators A,B,C and a transfer function G that satisfy the above conditions.

The expression (8.1) is defined for all s ∈ ρ(A), and as in section 2 to avoid con-
fusion, we call this the characteristic function and denote it by G. If the admissibility
definitions can be extended to τ = ∞, then the term infinite-time admissible is used.
Well-posed linear systems form a nice generalization of state linear systems, and the
concepts of infinite-time admissibility are the natural extensions of input and output
stability in Definition 2.3, and we shall use the terms input and output stability. In
Grabowski [15] and Hansen and Weiss [16] it is shown that Lemma 2.6 generalizes
perfectly to well-posed linear systems and in Curtain [11] that Lemma 3.4 also applies
to well-posed linear systems. We call Σ a system-stable well-posed linear system if it
is input stable and output stable and G ∈ H∞(L(U, Y )).

The concept of a reciprocal system was introduced in [10].
Definition 8.1. Suppose that the well-posed linear system Σ with generating

operators A,B,C and transfer function G is such that 0 ∈ ρ(A). Its reciprocal system
is the state linear system Σ(A−1, A−1B,−CA−1,G(0)).
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The justification for this definition is the nice relationship between the well-posed
linear system and its reciprocal system shown in [11, Lemma 3.2].

Theorem 8.2. Suppose that A,B,C are the generating operators of a well-posed
linear system Σ with transfer function G and zero is in the resolvent set of A. Denote
the characteristic function of its reciprocal system by Gr and the transfer function of
its reciprocal system by Gr. Then the following hold:

1. G(s) = Gr(
1
s ) whenever s is in the resolvent set of A.

2. Σ is output stable if and only if its reciprocal system is output stable. If they
are output stable, then their observability gramians are identical.

3. Σ is input stable if and only if its reciprocal system is input stable. If they
are input stable, then their controllability gramians are identical.

4. The well-posed linear system is system-stable if and only if its reciprocal sys-
tem is system-stable. In this case, we have G(s) = Gr(

1
s ) for s ∈ C+

0 .
The advantages of working with the reciprocal system are that all its generating

operators are bounded and the close connections with the original well-posed linear
system give us the following result.

Theorem 8.3. Let Σ be a system-stable well-posed linear system with generat-
ing operators A,B,C and transfer function G and assume that 0 ∈ ρ(A). Let Gr

denote the transfer function of its reciprocal system Σ(A−1, A−1B,−CA−1,G(0)).
Then K(−s) ∈ H∞(L(U, Y )) satisfies

‖ G + K ‖≤ σ

if and only if Kr(−s) ∈ H∞(L(U, Y )) satisfies

‖ Gr − G(0) + Kr ‖≤ σ,(8.2)

where K(s) = Kr(
1
s ) − G(0) for all s ∈ C+

0 and almost all s ∈ iR.

Proof. From Theorem 8.2, part 4, we have G(s) = G−( 1
s ) for s ∈ C+

0 and by

input-output stability this extends to almost everywhere on iR. So for all s ∈ C+
0 and

almost all s ∈ iR we have

K(−s) + G(s) = Kr

(
−1

s

)
+

[
Gr

(
1

s

)
− G(0)

]
.

Thus

sup
C

+
0

‖ K(−s) + G(s) ‖ = sup
C

+
0

∥∥∥∥Kr

(
−1

s

)
+ Gr

(
1

s

)
− G(0)

∥∥∥∥
= sup

C
+
0

‖ Kr(−s) + Gr(s) − G(0) ‖,

which proves the claim.
Remark 8.4. 1. Since Gr(

1
s ) − G(0) is the transfer function of the system-stable

state linear system Σ(A−1, A−1B,−CA−1, 0), the results on state linear systems in
this article generalize to well-posed linear systems in an obvious way. Note that the
formulas that we so obtain are not the same as for the case of state linear systems
but are in terms of the generating operators of the reciprocal system. The analogous
formulas for the well-posed linear system need not be well defined.

2. Finally, we remark that the assumption in Theorem 8.3 that 0 ∈ ρ(A) can be
relaxed. The arguments in this section can be adapted to the alternative assumption
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that iω ∈ ρ(A) for some real ω. Denoting Aω = A − iωI, we introduce the ω-
reciprocal systems Σ(A−1

ω , A−1
ω ,−CA−1

ω ,G(iω)) with transfer function Gω
r . Noting

that G(s + iω) = Gω
r ( 1

s ), we can obtain connections between the Nehari problem
for Σ and this new reciprocal system. By proving our results on state linear systems
in discrete time and using the Cayley transform, one can even obtain Theorem 8.3
without any assumption on the spectrum.

9. Appendix. In this appendix we study real-analytic functions on a complex
Banach space E following Dieudonné [12]. A function f : Ω ⊂ R2 → E with Ω open
is called real-analytic if at every point ω ∈ Ω there exist vectors ci,j ∈ E such that

f(x, y) =
∑

i,j∈N2

ci,j(x− ω1)
i(y − ω2)

j

for all points (x, y) in a neighborhood of ω, the series converging absolutely in this
neighborhood.

Consider a holomorphic function h : Ω ⊂ C → E. It follows from Goursat’s
theorem [12, section 9.10, Problem 1] that at every point h can be expanded in an
absolutely convergent power series in the complex variable z. Define hR : Ω ⊂ R2 → E
by hR(x, y) := h(x+ iy). It is easily seen that hR is real-analytic: the series expansion
in x and y follows from the series expansion in x+iy. We further note that if g : Ω → C

is real-analytic, then so is ḡ.
Corollary 9.1. Using the notation and assumptions of Lemma 3.12, we have

that (x, y) �→ 〈B̂(x + iy)u, LCBu〉 and (x, y) �→ 〈LCBu, B̂(x + iy)u〉 are real-analytic
on the right half-plane.

Proof. With h(s) = g(s) = 〈B̂(s)u, LCBu〉 this follows from the above discus-
sion.

We have the following characterization of real-analyticity.
Lemma 9.2. f : Ω ⊂ R2 → E is real-analytic if and only if there exists an open

set ΩC ⊂ C2 such that ΩC ∩ R2 = Ω and a holomorphic function fC : ΩC → E such
that fC|Ω = f .

Proof. This follows from [12, subsection 9.4.5, p. 209] and Goursat’s theorem [12,
section 9.10, Problem 1].

Theorem 9.3. If f, g : Ω → H are real-analytic, then 〈f, g〉 is real-analytic.
Proof. Since f is real-analytic, there exists a holomorphic function fC of which f is

the restriction. Since ḡ is real-analytic, there exists a holomorphic function ḡC of which
ḡ is the restriction. We thus have that (fC, ḡC) is holomorphic. We define a bilinear
function by B(h1, h2) = 〈h1, h̄2〉. Since the composition of holomorphic functions is
holomorphic (and a bilinear function is holomorphic), we have that if h1 and h2 are
holomorphic, then B(h1, h2) is. We thus have that 〈fC, ḡC〉 is holomorphic. Restricted
to Ω, this function equals 〈f, g〉. This shows that 〈f, g〉 is real-analytic.

The above theorem in particular shows that the squared norm of a real-analytic
function is real-analytic, which implies that the squared norm of a holomorphic func-
tion is real-analytic. This gives the following corollary.

Corollary 9.4. Using the notation and assumptions of Lemma 3.12, we have

that (x, y) �→ ‖G(x + iy)u‖2 and (x, y) �→ 2x ‖L1/2
C B̂(x + iy)u‖2 are real-analytic.

We quote the following identity theorem for real-analytic functions. This is used in
Lemmas 3.12 and 5.4 with A the right half-plane and U some right half-plane.

Lemma 9.5. Let A ⊂ R2 be an open connected set, and let f and g be two real-
analytic functions in A with values in E. If there is a nonempty open subset U of A
such that f(x) = g(x) in U , then f(x) = g(x) for every x ∈ A.
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Proof. This follows from [12, subsection 9.4.2, p. 208].
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Abstract. For all known finite-dimensional filters, one always needs the conditon that the
observation terms are degree one polynomial. On the other hand, in many practical examples, e.g.,
tracking problem, the observation terms may be nonlinear. Our new method in this paper can treat
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1. Introduction. In 1961, Kalman–Bucy first established the finite-dimensional
filters for linear filtering system with Gaussian initial distribution. In the sixties and
early seventies, the basic approach to nonlinear filtering theory was via the “innova-
tions method” originally proposed by Kailath and subsequently rigorously developed
by Fujisaki, Kallianpur, and Kunita in 1972 [10]. As pointed out by Mitter [13], the
difficulty with this approach is that the innovations process is not, in general, ex-
plicitly computable. In view of this weakness, Brockett [2] and Mitter [13] proposed,
independently, the idea of using estimation algebras to construct finite-dimensional
nonlinear filters. The idea is to imitate the Wei–Norman approach of using the Lie
algebraic method to solve the DMZ equation, which the unnormalized conditional
probability of the state must satisfy. Perhaps the most important merit of the Lie
algebra approach is the following. As long as the estimation algebra is finite dimen-
sional, not only the finite-dimensional filter can be constructed explicitly, but also
the filter so constructed is universal in the sense of Chaleyat–Maurel and Michel [4].
In [23], [17], and [20] Yau proves that the number of sufficient statistics in the Lie
algebra method, which is required in the computation of conditional probability den-
sity, is linear in n, where n is the dimension of the state space. Recently, Stephen
Yau [17] and Tam, Wong, and Yau [14], [16], [5], [21], [20], and [6] have completely
classified all finite-dimensional estimation algebras of maximal rank. In particular,
they have proved that all the observation terms hi(x), 1 ≤ i ≤ m must be degree one
polynomials.

However, in the Wei–Norman approach, one has to know explicitly the basis as
vector space of the estimation algebra in order to reduce the DMZ equation to a
finite system of ordinary differential equations, Kolmogorov equation, and several
first-order linear partial differential equations. Classically, one knows the explicit
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basis for the estimation algebra only in the case that it has maximal rank. Typically
people assume that the linear system is controllable and observable. Recently, a new
direct method was introduced to study the linear filtering and exact filtering systems
with arbitrary initial condition for which f, g and h in (2.1) are independent of time
(cf. [22], [23], [19], [18]). This approach offers several advantages. It is easy and the
derivation no longer needs controllability and observability. Thus, the algorithm is
universal for any linear filtering system. Furthermore, it eliminates the necessity of
integrating n first-order linear partial differential equations, as was the case in the
Lie algebra method. Finally, the number of sufficient statistics required to compute
the conditional probability density of the state in this direct method is n. In all the
direct methods in [22], [23], [18], and [19] they need to assume that all the observation
terms hi(x), 1 ≤ i ≤ m, are degree one polynomials.

In [26], we have proved the existence and decay estimates of the solution to the
DMZ equation under the assumption that f(x) and h(x) in (2.1) have linear growth. In
this paper, we use the theory developed in [26] to show that the real time computation
of the DMZ equation can be reduced to numerical solution of Kolmogorov equation if
f(x) and h(x) have linear growth. Similar results under a much stronger assumption
that f(x) and h(x) are bounded functions were treated by various authors including
Bensoussan, Glowinski, and Rascanu [1], Elliott and Glowinski [8], Florchinger and
LeGland [9], Mikulevicious and Rozovskii [12]. Unlike our results, however, their
results cannot cover Kalman–Bucy filters. Theorem 4.2 of this paper says that if the
drifts (f(x)) are affine and the observation terms (h(x)) are nonlinear with linear
growths, then the Kolmogorov equation can be solved in real time.

For all known finite-dimensional filters, one always needs the condition that the
observation terms are degree one polynomial. On the other hand, in many practical
examples, e.g., tracking problem, the observation terms may be nonlinear. Our new
method in this paper can treat filtering problems with nonlinear observation terms in
the first time, which includes Kalman–Bucy filter as a special case.

This paper is organized as follows. In section 2 we shall set up the notations and
recall the basic filtering problem. In section 3, we shall show that real time computa-
tion of the DMZ equation can be reduced to off time computation of the Kolmogorov
equation. An explicit algorithm of such a reduction is provided. In the appendix, we
give a rigorous proof that the solution of our algorithm converges to the solution of
the DMZ equation in pointwise and L2 sense. In section 4, we show that if the drifts
are linear and the observation terms are nonlinear with linear growths, then the Kol-
mogorov equation can be solved in real time via a system of ODEs. Consequently, the
nonlinear filtering problem with linear drifts and nonlinear observations with linear
growth can be solved in real time and memoryless manner. In section 5, we give a
conclusion of this paper.

2. Basic filtering problem. The filtering problem considered here is based on
the following signal observation model in Itô form:{

dx(t) = f(x(t))dt + g(x(t))dv(t) x(0) = x0

dy(t) = h(x(t))dt + dw(t) y(0) = 0
(2.1)

in which x, v, y and w are, respectively, Rn,Rp,Rm, and Rm valued processes and
v and w independent, standard Brownian processes. We further assume that n =
p; f, g, and h are vector-valued, orthogonal matrix-valued and vector-valued C∞

smooth functions. We shall refer to x(t) as the state and y(t) as the observation at
time t.
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Let ρ(t, x) denote the conditional probability density of the state given the ob-
servation {y(s) : 0 ≤ s ≤ t}. It is well known that ρ(t, x) is given by normalizing a
function σ(t, x) that satisfies the following DMZ equation in Fisk–Stratonovich form:⎧⎨⎩ dσ(t, x) = L0σ(t, x)dt +

m∑
i=1

Liσ(t, x)dyi(t)

σ(0, x) = σ0(x),
(2.2)

where

L0 =
1

2

n∑
i=1

∂2

∂x2
i

−
n∑

i=1

fi(x)
∂

∂xi
−

n∑
i=1

∂fi
∂xi

(x) − 1

2

m∑
i=1

h2
i (x),

and for i = 1, . . . ,m, Li is the zero-degree differential operator of multiplication by
hi and σ0 is the probability density of the initial point x0.

Davis introduced a new unnormalized density

u(t, x) = exp

(
−

m∑
i=1

hi(x)yi(t)

)
σ(t, x).(2.3)

He reduced (2.2) to the following time-varying partial differential equation which is
called the robust DMZ-equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) = L0u(t, x) +

m∑
i=1

yi(t)[L0, Li]u(t, x)

+
1

2

m∑
i,j=1

yi(t)yj(t)[[L0, Li], Lj ]u(t, x)

u(0, x) = σ0(x),

(2.4)

where [· , ·] is the Lie bracket as described in [14]. It is easy to show [24] that (2.4)
is equivalent to the following time-varying partial differential equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =

1

2

n∑
i=1

∂2u

∂x2
i

(t, x) +

n∑
i=1

(
− fi(x) +

m∑
j=1

yj(t)
∂hj

∂xi
(x)

)
∂u

∂xi
(t, x)

−
[

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(t)Δhi(x)

+

m∑
i=1

n∑
j=1

yi(t)fj(x)
∂hi

∂xj
(x) − 1

2

m∑
i,j=1

n∑
k=1

yi(t)yj(t)
∂hi

∂xk
(x)

∂hj

∂xk
(x)

]
u(t, x)

u(0, x) = σ0(x).

(2.5)

In this paper we shall solve the filtering problem in the case fi(x), 1 ≤ i ≤ n, are
degree one polynomials and hj(x), 1 ≤ j ≤ m, may be nonlinear with linear growth,
i.e., |hj(x)| ≤ C(1 + |x|) for some constant C.

3. Reduction from robust DMZ equation to Kolmogorov equation. The
fundamental problem of nonlinear filtering theory is how to solve the robust DMZ



1022 STEPHEN S.-T. YAU AND SHING-TUNG YAU

equation (2.5) in real time and memoryless manner. In this section, we shall describe
our algorithm which achieves this goal for a large class of filtering system with arbi-
trary initial distribution by reducing it to solve Kolmogorov equation. Our algorithm
is based on the following proposition.

Proposition 3.1. For any τ1, τ2 with τ1 < τ2, ũ(t, x) satisfies the following
Kolmogorov equation:

∂ũ

∂t
(t, x) =

1

2
Δũ(t, x) −

n∑
i=1

fi(x)
∂ũ

∂xi
(t, x) −

(
n∑

i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x)

)
ũ(t, x)

(3.1)

for τ1 ≤ t ≤ τ2 if and only if

u(t, x) = e
−

m∑
i=1

yi(τ1)hi(x)

ũ(t, x)

satisfies the robust DMZ equation with observation being freezed at y(τ1),

∂u

∂t
(t, x) =

1

2
Δu(t, x) +

n∑
i=1

(
− fi(x) +

m∑
j=1

yj(τ1)
∂hj

∂xi
(x)

)
∂u

∂xi
(t, x)

−
(

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(τ1)Δhi(x)

+

m∑
i=1

n∑
j=1

yi(τ1)fj(x)
∂hi

∂xj
(x)

−1

2

n∑
k=1

m∑
i,j=1

yi(τ1)yj(τ1)
∂hi

∂xk
(x)

∂hj

∂xk
(x)

)
u(t, x).(3.2)

Proof. It is straightforward to show that

e

m∑
i=1

yi(τ1)hi(x)
[
− ∂

∂t
+

1

2
Δ +

n∑
i=1

(
− fi(x) +

m∑
j=1

yj(τ1)
∂hj

∂xi

)
∂

∂xi

−
(

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(τ1)Δhi(x)

+

m∑
i=1

n∑
j=1

yi(τ1)fj(x)
∂hi

∂xj
(x)

−1

2

n∑
k=1

m∑
i,j=1

yi(τ1)yj(τ1)
∂hi

∂xk

∂hj

∂xk

)]
u(t, x)

= −∂ũ

∂t
(t, x) +

1

2
Δũ(t, x) −

n∑
i=1

fi(x)
∂ũ

∂xi
(t, x)

−
(

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x)

)
ũ(t, x).(3.3)
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Proposition (3.1) follows immediately from (3.3).
We remark that (3.2) is obtained from the robust DMZ equation by freezing the

observation y(t) to y(τ1). Based on Proposition (3.1), we shall formulate our algorithm
to solve the robust DMZ equation and we shall show in Appendices A and B that the
solution of our algorithm approximates the solution of the robust DMZ equation very
well in both pointwise and L2-sense.

Suppose that u(t, x) is the solution of the robust DMZ equation and we want to
compute u(τ, x). Let Pk = {0 = τ0 < τ1 < τ2 < · · · < τk = τ} be a partition of [0, τ ].
Let ui(t, x) be a solution of the following partial differential equation for τi−1 ≤ t ≤ τi:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
(t, x) =

1

2
Δui(t, x) +

n∑
�=1

(
−f�(x) +

m∑
j=1

yj(τi−1)
∂hj

∂x�
(x)

)
∂ui

∂x�
(t, x)

−
(

n∑
�=1

∂f�
∂x�

(x) +
1

2

m∑
�=1

h2
�(x) − 1

2

m∑
j=1

yj(τi−1)Δhj(x)

+

m∑
j=1

n∑
�=1

yj(τi−1)f�(x)
∂hj

∂x�
(x)

−1

2

n∑
p=1

m∑
j,�=1

yj(τi−1)y�(τi−1)
∂hj

∂xp
(x)

∂h�

∂xp
(x)

)
ui(t, x)

ui(τi−1, x) = ui−1(τi−1, x).

(3.4)

Define the norm of the partition Pk by |Pk| = sup1≤i≤k{|τi − τi−1|}. In Appendices
A and B, we shall show that in both pointwise and L2 sense

u(τ, x) = lim
|Pk|→0

uk(τ, x).(3.5)

Therefore it remains to describe an algorithm to compute uk(τk, x). By Proposi-
tion 3.1, u1(τ1, x) can be computed by ũ1(τ1, x) where ũ1(t, x) for 0 ≤ t ≤ τ1 satisfies
the following Kolmogorov equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ũ1

∂t
(t, x) =

1

2
Δũ1(t, x) −

n∑
j=1

fj(x)
∂ũ1

∂xj
(x) −

(
n∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
i=1

h2
j (x)

)
ũ1(t, x)

ũ1(0, x) = σ0(x)e

m∑
j=0

yj(0)hj(x)

= σ0(x).

(3.6)

In fact, by the uniqueness solution of the Kolmogorov equation, we have

u1(t, x) = ũ1(t, x), 0 ≤ t ≤ τ1.(3.7)

In general, Proposition 3.1 tells us that for i ≥ 2, ui(τi, x) can be computed by
ũi(τi, x), where ũi(t, x) for τi−1 ≤ t ≤ τi satisfies the following Kolmogorov equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ũi

∂t
(t, x) =

1

2
Δũi(t, x) −

n∑
j=1

fj(x)
∂ũi

∂xj
(t, x) −

(
n∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

)
ũi(t, x)

ũi(τi−1, x) = e

m∑
j=1

(yj(τi−1)−yj(τi−2))hj(x)

ũi−1(τi−1, x),

(3.8)
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where the last initial condition comes from

ũi(τi−1, x) = ui(τi−1, x)e

m∑
j=1

yj(τi−1)hj(x)

= ui−1(τi−1, x)e

m∑
j=1

yj(τi−1)hj(x)

= e

m∑
j=1

(yj(τi−1)−yj(τi−2))hj(x)

ũi−1(τi−1, x).

In fact, we have

ui(τi, x) = e
−

m∑
j=1

yj(τi−1)hj(x)

ũi(τi, x).(3.9)

In view of (2.3), (3.5), and (3.9), we have the following theorem.
Theorem 3.2. The unnormalized density σ can be computed via solution ũ of

the Kolmogorov equation (3.8). More specifically,

σ(τ, x) = lim
|Pk|→0

ũk(τk, x)(3.10)

Proof.

σ(τ, x) = u(τ, x) exp

(
m∑
i=1

hi(x)yi(τ)

)
by (2.3)

= lim
|Pk|→0

uk(τ, x) exp

(
m∑
i=1

hi(x)yi(τ)

)
, by (3.5)

where Pk = {0 = τ0 < τ1 < · · · < τk = τ}.

In view of (3.9), we have

σ(τ, x) = lim
|Pk|→0

e
−

m∑
i=1

yj(τk−1)hj(x)

ũk(τ, x)e

m∑
i=1

hi(x)yi(τ)

= lim
|Pk|→0

ũk(τ, x).

Observe that in our algorithm at step i (Lemma B.2), we only need the observation
at time τi−1 and τi−2. We do not need any other previous observation data. Observe
also that the Kolmogorov equation (3.8) is uniform for all time steps and it depends
on observation y(t) only via initial condition.

4. Filtering problem with nonlinear observations. Consider the filtering
system (2.1) with affine drift,

fi(x) =

n∑
j=1

�ijxj + �i, 1 ≤ i ≤ n,(4.1)

where �ij , �i are constants, and nonlinear observation

m∑
i=1

h2
i (x) =

n∑
i,j=1

qijxixj +

n∑
i=1

qixi + q0,(4.2)
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where qij = qji, qi, q0 are constants.
We first remark that if hi(x), 1 ≤ i ≤ m, are nonlinear observation with linear

growths as follows:

h2
i (x) ≤ m(1 + |x|2), 1 ≤ i ≤ m− 1,(4.3)

where M is a constant, and

h2
m(x) = (m− 1)M(1 + |x|2) −

m−1∑
i=1

h2
i (x),(4.4)

then condition (4.2) is satisfied. The purpose of this section is to prove the following
theorem.

Theorem 4.1. The unnormalized density of the filtering system (2.1) with affine
drift (4.1), nonlinear observation (4.2), and Gaussian initial distribution can be com-
puted in real time in a memoryless way.

In view of Theorem 3.2, in order to solve the nonlinear filtering problem with
conditions (4.1), (4.2) it suffices to solve the following Kolmogorov equation in real
time. For τ1 ≤ t ≤ τ2,

⎧⎪⎪⎨⎪⎪⎩
∂ũ

∂t
(t, x) =

1

2
Δũ(t, x) −

n∑
j=1

fj(x)
∂ũ

∂xj
(t, x) −

⎛⎝ n∑
j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

⎞⎠ ũ(t, x)

ũ(0, x) = φ(x).

(4.5)

It is well known that any φ(x) is well approximated by finite linear combination of
Gaussians of the form α1G1 + · · · + αpGp, where αis are real numbers and Gis are
Gaussian distributions. Let ũi be the solution of (4.5) with initial distribution Gi.
Since (4.5) is a linear partial differential equation, it follows that the solution of (4.5) is
of the form α1ũ1+ · · ·+αpũp. Therefore it remains to solve (4.5) with Gaussian initial
distribution. Theorem 4.2 gives an explicit solution of (4.5) with linear drift (4.1),
nonlinear observation (4.2), and Gaussian initial distribution in terms of solutions of
ODEs.

Theorem 4.2. Consider the filtering system (2.1) with linear drift (4.1), nonlin-
ear observation (4.2), and Kolmogorov equation. For τ1 ≤ t ≤ τ2,

⎧⎪⎨⎪⎩
∂ũ

∂t
(t, x) =

1

2
Δũ(t, x) −

n∑
j=1

fj(x)
∂ũ

∂xj
(t, x) −

(
n∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

)
ũ(t, x)

ũ(τ1, x) = exp[xTA(τ1)x + BT (τ1)x + C(τ1)],

(4.6)

where A(τ1) = (Aij(τ1)) is a n × n matrix, BT (τ1) = (B1(τ1), . . . , Bn(τ1)), xT =
(x1, . . . , xn) are 1 × n matrix and C(τ1) is a scalar. Then the solution of (4.6) is of
the following form:

ũ(t, x) = exp(xTAx + BTx + C),(4.7)

where A = AT = (Aij(t)) is a n × n matrix valued function of t, BT = (B1(t), . . . ,
Bn(t)) is a 1 × n matrix valued function of t, and C(t) is a scalar function of t.
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Moreover, A(t), BT (t), and C(t) satisfy the following system of nonlinear ODEs:⎧⎨⎩
dA

dt
(t) = 2A2(t) −A(t)L− LTA(t) − 1

2
Q

A(t)|t=τ1 = A(τ1)
(4.8)

⎧⎨⎩
dBT

dt
(t) = 2BT (t)A(t) −BT (t)L− 2�TA(t) − 1

2
q

BT (t)|t=τ1 = BT (τ1)

(4.9)

⎧⎨⎩
dC

dt
(t) = tr A(t) +

1

2
BT (t)B(t) − �TB(t) − 1

2
q0 − tr L

C(t)|t=τ1 = C(τ1),
(4.10)

where L = (�ij), Q = (qij), 1 ≤ i, j ≤ n, �T = (�1, . . . , �n), qT = (q1, . . . , qn) as in
(4.1) and (4.2).

Proof. Differentiating (4.7) with respect to t and x, respectively, we get the
following equations:

∂ũ

∂t
=

(
xT dA

dt
x +

dBT

dt
x +

dC

dt

)
ũ(4.11)

∇ũ = [(A + AT )x + B]ex
TAx+BT x+C

Δũ = {2trA + [(A + AT )x + B]T [(A + AT )x + B]}exTAx+BT x+C

= [xT (AAT + ATA + 2A2)x + 2BT (A + AT )x + 2trA + BTB]ũ
n∑

j=1

fj(x)
∂ũ

∂xj
= (Lx + �)T∇ũ

= [xT (AT + A)Lx + (BTL + �TA + �TAT )x + �TB]ũ,

where L = (�ij), �
T = (�1, . . . , �n)⎛⎝ m∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

⎞⎠ ũ(t, x) =

(
1

2
xTQx +

1

2
qTx +

1

2
q0 + trL

)
ũ(t, x),

where Q = (qij), q
T = (q1, . . . , qn).

Therefore the R.H.S. of (4.6) is given by

1

2
Δũ(t, x) −

n∑
j=1

fj(x)
∂ũ

∂xj
(t, x) −

⎛⎝ n∑
j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

⎞⎠ ũ(t, x)

=

[
xT

(
1

2
AAT +

1

2
ATA + A2

)
x + BT (A + AT )x + trA +

1

2
BTB

]
ũ

−[xT (AT + A)Lx + (BTL + �TA + �TAT )x + �TB]ũ

−
(

1

2
xTQx +

1

2
qTx +

1

2
q0 + trL

)
ũ(t, x)

=

[
xT

(
1

2
AAT +

1

2
ATA + A2 −ATL−AL− 1

2
Q

)
x + (BTA + BTAT −BTL

−�TA− �TAT − 1

2
qT )x + trA +

1

2
BTB − �TB − 1

2
q0 − trL

]
ũ.(4.12)
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By comparing (4.11) and (4.12), we get (4.8), (4.9), and (4.10), which are necessary
and sufficient conditions for (4.7) to be a solution of (4.6).

5. Conclusion. All the known finite dimensional filters require observation terms
linear in nature. In this paper we have solved the nonlinear filtering problem with
linear drift and nonlinear observations in real time and memoryless manner. We
first show that the solution of the DMZ equation can be obtained by solving the
Kolmogorov equation. We also show that the Kolmogorov equation can be solved
via solutions of systems of ODEs if the summation of observations is a quadratic
polynomial (cf. (4.2)).

Appendix A: Pointwise Convergence of (3.5). By changing variables from
xi to

√
2xi and by letting

u(t, x) = u

(
t,

x√
2

)
,(A.1)

we get

∂u

∂t
(t, x) =

∂u

∂t

(
t,

x√
2

)
,

∂u

∂xi
(t, x) =

1√
2

∂u

∂xi

(
t,

x√
2

)
,

∂2u

∂x2
i

(t, x) =
1

2

∂2u

∂x2
i

(
t,

x√
2

)
.

Hence the robust DMZ equation becomes

∂ u

∂t
(t, x) = Δu(t, x) +

m∑
i=1

f i(t, x)
∂ u

∂xi
(t, x) − V (t, x)u(t, x),(A.2)

where

f i(t, x) =
√

2

[
− fi

(
x√
2

)
+

m∑
j=1

yj(t)
∂hj

∂xi

(
x√
2

)]
(A.3)

V (t, x) =

n∑
i=1

∂fi
∂xi

(
x√
2

)
+

1

2

m∑
i=1

h2
i

(
x√
2

)
−

m∑
i=1

yi(t)Δhi

(
x√
2

)
(A.4)

+

m∑
i=1

n∑
j=1

yi(t)fj

(
x√
2

)
∂hi

∂xj

(
x√
2

)

−1

2

m∑
i,j=1

n∑
k=1

yi(t)yj(t)
∂hi

∂xk

(
x√
2

)
∂hj

∂xk

(
x√
2

)
.

For any τ > 0, we shall consider the following parabolic equations on [0, τ ]× Rn.⎧⎪⎨⎪⎩
∂ u

∂t
(t, x) = Δu(t, x) +

n∑
i=1

f i(t, x)
∂ u

∂xi
(t, x) − V (t, x)u(t, x)

u(0, x) = ψ(x)

(A.5)
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∂ũ

∂t
(t, x) = Δũ(t, x) +

n∑
i=1

f̃i(0, x)
∂ũ

∂xi
(t, x) − Ṽ (0, x)ũ(t, x)

ũ(0, x) = ψ̃(x),

(A.6)

where f̃i(0, x) := f i(0, x) and Ṽ (0, x) := V (0, x) are obtained from f i(t, x) and V (t, x)
by freezing the time variable at 0. For simplicity, we shall assume that the first, second,
and third derivatives of h(x) are bounded.

The goal of this appendix is to prove that if ψ̃(x) is close to ψ(x) uniformly in x,
then ũ(τ, x) is close to u(τ, x) uniformly in x. From (A.5) and (A.6), we deduce that

(A.7)

∂(u− ũ)

∂t
(t, x) = Δ(u− ũ)(t, x)+

n∑
i=1

f i(t, x)
∂(u− ũ)

∂xi
(t, x)−V (t, x)(u− ũ)(t, x)

+
n∑

i=1

(f i(t, x) − f̃i(0, x))
∂ũ

∂xi
(t, x) − (V (t, x) − Ṽ (0, x))ũ(t, x)

= (Δ − V (t, x))(u− ũ)(t, x) +

n∑
i=1

f i(t, x)
∂(u− ũ)

∂xi
(t, x) + Gτ (t, x),

where

Gτ (t, x) =

n∑
i=1

(f i(t, x) − f̃i(0, x))
∂ũ

∂xi
(t, x) − (V (t, x) − Ṽ (0, x))ũ(t, x).(A.8)

Lemma A.1. There exists a nonnegative function α(t, x, y) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α

∂t
(t, x, y) = Δxα(t, x, y) −

n∑
i=1

f i(τ − t, x)
∂α

∂xi
(t, x, y)

−
[
V (τ − t, x) +

n∑
i=1

∂f i

∂xi
(τ − t, x)

]
α(t, x, y)

α(0, x, y) = δy(x),
∫
x
α(0, x, y)dx = 1,

(A.9)

where
∫
x

denotes the integration with respect to x variable.
Proof. Let βn(x, y) be a sequence of Gaussian with∫

x

βn(x, y)dx = 1 and lim
n→∞

βn(x, y) = δy(x).(A.10)

In view of [26], there exists a solution αn(t, x, y) with initial condition αn(0, x, y) =
βn(x, y). By maximal principle, α(t, x, y) ≥ 0 for all t ≥ 0. We shall take α(t, x, y) =
limn→∞ αn(t, x, y).

Theorem A.2. Let w(t, x) = u(t, x)− ũ(t, x), where u and ũ are the solutions of
the parabolic equations (A.5) and (A.6), respectively. Let α(t, x, y) be the nonnegative
function in Lemma A.1. Then

w(τ, y) =

∫
x

α(τ, x, y)w(0, x)dx +

∫ τ

0

∫
x

α(t, x, y)Gτ (t, x)dx,
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where Gτ (t, x) is given in (A.8).
Proof.∫ τ

0

d

dt

∫
x

α(τ − t, x, y)w(t, x)dx = −
∫ τ

0

∫
x

∂α

∂t
(τ − t, x, y)w(t, x)dx(A.11)

+

∫ τ

0

∫
x

α(τ − t, x, y)
∂w

∂t
(t, x)dx

L.H.S. of (A.11) = w(τ, y) −
∫
x

α(τ, x, y)w(0, x)dx

R.H.S. of (A.11) = −
∫ τ

0

∫
x

Δxα(τ − t, x, y)w(t, x)dx

+

∫ τ

0

∫
x

n∑
i=1

f i(t, x)
∂α

∂xi
(τ − t, x, y)w(t, x)dx

+

∫ τ

0

∫
x

[
V (t, x) +

n∑
i=1

∂f i

∂xi
(t, x)

]
α(τ − t, x, y)w(t, x)dx

+

∫ τ

0

∫
x

α(τ − t, x, y)
∂w

∂t
(t, x)dx

=

∫ τ

0

∫
x

α(τ − t, x, y)

[
∂w

∂t
(t, x) − Δw(t, x) −

n∑
i=1

f i(t, x)
∂w

∂xi
(t, x)

+V (t, x)w(t, x)

]
dx

=

∫ τ

0

∫
x

α(τ − t, x, y)Gτ (t, x)dx. by (A.7)

In the above computation, we have used the fact proved in [26] that α(t, x, y) has
Gaussian decay in x.

Proposition A.3. Let α(t, x, y) be the nonnegative function in Lemma A.1.
Suppose that V (t, x) ≥ −c1 for some positive constant c1. Then∫

x

α(τ, x, y)dx ≤ ec1τ .(A.12)

Proof.

ec1t
d

dt

(
e−c1t

∫
x

α(t, x, y)dx

)
= −c1

∫
x

α(t, x, y)dx +

∫
x

∂α

∂t
(t, x, y)dx

= −c1

∫
x

α(t, x, y)dx +

∫
x

Δxα(t, x, y)dx−
∫
x

n∑
i=1

f i(τ − t, x)
∂α

∂xi
(t, x, y)dx

−
∫
x

[
V (τ − t, x) +

n∑
i=1

∂f i

∂xi
(τ − t, x)

]
α(t, x, y)dx

= −c1

∫
x

α(t, x, y)dx−
∫
x

V (τ − t, x)α(t, x, y)dx

= −
∫
x

[V (τ − t, x) + c1]α(t, x, y)dx ≤ 0.
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It follows that e−c1t
∫
x
α(t, x, y)dx is a decreasing function of t and (A.12)

follows.
Theorem A.4. With the assumption of Proposition A.3, let w(t, x) = u(t, x) −

ũ(t, x), where u and ũ are the solutions of the parabolic equations (A.5) and (A.6),
respectively. If τ is small and w(0, x) is small uniformly in τ , then w(τ, x) is small
uniformly in x. More precisely, we have

sup
y∈Rn

|w(τ, y)| ≤ ec1τ sup
x∈Rn

|w(0, x)| + τec1τ sup
x∈Rn

0≤t≤τ

|Gτ (t, x)|,(A.13)

where Gτ (t, x) is given in (A.8).
Proof. In view of (A.3), (A.4), and (A.8), we have

Gτ (t, x) =

n∑
i=1

(f i(t, x) − f̃i(0, x))
∂ũ

∂xi
(t, x) − (V (t, x) − Ṽ (0, x))ũ(t, x)

=
n∑

i=1

√
2

m∑
j=1

(yj(t) − yj(0))
∂hj

∂xi

(
x√
2

)
∂ũ

∂xi
(t, x)

+

[
−

m∑
i=1

(yi(t) − yi(0))Δhi

(
x√
2

)
+

m∑
i=1

n∑
j=1

(yi(t) − yi(0))fj

(
x√
2

)
∂hi

∂xj

(
x√
2

)

−1

2

m∑
i,j=1

n∑
k=1

(yi(t)yj(t) − yi(0)yj(0))
∂hi

∂xk

(
x√
2

)
∂hj

∂xk

(
x√
2

)]
ũ(t, x).

Therefore if τ is small, then Gτ (t, x) is uniformly small in x for 0 ≤ t ≤ τ , because

both ũ(t, x) and ∂ũ
∂xi

(t, x) have Gaussian decay by [26]. The estimate (A.13) follows
readily from Theorem A.2.

Now we consider the global situation. For a fixed T > 0, we want to find the
solution u(t, x) of the following parabolic equation on [0, T ] × Rn:⎧⎪⎨⎪⎩

∂ u

∂t
(t, x) = Δu(t, x) +

n∑
j=1

f j(t, x)
∂ u

∂xj
(t, x) − V (t, x)u(t, x)

u(0, x) = ψ(x).

(A.14)

Let {0 < τ1 < τ2 < · · · < τk = T} be a partition of [0, T ]. Let ũi(t, x) be the solution
of the following parabolic equation on [τi−1, τi] × Rn:⎧⎪⎨⎪⎩

∂ũi

∂t
(t, x) = Δũi(t, x) +

n∑
j=1

f̃j(τi−1, x)
∂ũi

∂xj
(t, x) − Ṽ (τi−1, x)ũi(t, x)

ũi(τi−1, x) = ũi−1(τi−1, x),

(A.15)

where ũ1(0, x) = ψ(x); f̃j(τi−1, x) and Ṽ (τi−1, x) are functions independent of t and
equal to f j(τi−1, x) and V (τi−1, x), respectively.

Lemma A.5. Fix T , let Gτi(t, x) =
∑n

j=1(f j(t, x) − f̃j(τi−1, x)) ∂ũi

∂xj
(t, x) −

(V (t, x) − Ṽ (τi−1, x))ũi(t, x). For any given ε > 0, we can choose k sufficiently large
so that

sup
1≤i≤n

sup
τi−1≤t≤τi

sup
x∈Rn

|Gτi(t, x)| ≤ ε.

Proof. This follows from the proof of Theorem A.4.
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We are now ready to prove the main theorem in this appendix.
Theorem A.6. Let u(t, x) and ũk(t, x) be the solutions of (A.14) and (A.15),

respectively. For any ε > 0, let k be sufficiently large so that Lemma A.5 holds. Then

|u(T, x) − ũk(T, x)| ≤ εTec1T ,

where c1 is the constant in Proposition A.3.
Proof. In view of ũ1(0, x) = ψ(x) = u(0, x) and Theorem A.4, we have

|u(τ1,x) − ũ1(τ1,x)| ≤ τ1e
c1τ1 sup

x∈Rn

0≤t≤τ1

|Gτ1(t, x)|.

By Theorem A.4 and induction, we have

|u(τ2,x) − ũ2(τ2,x)| ≤ τ1e
c1τ1ec1(τ2−τ1) sup

x∈Rn

0≤t≤τ1

|Gτ1(t, x)|

+(τ2 − τ1)e
c1(τ2−τ1) sup

x∈Rn

τ1≤t≤τ2

|Gτ2(t, x)|

|u(τk,x) − ũk(τk,x)| ≤ τ1e
c1τk sup

x∈Rn

0≤t≤τ1

|Gτ1(t, x)| + (τ2 − τ1)e
c1(τk−τ1) sup

x∈Rn

τ1≤t≤τ2

Gτ2(t, x)|

+ · · · + (τi − τi−1)e
c1(τk−τi−1) sup

x∈Rn

τi−1≤t≤τi

|Gτi(t, x)|

+ · · · + (τk − τk−1)e
c1(τk−τk−1) sup

x∈Rn

τk−1≤t≤τk

|Gτk(t, x)|

≤ ε[τ1e
c1τk + (τ2 − τ1)e

c1(τk−τ1) + · · · + (τi − τi−1)e
c1(τk−τi−1)

+ · · · + (τk − τk−1)e
c1(τk−τk−1)]

≤ ε[τ1 + (τ2 − τ1) + · · · + (τi − τi−1) + · · · + (τn − τn−1)]e
c1T

= εTec1T .

Theorem A.7. Fix T > 0, let Pn = {0 < τ1 < τ2 < · · · < τk = T} be a partition
of [0, T ]. Let u(t, x) be the solution of the following parabolic equation on [0, T ]×Rn:

⎧⎪⎪⎨⎪⎪⎩
∂ u

∂t
(t, x) = Δu(t, x) +

n∑
j=1

f j(t, x)
∂ u

∂xj
(t, x) − V (t, x)u(t, x)

u(0, x) = ψ(x).

Let ui(t, x) be the solution of the following parabolic equation on [τi−1, τi] ×Rn:

⎧⎪⎪⎨⎪⎪⎩
∂ũi

∂t
(t, x) = Δũi(t, x) +

n∑
j=1

f̃j(τi−1, x)
∂ũi

∂xj
(t, x) − Ṽ (τi−1, x)ũi(t, x)

ũi(τi−1, x) = ũi−1(τi−1, x),
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where ũi(0, x) = ψ(x) and f̃j(τi−1, x) = f j(τi−1, x), Ṽ (τi−1, x) = V (τi−1, x) are

obtained from f j(t, x) and V (t, x) by freezing time variable at τi−1. Then

u(τ, x) = lim
|Pk|→0

ũk(τk, x) uniformly in x.

Appendix B: L2 Convergence of (3.5). In Appendix A we have shown that
the solution ũ(t, x) of (A.6) is uniformly close to the solution u(t, x) of (A.5) for

0 ≤ t ≤ T if ψ̃(x) = ũ(0, x) is uniformly close to ψ(x) = u(0, x). In this section, we

shall show that ũ(t, x) is also close to u(t, x) in L2-sense, if ψ(x) is close to ψ̃(x) in
L2 sense. We first recall the following lemma.

Lemma B.1. If dα
dt (t) ≤ cα(t)+β(t), where c is a constant, then e−ctα(t)−α(0) ≤∫ t

0
e−csβ(s)ds.

Let f2R, f̃2R, V 2R, and Ṽ2R be the functions obtained by multiplying f, f̃ , V ,

and Ṽ , respectively, by a cut off function σ which is equal to one in the ball of radius
R ≥ 1 and equal to zero outside a ball of radius 2R. We can choose σ such that

|∇σ(x)| ≤ 4

1 + |x| and |Δσ(x)| ≤ 4

1 + |x|2 .(B.1)

Consider the following equations:

∂u2R

∂t
= Δu2R +

n∑
i=1

(f2R)i
∂u2R

∂xi
− V 2Ru2R(B.2)

∂ũ2R

∂t
= Δũ2R +

n∑
i=1

(f̃2R)i
∂ũ2R

∂xi
− Ṽ2Rũ2R(B.3)

in the ball B2R of radius 2R with the Neumann condition, where (f2R)i and (f̃2R)i
denote the ith components of f2R and f̃2R, respectively. Let ψ2R(x) = ψ(x)σ(x) and

ψ̃2R(x) = ψ̃(x)σ(x) to be the initial conditions of (B.2) and (B.3), respectively. Then
(B.2) and (B.3) have unique solutions, respectively, for t ∈ [0,∞) with Neumann
condition on ∂B2R × (0, T ].

Lemma B.2. Assume that (4.1)–(4.3) hold and the first, second, and third deriva-

tives of hi(x) are bounded. Let c̃ and δ be positive constants such that
≈
c := c̃+δ < 5

254 .
Choose τ and ε suitably small with τ + ε < δ. Then the following conclusions hold

for any 0 ≤ t ≤ τ for both ρε{ρ, ρ̃}, u ∈ {u, ũ}, and where ρ(t, x) = c̃(1+|x|2)
t+ε ,

ρ̃(t, x) =
≈
c(1+|x|2)

t+ε :

(i)

∫
{t}×B2R

eρu2
2R ≤

∫
{0}×B2R

eρu2
2R

(ii)

∫
{t}×B2R

eρ|∇u2R|2 ≤
∫
{0}×B2R

eρ|∇u2R|2 +

∫ t

0

∫
B2R

eρ(s,x)|u2R(s, x)|2

(iii)

∫
{t}×B2R

eρ|Δu2R|2 ≤
∫
{0}×B2R

eρ|Δu2R|2
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+O

(∫
[0,t]×B2R

eρ|∇ρ|2|f2R|2|∇u2R|2 +

∫
[0,t]×B2R

eρ|∇f2R|2|∇u2R|2

+

∫
[0,t]×B2R

eρ|f2R||∇u2R|2|Δf2R| +
∫

[0,t]×B2R

eρ|f2R|4|∇u2R|2

+

∫
[0,t]×B2R

eρ|∇(V 2Ru2R)|2 +

∫
[0,t]×B2R

eρ|∇u2R|2
(

n∑
i=1

∂(f2R)i
∂xi

)2 )
.

Moreover, the following inequalities hold for both {ρ, f, V }, or {ρ, f̃ , Ṽ } or {ρ̃, f , V }
or {ρ̃, f̃ , Ṽ } if δ is small enough,

(iv)
∂ ρ

∂t
+ 2|∇ρ|2 −

n∑
i=1

f i

∂ ρ

∂xi
−

n∑
i=1

∂f i

∂xi
− 2V ≤ 0.

Proof. (i), (ii), and (iii) follow from Lemma 1.3 of [26] by setting ε1 = 1
5 in that

lemma. In equality (iv), it follows from

∂ρ̃

∂t
+ 2|∇ρ̃|2 −

n∑
i=1

f i

∂ρ̃

∂xi
−

n∑
i=1

∂f i

∂xi
− 2V

≤
[
− ≈

c (1 − 8
≈
c)

(t + ε)2
+

2c
≈
c

t + ε
+ (n + 2)c

]
(1 + |x|)2

as 1 − 8
≈
c≥ 0.

Proposition B.3. Consider the parabolic differential equations (A.5) and (A.6).
Let φ be any smooth function defined on Rn with compact support contained in a
domain Ω. Let ρ be any smooth function on R+ × Rn satisfying

∂ ρ

∂t
+ 2|∇ρ|2 −

n∑
i=1

f i

∂ ρ

∂xi
−

n∑
i=1

∂f i

∂xi
− 2V ≤ 0.(B.4)

Then

d

dt

∫
{t}×Ω

φ2eρ(u− ũ)2 ≤
∫
{t}×Ω

φ2eρ(u− ũ)2 + 10

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2

+ 4

∫
{t}×Ω

eρ
∣∣∣∣ n∑
i=1

f i

∂φ

∂xi

∣∣∣∣2(u− ũ)2 + 4

∫
{t}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2

+ 2

∫
{t}×Ω

eρφ2ũ|f − f̃ |2 + 4

∫
{t}×Ω

eρφ2ũ2|V − Ṽ |2

+ 2

∫
{t}×Ω

eρφ2|f − f̃ |2ũ2 + 4

∫
{t}×Ω

eρφ2ũ2

∣∣∣∣ n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣2.(B.5)

Proof. From (A.5) and (A.6), we deduce that

∂(u− ũ)

∂t
= Δ(u− ũ) +

n∑
i=1

fi
∂(u− ũ)

∂xi
− V (u− ũ) +

n∑
i=1

(f i − f̃i)
∂ũ

∂xi
− (V − Ṽ )ũ.

(B.6)
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Then using (B.6) and integrating by part, we obtain

d

dt

∫
{t}×Ω

φ2(u− ũ)2eρ ≤
∫
{t}×Ω

eρφ2(u− ũ)2

(
∂ρ

∂t
+ 2|∇ρ|2 −

n∑
i=1

f iρi −
n∑

i=1

∂f i

∂xi
− 2V

)

−1

2

∫
{t}×Ω

eρφ2|∇(u− ũ)|2 + 8

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2

−2

∫
{t}×Ω

φeρ

(
n∑

i=1

f iφi

)
(u− ũ)2 − 4

∫
{t}×Ω

eρφ

[
n∑

i=1

(f i − f̃i)φi

]
ũ(u− ũ)

−2

∫
{t}×Ω

eρφ2
n∑

i=1

(f i − f̃i)
∂ρ

∂xi
ũ(u− ũ) + 2

∫
{t}×Ω

eρφ2ũ2|f − f̃ |2

−2

∫
{t}×Ω

eρφ2(u− ũ)ũ

n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)
− 2

∫
{t}×Ω

eρφ2(u− ũ)ũ(V − Ṽ ).(B.7)

In view of (B.4), (B.7) implies that

d

dt

∫
{t}×Ω

φ2eρ(u− ũ)2 ≤ 8

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2 + 4

∫
{t}×Ω

eρ(u− ũ)2
∣∣∣∣ n∑
i−1

f i

∂φ

∂xi

∣∣∣∣2
+

1

4

∫
{t}×Ω

eρφ2(u− ũ)2 +
1

4

∫
{t}×Ω

eρφ2(u− ũ)2

+ 4

∫
{t}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2 + 2

∫
{t}×Ω

eρφ2ũ2|f − f̃ |2

+
1

4

∫
{t}×Ω

eρφ2(u− ũ)2 + 4

∫
{t}×Ω

eρφ2ũ2|V − Ṽ |2

+ 4

[
1

2

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2 +
1

2

∫
{t}×Ω

eρφ2|f − f̃ |2ũ2

]

+ 2

⎡⎣1

8

∫
{t}×Ω

eρφ2(u− ũ)2 + 2

∫
{t}×Ω

eρφ2ũ2

∣∣∣∣∣
n∑

i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣∣
2
⎤⎦.

Inequality (B.5) follows immediately.
The following theorem states that when τ is sufficiently small and ψ(x) close to

ψ̃(x) in L2-sense, then the solution ũ(t, x) of (A.6) approximates the solution u(t, x)
of (A.5) well in L2-sense.

Theorem B.4. Consider the parabolic differential equation (A.5) and (A.6).
Assume that (4.1)–(4.3) hold and the first, second, and third derivatives of hi(x) are

bounded. Let c̃ and δ be positive constants such that
≈
c := c̃ + δ < 5

254 . Let

ρ(t, x) =
c̃(1 + |x|2)

t + ε
, ρ̃(t, x) =

≈
c (1 + |x|2)

t + ε
.

Suppose that ∫
Rn

eρ(0,x)(|ψ(x)|2 + |∇ψ̃(x)|2 + |Δψ(x)|2) < ∞∫
Rn

eρ(0,x)(|ψ̃(x)|2 + |∇ψ̃(x)|2 + |Δψ̃(x)|2) < ∞.
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Choose τ and ε suitably small so that τ + ε < δ and the conclusions of Lemma B.2
hold. Suppose that for 0 ≤ t ≤ τ ,

|f(t, x) − f̃(t, x)| ≤ ε̃1c(1 + |x|)(B.8) ∣∣∣∣ n∑
i=1

(
∂f i

∂xi
(t, x) − ∂f̃i

∂xi
(t, x)

)∣∣∣∣ ≤ ε̃1c(B.9)

|V (t, x) − Ṽ (t, x)| ≤ ε̃1c(1 + |x|2)(B.10) ∫
Rn

eρ(0,x)|ψ(x) − ψ̃(x)|2 ≤ ε̃2.(B.11)

Then ∫
{t}×Rn

eρ(u− ũ)2 ≤ ε̃2e
t + 16ε̃ 2

1 c
2c̃ 2 t

ε(t + ε)
etd1 + 24tε̃ 2

1 c
2etd1

≤ ε̃2e
τ + ε̃ 2

1 τe
τ c1,

where d1 =
∫

Rn eρ(0,x)(ψ̃(x))2, c1 = 16c2c̃ 2d1

ε2 + 24c2d1, and c is a constant for linear

growth of ∇V and ∇Ṽ , i.e., |∇V (t, x)| ≤ c(1 + |x|), and |∇Ṽ (t, x)| ≤ c(1 + |x|).
Proof. Let R0 ≥ 1 and Bc

R0
= {x ∈ Rn : |x| > R0} and

φ(x) =

⎧⎨⎩
1 for |x| ≤ R0
logR−log |x|
logR−logR0

for R0 ≤ |x| ≤ R = 2R0

0 for |x| ≥ R = 2R0.

Let Ω be defined as BR in Proposition B.3. In view of Lemma B.1 and (B.5), we
have

e−t

∫
{t}×Ω

φ2eρ(u− ũ)2 −
∫
{0}×Ω

φ2eρ(u− ũ)2

≤ 10

∫ t

0

e−s

∫
{s}×Ω

eρ(u− ũ)2|∇φ|2 + 4

∫ t

0

e−s

∫
{s}×Ω

eρ

∣∣∣∣∣
n∑

i=1

f i

∂φ

∂xi

∣∣∣∣∣
2

(u− ũ)2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2

∣∣∣∣∣
n∑

i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣∣
2

ũ2 + 2

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|f − f̃ |2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|V − Ṽ |2 + 2

∫ t

0

e−s

∫
{s}×Ω

eρφ2|f − f̃ |2ũ2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2

∣∣∣∣∣
n∑

i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣∣
2

≤ 10eρ(0,R)

R2
0(logR− logR0)2

∫ t

0

e−s

∫
{s}×(BC

R0
∩BR)

(u− ũ)2

+
4c2(1 + R)2eρ(4R)

R2
0(logR− logR0)2

∫ t

0

e−s

∫
{s}×(Bc

R0
∩BR)

(u− ũ)2
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+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|f − f̃ |2 + 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|V − Ṽ |2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2

∣∣∣∣ n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣2.(B.12)

Observe that (B.11) implies

et
∫
{0}×BR

eρ(u− ũ)2 ≤ ε̃2e
t.(B.13)

By Corollary 4.1 of [26], u and ũ decay like Gaussian in x variables. So we shall
assume

max
x∈Rn

(|u|, |ũ|) ≤ D1e
−D2|x|2 for t small,(B.14)

for some D1, D2 > 0. In view of the proof of Corollary 4.1 of [26], we can take

D2 ≥ 4c̃
ε + 1 for sufficiently small t

[10 + 4c2(1 + R)2]eρ(0,R)

R2
0(logR− logR0)2

∫ t

0

e−s

∫
{s}×(Bc

R0
∩BR)

(u− ũ)2

≤ 4[10 + 4c2(1 + R)2]teρ(0,R)

R2
0(logR− logR0)2

∫
Bc

R0
∩Br

D1e
−D2|x|2

≤ 4D1[10 + 4c2(1 + R)2]teρ(0,R)

R2
0(logR− logR0)2

ω0R
ne−D2R

2
0

=
4ω0D1R

n[10 + 4c2(1 + R)2]t

R2
0(logR− logR0)2

exp

(
c

ε
+

(
4c

ε
−D2

)
R2

0

)

≤ 4ω0D1R
n[10 + 4c2(1 + R)2]t

R2
0(logR− logR0)2

exp

(
−R2

0 +
c

ε

)
,(B.15)

where ω0 is the volume of the unit ball in Rn. Recall that |∇ρ|2 = 4c2|x|2
(t+ε)2 . Hence

(B.8) implies

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2

≤ 4

∫ t

0

∫
{s}×Ω

eρφ2|f − f̃ |2|∇ρ|2ũ2

≤ 4

∫ t

0

∫
{s}×Ω

ε̃ 2
1 c

2(1 + |x|)2 4c2|x|2
(s + ε)2

eρũ2

≤ 16ε̃ 2
1 c

2c̃ 2

∫ t

0

1

(s + ε)2

∫
{s}×BR

eρ̃ũ2.(B.16)
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Similarly, we can prove that

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ 2|f − f̃ |2 ≤ 16ε̃21c
2

∫ t

0

∫
{s}×BR

eρ̃ũ2(B.17)

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ 2|V − Ṽ |2 ≤ 4ε̃21c
2

∫ t

0

∫
{s}×BR

eρ̃ũ2(B.18)

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2

∣∣∣∣ n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣2 ≤ 4ε̃ 2
1 c

2

∫ t

0

∫
{s}×BR

eρũ2.(B.19)

Hence (B.12)–(B.18) and Lemma B.2 imply that∫
{t}×BR0

eρ(u− ũ)2

≤ ε̃2e
t +

4tetω0R
nD1[10 + 4c2(1 + R)2]

R2
0(logR− logR0)2

exp

(
−R2

0 +
c

ε

)
+16etε̃ 2

1 c
2c̃ 2

∫ t

0

1

(s + ε)2

∫
{s}×BR

eρ̃ũ2 + 16etε̃ 2
1 c

2

∫ t

0

∫
{s}×BR

eρ̃ũ2

+4etε̃ 2
1 c

2

∫ t

0

∫
{s}×BR

eρ̃ũ2 + 4ε̃ 2
1 c

2et
∫ t

0

∫
{s}×BR

eρ̃ũ2

≤ ε̃2e
t +

4tetω0D1R
n[10 + 4c2(1 + R)2]

R2
0(logR− logR0)2

exp

(
−R0 +

c

ε

)
+16etε̃ 2

1 c
2c̃ 2

∫ t

0

1

(s + ε)2

∫
{0}×BR

eρ̃ũ2

+24etε̃ 2
1 c

2

∫ t

0

∫
{0}×BR

eρ̃ũ2

≤ ε̃2e
t +

16etε̃ 2
1 c

2c̃ 2d1t

ε(t + ε)
+ 24tetε̃ 2

1 c
2d1

+
4tetω0D1R

n[10 + 4c2(1 + R)2]

R2
0(logR− logR0)2

exp

(
−R2

0 +
c

ε

)
.(B.20)

Let R = 2R0 go to infinity in (5.20), we obtain the estimate in the statement of
Theorem B.4.

Now we are ready to consider the global situation. For a fixed T > 0, we want to
find the solution u(t, x) of (A.5).

Theorem B.5. Let u(t, x) and ũi(t, x) be the solutions of (A.14) and (A.15),
respectively. For ε̃1 > 0, let |Pk| = supi{|ti − ti−1|} be sufficiently small so that the
following estimates hold:

|f(t, x) − f̃(τi−1, x)| ≤ ε̃1c(1 + |x|), for τi−1 ≤ t ≤ τi,(B.21) ∣∣∣∣ n∑
j=1

(
∂f j

∂xj
(t, x) − ∂f̃j

∂xj
(τi−1, x)

)∣∣∣∣ ≤ ε̃1c(B.22)

∣∣V (t, x) − Ṽ (τi−1, x)
∣∣ ≤ ε̃1c(1 + |x|2).(B.23)

Then ∫
Rn

eρ(T,x)(u(T, x) − ũk(T, x))2 ≤ ε̃ 2
1 c1k|Pk|eT ≤ ε̃ 2

1 c1c2(T ),
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where ρ(t, x) = c̃(1+|x|2)
t+ε so that the conclusion of Theorem B.4 holds, c1 is the constant

in Theorem B.4, and c2(T ) is a constant that depends only on T .
Proof. In view of ũ1(0, x) = ψ(x) = u(0, x) and Theorem B.4, we have∫

{τ1}×Rn

eρ(u− ũ)2 ≤ ε̃ 2
1 τ1e

τ1c1∫
{τ2}×Rn

eρ(u− ũ)2 ≤ ε̃ 2
1 c1[τ1e

τ2 + (τ2 − τ1)e
τ2−τ1 ].

By Theorem B.4 and induction, we have∫
{τk}×Rn

eρ(u− ũ)2 = ε̃ 2
1 c1[τ1e

τk + (τ2 − τ1)e
τk−τ1 + (τ3 − τ2)e

τk−τ2

+ · · · + (τk − τk−1)e
τk−τk−1 ]

≤ ε̃ 2
1 c1k|Pk|eT

≤ ε̃ 2
1 c1c2(T ).

As a consequence of Theorem B.5, we have the following L2-convergent theorem.
Theorem B.6. Fix T > 0, let Pk = {0 < τ1 < τ2 < · · · < τk = T} be a

partition of [0, T ]. Let u(t, x) be the solution of (A.14) on [0, T ]× Rn. Let ũi(t, x) be

the solution of (A.15) on [τi−1, τi]× Rn. Let ρ(t, x) = c̃(1+|x|2)
t+ε so that the conclusion

of Theorem B.5 holds. Then

lim
|Pk|→0

∫
{T}×Rn

ρ(u− ũk)
2 = 0.
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LINEAR COMPLEMENTARITY SYSTEMS: ZENO STATES∗

JINGLAI SHEN† AND JONG-SHI PANG†

Abstract. A linear complementarity system (LCS) is a hybrid dynamical system defined by a
linear time-invariant ordinary differential equation coupled with a finite-dimensional linear comple-
mentarity problem (LCP). The present paper is the first of several papers whose goal is to study
some fundamental issues associated with an LCS. Specifically, this paper addresses the issue of Zeno
states and the related issue of finite number of mode switches in such a system. The cornerstone
of our study is an expansion of a solution trajectory to the LCS near a given state in terms of an
observability degree of the state. On the basis of this expansion and an inductive argument, we
establish that an LCS satisfying the P-property has no strongly Zeno states. We next extend the
analysis for such an LCS to a broader class of problems and provide sufficient conditions for a given
state to be weakly non-Zeno. While related mode-switch results have been proved by Brunovsky and
Sussmann for more general hybrid systems, our analysis exploits the special structure of the LCS
and yields new results for the latter that are of independent interest and complement those by these
two and other authors.

Key words. linear complementarity systems, Zeno states, P-matrix, complementarity problem

AMS subject classifications. 34A40, 90C33, 93B12, 93C10

DOI. 10.1137/040612270

1. Introduction. A linear complementarity system (LCS) is a special dynam-
ical system defined by an linear ordinary differential equation (ODE) involving an
algebraic variable that is required to be a solution of a standard linear complemen-
tarity problem (LCP) [11]. While being a special instance of a differential variational
inequality, which has recently been studied in great depth in [23], the LCS has itself
received an extensive treatment in two excellent Ph.D. theses [5, 13] and in related
articles [3, 8, 9, 15, 16, 17]. In addition, the LCS belongs to the broad framework of
a hybrid system [18, 20, 30, 34, 35, 36, 26, 28], which is defined by a finite number
of smooth ODEs, called modes, with transitions between the modes occurring along
a state trajectory. Examples of dynamical systems in which the complementarity
paradigm has played a prominent role include nonsmooth mechanical systems [2, 24]
in general and multibody dynamics simulation under frictional contacts in particular
[1, 21, 29, 31, 32], as well as switched electrical networks and switched control sys-
tems, e.g., relay systems and variable structure systems [6, 7, 14, 19, 38]. In addition,
linear-quadratic dynamic Nash games with linear dynamics and control constraints
naturally lead to LCSs with special boundary conditions. For an excellent state-of-
the-art review of complementarity systems and their applications in engineering and
economics, we refer to the excellent recent article by Schumacher [27].

The LCS occupies a fundamental role in the study of nonsmooth dynamical sys-
tems because it is arguably the simplest of such systems. Though seemingly simple,
the analysis of the LCS in general is complicated by impulsive and multimodal be-
havior of its solutions. In the references cited above, such as in the two theses [5, 13],

∗Received by the editors July 26, 2004; accepted for publication (in revised form) February 26,
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Foundation under a Focused Research Group grant DMS-0353216 and also partially by the grant
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the study of the LCS has employed many concepts and results from (constrained)
linear systems theory; in particular, the concept of system passivity [37] has played
a major role. In contrast to this system-theoretic approach, we feel that a better
understanding of the LCS as a basic mathematical model can be achieved by con-
sidering the simplest, albeit nontrivial, instance of such a system. Motivated by this
contrasting “mathematical programming” approach, we are led to consider an LCS
satisfying the “P-property,” i.e., where the underlying finite-dimensional LCP has a
unique solution for all constant vectors. An immediate consequence of this property is
that the LCS is globally equivalent to an ODE with a piecewise linear, thus Lipschitz
continuous, right-hand side (which albeit is only implicitly defined). While this is
a great simplification, the piecewise linear nature of the right-hand side renders the
LCS a nonsmooth system and leads to many important system-theoretic and control
issues that require careful study. Several of these topics are the main concern of this
and accompanying papers. Extending the class of LCSs with the P-property, we will
also consider a broader class of systems and study their (non-)Zeno states.

The organization of the rest of the paper is as follows. In section 2, we formally
define the LCS, review some basic results of the LCP, and introduce two new LCP
concepts that are useful for our study. Section 3 addresses the question of whether
there can be infinitely many mode transitions in any finite time, i.e., the Zeno behavior
of the LCS. Formal algebraic definitions of (non-)Zeno states and of mode switches
that are tailored to the LCS are presented. An expansion based technique is developed
to prove non-Zenoness, which is applicable to an LCS with the P-property. Extended
Zeno results are presented in section 4. A special bimodal system is considered in
section 5. The paper ends with some concluding remarks in the sixth and last section.

2. Preliminary discussion. Defined by a tuple of four matrices, A ∈ �n×n,
B ∈ �n×m, C ∈ �m×n, and D ∈ �m×m, and a vector x0 ∈ �n, the goal of the LCS
is to find trajectories x(t) ∈ �n and u(t) ∈ �m satisfying

ẋ = Ax + Bu,

0 ≤ u ⊥ Cx + Du ≥ 0,

x(0) = x0,

(1)

where ẋ ≡ dx
dt denotes the time derivative of the trajectory x(t) and a ⊥ b means that

the two vectors a and b are orthogonal, i.e., aT b = 0. While it is in general possible for
the above differential and complementarity conditions to hold only at almost all times
t, in the present paper, the conditions that we will impose on the tuple (A,B,C,D)
will ensure that the x-trajectory is continuously differentiable and the u-trajectory is
well defined (albeit not necessarily continuous) on the time interval of interest.

It is clear that LCP theory has a major role to play in the study of the LCS. For
this reason, we summarize in the next subsection some of the essential concepts from
this theory that are relevant to the developments in this paper. Details of this review
can be found in the monograph [11], and the results therein will be used freely. Two
new LCP concepts are introduced in subsection 2.2.

2.1. LCP background. Formally, given a vector q ∈ �m and a matrix M ∈
�m×m, the aim of the LCP (q,M) is to find a vector u ∈ �m such that

0 ≤ u ⊥ w ≡ q + Mu ≥ 0.

The solution set of this problem is denoted by SOL(q,M). Among all matrix classes
in LCP theory, the most fundamental one is that of the P-matrices. Specifically, M
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is a P-matrix if all its principal minors are positive. This is the class of matrices
that will be the starting point in our study of the LCS (1). It is well known that M
is a P-matrix if and only if SOL(q,M) is a singleton for all q ∈ �m; moreover, the
unique element of SOL(q,M), which we denote u(q), is a piecewise linear function
of q ∈ �m. This implies in particular that u(q) is (globally) Lipschitz continuous
and directionally differentiable. The directional derivative, denoted u ′(q; dq), of the
solution function u(q) along the direction dq can be expressed as the unique solution
of a certain mixed LCP. Specifically, define three fundamental index sets associated
with u(q):

α ≡ { i : u(q)i > 0 = ( q + Mu(q) )i },
β ≡ { i : u(q)i = 0 = ( q + Mu(q) )i },
γ ≡ { i : u(q)i = 0 < ( q + Mu(q) )i }.

It follows that u ′(q; dq) is the unique solution û of the mixed LCP:

0 = ( dq + Mû )α,

0 ≤ ûβ ⊥ ( dq + Mû )β ≥ 0,

0 = ûγ .

The solution set SOL(q,M) of an LCP is in general the union of finitely many
polyhedra, each called a piece of this set. Indeed, we have

SOL(q,M) =
⋃
α

{
u ∈ �m :

( q + Mu )α = 0, uα ≥ 0

( q + Mu )ᾱ ≥ 0, uᾱ = 0

}
,

where the union ranges over all subsets α of {1, . . . ,m}. The case where SOL(q,M)
is convex for all q ∈ �m is particularly important. This case is characterized by the
column sufficiency property of the matrix M . Specifically, a matrix M is column
sufficient if u ◦ Mu ≤ 0 ⇒ u ◦ Mu = 0, where ◦ denotes the Hadamard product
of two vectors. It is easy to see that the property of column sufficiency is inherited
by the principal submatrices of M and also by the principal pivot transforms of M .
That is, if M is column sufficient, then so is the principal submatrix Mαα for all
α ⊆ {1, . . . ,m}; moreover, if Mαα is nonsingular, then the matrix below, called the
α-principal pivot transform of M ,[

(Mαα )−1 −(Mαα )−1Mαᾱ

Mᾱα(Mαα )−1 Mᾱᾱ −Mᾱα(Mαα )−1Mαᾱ

]
,(2)

is also column sufficient, where ᾱ is the complement of α in {1, . . . ,m}. If M is
column sufficient, then

SOL(q,M) ≡
{
u ∈ �m :

( q + Mu )α = 0, uα ≥ 0

( q + Mu )ᾱ ≥ 0, uᾱ = 0

}
,

where α is the set consisting of all indices i for which there exists a solution u ∈
SOL(q,M) with ui > 0.

Another known property of the LCP that we need is the “semistability” of its
solutions sets. Specifically, by [12, Proposition 5.5.5, Corollary 5.5.9], it follows that
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for any matrix M ∈ �m×m and every vector q ∈ �m, there exist positive scalars c
and ε such that

‖ q ′ − q ‖ ≤ ε ⇒ SOL(q ′,M) ⊆ SOL(q,M) + c ‖ q − q ′ ‖B,

where B is the (closed) unit ball in �m.

2.2. New LCP concepts. While we are unable to directly deal with the entire
class of LCSs with a column sufficient matrix D, such matrices provide the motivation
to introduce two new LCP concepts to be used later. The first new LCP concept is a
broadening of the class of column sufficient matrices that addresses the convexity of
the solution sets of the homogeneous problems only.

Definition 1. The matrix M ∈ �m×m is said to be weakly column sufficient
if for every triple of index sets (α, β, γ) that partition {1, . . . ,m}, the set of vectors
u ∈ �m satisfying

(Mu )α = 0,

0 ≤ uβ ⊥ (Mu )β ≥ 0,

uγ = 0

(3)

is convex, or equivalently, is polyhedral.
We leave it to the reader to verify that the convexity of the solution set of (3) is

equivalent to its polyhedrality. Besides the class of column sufficient matrices which
must be weakly column sufficient, a “nondegenerate matrix,” i.e., one whose principal
minors are all nonzero, is also weakly column sufficient; indeed if M is nondegenerate,
then the only solution to the system (3) is the zero vector. The following result
summarizes several properties of weak column sufficiency.

Proposition 2. Let M ∈ �m×m be weakly column sufficient. The following
statements are valid:

(a) For every subset α̃ of {1, . . . ,m}, the principal submatrix Mα̃α̃ is weakly col-
umn sufficient.

(b) For every subset α̃ of {1, . . . ,m} such that Mα̃α̃ is nonsingular, the α̃-principal
pivot transform (2) of M is weakly column sufficient.

(c) The solution set of the homogeneous LCP (0,M) is polyhedral; in fact,

SOL(0,M) ≡
{
u ∈ �m :

(Mu )α = 0, uα ≥ 0

(Mu )ᾱ ≥ 0, uᾱ = 0

}
,

where α is the set consisting of all indices i for which there exists u ∈
SOL(0,M) such that ui > 0 and ᾱ is the complement of α.

Proof. Let α ′, β ′, and γ ′ be three index sets partitioning the subset α̃. A vector
uα̃ satisfies the system

(Mα̃α̃uα̃ )α ′ = 0,

0 ≤ uβ ′ ⊥ (Mα̃α̃uα̃ )β ′ ≥ 0,

uγ ′ = 0

if and only if the vector u ≡ (uα̃, 0) satisfies the system (3) with (α, β, γ) = (α ′, β ′, γ ′∪
α̂), where α̂ is the complement of α̃ in {1, . . . ,m}. Consequently, part (a) holds. To
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prove (b), let M̃ be the α̃-principal pivot transform (2) of M . Let α ′, β ′, and γ ′ be
three index sets partitioning the set {1, . . . ,m}. Consider the system

( M̃ũ )α ′ = 0,

0 ≤ ũβ ′ ⊥ ( M̃ũ )β ′ ≥ 0,

ũγ ′ = 0.

(4)

Let w̃ ≡ M̃ũ. By pivoting on (Mα̃α̃)−1 in M̃ , we can recover the original system
w = Mu, where the variables u and w are related to ũ and w̃ via the identities:

w ≡
(
wα̃

wα̂

)
, u ≡

(
uα̃

uα̂

)
,

w̃ =

(
uα̃

wα̂

)
, ũ =

(
wα̃

uα̂

)
.

Therefore, system (4) is equivalent to system (3) for some suitable triple (α, β, γ) that
partitions {1, . . . ,m}. From this equivalence, the convexity of the solution set of the
former system can be easily proved. This establishes (b). To prove (c), we note that
the LCP (0,M) is just the system (3) with β = {1, . . . ,m}. Hence the polyhedrality
of SOL(0,M) follows from the weak column sufficiency of M . The representation of
SOL(0,M) can be proved in the same way as in the case of a column sufficient matrix;
see the proof in [11, Theorem 3.5.8] for details.

To introduce the second new LCP concept, we note that if q = 0, then for every
solution u of the LCP (q,M), there must exist at least one index i such that ui > 0
or wi ≡ (q + Mu)i > 0. Define two sets of “identifiable indices”:

Iu ≡ { i : ui > 0 ∀u ∈ SOL(q,M) },
Iw ≡ { i : ( q + Mu )i > 0 ∀u ∈ SOL(q,M) },

one, or both, of which may be empty in general.
Definition 3. The LCP (q,M), where q = 0, is identifiable if the following two

conditions hold:
(a) Iu ∪ Iw = ∅, and
(b) the principal submatrix MIuIu is nonsingular if Iu = ∅. (By convention, this

condition is vacuously true if Iu is empty.)
If the LCP (q,M), where q = 0, has a unique solution u, then the LCP is identifi-

able if Mαα is nonsingular, where α is the (possibly empty) support of u. The following
lemma asserts a positivity property of the “identifiable variables” of an LCP.

Proposition 4. For any pair (q,M) with q = 0, there exists a scalar σ > 0 such
that ui ≥ σ and (q + Mu)j ≥ σ for all u ∈ SOL(q,M) and all i ∈ Iu and j ∈ Iw.

Proof. We prove the claim only for the u-variable. For each i ∈ Iu, consider the
optimization problem

minimize ui

subject to u ∈ SOL(q,M).

Since the feasible set of this problem is the union of finitely many polyhedra and its
objective function is linear and positive (hence bounded below) on this set, it follows
from linear programming theory that the above problem attains a finite minimum
objective value which must be positive. The desired claim follows readily.
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2.3. Back to the LCS. Returning to the LCS (1), assume that D is a P-matrix.
In this case, (1) is equivalent to the ODE

ẋ = Ax + Bu(Cx), x(0) = x0,(5)

where the right-hand side Ax+Bu(Cx) is a piecewise linear function of x. (Note that
u(0) = 0.) As such, (1) has a unique solution trajectory (x(t), u(t)) defined on [0,∞)
with x(t) being continuously differentiable and u(t) ≡ u(Cx(t)) being continuous. In
contrast to the above representation (5) which involves the implicit function u(Cx),
the right-hand side of the LCS (1) can be represented explicitly using the comple-
mentarity cones associated with the matrix D. Specifically, for each index subset δ of
{1, . . . ,m} with complement δ̄, define the polyhedral cone

Cδ ≡
{
q ∈ �m : Eδ

(
qδ

qδ̄

)
≥ 0

}
,(6)

where

Eδ ≡
[

−(Dδδ )−1 0

−Dδ̄δ(Dδδ )−1 I

]
∈ �m×m.

Since D is a P-matrix, it is clear that Eδ is well defined and nonsingular. Defining
the matrix

Kδ ≡
[
−(Dδδ )−1 0

0 0

]
,

we have u(Cx) = KδCx, provided that Cx ∈ Cδ. Consequently, the ODE (5) can be
written equivalently as

ẋ = (A + BKδC )x if EδCx ≥ 0,

whose right-hand side is now in an explicit, piecewise linear form.

Consider next the case where D is not a P-matrix but the submatrix Dαα is
nonsingular for some subset α of {1, . . . ,m}. We can define a system that is equivalent
to (1) by “pivoting” on Dαα as done for a standard LCP [11], i.e., by solving for the
variable uα in the equation

wα = Cα·x + Dααuα + Dαᾱuᾱ

in terms of the other variables wα, x, and uᾱ, where ᾱ is the complement of α
in {1, . . . ,m}, and then substituting the resulting expression for uα into the other
conditions in (1). The equivalent LCS, which we call the α-principal transform of (1),
is

ẋ = Ãx + B̃ũ,

0 ≤ ũ ⊥ C̃x + D̃ũ ≥ 0,

x(0) = x0,

(7)
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where ũ = (wα, uᾱ) and

Ã ≡ A−B·α(Dαα )−1Cα·,

B̃ ≡
[
B·α(Dαα )−1 B·ᾱ −B·α(Dαα )−1Dαᾱ

]
,

C̃ ≡
[

−(Dαα )−1Cα·

Cᾱ· −Dᾱα(Dαα )−1Cα·

]
,

D̃ ≡
[

(Dαα )−1 −(Dαα )−1Dαᾱ

Dᾱα(Dαα )−1 Dᾱᾱ −Dᾱα(Dαα )−1Dαᾱ

]
.

(8)

We call the tuple (Ã, B̃, C̃, D̃) the α-principal transform of (A,B,C,D). Of particular
importance in the subsequent analysis is the following principal subsystem of this
transform:

ẋ = Ãx + [B·ᾱ −B·α(Dαα )−1Dαᾱ ]uᾱ,

0 ≤ uᾱ ⊥ [Cᾱ· −Dᾱα(Dαα )−1Cα· ]x + [Dᾱᾱ −Dᾱα(Dαα )−1Dαᾱ ]uᾱ ≥ 0.
(9)

To illustrate the role of the latter subsystem, suppose that at some state x(t∗) = x∗,
the corresponding algebraic vector u(t∗) = u∗ is a strongly regular solution [25] of the
LCP (Cx∗, D). This means that the submatrix Dα∗α∗ is nonsingular and the Schur
complement Dβ∗β∗ −Dβ∗α∗(Dα∗α∗)

−1Dα∗β∗ is a P-matrix, where

α∗ ≡ { i : u∗
i > 0 = (Cx∗ + Du∗ )i },

β∗ ≡ { i : u∗
i = 0 = (Cx∗ + Du∗ )i },

γ∗ ≡ { i : u∗
i = 0 < (Cx∗ + Du∗ )i }.

If the solution trajectory (x(t), u(t)) is continuous near t∗, it then follows that for all
t sufficiently near t∗, (Cx(t) + Du(t))i > 0 for all i ∈ γ∗ and ui(t) > 0 for all i ∈ α∗.
This implies that ui(t) = 0 for all i ∈ γ∗ and (Cx(t) + Du(t))i = 0 for all i ∈ α∗.
Hence, locally for t near t∗, the trajectory (x(t), u(t)) must satisfy the following mixed
LCS obtained by fixing some variables at zero:

ẋ = Ax + Bu,

0 = (Cx + Du )i ∀ i ∈ α∗,

0 ≤ ui ⊥ (Cx + Du )i ≥ 0 ∀ i ∈ β∗,

0 = ui ∀ i ∈ γ∗.

(10)

Since Dα∗α∗ is nonsingular, we can carry out the pivot operation as described above
and deduce that (10) is equivalent to, for all t sufficiently near t∗,

ẋ = Ax + Buβ ,

0 ≤ uβ ⊥ Cx + Duβ ≥ 0,
(11)

where

A ≡ A−B·α∗(Dα∗α∗ )−1Cα∗ , B ≡ B·β∗ −B·α∗(Dα∗α∗ )−1Dα∗β∗ ,

C ≡ Cβ∗· −Dβ∗α∗(Dα∗α∗ )−1Cα∗ , D ≡ Dβ∗β∗ −Dβα∗(Dα∗α∗ )−1Dα∗β∗ .
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The resulting LCS (11) has the P-property. We summarize this reduction in the
following result, which we will later use to deduce an important consequence of the
state x∗; see Corollary 15. For further discussion of the above reduction process, see
[23, section 5.2].

Proposition 5. Let (x(t), u(t)) be a solution trajectory of the LCS (1) that is con-
tinuous near a time t∗. If u(t∗) is a strongly regular solution of the LCP (Cx(t∗), D),
then (x(t), u(t)) must satisfy the reduced system (11) locally near t∗.

Finally, for any nonsingular constant matrix P , we can consider the change of
variables x̄ ≡ Px and obtain an LCS in the x̄-variable that is equivalent to the
original (1). This equivalent LCS is

˙̄x = PAP−1x̄ + PBu,

0 ≤ u ⊥ CP−1x̄ + Du ≥ 0,

x̄(0) = Px0.

Particularly useful for us later (see the proof of Lemma 12) is the transformation so
that the pair (PAP−1, CP−1) is of a particular form satisfying a favorable observ-
ability condition.

3. Zeno states of an LCS. In what follows, we define two types of Zeno states
of a general LCS; see Definition 6. Generally speaking, the presence of a Zeno state in
a hybrid system could have an adverse effect on the numerical simulation of a solution
trajectory to the system. This issue, which is closely tied to mode switches, has been
dealt with extensively in the literature; see, e.g., [4, 9, 19, 33, 38]. In particular,
for hybrid systems described by ODEs with piecewise real analytic right-hand sides,
the results by Brunovsky [4] and Sussmann [33] show that there is a finite number
of mode switches (defined in the sense in the cited references). While the latter
results are in principle applicable to the LCS with the P-property, their treatment
does not reveal the important complementarity nature of the LCS. (See [5, 9] for
some special Zeno results for the LCS where the D matrix is positive definite or
satisfies a passifiability assumption.) Because of the fundamental role of the LCS
in hybrid system theory, it is useful to have a simplified approach that exploits the
characteristics of the LCS. Most importantly, the Zeno concepts defined below are of
a refined, algebraic nature that takes into account possible degeneracy of the solutions
to the complementarity conditions. Analytically, our proofs of the main Zeno results,
Theorems 9 and 21, are based on a local expansion of a solution trajectory to the LCS
(Lemma 14) which is a new result by itself and enables us to study systems failing
the P-property. Furthermore, this expansion reveals a local property of a solution
trajectory of (1) in terms of an “observability degree” of a given state relative to the
pair (C,A).

As is well known, an LCS is a special linear hybrid system with finitely many
“modes,” where a mode is a linear differential algebraic equation (LDAE) defined by
a pair of disjoint index sets (α, ᾱ) whose union is the index set {1, . . . ,m}; specifically,
such an LDAE is as follows:

ẋ = Ax + Bu,

0 = (Cx + Du )α,

0 = uᾱ.

(12)

Every solution trajectory of the LCS (1) must satisfy, at every time instant, the above
LDAE for a certain pair (α, ᾱ) that is dependent on the time. Conversely, if (x(t), u(t))
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is a solution trajectory satisfying the latter LDAE, then (x(t), u(t)) satisfies the LCS
(1) if (Cx(t) + Du(t))ᾱ ≥ 0 and u(t)α ≥ 0. In general, it is possible for a solution
trajectory (x(t), u(t)) of the LCS (1) to satisfy at any given time t the LDAE (12) for
multiple pairs of index sets, due to degeneracy of the complementarity conditions. For
every such trajectory, at each time t∗ that is neither the initial nor the terminal time,
there exist (i) an infinite sequence of times {t−k } converging to t∗ from the left and a
pair (α−, ᾱ−) of index sets partitioning {1, . . . ,m} such that (x(t−k ), u(t−k )) satisfies
the LDAE (12) corresponding to (α−, ᾱ−) for all k, and (ii) an infinite sequence of
times {t+k } converging to t∗ from the right and a pair (α+, ᾱ+) of partitioning index
sets such that (x(t+k ), u(t+k )) satisfies the LDAE (12) corresponding to (α+, ᾱ+) for
all k. An intuitive definition of a mode switch at time t∗ is that the two pairs of index
sets (α−, ᾱ−) and (α+, ᾱ+) are not equal. Roughly speaking, a Zeno state of an LCS
is a state near which there are infinitely many modes switches.

We now formalize the above informal discussion by defining “weak” and “strong”
Zeno states of a solution trajectory (x(t), u(t)) of the LCS (1). Both are local proper-
ties of a state. The strong Zeno concept is more refined than the weak Zeno concept
and is defined in terms of the index sets

α(t) ≡ { i : ui(t) > 0 = (Cx(t) + Du(t) )i },
β(t) ≡ { i : ui(t) = 0 = (Cx(t) + Du(t) )i },
γ(t) ≡ { i : ui(t) = 0 < (Cx(t) + Du(t) )i };

in contrast, the weak Zeno concept relaxes the strong concept by restricting to the
two combined sets α(t) ∪ β(t) and γ(t) ∪ β(t). The two concepts coincide if u(t) is
a nondegenerate solution of the LCP (Cx(t), D) for all t near t∗, in which case, the
degenerate set β(t) is empty for all such t.

Definition 6. Let (x(t), u(t)) be a solution trajectory of (1) and let x(t∗) = x∗.
We say that x∗ is

(a) strongly left non-Zeno relative to (x(t), u(t)) if a scalar ε− > 0 and a triple
of index sets (α−, β−, γ−) exist such that (α(t), β(t), γ(t)) = (α−, β−, γ−) for
every t ∈ [t∗ − ε−, t∗);

(b) strongly right non-Zeno relative to (x(t), u(t)) if a scalar ε+ > 0 and a triple
(α+, β+, γ+) of index sets exist such that (α(t), β(t), γ(t)) = (α+, β+, γ+) for
every t ∈ (t∗, t∗ + ε+];

(c) weakly left non-Zeno relative to (x(t), u(t)) if a scalar ε− > 0 and a pair
of index sets α− and ᾱ− partitioning {1, . . . ,m} exist such that (x(t), u(t))
satisfies the LDAE (12) corresponding to (α−, ᾱ−) for all t ∈ [ t∗ − ε−, t∗ );

(d) weakly right non-Zeno relative to (x(t), u(t)) if a scalar ε+ > 0 and a pair
of index sets α+ and ᾱ+ partitioning {1, . . . ,m} exist such that (x(t), u(t))
satisfies the LDAE (12) corresponding to (α+, ᾱ+) for all t ∈ (t∗, t∗ + ε+].

The state x∗ ≡ x(t∗) is said to be left (right) Zeno of the first (second) kind relative to
the trajectory (x(t), u(t)) if it is not strongly (weakly) left (right) non-Zeno relative
to the same trajectory. When x∗ is strongly (weakly) left and right non-Zero, then
we say that x∗ is strongly (weakly) non-Zeno; when x∗ is either left or right Zeno
of the first (second) kind, then we say that x∗ is Zeno of the first (second) kind.
When the trajectory is clear from the context, we will omit the phrase “relative to the
trajectory.”

Definition 6 is applicable to both the initial and the terminal states of an LCS.
Specifically, if x∗ is the initial state x0 of the LCS (1), then we are interested only in the
right (non-)Zeno property of x∗; similarly, if x∗ is the terminal state x(T ) of the LCS
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(1) at a prescribed terminal time T > 0, then we are interested only in the left (non-)
Zeno property of x∗. It is clear that the strongly (left or right) non-Zeno properties
must imply the respective weakly (left or right) non-Zeno properties. Nevertheless,
the converse is clearly not always true. In essence, the left Zeno properties of a
state refer to its reachability from the left, and the right Zeno properties refer to the
continuation from the state. Obviously, these properties have important numerical
implications when the LCS is solved by a time-stepping method. For instance, the
numerical methods discussed in [30] for solving ODEs with discontinuous right-hand
sides are based on the presumed absence of Zeno states. Further discussion of such
numerical matters is beyond the scope of this paper.

An important remark should be made for Definition 6: namely, this definition
pertains to the two trajectories x(t) and u(t) jointly. This is distinct from the treat-
ment in [4, 33] which is applicable to the implicit formulation (5) of the LCS in which
the algebraic variable u is eliminated and treated only implicitly. It is not a straight-
forward task to directly apply the results in these cited references to analyze the Zeno
properties of the LCS as described in Definition 6, where the u-trajectory plays a
prominent role. In many realistic applications of the LCS (such as in contact mechan-
ics), the role of the algebraic variable u is as important as the differential variable x;
thus, an explicit treatment of the former, as emphasized herein, is warranted.

Zeno states are closely tied to mode switches, which we formally define next. For
simplicity, we present the definition below only for a time that is neither the initial
nor the terminal time of a trajectory. The triple of index sets (α(t), β(t), γ(t)) in this
definition are the fundamental index sets associated with the pair (x(t), u(t)).

Definition 7. Let (x(t), u(t)) be a solution trajectory of (1) and let t∗ be an
intermediate time of this trajectory. We say that t∗ is a

(a) switch time of the first kind relative to (x(t), u(t)) if there exist two triples
of index sets, (α−, β−, γ−) and (α+, β+, γ+), and two infinite sequences of
times, {t−k } and {t+k }, the former converging to t∗ from the left and the latter
converging to t∗ from the right, such that, for all k,

(α(t−k ), β(t−k ), γ(t−k )) = (α−, β−, γ−) = (α+, β+, γ+) = (α(t+k ), β(t+k ), γ(t+k ));

(b) switch time of the second kind relative to (x(t), u(t)) if there exist two infinite
sequences of times, {t−k } and {t+k }, the former converging to t∗ from the left
and the latter converging to t∗ from the right, such that for no pair of index
sets (α, ᾱ−) partitioning {1, . . . ,m}, (x(t−k ), u(t−k )) and (x(t+k ), u(t+k )) both
satisfy the LDAE (12) for all k.

The following result shows that the absence of Zeno states in a finite time of
interval provides a sufficient condition for the finite number of switch times in the
interval.

Proposition 8. Let (x(t), u(t)) be a solution trajectory of the LCS (1) defined
on an open interval containing [0, T ]. If the trajectory has no Zeno states of the first
(second) kind, then there is a finite number of switch times of the first (second) kind
relative to (x(t), u(t)) in [0, T ].

Proof. We prove the result for the “second” kind only. If (x(t), u(t)) contains no
Zeno states of the second kind, then for every t ∈ [0, T ], there exist a right neigh-
borhood N+

t ≡ (t, t + εt) and a left neighborhood N−
t ≡ (t − εt, t) of t, for some

scalar εt > 0, and two pairs of index sets, (α+
t , ᾱ

+
t ) and (α−

t , ᾱ
−
t ), both partitioning

{1, . . . ,m}, such that for all t ′ ∈ N+
t , the pair (x(t ′), u(t ′)) satisfies the LDAE (12)

corresponding to (α+
t , ᾱ

+
t ), and that for all t ′ ∈ N−

t , the pair (x(t ′), u(t ′)) satisfies
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the LDAE (12) corresponding to (α−
t , ᾱ

−
t ). The family

{ ( t− εt, t + εt ) : t ∈ [0, T ]}

constitutes an open covering of the compact interval [0, T ]. Hence there exists a finite
sequence {t0, t1, . . . , t�} ⊂ [0, T ] such that

[ 0, T ] ⊂
�⋃

i=0

[ ti − εti , ti + εti ].

By refining the partition on the right-hand side, we may assume without loss of
generality that there exist a finite sequence of times 0 = t ′0 < t ′1 < · · · < t ′k <
t ′k+1 = T and a corresponding sequence of index sets αi of {1, . . . ,m} with respective
complements ᾱi such that (x(t), u(t)) satisfies (12) corresponding to (αi, ᾱi) for all
t ∈ (t ′i , t

′
i+1), i = 0, 1, . . . , k. Consequently, the only possible switch times of the

second type in the interval [0, T ] are the times t ′i for i = 0, 1, . . . , k + 1.

3.1. The P-matrix case. The following is the main Zeno result for an LCS
with the P-property.

Theorem 9. If D is a P-matrix, then all states of the LCS (1) must be strongly
non-Zeno.

The proof of the above theorem is accomplished via several lemmas. The first
such lemma, which is a global and time-invariant version of Proposition 5.3 in [26],
gives a decay rate for a Lipschitz continuous system.

Lemma 10. Let ẋ = f(x), x(0) = x0 be a dynamical system on �n, where f(x)
is globally Lipschitz continuous in x with Lipschitz constant L ≥ 0. If x = 0 is an
equilibrium of the system, i.e., f(0) = 0, then

‖x0 ‖2 e
−Lt ≤ ‖x(t) ‖2 ≤ ‖x0‖2 eLt ∀ t ≥ 0.

The main proof of Theorem 9 is divided into two parts, depending on whether a
state x∗ in question is observable or unobservable with respect to the pair (C,A). The
concept of observability is well known for a linear time-invariant system ẋ = Ax+Bu
and y = Cx + Du and is briefly reviewed here. A state x ∈ �n is unobservable with
respect to (C,A) if CeAtx ≡ 0 for all t; otherwise it is called observable with respect
to (C,A). Without confusion, we usually simply call a state observable/unobservable.
The set of all unobservable states is a subspace of �n, called the unobservable subspace
of the pair (C,A). An equivalent condition for a state x being observable is that
CAkx = 0 for some 0 ≤ k ≤ n − 1. The linear system is observable if x = 0 is the
only unobservable state. In such the case, we call (C,A) an observable pair.

The next lemma asserts that the LCS (1) with the P-property is trivial if the
initial state x0 is unobservable.

Lemma 11. Let D be a P-matrix. If x0 is unobservable, then the unique solution
trajectory of (1) is (x(t), u(t)) = (eAtx0, 0) for all t ≥ 0. In this case, we have
β(t) = {1, . . . ,m} for all t ≥ 0; hence, all states x(t) are strongly non-Zeno.

Proof. This follows easily from the uniqueness of the solution trajectory and the
fact that CeAtx0 = 0 for all t ≥ 0.

Lemma 11 suggests that we may assume without loss of generality that x0 is
observable. The next lemma asserts that in this case, all states on the trajectory x(t)
are observable.
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Lemma 12. Let D be a P-matrix. If x0 = x(0) is observable, then so is x(t) for
all t ≥ 0.

Proof. Lemma 10 is applicable to the implicit form (5) of the LCS. It follows that
‖x(t)‖ ≥ ‖x0‖e−Lt for some constant L ≥ 0. Since x0 is observable, it is not zero.
Hence x(t) = 0 for all t ≥ 0. Consequently, we may assume without loss of generality
that (C,A) is an unobservable pair. Let O(C,A) denote the unobservable subspace
whose dimension is n2 with 1 ≤ n2 ≤ n. According to linear system theory [10,
p. 203], there exists a nonsingular matrix P ∈ �n×n such that the change of variables
x̄ = Px transforms the original linear system (1) into the observable canonical form

˙̄x =

(
˙̄xo

˙̄xuo

)
=

[
Āo 0

Ā21 Āuo

] (
x̄o

x̄uo

)
+

[
B̄o

B̄uo

]
u,

Cx =
[
C̄o 0

]( x̄o

x̄uo

)
= C̄o x̄o,

and (C̄o, Āo) is an observable pair, x̄ ≡
(

x̄o
x̄uo

)
is the transformed state, x̄o ∈ �n−n2 and

x̄uo ∈ �n2 correspond to the observable part and unobservable part of x̄, respectively.
Hence, the LCS (1) can be decomposed into the observable dynamics

˙̄xo = Āox̄o + B̄ou,

0 ≤ u ⊥ C̄ox̄o + Du ≥ 0,
(13)

and the unobservable dynamics

˙̄xuo = Ā21x̄o + Āuox̄uo + B̄uou.(14)

Moreover, any unobservable state x̂ ∈ O(C,A) is transformed to the following form
under the above transformation:

Px̂ =

(
0

x̄uo

)
.

This means that the observable part of an original unobservable state must be zero
and the observable part of an original observable state must not be zero. Since (13)
remains an LCS with the P-property, and since x̄o(0) = 0 because x(0) is observable,
it follows that x̄o(t) = 0 for all t ≥ 0, which means that x(t) must be observable.

A noteworthy remark is that Lemma 12 can be proved using the reverse-time
argument.1 Letting (xr(t), ur(t)) ≡ (x(−t), u(−t)) for all t ≥ 0, one easily sees that
the pair (xr(t), ur(t)) satisfies a reverse-time LCS for all t ≥ 0:

ẋr(t) = −Axr(t) −Bur(t),

0 ≤ ur(t) ⊥ Cxr(t) + Dur(t) ≥ 0.

Hence, the reverse-time LCS (−A,−B,C,D) preserves the P-property and its solution
pair is unique as well. Suppose x(0) is observable but x(t) is not at some t ≥ 0. Then
using the reverse-time LCS and Lemma 11, x(0) = e−Atx(t), which is unobservable
as well. However, the decomposition of the LCS into the observable dynamics (13)

1We thank an anonymous reviewer for bringing this remark to our attention.
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and the unobservable dynamics (14) in Lemma 12 has its own interest. Therefore, we
present it for this purpose.

Combining the above two lemmas, we have therefore proved Theorem 9 for the
unobservable states. We formally state this conclusion in the following corollary,
which requires no proof.

Corollary 13. Any unobservable state of an LCS with the P-property is strongly
non-Zeno.

We next turn our attention to the observable states. The cornerstone of the
treatment of these states is an expansion of the solution trajectory near any given time
t∗. We will make use of the (unique) solution u(±CAkx) of the LCPs (±CAkx,D).
In general, except for the fact that both are nonnegative, the two vectors uk+(x) ≡
u(CAkx∗) and uk−(x) ≡ u(−CAkx∗) have very little to do with each other. Since
D is a P-matrix, we can speak of the directional derivative of the solution function
u ′(q; dq) of the LCP (q,D) at the vectors q ≡ ±CAkx along the directions dq ≡
±(CAk+1x+CBuk±(x)). Specifically, we will use the following directional derivatives:

u ′(CAkx;CAk+1x + CBuk+(x))

= lim
τ↓0

u(CAkx + τ(CAk+1x + CBuk+(x))) − u(CAkx)

τ
,

u ′(CAkx;−(CAk+1x + CBuk+(x)))

= lim
τ↓0

u(CAkx− τ(CAk+1x + CBuk+(x))) − u(CAkx)

τ
,

u ′(−CAkx;CAk+1x− CBuk−(x))

= lim
τ↓0

u(−CAkx + τ(CAk+1x− CBuk+(x))) − u(−CAkx)

τ
.

The reason for distinguishing these derivatives will be evident from the next result.
In this result, we use the standard notation o(f(t)) to mean a function such that

lim0 �=t→0
o(f(t))

t = 0; the notation O(f(t)) also has the standard meaning.

Lemma 14. Let D be a P-matrix. Let x∗ = x(t∗) be an arbitrary state of the
solution trajectory (x(t), u(t)) such that CAjx∗ = 0 for all j = 0, 1, . . . , k−1 for some
integer k ≥ 0. The following two statements hold:

(a) For all t > t∗,

x(t) =

k+2∑
j=0

( t− t∗ )j

j !
Ajx∗ +

( t− t∗ )k+1

( k + 1 )!
Bu(CAkx∗)

+
( t− t∗ )k+2

( k + 2 )!
Bu ′(CAkx∗;CAk+1x∗ + CBu(CAkx∗)) + o(|t− t∗|k+2),

u(t) =
( t− t∗ )k

k !
u(CAkx∗) +

( t− t∗ )k+1

( k + 1 )!
u ′(CAkx∗;CAk+1x∗ + CBu(CAkx∗))

+ o(|t− t∗|k+1).
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(b) For all t < t∗,

x(t) =

k+2∑
j=0

( t− t∗ )j

j !
Ajx∗ +

( t− t∗ )k+1

( k + 1 )!
Bu(CAkx∗)

+
( t− t∗ )k+2

( k + 2 )!
Bu ′(CAkx∗;−CAk+1x∗ − CBu(CAkx∗)) + o(|t− t∗|k+2),

u(t) =
( t− t∗ )k

k !
u(CAkx∗) +

| t− t∗ |k+1

( k + 1 )!
u ′(CAkx∗;−CAk+1x∗ − CBu(CAkx∗))

+ o(|t− t∗|k+1)

if k is even; and if k is odd,

x(t) =

k+2∑
j=0

( t− t∗ )j

j !
Ajx∗ − ( t− t∗ )k+1

( k + 1 )!
Bu(−CAkx∗)

+
(t− t∗)

k+2

( k + 2 )!
Bu ′(−CAkx∗;CAk+1x∗ − CBu(−CAkx∗)) + o(|t− t∗|k+2),

u(t) =
| t− t∗ |k

k !
u(−CAkx∗) +

( t− t∗ )k+1

( k + 1 )!
u ′(−CAkx∗;CAk+1x∗ − CBu(−CAkx∗))

+ o(|t− t∗|k+1).

Proof. Define

z(t) = x(t) −
k∑

j=0

( t− t∗ )j
Ajx∗

j !
.(15)

Hence, z(t∗) = 0 and z(t) satisfies

ż(t) = Az(t) +
( t− t∗ )k

k !
Ak+1x∗ + Bu(t),(16)

where u(t) satisfies

0 ≤ u(t) ⊥ Cz(t) +
( t− t∗ )k

k !
CAkx∗ + Du(t) ≥ 0.(17)

Since D is a P-matrix, it follows that there exists a constant η > 0 such that for all t,

‖u(t) ‖ ≤ η [ ‖ z(t) ‖ + | t− t∗ |k ].

By (16), we deduce the existence of positive constants λ and μ such that for all t < t∗,

‖ z(t) ‖ ≤ λ ( t∗ − t )k+1 + μ

∫ t∗

t

‖ z(s) ‖ ds.

Thus by Gronwall–Bellman inequality, we obtain, for some constant μ ′ > 0,

‖ z(t) ‖ ≤ λ ( t∗ − t )k+1 + λμ

∫ t∗

t

( t∗ − τ )k+1 eμ(t∗−τ)dτ

≤ λ ( t∗ − t )k+1 + μ ′ ( t∗ − t )k+2
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for all t < t∗ sufficiently near t∗. A similar bound can be derived for ‖z(t)‖ for all
t > t∗ sufficiently near t∗. Consequently, we deduce the existence of a scalar λ ′ > 0
such that for all t near t∗,

‖ z(t) ‖ ≤ λ ′ | t− t∗ |k+1.(18)

Suppose that k is odd. For all t < t∗, (17) implies

0 ≤ v(t) ⊥ k !C
z(t)

| t− t∗ |k
− CAkx∗ + Dv(t) ≥ 0,(19)

where v(t) ≡ k!u(t)/|t − t∗|k. Since D is a P-matrix, it follows from the Lipschitz
continuity of the solutions to the LCP (q,D) that, for some constant L > 0, we have

‖ v(t) − u(−CAkx∗) ‖ ≤ L
‖ z(t) ‖
| t− t∗ |k

or equivalently∥∥∥∥u(t) − | t− t∗ |k
k !

u(−CAkx∗)

∥∥∥∥ ≤ Lk ! ‖ z(t) ‖ ∀ t < t∗ sufficiently near t∗.(20)

For k odd and for t < t∗, we can write (16) as

ż(t) = Az(t) +
(t− t∗)

k

k !
[Ak+1x∗ −Bu(−CAkx∗)] + B

[
u(t) − | t− t∗ |k

k !
u(−CAkx∗)

]
=

(t− t∗)
k

k !
[Ak+1x∗ −Bu(−CAkx∗)] + B

[
u(t) − | t− t∗ |k

k !
u(−CAkx∗)

]
+O(|t− t∗|k+1),

where the last inequality is due to (18). Integrating the above and using (20) and
(18), we deduce

z(t) = z(t∗) +

∫ t

t∗

ż(s) ds =
( t− t∗ )k+1

( k + 1 ) !
[Ak+1x∗ −Bu(−CAkx∗) ] + O(|t− t∗|k+2)

for all t < t∗ sufficiently near t∗. Substituting into (19), we obtain

0 ≤ v(t) ⊥ t∗ − t

k + 1
C[Ak+1x∗ −Bu(−CAkx∗) ] + O(|t− t∗|2) − CAkx∗ + Dv(t) ≥ 0.

Hence, we deduce

v(t) = u(−CAkx∗) +
t∗ − t

k + 1
u ′(−CAkx∗;CAk+1x∗ − CBu(−CAkx∗)) + o(|t− t∗|),

which yields

u(t) =
| t− t∗ |k

k !
u(−CAkx∗) +

(t∗ − t)k+1

(k + 1) !
u ′(−CAkx∗;CAk+1x∗ − CBu(−CAkx∗))

+ o(|t− t∗|k+1).
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Substituting this into (16), we deduce

ż(t) = Az(t) +
( t− t∗ )k

k !
[Ak+1x∗ −Bu(−CAkx∗) ]

+
( t− t∗ )k+1

( k + 1 ) !
Bu ′(−CAkx∗;CAk+1x∗ − CBu(−CAkx∗)) + o(|t− t∗|k+1).

Integrating the above equation and recalling x(t) = z(t) +
∑k

j=0(t− t∗)
jAjx∗/j!, we

obtain the desired expansion for x(t) when k is odd and t < t∗.
Next, assume that k is even and consider t < t∗ sufficiently near t∗. In this case,

instead of (19), we have

0 ≤ v(t) ⊥ k !C
z(t)

( t− t∗ )k
+ CAkx∗ + Dv(t) ≥ 0;

moreover, (20) is replaced by∥∥∥∥u(t) − ( t− t∗ )k

k !
u(CAkx∗)

∥∥∥∥ ≤ Lk ! ‖ z(t) ‖ ∀ t < t∗ sufficiently near t∗.

Proceeding as above, we obtain from (16)

ż(t) =
( t− t∗ )k

k !
[Ak+1x∗ + Bu(CAkx∗) ] + B

[
u(t) − ( t− t∗ )k

k !
u(CAkx∗)

]
+O(|t− t∗|k+1).

At this point, we can repeat the above proof and obtain the desired expansion for
(x(t), u(t)) in this case where k is even. Finally, the proof for statement (a) is similar
and therefore omitted.

On the basis of Lemma 14, we can complete the proof of Theorem 9 by defining
the observability degree of an observable state x with respect to the pair (C,A), which
is defined as the first nonnegative integer k such that CAkx = 0.

Proof of Theorem 9. We use induction on m, the dimension of the input variable u.
The case m = 0 is trivial. Inductively, assume that the theorem is valid for an integer
m ≥ 0. Consider the LCS (1) where the algebraic variable u is of dimension m+1 ≥ 1.
Let x∗ = x(t∗) be an arbitrary state. We first prove that x∗ is strongly right non-
Zeno. By the above arguments, we may assume without loss of generality that x∗ is
observable. Let k ≥ 0 be the observability degree of x∗; thus Cx∗ = · · · = CAk−1x∗ =
0 and CAkx∗ = 0. The expansion in part (a) of Lemma 14 holds for the trajectory
(x(t), u(t)) in a small interval [t∗, t∗ + ε+] for some ε+ > 0. Since CAkx∗ = 0, there
must exist an index i such that either ui(CAkx∗) > 0 or [CAkx∗ +Du(CAkx∗)]i > 0.
By part (a) of Lemma 14, this implies that if ui(CAkx∗) > 0 for some index i, then
ui(t) > 0 for all t > t∗ sufficiently near t∗, which implies, by complementarity, that
[Cx(t) + Du(t)]i = 0 for all such t. Hence, we can solve for ui(t) from this equation,
obtaining

ui(t) = d−1
ii

[
Ci·x(t) +

∑
j �=i

dij uj(t)

]
,

which we can then substitute into the remaining conditions in (1). This substitution
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results in an LCS:

ẋ(t) = Âx(t) + B̂û(t),

0 ≤ û(t) ⊥ Ĉx(t) + D̂û(t),

x(t∗) = x∗,

(21)

where the matrix D̂ is the Schur complement of the diagonal entry dii in D and
the algebraic variable û is of dimension m, which is one less than that of the orig-
inal variable u. The original trajectory (x(t), u(t)) with the variable ui removed

must satisfy (21) in a small interval (t∗, t∗ + ε ′
+] for some ε ′

+ > 0. Since D̂ re-
mains a P-matrix, by the induction hypothesis, there exist an index set (α ′

+, β
′
+, γ

′
+)

such that (α̂(t), β̂(t), γ̂(t)) = (α ′
+, β

′
+, γ

′
+) for all t > t∗ sufficiently near t∗, where

(α̂(t), β̂(t), γ̂(t)) are the three fundamental index sets associated with the solution
trajectory (x(t), û(t)). Clearly, we have (α(t), β(t), γ(t)) = (α ′

+ ∪ {i}, β ′
+, γ

′
+) for all

t > t∗ sufficiently near t∗.
Next, consider the case where [CAkx∗ + Du(CAkx∗)]i > 0 for some index i. We

then have

[Cx(t) + Du(t) ]i =
( t− t∗ )k

k !
[CAkx∗ + Du(CAkx∗) ]i + o(|t− t∗|k+1),

which implies that [Cx(t) + Du(t) ]i > 0, and thus ui(t) = 0 by complementarity for
all t > t∗ sufficiently near t∗. Setting this variable equal to zero and dropping the
ith column of B and D and the ith row of C and D, we obtain a principal linear
complementarity subsystem of (1) that is satisfied by the trajectory (x(t), u(t)) for all
t > t∗ sufficiently near t∗. The induction hypothesis can be applied to the resulting
subsystem whose algebraic variable is of one less dimension than that of the original
u. Finally, we can apply part (b) of Lemma 14 to deal with t < t∗ and employ similar
reductions to complete the inductive proof.

4. Extended Zeno results. Theorem 9 can be easily extended to the mixed
LCS

ẋ = Ax + B1u1 + B2u2,

0 = C1x + D11u1 + D12u2,

0 ≤ u2 ⊥ C2x + D21u1 + D22u2 ≥ 0,

x(0) = x0,

provided that the matrix D11 is nonsingular and the Schur complement

D22 −D21(D11 )−1D12

is a P-matrix. Instead of presenting the details of this easy extension, we consider
a local version of the extension that pertains to an LCS with a “strongly regular”
state but which is not of the P-type. Specifically, we call x∗ a strongly regular state
of the LCS (1) if the LCP (Cx∗, D) has a strongly regular solution. The following
corollary of Theorem 9 shows that any such state must be strongly non-Zeno. For
simplicity, we treat the case where x∗ is neither an initial nor a terminal state of a
solution trajectory.
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Corollary 15. Any strongly regular state of the LCS (1) is strongly non-Zeno
relative to a continuous solution trajectory of the system. In fact, if (x(t), u(t)) is such
a trajectory defined on an open interval containing t∗ and if the LCP (Cx(t∗), D) has a
strongly regular solution, then (x(t), u(t)) is the unique continuous solution trajectory
passing through x∗ ≡ x(t∗) for all t sufficiently near t∗, and x∗ is strongly non-Zeno
relative to this trajectory.

Proof. We first establish the uniqueness of (x(t), u(t)). Suppose that (x̃(t), ũ(t))
is another continuous solution trajectory of (1) passing through x∗ and defined on
the same interval as (x(t), u(t)). By the strong regularity of u∗, a neighborhood V
of Cx∗, a neighborhood U of u∗, and a Lipschitz continuous function û : V → U
exist such that for every q ∈ V, û(q) is the unique solution of the LCP (q,D) in U .
Since (x(t), u(t)) and (x̃(t), ũ(t)) are both continuous near t∗, it follows that for all t
sufficiently near t∗, (Cx(t), u(t)) and (Cx̃(t), ũ(t)) both belongs to V × U . Hence we
have u(t) = û(Cx(t)) and ũ(t) = û(Cx̃(t)). Moreover, a constant L > 0 exists such
that for all t sufficiently near t∗, we have

‖u(t) − û(t)‖ ≤ L ‖x(t) − x̂(t)‖.(22)

Since

d (x(t) − x̂(t))

dt
= A(x(t) − x̂(t)) + B(u(t) − û(t)),

(22) implies that the right-hand side is a Lipschitz function of x(t) − x̂(t). Since
x(t∗) = x̂(t∗) = x∗, it follows that the two trajectories x(t) and x̂(t), and thus the
two trajectories, u(t) and û(t), must coincide in a sufficiently small open interval
containing t∗. The uniqueness of (x(t), u(t)) therefore follows.

By Proposition 5, it follows that for all t sufficiently near t∗, the trajectory
(x(t), u(t)) must satisfy the reduced system (11). Since D, being the Schur comple-
ment of Dα∗α∗ in a principal submatrix of D, remains a P-matrix, it follows that x(t∗)
is a strongly non-Zeno state of (11) relative to the trajectory (x(t), uβ∗(t)). Therefore,
a scalar ε > 0 and two triples of index sets (α0+, β0+, γ0+) and (α0−, β0−, γ0−) exist
such that

α0(t) ≡ {i ∈ β∗ : ui(t) > 0 = (Cx(t) + Duβ∗(t) )i} = α0+

β0(t) ≡ {i ∈ β∗ : ui(t) = 0 = (Cx(t) + Duβ∗(t) )i} = β0+

γ0(t) ≡ {i ∈ β∗ : ui(t) = 0 < (Cx(t) + Duβ∗(t) )i} = γ0+

⎫⎪⎪⎬⎪⎪⎭ ∀ t ∈ (t∗, t∗ + ε]

and

α0(t) = α0−

β0(t) = β0−

γ0(t) = γ0−

⎫⎪⎬⎪⎭ ∀ t ∈ [ t∗ − ε, t∗ ).

Since 0 < uα∗(t) = −(Dα∗α∗)
−1(Cα∗·x(t) + Dα∗β∗uβ∗(t)) and 0 = uγ∗(t), it follows

that

Cx(t) + Duβ∗(t) = (Cx(t) + Du(t) )β∗

for all t sufficiently near t∗. Consequently,

α(t) = α∗ ∪ α0+

β(t) = β0+

γ(t) = γ∗ ∪ γ0+

⎫⎪⎬⎪⎭ ∀ t ∈ ( t∗, t∗ + ε ]
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and

α(t) = α∗ ∪ α0−

β(t) = β0−

γ(t) = γ∗ ∪ γ0−

⎫⎪⎬⎪⎭ ∀ t ∈ [ t∗ − ε, t∗ ).

This shows that x∗ is a strongly non-Zeno state of (1).
One important consequence of the P-property is that the u-trajectory must neces-

sarily be unique. In what follows, we present an extended treatment of the Zeno issue
for an LCS with nonunique u-trajectories. Specifically, we make several alternative
assumptions on the tuple (A,B,C,D), the first of which ensures the existence and
uniqueness of a continuously differentiable solution trajectory x(t) corresponding to
various subsystems of (1).

(A) For every x ∈ �n and every triple of index sets (α, β, γ) partitioning {1, . . . ,m}
with β = ∅, the mixed LCP

0 = [Cx + Du ]α,

0 ≤ uβ ⊥ [Cx + Du ]β ≥ 0,

0 = uγ

(23)

has a solution u ∈ �m; moreover, Bu1 = Bu2 for any two such solutions u1 and u2.
The fundamental role of the above assumption is described in the following result.
Proposition 16. Under assumption (A), for every triple of index sets (α, β, γ)

partitioning {1, . . . ,m} with β = ∅, the system

ẋ = Ax + Bu,

0 = [Cx + Du ]α,

0 ≤ uβ ⊥ [Cx + Du ]β ≥ 0,

0 = uγ ,

x(0) = x0

(24)

has a unique solution trajectory x(t) for all t ∈ [0, T ] for any T > 0; moreover, x(t)
is continuously differentiable on its domain.

Proof. Let S(x) ⊂ �m denote the solution set of (23). As a multifunction, the
map S : x �→ S(x) is a polyhedral multifunction; i.e., its graph is the union of finitely
many polyhedra. Under assumption (A), the mapping

B̂ : x ∈ �n �→ BS(x)

is a single-valued function whose graph is the union of finitely many polyhedra. As
such, by a result due originally to Gowda (see [12, Exercise 5.6.14]), it follows that

B̂ is a (globally) Lipschitz continuous function on �n. In terms of this mapping, the
system (24) can be equivalently stated as

ẋ = Ax + B̂(x), x(0) = x0.

Since the right-hand side of the ODE is Lipschitz continuous, the existence and
uniqueness and the continuous differentiability of a solution trajectory x(t) follows
from classical ODE theory.
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Before proceeding further, we make several remarks about Proposition 16 and
assumption (A). First, if one is interested in the existence of a unique x-trajectory
to the single LCS (1), then it suffices to assume that BSOL(Cx,D) is a singleton for
all x ∈ �n. Second, while the x-trajectory is necessarily unique in the proposition,
no such uniqueness is asserted for the u-trajectory; no continuity of the u-trajectory
is asserted either. This is a significant departure from the P-property under which
the u-trajectory exists and is both unique and continuous. Nevertheless, it can be
shown that in the case where C has full row rank, assumption (A) implies that D
must be a P-matrix. Hence, condition (A) is most interesting when C is deficient in
row rank. A class of triples (B,C,D) satisfying assumption (A) with D being non-P
is presented in section 5. It should be noted that condition (A) is different from the
passifiability property of the triple (B,C,D) used in [5]; the latter property, along
with a minimality assumption on (A,B,C,D), yields the existence and uniqueness
of a continuous x-trajectory and an L2 u-trajectory of the LCS (1). Examples of
the class of triples (B,C,D) from section 5 can easily be constructed which fail the
passifiability condition; conversely, any triple (B,C, 0) with CB symmetric positive
definite is passifiable but fails condition (A).

Another difference between assumption (A) and the P-matrix assumption is that
(A) does not imply any apparent determinant properties of the principal matrix[

Dαα Dαβ

Dβα Dββ

]
;

in particular, it could be singular. Assumption (A) does imply

0 = (Du )α

0 ≤ uβ ⊥ (Du )β ≥ 0

0 = uγ

⎫⎪⎬⎪⎭ ⇒ Bu = 0,

and is implied by the following more restrictive condition:

u ◦Du ≤ 0 ⇒ Bu = 0.

For our purpose, the following invariance properties of assumption (A) are important
for the extension of the previous inductive argument to an LCS not satisfying the
P-property.

Proposition 17. Suppose that (B,C,D) satisfies condition (A). The same con-
dition holds for the following triples of index sets:

(a) (B·α̃, Cα̃·, Dα̃α̃) for every subset α̃ ⊆ {1, . . . ,m};
(b) the triple (B̃, C̃, D̃) associated with the α̃-principal transform (7) of (B,C,D)

for every subset α̃ ⊆ {1, . . . ,m} such that Dα̃α̃ is nonsingular;
(c) (PB,CP−1, D) for every nonsingular matrix P .

Proof. Let α ′, β ′, and γ ′ be any three index sets partitioning α̃, with β ′ = ∅.
Let x ∈ �n be arbitrary. We need to show that the system

0 = [Cx + Du ]α ′ ,

0 ≤ uβ ′ ⊥ [Cx + Du ]β ′ ≥ 0,

0 = uγ ′
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has a solution uα̃. Moreover, if u1
α̃ and u2

α̃ are any two such solutions, we must have
B·α̃u

1
α̃ = B·α̃u

2
α̃. But this is clear from condition (A) with the choice of (α, β, γ) =

(α ′, β ′, γ ′ ∪ ({1, . . . ,m}\α̃)). To prove (b), let (α ′, β ′, γ ′) be a triple of index sets
partitioning {1, . . . ,m} with β ′ = ∅ and consider the system

0 = [ C̃x + D̃ũ ]α ′ ,

0 ≤ ũβ ′ ⊥ [ C̃x + D̃ũ ]β ′ ≥ 0,

0 = ũγ ′ .

(25)

Letting w̃ ≡ C̃x + D̃ũ and “pivoting” on (Dα̃α̃)−1, we obtain w ≡ Cx + Du, where
the relation between the pairs (w, u) and (w̃, ũ) is as follows:

w ≡
(
wα̃

wᾱ

)
, u ≡

(
uα̃

uᾱ

)
,

w̃ =

(
uα̃

wᾱ

)
, ũ =

(
wα̃

uᾱ

)
,

(26)

where ᾱ is the complement of α̃ in {1, . . . ,m}. Therefore, system (25) is equivalent to
system (23) for some suitable triple (α, β, γ) that is derived from (α ′, β ′, γ ′). There-
fore, the existence of a solution to (25) follows from condition (A) on the original
triple (B,C,D). Suppose that ũ1 and ũ2 are any two solutions satisfying (25). Cor-

responding to ũi, for i = 1, 2, let w̃i ≡ C̃x + D̃ũi and (wi, ui) be defined accordingly.
It follows that Bu1 = Bu2. We have

B̃ũi = B·α̃(Dα̃α̃ )−1ũi
α̃ + [B·ᾱ −B·α(Dα̃α̃ )−1Dα̃ᾱ ]ũi

ᾱ

= B·α̃(Dα̃α̃ )−1wi
α̃ + [B·ᾱ −B·α̃(Dα̃α̃ )−1Dα̃ᾱ ]ui

ᾱ

= B·α̃(Dα̃α̃ )−1[Cx + Dui ]α̃ + [B·ᾱ −B·α̃(Dα̃α̃ )−1Dα̃ᾱ ]ui
ᾱ

= B·α̃(Dα̃α̃ )−1Cα̃·x + Bui;

hence, B̃ũ1 = B̃ũ2. This proves (b). Finally (c) is obvious.
To motivate the following discussion, consider an unobservable state x∗ = x(t∗).

In this case, (x(t), u(t)) = (eA(t−t∗)x∗, 0) is trivially an admissible solution trajectory
to (1) for t > t∗. Moreover, under assumption (A), the trajectory x(t) = eA(t−t∗)x∗ is
unique for t > t∗. Nevertheless, if D is not an R0-matrix, i.e., if the homogeneous LCP
(0, D) has a nonzero solution, then it is very difficult, if not impossible, to ascertain
the Zeno properties of (x(t), u(t)) jointly. The reason is very simple: the LCP (0, D),
which must be satisfied by the u-trajectory in this case, is totally unaffected by the
x-trajectory. Consequently, if one expects an unobservable state x∗ to be (right) non-
Zeno, one must restrict oneself to the class of matrices D for which the LCP (0, D)
has a polyhedral solution set; this is the principal motivation to introduce the class
of weakly column sufficient matrices (Definition 1).

The following result extends the key expansion Lemma 14 and is applicable to an
arbitrary tuple (A,B,C,D) satisfying condition (A).

Lemma 18. Suppose that (A,B,C,D) satisfy condition (A). Let x∗ = x(t∗)
be a given state of the solution trajectory (x(t), u(t)) such that CAjx∗ = 0 for all
j = 0, 1, . . . , k − 1 for some integer k ≥ 0. The following two statements hold:
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(a) For each t > t∗ sufficiently near t∗, there exists ut+ ∈ SOL(CAkx∗, D) such
that

x(t) =

k+1∑
j=0

( t− t∗)
j

j !
Ajx∗ +

( t− t∗ )k+1

( k + 1 ) !
But+ + O(|t− t∗|k+2),

u(t) =
( t− t∗ )k

k !
ut+ + O(|t− t∗|k+1).

(b) If k is even, then for each t < t∗ sufficiently near t∗, there exists ut+ ∈
SOL(CAkx∗, D) such that the expansion in part (a) remains valid. If k is odd, then
for each t < t∗, there exists ut− ∈ SOL(−CAkx∗, D) such that

x(t) =

k+1∑
j=0

( t− t∗)
j

j !
Ajx∗ − ( t− t∗ )k+1

( k + 1 ) !
But− + O(|t− t∗|k+2),

u(t) =
| t− t∗ |k

k !
ut− + O(|t− t∗|k+1).

Proof. We prove only statement (a). Proceeding as in the proof of Lemma 14, we
define z(t) by (15) and note that (16) and (17) must hold. By the same result due of
Gowda that we used in the proof of Proposition 16, we can deduce the existence of a
constant η > 0 such that

‖Bu(t) ‖ ≤ η [ ‖ z(t) ‖ + | t− t∗ |k ]

for all t. Consequently, it follows that (18) holds. The vector v(t) ≡ k!u(t)/|t − t∗|k
satisfies, for all t > t∗,

0 ≤ v(t) ⊥ k !C
z(t)

| t− t∗ |k
+ CAkx∗ + Dv(t) ≥ 0.

Since ‖z(t)‖ is of order |t − t∗|k+1, by the semistability of the LCP (CAkx∗, D), it
follows that for every t > t∗ sufficiently near t∗, there exists ut+ ∈ SOL(CAkx∗, D)
such that ‖v(t)− ut+‖ is of order O(|t− t∗|). The expansion for u(t) in part (a) thus
follows readily. Substituting this expansion into the differential equation

ż(t) = Az(t) +
( t− t∗ )k

k !
Ak+1x∗ + Bu(t)

= Az(t) +
( t− t∗ )k

k !
[Ak+1x∗ + But+ ] + O(| t− t∗ |k+1)

using the fact that But+ is independent of t (because BSOL(CAkx∗, D) is a singleton),
and integrating, we can deduce the desired expansion for x(t). The details are not
repeated.

On the basis of the concept of an identifiable LCP, we introduce the following.
Definition 19. A state x∗ is said to be identifiable with respect to the triple

(A,C,D) if, for each subset α of {1, . . . ,m}, if x∗ is observable with degree k with
respect to the pair (Cα·, A), then the LCPs (±Cα·A

kx∗, Dαα) are identifiable. The
state x∗ is said to be totally identifiable with respect to the tuple (A,B,C,D) if x∗ is
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identifiable with respect to all triples (Â, Ĉ, D̂), where

Â ≡ A−B·α(Dαα )−1Cα·,

Ĉ ≡ Cᾱ· −Dᾱα(Dαα )−1Cα·,

D̂ ≡ Dᾱᾱ −Dᾱα(Dαα )−1Dαᾱ,

and α, with complement ᾱ, ranges over all subsets of {1, . . . ,m} for which Dαα is
nonsingular.

The next lemma asserts that the above identifiability property is inherited by the
principal (sub)transforms of a given tuple.

Lemma 20. Suppose that x∗ is totally identifiable with respect to (A,B,C,D).
Then x∗ is also totally identifiable with respect to the following tuples:

(a) (A,B·α, Cα·, Dαα) for all subsets α of {1, . . . ,m};
(b) the principal subtuples (Â, B̂, Ĉ, D̂) associated with all legitimate principal

pivot transforms of (A,B,C,D), where

Â ≡ A−B·α(Dαα )−1Cα·, B̂ ≡ B·ᾱ −B·α(Dαα )−1Dαᾱ,

Ĉ ≡ Cᾱ· −Dᾱα(Dαα )−1Cα·, D̂ ≡ Dᾱᾱ −Dᾱα(Dαα )−1Dαᾱ,

and α, with complement ᾱ, ranges over all subsets of {1, . . . ,m} for which
Dαα is nonsingular.

Moreover, Px∗ is totally identifiable with respect to the triple (PAP−1, PB,CP−1, D)
for any nonsingular matrix P .

Proof. Statement (a) is obvious. The validity of statement (b) is based on the

observation that a tuple (
̂̂
A,

̂̂
C,

̂̂
D), where

̂̂
A ≡ Â− B̂·α̂( D̂α̂α̂ )−1Ĉα̂·,̂̂
C ≡ Ĉ ¯̂α· −D ¯̂αα̂(Dα̂α̂ )−1Ĉα̂·,̂̂
D ≡ D̂ ¯̂α ¯̂α − D̂ ¯̂αα̂( D̂α̂α̂ )−1Dα̂ ¯̂α,

and α̂, with complement ¯̂α, is a subset of ᾱ for which D̂α̂α̂ is nonsingular, can be shown
to be a principal subtuple associated with the (α ∪ α̂)-principal pivot transform of
(A,B,C,D). Hence (b) holds. The last assertion follows easily from the identity
CP−1(PAP−1)k = CAkP−1.

Our extended Zeno result for an LCS without the P-property is the following. The
statement of the theorem assumes that x∗ is neither the initial nor the terminal state
of the solution trajectory so that we do not need to pay attention to the one-sidedness
of these special states.

Theorem 21. Let D be a weakly column sufficient matrix. Suppose that condition
(A) holds for the tuple (A,B,C,D). The following two statements hold for any state
x∗ = x(t∗) and any u-trajectory:

(a) If x∗ is unobservable with respect to (C,A), then x∗ is weakly non-Zeno.
(b) If x∗ is totally identifiable with respect to the tuple (A,B,C,D), then x∗ is

weakly non-Zeno.
Proof. We follow the proof of Theorem 9. Suppose that the initial state x0 is un-

observable with respect to (C,A). In this case, the unique x-trajectory is x(t) = eAtx0
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and we have Cx(t) = 0 for all t. Hence u(t) ∈ SOL(0, D) for all t. The weak col-
umn sufficiency of D then completes the proof. So we assume that x0 is observable.
The proof of Lemma 12 shows that all subsequent states are observable. This estab-
lishes part (a). We use induction on m to prove that if x∗ is totally identifiable with
respect to (A,B,C,D), then x∗ is weakly right non-Zeno; the proof of weakly left non-
Zenoness is similar and therefore omitted. Since the LCP (CAkx∗, D) is identifiable,
where k is the observability degree of x∗ with respect to the pair (C,A), either one
of the two index sets Iu or Iw is nonempty. Without loss of generality, assume that
the former is so. By Proposition 4, there exists a scalar σ > 0 such that ui ≥ σ for
all u ∈ SOL(CAkx∗, D) and all i ∈ Iu. Consequently, by the expansion of u(t) near
t∗ as described in part (a) of Lemma 18 it follows that ui(t) > 0 for all i ∈ Iu and
all t > t∗ sufficiently near t∗. Moreover, DIuIu is nonsingular by the identifiability
assumption. Consequently, the trajectory (x(t), u(t)) must satisfy the principal sub-
transform (9) with α ≡ Iu for all t > t∗ sufficiently near t∗. The induction hypothesis
then completes the proof.

5. A special bimodal system. As an illustration of another application of the
expansion Lemma 18, we consider a special bimodal system which has D ≡ ffT ,
B ≡ bfT , and C ≡ fcT for some m-vector f and n-vectors b and c. To avoid
trivialities, we assume that f has no zero components. It is easy to see that condition
(A) holds for the triple (B,C,D) ≡ (bfT , fcT , ffT ). Notice that the LCS (1) with
this triple remains an MIMO (multiple input, multiple output) system; nevertheless,
it is a bimodal system because of the lemma below.

Lemma 22. The LCP

0 ≤ u ⊥ fcTx + ffTu ≥ 0

has a solution for all x ∈ �n; moreover, for any such solution u, fTu = 0 if fcTx ≥ 0,
and cTx + fTu = 0 otherwise. Consequently,

SOL(fcTx, ffT ) =

{
{u ≥ 0 : fTu = 0 } if fcTx ≥ 0,

{u ≥ 0 : cTx + fTu = 0 } otherwise.

Proof. If fcTx ≥ 0, then u = 0 is a solution of the LCP. Since fTu is a constant
on the solution set of this LCP, it follows that fTu = 0 for all such solutions in this
case. If fcTx ≥ 0, then fTu = 0 for all solutions of the LCP. For any such solution
u, we have

0 = ( fTu ) ( cTx ) + ( fTu )2,

which yields cTx + fTu = 0 as claimed. The representation of SOL(fcTx, ffT ) is
easy to establish.

In view of the above lemma, it follows that the LCS (1) is of the following bimodal
kind:

ẋ =

{
Ax if fcTx ≥ 0,

(A− bcT )x otherwise.

Since f = 0, it is clear that x∗ is an observable state of the pair (C,A) if and only if the
scalar cTAkx∗ = 0 for some integer k ≥ 0. If cTx∗ = · · · = cTAk−1x∗ = 0 = cTAkx∗,
Lemma 18 implies that, for t > t∗,

cTx(t) =
( t− t∗ )k

k !
cTAkx∗ + O(|t− t∗|k+1).
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Since cTAkx∗ is a nonzero scalar, it follows that cTx(t) is nonzero and of one sign
for all t > t∗ sufficiently near t∗. Since f is a constant vector, it follows that either
fcTx(t) ≥ 0 for all t > t∗ sufficiently near t∗, which implies fTu(t) = 0 for all
u(t) ∈ SOL(fcTx(t), ffT ), or cTx(t) + fTu(t) = 0 for all such t. In the latter case,
it follows that x∗ is a weakly right non-Zeno state with respect to the trajectory
(x(t), u(t)). In the former case, f must be either a positive or a negative vector
depending on whether cTAkx∗ > 0 or cTAkx∗ < 0; in either case, we must have
u(t) = 0 for all t > t∗ sufficiently near t∗ because fTu(t) = 0 and u(t) ≥ 0. This is
enough to show that x∗ is a weakly right non-Zeno state. A similar argument will
establish that x∗ is also a weakly left non-Zeno state. We have, therefore, proved the
following result for an observable state. The proof of the result for an unobservable
state is the same as before and is not repeated.

Theorem 23. Let (B,C,D) ≡ (bfT , fcT , ffT ), where f has no zero component.
The LCS (1) has no Zeno states of the second kind.

6. Concluding remarks. In this paper, via a basic expansion of the solution
trajectory near a given time, we have shown that an LCS with the P-property has no
Zeno states of the first kind, that the totally identifiable states of an LCS with the
weakly column sufficient property are weakly non-Zeno, and that a certain bimodal
LCS has no Zeno states of the second kind. Subsequently to the completion to this
work, we have extended the results in several directions, in particular, to a special
LCS of the “positive semidefinite plus” type [12] and to a strongly regular nonlinear
complementarity system [22]. An interesting extension that we have not yet resolved
is the case where D = 0 and CB is positive definite (but not symmetric). Such an LCS
is not necessarily passifiable. Lastly, in the paper [22], we use the results established
herein to study the “local observability” of an LCS.
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Abstract. This paper is concerned with an optimal control problem for quasi-linear elliptic
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1. Introduction. The variational inequalities and related optimal control prob-
lems have been studied extensively in the literature; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30] and the reference
therein. Recently, various control problems for bilateral variational inequalities have
been considered in [7, 14, 15, 16]. When the governing system is an obstacle vari-
ational inequality, the obstacle can also be regarded as the control. Such a case is
referred to as an obstacle optimal control problem. To the best of our knowledge,
such a problem was first studied in [1]. For the homogeneous case, an optimal obsta-
cle control problem for an elliptic variational inequality is considered there. By virtue
of the properties of the superharmonic functions, the existence and uniqueness as well
as characterizations of the optimal pair are established in [1]. To study the obstacle
optimal control problem for more general systems, an indirect obstacle control model
is suggested in [11, 12, 13]. Motivated by [1] and [11], the regularity of the obstacle
control problem has been investigated in [25] and [26]. The work in [1] has been ex-
tended by adding a nonzero source term to the right-hand side of the state equation
and it has been found in [2] that such an extension is not trivial.

In this paper, we consider an obstacle optimal control problem for the quasi-linear
case. The main feature of our problem is that the state satisfies a quasi-linear elliptic
bilateral variational inequality and the input control is the pair of upper and lower
obstacles, as stated as follows:⎧⎨⎩

ϕ ≤ y ≤ ψ,

−divA(x,∇y)(y − ϕ) ≤ 0,

−divA(x,∇y)(y − ψ) ≤ 0,

(1.1)
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where A(x, ·) is nonlinear.
In practice, there are many real physical or geometrical problems related to ob-

stacle variational inequalities (cf. [28]). Except for some ideal cases, the governing
equations are usually quasi-linear or nonlinear. A typical example is that in the study
of non-Newtonian fluids [17]

A(∇y) = |∇y|p−2∇y.

Another example is that in the study of a minimal surface with obstacle [23, 28]

A(∇y) = (1 + |∇y|2)− 1
2∇y.

Similar cases occur in evolutionary problems. We found that the techniques developed
in [1, 2] do not work when A(x, ·) is nonlinear. Hence, from both theoretical and
practical points of view, it is necessary to study the case with A(x, ·) nonlinear.

Suppose Ω ⊂ Rn is a bounded domain with a C1,1 boundary ∂Ω. Let zd ∈ L2(Ω)
be a given target profile. For any ϕ,ψ ∈ W 1,p

0 (Ω), we define

K(ϕ,ψ) = {z ∈ W 1,p
0 (Ω)|ϕ ≤ z ≤ ψ a.e. x ∈ Ω}

and consider a weak formulation of quasi-linear elliptic bilateral obstacle problem
(1.1): ⎧⎨⎩y ∈ K(ϕ,ψ),∫

Ω

A(x,∇y) · ∇(z − y)dx ≥ 0 ∀z ∈ K(ϕ,ψ),
(1.2)

where

A(x, η) = (a1(x, η), . . . , an(x, η)).(1.3)

Given ϕ,ψ ∈ W 1,p
0 (Ω), under some further mild assumptions on A(x, η) (see (H1) and

(H2) below), the variational inequality (1.2) is uniquely solvable [22]. We will denote
the unique solution of (1.2) corresponding to (ϕ,ψ) by y = T (ϕ,ψ).

Let

W = W 2,p(Ω) ∩W 1,p
0 (Ω)

and

Uad = {(ϕ,ψ) ∈ W ×W |ϕ ≤ ψ a.e. Ω}.

We seek a pair of (ϕ̄, ψ̄) ∈ Uad so that the corresponding state ȳ = T (ϕ̄, ψ̄) is close
to the desired target profile zd and the norm of (ϕ̄, ψ̄) is not too large in W × W .
Consequently, we take our objective functional as

J(ϕ,ψ) =

∫
Ω

{
1

2
(T (ϕ,ψ) − zd)

2 +
1

p
[|Δϕ|p + |Δψ|p]

}
dx,(1.4)

which we try to minimize. More precisely, in this paper we study the following optimal
control problem.

Problem (P). Find a pair of control (ϕ̄, ψ̄) ∈ Uad such that

J(ϕ̄, ψ̄) = inf
Uad

J(ϕ,ψ).(1.5)
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One may also consider the case in which state constraints are presented. We will
treat the problem with state constraints in a separate paper.

Related to Problem (P), we make the following two assumptions on A(x, η) in
(1.3):

(H1) For any η = (η1, . . . , ηn) ∈ Rn, aj(·, η) is a measurable function on Ω with
aj(·, 0) = 0 and for any x ∈ Ω, aj(x, ·) belongs to C1(Rn), j = 1, . . . , n.

(H2) For any p ≥ 2, x ∈ Ω, and all ξ, η ∈ Rn

n∑
i,j=1

∂aj
∂ηi

(x, η)ξiξj ≥ Λ1(k + |η|)p−2|ξ|2,

n∑
i,j=1

∣∣∣∣∂aj∂ηi
(x, η)

∣∣∣∣ ≤ Λ2|η|p−2,

where k ∈ (0, 1], and Λ1 and Λ2 are some positive constants.
The following lemma is an immediate consequence of assumptions (H1) and (H2).
Lemma 1 (cf. [10]). Under assumptions (H1)–(H2), there are positive constants

k1 and k2 depending only on n, Λ1, and Λ2 such that for any x ∈ Ω, η = (η1, . . . , ηn) ∈
Rn, and η′ = (η′1, . . . , η

′
n) ∈ Rn

(a)

n∑
j=1

(aj(x, η) − aj(x, η
′))(ηj − η′j) ≥ k1|η − η′|p.

(b)

n∑
j=1

|aj(x, η)| ≤ k2|η|p−1.

In Problem (P) the cost functional is of Lagrange-type in which the Laplacian
of the control (obstacle) appears. Such a term provides certain compactness of the
control. As a direct result, the existence of the optimal control is almost routine.
Consequently, the following existence theorem for Problem (P) can be obtained by
some standard ideas with some suitable variational inequality techniques.

Theorem 2. Under assumptions (H1) and (H2), there exists an optimal solution
(ϕ̄, ψ̄) to Problem (P).

In this paper, our main purpose is to establish the optimality system for Problem
(P). In general, when the penalty on control is stronger (in the current case, the
second derivative appears in the cost functional), the proof on the existence of optimal
control becomes easier because of the stronger convergence property in the minimizing
sequence. However, at the same time, the derivation of necessary conditions will
become harder, since the corresponding duality relation has to be established in a
bigger space. In addition, when the state equation is a variational inequality, one
has to prove the convergence of the approximate adjoint equation, which is difficult
since the approximate adjoint equation is defined in a very weak sense, and then some
measure term will occur in the limit. As far as the optimality system is concerned, it
is incomplete as long as the measure which intervenes in the adjoint equation has not
been precisely described. To derive the optimality system for Problem (P), we have
adopted the W 2,p framework, which, however, causes some further difficulties due to
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the lack of weak continuity of the leading differential operator in the approximate
optimality systems. We have overcome the encountered difficulties by making full
use of the special structure of the approximate optimality systems, including the
monotonicity of the leading differential operator.

The rest of the paper is organized as follows. In section 2 some necessary support
results are derived by studying an approximate optimal control problem. Then in
section 3 the optimality system for Problem (P) is established, in which the support
of the measure (mentioned above) has been well described. Finally, some conclusions
are given in section 4.

2. An approximate problem and its convergence property. In this section
we derive some necessary support results by studying an approximate problem related
to Problem (P).

Let ε > 0 and (ϕ,ψ) ∈ Uad. We consider the following quasi-linear elliptic equa-
tion: {

−divA(x,∇y) +
1

ε
[β(y − ϕ) + γ(y − ψ)] = 0 in Ω,

y|∂Ω = 0,
(2.1)

where

β(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, r > 0,

−r2, −1

2
≤ r ≤ 0,

r +
1

4
, r < −1

2
,

and

γ(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, r < 0,

r2, 0 ≤ r ≤ 1

2
,

r − 1

4
, r >

1

2
.

As β(·) and γ(·) are nondecreasing, it is known that the above equation is uniquely
solvable and the solution will be denoted by yε = T ε(ϕ,ψ).

The following lemma gives the Gâteaux-derivative of the operator T ε.
Lemma 3. Let (ξ, ζ) ∈ Uad. Then we have

T ε(ϕ + tξ, ψ + tζ) − T ε(ϕ,ψ)

t

w
⇀ wε in W 1,p

0 (Ω) (t → 0+),(2.2)

where wε satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div

(
∂A

∂η
(x,∇yε)∇wε

)
+

1

ε
[β′(yε − ϕ) + γ′(yε − ψ)]wε

=
1

ε
[β′(yε − ϕ)ξ + γ′(yε − ψ)ζ] in Ω,

wε|∂Ω = 0

(2.3)

with yε = T ε(ϕ,ψ).
Proof. First note that for any t > 0 and (ϕ,ψ), (ξ, ζ) ∈ Uad, we always get

(ϕ + tξ, ψ + tζ) ∈ Uad.
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The rest of the proof of Lemma 3 is similar to that of [10, Theorem 3.1] and is
omitted here.

Let (ϕ̄, ψ̄) be an optimal solution to Problem (P) and let ȳ = T (ϕ̄, ψ̄).
For any ε > 0, we define

Jε(ϕ,ψ) =

∫
Ω

{
1

2
(T ε(ϕ,ψ) − zd)

2 +
1

p
[|Δϕ|p + |Δψ|p + |ϕ− ϕ̄|p + |ψ − ψ̄|p]

}
dx

and investigate the following approximate optimal control problem.
Problem (Pε). Find a pair of control (ϕε, ψε) ∈ Uad such that

Jε(ϕε, ψε) = inf
Uad

Jε(ϕ,ψ).

Similar to Theorem 2, we can prove the existence for the approximate optimal
control problem (Pε).

Theorem 4. Problem (Pε) has (at least) an optimal solution.
In the following we derive the optimality system for Problem (Pε).
Theorem 5. Assume (ϕε, ψε) is an optimal solution to Problem (Pε) and yε =

T ε(ϕε, ψε). Then, there exists pε ∈ H1
0 (Ω) such that the following optimality system

is satisfied: {
−divA(x,∇yε) +

1

ε
[β(yε − ϕε) + γ(yε − ψε)] = 0 in Ω,

yε|∂Ω = 0,
(2.4)

⎧⎨⎩−div

(
∂A

∂η
(x,∇yε)T∇pε

)
+

1

ε
[β′(yε −ϕε) + γ′(yε −ψε)]pε = yε − zd in Ω,

pε|∂Ω = 0,
(2.5)

and ∫
Ω

[
1

ε
β′(yε − ϕε)pε + |ϕε − ϕ̄|p−2(ϕε − ϕ̄)

]
(ϕ− ϕε)dx

+

∫
Ω

[
1

ε
γ′(yε − ψε)pε + |ψε − ψ̄|p−2(ψε − ψ̄)

]
(ψ − ψε)dx

+

∫
Ω

[|Δϕε|p−2ΔϕεΔ(ϕ− ϕε) + |Δψε|p−2ΔψεΔ(ψ − ψε)]dx

≥ 0 ∀(ϕ,ψ) ∈ Uad.

(2.6)

Proof. As (ϕε, ψε) is a solution to Problem (Pε), we have

∀(ϕ,ψ) ∈ Uad, lim inf
t→0+

Jε(ϕε + t(ϕ− ϕε), ψε + t(ψ − ψε)) − Jε(ϕε, ψε)

t
≥ 0.

This gives∫
Ω

[wε(yε − zd) + |Δϕε|p−2ΔϕεΔ(ϕ− ϕε) + |Δψ|p−2ΔψεΔ(ψ − ψε)]dx

+

∫
Ω

[|ϕε − ϕ̄|p−2(ϕε − ϕ̄)(ϕ−ϕε) + |ψε − ψ̄|p−2(ψε − ψ̄)(ψ−ψε)]dx≥ 0,
(2.7)
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where wε ∈ H1
0 (Ω) satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−div

(
∂A

∂η
(x,∇yε)∇wε

)
+

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)]wε

=
1

ε
[β′(yε − ϕε)(ϕ− ϕε) + γ′(yε − ψε)(ψ − ψε)] in Ω,

wε|∂Ω = 0.

Let pε be the solution of linear equation (2.5); then we obtain∫
Ω

wε(yε − zd)dx

=

∫
Ω

{
∇wε · ∂A

∂η
(x,∇yε)T∇pε +

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)]pεwε

}
dx

=

∫
Ω

1

ε
[β′(yε − ϕε)(ϕ− ϕε) + γ′(yε − ψε)(ψ − ψε)]pεdx.

This leads to (2.6).
Remark 1. Using the so-called monotonicity inequality (cf. [21])

(|A|p−2A− |B|p−2B) · (A−B) ≥ 0 (A,B ∈ Rn)

we can deduce from (2.6) that∫
Ω

[
1

ε
β′(yε − ϕε)pε + |ϕε − ϕ̄|p−2(ϕε − ϕ̄)

]
(ϕ− ϕε)dx

+

∫
Ω

[
1

ε
γ′(yε − ψε)pε + |ψε − ψ̄|p−2(ψε − ψ̄)

]
(ψ − ψε)dx

+

∫
Ω

[|Δϕ|p−2ΔϕΔ(ϕ− ϕε) + |Δψ|p−2ΔψΔ(ψ − ψε)]dx

≥ 0 ∀(ϕ,ψ) ∈ Uad.

(2.8)

Remark 2. Inequality (2.6) implies∫
Ω

[
1

ε
β′(yε − ϕε)pε + |ϕε − ϕ̄|p−2(ϕε − ϕ̄)

]
wdx

+

∫
Ω

[
1

ε
γ′(yε − ψε)pε + |ψε − ψ̄|p−2(ψε − ψ̄)

]
wdx

+

∫
Ω

[|Δϕε|p−2Δϕε + |Δψε|p−2Δψε]Δwdx = 0 ∀w ∈ W.

(2.9)

The above two remarks will play an important role in deriving the optimality
system for the original Problem (P).

Next we consider the convergence of solution of the approximate problem—
Problem (Pε) as ε goes to 0+.

Lemma 6. Assume yε = T ε(ϕε, ψε). Then∫
Ω

A(x,∇yε) · ∇yεdx ≤
∫

Ω

A(x,∇yε) · ∇zdx ∀z ∈ K(ϕε, ψε).
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Proof. From the approximate equation (2.1), we have

∫
Ω

A(x,∇yε) · ∇udx +
1

ε

∫
Ω

[β(yε − ϕε) + γ(yε − ψε)]udx = 0 ∀u ∈ W 1,p
0 (Ω).

(2.10)

For any z ∈ K(ϕε, ψε), substituting u = yε − z in (2.10), we obtain∫
Ω

A(x,∇yε) · ∇(yε − z)dx +
1

ε

∫
Ω

[β(yε − ϕε) + γ(yε − ψε)](yε − z)dx = 0.(2.11)

Note that β(yε(x)−ϕε(x)) differs from 0 only when yε(x) < ϕε(x), and γ(yε(x)−ψε(x))
differs from 0 only when yε(x) > ψε(x). In any case we have, for any z ∈ K(ϕε, ψε),

[β(yε − ϕε) + γ(yε − ψε)](yε − z) ≥ 0 a.e. in Ω.

Thus, we get ∫
Ω

A(x,∇yε) · ∇(yε − z)dx ≤ 0 ∀z ∈ K(ϕε, ψε).

Theorem 7. Let (ϕ̄, ψ̄) be an optimal solution to Problem (P) and (ϕε, ψε) any
optimal solution to Problem (Pε) for any ε > 0. Then for p > n,

(ϕε, ψε)
w
⇀ (ϕ̄, ψ̄) in W 2,p(Ω) ×W 2,p(Ω),

(ϕε, ψε)
s→ (ϕ̄, ψ̄) in W 1,p

0 (Ω) ×W 1,p
0 (Ω),

yε = T ε(ϕε, ψε)
s→ y = T (ϕ̄, ψ̄) in W 1,p

0 (Ω),

(2.12)

and

lim
ε→0+

Jε(ϕε, ψε) = J(ϕ̄, ψ̄).(2.13)

Proof. First, we note that

1

p

∫
Ω

(|Δϕε|p + |Δψε|p)dx ≤ Jε(ϕε, ψε) ≤ Jε(0, 0) =
1

2

∫
Ω

|zd|2dx +
1

p

∫
Ω

(|ϕ̄|p + |ψ̄|p)dx.

Thus (Δϕε,Δψε) is bounded in W 2,p(Ω)×W 2,p(Ω). We may assume, extracting some
subsequence if necessary,

(ϕε, ψε)
w
⇀ (ϕ,ψ) in W 2,p(Ω) ×W 2,p(Ω),

(ϕε, ψε)
s→ (ϕ,ψ) in W 1,p

0 (Ω) ×W 1,p
0 (Ω).

Applying Lemmas 1 and 6 and Hölder’s inequality we get

k1

∫
Ω

|∇yε|pdx≤
∫

Ω

A(x,∇yε) · ∇yεdx

≤
∫

Ω

A(x,∇yε) · ∇ϕεdx

≤ k2‖∇yε‖p−1
p ‖∇ϕε‖p.
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This implies that yε is bounded in W 1,p
0 (Ω). Hence, for some subsequence, we have

yε
w
⇀ y in W 1,p

0 (Ω),

yε
s→ y in Lp(Ω).

Moreover, from Lemma 1(b), we can deduce that

‖A(x,∇yε)‖p′ ≤ C.(2.14)

For any η ∈ W 1,p
0 (Ω), it follows from (2.10) that∫

Ω

[β(yε − ϕε) + γ(yε − ψε)]ηdx = −ε

∫
Ω

A(x,∇yε) · ∇ηdx → 0

because the integral on the right-hand side is bounded. Then, by Lebesgue’s domi-
nated convergence theorem, we have∫

Ω

[β(y − ϕ) + γ(y − ψ)]ηdx = 0.

This implies that

β(y − ϕ) + γ(y − ψ) = 0 a.e. in Ω

due to the arbitrariness of η. By the definition of β(·) and γ(·), we have

ϕ(x) ≤ y(x) ≤ ψ(x) a.e. in Ω,

i.e., y ∈ K(ϕ,ψ).
We further claim that yε strongly converges to y in W 1,p

0 (Ω). In fact, let vε =
inf(sup(y, ϕε), ψε); then vε ∈ K(ϕε, ψε) and vε strongly converges to y in W 1,p

0 (Ω).
By Lemma 6, we have∫

Ω

A(x,∇yε) · ∇yεdx ≤
∫

Ω

A(x,∇yε) · ∇vεdx.(2.15)

From Lemma 1, (2.14), and (2.15), we can further deduce that

0≤ k1

∫
Ω

|∇(yε − y)|pdx

≤
∫

Ω

(A(x,∇yε) −A(x,∇y)) · (∇yε −∇y)dx

≤
∫

Ω

A(x,∇yε) · (∇vε −∇y)dx−
∫

Ω

A(x,∇y) · (∇yε −∇y)dx → 0.

Therefore,

∇yε
s→ ∇y in Lp(Ω)(2.16)

and by (H1)

A(x,∇yε) → A(x,∇y) a.e. in Ω.(2.17)
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By (2.14) and (2.17), we conclude that

A(x,∇yε)
w
⇀ A(x,∇y) in Lp′

(Ω).(2.18)

It remains to prove y = T (ϕ,ψ). For every z ∈ K(ϕ,ψ), let zε = inf(sup(z, ϕε), ψε);
then zε ∈ K(ϕε, ψε) and zε strongly converges to z in W 1,p

0 (Ω). Again by Lemma 6,
we have ∫

Ω

A(x,∇yε) · ∇yεdx ≤
∫

Ω

A(x,∇yε) · ∇zεdx.(2.19)

Then, with (2.16) and (2.18), we may pass to the limit in (2.19) and get∫
Ω

A(x,∇y) · ∇ydx ≤
∫

Ω

A(x,∇y) · ∇zdx.(2.20)

This gives
∫
Ω
A(x,∇y) · ∇(z − y)dx ≥ 0 for every z ∈ K(ϕ,ψ) and, therefore, y =

T (ϕ,ψ).
As Uad is closed, then (ϕ,ψ) ∈ Uad. Using the weak lower semicontinuity of the

Lp-norm, we obtain

J(ϕ,ψ) +
1

p
[‖ϕ− ϕ̄‖pp + ‖ψ − ψ̄‖pp]≤ lim inf

ε→0+
Jε(ϕε, ψε)

≤ lim sup
ε→0+

Jε(ϕε, ψε)

≤ lim
ε→0+

Jε(ϕ̄, ψ̄) = J(ϕ̄, ψ̄)

≤J(ϕ,ψ).

(2.21)

This yields ‖ϕ− ϕ̄‖pp + ‖ψ − ψ̄‖pp ≤ 0; so ϕ = ϕ̄, ψ = ψ̄, and hence y = ȳ = T (ϕ̄, ψ̄).
In addition, we see that

lim
ε→0+

Jε(ϕε, ψε) = J(ϕ̄, ψ̄).(2.22)

Finally, the uniqueness of the limit point implies the convergence of the whole
sequence of (ϕε, ψε) and the whole sequence of yε as well.

3. Optimality system for Problem (P). Now, we are in a position to estab-
lish the optimality system for the original Problem (P).

Theorem 8. Assume (H1) and (H2). Let (ȳ, ϕ̄, ψ̄) be an optimal triple to Problem
(P). Then there exist p̄ ∈ H1

0 (Ω) and μ̄ ∈ H−1(Ω) ∩M(Ω̄) satisfying⎧⎨⎩−div

(
∂A

∂η
(x,∇ȳ)T∇p̄

)
+ μ̄ = ȳ − zd in Ω,

p̄|∂Ω = 0,

(3.1)

and

supp μ̄ ⊂ {x ∈ Ω| ȳ(x) = ϕ̄(x) or ȳ(x) = ψ̄(x)}
(
as p >

n

2

)
(3.2)

such that

Δ(|Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄) + μ̄ = 0 in Ω,(3.3)
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where M(Ω̄) is the set of all regular signed measures on Ω̄.
Proof. First consider the approximate problems (Pε) related to (ȳ, ϕ̄, ψ̄). Let

(yε, ϕε, ψε) be any optimal triple to Problem (Pε). Then, by Theorem 5, the optimality
condition (2.6) followed by (2.8) and (2.9) holds for some pε ∈ H1

0 (Ω) satisfying (2.5)
or equivalently that, for any u ∈ H1

0 (Ω),

∫
Ω

∇uT ∂A

∂η
(x,∇yε)T∇pεdx +

∫
Ω

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)]pεudx =

∫
Ω

(yε − zd)udx.

(3.4)

We put u = pε in (3.4) to obtain

∫
Ω

(∇pε)T
∂A

∂η
∇pεdx +

∫
Ω

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)](pε)2dx =

∫
Ω

(yε − zd)p
εdx.

(3.5)

By (H2), we get

Λ1

∫
Ω

(k + |∇yε|)p−2|∇pε|2dx +

∫
Ω

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)](pε)2dx ≤ C‖pε‖2.

Then

‖pε‖H1
0 (Ω) ≤ C,

where C is independent of ε. This implies that, for some subsequence,

pε
w
⇀ p̄ in H1

0 (Ω).(3.6)

Denote

με
ϕ =

1

ε
β′(yε − ϕε)pε, με

ψ =
1

ε
γ′(yε − ψε)pε; με = με

ϕ + με
ψ.

From (3.4) we get∣∣∣∣∫
Ω

μεudx

∣∣∣∣≤ ∣∣∣∣∫
Ω

(yε − zd)udx

∣∣∣∣ +

∣∣∣∣∣
∫

Ω

∇uT

(
∂A

∂η

)T

∇pεdx

∣∣∣∣∣
≤C‖u‖H1

0 (Ω) ∀u ∈ H1
0 (Ω),

(3.7)

i.e.,

‖με‖H−1(Ω) ≤ C,

where C is independent of ε.
Furthermore, let Sτ (r) ∈ C1(R)(τ > 0) be a family of smooth approximations to

sign r, satisfying the following:

S′
τ (r) ≥ 0 ∀r ∈ R

and

Sτ (r) =

⎧⎨⎩
1 if r > τ,
0 if r = 0,
−1 if r < −τ.
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Putting u = Sτ (p
ε) in (3.4), we get∫

Ω

S′
τ (p

ε)(∇pε)T
∂A

∂η
∇pεdx +

∫
Ω

μεSτ (p
ε)dx =

∫
Ω

(yε − zd)Sτ (p
ε)dx.

This gives ∫
Ω

μεSτ (p
ε)dx ≤ C.

Letting τ → 0+, we have

‖με‖L1(Ω) (= ‖με
ϕ‖L1(Ω) + ‖με

ψ‖L1(Ω)) ≤ C.

Thus, extracting some subsequence if necessary, we may let

με
ϕ

w
⇀ μ̄ϕ in M(Ω̄),

με
ψ

w
⇀ μ̄ψ in M(Ω̄),

με w
⇀ μ̄ in H−1(Ω) ∩M(Ω̄),

(3.8)

with μ̄ = μ̄ϕ + μ̄ψ.
Passing to the limit in (2.8), we get

〈μ̄ϕ, ϕ− ϕ̄〉 + 〈μ̄ψ, ψ − ψ̄〉
+

∫
Ω

[|Δϕ|p−2ΔϕΔ(ϕ− ϕ̄) + |Δψ|p−2ΔψΔ(ψ − ψ̄)]dx

≥ 0 ∀(ϕ,ψ) ∈ Uad

(3.9)

and consequently

〈μ̄, w〉 +

∫
Ω

[|Δ(ϕ̄ + w)|p−2Δ(ϕ̄ + w) + |Δ(ψ̄ + w)|p−2Δ(ψ̄ + w)]Δwdx

≥ 0 ∀w ∈ W.

(3.10)

Noting that

‖|Δϕε|p−2Δϕε + |Δψε|p−2Δψε‖p′ ≤ ‖Δϕε‖p−1
p + ‖Δψε‖p−1

p ≤ C

we may assume that, for some subsequence,

|Δϕε|p−2Δϕε + |Δψε|p−2Δψε w
⇀ F in Lp′

(Ω).

Taking the limit in (2.9), we obtain

〈μ̄, w〉 +

∫
Ω

FΔwdx = 0 ∀w ∈ W.(3.11)

To prove (3.3), we need only to clarify that

F = |Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄.(3.12)

Combining (3.10) and (3.11), we have

∫
Ω

FΔwdx ≤
∫

Ω

[|Δ(ϕ̄ + w)|p−2Δ(ϕ̄ + w) + |Δ(ψ̄ + w)|p−2Δ(ψ̄ + w)]Δwdx ∀w ∈ W.

(3.13)
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For any given χ ∈ W, choosing w = δχ (δ > 0) in (3.13), then dividing it by δ and
sending δ → 0+, we get∫

Ω

FΔχdx ≤
∫

Ω

[|Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄]Δχdx.(3.14)

On the other hand, choosing w = δχ (δ < 0) in (3.13), then dividing it by δ and
sending δ → 0−, we get∫

Ω

FΔχdx ≥
∫

Ω

[|Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄]Δχdx.(3.15)

Thus, (3.12) follows.
To verify that p̄ satisfies (3.1), it suffices to show that for any u ∈ H1

0 (Ω)∫
Ω

∇uT ∂A

∂η
(x,∇yε)T∇pεdx →

∫
Ω

∇uT ∂A

∂η
(x,∇ȳ)T∇p̄dx (ε → 0+).(3.16)

Obviously, ∫
Ω

∇uT

(
∂A

∂η
(x,∇yε)T∇pε − ∂A

∂η
(x,∇ȳ)T∇p̄

)
dx

=

∫
Ω

∇uT

(
∂A

∂η
(x,∇yε)T − ∂A

∂η
(x,∇ȳ)T

)
∇pεdx

+

∫
Ω

∇uT ∂A

∂η
(x,∇ȳ)T (∇pε −∇p̄)dx.

(3.17)

From (3.6), we get∫
Ω

∇uT ∂A

∂η
(x,∇ȳ)T (∇pε −∇p̄)dx → 0 (ε → 0+).(3.18)

By (H2), we know that
∑n

i,j=1
∂aj

∂ηi
(x, η) is bounded. Then by Lebesgue’s dominated

convergence theorem∫
Ω

∣∣∣∣∇uT

(
∂A

∂η
(x,∇yε)T − ∂A

∂η
(x,∇ȳ)T

)∣∣∣∣2 dx → 0 (ε → 0+).(3.19)

Thus, using Hölder’s inequality, we have

∣∣∣∣∫
Ω

∇uT

(
∂A

∂η
(x,∇yε)T − ∂A

∂η
(x,∇ȳ)T

)
∇pεdx

∣∣∣∣
≤

(∫
Ω

∣∣∣∣∇uT

(
∂A

∂η
(x,∇yε)T − ∂A

∂η
(x,∇ȳ)T

)∣∣∣∣2 dx
)1/2 (∫

Ω

|∇pε|2dx
)1/2

→ 0 (ε → 0+).

(3.20)

Hence, in view of (3.17), (3.18), and (3.20), (3.16) holds.
Finally, we prove (3.2), which is understood as the following: for any χ ∈ C(Ω̄)

with suppχ ⊂ Ω′ = {x ∈ Ω| ϕ̄(x) < ȳ(x) < ψ̄(x)},

〈μ̄, χ〉M(Ω̄),C(Ω̄) = 0.(3.21)
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In fact, for p > n
2 , the W 2,p-bounded subset is relatively compact in Cα(Ω̄) for

some α ∈ (0, 1). Then, for any χ ∈ C(Ω̄) with supp χ ⊂ Ω′, the uniform convergence
of the approximate optimal triple of control and state (cf. Theorem 7), combined with
the compactness of supp χ, ensures that, for some ε0 > 0,

ϕε(x) < yε(x) < ψε(x) ∀x ∈ suppχ, 0 < ε < ε0,

which yields

〈μ̄, χ〉M(Ω̄),C(Ω̄) = lim
ε→0+

∫
Ω

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)]pεχdx

= lim
ε→0+

∫
supp χ

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)]pεχdx

= 0.

Thus, (3.2) holds.
Similarly, we can further prove that

supp μ̄ϕ ⊂ {x ∈ Ω| ȳ(x) = ϕ̄(x)}

and

supp μ̄ψ ⊂ {x ∈ Ω| ȳ(x) = ψ̄(x)}.

The proof is complete.

4. Conclusions. In this paper we have studied the obstacle optimal control
problem—Problem (P). The main contribution of the present work is Theorem 8, in
which the optimality system for Problem (P) is obtained.

The present paper basically treated the problem without state constraints. One
may consider the case in which state constraints are presented. However, different
techniques are needed for solving the problem with different state constraints. Hence,
the obstacle optimal control problem with state constraints are worthy of further
investigation.

Acknowledgment. The authors are grateful to the anonymous referees for their
invaluable comments and suggestions.
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STATE AND MODE ESTIMATION FOR DISCRETE-TIME JUMP
MARKOV SYSTEMS∗

ROBERT J. ELLIOTT† , FRANCOIS DUFOUR‡ , AND W. P. MALCOLM§

Abstract. In this article we compute new state and mode estimation algorithms for discrete-time
Gauss–Markov models whose parameter sets switch according to a known Markov law. An important
feature of our algorithms is that they are based upon the exact filter dynamics computed in [R. J.
Elliott, F. Dufour, and D. Sworder, IEEE Trans. Automat. Control, 41 (1996), pp. 1807–1810].

The fundamental and well-known obstacle in estimation of jump Markov systems is managing
the geometrically growing history of candidate hypotheses. In our scheme, we address this issue by
proposing an extension of an idea due to Viterbi. Our scheme maintains a fixed number of candidate
paths in a history, each identified by an optimal subset of estimated mode probabilities.

We compute finite-dimensional suboptimal filters and smoothers, which estimate the hidden state
process and the mode probability. Our smoothers are based upon a duality between forward and
backward dynamics. Further, our smoothing algorithms are general and can be configured into the
standard forms of fixed point, fixed lag, and fixed interval smoothers. A computer simulation is
included to demonstrate performance.

Key words. reference probability, jump Markov systems, hybrid dynamics, Viterbi algorithm,
filtering, smoothing
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DOI. 10.1137/S0363012904442628

1. Introduction. In this article the reference probability method is used to
compute state and mode estimation schemes for a discrete-time stochastic hybrid
dynamical system.

Gauss–Markov jump linear systems arise quite naturally in many practical set-
tings, for example, tracking a maneuvering object observed through radar. Here, no
single set of dynamics will encapsulate all classes of motion, so one is led naturally to
a hybrid collection of dynamics as a basic model. The estimation task for such mod-
els is significantly complicated by the need to jointly estimate a hidden state variable
and the current model in effect. Currently, many of the standard techniques to solve
this problem are ad hoc and not based upon the exact hybrid filter dynamics, which
were presented in [5]. In contrast to this situation, our new filters and smoothers for
Gauss–Markov jump linear systems are developed from the exact hybrid dynamics.
Using a general result (see Lemma 2 in section 3), we propose a new suboptimal
algorithm which provides an exact hypothesis management scheme, circumventing
geometric growth in algorithmic complexity. Our approach is based, in part, upon
approximating probability densities by finite Gaussian mixtures and is justified by
the basic results given in [15].

In a simulation study, a comparison is given between the single extended Kalman
filter (EKF), the IMM, and our algorithm. We also compute a general smoothing
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algorithm for discrete-time hybrid dynamical system. To compute this algorithm,
we exploit a duality between forward and backward (dual) dynamics. An interest-
ing feature of our smoother is that it provides a new degree of freedom, that is, the
product decomposition of the smoother density is approximated by mutually inde-
pendent Gaussian mixtures, where the chosen accuracy of “the past” (influencing the
smoother density) is independent of the chosen accuracy of “the future” (influencing
the smoother density).

This paper is organized as follows. In section 2 we define the hybrid system dy-
namics and the reference probability measure. In section 3, we compute an exact
filter for a hybrid dynamical system. Here, we suppose that our filter probability
densities can be represented as finite Gaussian mixtures. This leads to a suboptimal
filter whose memory requirements are fixed in time. Identities are given for the filter
conditional mean estimate of the state and the filter conditional mean estimate of
the corresponding state error covariance. In section 4 we compute an exact smoother
for a hybrid system. In this section, we again suppose that certain functions can
be represented as Gaussian mixtures. By using the same techniques as in section 3,
we compute a suboptimal smoothing algorithm whose memory requirements are fixed
in time. Identities are given for the smoother conditional mean estimate of the state
and the smoother conditional mean estimate of the corresponding state error covari-
ance. Finally, in section 5, we present a simulation study comparing the IMM and
the extended Kalman filter to the new filter presented in section 3.

2. Dynamics and reference probability. Initially we suppose that all pro-
cesses are defined on a fixed probability space (Ω,F , P ). For the class of jump Markov
systems considered, we will require three sets of dynamics. These are the Markov chain
dynamics for the process whose value determines the model parameters, the indirectly
observed state process, and the observation process.

2.1. Markov chain dynamics. To model parameter switching we consider a
time homogeneous discrete-time discrete-state Markov chain Z. If the cardinality of
the state space is m, it is convenient, without loss of generality, to identify the state
space of Z with an orthonormal basis indicator functions, which we denote by L, that
is,

L = {e1, e2, . . . , em} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1
0
...
0

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0
1
...
0

⎤⎥⎥⎥⎦ , . . . ,

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⊆ Rm.(2.1)

The dynamics for the process Z may be written as

Zk = ΠZk−1 + Lk ∈ Rm.(2.2)

Here, Π = [π(j,i)]1≤j≤m
1≤i≤m

is the transition matrix of Z, with elements

π(j,i)
Δ
= P (Zk = ej | Zk−1 = ei)(2.3)

for all k ∈ N. The process L is a (P, σ{Z})-martingale increment, and we suppose
E[Z0] = p0.
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2.2. State process dynamics. We suppose that the indirectly observed state
vector x ∈ Rn has dynamics

xk =

m∑
j=1

〈Zk, ej〉Ajxk−1 +

m∑
j=1

〈Zk, ej〉Bjwk.(2.4)

Here w is a vector-valued Gaussian process with w ∼ N(0, In). Aj and Bj are n× n
matrices and, for each j ∈ {1, 2, . . . ,m}, are nonsingular. This condition can be
relaxed [9].

2.3. Observation process dynamics. Consider a vector-valued observation
process with values in Rd and dynamics

yk =

m∑
j=1

〈
Zk, ej

〉
Cjxk +

m∑
j=1

〈
Zk, ej

〉
Djvk.(2.5)

Here v is a vector-valued Gaussian process with v ∼ N(0, Id). We suppose the
matrices Dj ∈ Rd×d, for each j ∈ {1, 2, . . . ,m}, are nonsingular. The systems we
shall consider in this article are described by the dynamics (2.2), (2.4), and (2.5).
The three stochastic processes Z, x, and y are mutually statistically independent.
Taken together, these dynamics form a triply stochastic system, with random inputs
due to the processes Z, x, and y. For example, if the Markov chain Z is in the state ej ,
then the dynamical model with state x and observation y is defined by the parameters
set

{
Aj , Bj , Cj , Dj

}
.

Remark 1. At the cost of more complicated notation, we could consider observa-
tions of the form

yk =

m∑
j=1

〈
Zk, ej

〉(
Cjxk + Hj

)
+

m∑
j=1

〈
Zk, ej

〉
Djvk.(2.6)

This formulation includes scenarios where the Markov chain Z is observed directly.
However, in this article we restrict our attention to cases where Hj = 0 for all j ∈
{1, 2, . . . ,m}. We define our filtrations as follows:

Fk =
{
F�

}
0≤�≤k,

where Fk = σ
{
x�, 0 ≤ � ≤ k

}
,(2.7)

Zk =
{
Z�

}
0≤�≤k,

where Zk = σ
{
Z�, 0 ≤ � ≤ k

}
,(2.8)

Yk =
{
Y�

}
0≤�≤k,

where Yk = σ
{
y�, 0 ≤ � ≤ k

}
,(2.9)

Gk =
{
G�

}
0≤�≤k,

where Gk = σ
{
Z�, x�, y�, 0 ≤ � ≤ k

}
.(2.10)

2.4. Reference probability. The dynamics given in (2.2), (2.4), and (2.5) are
each defined on a measurable space (Ω,F) under a measure P . However, consider
a new measure P †, under which the dynamics for the processes Z, x, and y are,
respectively,

P †

⎧⎪⎨⎪⎩
Zk = ΠZk−1 + Lk,

xk are i.i.d. and N(0, In),

yk are i.i.d. and N(0, Id).

(2.11)
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Notation. The symbol Φ(·) will be used to denote the zero mean normal density
on Rd:

Φ(ξ) = (2π)−d/2 exp
(
− 1

2ξ
′ξ
)
.(2.12)

Similarly we shall also use the symbol Ψ(·) to denote a standardized Gaussian density.
The space dimension on which these densities are defined will be clear by context.
To avoid cumbersome notation with matrices, we sometimes denote the inverse of a
matrix A by inv(A). Further, we denote the space of all m×n matrices by Mm×n. To
compute the filter dynamics we now define the measure P by setting the restriction
of its Radon–Nikodým derivative to Gk to

Λ0,k
Δ
=

dP

dP † |Gk
=

k∏
�=0

λ�,(2.13)

where

λ� =

m∑
j=1

〈
Z�, ej

〉Φ(D−1
j (y� − Cjx�)

)
|Dj |Φ(y�)

×
Ψ
(
B−1

j (x� −Ajx�−1)
)

|Bj |Ψ(x�)
.

The existence of P follows from the Kolmogorov extension theorem (see [16, Theo-
rem 4, p. 166]). We quote the following form of Bayes’ theorem (see [8]).

Theorem 1. Suppose γ = {γ�, 0 ≤ � ≤ k} is an integrable G-adapted process.
Then

E[γk|Yk] =
E†[Λ0,kγk|Yk]

E†[Λ0,k|Yk]
.(2.14)

As in [9] we can then show the following.
Lemma 1. Under the measure P , the dynamics for the Markov process Z are

unchanged and x and y have dynamics given by (2.4) and (2.5), respectively.

3. Hybrid filter dynamics.

3.1. Exact filter dynamics. The following lemma is critical in what follows.
Lemma 2. Suppose the random vector ξ ∈ Rn is normally distributed with ξ ∼

N(μ,Σ). Further, suppose A is any matrix in Mm×n, y is a vector in Rn, and the
matrix B ∈ Mm×m is nonsingular. With p(ξ) denoting the Gaussian density function
for ξ, the following identity holds:∫

Rn

Ψ
(
B−1(y −Aξ)

)
p(ξ)dξ

= (2π)−n/2E
[
exp

{
− 1

2 (y −Aξ)′ inv(BB′)(y −Aξ)
}]

= (2π)−n/2|B||BB′ + AΣA′|− 1
2 exp

{
− 1

2 (y −Aμ)′(BB′ + AΣA′)−1(y −Aμ)
}
.(3.1)

A proof of Lemma 2 is given in [6]. To compute a filter jointly estimating the
density of the state vector x and the state of the chain Z, consider the expectation

E[〈Zk, ej〉f(xk)|Yk] =
E†[Λ0,k〈Zk, ej〉f(xk)|Yk]

E†[Λ0,k|Yk]
.(3.2)
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Here the function f(·) is an arbitrary bounded measurable real-valued test function.
Write the numerator as

σ(〈Zk, ej〉f(xk))
Δ
= E†[Λ0,k〈Zk, ej〉f(xk)|Yk].(3.3)

Suppose we choose the test function f(x) = 1. Then

m∑
j=1

σ(〈Zk, ej〉) = σ

( m∑
j=1

〈Zk, ej〉
)

= σ(1) = E†[Λ0,k|Yk].(3.4)

Therefore, if the numerator (3.3) can be evaluated for any such f and all j, the denomi-
nator of (3.2) can be found. For each j ∈ {1, 2, . . . ,m}, the quantity σ

(〈
Zk, ej

〉
f(xk)

)
,

defined at (3.3), is a continuous linear functional on the space of continuous functions
and so defines a unique measure (see [14, Theorem 2.14, p. 40]). Further, suppose
that there exists a corresponding unique, unnormalized density function q j

k (x) such
that

σ(〈Zk, ej〉f(xk))
Δ
=

∫
Rn

f(η)q j
k (η)dη.(3.5)

Then the normalized conditional density is

P (x ∈ dx, Zk = ej |Yk) =
q j
k (x)dx∫

Rn q j
k (ξ)dξ

.(3.6)

Theorem 2. The unnormalized probability density q j
k (x) satisfies the following

integral-equation recursion:

q j
k (x) =

Φ
(
D−1

j (yk − Cjx)
)

Φ(yk)|Dj ||Bj |

m∑
r=1

π(j,r)

∫
Rn

Ψ
(
B−1

j (x−Ajξ)
)
q r
k−1(ξ)dξ.(3.7)

Proof. Recalling the definition at (3.5), note that∫
Rn

f(η)q j
k (η)dη = σ

(
〈Zk, ej〉f(xk)

)
= E†[Λ0,k〈Zk, ej〉f(xk)|Yk]

= E†[λkΛ0,k−1〈Zk, ej〉f(xk)|Yk]

= E†
[
Λ0,k−1〈Zk, ej〉

Φ
(
D−1

j (yk − Cjxk)
)

|Dj |Φ(yk)

×
Ψ
(
B−1

j (xk −Ajxk−1)
)

|Bj |Ψ(xk)
f(xk)|Yk

]
=

1

Φ(yk)|Dj ||Bj |
E†
[
Λ0,k−1〈ΠZk−1 + Lk, ej〉

× Φ
(
D−1

j (yk − Cjxk)
)Ψ(B−1

j (xk −Ajxk−1)
)

Ψ(xk)
f(xk)|Yk

]
=

1

Φ(yk)|Dj ||Bj |

m∑
r=1

π(j,r)E
†
[
Λk−1〈Zk−1, er〉

× Φ
(
D−1

j (yk − Cjxk)
)Ψ(B−1

j (xk −Ajxk−1)
)

Ψ(xk)
f(xk)|Yk−1

]
.

(3.8)
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The final equality follows because under P †, the yk are independent and N(0, Id).
Further, since the expectations here are with respect to the measure P †, under which
the random variables Zk, xk, yk, and xk−1 are (mutually) independent, the expected
value with respect to xk is obtained by multiplying by the density Ψ(xk) and inte-
grating; that is, with

H(xk−1; Θ)
Δ
=

∫
Rn

{
Φ
(
D−1

j (yk − Cjη)
)Ψ(B−1

j (η −Ajxk−1)
)

Ψ(η)
f(η)

}
Ψ(η)dη

=

∫
Rn

Φ
(
D−1

j (yk − Cjη)
)
Ψ
(
B−1

j (η −Ajxk−1)
)
f(η)dη.

(3.9)

Then

∫
Rn

f(η)q j
k (η)dη =

1

Φ(yk)|Dj ||Bj |

m∑
r=1

π(j,r)E
†[Λk−1〈Zk−1, er〉H(xk−1; Θ)|Yk−1]

=
1

Φ(yk)|Dj ||Bj |

m∑
r=1

π(j,r)

∫
Rn

H(ξ; Θ)q r
k−1(ξ)dξ

=
1

Φ(yk)|Dj ||Bj |

m∑
r=1

π(j,r)

∫
Rn

∫
Rn

Φ
(
D−1

j (yk − Cjη)
)

× Ψ
(
B−1

j (η −Ajξ)
)
q r
k−1(ξ)f(η)dηdξ.

(3.10)

Finally, as (3.10) holds for any suitable test function f , it follows that

q j
k (x) =

Φ
(
D−1

j (yk − Cjx)
)

Φ(yk)|Dj ||Bj |

m∑
r=1

π(j,r)

∫
Rn

Ψ
(
B−1

j (x−Ajξ)
)
q r
k−1(ξ)dξ.(3.11)

The recursion given in (3.11) is an exact filter; it is expressed as a density which
is in general infinite-dimensional. However, Gaussian densities are determined by
their mean and variance. In what follows we will consider a finite Gaussian mixture
representation of q r

k−1(x). The use of Gaussian sums is justified because any density
can be approximated by the sum of Gaussian densities (see [15]). Further, the noise
in the state and the observation processes is assumed to be Gaussian. In turn, this
implies that sums of Gaussian densities are introduced. For example, if the initial
state is known exactly, the conditional state at the next time is described by a sum of
Gaussian densities, and the number of terms in the sum increases at each time step
by a factor equal to the number of states in the chain.

We can then compute the integrals in (3.11) by using Lemma 2.
Suppose Σα,Σμ ∈ Mn×n are covariance matrices and x, α, μ ∈ Rn. The following

identity will be useful in what follows:

(3.12)

exp
{
− 1

2 (x− α)′Σα(x− α)
}

exp
{
− 1

2 (x− μ)′Σμ(x− μ)
}

= exp
{
− 1

2

(
α′Σαα + μ′Σμμ

)}
exp

{
1
2

(
Σαα + Σμμ

)′
inv(Σα + Σμ)

(
Σαα + Σμμ

)}
× exp

{
− 1

2

(
x− inv(Σα + Σμ)(Σαα + Σμμ)

)′
(Σα + Σμ)

×
(
x− inv(Σα + Σμ)(Σαα + Σμμ)

)}
.
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Theorem 3. Suppose the unnormalized probability density q r
k−1(ξ) (as it appears

under the integral in (3.11)) can be written as a finite weighted Gaussian mixture with
Mq ∈ N components. That is, for k ∈ {1, 2, . . . }, we suppose

q r
k−1(ξ) =

Mq∑
s=1

p r,s
k−1

1

(2π)n/2|Σ r,s
k−1|k−1|

1
2

(3.13)

× exp
{
− 1

2 (ξ − α r,s
k−1|k−1)

′ inv(Σ r,s
k−1|k−1)(ξ − α r,s

k−1|k−1)
}
.

Here Σ r,s
k−1|k−1 ∈ Mn×n and α r,s

k−1|k−1 ∈ Rn, are both Yk−1-measurable functions for

all pairs (r, s) ∈ {1, 2, . . . ,m} × {1, 2, . . . ,Mq}. Using the Gaussian mixture (3.13),
the recursion for the optimal unnormalized density process has the form

(3.14) q j
k (x)

Δ
=

1

(2π)(d+n)/2Φ(yk)

m∑
r=1

Mq∑
s=1

K q
k,k−1(j, r, s)

× exp
{
− 1

2

(
x− inv(σ j,r,s

k−1 )δ j,r,s
k,k−1

)′
σ j,r,s
k−1

(
x− inv(σ j,r,s

k−1 )δ j,r,s
k,k−1

)}
.

The means of the exponential densities in (3.14) are computed by the update equations

(3.15) inv(σ j,r,s
k−1 )δ j,r,s

k,k−1 = Arα
r,s
k−1|k−1

+ Σ
j,r,s

k−1|k−1C
′
r inv

(
CrΣ

j,r,s

k−1|k−1C
′
r + DrD

′
r

)(
yk − CrArα

r,s
k−1|k−1

)
.

Here

Σ
j,r,s

k−1|k−1
Δ
= BjB

′
j + AjΣ

r,s
k−1|k−1A

′
j ∈ Rn×n,(3.16)

ũ j,r,s
k−1|k−1

Δ
= Ajα

r,s
k−1|k−1 ∈ Rn,(3.17)

σ j,r,s
k−1

Δ
= C ′

r inv(DrD
′
r)Cr + inv(Σ

j,r,s

k−1|k−1),(3.18)

δ j,r,s
k,k−1

Δ
= inv(Σ

j,r,s

k−1|k−1)ũ
j,r,s
k−1|k−1 + C ′

r inv(DrD
′
r)yk,(3.19)

K q
k,k−1(j, r, s)

Δ
=

π(j,r)p
r,s
k−1

|Σ j,r,s

k−1|k−1|
1
2 |Dj |

exp
{

1
2 (δ j,r,s

k,k−1)
′ inv(σ j,r,s

k−1 )δ j,r,s
k,k−1

}
× exp

{
− 1

2

[
y′k inv(DrD

′
r)yk(3.20)

+ (ũ j,r,s
k−1|k−1)

′ inv(Σ
j,r,s

k−1|k−1)ũ
j,r,s
k−1|k−1

]}
(Note that the square matrices Σ

j,r,s

k−1|k−1 and σ j,r,s
k−1 are symmetric.)

Proof. To prove Theorem 3, we apply the identity given in Lemma 2 to the
recursion at (3.7). In the first application, we eliminate the integral in (3.7). Using
the finite-mixture representation (3.13), we write the recursion (3.7) for the function
q j(x) as

q j
k (x)=

Φ
(
D−1

j (yk − Cjx)
)

Φ(yk)|Dj ||Bj |

m∑
r=1

π(j,r)

{
Mq∑
s=1

p r,s
k−1

[∫
Rn

Ψ
(
B−1

j (x−Ajξ)
)

× 1

(2π)n/2|Σ r,s
k−1|k−1|

1
2

exp
{
− 1

2

(
ξ − α r,s

k−1|k−1

)′
× inv(Σ r,s

k−1|k−1)
(
ξ − α r,s

k−1|k−1

)}
dξ

]}
.(3.21)
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Recalling Lemma 2, we see that

(3.22)∫
Rn

Ψ
(
B−1

j (x−Ajξ)
) 1

(2π)n/2|Σ r,s
k−1|k−1|

1
2

× exp
{
− 1

2

(
ξ − α r,s

k−1|k−1

)′
inv
(
Σ r,s

k−1|k−1

)(
ξ − α r,s

k−1|k−1

)}
dξ

=
1

(2π)n/2
|Bj ||BjB

′
j + AjΣ

r,s
k−1|k−1A

′
j |−

1
2

× exp
{
− 1

2

(
x−Ajα

r,s
k−1|k−1

)′(
BjB

′
j + AjΣ

r,s
k−1|k−1A

′
j

)−1(
x−Ajα

r,s
k−1|k−1

)}
.

Using this calculation and the definitions for the quantities Σ
j,r,s

k−1|k−1 and ũ j,r,s
k−1|k−1,

we can write

q j
k (x) =

m∑
r=1

Mq∑
s=1

π(j,r)p
r,s
k−1

(2π)n/2|Σ j,r,s

k−1|k−1|
1
2 Φ(yk)|Dj |

Φ
(
D−1

j (yk − Cjx)
)

(3.23)

× exp
{
− 1

2

(
x− ũ j,r,s

k−1|k−1

)′
inv(Σ

j,r,s

k−1|k−1)
(
x− ũ j,r,s

k−1|k−1

)}
.

The products of exponential functions in this equation can be simplified with the
identity (3.12), resulting in

q j
k (x) =

1

(2π)(d+n)/2Φ(yk)

m∑
r=1

Mq∑
s=1

π(j,r)p
r,s
k−1

|Σ j,r,s

k−1|k−1|
1
2 |Dj |

exp
{

1
2 (δ j,r,s

k,k−1)
′ inv(σ j,r,s

k−1 )δ j,r,s
k,k−1

}
× exp

{
− 1

2

[
y′k inv(DrD

′
r)yk + (ũ j,r,s

k−1|k−1)
′ inv(Σ

j,r,s

k−1|k−1)ũ
j,r,s
k−1|k−1

]}
× exp

{
− 1

2

(
x− inv(σ j,r,s

k−1 )δ j,r,s
k

)′
σ j,r,s
k−1

(
x− inv(σ j,r,s

k−1 )δ j,r,s
k

)}
.(3.24)

Finally, (3.15) is computed by the matrix inversion lemma.
Remark 2. It is interesting to note the similarity of Theorem 3 to the Kalman

filter. The mean update equation given by (3.15) is precisely the Kalman filter state

update equation with Kalman gain Σ
j,r,s

k−1|k−1C
′
r inv(CrΣ

j,r,s

k−1|k−1C
′
r + DrD

′
r).

Corollary 1. The estimated conditional mode probability for model j is given
by

p j
k

Δ
= P (Zk = ej |Yk) =

∫
Rn q j

k (ξ)dξ∑m
�=1

∫
Rn q �

k (ξ)dξ
=

q j
k∑m

�=1 q
�
k

.(3.25)

Here the estimated unnormalized mode probability q j
k is computed by the double sum-

mation

q j
k =

1

(2π)d/2Φ(yk)

m∑
r=1

Mq∑
s=1

ζ q
k,k−1(j, r, s),(3.26)

where

ζ q
k,k−1(j, r, s)

Δ
= Kq

k,k−1(j, r, s)|σ
j,r,s
k−1 |−

1
2 .(3.27)
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Proof. The proof of Corollary 1 is immediate.

q j
k

Δ
=

∫
Rn

q j
k (ξ)dξ(3.28)

=
1

(2π)(d+n)/2Φ(yk)

m∑
r=1

Mq∑
s=1

K q
k,k−1(j, r, s)

×
∫

Rn

exp
{
− 1

2

(
ξ − inv(σ j,r,s

k−1 )δ j,r,s
k,k−1

)′
σ j,r,s
k−1

(
ξ − inv(σ j,r,s

k−1 )δ j,r,s
k,k−1

)}
dξ

=
1

(2π)d/2Φ(yk)

m∑
r=1

Mq∑
s=1

K q
k,k−1(j, r, s)|σ

j,r,s
k−1 |−

1
2 .

Remark 3. The scalar-valued quantities ζ q
k,k−1(j, r, s) are all nonnegative weights.

These quantities form the double sum (3.26), whose value is the estimated mode
probability q j

k . In what follows, we shall exploit the form of (3.27) to fix the memory

requirements of our suboptimal filters. Note that if σ j,r,s
k−1 is relatively large, then

|σ j,r,s
k−1 |−

1
2 makes a small contribution to (3.26). That is, larger (error) covariances give

smaller weights in the sum (3.26). Accordingly, a subset of the terms ζ q
k,k−1(j, r, s)

will be identified from the set of all such m × Mq quantities. The elements of this
subset will be identified through their relative magnitudes, as the most substantial
contributors to the sum (3.26) and therefore the quantity q j

k . Ultimately, this subset
of quantities will be used to identify, at every time k, the most significant components
of the Gaussian mixture for the density qk(x).

3.2. Suboptimal filter dynamics. In this section we develop a suboptimal
recursive filter by extending an idea due to Viterbi [18]. The motivation to develop a
suboptimal filter is immediate from the dynamics of the unnormalized density (3.14).
Suppose at time k = 1, these dynamics involve m×Mq densities. Then the next time,
k = 2, these dynamics require m×m×Mq densities. It is clear that the demand on
memory requirements is exponential in time, with the number of densities required at
time k being mk×Mq. What we wish to do is to circumvent this growth by identifying
a subset of candidate mixture densities, from which we construct a suboptimal density
with fixed (in-time) memory requirements.

3.2.1. Hypothesis management. Write

Γ q Δ
= {1, 2, . . . ,m} ×

{
1, 2, . . . ,Mq

}
,(3.29)

S̃ q
k,k−1(j, r, s)

Δ
=
{
ζ q
k,k−1(j, r, s)

}
(r,s)∈Γq .(3.30)

To remove the growth in memory requirements, we propose to identify, at each time
k, the Mq-best candidate densities for each suboptimal density q j

k (x), using the cor-
responding estimated mode probabilities. The key to this idea is to identify Mq

optimal densities, that is, the Mq components in the Gaussian mixture, through their
corresponding set of estimated mode probabilities q j , j ∈ {1, 2, . . . ,m}.

Since the estimated mode probabilities, given by (3.26), are formed by a sum-
mation over nonnegative quantities, we can identify the Mq largest contributors to
this sum and then use the corresponding indexes to identify the Mq-best Gaussian
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densities. This maximization procedure is as follows:

ζ q
k,k−1(j, r

∗
k,1, s

∗
k,1)

Δ
= max

(r,s)∈Γq
S̃ q
k,k−1(j, r, s),(3.31)

ζ q
k,k−1(j, r

∗
k,2, s

∗
k,2)

Δ
= max

(r,s)∈Γq\(r∗
k,1

,s∗
k,1

)
S̃ q
k,k−1(j, r, s),(3.32)

...
...

ζ q
k,k−1(j, r

∗
k,Mq , s∗k,Mq )

Δ
= max

(r,s)∈Γq\{(r∗
k,1

,s∗
k,1

),...,(r∗
k,Mq−1

,s∗
k,Mq−1

)}
S̃ q
k,k−1(j, r, s).(3.33)

Note that we are not directly interested in the quantities ζ q
k,k−1(j, r

∗
k,�, s

∗
k,�), but rather

in the indexes that locate these quantities. The optimal index set, for the density of
model j, is

I j
k

Δ
=
{
(r∗k,1, s

∗
k,1), (r

∗
k,2, s

∗
k,2), . . . , (r

∗
k,Mq , s∗k,Mq )

}
.(3.34)

Using these indexes, we approximate the suboptimal unnormalized density, of order
Mq, corresponding to the density q j

k (x) as

(3.35)

q j
k (x)

Δ
=

1

(2π)(d+n)/2Φ(yk)

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

× exp
{
− 1

2

(
x− inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

(
x− inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}
.

Further, by Corollary 1, the unnormalized mode probability corresponding to the
expectation E[Zk = ej |Yk] is approximated by

q j
k

Δ
=

1

(2π)d/2Φ(yk)

Mq∑
�=1

ζ q
k,k−1(j, r

∗
k,�, s

∗
k,�).(3.36)

To normalize the function q j
k (x), we need the sum of all terms {q 1

k , . . . , q
m
k } and so

write

ϕk|k
Δ
=

m∑
j=1

q j
k .(3.37)

3.2.2. Filter state statistics. Densities such as q j
k (x) provide all the informa-

tion available. However, what is often required in state estimation (filtering) is an
expression for the state estimate of xk at time k given Yk, that is,

x̂k|k
Δ
= E

[
xk|Yk

]
.(3.38)

Proposition 1. The suboptimal state estimate x̂k|k, for a Gaussian mixture of
order Mq, has the representation

x̂k|k =
1

(2π)d/2Φ(yk)ϕk|k

m∑
j=1

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

|σ j,r∗
k,�

,s∗
k,�

k−1 | 12

×
[
Ar∗

k,�
α

r∗k,�,s
∗
k,�

k−1|k−1 + Σ
j,r∗k,�,s

∗
k,�

k−1|k−1 C ′
r∗
k,�

inv
(
Dr∗

k,�
D′

r∗
k,�

+ Cr∗
k,�

Σ
j,r,s

k−1|k−1C
′
r∗
k,�

)
×
(
yk − Cr∗

k,�
Ar∗

k,�
α

r∗k,�,s
∗
k,�

k−1|k−1

)]
.(3.39)
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Here

ϕk|k =
1

(2π)d/2Φ(yk)

m∑
j=1

M q∑
�=1

Kq
k,k−1(j, r

∗
k,�, s

∗
k,�)|σ

j,r∗k,�,s
∗
k,�

k−1 |− 1
2 .(3.40)

Proof.

E
[
xk|Yk

]
=

1

ϕk|k

∫
Rn

ξ
[ m∑
j=1

q j
k (ξ)

]
dξ

=
1

ϕk|k

m∑
j=1

[∫
Rn

ξ q j
k (ξ)dξ

]

=
1

ϕk|k

m∑
j=1

∫
Rn

ξ

[
1

(2π)(d+n)/2Φ(yk)

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

× exp
{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}]
dξ

=
1

(2π)(d+n)/2Φ(yk)ϕk|k

m∑
j=1

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

×
∫

Rn

ξ

[
exp

{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}]
dξ

=
1

(2π)d/2Φ(yk)ϕk|k

m∑
j=1

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

|σ j,r∗
k,�

,s∗
k,�

k−1 | 12
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 .(3.41)

The proof is completed by applying the matrix inversion lemma to the term

inv(σ
j,r∗k,�,s

∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 .
It is also of practical interest to have a relation for the corresponding error co-

variance, that is,

Σk|k
Δ
= E

[
(xk − x̂k|k)(x− x̂k|k)

′|Yk

]
=

1

ϕk|k

∫
Rn

(ξ − x̂k|k)(ξ − x̂k|k)
′

⎛⎝ m∑
j=1

q j
k (ξ)

⎞⎠ dξ = Σ̂k|k, say.(3.42)

Proposition 2. The filter state error covariance Σ̂k|k, for a Gaussian mixture
of order Mq, has the following representation:

Σ̂k|k =
1

(2π)d/2Φ(yk)ϕk|k

m∑
j=1

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

|σj,r∗
k,�

,s∗
k,�

k−1 | 12

[
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )

+
(
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)(
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)′]
.(3.43)
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Proof. Recalling the approximate unnormalized density (3.35), we see that

Σ̂k|k =
1

(2π)(d+n)/2Φ(yk)ϕk|k

m∑
j=1

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

∫
Rn

(
ξ − x̂k|k

)(
ξ − x̂k|k

)′
×
[
exp

{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}]
dξ

=
1

(2π)d/2Φ(yk)ϕk|k

m∑
j=1

Mq∑
�=1

K q
k,k−1(j, r

∗
k,�, s

∗
k,�)

|σ j,r∗
k,�

,s∗
k,�

k−1 | 12

∫
Rn

(
ξ − x̂k|k

)(
ξ − x̂k|k

)′
×
[
|σ j,r∗k,�,s

∗
k,�

k−1 | 12
(2π)n/2

exp
{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}]
dξ.(3.44)

Writing(
ξ − x̂k|k

)
=

(
ξ−inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 + inv(σ
j,r∗k,�,s

∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)
,(3.45)

(3.43) is the sum of the integrals

(3.46)

|σ j,r∗k,�,s
∗
k,�

k−1 | 12
(2π)n/2

∫
Rn

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
× exp

{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}
dξ = inv

(
σ

j,r∗k,�,s
∗
k,�

k−1

)
,

(3.47)

|σ j,r∗k,�,s
∗
k,�

k−1 | 12
(2π)n/2

∫
Rn

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)
× exp

{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}
dξ(inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k)
′ = 0,

(3.48)

|σ j,r∗k,�,s
∗
k,�

k−1 | 12
(2π)n/2

(
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)′ ∫
Rn

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)
× exp

{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}
dξ = 0,
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and

(3.49)

|σ j,r∗k,�,s
∗
k,�

k−1 | 12
(2π)n/2

(
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)(
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)′
×
∫

Rn

exp

{
− 1

2

(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)′
σ

j,r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1

)}
dξ

=
(
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)(
inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 − x̂k|k

)′
.

Finally, combining the above calculations the result follows.
Remark 4. It is interesting to note that (3.43) is essentially in the form of an

additive decomposition of two components, that is, a weighted sum of the two terms

inv
(
σ

j,r∗k,�,s
∗
k,�

k−1

)
and (inv(σ

j,r∗k,�,s
∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 −x̂k|k)(inv(σ
j,r∗k,�,s

∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 −x̂k|k)
′.

This suggests that the estimation error arises from two sources: the approxima-
tion by a finite mixture and the standard error in the estimate of x. The matrix

inv
(
σ

j,r∗k,�,s
∗
k,�

k−1

)
is related, for example, to the covariance Σr,s

k−1|k−1, which contributes

to component s, in the finite mixture representation of the rth unnormalized density

(recall (3.13)). The matrix (inv(σ
j,r∗k,�,s

∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 −x̂k|k)(inv(σ
j,r∗k,�,s

∗
k,�

k−1 )δ
j,r∗k,�,s

∗
k,�

k,k−1 −
x̂k|k)

′, however, computes the error covariance between the state estimate x̂k|k and the
approximate mean of the state x. This decomposition could provide another method
to determine the appropriate number of components for the Gaussian mixtures.

4. Hybrid smoother dynamics. Smoothing is a term used for a form of off-
line estimation where one has information (from the observation process) beyond the
current time. Suppose one has a set of observations generated by the dynamics (2.5),
for example, {y1, y2, . . . , yT } and we wish to estimate

E
[
x�|Y0,T

]
, 0 ≤ � ≤ T.(4.1)

Currently, all smoothing schemes for Gauss–Markov jump linear systems are ad hoc
and are not based upon the exact hybrid filter dynamics; for example, see [3] and [4].

To compute smoothers, we exploit a duality between the forward function q j
k (x)

which evolves forward in time and a related function v j
k (x) which evolves backward

in time (see [12] and [10]). To construct our smoothing algorithm, we compute a
finite memory time-reversed recursion for the functions v j

k (x). A suboptimal v is
then defined using an extension of the idea of Viterbi, by replacing a summation with
a maximization.

4.1. Exact smoother dynamics. Recalling the form of Bayes’ rule (2.14), we
note that

E
[
〈Zk, ej〉f(xk)|Y0,T

]
=

E†[Λ0,T 〈Zk, ej〉f(xk)|Y0,T

]
E†
[
Λ0,T |YT

] .(4.2)

Write

F̃k
Δ
= σ

{
x�, Z�, 0 ≤ � ≤ k

}
.(4.3)



1094 ROBERT J. ELLIOTT, FRANCOIS DUFOUR, AND W. P. MALCOLM

For reasons identical to those given in section 3.1, we need consider only the numerator
in the quotient of (4.2):

E†[Λ0,T 〈Zk, ej〉f(xk)|Y0,T

]
= E†[Λ0,kΛk+1,T 〈Zk, ej〉f(xk)|Y0,T

]
= E†

[
E†[Λ0,kΛk+1,T 〈Zk, ej〉f(xk)|F̃k ∨ Y0,T

]
|Y0,T

]
= E†

[
Λ0,k〈Zk, ej〉f(xk)E

†[Λk+1,T |F̃k ∨ Y0,T

]
|Y0,T

]
.

(4.4)

As our processes are Markov,

E†[Λk+1|T |F̃k ∨ Y0,T

]
= E†[Λk+1|T |Zk, xk,Y0,T

]
.(4.5)

Write

v j
k (x)

Δ
= E†[Λk+1,T |Zk = ej , xk = x,Y0,T

]
.(4.6)

Then, as in [13],

E†[Λ0,k〈Zk, ej〉f(xk)v
j
k (xk)|Y0,T

]
=

∫
Rn

{
q j
k (ξ)v j

k (ξ)
}
f(ξ)dξ.(4.7)

We now compute a backward recursion for the function v j
k (x), similar in form to the

forward recursion for the function q j
k (x), given in (3.7).

Theorem 4. The unnormalized function v j
k (x) satisfies the backward recursion

v j
k (x) =

m∑
r=1

π(r,j)

|Dr||Br|Φ(yk+1)

∫
Rn

Φ
(
D−1

r (yk+1 − Crξ)
)
Ψ(B−1

r (ξ −Arx))vrk+1(ξ)dξ.

(4.8)

Proof. From definition (4.6), we again use repeated conditioning to write

v j
k (x) = E†[Λk+1,T |Zk = ej , xk = x,Y0,T

]
= E†[λk+1E

†[Λk+2,T |Zk+1, xk+1, Zk = ej , xk = x,Y0,T ]|
Zk = ej , xk = x,Y0,T ]

=

m∑
r=1

E†[λk+1〈Zk+1, er〉E†[Λk+2,T |Zk+1 = er, xk+1, Zk = ej , xk = x,Y0,T ]|

Zk = ej , xk = x,Y0,T ]

=

m∑
r=1

E†[λk+1〈Zk+1, er〉E†[Λk+2,T |Zk+1 = er, xk+1,Y0,T ]|

Zk = ej , xk = x,Y0,T ]

(4.9)

(since Z is a Markov chain, and under P † the process x is i.i.d.)

=

m∑
r=1

E†
[
〈Zk+1, er〉

Φ
(
D−1

r (yk+1 −Crxk+1)
)

|Dr|Φ(yk+1)

Ψ
(
B−1

r (xk+1 −Arxk)
)

|Br|Ψ(xk+1)
vrk+1(xk+1)|

Zk = ej , xk = x,Y0,T

]
=

m∑
r=1

π(r,j)

|Dr||Br|Φ(yk+1)

∫
Rn

Φ
(
D−1

r (yk+1 − Crξ)
)
Ψ(B−1

r (ξ −Arx))vrk+1(ξ)dξ.
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Theorem 5. Suppose the unnormalized function v r
k+1(ξ) (as it appears under

the integral in (4.8)) may be approximated as a finite weighted Gaussian mixture with
Mv ∈ N components. That is, suppose

v r
k+1(ξ) =

Mv∑
s=1

ρ r,s
k+1

1

(2π)n/2|Σ r,s
k+1|T |

1
2

exp
{
− 1

2

(
ξ − α r,s

k+1|T
)′

inv
(
Σ r,s

k+1|T
)(
ξ − α r,s

k+1|T
)}

.

(4.10)

Here Σ r,s
k+1|T ∈ Mn×n and α r,s

k+1|T ∈ Rn are both Yk+1,T -measurable functions for all

pairs (r, s) ∈ {1, 2, . . . ,m} × {1, 2, . . . ,Mv}. Using the Gaussian mixture (4.10), the
recursion for v j

k (x), at times k ∈
{
1, 2, . . . , T − 1

}
, has the form

v j
k (x)

Δ
=

1

(2π)(n+d)/2Φ(yk+1)

m∑
r=1

Mv∑
s=1

Kv
k+1,T (j, r, s)

× exp
{
− 1

2

(
x− inv(S r,s

k+1|T )τ r,sk+1|T

)′
S r,s
k+1,T

(
x− inv(Sr,s

k+1|T )τ r,sk+1|T

)}
.(4.11)

At the final time T for all j ∈ {1, 2, . . . ,m},

v j
T (x)

Δ
= 1.(4.12)

Here

Kv
k+1,T (j, r, s)

Δ
=

π(r,j)ρ
r,s
k+1

|Dr||Br||Σ̃r,s
k+1|T |

1
2

∣∣∣γr + inv(Σr,s
k+1|T )

∣∣∣ 12
× exp

{
− 1

2

(
(αr,s

k+1|T )′ inv(Σr,s
k+1|T )

[
I − Σ̃r,s

k+1|T inv(Σr,s
k+1|T )

]
αr,s
k+1|T

}
× exp

{
− 1

2y
′
k+1inv(DrD

′
r)yk + 1

}
× exp

{
− 1

2

(
Σ̃r,s

k+1|T inv(Σr,s
k+1|T )αr,s

k+1|T

)′
inv(Σ̃r,s

k+1|T )

×
(
Σ̃r,s

k+1|T inv
(
Σr,s

k+1|T
)
αr,s
k+1|T

)}
× exp

{
1
2

(
Cr inv(DrD

′
r)yk+1 inv(Σr,s

k+1|T )αr,s
k+1|T

)′
× inv

(
Σ̃r,s

k+1|T
)(

Cr inv(DrD
′
r)yk+1 + inv(Σr,s

k+1|T )αr,s
k+1|T

)}
× exp

{
1
2 (τ r,sk+1|T )′ inv(Sr,s

k+1|T )τ r,sk+1|T

}
∈ R,(4.13)

S r,s
k+1|T

Δ
= A′

r inv(BrB
′
r)Ar −A′

r inv(BrB
′
r)Σ̃

r,s
k+1|T inv(BrB

′
r)Ar ∈ Rn×n,(4.14)

τ r,sk+1|T
Δ
= A′

r inv(BrB
′
r)Σ̃

r,s
k+1|T

×
(
C ′

r inv(DrD
′
r)yk+1 + inv(Σr,s

k+1|T )αr,s
k+1|T

)
∈ Rn,(4.15)

γ r
Δ
= inv(BrB

′
r) + C ′

r inv(DrD
′
r)Cr ∈ Rn×n,(4.16)

μ r
k+1

Δ
= C ′

r inv(DrD
′
r)yk+1 + inv(BrB

′
r)Arx ∈ Rn,(4.17)

Σ̃r,s
k+1|T

Δ
= inv

(
γ−1
r + Σr,s

k+1|T
)
∈ Rn×n.(4.18)

(Note that the square matrices γ r and Σ̃r,s
k+1|T are symmetric.)

Proof. To prove Theorem 5, we first evaluate the integral in the recursion (4.8).
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To complete the proof, the result of this calculation is written as a weighted sum of
Gaussian densities.

Write

v j
k (x) =

m∑
r=1

π(r,j)

|Dr||Br|Φ(yk+1)
Ia,(4.19)

where

Ia
Δ
=

∫
Rn

Φ
(
D−1

r (yk+1 − Crξ)
)
Ψ(B−1

r (ξ−Arx))vrk+1(ξ)dξ.(4.20)

Completing the square of the exponentials in Ia, we see that

Ia =
1

(2π)(n+d)/2
exp

{
1
2 (μr

k+1)
′ inv(γr)μr

k+1

}
exp

{
− 1

2y
′
k+1 inv(DrD

′
r)yk+1

}
× exp

{
− 1

2x
′A′

r inv(BrB
′
r)Arx

}
Ib.(4.21)

Here

Ib =

∫
Rn

exp
{
− 1

2

(
ξ − inv(γr)μ r

k+1

)′
γr
(
ξ − inv(γr)μ r

k+1

)}
vrk+1(ξ)dξ,(4.22)

γr
Δ
= C ′

r inv(DrD
′
r)Cr + inv(BrB

′
r),(4.23)

μ r
k+1

Δ
= C ′

r inv(DrD
′
r)yk+1 + inv(BrB

′
r)Arx.(4.24)

Since vrk+1(ξ) is a Gaussian mixture, the integrand of Ib is a product of Gaussian
densities and can be evaluated with directly, that is,

Ib =

Mv∑
s=1

ρr,sk+1

∫
Rn

exp
{
− 1

2

(
ξ − inv(γr)μ r

k+1

)′
γr
(
ξ − inv(γr)μ r

k+1

)}
× 1

(2π)n/2|Σr,s
k+1|T |

1
2

exp
{
− 1

2

(
ξ − αr,s

k+1|T
)′

inv(Σr,s
k+1|T )

(
ξ − αr,s

k+1|T
)}

dξ

=

Mv∑
s=1

ρr,sk+1

[∣∣ inv
(
γr + inv(Σr,s

k+1|T )
)∣∣ 12∣∣Σr,s

k+1|T
∣∣ 12 exp

{
− 1

2 (μr
k+1)

′ inv(γr)μr
k+1}

× exp
{
− 1

2 (αr,s
k+1|T )′ inv(Σr,s

k+1|T )αr,s
k+1|T

}
× exp

{
1
2

(
μr
k+1 + inv

(
Σr,s

k+1|T
)
αr,s
k+1|T

)′
inv

(
γr + inv(Σr,s

k+1|T )
)

×
(
μr
k+1 + inv(Σr,s

k+1|T )αr,s
k+1|T

)}]
.(4.25)
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Recalling (4.19) and the terms Ia and Ib, we see that

v j
k (x) =

1

(2π)(d+n)/2 Φ(yk+1)

m∑
r=1

M v∑
s=1

π(r,j)ρ
r,s
k+1

∣∣(γr + inv(Σr,s
k+1|T )

)∣∣ 12
|Dr||Br||Σr,s

k+1|T |
1
2

× exp
{
− 1

2x
′A′

r inv(BrB
′
r)Arx

}
exp

{
− 1

2y
′
k+1 inv(DrD

′
r)yk+1

}
× exp

{
− 1

2 (αr,s
k+1|T )′ inv(Σr,s

k+1|T )αr,s
k+1|T

}
× exp

{
1
2 (αr,s

k+1|T )′ inv(Σr,s
k+1|T )Σ̃r,s

k+1|TΣr,s
k+1|Tα

r,s
k+1|T

}
× exp

{
1
2

[
(μr

k+1)
′Σ̃r,s

k+1|Tμ
r
k+1 + (μr

k+1)
′Σ̃r,s

k+1|T inv(Σr,s
k+1|T )αr,s

k+1|T

+ (αr,s
k+1|T )′ inv(Σr,s

k+1|T )Σ̃r,s
k+1|Tμ

r
k+1

]}
.(4.26)

Consequently

v j
k (x) =

1

(2π)(d+n)/2Φ(yk+1)

m∑
r=1

M v∑
s=1

π(r,j)ρ
r,s
k+1

∣∣ inv
(
γr + inv(Σr,s

k+1|T )
)∣∣ 12

|Dr||Br||Σr,s
k+1|T |

1
2

× exp
{
− 1

2

(
αr,s
k+1|T )′ inv(Σr,s

k+1|T )
[
I − Σ̃r,s

k+1|T inv(Σr,s
k+1|T )

]
αr,s
k+1|T

}
× exp

{
− 1

2y
′
k+1 inv(DrD

′
r)yk+1

}
exp

{
− 1

2

(
Σ̃r,s

k+1|T inv(Σr,s
k+1|T )αr,s

k+1|T
)′

× inv(Σ̃r,s
k+1|T )

(
Σ̃r,s

k+1|T inv(Σr,s
k+1|T )αr,s

k+1|T
)}

× exp
{

1
2

(
Cr inv(DrD

′
r)yk+1 + inv(Σr,s

k+1|T )αr,s
k+1|T

)′
× inv(Σ̃r,s

k+1|T )
(
Cr inv(DrD

′
r)yk+1 + inv(Σr,s

k+1|T )αr,s
k+1|T

)}
× exp

{
1
2 (τ r,sk+1|T )′ inv(Sr,s

k+1|T )τ r,sk+1|T

}
× exp

{
− 1

2

(
x− inv(Sr,s

k+1|T )τ r,sk+1|T

)′
Sr,s
k+1|T

(
x− inv(Sr,s

k+1|T )τ r,sk+1|T

)}
.(4.27)

Corollary 2. Write

v j
k

Δ
=

∫
Rn

v j
k (ξ)dξ.(4.28)

The scalar-valued quantity v j
k is computed by the double sum

v j
k =

1

(2π)d/2Φ(yk+1)

m∑
r=1

Mv∑
s=1

ϑ v
k+1,T (j, r, s).(4.29)

Here

ϑv
k+1,T (j, r, s)

Δ
= Kv

k+1,T (j, r, s)|S r,s
k+1|T |

− 1
2 .(4.30)

The proof of Corollary 2 is immediate.
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4.2. Suboptimal smoother dynamics.

4.2.1. Hypothesis management. Write

Γv Δ
= {1, 2, . . . ,m} ×

{
1, 2, . . . ,Mv

}
,(4.31)

S̃ v
k+1,T (j, r, s)

Δ
=
{
ϑ v
k+1,T (j, r, s)

}
(r,s)∈Γv .(4.32)

As before, we propose, at each time k, to identify the Mv-best candidate functions
(components in the Gaussian mixture) for each function v j

k (x). This maximization
procedure is as follows:

ϑ v
k+1,T (j, r∗1 , s

∗
1)

Δ
= max

(r,s)∈Γv
S̃ v
k+1,T (j, r, s),(4.33)

ϑ v
k+1,T (j, r∗2 , s

∗
2)

Δ
= max

(r,s)∈Γv\(r∗1 ,s∗1)
S̃ v
k+1,T (j, r, s),(4.34)

...
...

ϑ v
k+1,T (j, r∗Mv , s∗Mv )

Δ
= max

(r,s)∈Γv\{(r∗1 ,s∗1),...,(r∗
Mv−1

,s∗
Mv−1

)}
S̃ v
k+1,T (j, r, s).(4.35)

The optimal index set, for function vjk(x), is

Ik(j)
Δ
=
{
(r∗k,1, s

∗
k,1), (r

∗
k,2, s

∗
k,2), . . . , (r

∗
k,Mv , s∗k,Mv )

}
.(4.36)

Using these indexes, the order M v equation for vjk(x), whose memory requirements
are fixed in time, has the form

v j
k (x)

Δ
=

1

(2π)(d+n)/2Φ(yk+1)

Mv∑
�=1

K v
k+1,T (j, r∗k+1,�, s

∗
k+1,�)

× exp
{
− 1

2

(
x− inv(S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,�,s

∗
k+1,�

k+1|T

)′
S

r∗k+1,�,s
∗
k+1,�

k+1,T

×
(
x− inv(S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,�,s

∗
k+1,�

k+1|T

)}
.(4.37)

4.2.2. Smoother state statistics. Write, for the smoother density normaliza-
tion constant,

ϕk|T
Δ
=

m∑
j=1

(∫
Rn

[
q j
k (ξ)v j

k (ξ)
]
dξ
)
.(4.38)

Combining the functions q j
k (x) and v j

k (x), we see that the fixed interval smoothed
estimate of state may be written as

x̂k|T
Δ
= E

[
xt | Y0,T

]
=

∫
Rn ξ

[∑m
j=1 q

j
k (ξ)v j

k (ξ)
]
dξ∫

Rn

[∑m
j=1 q

j
k (ξ)v j

k (ξ)
]
dξ

=
1

ϕk|T

∫
Rn

ξ

[
m∑
j=1

q j
k (ξ)v j

k (ξ)

]
dξ

=
1

ϕk|T

m∑
j=1

[∫
Rn

ξ
[
q j
k (ξ)v j

k (ξ)
]
dξ

]
.

(4.39)
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Since the functions qk(x) and vk(x) are each weighted Gaussian mixtures, the integrals
in (4.39) can be evaluated exactly.

Proposition 3. The smoothed state estimate x̂k|T , for Gaussian mixtures with
orders Mq and Mv, has the following representation:

x̂k|T =
1

ϕk|T

m∑
j=1

Mq∑
�=1

Mv∑
i=1

[
Kv

k,k−1(j, r
∗
k,l, s

∗
k,�)K

v
k+1,T (j, r∗k,i, s

∗
k,i)

×
∣∣∣ inv

(
σ
r∗k,�,s

∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T
)∣∣∣ 12 exp

{
1
2

(
σ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,is

∗
k+1,i

k+1|T

)′
× inv

(
σ
r∗k,�,s

∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)}
× exp

{
− 1

2

[
(τ

r∗k+1,�,s
∗
k+1,�

k+1|T )′ inv(S
r∗k+1,�,s

∗
k+1,�

k+1|T )τ
r∗k+1,i,s

∗
k+1,i

k+1|T + (δ
r∗k,�,s

∗
k,�

k )′

× inv(σ
r∗k,�,s

∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

]}
× inv

(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)]
.(4.40)

Here

ϕk|T =

m∑
j=1

Mq∑
�=1

Mv∑
i=1

[
Kq

k,k−1(j, r
∗
k,�, s

∗
k,�)K

v
k+1,T (j, r∗k,i, s

∗
k,i)

× exp

{
1
2

(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)
inv

(
σ
r∗k,�,s

∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)
×
(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)}
exp

{
− 1

2

[(
τ
r∗k+1,i,s

∗
k+1,i

k+1|T
)′

inv
(
S
r∗k+1,�,s

∗
k+1,�

k+1|T
)

× τ
r∗k+1,i,s

∗
k+1,i

k+1|T +
(
δ
r∗k,�,s

∗
k,�

k

)′
inv

(
σ
r∗k,�,s

∗
k,�

k−1

)
δ
r∗k,i,s

∗
k,i

k

]}
×
∣∣∣ inv

(
σ
r∗k,�,s

∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)∣∣∣ 12] ∈ R.(4.41)

Proof.

x̂k|T =
1

ϕk|T

m∑
j=1

[∫
Rn

ξ
[
q j
k (ξ)v j

k (ξ)
]
dξ

]

=
1

ϕk|T

m∑
j=1

[∫
Rn

ξ

(
1

(2π)(d+n)/2Φ(yk)

Mq∑
�=1

Kq
k,k−1(j, r

∗
k,�, s

∗
k,�)

× exp
{
− 1

2

(
ξ − inv(σ

r∗k,�,s
∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

)′
σ

r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

r∗k,�,s
∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

)})

×
(

1

(2π)(d+n)/2Φ(yk+1)

Mv∑
i=1

K v
k+1,T (j, r∗k,i, s

∗
k,i)

× exp
{
− 1

2

(
ξ − inv(S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,�,s

∗
k+1,�

k+1|T

)′
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×S
r∗k+1,�,s

∗
k+1,�

k+1,T

(
ξ − inv(S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,�,s

∗
k+1,�

k+1|T

)})
dξ

]

=
1

(2π)(d+n)Φ(yk)Φ(yk+1)ϕk|T

m∑
j=1

Mq∑
�=1

Mv∑
i=1

[
Kq

k,k−1(j, r
∗
k,�, s

∗
k,�)

×K v
k+1,T (j, r∗k,i, s

∗
k,i)

∫
Rn

ξ
(
exp

{
− 1

2

(
ξ − inv(σ

r∗k,�,s
∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

)′
σ

r∗k,�,s
∗
k,�

k−1

×
(
ξ − inv(σ

r∗k,�,s
∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

)}
× exp

{
− 1

2

(
ξ − inv(S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,�,s

∗
k+1,�

k+1|T

)′
S

r∗k+1,�,s
∗
k+1,�

k+1,T

×
(
ξ − inv(S

r∗k+1,i,s
∗
k+1,i

k+1|T )τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)})
dξ

]

=
1

(2π)(d+n)Φ(yk)Φ(yk+1)ϕk|T

m∑
j=1

Mq∑
�=1

Mv∑
i=1

[
Kq

k,k−1(j, r
∗
k,�, s

∗
k,�)

×K v
k+1,T (j, r∗k,i, s

∗
k,i) exp

{
1
2

(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)′
× inv

(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)}
× exp

{
− 1

2

[(
τ
r∗k+1,i,s

∗
k+1,i

k+1|T
)′

inv
(
S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,i,s

∗
k+1,i

k+1|T + (δ
r∗k,�,s

∗
k,�

k

)′
× inv(σ

r∗k,�,s
∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

]}
(2π)n/2

∣∣∣inv
(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)∣∣∣ 12
× inv

(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T

)]
.(4.42)

Remark 5. It is interesting to note that in the formulation of the smoother defined
by (4.42), the integers Mq and Mv are mutually independent. This feature suggests
that one is afforded an extra degree of freedom; that is, the practitioner can explicitly
impose a desired accuracy in the contribution of the past (choice of Mq) and the
contribution of the future (choice of Mv).

The smoother error covariance is defined as

Σk|T
Δ
= E

[(
xk − x̂k|T

)(
xk − x̂k|T

)′|YT

]
=

1

ϕk|T

∫
Rn

(ξ− x̂k|T )(ξ− x̂k|T )′

[(
1

(2π)(d+n)/2Φ(yk)

Mq∑
�=1

Kq
k,k−1(j, r

∗
k,�, s

∗
k,�)

× exp
{
− 1

2

(
ξ− inv(σ

r∗k,�,s
∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

)′
σ

r∗k,�,s
∗
k,�

k−1

(
ξ− inv(σ

r∗k,�,s
∗
k,�

k−1 )δ
r∗k,�,s

∗
k,�

k

)})

×
(

1

(2π)(d+n)/2Φ(yk+1)

Mv∑
i=1

K v
k+1,T (j, r∗k,i, s

∗
k,i)

× exp
{
− 1

2

(
ξ − inv(S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,�,s

∗
k+1,�

k+1|T

)′
×S

r∗k+1,�,s
∗
k+1,�

k+1,T

(
ξ − inv(S

r∗k+1,�,s
∗
k+1,�

k+1|T )τ
r∗k+1,�,s

∗
k+1,�

k+1|T

)})]
dξ = Σ̂k|T .(4.43)
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Proposition 4. The smoother state error covariance Σ̂k|T , for Gaussian mix-
tures with orders Mq and Mv, has the following representation:

Σ̂k|T =
1

ϕk|T

m∑
j=1

Mq∑
�=1

Mv∑
i=1

×
[
Kq

k,k−1(j, r
∗
k,�, s

∗
k,�)K

v
k+1,T (j, r∗k,i, s

∗
k,i)
∣∣∣inv

(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)∣∣∣ 12
× exp

{
1
2

((
τ
r∗k+1,i,s

∗
k+1,i

k+1|T
)′

inv
(
S

r∗k+1,�,s
∗
k+1,�

k+1|T
)
τ
r∗k+1,i,s

∗
k+1,i

k+1|T

×
(
δ
r∗k,�,s

∗
k,�

k

)′
inv

(
σ

r∗k,�,s
∗
k,�

k−1

)
δ
r∗k,�,s

∗
k,�

k

)}
×
[
inv
(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T

)
+
(
inv

(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T
)(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T
)
− x̂k|T

)
×
(
inv

(
σ

r∗k,�,s
∗
k,�

k−1 + S
r∗k+1,�,s

∗
k+1,�

k+1|T
)(
δ
r∗k,�,s

∗
k,�

k + τ
r∗k+1,i,s

∗
k+1,i

k+1|T
)
− x̂k|T

)′]]
.(4.44)

The proof of Proposition 4 is similar to the proof of Proposition 2, and so it is
omitted.

5. Example. In this section we illustrate the performance of the new hybrid
filter state estimator presented in section 3.2.2. Two scenarios are considered. In the
first example, the Markov chain transition matrix is fixed and simulations are com-
puted for five different values of signal-to-noise ratio (SNR). In the second example,
we consider two different transition matrices. For each of our examples, comparisons
are provided against the IMM algorithm (with standard Kalman filters). All the ex-
amples consider the same scalar-valued state process x and we set m = 3. Further,
the order of the Gaussian mixtures is fixed at Mq = 5. For our first example, we set

H1
Δ
=
{
AH1 = 1, BH1 = 0.05, CH1 = 1

}
,(5.1)

H2
Δ
=
{
AH2

= 0.9, BH2
= 0.01, CH2

= 2
}
,(5.2)

H3
Δ
=
{
AH3 = 1.1, BH3 = 0.1, CH3 = 1.5

}
(5.3)

and

Π
Δ
=

⎡⎣0.8 0.2 0.2
0.1 0.6 0.2
0.1 0.2 0.6

⎤⎦ .(5.4)

The initial state x0 is a Gaussian random variable, with mean 10 and covariance
10. Each of the five Figures 5.1(a)–(e) shows simulations at different levels of SNR,
which was varied only through the noise gain on the state dynamics; that is, SNR
Case 1

{
DH1 = 0.5, DH2 = 0.25, DH3 = 0.5

}
, SNR Case 2

{
DH1 = 1, DH2 =

0.5, DH3 = 1
}
, SNR Case 3

{
DH1 = 2, DH2 = 1, DH3 = 2

}
, SNR Case 4

{
DH1 =

4, DH2 = 2, DH3 = 4
}
, SNR Case 5

{
DH1 = 8, DH2 = 4, DH3 = 8

}
. For these five

scenarios, Monte Carlo simulations were computed, consisting of 100 trials and dis-
crete time indexed from k = 1 to k = 100. The corresponding mean square errors for
the IMM and the new hybrid filter are given in Figures 5.1(a)–(e).
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Fig. 5.1. SNR performance of the IMM (dash-dotted line) and the new hybrid filter (solid line)
with Mq = 5.
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(a) Case 6
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(b) Case 7

Fig. 5.2. Fast and slow switching Markov chain comparison of the IMM (dash-dotted line) and
the new hybrid filter (solid line) with Mq = 5.

In our second example, two different values of the parameter Π were considered,
with

Π Case 6 Π
Δ
=

⎡⎣0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎤⎦ , Π Case 7 Π
Δ
=

⎡⎣0.4 0.3 0.3
0.3 0.4 0.3
0.3 0.3 0.4

⎤⎦ .(5.5)

In this example, the same model parameters from the first example were used, that
is, H1, H2, and H3, with the state noise gains set at

{
DH1 = 1, DH2 = 0.5, DH3 = 1

}
.

In all these cases, the new hybrid filter significantly outperforms the IMM. In Cases
4 and 5 (see Figures 5.1(d) and (e)), when the SNR is very low the performances of
these two algorithms are comparable. For the Cases 1 to 3, when the SNR is standard
or high, the suboptimal filter is more efficient than the IMM (see Figures 5.1(a)–(c)).
The same conclusion can be made when the Markov chain Z jumps slowly or rapidly
(see Cases 6 and 7 and Figures 5.2(a) and (b)).
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OF THE TWO-DIMENSIONAL EULER EQUATION: THE

MULTICONNECTED CASE∗
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Abstract. We construct a feedback law which allows us to asymptotically stabilize the Euler
system for incompressible inviscid fluids in two dimensions, in the case of a multiconnected bounded
domain, by means of a control localized on a part of the boundary that meets every connected
component of the boundary. This generalizes a result of Coron [SIAM J. Control Optim., 37 (1999),
pp. 1874–1896] concerning simply connected domains.
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1. Introduction.

1.1. Statement of the problem. In this paper, we are concerned with the null
asymptotic stabilization by means of a stationary feedback of the Euler system for
inviscid incompressible fluids in two space dimensions, namely, the following system:{

∂tv(t, x) + (v(t, x).∇)v(t, x) + ∇p(t, x) = 0 for (t, x) in [0, T ∗) × Ω,
div v(t, x) = 0 for (t, x) in [0, T ∗) × Ω.

(1.1)

In the above equation, t is the time (the problem under consideration is formulated for
T ∗ = +∞), and x is the position in the domain Ω. The function v : [0, T ∗)×Ω → R2

is the velocity field and p : [0, T ∗) × Ω → R is the pressure. The domain Ω is two-
dimensional (2-D), bounded, regular and nonsimply connected (let us agree that the
boundary ∂Ω is decomposed into ∂Ω = Γ0 ∪ · · · ∪ Γg, where the components Γi are
nonempty, connected, and disjoint).

The initial-boundary problem for equation (1.1) has been studied by Yudovich
(see [10]). Given initial data

v|t=0 = v0 in Ω,(1.2)

where v0 : Ω → R2 is a divergence-free vector field, and appropriate boundary condi-
tions, the system is well-posed. The boundary conditions can be taken as the following
data:

• the normal component of the velocity v(t, x) ·n(x) on the whole boundary ∂Ω
for any time (n(x) is the unit outward normal on ∂Ω), which has to satisfy∫

∂Ω

v(t, x) · n(x)dx = 0 ∀t ∈ [0, T ∗),

∗Received by the editors July 10, 2003; accepted for publication (in revised form) November 28,
2004; published electronically October 3, 2005.
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Paris Cedex 05, France (glass@ann.jussieu.fr).

1105



1106 OLIVIER GLASS

• the vorticity ω(t, x) := curl v(t, x) at the points of ∂Ω which, moved by the
velocity flow, enter inside Ω, namely, the points in

Σ−
T∗ := {(t, x) ∈ [0, T ∗) × ∂Ω / v(t, x) · n(x) < 0} .

Let us emphasize that certain compatibility conditions between the solution and the
boundary data must be taken into account in order to obtain a solution with suitable
regularity.

In this paper, the boundary conditions (or a part of them) will be considered
as a control (that is, a parameter to be determined, that we choose to influence the
system). More precisely, we fix Σ an open part of the boundary; the part Σ of the
boundary is the zone where we can choose the boundary conditions, whereas ∂Ω \ Σ
represents a wall that cannot be crossed. In other words, we will consider the Euler
system with

• the constraint

v(t, x) · n(x) = 0 on [0, T ∗) × (∂Ω\Σ);(1.3)

that is, the fluid cannot enter or quit the domain through ∂Ω\Σ (it must slip
on it),

• the boundary condition on [0, T ∗) × Σ, which is the control to be chosen.
In this setting, the problem of controllability (i.e., to steer a prescribed initial state v0

to a prescribed final state v1 in an arbitrary time by choosing a relevant control) was
answered affirmatively by Coron in [2], under the necessary condition that Σ meets
each connected component of the boundary.

Here we are interested in the problem of asymptotic stabilizability of the equi-
librium υ ≡ 0 by means of a stationary feedback. In other words, we want to find a
continuous function f of the state S(t) of the system at time t such that if the control
C(t) is given at each time by C(t) = f(S(t)), then the resulting closed system makes
0 globally asymptotically stable in the sense that

• any solution defined on [0, T ∗)×Ω with T ∗ < +∞ can be extended for t ≥ T ∗;
• for any neighborhood U of 0, one can find another neighborhood V of 0 such

that any solution of the closed system beginning in V is in U for any t ≥ 0;
• any solution tends to 0 as t → +∞.

The above-mentioned problem was solved by Coron in the case of a simply connected
domain; see [4].

Remark 1. As was already the case in the controllability problem, the condi-
tion that Σ meets any connected component of the boundary is a necessary condition
to solve the problem. For instance, the vorticity around any “uncontrolled” con-
nected component just slips on it and cannot be “modified.” Another obstruction
is the Kelvin law which states that the velocity circulation around any uncontrolled
connected component of the boundary is constant. Throughout this paper, we will
suppose that Σ meets every connected component of the boundary.

1.2. Mathematical setting. We have to specify which data will be the state of
the system, and also the precise structure of the control. A natural state to consider
would be the whole velocity field v(t, ·) in Ω, but if we chose S this way, then (as we
will consider solutions that are continuous up to the boundary) it would completely
determine the choice of the control (since the boundary conditions described above
would be given by the normal component of the trace of v on [0, T ∗) × Σ and by the
trace of curl v on Σ−

T∗).
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To avoid such a problem, as suggested in [3], we shall consider the following data
as the state of the system:

S(t) = (ω(t, ·), λ1(t), . . . , λg(t)),(1.4)

where ω(t, ·) : Ω → R is the vorticity field (which is scalar in two dimensions), that is,

ω(t, x) := curl v(t, x),

and where λi, for i = 1, . . . , g, is the velocity circulation around the component Γi of
∂Ω, that is,

λi(t) :=

∫
Γi

v(t, x) · �τ(x)dx.

Here �τ(x) is the unit tangent vector field on ∂Ω, chosen so that (�τ , n) should be direct.
(Let us remark that consequently �τ endows the curve Γi with an orientation that is
positive if the curve is an inner component of ∂Ω and negative in the case of the outer
component.)

Remark 2. Of course, only g circulations of v around Γi are needed among (g+1)
available, since the sum of all these circulations is related to ω by Green’s formula.

Once given the state S(t) and v(t, x) · n(x) on Σ (which is a part of the control,

say C1), one can reconstruct v(t, ·) in Ω, for each t ∈ [0, T ∗), by means of the following
system: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

curl v(t, ·) = ω(t, ·) in Ω,
div v(t, ·) = 0 in Ω,
v(t, ·) · n(·) = C1(t) on Σ,
v(t, ·) · n(·) = 0 on ∂Ω \ Σ,∫

Γi

v(t, x).�τ(x)dx = λi(t) for i = 1, . . . , g.

(1.5)

The Euler equation can be written in terms of the state S(t): as is well known, the
vorticity in two dimensions satisfies

∂tω + (v · ∇)ω = 0 in (0, T ∗) × Ω,(1.6)

or, equivalently,

∂tω + div(ωv) = 0 in (0, T ∗) × Ω,(1.7)

and the velocity circulations satisfy

λi(t) − λi(0) =

∫ t

0

∫
Γi

v(s, x) · n(x)ω(s, x)dxds.(1.8)

One easily sees that the group composed of (1.5), (1.7), and (1.8) is equivalent to
(1.1).

We still need to specify the exact structure of the control that we use. The first
part of the control is the normal component of the velocity on Σ, which we call C1.
We must stipulate the other part of the control, which concerns the entering vorticity.

Since ω(t, ·) is now a part of the state, it seems inappropriate to consider ω on
Σ−

T∗ as the second part of the control (as will be specified below, ω(t, ·) is continuous
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up to the boundary in our problem). Thus a natural control to consider would be the
following:

C(t) =

{
v(t, x) · n(x) on Σ,
∂tω(t, x) on Σ−,

(1.9)

with Σ− given by

Σ− := {x ∈ ∂Ω / v(t, x) · n(x) < 0} .(1.10)

(To simplify the notation, we omit the dependence of Σ− on t and C1—besides, es-
sentially, Σ− will be constant in what follows.)

Let us point out that the control described in (1.9) was the one used in [4].
However, for technical reasons that will be explained in section 2.1, we will have to
consider the following control of mixed type:

C(t) = (C1(t), C2(t), C3(t)),(1.11)

with

C1 = v(t, x) · n(x) on Σ,(1.12)

C2 = ∂tω1(t, x) on Σ−,(1.13)

C3 = ω2(t, x) on Σ−,(1.14)

and the boundary condition for the entering vorticity obtained as

ω(t, x) = ω1(t, x) + ω2(t, x) on Σ−.(1.15)

In other words, the entering vorticity ω is the sum of two terms: ω1, whose time
derivative we control, and ω2, which we control directly.

Remark 3. Let us remark that this choice of the form of the control is important.
Indeed, even the stabilizability by means of a simpler feedback law of the form ∂tC =
f(S) does not necessarily imply the stabilizability by means of a feedback law of the
form C = f(S). See, for instance, [5] in the context of finite-dimensional systems.

We can now be more specific about the problem under study.
Definition 1.1. Given a feedback law

(C1, C2, C3) = (C1(S), C2(S), C3(S)),

1. we shall call “the closed-loop system,” with S as the unknown, the system
(1.5), (1.7), (1.8), with boundary conditions given by (1.12)–(1.15);

2. we shall call S = (ω, λ1, . . . , λg) a solution of the closed-loop system if
• S ∈ C0([0, T ∗) × Ω; R) × C0([0, T ∗),R)g (for some T ∗ > 0);
• v(t, ·) being for each t ∈ [0, T ∗) the unique solution (in the sense of

distributions in Ω) of (1.5), the functions (λi)i=1,...,g satisfy (1.8) for
all t ∈ [0, T ∗), and ω satisfies (1.7) in the sense of distributions in
(0, T ∗) × Ω and (1.13)–(1.15) in the sense of distributions on the open
manifold {

(t, x) ∈ (0, T ∗) × Σ, C1[S(t)](x) < 0
}

;

3. we call “maximal” any solution that cannot be extended over its maximal time
T ∗.
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The purpose of this paper is to establish the following result.
Theorem 1.2. If Σ meets every connected component of the boundary, one can

find three continuous functions C1, C2, and C3 defined on C0(Ω; R) × Rg and with
values in C0(Σ; R), C0(Σ−; R), and C0(Σ−; R), respectively, such that the following
properties are fulfilled:

P1. For any (ω0, λ
0
1, . . . , λ

0
g) ∈ C0(Ω; R) × Rg, the closed-loop system with initial

condition

S(0) = (ω0, λ
0
1, . . . λ

0
g)(1.16)

has a global in time solution, and any local in time solution can be extended
to T ∗ = +∞ (in other words, any maximal solution is global).

P2. For any ε > 0, there exists η > 0 such that if

max(‖ω0‖L∞(Ω), |λ0
1|, . . . , |λ0

g|) < η,

then one has

max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|) ≤ ε,

for all t ≥ 0 and any global in time solution of the closed-loop system satisfying
(1.16).

P3. Any global in time solution of the closed-loop system satisfies

max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|) → 0 as t → +∞.

We will describe in section 2 the feedback law (C1(S), C2(S), C3(S)) which involves
Theorem 1.2. The precise result expressed in terms of this feedback law is given in
section 2.5.

1.3. A related problem concerning the stationary equation. As pointed
out in [3], the problem of asymptotic stabilizability by stationary feedback is connected
with a problem concerning the stationary equation. Indeed, Brockett established a
necessary condition for a finite-dimensional control system to be stabilizable; see [1].

Theorem 1.3 (see Brockett [1]). A necessary condition for the control system
ẋ = f(x, u) to be locally asymptotically stabilizable at the equilibrium point x0 (satis-
fying f(x0, 0) = 0) by a stationary feedback is that the image by f of any neighborhood
of (x0, 0) is a neighborhood of 0.

The corresponding statement of this necessary condition in the infinite-dimensional
system considered here is precisely what is proved in [6], that is, the existence of so-
lutions for the stationary problem with a small force term (and by scaling arguments,
with any force term). Hence, the study in [6] can be viewed as a preliminary step
before this one. As we will see in section 2, some tools developed in [6] are essential
in the construction here. For more details, see [3], [4], and [6].

1.4. Structure of the paper. In the next section, we begin by giving the main
ideas concerning the construction of the feedback law that yields Theorem 1.2, then
we detail this construction (which is rather involved), and finally we state our precise
result (Theorem 2.4), which takes the stated form of the feedback law into account
and clearly involves Theorem 1.2.

In section 3, we fix the notation and give preliminary elementary statements,
which are classical for the construction of global in time solutions to the Euler system
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in two dimensions. At the end of this section, a proposition that is central in the
proof is stated.

Sections 4 and 5 prove the existence of local in time solutions of the closed-loop
system defined with the control law introduced in section 2. This is done in two steps.
In section 4, we construct a certain operator F . Then section 5 proves by Schauder’s
fixed point theorem that the operator F has fixed points, which actually give local in
time solutions to the closed-loop system.

Section 6 finishes the proof of Theorem 2.4, by proving that maximal solutions of
the closed-loop system are global and satisfy the asymptotic stability properties P2
and P3 described in Theorem 1.2.

Finally, we put in the appendix the proofs of the most technical lemmas.

2. Description of the feedback.

2.1. Basic ideas. The most important feature of the 2-D Euler equation is a
straightforward consequence of (1.6) (or (1.7)), precisely the following:

the vorticity ω follows the flow of the velocity v.(2.1)

A direct consequence of this fact is that, to perform P3 in Theorem 1.2, a global
solution of the closed-loop has to satisfy

the flow of the velocity v makes any point in Ω go out of the domain(2.2)

(except perhaps for configurations with important zones of null vorticity from the
beginning, but this situation is essentially nongeneric).

To get (2.2), we examine the Hodge decomposition of the velocity, which in non-
simply connected domains takes the following form (as usual, ∇⊥ := (−∂x2 , ∂x1)):

v(t, x) = ∇φ(t, x) + ∇⊥ψ(t, x) +

g∑
k=1

μi(t)∇⊥τi,(2.3)

where τi ∈ C∞(Ω; R), i ∈ {1, . . . , g}, is the solution of the system⎧⎨⎩
Δτi = 0 in Ω,
τi = 1 on Γi,
τi = 0 on ∂Ω\Γi,

(2.4)

and where the different terms satisfy, for each t,{
Δφ(t, x) = 0 in Ω,
∂nφ(t, x) = v(t, x) · n(x) on ∂Ω,

(2.5) {
Δψ(t, x) = curl v(t, x) in Ω,
ψ(t, x) = 0 on ∂Ω,

(2.6)

λi(t) = −
g∑

j=1

μj(t)

(∫
Ω

∇τi · ∇τj

)
−
∫

Ω

ω(t, x)τi(x)dx ∀ i ∈ {1, . . . , g}.(2.7)

The family ∇⊥τi being clearly linearly independent, the matrix (
∫
Ω
∇τi.∇τj)i,j=1,...,n

is invertible.
Now to obtain (2.2), it seems rather arduous to rely on the last two terms in (2.3),

because μj and ∇⊥ψ are fixed at the beginning by the state and then slowly evolve
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according to the flow of v itself. On the contrary, the ∇φ part is directly obtained
from the control. Hence a natural idea, which is also present in [2], [4], and [6], is to
fix the v · n part of the control so that the ∇φ part in (2.3) should prevail over the
other two in such a way that (2.2) is satisfied.

As in [4], this program is fulfilled by finding a function θ : Ω → R such that⎧⎨⎩
Δθ = 0 in Ω,
∂nθ = 0 on ∂Ω \ Σ,
|∇θ(x)| > 0 in Ω.

(2.8)

Indeed, given such a function θ, one can hope that the control

C1 = f(ω, λ1, . . . , λg)∂nθ(2.9)

with f(ω, λ1, . . . , λg) an adequate nonnegative function, which should be large when
(ω, λ1, . . . , λg) is large, will satisfy the requirements.

Once this part of the control is imposed, the idea is to choose the vorticity part
of the control in the form

∂tω = −K(ω, λ1, . . . , λg)ω in Σ−,

where K(ω, λ1, . . . , λg) is an appropriate positive function. In this way, one can hope
that the vorticity inside the domain will gradually be replaced by a smaller one.

However, there remain two issues:
• This might not be sufficient to get rid of the velocity circulations. The natural

idea to diminish these circulations is to inject additional vorticity through
Σ−∩Γi, as motivated by (1.8). This can raise a problem, because this injected
vorticity could influence the other λj . In order to avoid this, we make this
vorticity leave the domain through Γ0.

• Because of (2.1), at a point of ∂Σ− where v is pointing inside Σ−, there must
be compatibility conditions on the control in vorticity so that the solution
will have proper regularity. The reason for this is that, on one side of this
point in ∂Ω, the vorticity is determined by the control, whereas on the other
side, it is determined by the incoming flow along the uncontrolled part of
the boundary (see the points A in figures below). This is the main reason
we must consider a control in the form (1.11)–(1.15): the continuity of the
entering vorticity at this point is ensured by the C3-part of the control.
Moreover, it will be technically simpler if these points in ∂Σ− where v is
pointing inside Σ− do not depend on the state. In fact, it can be expected
that by choosing f in (2.9) properly, these points will be exactly those for
which ∇θ is pointing inside Σ−.

Remark 4. It would seem natural to require the function θ to satisfy, besides
(2.8),

at any point of ∂γ−, ∇θ is pointing outside γ−, where γ− = {x ∈ Σ / ∂nθ(x) < 0} .
(2.10)

In the case of a simply connected domain, this is possible; see [4]. But this is no
longer possible in the case of a nonsimply connected domain, since this would result
in a null index of the vector field ∇θ around the outer component of the boundary
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and in positive indices of ∇θ around inner components, which would be inconsistent
with (2.8).

Now that we have sketched the main ideas, we can construct a function θ satis-
fying (2.8); other conditions are required, either for technical reasons or to address
the above-mentioned issues. The feedback law, which relies on θ, is constructed sub-
sequently.

2.2. The function θ. The function θ that we introduce here has been used
to prove the existence of solutions for the stationary problem; see section 1.3 and
reference [6]. Precisely, we have the following result.

Proposition 2.1 (see [6, Prop. 1]). Consider Ω a nonempty, bounded, connected
and regular domain in R2, assumed to be not simply connected. Denote Γ0, . . . , Γg

the connected components of its boundary. Let n be the unit outward normal on ∂Ω.
Consider Σ an open part of ∂Ω, which meets each connected component of ∂Ω. Then
there exists a function θ̃ ∈ C∞(Ω; R) that satisfies the following conditions:

Δθ̃ = 0 in Ω,(2.11)

∂nθ̃ = 0 on ∂Ω\Σ,(2.12)

|∇θ̃(x)| > 0 for any x in Ω,(2.13)

(2.14) for γ+(θ̃) := {x ∈ ∂Ω / ∂nθ̃ > 0} and γ−(θ̃) := {x ∈ ∂Ω / ∂nθ̃ < 0},

one has: γ+(θ̃) ∩ γ−(θ̃) = ∅,
(2.15) γ+(θ̃) and γ−(θ̃) are unions of a finite number

of intervals of ∂Ω with disjoint closures,

(2.16) there exist g points M̃1, . . . , M̃g in γ−(θ̃) ∩ Γ0, sent respectively

on γ+(θ̃) ∩ Γ1, . . . , γ
+(θ̃) ∩ Γg by the flow of ∇θ̃,

with the trajectories not touching ∂Ω\[γ+(θ̃) ∪ γ−(θ̃)].

To describe properties of the flow, it is more convenient to work in a domain that
is invariant by the flow. To that end, we consider R > 0 such that Ω ⊂ BR and
introduce an operator π that extends continuous (resp., C1) vector fields defined on
Ω to continuous (resp., C1) and compactly supported vector fields on BR; see a more
precise definition of π in section 3.1.

We have the following technical refinement of Proposition 2.1.
Corollary 2.2. One can add the following requirement on θ̃ (call Φ̃ the flow of

π(∇θ̃)):

(2.17) given any point E in ∂γ+(θ̃) such that ∇θ̃(E) is pointing outside γ+(θ̃),

then for t > 0, Φ̃(t, 0, E) does not meet another point in ∂γ+(θ̃) pointing

outside γ+(θ̃) before leaving Ω.

The proof of this corollary is postponed to the appendix.
In fact, the function θ used in this paper is given by −θ̃; hence θ satisfies (2.11),

(2.12), (2.13), (2.14), and (2.15). However, (2.16) must be replaced by

(2.18)

there exist g points M1, . . . ,Mg in γ−(θ) ∩ Γ1, . . . , γ
−(θ) ∩ Γg, sent respectively

on γ+(θ) ∩ Γ0 by Φ, with the trajectories not touching ∂Ω\[γ+(θ) ∪ γ−(θ)]
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(here Φ is the flow of π(∇θ), and we define γ+(θ) := γ−(θ̃) and γ−(θ) := γ+(θ̃)), and
(2.17) must be replaced by

(2.19) given any point A in ∂γ−(θ) such that ∇θ(A) is pointing inside γ−(θ),

Φ(t, 0, A) has not met another point in ∂γ−(θ) at which ∇θ is pointing

inside γ−(θ) for t < 0 such that Φ([t, 0], 0, E) ⊂ Ω.

A representation of what ∇θ may look like is given in Figure 2.1 below. The dotted
lines represent some flow lines of ∇θ.

A

Γ1

M1

A

A

Γ0

B

B
Σ

∂Ω \ Σ

Fig. 2.1. A representation of ∇θ.

2.3. Some constructions relying on θ. We denote

γ+ = γ+(θ) =
{
x ∈ ∂Ω

/
∂nθ(x) > 0

}
and γ− = γ−(θ) =

{
x ∈ ∂Ω

/
∂nθ(x) < 0

}
.

We also introduce

V (θ) = max
Ω

θ − min
Ω

θ.(2.20)

As in [6] we call A the points in ∂γ− on which ∇θ is pointing inside γ− and B the
points in ∂γ− on which ∇θ is pointing outside γ−. In what follows, we denote by A,
B, and M the sets of A, B, and Mi points, respectively.

For each A ∈ A, we introduce γA as the component of ∂Ω\(γ−∪γ+) whose closure
contains A (and the same for B). We also consider the points A defined as

A := Φ(t′A, 0, A), where t′A := min
{
t ≤ 0 / Φ([t, 0], 0, A) ⊂ Ω

}
.(2.21)

Using (2.19), one sees that A ∈ γ−(θ) ∪ B.

Given θ, we shall introduce some functions on γ−, called ΓA and Λi, defined for
each A ∈ A and each Mi ∈ M, respectively, and supported in a neighborhood of this
point in γ−. Precisely, given A ∈ A, call VA a closed neighborhood of A in γ−, small
enough that it contains neither any Mi point, nor any other point of A, nor any A or



1114 OLIVIER GLASS

B point. Then define a function ΓA ∈ C∞(γ−; R) satisfying⎧⎪⎪⎨⎪⎪⎩
−1 ≤ ΓA ≤ 1,
Supp(ΓA) ⊂ VA,
ΓA ≡ 1 in a neighborhood of A,∫
VA

ΓA(x)∇θ(x) · n(x)dx = 0.

(2.22)

Now, given an Mi ∈ M, call VMi a closed neighborhood of Mi in γ− ∩ Γi, small
enough that it contains neither any A point nor points of ∂γ−, and such that all VMi

are sent by Φ to γ+(θ)∩Γ0, with the trajectories not touching ∂Ω\(γ+∪γ−) (as made
possible by (2.18) and Gronwall’s lemma; see Lemma 3.4 in section 3.3 below). Then
define Λi ∈ C∞(γ−; R) satisfying⎧⎨⎩

Λi ≤ 0,
Supp(Λi) ⊂ VMi ,∫
VMi

Λi(x)∇θ(x) · n(x)dx = 1.
(2.23)

Note that the last condition can be easily obtained since ∇θ(x) · n(x) is negative on
VMi .

We reduce if necessary the supports of ΓA and Λi in order to obtain

Supp(ΓA) ∩ Supp(Λi) = ∅ for any A ∈ A and any i = 1, . . . , g,
Supp(ΓA) ∩ Supp(ΓA′) = ∅ for any A,A′ ∈ A such that A �= A′.

(2.24)

To make the notation lighter, we write

Supp(Λ) :=

g⋃
i=1

Supp(Λi),

Supp(Γ) :=
⋃
A∈A

Supp(ΓA).

Also, we introduce

‖Λ‖∞ :=
g

max
i=1

‖Λi‖∞,

T (Γ) =
∑
A∈A

∫
γ−

|ΓA(x)∇θ(x) · n(x)|dx.(2.25)

We denote by � a strict minimizer of the distance between the connected components
of γ+ ∪ γ− and of the distances between the various Supp(ΓA) with A ∈ A, Supp(Λi)
with i ∈ {1, . . . , g}, and points B ∈ B.

The requirements on the supports are summarized in Figure 2.2 (where the arrows
represent ∇θ).

2.4. The feedback law. Let us now describe the feedback law that we use. It
is given by the following rule:

• If (ω(t), λ1(t), . . . , λg(t)) = 0, then fix

v · n = C1 := 0 on Σ.(2.26)
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(to Γ0)

Supp(Γ)
Supp(Λ)

A

M A

B

(to A′)

γA

Fig. 2.2. A representation of Σ− ∩ Γi.

• If (ω(t), λ1(t), . . . , λg(t)) �= 0, then fix

(2.27)⎧⎨⎩ v · n = C1 := K max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)∇θ(x) · n(x) on Σ,

ω = ω1 + ω2 on γ−,

where ω1 and ω2 are given by

(2.28)⎧⎨⎩ ∂tω1 = C2 := −M max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)ω1 on γ−,

ω2 = C3 :=
∑

A∈A ω(t, A)ΓA(x) −
∑g

i=1 λi(t)Λi(x) on γ−.

Consequently, we will have Σ− = γ− except in the case (ω(t), λ1(t), . . . , λg(t)) = 0.
Remark that ω1 is a function of the state since

ω1(t, ·) = ω(t, ·) −
∑
A∈A

ω(t, A)ΓA(·) +

g∑
i=1

λi(t)Λi(·) on γ−.

The constants K and M are to be chosen large enough, as will be seen more precisely
later.

Remark 5. Let us remark that, as the vorticity functions ω considered here are
in the class C0([0, T )×Ω), the functions t �→ ω(t, A) are well-defined and continuous.
Consequently, the feedback law is equivalent (in a distributional sense) to

∂tω(t, x) = −M max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)

×
[
ω(t, x) −

∑
A∈A

ω(t, A)ΓA(x) +

g∑
i=1

λi(t)Λi(x)

]

+
∑
A∈A

∂tω(t, A)ΓA(x) −
g∑

i=1

(
d

dt
λi(t)

)
Λi(x),(2.29)

where ∂tω(t, A) and d
dtλi(t) can be recovered, in a formal sense for the first one, from

the state thanks to (1.7)–(1.8).

2.5. The result. We rewrite the definition of the solutions of the system with
the above described feedback.

Definition 2.3. A function (ω, λ1, . . . , λg) in C0([0, T ∗)×Ω; R)×C0([0, T ∗); R)g

is a solution of the closed-loop system with the feedback law of section 2.4 if and only
if it satisfies
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• the relation (1.8) for all t ∈ [0, T ∗) and the equation (1.7) in the sense of
distributions, where v is defined for each t by (1.5), with C1 fixed by (2.27),

• that on the domain {t ∈ [0, T ∗) / (ω(t, ·), λ1(t), . . . , λg(t)) �≡ 0} × γ− (which
is an open bidimensional manifold), the function

ω1(t, x) = ω(t, x) −
∑
A∈A

ω(t, A)ΓA(x) +

g∑
i=1

λi(t)Λi(x)

satisfies (2.28) in a distributional sense.
The following theorem is the main result of the paper; it clearly involves Theo-

rem 1.2.
Theorem 2.4. If the constant K is large enough, and M is large enough depend-

ing on K, then for any initial condition (ω0, λ
0
1, . . . , λ

0
g) in C0(Ω; R) × Rg, there are

solutions in C0([0, T ∗) × Ω; R) × C0([0, T ∗); R)g of the closed-loop system (for some
T ∗ > 0) satisfying

(ω, λ1, . . . , λg)|t=0 = (ω0, λ
0
1, . . . , λ

0
g).(2.30)

Moreover, any maximal solution is global and satisfies, for some K > 0 depending
only on Ω and Σ (and on the functions θ, ΓA, and Λi constructed on (Ω,Σ)),

(2.31) max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)
≤ Kmax(‖ω0‖L∞(Ω), |λ0

1|, . . . , |λ0
g|) ∀ t ≥ 0,

max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|) → 0 as t → +∞.(2.32)

3. Notation and prerequisites.

3.1. Notation. We essentially keep the notation of [4]. The velocity field will
now be designated by y. We write ΩT := [0, T ] × Ω and ΣT := [0, T ] × ∂Ω. In that
context we write pr1(t, x) = t and pr2(t, x) = x.

For X a nonempty compact subset of Rn and f a continuous function X → R,
we introduce ΞX [f ] as the following function R+∗ → R+∗ ∪ {+∞}:

ΞX [f ](ε) := sup
{
η > 0 / ∀x, x′ ∈ X, |x− x′| ≤ η ⇒ |f(x) − f(x′)| ≤ ε

}
;(3.1)

for x ∈ X we introduce Ξx
X [f ] as

Ξx
X [f ](ε) := sup

{
η > 0 / ∀x′ ∈ X, |x− x′| ≤ η ⇒ |f(x) − f(x′)| ≤ ε

}
.(3.2)

These two functions are clearly related to the modulus of continuity of f .
Given K a compact set in R2 and f a continuous function K → R2, we introduce

the log-Lipschitz norm

qK(f) := ‖f‖∞ + sup

{
|f(x) − f(x′)|
r(|x− x′|) , (x, x′) ∈ K2, x �= x′

}
,(3.3)

where r(s) = s− s ln(s) in (0, 1) and r(s) = s in [1,+∞).
We call log-Lipschitz the functions for which qK(f) < +∞, and denote by LL(K)

their space, which we endow with the norm described in (3.3). We denote by Lip(K)
the space of Lipschitz functions on K.
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In the notation of a functional space, an index 0 refers to functions with compact
support.

Let R be a positive real number, large enough so that Ω is included in the open
0-centered ball with radius R, denoted by BR.

We consider a linear continuous extension operator π : C0(Ω) → C0
0 (BR), which

maps any LL(Ω) function to an LL0(BR) function, and any C1(Ω) function to a
C1

0 (BR) function. We fix cπ a constant such that

(3.4) ‖π(f)‖C0(BR) ≤ cπ‖f‖C0(Ω), ‖π(f)‖LL(BR) ≤ cπ‖f‖LL(Ω),

and ‖π(f)‖C1(BR) ≤ cπ‖f‖C1(Ω).

Frequently, we write (ω, λi) for (ω, λ1, . . . , λg). Also, using the canonical isomorphism
C0([0, T ∗)×Ω; R) ∼= C0([0, T ∗);C0(Ω; R)), we often write ω(t) for ω(t, ·) and y(t) for
y(t, ·). In the same way, ‖ω(·)‖L∞(Ω) denotes the function

t �→ ess sup
x∈Ω

|ω(t, x)|.

3.2. The Wolibner–Yudovich theorem. In this section, we introduce a clas-
sical tool to deal with flows of vector fields which do not satisfy the Lipschitz condition
(in fact, the existence is the Peano theorem, and the uniqueness is the Osgood theo-
rem). One has the following theorem.

Theorem 3.1 (Wolibner–Yudovich theorem). Consider T > 0 and a vector field
y ∈ L∞([0, T ];C0

0 (BR; R2)) such that for some constant C

qBR
(y(t)) ≤ C a.e. in [0, T ].(3.5)

Then there exists a unique map Φy ∈ C0([0, T ]×[0, T ]×BR;BR), (t, s, x) �→ Φy(t, s, x),
which is a flow of y, i.e., a function that satisfies

Φy(t, s, x) = x +

∫ t

s

y(τ,Φy(τ, s, x))dτ ∀(t, s, x) ∈ [0, T ] × [0, T ] ×BR.(3.6)

Moreover, there are two positive constants CWY and δWY depending only on (R, T,C)
such that for any (s, s′, t, t′, x, x′) ∈ [0, T ]4 ×BR

2, one has

|Φy(t, s, x) − Φy(t′, s′, x′)| ≤ CWY (|s− s′|δWY + |t− t′|δWY + |x− x′|δWY ).(3.7)

For a proof of this theorem, we refer to Wolibner [9], Yudovich [11, Lemma 6.3],
or Kato [7].

Estimates such as (3.5) can easily be established by using the following theorem.
Theorem 3.2 (Wolibner). Consider ω ∈ C0(Ω; R), λ1, . . . , λg ∈ R. Then the

function y defined in C0(Ω; R2) by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl y(x) = ω(x) in Ω,
div y(x) = 0 in Ω,
y(x) · n(x) = 0 on ∂Ω,∫

Γi

y(x) · �τ(x)dx = λi for i = 1, . . . g,

(3.8)

satisfies the estimate

‖y‖LL(Ω) ≤ CLL max (‖ω‖C0 , |λ1|, . . . , |λg|) .(3.9)

We refer, for instance, to [7, Lemma 1.4] or [9].
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3.3. Elementary tools. Here we recall two elementary Gronwall inequalities.
Lemma 3.3. Consider two vector fields y1 ∈ L∞([0, T ];Lip0(BR; R2)) and y2 ∈

L∞([0, T ];LL0(BR; R2)) and their corresponding flows Φ1 and Φ2 (obtained with the
Cauchy–Lipschitz theorem for the first and with the Wolibner–Yudovich theorem for
the latter). Then one has, for all t ∈ [0, T ],

‖Φ1(t, 0, ·) − Φ2(t, 0, ·)‖L∞(BR) ≤ exp

(∫ t

0

‖y1(τ)‖Lip(BR)dτ

)
‖y1 − y2‖L1([0,t],L∞(BR)).

(3.10)

Lemma 3.4. Consider y ∈ L∞([0, T ],Lip0(BR; R2)) and its flow Φy. One has,
for all (t, x, x′) ∈ [0, T ] ×B2

R,

|Φy(t, 0, x) − Φy(t, 0, x′)| ≤ exp

(∫ t

0

‖y(τ)‖Lip(BR)dτ

)
|x− x′|.(3.11)

These are very classical and elementary statements.

3.4. A proposition concerning flows under the feedback law. We begin
with a remark.

Remark 6. The flow Φ of π(∇θ) satisfies the following properties:
(i) for x in B ∪ γ−(θ) and for any t ∈ (0, T ], ∃ν > 0 s.t. Φ([t− ν, t], t, x) ⊂ R2\Ω;
(ii) for x in γ−(θ) and for any t ∈ [0, T ), ∃ν > 0 s.t. Φ([t, t + ν], t, x) ⊂ Ω;
(iii) for any B ∈ B and for any t ∈ [0, T ), ∃ν > 0 s.t. Φ([t, t + ν], t, B) ⊂ γB ;
(iv) for any A ∈ A, for any t ∈ [0, T ), and for τ < t s.t. (t− τ)‖∇θ‖∞ ≤ �/2,

one has Φ(τ, t, A) ∈ γA;
(v) for any A ∈ A, for any t ∈ (0, T ], and for τ > t s.t. (τ − t)‖∇θ‖∞ ≤ �/2,

one has Φ(τ, t, A) ∈ Ω;

(vi) for all Mi ∈ M, one has Φ(t, 0,Mi) �∈ ∂Ω\[γ+ ∪ γ−] for t > 0 s.t.
Φ([0, t], 0,Mi) ⊂ Ω; that is, the trajectories of Mi do not touch the set

∂Ω\[γ+ ∪ γ−] before leaving the domain.
These properties are easy to prove using the form of ∇θ, the uniqueness of the flow,
and the definition of �.

The idea of the following proposition is to prove that if one imposes a control of
the form (2.27) with K large enough, some of the properties in Proposition 2.1 and
Remark 6 are also true for the flow of the resulting velocity y.

Proposition 3.5. There exist κ > 0 and K := K(θ) > 0 such that, for any K ≥
K, any T > 0, any (ω, λi) ∈ C0(ΩT ; R) × C0([0, T ]; Rg), and any α ∈ C0([0, T ],R+)
positive satisfying

α(t) ≥ max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) ,(3.12)

the solution y ∈ C0(ΩT ; R2) of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl y(t, x) = ω(t, x) for (t, x) ∈ ΩT ,
div y(t, x) = 0 for (t, x) ∈ ΩT ,
y(t, x) · n(x) = Kα(t)∇θ(x) · n(x) for (t, x) ∈ ΣT ,∫

Γi

y(t, x) · �τ(x)dx = λi(t) for t ∈ [0, T ] and i ∈ {1, . . . , g}
(3.13)

satisfies

y(t, x) · ∇θ(x) ≥ κKα(t) in ΩT ,(3.14)
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and, Φy being the flow of π(y) in BR,

for any point x in B ∪ γ−(θ) and for any t ∈ (0, T ),

∃ν > 0 such that Φy([t− ν, t), t, x) ⊂ R2\Ω,(3.15)

∃ν > 0 such that Φy((t, t + ν], t, x) ⊂ Ω ∪ [∂Ω\(γ− ∪ γ+)],(3.16)

(3.17) for any x ∈ Supp(Λ) and for any t ∈ [0, T ], one has Φy(τ, t, x) �∈
g⋃

i=1

(Γi ∩ γ+)

for τ ∈ (t, T ] such that Φy([t, τ ], t, x) ⊂ Ω,

(3.18)
for any A ∈ A and for any t ∈ (0, T ], one has Φy(τ, t, A) ∈ γA for τ ∈ [0, t) such that

cπ(K‖∇θ‖∞ + CLL)

(∫ t

τ

α(s)ds

)
≤ �/2,

(3.19)
for any A ∈ A and for any t ∈ [0, T ), one has Φy(τ, t, A) ∈ Ω for τ ∈ (t, T ] such that

cπ(K‖∇θ‖∞ + CLL)

(∫ τ

t

α(s)ds

)
≤ �/2,

(3.20) for any A ∈ A and for any t ∈ [0, T ], one has Φy(τ, t, A) �∈ Supp(Γ) ∪ Supp(Λ)

for τ ∈ [0, t) such that Φy([τ, t], t, A) ⊂ Ω.

Of course, the previous flow has to be understood in the Wolibner–Yudovich sense.

The proof of Proposition 3.5 is delayed to the appendix.

Remark 7. Let us remark that, as a consequence of (3.14), the points A and B
defined for ∇θ are still valid for the velocity y described in (3.13); that is, for all t in
[0, T ], y(t, A) (resp., y(t, B)) is tangent to ∂Ω and pointing inside (resp., outside) γ−

(for K ≥ K, provided α(t) > 0).

In what follows, we will systematically suppose K ≥ K.

4. Construction of the operator F . In this section, we construct an operator
F = (F,G1, . . . , Gg), whose fixed points give local in time solutions to the closed-loop
system. Roughly speaking, F [ω, λi] is the solution of an initial-boundary problem,
which is approximately the closed-loop system described above, where (1.7) is replaced
by the following linear equation:

∂tF [ω, λi] + div(yω,λiF [ω, λi]) = 0 in (0, T ∗) × Ω,

where yω,λi is the solution of (1.5) corresponding to (ω, λi). Then Gi corresponds
approximately to the solution of (1.8).

4.1. The domain X. First let us define the space X on which F is to be
defined. The operator F is split into F = (F,Gi), with F : X → C0([0, T ] × Ω; R)
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and Gi : X → C0([0, T ]; R) for i ∈ {1, . . . , g}. We introduce

(4.1) X :=
{

(ω, λi) ∈ C0([0, T ] × Ω; R) ×
[
C0([0, T ]; R)

]g /
(a) ω(0, ·) = ω0,

(b) ‖ω(t, ·)‖∞ ≤ Nω0,λ0
i

for t ∈ [0, T ],

(c) λi(0) = λ0
i for i = 1 . . . g,

(d)

∥∥∥∥∂ω∂t
∥∥∥∥
L∞

t (H−1
x )

≤ κ1 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2

,

(e) |λi(t)| ≤ Mω0,λ0
i

for t ∈ [0, T ],

(f)

∣∣∣∣ dλi

dt−

∣∣∣∣ (t) ≤ κ2 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2

,

(g) ∀A ∈ A, ∀ε ∈ (0, 1), Ξ[0,T ][ω(A, ·)](ε) ≥ 1
c (ΞγA

[ω0](ε))
1
δ ,

(h) ∀ε ∈ (0, 1), Ξ[0,T ][‖ω(·)‖L∞(Ω)](ε) ≥ 1
c min

[(
ΞΩ[ω0](ε)

) 1
δ , ε

]}
,

where the constant c depends on Ω, θ, T , and (ω0, λ
0
i ) and will be chosen large enough

later. The other constants are fixed as follows:

Nω0,λ0
i

:=

[
3 + |Ω| + V (θ)

κ
T (Γ)

]
(1 + ‖Λ‖∞) max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞),(4.2)

Mω0,λ0
i

:=

[
2 + |Ω| + V (θ)

κ
T (Γ)

]
max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞),(4.3)

and δ is defined with reference to section 3.2 as

δ := δWY (R, T, cπ(CLL + K‖∇θ‖LL(Ω))Nω0,λ0
i
).(4.4)

The constants κ1 and κ2 depend on the domain and on the choice of θ, Λ, and Γ but
not on T :

κ1 := 2|Ω| 12 (CLL + K‖∇θ‖L∞(Ω))

[
3 + |Ω| + V (θ)

κ
T (Γ)

]2

(1 + ‖Λ‖∞)2,(4.5)

κ2 := |Σ|K‖∇θ‖L∞(Ω)

[
3 + |Ω| + V (θ)

κ
T (Γ)

]2

(1 + ‖Λ‖∞)2.(4.6)

In (4.2)–(4.6), |Ω| stands for the Lebesgue measure of Ω and |Σ| for the length of Σ,
κ is the constant in (3.14), V (θ) is defined in (2.20), T (Γ) and ‖Λ‖∞ are defined in
(2.25), cπ is defined in (3.4), and CLL is introduced in (3.9).

The time T is chosen in the following way:
• if max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞) = 0, then 0 is a clear solution of the system and

we pass (throughout sections 4 and 5 we will suppose (ω0, λ
0
i ) �= (0, 0));

• if ‖ω0‖∞ = 0, but |λ0
k| > 0 for some k ∈ {1, . . . , g}, we fix

T :=
|λ0

k|
2κ2 max

(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2 ;(4.7)

• if ‖ω0‖∞ �= 0, then we fix

T :=
‖ω0‖∞

2κ1 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2 .(4.8)



STABILIZATION OF FLUIDS IN MULTICONNECTED DOMAINS 1121

Finally, we define T as

T := min

(
�

4cπ(CLL + K‖∇θ‖∞)Nω0,λ0
i

, T

)
.(4.9)

It is quite clear that X is convex, closed, and nonempty (since, for example, it
contains the constant function t �→ (ω0, λ

0
i )).

Let us finish this paragraph with a remark concerning the choice of T .
Remark 8. Let us remark that T allows us to have the following properties:
• for any A ∈ A and any (ω, λi) ∈ X, if one puts y as in (3.13) (with α

satisfying (3.12)), then for any t ∈ [0, T ] one has Φy([0, t], t, A) ⊂ γA (this is
a consequence of the first part in the minimum in (4.9), using (3.18));

• for any (ω, λi) ∈ X, one has as a consequence of the definition of T and of
points (d) and (f) in (4.1), that

– if T is defined by (4.7), then for all t ∈ [0, T ],

|λk(t)| ≥
|λ0

k|
2

> 0,(4.10)

– if T is defined by (4.8), then for all t ∈ [0, T ],

‖ω(t, ·)‖∞ ≥ κ−1
3

‖ω0‖H−1(Ω)

2
> 0,(4.11)

where κ3 is some constant such that ‖ · ‖H−1(Ω) ≤ κ3‖ · ‖L∞(Ω).

4.2. The operator F . Let us now describe the operator F . Consider (ω, λi) ∈
X. First, we associate with (ω, λi) the function αω,λi

∈ C0([0, T ],R+∗) by

αω,λi(t) := max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) .(4.12)

Then, we can associate the following vector field yω,λi ∈ C0(ΩT ,R
2) as the solu-

tion of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl yω,λi(t, x) = ω(t, x) for (t, x) ∈ ΩT ,
div yω,λi

(t, x) = 0 for (t, x) ∈ ΩT ,
yω,λi(t, x) · n(x) = Kαω,λi

(t)∇θ(x) · n(x) for (t, x) ∈ ΣT ,∫
Γi

yω,λi(t, x) · �τ(x)dx = λi(t) for t ∈ [0, T ], i = 1, . . . , g,

(4.13)

where K ≥ K(θ). Then we extend this vector field to [0, T ] ×BR by

ỹω,λi(t, ·) = π[yω,λi(t, ·)].(4.14)

By the Wolibner–Yudovich theorem (see section 3.2), this vector field yields a flow
Φω,λi : [0, T ] × [0, T ] × BR → BR, i.e., a solution of (3.6). Now, given this flow,

we can introduce the following two functions on [0, T ] × Ω (which, roughly speaking,
represent, respectively, the time and location of entrance in the domain of the point
located at x at time t, when following the flow):

sω,λi(t, x) := max
{
τ ∈ [0, t], Φω,λi(τ, t, x) ∈ γ−

}
,(4.15)

aω,λi
(t, x) := Φω,λi(sω,λi

(t, x), t, x),(4.16)
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with the convention that when {τ ∈ [0, t], Φω,λi(τ, t, x) ∈ γ−} = ∅, then

sω,λi
(t, x) := 0,

and correspondingly

aω,λi
(t, x) := Φω,λi(0, t, x).

Note that in all cases, one has aω,λi(t, x) ∈ Ω. Note that the function sω,λi is not
necessarily continuous (contrary to what happened in the simply connected case; see
[4, equations (3.36)–(3.37)]).

Now we can define F [ω, λi](t, x) for (t, x) ∈ ΩT . In that order, we distinguish
four cases, corresponding to different situations for aω,λi(t, x). In what follows, the
constant M (which appears in (2.28)) is to be chosen large enough later.

Case α: aω,λi(t, x) ∈ Ω ∪ (∂Ω\γ−). This case is possible only if sω,λi(t, x) = 0.
In that case, we fix

F [ω, λi](t, x) := ω0(aω,λi
(t, x)).(4.17)

Case β: aω,λi(t, x) ∈ γ−\[Supp(Γ) ∪ Supp(Λ)]. In that case, we fix

F [ω, λi](t, x) := ω0(aω,λi(t, x)) exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)
.(4.18)

Case γ: aω,λi(t, x) ∈ Supp(ΓA) for some A ∈ A. In that case, we fix

(4.19) F [ω, λi](t, x) :=[
ω0(aω,λi(t, x)) − ω0(A)ΓA(aω,λi(t, x))

]
exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)
+ ω0(Φ

ω,λi(0, sω,λi(t, x), A))ΓA(aω,λi(t, x)).

Case δ: aω,λi(t, x) ∈ Supp(Λk) for some k ∈ {1, . . . , g}. In that case, we fix

(4.20) F [ω, λi](t, x) :=[
ω0(aω,λi(t, x)) + λ0

kΛk(aω,λi(t, x))
]
exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)
− λk(sω,λi(t, x))Λk(aω,λi(t, x)).

Another way to express this is that F [ω, λi] is given by

F [ω, λi](t, x) =

[
ω0(aω,λi(t, x)) −

∑
A∈A

ω0(A)ΓA(aω,λi(t, x)) +

g∑
k=1

λ0
kΛk(aω,λi(t, x))

]

× exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)
+

∑
A∈A

ω0(Φ
ω,λi(0, sω,λi(t, x), A))ΓA(aω,λi(t, x))

−
g∑

k=1

λk(sω,λi(t, x))Λk(aω,λi(t, x))(4.21)
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with at most one nonnull term in each summation.
We also define on [0, T ] × γ−

(4.22)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω	(t, x) :=

[
ω0(x) −

∑
A∈A

ω0(A)ΓA(x) +

g∑
k=1

λ0
kΛk(x)

]
exp

(
−M

∫ t

0

αω,λi(τ)dτ

)
,

ω
(t, x) :=
∑
A∈A

ω0(Φ
ω,λi(0, t, A))ΓA(x),

ω�(t, x) := −
g∑

k=1

λk(t)Λk(x).

Finally, let us call F̃ the same operator as F , with Λk replaced by 0 for each k ∈
{1, . . . , g}; that is, F̃ is constant along the flow of Φω,λi , and on γ−, one has

(4.23) F̃ [ω, λi](t, x) :=

[
ω0(x) −

∑
A∈A

ω0(A)ΓA(x)

]
exp

(
−M

∫ t

0

αω,λi(τ)dτ

)
+
∑
A∈A

ω0(Φ
ω,λi(0, t, A))ΓA(x).

4.3. The operators Gi. Define the function Tω0,λ0
i

: R → R as⎧⎪⎨⎪⎩
Tω0,λ0

i
(x) = x in [−Mω0,λ0

i
,Mω0,λ0

i
],

Tω0,λ0
i
(x) = Mω0,λ0

i
in [Mω0,λ0

i
,+∞),

Tω0,λ0
i
(x) = −Mω0,λ0

i
in (−∞,−Mω0,λ0

i
].

(4.24)

Let us now introduce the operators Gk, k = 1, . . . , g. We define Gk(ω, λ1, . . . , λg) ∈
C0([0, T ],R) by

Gk(ω, λ1, . . . , λg)(t) := Tω0,λ0
i

[
λ0
k +

∫ t

0

∫
Γk

yω,λi
(s, x) · n(x)F [ω, λi](s, x)dsdx

]
.

(4.25)

5. Proof that F admits a fixed point. In this section, we prove that the
operator F := (F,G1, . . . , Gg) that we have just constructed admits a fixed point.
This is done by using the Leray–Schauder fixed point theorem. Accordingly, we have
to prove three properties:

• F(X) ⊂ X;
• F(X) is compact in X for the C0 topology;
• F is continuous for the C0 topology.

We prove this in three distinct subsections.

5.1. F(X) ⊂ X. The first point to prove is that, for (ω, λi) ∈ X, F [ω, λi] is a
continuous function of (t, x). Fixing (t, x) ∈ [0, T ] × Ω, let us prove that F [ω, λi] is
continuous at the point (t, x). Again, we distinguish the four cases α, β, γ, and δ,
corresponding respectively to the case when aω,λi(t, x) ∈ Ω ∪ (∂Ω\γ−), aω,λi(t, x) ∈
γ−\[Supp(Γ) ∪ Supp(Λ)], aω,λi(t, x) ∈ Supp(Γ), and aω,λi(t, x) ∈ Supp(Λ).

Case α: aω,λi(t, x) ∈ Ω ∪ (∂Ω\γ−). Therefore, sω,λi(t, x) = 0. By the continuity
of the flow Φω,λi , there exists a neighborhood of (t, x) on which Φω,λi(0, t′, x′) ∈
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Ω ∪ (∂Ω\γ−). Then the continuity of F [ω, λi] at the point (t, x) comes directly from
the continuities of the flow and of ω0, and from (4.17).

Case β: aω,λi(t, x) ∈ γ−\[Supp(Γ) ∪ Supp(Λ)]. In this case, using (3.15) and the
continuity of the flow, one sees that sω,λi is continuous at the neighborhood of (t, x).
To be more precise the following hold:

– sω,λi
is always upper semicontinuous, as follows from the continuity of the

flow. Indeed, consider s > sω,λi
(t, x); the trajectory

Φω,λi(τ, t, x) for τ ∈ [s, t]

does not touch γ−. Consequently, for (t′, x′) close enough to (t, x), the cor-
responding trajectory

Φω,λi(τ, t′, x′) for τ ∈ [s, t′]

does not touch γ− either. This leads to

lim
(t′,x′)→(t,x)

sω,λi(t
′, x′) ≤ sω,λi(t, x).(5.1)

– sω,λi is lower semicontinuous in this neighborhood, as a consequence of (3.15).
Indeed, for s ∈ [sω,λi(t, x)−ν, sω,λi(t, x)), one has Φω,λi(s, t, x) ∈ BR\Ω. Now
using the continuity of the flow, this gives

lim
(t′,x′)→(t,x)

sω,λi
(t′, x′) ≥ sω,λi

(t, x).(5.2)

Then again, once we have obtained the continuity of sω,λi
, the continuity of F [ω, λi]

at the point (t, x) comes from the continuities of the flow and of ω0, and from (4.21).
(Cases α and β are the only ones that arise in the simply connected case; see [4,

Lemma 3.3].)
Case γ: aω,λi(t, x) ∈ Supp(ΓA) for some A ∈ A. In this case, sω,λi(t, x) can

be discontinuous, but only in the case where aω,λi
(t, x) = A, for the same reason as

in case β. Indeed, when aω,λi
(t, x) �= A, (3.15) is still valid, so the same argument

stands true. So we suppose from now on that aω,λi(t, x) = A. Consider (t′, x′) in
a neighborhood of (t, x). We distinguish some subcases according to the locus of
aω,λi

(t′, x′).

• Cases β′ and δ′: aω,λi(t
′, x′) ∈ γ−\Supp(ΓA) (including aω,λi(t

′, x′) ∈
Supp(ΓA′) for some A′ ∈ A \ {A}). These cases cannot happen if the neigh-
borhood around (t, x) is chosen small enough (this is a clear consequence of
the continuity of the flow).

• Case γ′: aω,λi(t
′, x′) ∈ Supp(ΓA) (including A). Let us prove that in this case

aω,λi(t
′, x′) is close to aω,λi(t, x) = A and that sω,λi(t

′, x′) is close to sω,λi(t, x)
in the following sense: take a sequence (t′n, x

′
n) in the region of points in Case

γ′, converging to (t, x); then one has the corresponding convergences

aω,λi(t
′
n, x

′
n) → aω,λi(t, x) and sω,λi(t

′
n, x

′
n) → sω,λi(t, x) as n → +∞.

Indeed,
* given ε > 0, one has for n large enough sω,λi(t

′
n, x

′
n) ≥ sω,λi(t, x) − ε.

If not, for some subsequence of (t′n, x
′
n) (that we still call (t′n, x

′
n)), one

has sω,λi(t
′
n, x

′
n) → s, with

s ≤ sω,λi
(t, x) − ε.
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By continuity of the flow, Φω,λi(sω,λi
(t′n, x

′
n), t′n, x

′
n) converges to

Φω,λi(s, t, x) as n → +∞. But as s ≤ sω,λi(t, x) − ε and using (3.18),
one must have Φω,λi(s, t, x) ∈ γA, which contradicts the fact that it is a

limit point of a sequence in γ−.
* we argue in the same way to get sω,λi(t

′
n, x

′
n) ≤ sω,λi(t, x)+ε. If this does

not happen, one finds a subsequence of (t′n, x
′
n) for which sω,λi(t

′
n, x

′
n)

converges to s ≥ sω,λi
(t, x) + ε. This yields a contradiction with the

continuity of the flow and (3.19).
Now, using the continuity of the flow and the convergence of sω,λi

(t′n, x
′
n),

one gets the continuity of aω,λi(t
′
n, x

′
n).

It follows from the choice of T—see in particular Remark 8—that

Fω,λi(t, A) = ω0(Φ
ω,λi(0, t, A))

and hence that t �→ Fω,λi(t, A) is continuous. Now, using the continuity of
ΓA, we get a neighborhood of (t, x) in which the points in the Case γ′ satisfy

|Fω,λi(t′, x′) − Fω,λi(t, x)| < ε.

• Case α′: aω,λi(t
′, x′) ∈ Ω ∪ (∂Ω\γ−). Then one has

F [ω, λi](t
′, x′) = ω0(Φ

ω,λi [0, t′, x′]).

But by (4.19) we also have

F [ω, λi](t, x) = ω0

(
Φω,λi [0, sω,λi

(t, x), aω,λi
(t, x)]

)
= ω0(Φ

ω,λi [0, t, x]).

(Remember aω,λi(t, x) = A.) Then again, using only the continuity of the flow
and the continuity of ω0, we get that F [ω, λi](t, x

′) can be made arbitrarily
close to F [ω, λi](t, x) if we restrict x′ to a small neighborhood of x of points
in Case α′.

Case δ: aω,λi
(t, x) ∈ Supp(Λk) for some k ∈ {1, . . . , g}. This is again, as in

Case β, a situation where sω,λi
is continuous at the neighborhood of (t, x). Then the

continuity in this case is a consequence of the continuities of the flow, of ω0 and λk,
and of (4.21).
From the continuity of F (ω, λi) and (4.25), we get that the functions Gk(ω, λ1, . . . , λg)
are time continuous.

Once this is proved, we have to check that the points (a) to (h) in the definition
of X are satisfied by F(ω, λi) for (ω, λi) ∈ X.

(a) That F (ω, λi)(0, ·) = ω0 is a clear consequence of the construction of F .
(c) We have also Gi(0) = λ0

i for i = 1, . . . , g, as a direct consequence of (4.3),
(4.24), and (4.25).

(b) Let us check that for all (t, x) ∈ [0, T ]×Ω one has |F [ω, λi](t, x)| ≤ Nω0,λ0
i

by

separating the four cases. Let us therefore consider (t, x) which achieves the maximum
of |F [ω, λi](t, x)|.

Case α: Suppose aω,λi
(t, x) ∈ Ω ∪ (∂Ω\γ−). Then one has

|F [ω, λi](t, x)| = |ω0(aω,λi(t, x))| ≤ ‖ω0‖∞.

Case β: Suppose aω,λi(t, x) ∈ γ−\[Supp(Γ) ∪ Supp(Λ)]. Then one has

|F [ω, λi](t, x)| = |ω0(aω,λi(t, x))| exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)
≤ ‖ω0‖∞.
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Case γ: Suppose aω,λi
(t, x) ∈ Supp(ΓA) for some A ∈ A. It is a consequence of

(3.20) (or Remark 8) that

|F [ω, λi](t, A)| ≤ ‖ω0‖∞.

Then one has, using (2.22) and (4.19),

|F [ω, λi](t, x)| = |ω	(sω,λi
(t, x), aω,λi

(t, x)) + ω
(sω,λi
(t, x), aω,λi

(t, x))|
≤ 3‖ω0‖∞ ≤ Nω0,λ0

i
.

Case δ: Suppose aω,λi(t, x) ∈ Supp(Λk) for some k ∈ {1, . . . , g}. As F [ω, λi](t, x)
is transported by the flow inside Ω, it suffices to prove that for (t, x) ∈ [0, T ]×
Supp(Λk) one has

|ω	(t, x) + ω�(t, x)|

≤
[
3 + |Ω| + V (θ)

κ
T (Γ)

]
(1 + ‖Λ‖∞) max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞).

Of course, one has

|ω	(t, x)| ≤ ‖ω0‖∞ + ‖Λ‖∞|λ0
k| on [0, T ] × Supp(Λk).

Now, using point (e), one gets, for (t, x) ∈ [0, T ] × Supp(Λk),

|ω�(t, x)| ≤ |λk(t)|‖Λ‖∞

≤
[
2 + |Ω| + V (θ)

κ
T (Γ)

]
‖Λ‖∞ max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞).

Hence, one still gets the estimate (b) for F (ω, λi).
(e) That the functions Gi satisfy the constraint (e) is a direct consequence of (4.3)

and (4.24).
(f) Point (f) is obtained as a consequence of (4.25). Consider k ∈ {1, . . . , g} and

t ∈ (0, T ]. Then either t is a left accumulation of points where∣∣∣∣λ0
k +

∫ t

0

∫
Γk

yω,λi(t, x) · n(x)F [ω, λi](t, x)dx

∣∣∣∣ ≥ Mω0,λ0
i
,

and in that case

dGk(ω, λi)

dt−
= 0,

or it is not, and one can write

dGk(ω, λi)

dt−
=

∫
Γk

yω,λi
(t, x) · n(x)F [ω, λi](t, x)dx

= K

∫
Γk

αω,λi
(t)∇θ(x) · n(x)F [ω, λi](t, x)dx.

Using the fact that (ω, λi) ∈ X and consequently satisfies points (b) and (e), we get
that

‖αω,λi(t)∇θ(x) · n(x)‖C0([0,T ]×∂Ω) ≤ Nω0,λ0
i
‖∇θ‖∞.
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Using the fact that F [ω, λi] satisfies the estimate (b), this leads to∣∣∣∣dGk(ω, λi)

dt−

∣∣∣∣ (t) ≤ κ2 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2

.

(d) Define

y̌ω,λi = yω,λi −Kαω,λi∇θ.

Using (3.9) and (b) and (e) in (4.1), one gets

‖y̌ω,λi
‖L∞([0,T ];LL(Ω)) ≤ CLL max(Mω0,λ0

i
,Nω0,λ0

i
) = CLLNω0,λ0

i
.

It follows that one has{
‖yω,λi‖L∞([0,T ]×Ω) ≤ CLLNω0,λ0

i
+ KNω0,λ0

i
‖∇θ‖∞,

‖yω,λi‖L∞([0,T ];LL(Ω)) ≤ CLLNω0,λ0
i
+ KNω0,λ0

i
‖∇θ‖LL.

(5.3)

Moreover, we have from point (b) that

max
t∈[0,T ]

‖F [ω, λi](t, ·)‖L∞(Ω) ≤ Nω0,λ0
i
.

Consequently one gets

‖yω,λiF [ω, λi]‖L∞([0,T ],L∞(Ω)) ≤ (CLL + K‖∇θ‖∞)N 2
ω0,λ0

i
.

But it follows from the construction that F [ω, λi] satisfies

∂tF [ω, λi] + div(yω,λiF [ω, λi]) = 0 in D′((0, T ) × Ω).

This leads to the fact that F [ω, λi] satisfies constraint (d).
(g) This point follows from (3.7), (3.18), and (4.19). Indeed, one has, for any

A ∈ A and any (t, t′) ∈ [0, T ]2,

F [ω, λi](t, A) − F [ω, λi](t
′, A) = ω0(Φ

ω,λi(0, t, A)) − ω0(Φ
ω,λi(0, t′, A)),

with Φω,λi(0, t′, A) and Φω,λi(0, t, A) in γA. Hence, so that

|F [ω, λi](t, A) − F [ω, λi](t
′, A)| ≤ ε,

it is sufficient that |Φω,λi(0, t, A)−Φω,λi(0, t′, A)| ≤ ΞγA
[ω0](ε). Using (3.7) and (5.3),

one sees that it is sufficient that

|t− t′| ≤
[

ΞγA
[ω0](ε)

CWY (R, T, cπNω0,λ0
i
[CLL + K‖∇θ‖LL])

] 1
δ

.

(h) We write ω̂ := F (ω, λi). We divide the proof that ω̂ satisfies point (h) into
two steps. First we estimate t̂− t so that

‖ω̂(t, ·)‖∞ − ‖ω̂(t̂, ·)‖∞ ≤ ε for t̂ > t,(5.4)

and then we estimate t̂− t so that

‖ω̂(t, ·)‖∞ − ‖ω̂(t̂, ·)‖∞ ≥ −ε for t̂ > t.(5.5)

In what follows, we suppose t̂ > t.
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• Sufficient condition for (5.4). First, we state a lemma.
Lemma 5.1. There exist ρ > 0 and η > 0 such that for any η ∈ (0, η) and
any x ∈ Ω, there is some x̃ ∈ Ω such that

d(x̃, x) ≤ η and d(x̃, ∂Ω) ≥ ρη.

Proof of Lemma 5.1. We introduce V, a tubular neighborhood of ∂Ω in R2.
It is easy to see that the following procedure, which associates a point x̃ to
any x, allows us to find relevant ρ and η:

– for x in V ∩Ω, we pick a point x̃ in the direction of the inner normal to
∂Ω,

– for x in Ω\V, we pick x̃ = x.
The details are left to the reader.
We go back to the sufficient condition for (5.4). Let us consider t ∈ [0, T ).
We introduce x ∈ Ω such that

|ω̂(t, x)| = ‖ω̂(t, ·)‖∞.

We have two possible situations.
– First situation: d(x, γ+) ≥ �/4. Then, considering (4.9), (5.3), the fact

that ω̂ is constant along the flow of yω,λi , and the fact that a point

following the flow of yω,λi
can leave the domain only through γ+, one

deduces that for t̂ ∈ (t, T ]

‖ω̂(t̂)‖C0(Ω) ≥ |ω̂(t̂,Φω,λi(t̂, t, x))| = |ω̂(t, x)| = ‖ω̂(t)‖C0(Ω),

which is stronger than (5.4).
– Second situation: d(x, γ+) ≤ �/4, and hence, considering the definition

of �, one has

d(x, γ−) ≥ 3�/4.

Considering (4.9) and (5.3), one deduces that

(5.6) Φω,λi(s, t, x) ∈ Ω\γ− ∀s ∈ [0, T ]

and any x ∈ Ω such that d(x, x) < �/2.

Moreover, using the fact that ω̂ is constant along the flow of yω,λi and
the fact that a point following the flow of yω,λi cannot leave the domain

except through γ+, we see that in order to have (5.4), it is sufficient that

|t− t̂| ≤ d(x̃, γ+)/‖yω,λi
‖L∞(ΩT ),

where x̃ ∈ Ω is some point satisfying

|ω̂(t, x̃) − ω̂(t, x)| ≤ ε.(5.7)

Using (5.6), one sees that to get (5.7), it is sufficient to have

d(x, x) < �/2 and |Φω,λi(0, t, x̃) − Φω,λi(0, t, x)| ≤ ΞΩ[ω0](ε),
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and hence, using (3.7), that

|x̃− x| ≤ min

⎧⎨⎩
(

ΞΩ[ω0](ε)

CWY (R, T, cπ(CLL + K‖∇θ‖LL)Nω0,λ0
i
)

) 1
δ

, �/4

⎫⎬⎭ .

It follows from Lemma 5.1 that one can find such a point x̃ satisfying
(5.7) such that

d(x̃, γ+) ≥ mmin
( (

ΞΩ[ω0](ε)
) 1

δ , 1
)

for some m > 0 independent from ε. So, using (5.3), one deduces that
in order to have ‖ω̂(t, ·)‖∞ − ‖ω̂(t̂, ·)‖∞ ≥ −ε (given ε ∈ (0, 1)), it is
sufficient that

|t− t̂| ≤ 1

c
min

{(
ΞΩ[ω0](ε)

) 1
δ , ε

}
for some c > 0 large enough depending on (ω0, λ

0
i ), on the domain, and

on K and on θ, but not on (ω, λi) or on ε.
• Sufficient condition for (5.5). Let us prove that in order for (5.5) to happen,

it is sufficient that

‖ω̂|γ−(s)‖∞ − ‖ω̂|γ−(t)‖∞ ≤ ε ∀ s ∈ [t, t̂].(5.8)

Indeed, let us consider x̂ ∈ Ω such that

|ω̂(t̂, x̂)| = ‖ω̂(t̂, ·)‖∞.

– If Φω,λi([t, t̂], t̂, x̂) meets γ−, then clearly, using again the fact that ω̂ is
constant along the flow of yω,λi

, one deduces that

‖ω̂(t̂)‖∞ ≤ sup
s∈[t,t̂]

‖ω̂|γ−(s)‖∞,

and hence

‖ω̂(t̂)‖∞ − ‖ω̂(t)‖∞ ≤ sup
s∈[t,t̂]

‖ω̂|γ−(s)‖∞ − ‖ω̂(t)‖∞

≤ sup
s∈[t,t̂]

‖ω̂|γ−(s)‖∞ − ‖ω̂|γ−(t)‖∞.

– Otherwise, it is quite clear that

‖ω̂(t̂)‖∞ = |ω̂(t̂, x̂)| = |ω̂(t,Φω,λi(t, t̂, x̂))| ≤ ‖ω̂(t)‖C0(Ω),

which is stronger than (5.5).
Now, using (2.22) and the decomposition (4.22) of F [ω, λi], one gets on
(0, T ) × γ−,

‖ω
(t) − ω
(t̂)‖∞ ≤ max
A∈A

|ω0(Φ
ω,λi(0, t, A)) − ω0(Φ

ω,λi(0, t̂, A))|,(5.9)
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and

(5.10)
∂

∂t

(
ω� + ω	

)
= −

g∑
k=1

Λk(x)
d

dt
λk(t) −Mαω,λi

(t)

×
[
ω0(x) −

∑
A∈A

ω0(A)ΓA(x) +

g∑
k=1

λ0
kΛk(x)

]
exp

(
−M

∫ t

0

αω,λi
(τ)dτ

)
.

In order to have (5.8), it is sufficient that

‖ω
(t) − ω
(t̂)‖∞ ≤ ε/2 and ‖ω�(t) + ω	(t) − ω�(t̂) + ω	(t̂)‖∞ ≤ ε/2

and hence, using points (b), (e), and (f) in the definition of X and (3.18),
(5.9), and (5.10), that

|t− t̂| ≤ 1

c
min(ε,ΞΩ[ω0](ε))

for some c large enough depending on ω0 and λ0
i , but not on ε, t̂, or (ω, λi).

So in all cases, in order to get (5.4) and (5.5), it is sufficient to have

|t− t̂| ≤ 1

c
min

(
ε,ΞΩ[ω0](ε)

)
for proper c, which allows us to conclude.

This ends the proof that F(X) ⊂ X.

5.2. F(X) is compact in C0([0, T ]×Ω; R)×[C0([0, T ]; R)]g. Consider a se-
quence (ωn, λ

n
i )n≥1 in X. Let us prove that one can extract a converging subsequence

from F(ωn, λ
n
i ) in C0([0, T ]×Ω; R)×

[
C0([0, T ]; R)

]g
. We will have to extract subse-

quences from (ωn, λ
n
i )n≥1 several times to get the convergence and, in order to avoid

too heavy notation, we will continue to write those subsequences (ωn, λ
n
i ) (instead of

(ωϕ(n), λ
ϕ(n)
i ), for instance). Moreover, we put an index n to objects constructed in

section 4.2, corresponding to (ωn, λ
n
i ): each (ωn, λ

n
i ) yields a function αn by (4.12)

and then a vector field yωn,λn
i

on [0, T ] × Ω by (4.13), which in turn yields a vector
field ỹωn,λn

i
by (4.14). To these ỹωn,λn

i
one can associate a flow Φn by (3.6).

Using (3.9), (4.1), and (4.13), one easily gets that for some C > 0,

qΩ(yωn,λn
i
(t, ·) −Kαn(t)∇θ(·)) ≤ C ∀t ∈ [0, T ], ∀n ≥ 1,

and hence, using (4.1) again, the regularity of the function ∇θ, and (3.4), that for
some C ′ > 0,

qBR
(ỹωn,λn

i
(t, ·)) ≤ C ′ ∀t ∈ [0, T ], ∀n ≥ 1.

Therefore, it follows from the Wolibner–Yudovich (see (3.7)) and Ascoli–Arzela theo-
rems that Φn is relatively compact in C0([0, T ] × [0, T ] ×BR;BR), say

Φn −→ Φ in C0([0, T ] × [0, T ] ×BR;BR).(5.11)

We now have to prove

F (ωn, λ
n
i ) −→ F in C0([0, T ] × Ω) as n → +∞(5.12)
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for a certain F in C0([0, T ] × Ω; R). To that end, let us first prove that one can get
some compactness on the sequence F (ωn, λ

n
i ) on the boundary, precisely

F (ωn, λ
n
i )|[0,T ]×γ− −→ ω uniformly on [0, T ] × γ− as n → +∞,(5.13)

for some ω in C0([0, T ] × γ−; R).
For this, let us decompose F (ωn, λ

n
i )|[0,T ]×γ− into

F (ωn, λ
n
i ) = ω


n + ω	
n + ω�

n on [0, T ] × γ−,

as described in (4.22). Then we prove (5.13) in several steps.
• First, it follows from points (b) and (g) in the definition of X and the Ascoli–

Arzela theorem that one can extract subsequences s.t.

(5.14) ω

n −→ ω
 :=

∑
A∈A

ω(·, A)ΓA(·)

uniformly on [0, T ] × γ− as n → +∞.

• From the Ascoli–Arzela theorem and points (b) and (e) in the definition of

X, one deduces that the sequence of functions Υn : t �→ M
∫ t

0
αn(τ)dτ is

relatively compact in C0([0, T ]; R+) and hence, up to a subsequence, one has

(5.15) ω	
n −→ ω	 :=

[
ω0(·) −

∑
A∈A

ω0(A)ΓA(·) +

g∑
i=1

λ0
iΛi(·)

]
exp(−Υ),

uniformly on [0, T ] × γ− as n → +∞.

• Extracting again a subsequence if necessary, one can get from points (e) and
(f) in the definition of X that λn

i → λi in C0([0, T ],R). Consequently one
gets

(5.16) ω�
n −→ ω� :=

g∑
i=1

Λi(·)
[
− λi

]
uniformly on [0, T ] × γ− as n → +∞.

We get (5.13) from (5.14), (5.15), and (5.16).
Furthermore, using point (h) and the Ascoli–Arzela theorem one can extract a

converging subsequence from ‖ωn(·)‖L∞(Ω):

‖ωn(t)‖L∞(Ω) −→ N(t) uniformly on [0, T ].

This yields, as n → +∞,

(5.17) αn(t) := max(|λn
1 (t)|, . . . , |λn

g (t)|, ‖ωn(t)‖∞)

−→ α(t) := max(|λ1(t)|, . . . , |λg(t)|, N(t)) in C0([0, T ]; R+).

Let us prove that this implies that Φ satisfies the conclusions of Proposition 3.5. We
proceed exactly as for [4, equation (3.57)ff]. Let us recall the argument. Define

y̌ωn,λn
i

:= yωn,λn
i
−Kαn(t)∇θ.
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Hence y̌ωn,λn
i

satisfies (3.8) for (ωn, λ
n
i ). From (4.1) and usual elliptic estimates con-

cerning (3.8), one deduces that, for any r ∈ (2,+∞),

y̌ωn,λn
i

is bounded in C0([0, T ],W 1,r(Ω; R2)),

∂

∂t
y̌ωn,λn

i
is bounded in L∞([0, T ], H−1(Ω; R2)).

Using [8, Appendix C, Lemma C1] with X = W 1,r(Ω; R2) and Y = H−1(Ω; R2), one
deduces that y̌ωn,λn

i
is relatively compact in C0([0, T ],W 1,r(Ω; R2) − w) and hence,

using the Rellich–Kondrakov theorem, relatively compact in C(ΩT ). Hence using
(5.17), the sequence yωn,λn

i
is itself relatively compact in C(ΩT ).

Hence, up to a subsequence, one has

yωn,λn
i
−→ Y in C0(ΩT ; R2).

As in [4, equation (3.60)], we get that Φ = Φπ(Y ): this is a consequence of the
definition of the flow and of the dominated convergence theorem.

Now let us observe that Y satisfies the assumptions of Proposition 3.5. This is a
consequence of the fact that the sequence (ωn, λ

n
i ) satisfies them and of the fact that

‖ curlY ‖∞ ≤ lim inf
n→+∞

‖ωn‖∞.

Note that by (5.17) and by (4.10)–(4.11), one has α > 0.
Let us now show that, together with (5.11), this yields a convergence for F (ωn, λ

n
i )

in [0, T ]×Ω. The flow Φ yields functions s and a as for (4.16) with Φω,λi replaced by
Φ. Then one can define F by

F (t, x) := ω(s, a),(5.18)

where we extend the definition of ω on {0} × Ω by ω0. Note that in this setting, the
function ω is well-defined and continuous in ({0} × Ω) ∪ ([0, T ] × γ−) .

We have determined the potential limit F ; it remains to prove (5.12). Toward
this end, let us prove the following equivalent assertion (by using a compactness
argument):

(5.19)

∀ε > 0 and ∀(t, x) ∈ [0, T ] × Ω,∃N ∈ N and ∃V a vicinity of (t, x) in [0, T ] × Ω

such that ∀n ≥ N, one has ‖F (ωn, λ
n
i ) − F‖C0(V) ≤ ε.

To prove (5.19), we fix ε > 0 and (t, x) ∈ [0, T ] × Ω, and discuss them relative to
the location of a(t, x).

Case α: a(t, x) in Ω∪ (∂Ω\γ−). Then, by continuity of Φ, one has, for any (t′, x′)
in a neighborhood V1 of (t, x) in [0, T ]×Ω, that a(t′, x′) ∈ Ω∪(∂Ω\γ−). Then

by (5.11) we get that for n large enough, an(t′, x′) ∈ Ω∪(∂Ω\γ−) for (t′, x′) ∈
V1. So on V1, for such n, the expression of F (ωn, λ

n
i ) is ω0(Φn(t, 0, x)). So

enlarging N and reducing V1 if necessary, using (5.18), we get the conclusion
of (5.19) in this case.

Cases β and δ: a(t, x) in γ−\Supp(Γ). In this case—remember that Φ satisfies
the conclusions of Proposition 3.5—one can show that (5.1)–(5.2) is true
for s, exactly as in Case β in section 5.1. Hence, (s, a) is continuous in a
neighborhood of (t, x). Let us distinguish two subcases.
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– Subcase (i): Suppose s(t, x) > 0. In some neighborhood V1 of (t, x) in
[0, T ] × Ω, one has s(t′, x′) > 0. We introduce a neighborhood W of

(s(t, x), a(t, x)) in [0, T ] × (γ−\Supp(Γ)), small enough that on it,

|ω(τ, y) − ω(s(t, x), a(t, x))| ≤ ε/2

(and W̃ containing W in which this is valid with ε). Reducing V1 if
necessary, we have

(s(t′, x′), a(t′, x′)) ∈ W

for (t′, x′) in V1. Using (3.15)–(3.16) and (5.11), one gets that for N
large enough, one has

(sn(t′, x′), an(t′, x′)) ∈ W̃

for (t′, x′) in V1, which yields the conclusion of (5.19).
– Subcase (ii): Suppose s(t, x) = 0. Let us call W a vicinity of (0, a(t, x))

in ({0} × Ω) ∪ ([0, T ] × γ−) such that for (τ, y) in W one has |ω(τ, y) −
ω(0, a(t, x))| ≤ ε/2. For (t′, x′) in a certain neighborhood V of (t, x)

in [0, T ] × Ω and N large enough, we have, for all n ≥ N , either
sn(t′, x′) ∈ pr1(W) or an(t′, x′) ∈ pr2(W), because otherwise, we could

find a subsequence for which Φn(·, t′, x′) meets γ− \ pr2(W) for any n,
which would be in contradiction with (5.11). With (5.13), this yields
again the conclusion of (5.19).

Case γ: a(t, x) in Supp(ΓA) for some A ∈ A. We divide again into subcases:
– Subcase (i): Suppose a(t, x) �= A. Then one can reproduce the proof

of the previous Cases β and δ if we take care that W stays at positive
distance from [0, T ] × {A}.

– Subcase (ii): Suppose a(t, x) = A and s(t, x) > 0. Note that in this case,
F (t, x) = ω0(Φ(0, t, x)) (thanks to (4.19) and (5.14)–(5.16)).
We fix W1 as an open vicinity of (s(t, x), a(t, x)) in [0, T ] × γ− and W2

as an open vicinity of (0,Φ(0, t, x)) in {0} × Ω, small enough such that,
on both W1 and W2, we have |ω(t′, x′) − ω(0, a(t, x))| ≤ ε/2. Reduce
them so that they are disjoint (this is possible thanks to (3.18)). Let
us prove that for (t′, x′) in some neighborhood of (t, x) and for n large
enough, we have

(sn(t′, x′), an(t′, x′)) ∈ W1 ∪W2.(5.20)

If not, we would have an increasing sequence of integers ϕ(n) and a
sequence of points (t′n, x

′
n) converging to (t, x), for which

(sϕ(n)(t
′
n, x

′
n), aϕ(n)(t

′
n, x

′
n)) �∈ W1 ∪W2.

By compactness of [0, T ] × Ω, one would have, up to a subsequence,

(sϕ(n)(t
′
n, x

′
n), aϕ(n)(t

′
n, x

′
n)) → (ŝ, â) �∈ W1 ∪W2.

This would be in contradiction with (t′n, x
′
n) → (t, x) and (5.11):
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– Suppose indeed that ŝ > 0. By continuity of Φ one has

Φ(sϕ(n)(t
′
n, x

′
n), t′n, x

′
n) → Φ(ŝ, t, x) as n → +∞.

This involves ŝ = s, because for τ �= s, we have Φ(τ, t, x) �∈ γ.
Consequently, we have â ∈ γ−\pr2(W1). But the trajectory from x
to Φ(0, t, x) has no such point, so this is impossible.

– Suppose now that ŝ = 0. Then by (5.11) one should have

aϕ(n)(t
′
n, x

′
n) ∼ Φ(0, t′n, x

′
n) → Φ(0, t, x)

and hence (ŝ, â) ∈ W2.
Now (5.20) gives again the conclusion in (5.19).

– Subcase (iii): Suppose a(t, x) = A and s(t, x) = 0. Again, we have
F (t, x) = ω0(Φ(0, t, x)). We fix W as a vicinity of (0, A) in ({0} ×
Ω) ∪ ([0, T ] × γ−) on which again |ω(t′, x′) − ω(0, a(t, x))| ≤ ε/2 occurs.
Then again, as in Subcase (ii) one can see that, for (t′, x′) in a small
neighborhood of (t, x) and n large enough, one has

(sn(t′, x′), an(t′, x′)) ∈ W,

which leads to the conclusion.
So in all cases (5.19) is obtained; thus we get (5.12), and then the relative compactness
of the sequence Gi(ωn, λ

n
1 , . . . , λ

n
g ) follows. This concludes this section.

5.3. F is continuous for the C0([0, T ] × Ω; R) × [C0([0, T ]; R)]g topol-
ogy. Using the previous section; we see that it is enough to prove that if (ωn, λ

n
i ) →

(ω, λi) for the C0 topology, then F [ωn, λ
n
i ] → F (ω, λ) pointwise. This is essentially

the same argument as in the previous section; we do not repeat it. Now, as the
convergence of F (ωn, λ

n
i ) is established, obtaining the convergence of Gk(ωn, λ

n
i ),

k = 1, . . . , g, is straightforward.

5.4. Conclusion. Hence we get by the Leray–Schauder fixed point theorem a
fixed point (ω∗, λ∗

i ) ∈ X of the operator F described in section 4.2.
It follows from the construction that on [0, T ] × Ω, one has

∂tF (ω∗, λ∗
i ) + div(yω∗,λ∗

i
F (ω∗, λ∗

i )) = 0(5.21)

and

F (ω∗, λ∗
i )|t=0 = ω0.(5.22)

Let us assume for the moment that the following lemma is proven.
Lemma 5.2. If M has been chosen large enough (depending on Ω, Σ, θ, and K),

then for any k ∈ {1, . . . , g} and all t ∈ [0, T ],∣∣∣∣λ0
k +

∫ t

0

∫
Γk

yω∗,λ∗
i
(σ, x).n(x)ω∗(σ, x)dxdσ

∣∣∣∣ ≤ Mω0,λ0
i
.(5.23)

If (5.23) is true, then by (1.8) one has

λ∗
k = Gk(ω

∗, λ∗
1, . . . , λ

∗
g)(t) = λ0

k +

∫ t

0

∫
Γk

yω∗,λ∗
i
(σ, x).n(x)ω∗(σ, x)dxdσ.(5.24)
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Hence (ω∗, λ∗
1, . . . , λ

∗
g) satisfies (1.6)–(1.8). Moreover, this fixed point satisfies the

initial conditions (2.30). That F (ω∗, λ∗
i ) satisfies the boundary condition (2.27)–

(2.28) is a clear consequence of the construction of F . So it remains only to prove
Lemma 5.2.

Proof of Lemma 5.2. In the proof of Lemma 5.2, we will not use the specific form
of T (in particular, Remark 8). This will be useful in section 6. Denote y∗ := yω∗,λ∗

i
,

α∗ := αω∗,λ∗
i
, and Φ∗ := Φω∗,λ∗

i . For any k ∈ {1, . . . , g}, we have (using (2.22), (2.23),
and (4.22)) ∫ t

0

∫
Γk

y∗(σ, x).n(x)F [ω∗, λ∗
i ](σ, x)dxdσ

= K

∫ t

0

∫
Γk

α∗(σ)∇θ(x).n(x)ω∗(σ, x)dxdσ

= K

∫ t

0

α∗(σ)

[
−λ∗

k(σ) +

∫
Γk∩γ−

∇θ(x).n(x)ω∗	(x)

+

∫
Γk∩γ+

∇θ(x).n(x)ω∗(σ, x)

]
dxdσ

= −K

∫ t

0

α∗(σ)λ∗
k(σ)dxdσ

+K

∫ t

0

α∗(σ)

∫
Γk∩γ−

∇θ(x).n(x)
[
ω0(x) + λ0

kΛk(x)
]

· exp

(
−M

∫ σ

0

α∗(τ)dτ

)
dxdσ

+K

∫ t

0

∫
Γk∩γ+

α∗(σ)∇θ(x).n(x)ω∗(σ, x)dxdσ.(5.25)

Put

C0 = −
∫
γ−

∇θ(x).n(x)

∣∣∣∣∣ω0(x) +

g∑
i=1

λ0
iΛi(x)

∣∣∣∣∣ dx(5.26)

and

C1 =

∫
γ−

|∇θ(x).n(x)|dx.(5.27)

We will show that (5.23) is valid provided M is large enough (in terms of Ω, Σ, θ,
and K) to satisfy

KC0

M
<

max(|λ0
1|, . . . , |λ0

g|, ‖ω0‖∞)

4
and

K(2C1 + T (Γ))

M
<

1

4
,(5.28)

which we suppose from now on. In fact, the most problematic term in (5.25) is the
last one. To estimate λ∗

k, we thus introduce the following function:

h(t) = K

∫ t

0

∫
g
∪

k=1
(Γk∩γ+)

α∗(σ)∇θ(x) · n(x)|ω∗(σ, x)|dxdσ.
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In order to estimate h(t), let us consider ω̃ := F̃ [ω∗, λ∗
i ]. As y∗ satisfies the as-

sumptions of Proposition 3.5, one easily sees (using (3.17)) that ω̃ = ω∗ on [0, T ] ×
∪g
k=1(Γk ∩ γ+). Also, by (4.23), one has

(5.29) ω̃(t, x) =

(
ω0(x) −

∑
A∈A

ω0(A)ΓA(x)

)
exp

(
−M

∫ t

0

α∗(τ)dτ

)
+
∑
A∈A

ω∗(t, A)ΓA(x) on [0, T ] × γ−.

But as ω̃ satisfies

∂tω̃ + div(y∗ω̃) = 0,

one deduces that

d

dt

(∫
Ω

|ω̃|
)

(t) = −
∫
∂Ω

(y∗ · n)|ω̃|(t) = −K

∫
∂Ω

α∗(t)∇θ(x) · n(x)|ω̃|(t, x)dx.

Consequently, one gets

h(t) ≤ K

∫ t

0

∫
γ+

α∗(σ)∇θ(x) · n(x)|ω̃(σ, x)|dσdx

≤
∫

Ω

|ω̃(0, ·)| −K

∫ t

0

∫
γ−

α∗(σ)∇θ(x) · n(x)|ω̃(σ, x)|dσdx.

Using (5.29), one gets

h(t) ≤
∫

Ω

|ω(0, ·)| + 2KC1‖ω0‖∞
∫ t

0

α∗(σ) exp

(
−M

∫ σ

0

α∗(τ)dτ

)
dσ

−K
∑
A∈A

∫ t

0

∫
γ−

α∗(σ)∇θ(x) · n(x)|ω∗(σ,A)ΓA(x)|dσdx,

and hence

h(t) ≤
∫

Ω

|ω(0, ·)| + 2K
C1‖ω0‖∞

M
+ KT (Γ) max

A∈A

∫ t

0

α∗(σ)|ω∗(σ,A)|dσ.(5.30)

Let us now concentrate on the last term. For A ∈ A and σ ∈ [0, T ], let us define

s(σ,A) := min
{
t ∈ [0, σ]

/
Φ∗([t, σ], σ, A) ⊂ Ω

}
,

a(σ,A) := Φ∗(s(σ,A), σ, A).
(5.31)

Using (3.20), (2.28), and the fact that ω∗ is constant along the flow, one deduces that
for any A ∈ A and any σ, one has

ω(σ,A) = ω0(a(σ,A)) exp

(
−M

∫ s(σ,A)

0

α∗(τ)dτ

)
.(5.32)

To estimate the last term in (5.30), we fix A ∈ A.
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• If t is such that ∫ t

0

α∗(σ)dσ ≤ V (θ)

κK
,(5.33)

then using (5.32), one easily gets∫ t

0

α∗(σ)|ω(σ,A)|dσ ≤ V (θ)

κK
‖ω0‖∞.

(When considering a time T with the specific form (4.9), one could prove that
on such a time interval we always have (5.33).)

• If not, call ξ the (unique) time for which∫ ξ

0

α∗(σ)dσ =
V (θ)

κK
.

Let us prove that for σ > ξ, one has∫ σ

s(σ,A)

α∗(τ)dτ ≤ V (θ)

κK

(
=

∫ ξ

0

α∗(τ)dτ

)
.(5.34)

This results from the fact that if one defines

μ(t) = θ(Φ∗[t, s(σ,A), A]),

then one has (in the classical sense) for any t ∈ [s(σ,A), σ]

dμ

dt
= y∗(t,Φ∗[t, s(t, A), A]) · ∇θ(Φ∗[t, s(t, A), A])

≥ κKα∗(t).

Integrating this inequality between s(σ,A) and σ yields (5.34). In particular,
as a consequence of (5.34), one gets that for σ > ξ, one has s(σ,A) > 0.
Consequently, using (5.32),∫ t

0

α∗(σ)|ω(σ,A)|dσ =

∫ ξ

0

α∗(σ)|ω(σ,A)|dσ +

∫ t

ξ

α∗(σ)|ω(σ,A)|dσ

≤ V (θ)

κK
‖ω0‖∞

+

∫ t

ξ

α∗(σ)‖ω0‖∞ exp

(
−M

∫ s(σ,A)

0

α∗(τ)dτ

)
dσ.

Now using (5.34), one gets∫ s(σ,A)

0

α∗(τ)dτ =

∫ σ

0

α∗(τ)dτ −
∫ σ

s(σ,A)

α∗(τ)dτ

≥
∫ σ

0

α∗(τ)dτ −
∫ ξ

0

α∗(τ)dτ.
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Hence,

∫ t

ξ

α∗(σ)‖ω0‖∞ exp

(
−M

∫ s(σ,A)

0

α∗(τ)dτ

)
dσ

≤
∫ t

ξ

α∗(σ)‖ω0‖∞ exp

(
−M

∫ σ

ξ

α∗(τ)dτ

)
dσ ≤ ‖ω0‖∞

M
.

Finally, in all cases we get

h(t) ≤
∫

Ω

|ω0| +
(

2KC1

M
+ T (Γ)

[
V (θ)

κ
+

K

M

])
‖ω0‖∞.

Let us go back to λ∗
k. At times t for which (5.23) is valid in [0, t] (this is at least the

case for times in a neighborhood of 0), one has (5.24) and consequently, one gets

|λ∗
k(t)| ≤ |λ0

k| + h(t) + K

∫ t

0

[
−α∗(s)λ∗

k(s) + C0α
∗(s) exp

(
−M

∫ s

0

α∗(τ)dτ

)]
ds

≤ |λ0
k| +

∫
Ω

|ω(0, ·)| + V (θ)T (Γ)

κ
‖ω0‖∞ + K

(2C1 + T (Γ))‖ω0‖∞ + C0

M

−K

∫ t

0

α∗(s)λ∗
k(s)ds.

Hence, with α∗(t) ≥ 0, we get

(5.35) |λ∗
k(t)| ≤ |λ0

k| +
∫

Ω

|ω(0, ·)| + V (θ)T (Γ)

κ
‖ω0‖∞

+ K
(2C1 + T (Γ))‖ω0‖∞ + C0

M
.

Using (5.28), one gets

|λk(t)| <
(

3

2
+ |Ω| + V (θ)T (Γ)

κ

)
max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞)

< Mω0,λ0
i
.(5.36)

Hence (5.23) propagates during the whole time interval [0, T ].
So at this point, we have proven that for any (ω0, λ

0
i ), there exists a local solution

of the closed-loop system.

6. End of the proof. To finish the proof, we still have to establish two propo-
sitions:

• any maximal solution of the closed-loop system is global,
• for any global solution of the closed-loop system, 0 is asymptotically stable.

6.1. Maximal solutions are global solutions. Consider a maximal solution
(ω, λi) of the closed-loop system, say it is defined on [0, T ∗), with T ∗ maximal. Let
us prove that T ∗ = +∞. Toward this end, let us suppose by contradiction that
T ∗ < +∞, and prove that

(ω(t), λi(t)) −→ (ω(T ∗), λi(T
∗)) as t → T ∗−(6.1)
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in C0(Ω; R) × Rg. Using again the local existence result, this yields a contradiction.
This is done as in [4, Proposition 3.4]. We first establish the following lemma.

Lemma 6.1. Let T > 0 and let (ω, λi) ∈ C0([0, T ]×Ω)×C0([0, T ])g be a solution
of the closed-loop system. Then one has for (t, x) ∈ ΩT and any s ∈ [0, t]

ω(t, x) = ω(sω,λi(t, x), aω,λi
(t, x)),(6.2)

and for any t in [0, T ], one has

(6.3) max(‖ω(t)‖∞, |λ1|(t), . . . , |λg|(t))

≤
(

3 + |Ω| + V (θ)T (Γ)

κ

)
(1 + ‖Λ‖∞) max(‖ω0‖∞, |λ0

1|, . . . , |λ0
g|).

Proof of Lemma 6.1. First, such a solution satisfies

∂tω + div(yω,λiω) = 0.

A classical regularization argument shows that ω is constant along the flow of yω,λi ,
which yields (6.2).

We suppose that (ω(t), λ1(t), . . . , λg(t)) does not vanish. If it does, then using the
definition of the feedback and the fact that the vorticity is constant along the flow,
(ω(t), λ1(t), . . . , λg(t)) stays null. From now on, we work on the initial interval where
(ω(t), λ1(t), . . . , λg(t)) is not zero.

Now, the “λi” part in (6.3) can be reproduced from what was already done
in (5.36), because we did not use the particular form of T but only (2.27)–(2.28),
the fact that the vorticity follows the flow, and the fact that the velocity satisfies
Proposition 3.5.

It remains to prove the “ω” part of (6.3). Having proved the estimate on the λi,
this is done as for point (b) in the proof of F(X) ⊂ X (see section 5.1), except that
now the estimate

|ω(·, A)| ≤ ‖ω0‖∞ for any A ∈ A

comes now from (5.32) (and not from the choice of T ).
Having proved Lemma 6.1, we get Hölder estimates on the flow from (3.7), which

can consequently be extended on [0, T ∗], and then we get (6.1) approximately as for
the continuity of F (ω, λi) in section 5.1 (we omit the details). Hence, using again the
local existence theorem, we find a contradiction to T ∗ < +∞.

6.2. 0 is asymptotically stable. Now that we have proved (6.3), it remains
to prove (2.32). We consider again a global solution (ω, λi) of the closed-loop system;
let us show that ‖(ω, λi)(t)‖∞ → 0 as t → +∞.

We suppose that (ω(t, ·), λi(t)) never vanishes. If it does vanish for some T > 0,
it follows from (2.26) and from the fact that the vorticity is constant along the flow of
yω,λi that (ω, λi) is null in the neighborhood in time of +∞; hence the result is valid.

This is done in several steps. First, we prove that ω(t, ·) → 0 on the entering zone
γ− and in a second step that this convergence holds in the rest of the domain. The
convergence to zero of λ1, . . . , λg is proved in the same step.

Again, we denote

α(t) := max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) .
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We first prove the following lemma.
Lemma 6.2. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(γ−\[Supp(Λ)∪Supp(Γ)]) −→ 0 as t → +∞.(6.4)

Proof of Lemma 6.2. Consider x ∈ γ−\(Supp(Γ) ∪ Supp(Λ)). If ω(t0, x) = 0 for
some time t0, then it follows from (2.28) that ω(t, x) = 0 for all t. Let us suppose
that ω0(x) �= 0. Then it follows from (2.28) that on γ−\[Supp(Λ) ∪ Supp(Γ)],

∂t|ω(t, x)| ≤ −M |ω(t, x)|2;

hence

|ω(t, x)| ≤ |ω0(x)|
1 + M |ω0(x)|t ,

and hence ω(t, x) → 0 as t → +∞. One sees that the estimate is uniform and hence
that (6.4) holds.

Now, we have the following lemma.
Lemma 6.3. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(Supp(Γ)) −→ 0 as t → +∞.(6.5)

Proof of Lemma 6.3. Let us first prove that for any A ∈ A, one has

ω(t, A) −→ 0 as t → +∞.(6.6)

It follows from (3.20) that

Φω,λi(s(t, A), t, A) �∈ Supp(Γ) ∪ Supp(Λ),

with s(t, A) given by (5.31). Now, we fix ε > 0 and let t0 be a time such that for
t ≥ t0, one has

‖ω(t)‖
C0(γ−\[Supp(Λ)∪Supp(Γ)])

≤ ε.

Then if t1 is such that |ω(t1, A)| > ε, one deduces that s(t1, A) ≤ t0. Hence, using
Φω,λi(s, t1, A) ∈ Ω for t0 ≤ s ≤ t1 and the fact that the vorticity is constant along
the flow, one gets

‖ω(s)‖C0(Ω) ≥ ε for t0 ≤ s ≤ t1.

But (3.14) implies that, in the classical sense,

d

ds

[
θ(Φω,λi(s, t0, x))

]
= yω,λi

(s,Φω,λi(s, t0, x)) · ∇θ(Φω,λi(s, t0, x)) ≥ κKα(s) ≥ κKε.

(6.7)

With the boundedness of θ in Ω, one sees that |t1 − t0| must be bounded, which gives
(6.6).
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Now, consider x ∈ Supp(ΓA) for a certain A ∈ A and t large enough. Then, (6.5)
follows from the fact, due to (2.28), that for t ∈ [0, T ] and x ∈ Supp(ΓA), one has

ω(t, x) = (ω0(x) − ω0(A)ΓA(x)) exp

(
−M

∫ t

0

α(τ)dτ

)
+ ω(t, A)ΓA(x).(6.8)

Indeed, given any ε > 0, for t0 large enough, one has |ω2(s, x)| ≤ ε on Supp(ΓA) for
any s ≥ t0 (with the notation of ω1 and ω2 in (2.27)). One gets for any s ≥ t0 that

|α(s)| ≥ K max(0, |ω1(s, x)| − |ω2(s, x)|) ≥ K max(0, |ω1(s, x)| − ε).

Then
• if |ω1(t, x)| ≤ 2ε, then, because ω1 has the form

ω1(s, x) =

(
ω0(x) −

∑
A∈A

ω0(A)ΓA(x)

)
exp

(
−M

∫ s

0

α(τ)dτ

)
,

this inequality stays valid for s ≥ t, or
• if |ω1(t, x)| ≥ 2ε, then for s ≥ t such that this is still valid, one has |α(s)| ≥ ε;

then with (6.8), one sees that |ω1(s, x)| decreases until it reaches the previous
situation.

Then, we establish the following lemma.
Lemma 6.4. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(γ+∩Γk) −→ 0 as t → +∞ ∀k = 1, . . . , g.(6.9)

Proof of Lemma 6.4. The limit (6.9) follows from (3.17), (6.2), and Lemmas 6.2
and 6.3. Indeed, we introduce t0 such that for t ≥ t0, one has |ω(t, ·)| ≤ ε on
γ−\Supp(Λ). Suppose that we could find, for times arbitrarily large, some points in
∪g
i=1(γ

+ ∩ Γk) for which |ω(t, x)| > ε and hence, by (3.17), such that sω,λi(t, x) ≤ t0.
This contradicts (6.7) and the boundedness of θ in Ω.

Now, we have the following lemma.
Lemma 6.5. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(Supp(Λ)) −→ 0 as t → +∞.(6.10)

Proof of Lemma 6.5. Fix k ∈ {1, . . . , g}. It follows from (1.8), (2.22), (2.23),
(2.27), and (2.28) that λk satisfies

(6.11)
d

dt
λk(t) = −Kα(t)λk(t) + Kα(t)

∫
Γk∩γ−

∇θ(x) · n(x)ω1(t, x)dx

+ Kα(t)

∫
Γk∩γ+

∇θ(x) · n(x)ω(t, x)dx.

But ω1 converges uniformly to 0 (this is proved exactly as Lemma 6.2), and by Lemma
6.4, the second integral in (6.11) converges to 0 (remember that α(t) is bounded thanks
to (6.3)). Hence, given ε > 0, there exists t0 such that for t ≥ t0,∣∣∣∣∫

Γk∩γ−
∇θ(x) · n(x)ω1(t, x)dx

∣∣∣∣+ ∣∣∣∣∫
Γk∩γ+

∇θ(x) · n(x)ω(t, x)dx

∣∣∣∣ ≤ ε.
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Consequently, for t ≥ t0, if λk(t) ≥ 2ε, using |λk(t)| ≤ α(t), one gets

d

dt
λk(t) ≤ −εKλk(t),

and if λk(t) ≤ −2ε, one gets

d

dt
λk(t) ≥ −εKλk(t).

This yields

λi(t) −→ 0 as t → +∞ for i = 1, . . . , g.(6.12)

Then having proved (6.12), (6.10) follows from the same procedure as the one at the
end of Lemma 6.3.

These lemmas allow us to establish the following proposition.
Proposition 6.6. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global

solution of the closed-loop system. Then it satisfies

max(‖ω(t)‖C0(Ω), |λ1(t)|, . . . , |λg(t)|) −→ 0 as t → +∞.(6.13)

Proof of Proposition 6.6. The λi(t)-part is precisely (6.12). For the ω-part,
consider τ(ε) such that for t ≥ τ(ε), one has

‖ω|(γ+∪γ−)(t, ·)‖L∞ ≤ ε and |λi(t)| ≤ ε ∀i = 1, . . . , g.

Suppose that for any τ̃ , one can find t ≥ τ̃ for which ‖ω(t, ·)‖C0(Ω) > ε. Then

there is some x ∈ Ω for which |ω(t, x)| > ε, and hence by (6.2) one has sω,λi(t, x) ≤
τ(ε) and hence α(t) ≥ ε on [τ(ε), t]. Consequently, there exists x0 ∈ Ω such that
|ω(τ(ε), x0)| > ε and for which

Φω,λi([τ(ε), t], τ(ε), x0) ⊂ Ω.

With (6.7), this contradicts the fact that θ is bounded in Ω.

7. Appendix.

7.1. Proof of Corollary 2.2. We reduce Σ a little in order to keep some kind of
margin. Introduce θ̃ as in Proposition 2.1. We describe a procedure that allows us to
slightly modify θ̃ to get rid of problematic points “E,” while preserving (2.11)–(2.16).
The idea is the following: consider an E point as in (2.17); by Φ̃ it is first transported

along ∂Ω\(γ+(θ̃) ∪ γ−(θ̃)) (remember (2.12) and (2.13)); call γE the corresponding

connected component of ∂Ω\(γ+(θ̃) ∪ γ−(θ̃)). Consider tE the biggest positive time
for which Φ̃((0, t), 0, E) ⊂ γE . There are two cases:

• If Φ̃(tE , 0, E) ∈ γ+(θ̃), it is clear from (2.12)–(2.13) that this point is in
∂γ+(θ̃), pointing inside γ+(θ̃). And consequently for t just after tE , one has
Φ̃(t, 0, E) ∈ BR\Ω, so the E point under consideration satisfies (2.17).

• If Φ̃(tE , 0, E) ∈ γ−(θ̃), we consider the following time t′E :

t′E = sup
{
t ∈ (tE ,+∞), Φ̃((tE , t), 0, E) ∈ Ω

}
.
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It is indeed quite clear that for times t > tE with t− tE small, Φ̃(t, 0, E) ∈ Ω,
and it follows from |∇θ̃|(x) > 0 in Ω that the preceding set is bounded from

above. Then Φ̃(t′E , 0, E) ∈ γ+(θ̃) (for it cannot be in ∂Ω\(γ−(θ̃) ∪ γ+(θ̃))

because of the uniqueness of the flow and it cannot be in γ−(θ̃) because

points in γ−(θ̃) come from (BR\Ω) ∪ ∂Ω by the flow of ∇θ).
If Φ̃(t′E , 0, E) ∈ γ+(θ̃), then (2.17) is valid for this E; we now suppose that

E2 := Φ̃(t′E , 0, E) ∈ ∂γ+(θ̃).
We consider a small connected neighborhood U of E2 in ∂Ω; thanks to the
margin we kept on Σ, one can require U ⊂ Σ. We also consider a point F ∈
γ+(θ̃) and VF a small connected neighborhood of F in γ+(θ̃), not touching

∂γ+(θ̃) or U .
We introduce a function on ∂Ω, say ψ, supported in U ∪ VF , nonnegative in
U , nonpositive in VF , and such that∫

∂Ω

ψ = 0 and ψ(E2) = 1.

Then we define θ̂ ∈ C∞(Ω; R) by⎧⎨⎩
Δθ̂ = 0 in Ω,

∂nθ̂ = ψ on ∂Ω,∫
Ω
θ̂ = 0.

(7.1)

Using elliptic estimates and Lemma 3.3, one sees that θ̃ + εθ̂ still satisfies
(2.11)–(2.16) for ε > 0 small enough. Let us particularly emphasize that, for

ε > 0 small enough, one has ∂n(θ̃ + εθ̂) > 0 on VF . The E considered now
satisfies (2.17). The procedure has not added an E point, but it has slightly
moved the frontier of γ+(θ̃): introduce

γ+(θ̃ + εθ̂) := {x ∈ ∂Ω / ∂n(θ̃ + εθ̂) > 0}.

Then E2 ∈ γ+(θ̃ + εθ̂), and the new frontier of γ+ is now given by

∂γ+(θ̃ + εθ̂) = ∂γ+(θ̃) ∪ {E3} \ {E2},

where E3 is the point in ∂U that does not belong to γ+(θ̃).
Now if E2 satisfied (2.17), then E3 also does for ε small enough: we have two
cases:

– ∇θ̃ is pointing inside γ+(θ̃) at E2. This case is in fact not possible
because of the definition of E2 and t′E : points in ∂γ+(θ̃) at which ∇θ̃ is

pointing inside γ+(θ̃) come from ∂Ω when following the flow.
– ∇θ̃ is pointing outside γ+(θ̃) at E2. Then using (2.13), one sees that the

trajectory of E2 under the flow of ∇θ̃ follows the connected component
of E2 in ∂Ω\[γ+(θ̃) ∪ γ−(θ̃)]. In particular, this trajectory meets E3.

But for ε small enough, the trajectories under the flow of ∇(θ̃ + εθ̂) are
almost the same as the ones in the flow of ∇θ̃ (as seen by Lemma 3.3
and elliptic estimates). This yields the conclusion.

So one can get rid of problematic points one after another.
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7.2. Proof of Proposition 3.5.
• Proof of (3.14). Introduce ŷ as the solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curl ŷ(t, x) = ω(t, x) for (t, x) ∈ ΩT ,
div ŷ(t, x) = 0 for (t, x) ∈ ΩT ,
ŷ(t, x) · n(x) = 0 for (t, x) ∈ ΣT ,∫

Γi

ŷ(t, x) · �τ(x)dx = λi(t) for t ∈ [0, T ], for i = 1, . . . , g.

Of course, one has y = ŷ + Kα(t)∇θ(x). Now (3.9) involves

‖ŷ(t)‖L∞(Ω) ≤ CLL max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) ∀t ∈ [0, T ].

(The constant CLL does not depend on t.) Hence

y(t, x) · ∇θ(x) ≥ Kα(t)|∇θ(x)|2 − CLL‖∇θ‖∞α(t).(7.2)

Equation (2.13) and the compactness of Ω allow us to introduce

m := min
x∈Ω

|∇θ(x)| > 0.

One easily deduces from (7.2) that (3.14) holds if K ≥ 2CLL‖∇θ‖∞/m2 and
κ = m2/2 (which we suppose in what follows).

• Proof of (3.17). Property (3.17) will essentially follow from Gronwall’s in-
equality (3.11), from (2.13), and from (2.16).
We extend the definition of α and (ω, λi) for times t ≥ T by α(T ) and
(ω, λi)(T ), respectively.
We write Θα(t, x) := Kα(t)θ(x). We consider Φ, Φy, and Φα the respective
flows of π(∇θ), π(y(t, x)), and π(∇Θα(t, x)).
First, by a compactness argument and using (2.13), one sees that there exist
Tθ > 0 and dθ > 0 such that

∀x ∈ Ω, ∃t ∈ [0, Tθ] such that dist(Φ(t, 0, x),Ω) ≥ dθ.

It suffices, for instance, to observe that

d

dt
θ(Φ(t, 0, x)) = |∇θ(Φ(t, 0, x))|2

if x and t are such that Φ(t, 0, x) ∈ Ω, and to use (2.13) and the boundedness
of θ on Ω.
Hence

∀x ∈ Ω, ∃T (x) such that

∫ T (x)

0

Kα(τ)dτ ≤ Tθ

and such that dist(Φα(T (x), 0, x),Ω) ≥ dθ.

Now by Lemma 3.3 one has

|Φy(t, 0, x) − Φα(t, 0, x)|

≤ exp

(
K‖π(∇θ)‖Lip

∫ t

0

α(τ)dτ

)
‖π(ŷ)‖L1([0,T ],L∞(BR)).
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Consequently, one sees that for x ∈ Ω and t such that 0 ≤ t ≤ T (x),

|Φy(t, 0, x) − Φα(t, 0, x)| ≤ exp(Tθ‖π(∇θ)‖Lip(BR))‖ŷ‖L1([0,t],L∞
x )

≤ CLL exp(Tθ‖π(∇θ)‖Lip(BR))‖(ω, λi)‖L1([0,t],L∞
x ).

Now one deduces from (3.12) that for 0 ≤ t ≤ T (x),

‖(ω, λi)‖L1([0,t],L∞
x ) ≤

∫ t

0

α(τ)dτ ≤ Tθ

K
.

This yields

|Φy(t, 0, x) − Φα(t, 0, x)| ≤
CLL exp(Tθ‖π(∇θ)‖Lip(BR))Tθ

K
.(7.3)

Consequently, if K is large enough (in terms of only θ), one has

∀x ∈ Ω, ∃T (x) such that

∫ T (x)

0

Kα(τ)dτ ≤ Tθ

and such that dist(Φy(T (x), 0, x),Ω) ≥ dθ/2,

with (7.3) valid between times 0 and T (x). With (2.18), this gives (3.17) for
K large enough.

• Proof of (3.18). This is due to the uniqueness of the flow: on γA, y(s, x) is of
the form λ(s, x)�τ(x), the sign of λ(s, x) being constant in such a way that the
direction of y(s,A) is pointing inside γ− (indeed, thanks to (3.13) and (3.14),
y(s, x) has the same direction as ∇θ(x) on ∂Ω). So one finds a local in time
backward solution of (3.6) inside γA. This solution does not go outside γA
for times τ ∈ [0, t) if t− τ is small enough so that

cπ(K‖∇θ‖∞ + CLL)

(∫ t

τ

α(s)ds

)
≤ �/2,(7.4)

because the velocity is estimated by

|π[y](s, x)| ≤ ‖π[ŷ](s, ·)‖L∞(BR) + Kα(s)‖π[∇θ]‖L∞(BR)

≤ cπ(CLL + K‖∇θ‖∞)α(s)(7.5)

and because of the definition of �.
• Proof of (3.15)–(3.16). This is mutatis mutandis [4, Lemma 3.3]. Let us treat

separately the points in γ− and the B points.
– Let us consider (3.16) for a point B ∈ B. Using again (3.13) and (3.14),

one sees that, as for s ∈ [0, T ], y(s,B) is tangent to ∂Ω and by (3.14)
pointing outside γ−, there is a solution for the flow starting from B
and that stays inside ∂Ω\(γ− ∪ γ−) at least for small times. So the
uniqueness of the flow gives (3.16).

– Consider x ∈ γ−. Let us use the coordinates in the reference frame given
by (�τ(x), n(x)). Then using (3.9) and (3.13), we see that for any ε > 0,
one finds some neighborhood U of (t, x) in (0, T ]×BR for which one has
for any (t̃, x̃) in U ,

|{π[y](t̃, x̃) −Kα(t̃)π[∇θ](x̃)} · n(x)| ≤ ε.
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(And the left-hand side is null when x̃ is on γ−.) Hence for suitable ε
and U the second coordinate of y(t̃, x̃) is positive in a neighborhood of
(t, x) in [0, T ] × BR. Using (3.6), one deduces (3.15) and (3.16) except
for B points.
Before dealing with (3.15) for points B ∈ B, let us make (3.15) more
precise for points in γ−. We consider τ < t sufficiently close to t for (7.4)
to hold. Consider s the smallest time s ∈ [τ, t] such that Φy((s, t), t, E) ⊂
BR\Ω, and let us suppose s > τ . One can estimate the velocity by (7.5)
and consequently in our case, one has Φy(s, t, x) �∈ γ+. Certainly, one
also has that Φy(s, t, x) �∈ Ω∪γ−∪B because of (3.16) that we just proved
for points in γ− ∪ B. This point can thus only be in ∂Ω\(γ+ ∪ γ− ∪ B)
(unless it is in BR\Ω). Hence it must lie in γB for the other components
are too far because of (7.4). But by uniqueness of the flow, this is not
possible. Consequently one has, for any s ∈ [τ, t] with τ satisfying (7.4),

Φy(s, t, x) ∈ BR\Ω.(7.6)

– Now, let us deal with (3.15) for B points. We see, using Remark 6(i) and
the same procedure as for the proof of (3.17), that for some ν, one has
Φy(t−ν, t, B) ∈ BR\Ω. Now we claim that, at least if ν has been chosen
small enough, Φy(s, t, B) ∈ BR\Ω for any s in [t − ν, t). Indeed, when
considering a sequence of points xn in γ− converging to B, by continuity
of the flow we have that Φy(s, t, xn) is converging to Φy(s, t, B). Using
(7.6), one gets that Φy(s, t, B) �∈ Ω for s ∈ [t − ν, t). But Φy(s, t, B)
cannot belong to γ− by (3.15), which is already established for points
in γ−; nor can it belong to γB by uniqueness of the flow (and the other
components of ∂Ω\(γ+ ∪γ−) are too far by the choice of ν). Hence, one
must have Φy(s, t, B) ∈ BR\Ω.

• Proof of (3.19). This is a consequence of the continuity of the flow. Suppose
indeed by contradiction that for some ω, (λi)i=1,...,g, and α, one has (3.19)
not satisfied by an A point. Then for some τ > t, Φy(τ, t, A) ∈ BR\Ω (note
indeed that this point cannot be in γA by uniqueness of the flow or in other
components of ∂Ω\(γ+ ∪ γ−) by the choice of τ (which is not too far from
t), and if this point is in γ−, we conclude by (3.15) that there indeed exists
a point Φy(τ − ν, t, A) in BR\Ω ). We look at the trajectories starting from
x in γ− close to A. By (3.16) they are inside Ω for small time and, in fact,
by the same argument as previously, in Ω as long as τ − t is small enough so
that

cπ(K‖∇θ‖∞ + CLL)

(∫ τ

t

α(s)ds

)
≤ �/2.

So our assumption would be in contradiction with the continuity of the flow.
• Proof of (3.20). This follows again from the procedure of the proof of (3.17)

and the choices of Supp(ΓA) and Supp(Λi) (which are at positive distance
from A).
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946.

[7] T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch.
Rational Mech. Anal., 25 (1967), pp. 188–200.

[8] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford
Lecture Ser. Math. Appl. 3, The Clarendon Press, Oxford University Press, New York,
1996.
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CHARACTERISTIC FREQUENCIES,
POLYNOMIAL-EXPONENTIAL TRAJECTORIES, AND LINEAR
EXACT MODELING WITH MULTIDIMENSIONAL BEHAVIORS∗

EVA ZERZ†

Abstract. The characteristic frequencies of a linear, shift-invariant multidimensional behavior
correspond to its nonzero exponential trajectories. The set of polynomial-exponential trajectories
belonging to a fixed characteristic frequency of a behavior is investigated: A test is derived for
determining whether this space is finite-dimensional, and if so, a basis is constructed. If it is infinite-
dimensional, one considers only the polynomial-exponential trajectories up to a certain degree of
the polynomial part, and a characterization is given of the asymptotic growth of the dimensions of
these spaces as the degree bound tends to infinity. A dual problem is concerned with linear exact
modeling, that is, the construction of the so-called most powerful unfalsified model (MPUM): Given
a finite set of polynomial-exponential trajectories, the goal is to construct a behavior that contains
the data and as little else as possible.

Key words. multidimensional systems, linear PDE with constant coefficients, behavioral
approach, polynomial ideals and modules
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Introduction. The study of multidimensional, linear, shift-invariant behaviors
(i.e., the solution spaces of linear systems of partial differential or difference equations
with constant coefficients) using commutative algebra originated some 15 years ago in
the seminal paper [9]. Since then, the theory has been advanced by several authors. In
[13], the notion of a characteristic point (or frequency) of a multidimensional behavior
was introduced. The present paper continues this line of research. In particular, the
subset of a behavior consisting of all polynomial-exponential trajectories belonging
to a fixed characteristic frequency will be studied. After some preliminaries, the
question whether this set is finite-dimensional as a vector space will be addressed in
section 1.1. If it is, a vector space basis can be constructed as described in section 1.2.
In section 1.3, we determine the asymptotic behavior of the dimensions of the spaces
of polynomial-exponential solutions belonging to a fixed characteristic frequency as
the degree of the polynomial part grows.

In the second part of the paper, we study the problem of linear exact modeling
within the multidimensional setting. Suppose that one observes a finite number of
polynomial-exponential signals. The goal is to find a model for these data, that
is, a behavior that contains the given trajectories, or in other words, a model that
is unfalsified by the observations. Of course, the problem can always be solved by
making this behavior large enough. However, the more solutions a model admits, the
less it explains. This leads to the requirement that the model should be as powerful as
possible, that is, it should not admit more solutions than necessary. In other words,
we are looking for the most powerful unfalsified model (MPUM) that has been studied
for one-dimensional behaviors in [1]. A preliminary version of the present paper can
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be found in [15], where the computer algebraic implementation is described in more
detail, and some geometric interpretations are given.

1. Characteristic frequencies and polynomial-exponential trajectories.
We deal exclusively with linear and shift-invariant behaviors. For the sake of brevity,
we focus on behaviors given by differential (rather than difference) equations, and we
study only their smooth solutions, although the case of distributional solutions, and
the discrete counterpart, can be treated analogously.

Let A := C∞(Rn) denote the space of complex-valued smooth functions defined
on Rn, and let D := C[s1, . . . , sn] be the polynomial ring, in n variables, with complex
coefficients. Let R ∈ Dg×q be a polynomial matrix. Then

B := {w ∈ Aq | R(∂)w := R(∂1, . . . , ∂n)w = 0}

is the smooth solution space of a linear system of partial differential equations with
constant coefficients. Such a set B will be called a behavior throughout this paper.
If R has full column rank (by the rank of a polynomial matrix R, its generic rank
is meant, i.e., its rank as a matrix over the field of rational functions C(s1, . . . , sn)),
then B is called autonomous. This means that the system does not contain free
variables, that is, none of the components wj of w is unconstrained by the system
law R(∂)w = 0. More precisely, none of the projections πj : B → A, w �→ wj

is surjective. Algebraically speaking, autonomy is also equivalent to the fact that
P := D1×q/D1×gR is a torsion module, that is, for all p ∈ P there exists 0 �= d ∈ D
such that dp = 0 (indeed, we even have dP = 0 for some 0 �= d ∈ D, that is, P has a
nonzero annihilator).

Let a behavior B be given. An n-tuple of complex numbers, λ ∈ Cn, is called a
characteristic frequency (or characteristic point or pole point [13]) of B if there exists
0 �= c ∈ Cq such that

w := c expλ(1.1)

belongs to B, where the scalar function expλ is defined by

expλ(t) := exp(t1λ1 + · · · + tnλn) for t ∈ Rn.

The function w from (1.1) is called an exponential trajectory with frequency vector λ.
Thus λ is a characteristic frequency of B if and only if the system contains a nonzero
exponential trajectory with frequency vector λ.

The formula

R(∂)c expλ = R(λ)c expλ

is easy to verify. It shows that w from (1.1) belongs to B if and only if R(λ)c = 0.
This observation leads to the following lemma [13].

Lemma 1. The vector λ ∈ Cn is a characteristic frequency of B if and only if
R(λ) ∈ Cg×q does not have full column rank.

Thus, λ is a characteristic frequency of B if and only if rank(R(λ)) < q, that
is, if and only if λ is common zero of all the q × q minors of R ∈ Dg×q. Therefore,
the set V of all characteristic frequencies of B is an algebraic variety in Cn, called
the characteristic variety of B in [13]. If the rank of R is less than q, then all its
minors of order q are (identically) zero, and then V = Cn, that is, every λ is a
characteristic frequency of B. On the other hand, if the rank of R equals q, that is, if
B is autonomous, then V is a proper subset of Cn.
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As is well known from the one-dimensional case (n = 1), i.e., ordinary differential
equations, it is not sufficient to consider exponential trajectories alone. We have to
admit polynomial-exponential solutions.

For this, we define the space of polynomial-exponential functions Ape as the sub-
space of A = C∞(Rn) containing all finite sums of functions of the form

a := b expλ,

where b ∈ C[t1, . . . , tn] is a polynomial and λ ∈ Cn. Just like A itself, the space Ape

is a module over C[∂1, . . . , ∂n]. Moreover, we have [13]

M(B ∩ Aq
pe) = M(B),

where

M(B) := {r ∈ D1×q | r(∂)w = 0 for all w ∈ B}

for an arbitrary set B ⊆ Aq. In particular, B is uniquely determined by Bpe := B∩Aq
pe.

Indeed, Bpe is dense in B [7], with respect to the standard C∞-topology, that is, the
topology of uniform convergence of all derivatives on compact sets. This fact is also
referred to as the Malgrange approximation theorem, e.g., in [11]. If B is finite-
dimensional (as a complex vector space) [2, 8, 10, 11, 12], then

Bpe = B.

This is true, for example, for every autonomous one-dimensional (n = 1) behavior,
because the solution space of a homogeneous system of linear constant-coefficient
ordinary differential equations is finite-dimensional. In dimensions n ≥ 2, however,
an autonomous system is not necessarily finite-dimensional (take for instance n = 2,
and R = s1; then B consists of all smooth functions of t2). On the other hand, a
finite-dimensional behavior is always autonomous.

One calls Bpe the set of polynomial-exponential trajectories of B. Below, we will
investigate the polynomial-exponential trajectories of B with respect to a fixed fre-
quency vector.

For this, let λ ∈ Cn. Via the affine change of variables

R̃(s) := R(s + λ)

we obtain B̃ := {w ∈ Aq | R̃(∂)w = 0}. There is a bijective relation between the
polynomial-exponential solutions with frequency vector λ to R(∂)w = 0 and the
polynomial solutions to R̃(∂)w = 0, which is given by

p ∈ B̃ ⇔ p expλ ∈ B(1.2)

for p ∈ C[t1, . . . , tn]q. This can be seen by comparing the formulas

(∂ + λ)μtν =
∑
ρ

(
μ

ρ

)
(∂ρtν)λμ−ρ

and

∂μtν expλ(t) =
∑
ρ

(
μ

ρ

)
(∂ρtν)(∂μ−ρ expλ(t)) = expλ(t)

∑
ρ

(
μ

ρ

)
(∂ρtν)λμ−ρ,
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which hold for all μ, ν ∈ Nn, where the summation runs over all ρ ∈ Nn with ρi ≤ μi

for all 1 ≤ i ≤ n, and the usual multi-index notation is used, e.g., tν := tν1
1 · · · tνn

n ,(
μ
ρ

)
:=

(
μ1

ρ1

)
· · ·

(
μn

ρn

)
, etc. Thus

expλ(t)(∂ + λ)μtν = ∂μtν expλ(t).

By taking linear combinations, this shows that

expλ(t)R(∂ + λ)p(t) = R(∂)p(t) expλ(t)

for any R ∈ Dg×q and any p ∈ C[t1, . . . , tn]q. Therefore, omitting the argument t,

R(∂ + λ)p = 0 ⇔ R(∂)p expλ = 0,

which is precisely the equivalence from (1.2).
Therefore we may assume, without loss of generality, that the characteristic

frequency under consideration lies at the origin, and we write again R and B instead
of R̃ and B̃, respectively. For the remainder of this section, let R ∈ Dg×q be a given
polynomial matrix, and let B = {w ∈ Aq | R(∂)w = 0} be the corresponding behavior.
We will investigate the polynomial-exponential trajectories of B with frequency vector
zero. In other words, we are interested in the polynomial solutions to R(∂)w = 0.
Define

P := {p ∈ C[t1, . . . , tn]q | R(∂)p = 0}

and for any integer d ≥ 0,

Pd := {p ∈ C[t1, . . . , tn]q | R(∂)p = 0 and deg(p) ≤ d− 1}.

Here deg(p) := max1≤j≤q deg(pj), where deg(·) denotes the total degree of a nonzero
polynomial, and deg(0) := −1. Clearly,

{0} = P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ P.(1.3)

We have

P = B ∩ C[t1, . . . , tn]q =

∞⋃
d=0

Pd

and

Pd = {w ∈ Aq | R(∂)w = 0 and ∂μw = 0 for all μ ∈ Nn with |μ| = d},

where |μ| := μ1 + · · · + μn. Here we use that w is a polynomial of degree less than d
if and only if all its derivatives of order d vanish.

Let M := D1×gR ⊆ D1×q be the polynomial module generated by the rows of R.
According to [9], we have

M = M(B) = {r ∈ D1×q | r(∂)w = 0 for all w ∈ B}.

Conversely, we write

B = B(M) := {w ∈ Aq | r(∂)w = 0 for all r ∈ M}.
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Due to the injective cogenerator property of A [9], the maps M and B are inclusion-
reversing bijections between the set of behaviors in Aq and the set of submodules
of D1×q, and they are inverse to each other. Moreover, we note for later use that

B(M1 ∩M2) = B(M1) + B(M2).(1.4)

Using these maps, we have

M(Pd) = M + IdD1×q and Pd = B(M + IdD1×q),

where I := 〈s1, . . . , sn〉 is the ideal in D generated by s1, . . . , sn, and the ideal Id

consists of all products of d elements of I, that is, it is generated by the monomials sμ,
where μ ∈ Nn satisfies |μ| = d. Finally,

IdD1×q := Id × · · · × Id ⊆ D1×q

is the module of all polynomial row vectors whose entries belong to Id.
Each Pd is a finite-dimensional complex vector space, and thus autonomous. We

have [8, 10, 12]

dimC Pd = dimC D1×q/M(Pd) = dimC D1×q/(M + IdD1×q).(1.5)

Let

hd := dimC Pd+1/Pd.(1.6)

In what follows, we will
1. decide whether P is finite-dimensional as a complex vector space (this is true

if and only if the sequence (1.3) becomes stationary, or, equivalently, hd = 0
for large enough d);

2. construct a basis of Pd (in the case where P is finite-dimensional, this yields
a basis of P itself);

3. determine the behavior of hd as d tends to infinity.

1.1. Deciding whether P is finite-dimensional. Let M = D1×gR ⊆ D1×q,
I = 〈s1, . . . , sn〉, and

(M : I) = {r ∈ D1×q | rI ⊆ M}.

Since D = I0 ⊇ I = I1 ⊇ I2 ⊇ · · · , we have

M ⊆ (M : I) ⊆ (M : I2) ⊆ (M : I3) ⊆ · · · .(1.7)

The saturation of M by I is defined by [4, 6, 12]

N := (M : I∞) :=

∞⋃
d=0

(M : Id).

Due to the Noetherian property of D, the sequence (1.7) must become stationary,
that is, there exists an integer l ≥ 0 such that

(M : I∞) = (M : I l).
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The module N , being a submodule of D1×q, possesses a representation N = D1×hS
for some S ∈ Dh×q. The calculation of such a matrix S is implemented, e.g., in the
computer algebra system Singular [5]. Since M ⊆ N , we have R = XS for some
D-matrix X. This implies that rank(R) ≤ rank(S). Indeed, the rows of R and the
rows of S generate the same C(s1, . . . , sn)-vector space, and thus, the ranks of R
and S coincide. Still, it may happen that rank(R(0)) < rank(S(0)). The inclusion
M ⊆ N also implies that B(N) = {w ∈ Aq | S(∂)w = 0} ⊆ B(M) = B. The
following theorem can be found in [12], for the special case of M being an ideal
(q = 1). However, the version given below holds for arbitrary q.

Theorem 1. The following are equivalent:
1. P is finite-dimensional over C;
2. B(N) contains no nonzero polynomial trajectories;
3. zero is not a characteristic frequency of B(N);
4. rank(S(0)) = q.

Moreover, if these equivalent assertions are true, then B is autonomous.
Proof. The equivalence of assertions 3 and 4 is a consequence of Lemma 1. The

implication “2 ⇒ 3” follows trivially from the definition of a characteristic frequency.
Conversely, suppose that B(N) contains a nonzero polynomial vector, say S(∂)p = 0,
where p(t) =

∑
|ν|<d

1
ν!pνt

ν for some d ∈ N, pν ∈ Cq. (The factors ν! := ν1! · · · νn! are

extracted from the coefficient vectors for notational convenience.) Let d be chosen
as small as possible, that is, there exists μ such that |μ| = d − 1 and pμ �= 0. Then
c := ∂μp = pμ and hence 0 �= c ∈ Cq. On the other hand, S(∂)c = S(∂)∂μp =
∂μS(∂)p = 0, that is, c ∈ B(N), showing that zero is a characteristic frequency of
B(N).

Thus, assertions 2–4 are equivalent, and it remains to show their equivalence with
the first assertion. For this, let μ ∈ Nn. Using the injective cogenerator property of A
[9], one can show that ∂μB := {∂μw | w ∈ B} is again a behavior, and that

M(∂μB) = (M(B) : sμ) := {r ∈ D1×q | rsμ ∈ M(B)}.

Hence, with M = M(B), we have ∂μB = B(M : sμ) and thus

B(M : Id) = B

( ⋂
|μ|=d

(M : sμ)

)
=

∑
|μ|=d

B(M : sμ) =
∑
|μ|=d

∂μB,

where the relation (1.4) was used for the second equality. The set P is infinite-
dimensional if and only if there exist polynomial elements of B of arbitrarily high de-
gree. This means that for all d, the behavior

∑
|μ|=d ∂

μB possesses nonzero polynomial
elements, and hence, similarly as shown in the first part of the proof, it also possesses
nonzero constant solutions, that is, zero is a characteristic frequency of B(M : Id) for
all d. Still equivalently, zero is a characteristic frequency of B(M : I∞) = B(N).

The final statement follows from the fact that if rank(S(0)) = q, then the rank of
S, and hence of R, must be q.

The set P is finite-dimensional if and only if there exists an upper bound for the
degree of any polynomial trajectory. This means that hd = 0 for large enough d. Let
d∗ be the smallest integer such that hd∗ = 0, that is,

Pd∗ = Pd∗+1.

Then d∗ − 1 is the maximal degree of any polynomial solution to R(∂)w = 0. This is
due to the fact that the first equality in (1.3) will already yield stationarity, as shown
in the subsequent lemma.
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Lemma 2. If Pd = Pd+1, then

Pd = Pd+l for all l ≥ 0.

Thus P = Pd∗ , where d∗ is the smallest integer with Pd∗ = Pd∗+1.

Proof. It suffices to show that Pd+2 ⊆ Pd+1. We have

Pd = B(M + IdD1×q).

Hence the assumption Pd+1 ⊆ Pd is equivalent to

M + IdD1×q ⊆ M + Id+1D1×q

or

IdD1×q ⊆ M + Id+1D1×q.

From the last inclusion, it is easy to conclude that

Id+1D1×q ⊆ M + Id+2D1×q

and hence one obtains the desired result, by adding M , and by applying the
inclusion-reversing map B.

Example. Consider

R =

⎡⎣ s1(s2 + 1) 0
0 s3

(s2 + 1)(s3 + 1) s1

⎤⎦ ,

whose behavior has zero as a characteristic frequency, because rank(R(0)) = 1. Using
Singular, it turns out that N = M . Hence we may choose S = R and we may
conclude that P is not finite-dimensional. However, if we add an additional row and
consider

R̂ =

⎡⎢⎢⎣
s1(s2 + 1) 0

0 s3

(s2 + 1)(s3 + 1) s1

0 s2
2

⎤⎥⎥⎦ ,

then the resulting behavior still has the characteristic frequency zero, but Singular

returns

Ŝ =

⎡⎣ s1(s2 + 1) 0
0 1

(s2 + 1)(s3 + 1) 0

⎤⎦ ,

and hence rank(Ŝ(0)) = 2, that is, P̂ is finite-dimensional. In fact, dimC P̂ = 4, and

P̂2 �= P̂3 = P̂4, that is, d∗ = 3 and thus the largest degree of a polynomial solution
to R̂(∂)w = 0 equals 2.
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1.2. Computing a basis of Pd. A basis of Pd can be computed in various
ways, e.g., see [10, 12]. Here, we use the method described in [8]. For this, let
δ := dimC Pd. Then Pd possesses a representation

Pd = {w | ∃x0 ∈ Cδ : w(t) = C exp(t1A1 + · · · + tnAn)x0 for all t ∈ Rn},

where Ai ∈ Cδ×δ are nilpotent, pairwise commuting matrices, and C ∈ Cq×δ. Thus,
the columns of C exp(t1A1 + · · · + tnAn) are a basis of Pd.

The matrices Ai and C can be constructed as follows [8]:

Let

M (d) := M(Pd) = M + IdD1×q.

According to (1.5), P (d) := D1×q/M (d) has dimension δ as a C-vector space, and a
concrete C-basis {b1, . . . , bδ} of P (d) can be found, e.g., using Gröbner bases. Thus
there is a C-vector space isomorphism Cδ ∼= P (d), ek ↔ bk, where ek is the kth natural
basis vector of Cδ. Using this isomorphism, the multiplication by si in P (d) yields
matrices Fi ∈ Cδ×δ, which are pairwise commuting (because sisj = sjsi in P (d)) and
nilpotent (because sdiP

(d) = 0 for all i). Let Ai := FT
i and let C ∈ Cq×δ be the matrix

obtained from expressing each [ej ] ∈ P (d), where ej is the jth natural basis vector of
D1×q, in terms of the basis elements of P (d) according to

[ej ] =

δ∑
k=1

Cjkbk.

This construction method works for any finite-dimensional behavior B, not only for
the behaviors of the form Pd. For instance, consider a one-dimensional and scalar
system (n = q = 1), say r( d

dt )w = 0 for r = sδ + αδ−1s
δ−1 + · · · + α1s + α0. The

procedure from above yields (choosing b1 = [1], . . . , bδ = [sδ−1])

A =

⎡⎢⎢⎢⎣
0 1
...

. . .

0 1
−α0 · · · · · · −αδ−1

⎤⎥⎥⎥⎦ and C =
[
1 0 · · · 0

]
,

which is the so-called observability form. Similarly, one obtains the observer form by a
suitable choice of the basis elements bk. Note that the matrix A in this example is not
in general nilpotent. This is because B = {w ∈ A | r( d

dt )w = 0} is finite-dimensional,
but does not have the form Pd. For this B, we have

Pd =

{
w ∈ A

∣∣∣∣r( d

dt

)
w = 0,

dd

dtd
w = 0

}
=

{
w ∈ A

∣∣∣∣ de

dte
w = 0

}
,

where e = min{d,min{k | αk �= 0}}, that is, se is the greatest common divisor of r
and sd. Thus, the only one-dimensional and scalar case that fits into the situation
outlined above is r = se and then all αk = 0 and hence we obtain a nilpotent matrix A.

In section 2, we will discuss another realization of a finite-dimensional behavior
that is dual to the given one in a certain sense, and that corresponds to the control-
lability/controller forms in the one-dimensional scalar case.
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Example. Let us return to R̂ from the previous example. We have d∗ = 3 and
P̂ = P̂3 = {w ∈ A2 | Q(∂)w = 0}, where

Q :=

⎡⎢⎢⎢⎢⎢⎢⎣
s3 0
0 s3

s2
2 0
0 s2

2

s1 0
s2 + 1 s1

⎤⎥⎥⎥⎥⎥⎥⎦ .(1.8)

This matrix has been obtained by computing a Gröbner basis of M (3) = D1×4R̂ +
I3D1×2 = D1×6Q. Here, δ = 4. As a basis of P (3) = D1×2/M (3), we choose b1 = [e1],
b2 = [e2], b3 = [s2e1], b4 = [s2e2]. Then

A1 =

⎡⎢⎢⎣
0 0 0 0

−1 0 −1 0
0 0 0 0
0 0 −1 0

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , A3 = 0

and

C =

[
1 0 0 0
0 1 0 0

]
.

Thus all polynomial solutions to R̂(∂)w = 0 have the form

w(t) = C exp(t1A1 + t2A2 + t3A3)x0 =

[
c1 + c3t2

c2 − (c1 + c3)t1 + c4t2 − c3t1t2

]
,(1.9)

where x0 = [c1, c2, c3, c4]
T ∈ C4.

1.3. Asymptotic behavior of the numbers hd. Consider the function h :
N → N, d �→ hd, where hd is defined in (1.6). As above, let I = 〈s1, . . . , sn〉. The set
D \ I consists of all polynomials with a nonvanishing constant term, and thus, it is
multiplicatively closed. The localization [4, 6] of D at I is defined by

D0 :=

{
f

g
| f ∈ D, g ∈ D \ I

}
.

We identify D with a subring of D0 via f = f
1 . Similarly, for M = D1×gR ⊆ D1×q,

we define the localization of M at I as

M0 :=

{
f

g
| f ∈ M, g ∈ D \ I

}
and we identify M with a submodule of M0. The (Krull) dimension [4, 6] of M0 is an
integer between −1 and n. The case dim(M0) = −1 corresponds to rank(R(0)) = q,
that is, to zero not being a characteristic frequency of B. Then we have Pd = {0}
for all d, and the function h is identically zero. If we exclude this special case in the
following theorem, we have 0 ≤ dim(M0) ≤ n. Note that dim(M0) = n holds if and
only if B is not autonomous. The dimension can be computed by means of computer
algebra systems such as Singular.

Theorem 2. If rank(R(0)) = q, then the function h is identically zero. Let
rank(R(0)) < q. Then the function h agrees, for large d, with a polynomial of degree
dim(M0) − 1, where M0 is the localization of M at I, and dim(·) denotes the Krull
dimension.
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Proof. Let D0 be the localization of D at I. Then M0 = D1×g
0 R ⊆ D1×q

0 and
dim(M0) = dim(P0), where P0 := D1×q

0 /M0. Since D0 is a local ring with maximal
ideal I0 := D0I, it follows from the theory of the Hilbert–Samuel function [4, 6] that

dimC P0/I
d
0P0

coincides, for large d, with a polynomial of degree dim(M0). We have

P0/I
d
0P0

∼= D1×q
0 /M0 + Id0D

1×q
0

∼= D1×q/M + IdD1×q.(1.10)

The first isomorphism is straightforward, and can be directly verified by checking that
the mapping

D1×q
0 /M0 + Id0D

1×q
0 → D1×q

0 /M0/I
d
0

(
D1×q

0 /M0

)
,

r0 + M0 + Id0D
1×q
0 �→

(
r0 + M0

)
+ Id0

(
D1×q

0 /M0

)
has the desired properties. The second isomorphism is more interesting. In [3], it is
proven for zero-dimensional ideals. The generalization to the module case is easy, but
it is given here for the sake of completeness. Consider the homomorphism

ϕ : D1×q → D1×q
0 /M0 + Id0D

1×q
0 , r �→ ϕ(r) := r

1 + M0 + Id0D
1×q
0 .

It is clear that r ∈ M + IdD1×q implies ϕ(r) = 0, and hence we have

M + IdD1×q ⊆ ker(ϕ).

In order to establish the second isomorphism in (1.10), it suffices, in view of the
homomorphism theorem, to show the converse inclusion, and the surjectivity of ϕ.
Both facts follow from the following observation: For each g ∈ D \ I there exists
h ∈ D such that (1 − hg)ej ∈ IdD1×q for all 1 ≤ j ≤ q, where ej denotes the jth
natural basis vector of D1×q. To see this, note that g0 := 1− g

g(0) ∈ I, where g(0) ∈ C

is the nonzero constant term of g /∈ I. Then h := 1
g(0) (1 + g0 + · · · + gd−1

0 ) yields

hg = 1
g(0) (1 + g0 + · · · + gd−1

0 )g(0)(1 − g0) = 1 − gd0 . Thus 1 − hg = gd0 ∈ Id, and

therefore (1 − hg)ej ∈ IdD1×q for all j. In other words, ej ≡ hgej modulo IdD1×q.

Now let r ∈ ker(ϕ). Then r
1 = f

g for some g ∈ D \ I and some f = gr ∈ M +

IdD1×q. Let h ∈ D be as constructed above. Then we have hgr = hf ∈ M + IdD1×q,
and on the other hand,

hgr =
∑

rjhgej ≡
∑

rjej = r modulo M + IdD1×q.

This implies that r ∈ M + IdD1×q. The surjectivity of ϕ is proven similarly.
Combining (1.10) with the dimension formula (1.5), one obtains that

dimC Pd = dimC D1×q/M + IdD1×q = dimC P0/I
d
0P0

is equal, for large d, to a polynomial of degree δ := dim(M0), say,

dimC Pd = αδd
δ +

δ−1∑
k=0

αkd
k
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for suitable coefficients αk, and large enough d. Then

hd = dimC Pd+1 − dimC Pd = αδ

(
(d + 1)δ − dδ

)
+

δ−1∑
k=0

αk

(
(d + 1)k − dk

)
= αδδd

δ−1 +

δ−2∑
k=0

βkd
k

for some coefficients βk. It follows that hd is a polynomial of degree dim(M0)− 1, for
large d.

If M is homogeneous, then the polynomial from Theorem 2 coincides with the
Hilbert polynomial [4, 6] of M . For an interpretation of the Hilbert polynomial in the
context of multidimensional behaviors, see [14].

As a consequence of the proof of Theorem 2, the function dimC Pd itself agrees, for
large d, with a polynomial of degree dim(M0). The connection between Theorems 1
and 2 is given by the fact that rank(S(0)) = q is equivalent to dim(M0) ≤ 0, and
rank(R(0)) < rank(S(0)) = q is equivalent to dim(M0) = 0.

Example. Let us return to the matrix R from the previous example. We have
already seen that P is not finite-dimensional. Indeed, the numbers dimC Pd satisfy

dimC Pd = 2d− 1

for all d ≥ 1 and thus hd = 2 for large enough d, a polynomial of degree 0. Note that
the module M = D1×3R has Krull dimension 2, but M0, its localization at zero, has
Krull dimension 1.

2. Polynomial-exponential trajectories and the MPUM. Let

p ∈ C[t1, . . . , tn]q

be a vector of polynomials. In this section, we construct the smallest behavior B that
contains p. This behavior will be called the most powerful unfalsified model (MPUM)
of p [1]. For this, we write

p(t) =
∑

ν∈Nn,|ν|<d

1

ν!
pνt

ν , pν ∈ Cq,

where ν! = ν1! · · · νn!, and we assume, without loss of generality, that d is chosen as
small as possible. We have

∂μp = 0 for all μ ∈ Nn with |μ| = d.

Consider the module P := D/Id. As a C-vector space, P is generated by [sν ], where
ν ∈ Nn is such that |ν| < d. Thus the underlying vector space of P isomorphic to Cδ,
where δ := |{ν ∈ Nn | |ν| < d}|. A simple combinatorial argument shows that

δ =

(
n + d− 1

n

)
.

The multiplication by si in P yields a linear transformation in Cδ which we may
identify with a matrix Fi after fixing a basis of Cδ. The easiest way to do this is to
enumerate the elements of {ν ∈ Nn | |ν| < d} =: {ν1, . . . , νδ}, e.g., in lexicograph-
ical order, and to identify the element [sνk ] of P with the kth natural basis vector
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of Cδ. The matrices obtained this way are pairwise commuting and nilpotent. This
construction is a special case of the procedure described in section 1.2, but note that
we put Ai := Fi here (without transposition).

Theorem 3. The MPUM of p is given by

B =
{
w ∈ Aq | ∃x ∈ Aδ : ∂ix = Aix for 1 ≤ i ≤ n and w = Cx

}
=

{
w ∈ Aq | ∃x0 ∈ Cδ : w(t) = C exp(t1A1 + · · · + tnAn)x0 for all t ∈ Rn

}
,

where C is the q × δ matrix obtained from putting the coefficient vector pνk
into the

kth column of C. In particular, the MPUM is finite-dimensional over C, and hence
autonomous.

This construction of the MPUM is similar to the one given in [1] for the case
n = 1. The second equality in Theorem 3 is well known [2, 8, 10, 11, 12].

Proof. We show that B from above is really the MPUM of p. Note that

ξ(t) :=

⎡⎢⎣
1
ν1!

tν1

...
1
νδ!

tνδ

⎤⎥⎦
satisfies ∂iξ = Aiξ for all i, and thus p = Cξ ∈ B. Moreover, ξν := ∂νξ also satisfies
∂iξν = Aiξν and we get ∂νp = Cξν ∈ B for all ν ∈ Nn. Thus the given polynomial
vector p and all its derivatives belong to B. On the other hand, we have

B =
{
w ∈ Aq | ∃x0 ∈ Cδ : w(t) = C exp(t1A1 + · · · + tnAn)x0 for all t ∈ Rn

}
.

Since {ξν(0) | ν ∈ Nn, |ν| < d}, where ξ0 = ξ, is the set of all natural basis vectors
of Cδ, we conclude that {Cξν | ν ∈ Nn, |ν| < d} is a generating set of B. Therefore,
B is the linear span of the given polynomial vector p and its derivatives, and thus it
is the smallest behavior containing p.

In the one-dimensional and scalar case, say, p(t) = αδ−1t
δ−1 + · · ·+α1t+α0, this

yields

A =

⎡⎢⎢⎢⎢⎣
0 · · · 0 0

1
...

. . .
...

1 0

⎤⎥⎥⎥⎥⎦ and C =
[
α0 · · · k!αk · · · (δ − 1)!αδ−1

]

and then C exp(tA) = (p(t), p′(t), . . . , p(δ−1)(t)), in particular, C exp(tA)e1 = p(t).
This form is reminiscent of the controllability form. The controller form analogue is
obtained similarly (by choosing another enumeration of the basis).

Example. Consider the polynomial vector from (1.9) as an element of C[t1, t2]
2.

Then d = 3 and δ = 6. We have

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
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and

C =

[
c1 c3 0 0 0 0
c2 c4 0 −(c1 + c3) −c3 0

]
.

Hence

w(t) =

[
c1 + c3t2 c3 0 0 0 0

c2 + c4t2 − (c1 + c3)t1 − c3t1t2 c4 − c3t1 0 −c1 − c3 − c3t2 −c3 0

]
x0.

A kernel representation of the MPUM, that is, a matrix Q̂ such that w ∈ B if and
only if Q̂(∂)w = 0, is given by

Q̂ :=

⎡⎢⎢⎣
s2
2 0
0 s2

2

s1 0
s2 + 1 s1

⎤⎥⎥⎦ .

This corresponds to the last four rows of Q from (1.8). The first two rows of Q say
that the solution does not depend on t3; they would also be present in Q̂ if we had
worked over C[t1, t2, t3]. Note that the vector space dimension of the MPUM equals
4, and thus it is strictly smaller than δ = 6. This shows that the “realization” of the
MPUM constructed in Theorem 3 is not minimal, in general.

The minimality of MPUM realizations, and the reduction of a given realization
to minimality, are discussed below, where we derive a generalization of the Kalman
observability decomposition. Note that this is the key ingredient to keeping the com-
putational effort moderate: The construction of Ai, C is quite cheap, since it consists
in putting ones and zeros into the correct entries of each Ai, and in putting the given
coefficient vectors of p into the correct positions of C, respectively, and thus, it is more
or less a matter of bookkeeping. The computational cost becomes relevant, however,
when we want to calculate C exp(t1A1 + · · ·+ tnAn) for the explicit description of the
MPUM trajectories, or if we wish to construct a kernel representation of the MPUM
(using the fundamental principle [9] for eliminating the latent variable x). Clearly,
these operations are sensitive with respect to the size of the matrices Ai.

For this, let Ai ∈ Cδ×δ, 1 ≤ i ≤ n, be pairwise commuting matrices, and let C ∈
Cq×δ. Consider B = {w ∈ Aq | ∃x ∈ Aδ : ∂ix = Aix for 1 ≤ i ≤ n and w = Cx}. We
call (A1, . . . , An, C) a realization of B of size δ, and a realization is said to be minimal
if there exists no realization of B of strictly smaller size. A realization (A1, . . . , An, C)
is called observable if

O
(
A1, . . . , An, C

)
:=

⋂
μ∈Nn

ker(CAμ1

1 · · ·Aμn
n ) = {0}.

Observability means that x is uniquely determined by w with w = Cx and ∂ix = Aix
for all i. This follows from (∂μw)(0) = CAμx0, where Aμ := Aμ1

1 · · ·Aμn
n . Thus x0,

and hence x, is uniquely determined by w if and only if the realization is observable.
Theorem 4. A realization (A1, . . . , An, C) of B is minimal if and only if it is

observable. Given (A1, . . . , An, C), there exists a nonsingular matrix T ∈ Cδ×δ such
that

TAiT
−1 =

[
A1

i 0
∗ ∗

]
and CT−1 =

[
C1 0

]
,

where (A1
1, . . . , A

1
n, C

1) is observable, and thus a minimal realization of B.
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Proof. Let (A1, . . . , An, C) be given. Let K := K(A1, . . . , An, C) be the sub-
space of C1×δ spanned by the rows of the matrices CAμ, where μ ∈ Nn and Aμ =
Aμ1

1 · · ·Aμn
n . Note that it suffices to consider 0 ≤ μi ≤ δ − 1. Let r := dim(K)

and let T1 ∈ Cr×δ be a matrix whose rows are a basis of K. Choose T2 such that
TT =

[
TT

1 , TT
2

]
is square and nonsingular. Since K is invariant under right multipli-

cation by any Ai, that is, x ∈ K implies xAi ∈ K, we have T1Ai = A1
iT1 for some

A1
i ∈ Cr×r, and thus

TAiT
−1 =

[
A1

i 0
∗ ∗

]
.

Similarly, since the rows of C are contained in K, we have C = C1T1 for some
C1 ∈ Cq×r and thus CT−1 = [C1, 0]. The matrices A1

i are pairwise commuting, and
(A1

1, . . . , A
1
n, C

1) is a realization of B of size r = δ − dim(O(A1, . . . , An, C)). Thus,
a nonobservable realization can be reduced in size. Moreover, we have dim(K) =
dim(K(A1

1, . . . , A
1
n, C

1)) and thus O(A1
1, . . . , A

1
n, C

1) = {0}.
It remains to be shown that if (A1, . . . , An, C) is not minimal, then it does not

satisfy O(A1, . . . , An, C) = {0}. Let (Ã1, . . . , Ãn, C̃) be a realization of B of strictly
smaller size δ̃ < δ. By considering (∂μw)(0) for w ∈ B and μ ∈ Nn, we obtain that

for every x0 ∈ Cδ, there exists x̃0 ∈ Cδ̃ such that CAμx0 = C̃Ãμx̃0 for all μ ∈ Nn.
This implies that dim(K) ≤ dim(K̃), where K is as above and K̃ = K(Ã1, . . . , Ãn, C̃),
and thus dim(O(A1, . . . , An, C)) = δ − dim(K) ≥ δ − δ̃ > 0.

Example. Returning to the example from above, a suitable transformation matrix
is given by

T =

⎡⎢⎢⎢⎢⎢⎢⎣
c1 c3 0 0 0 0
c2 c4 0 −(c1 + c3) −c3 0
c3 0 0 0 0 0
c4 0 0 −c3 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the horizontal line denotes the partition between T1 and T2, and where we
assume c3 �= 0. Then the new realization of the MPUM takes the form

A1
1 =

⎡⎢⎢⎣
0 0 0 0

−1 0 −1 0
0 0 0 0
0 0 −1 0

⎤⎥⎥⎦ , A1
2 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , C1 =

[
1 0 0 0
0 1 0 0

]

which is minimal, and happens to coincide with the system that generated (1.9) in
the first place.

Finally, it remains to generalize the result of Theorem 3 to the case where we have
more than one given polynomial trajectory, and to the case where the data trajectories
are polynomial-exponential rather than purely polynomial. We do this in three steps.

First, let p1, . . . , pN ∈ C[t1, . . . , tn]q be given. Let Bl be the MPUM of pl for
l = 1, . . . , N . Then the MPUM of D = {p1, . . . , pN} is given by

B = B1 + · · · + BN .

Moreover, if

Bl =
{
w ∈ Aq | ∃xl ∈ Aδl : ∂ixl = Ailxl for 1 ≤ i ≤ n and w = Clxl

}
,
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then

B =
{
w ∈ Aq | ∃x ∈ Aδ : ∂ix = Aix for 1 ≤ i ≤ n and w = Cx

}
,

where δ := δ1 + · · · + δN and

Ai := diag(Ai1, . . . , AiN ) and C :=
[
C1 . . . CN

]
.(2.1)

Second, the equivalence (1.2) enables translating these results to the case where
p1, . . . , pN are polynomial-exponential rather than purely polynomial. Let

B̃ =
{
w ∈ Aq | ∃x ∈ Aδ : ∂ix = Aix for 1 ≤ i ≤ n and w = Cx

}
be the MPUM of p. Then

B =
{
w ∈ Aq | ∃x ∈ Aδ : ∂ix = λix + Aix for 1 ≤ i ≤ n and w = Cx

}
is the MPUM of p expλ.

Finally, let D = {p1 expλ(1) , . . . , pN expλ(N)} be given. Let

Bl =
{
w ∈ Aq | ∃xl ∈ Aδl : ∂ixl = λ

(l)
i xl + Ailxl for 1 ≤ i ≤ n and w = Clxl

}
be the MPUM of pl expλ(l) . Then

B =
{
w ∈ Aq | ∃x ∈ Aδ : ∂ix = Λix + Aix for 1 ≤ i ≤ n and w = Cx

}
is the MPUM of D, where δ = δ1 + · · · + δN ,

Λi := diag
(
λ

(1)
i Iδ1 , . . . , λ

(N)
i IδN

)
,

and Ai and C are as in (2.1). Using Theorem 4, the resulting realization of the MPUM
can be reduced to a minimal one.

Conclusion. The characteristic frequencies of a behavior correspond to its non-
zero exponential trajectories. Similarly as with ordinary differential equations, it
does not suffice to consider purely exponential solutions, one has to take polynomial-
exponential functions into account. Since a fixed characteristic frequency can be
shifted to the origin without loss of generality, the problem can be reduced to finding
polynomial solutions. We have seen how to decide whether the polynomial solution set
of a given system of PDE is finite-dimensional. If yes, we can construct a basis. In the
general case, we can only construct a basis of the space of polynomial solutions up to
a certain total degree d, and we can make a statement about the dimensions of these
spaces as d tends to infinity. Finally, we have constructed the MPUM for the case of
a single observed trajectory of polynomial type. This result has been generalized to
the case where we have any finite number of polynomial-exponential trajectories. We
have shown that the resulting realization of the MPUM is minimal if and only if it
is observable, and we have described a method for reducing a given realization to a
minimal one, which is analogous to the Kalman observability decomposition.
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A UNIFIED APPROACH FOR STOCHASTIC AND MEAN SQUARE
STABILITY OF CONTINUOUS-TIME LINEAR SYSTEMS

WITH MARKOVIAN JUMPING PARAMETERS
AND ADDITIVE DISTURBANCES∗

MARCELO D. FRAGOSO† AND OSWALDO L. V. COSTA‡

Abstract. Necessary and sufficient conditions for stochastic stability (SS) and mean square
stability (MSS) of continuous-time linear systems subject to Markovian jumps in the parameters
and additive disturbances are established. We consider two scenarios regarding the additive distur-
bances: one in which the system is driven by a Wiener process, and one characterized by functions
in Lm

2 (Ω,F ,P), which is the usual scenario for the H∞ approach. The Markov process is assumed to
take values in an infinite countable set S. It is shown that SS is equivalent to the spectrum of an aug-
mented matrix lying in the open left half plane, to the existence of a solution for a certain Lyapunov
equation, and implies (is equivalent for S finite) asymptotic wide sense stationarity (AWSS). It is
also shown that SS is equivalent to the state x(t) belonging to Ln

2 (Ω,F ,P) whenever the disturbances
are in Lm

2 (Ω,F ,P). For the case in which S is finite, SS and MSS are equivalent, and the Lyapunov
equation can be written down in two equivalent forms with each one providing an easier-to-check
sufficient condition.

Key words. stochastic stability, mean square stability, jump parameter, continuous-time linear
systems, Markov chain
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1. Introduction. In recent years, there has been a steadily rising level of activity
with linear systems which are subject to abrupt changes in their structures. Most
of the literature considers the case in which the abrupt changes are modeled by a
Markov chain, namely, linear systems with Markovian jump parameters (LSMJP).
These changes arise quite often in practice and may be due, for instance, to component
and/or interconnection failures, inter alia. This is to be found, for instance, in robotic
manipulator systems, aircraft control systems, large scale flexible structures for space
stations (such as antenna, solar arrays, etc.), and flexible manufacturing systems, on
which an actuator or a sensor failure is a quite common occurrence. Without any
intention of being exhaustive here, we mention [4], [5], [6], [7], [8], [11], [12], [13], [14],
[15], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [34], [35],
[37], [38], [39], [40], [41], [42], [43], [46], [49], and the references therein, as a small
sample of works dealing with different aspects of LSMJP problems.

Although mean square and almost sure stability for linear stochastic systems
with random parameter perturbation have a long and successful history, the interest in
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getting easy-to-check conditions for special structures continues unabated. Among the
techniques used, we mention the one which relies on martingale methods and the idea
of projecting onto the unit sphere or the projective space to compute the asymptotic
exponential growth rate (the Lyapunov exponent) and the one using the Lyapunov
function approach. For the class ẋ(t) = (A+P (t))x(t), where P (t) is a matrix whose
elements belong to a particular class of stochastic processes (either ergodic processes
or a Markov jump, stationary, etc.), or ẋ(t) = A(p(t))x(t), with p(t) a white noise or
an ergodic processes, the readers are referred, for instance, to [3], [16], and [31] (and
the many references therein). Stability questions for LSMJP (the case in which p(t)
is a Markov chain) have given rise to a significant number of papers dealing with this
subject (see, for instance, [4], [8], [11], [12], [13], [18], [19], [22], [23], [24], [26], [27],
[34], [35], [37], [38], [39], [40], [43], [46], [49], and the references therein). See also [14]
for a historical account on the discrete-time case. It is important to stress that most
of these papers consider the case in which the Markov process takes values in a finite
state space. This assumption has important consequences and, in particular, it is a
well-known fact that mean square stability is equivalent to stochastic stability. For the
case in which the state space of the Markov chain is infinite countable, these concepts
are no longer equivalent (for examples, see [12] or [14] for the discrete-time case and
[26] for the continuous-time scenario). In addition, they consider the real case.

In [37] and [40], necessary and sufficient conditions for mean square stability
(MSS) were obtained for the homogeneous continuous-time noise-free real case. A
common feature in these papers is that the MSS criteria is expressed as the maxi-
mal real part of a certain matrix being less than zero, and in fact this number was
shown to be the mean square Lyapunov exponent of the system. In [37], the sample
path Lyapunov exponent λ and the p-moment Lyapunov exponent g(p) for a real
homogeneous LSMJP is studied for the case of a stationary, ergodic Markov chain.
Using extensions of results in [1], in conjunction with ideas developed in [2], relations
between λ and g(p) are derived. In addition, under a certain assumption which guar-
antees that the operation mode has the so-called property S, an exact expression for
the mean square Lyapunov exponent is obtained. The result for g(2) is given in terms
of the maximal real part of a matrix representation of a certain linear operator (the
matrix is not exhibited explicitly). The result closest to ours is that obtained in [40],
using a technique completely different from that used here.

In [35] necessary and sufficient conditions for MSS of the discrete-time noise-free
case were obtained in terms of the existence of a solution of a Lyapunov equation.
The continuous-time counterpart of this result is derived in [24] (see also [43]), includ-
ing a study on the relationship among various moment and sample path stability. In
the time varying case with state dependent additive Wiener disturbance, exponential
stability in mean square (ESMS) for the zero solution of the system are studied in
[19] and [39]. In [19], after deriving a certain Itô-type formula, the authors show
equivalence results for ESMS, including a Lyapunov-type equation. After discussing
some properties of the solution for the nonlinear general case, it is given in [39] a suffi-
cient condition for the pth moment exponential stability based on the Lyapunov-type
result and sufficient condition for pth moment exponential stability to imply almost
sure exponential stability, using essentially the idea of Lyapunov exponent. The au-
thor uses also the so-called M -matrices theory (in fact, nonsingular M -matrices) to
derive sufficient conditions for the pth moment and almost sure exponential stability.
In fact it has to be checked if, for 0 < p < 2, a certain matrix A(p) is a nonsingular
M -matrix. All these papers consider the real case with the Markov process taking
values in a finite set.
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Almost sure stability for Markovian jump linear systems (MJLS) is examined,
for instance, in [11], [18], [22], [23], [38], [40], and [41] (see also [39] for almost sure
exponential stability). A historical account on earlier works can be found in [22].
Some important issues regarding MSS for the case in which the state space of the
Markov chain is infinite countable can be found in [12], [25], [26], and [27].

Asymptotic stability in distribution for LSMJP has been studied in [4] and [49].
This seems an adequate notion to adopt when, for instance, degeneracy of the noise is
allowed. In [4], asymptotic stability in distribution for the semilinear stochastic differ-
ential equation with Markov jump parameters is discussed. Using the interesting con-
cept of asymptotic flatness in the pth mean, the authors derive sufficient conditions for
stability in distribution by assuming MSS of the autonomous systems and the rather
interesting condition dk2

0 < 1/Ωp, with d denoting the system dimension, k0 being a
certain Lipschitz condition for the diffusion matrix σ, and Ωp = max{Ωp1 , . . . ,ΩpN

},
with Ωpi

denoting the largest eigenvalue of the matrix Pi, which satisfies a certain
Lyapunov equation. In [49], asymptotic stability in the distribution for a class of
nonlinear diffusion with a Markov jump is derived. Sufficient conditions are estab-
lished, provided certain properties of the solution are satisfied (called properties (P1)
and (P2)). In addition, sufficient conditions for the mentioned properties in terms of
Lyapunov functions are also exhibited. In order to make their result more applicable,
the authors also derive sufficient conditions in terms of the M -matrix.

This paper deals with stochastic and mean square stability for continuous-time
LSMJP with the Markov process taking values in an infinite countable set S in a
unified way. This makes an important difference with respect to the previous papers
and, in particular, we have that, unlike the finite-dimensional case, stochastic stability
(SS) and MSS are not equivalent (see [26]). In this case, it is SS, as defined in the
paper, that is equivalent to the spectrum of a certain matrix lying in the open left half
plane. This equivalence does not hold anymore for MSS. In the finite case our paper
provides, based on an easily computable criterion (the spectrum of a matrix), a unified
result for SS, MSS, and asymptotic wide sense stationarity (AWSS) in Theorem 5.6
(necessary and sufficient conditions for the three scenarios considered in the paper).
It extends and encompasses the results in [28].

A well-known feature of the class of LSMJP is that the state x(t) is not Markov.
The primary hindrance here then is related to the kind of analytical tools for handling
the problem of getting easy-to-check stability criteria. A distinctive feature of our
approach is that it can be used, also in a unified way, for continuous and discrete-time
case, since it does not rely on a specific Itô type of result. It relies rather on the fact
that the augmented state (x(t), θ(t)) is Markov, and, therefore, an operator theoretical
approach is possible, provided we can connect, in a suitable way, x(t) with measurable
functions of (x(t), θ(t)). Briefly, the idea behind our approach is as follows: we know
that x(t) in (3.2) (also (3.3) and (3.4)) is not Markov, but (x(t), θ(t)) is Markov.
Therefore, if we work with the measurable function of (x(t), θ(t)), i.e., f(x(t), θ(t)),
we can then think in tools such as infinitesimal generator, which allows us to think
about the dynamics. The following question then arises: is it possible to bypass the
non-Markovian property of x(t) using f(x(t), θ(t))? It comes up, bearing in mind
that x(t) =

∑
i∈Sx(t)1{θt=i} and x(t)x(t)∗ =

∑
i∈Sx(t)x(t)∗1{θt=i}, that a natural

answer to the above question is to work with x(t)1{θt=i} and x(t)x(t)∗1{θt=i}, since in
this case we can think about differential equations for the moments (first and second
moment) in terms of the operators defined in section 4. This approach was used in
[11], which is, to some extent, the discrete-time version of this paper, and we believe
that it may be useful elsewhere. In addition, since operator theory is the technical
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underpinning of the paper, it has the advantage of being suitable for treating the
general complex and infinite-dimensional (due to the fact that S is infinite countable)
setting.

We deal with two scenarios regarding additive disturbances: the one in which
the disturbances are characterized via a Wiener process, and the one characterized
by any function in Lm

2 (Ω,F ,P). It is shown that SS is equivalent to the real part of
the spectrum of an augmented matrix being less than zero, or to the existence of a
solution of a Lyapunov equation, or that the state x(t) ∈ Ln

2 (Ω,F ,P) for Lm
2 (Ω,F ,P)-

disturbances, and implies (is equivalent for S finite) AWSS stability. It is also shown
that these equivalence relations hold even for the case in which only real initial condi-
tions are considered. The first criterion (based on the eigenvalues) translates clearly
the intuitive idea that unstable modes of operation do not necessarily compromise
the global stability of the system. In fact it can be shown that the stability of all
modes of operation is neither necessary nor sufficient for the global stability of the
system (see, e.g., [34]). The eigenvalue criterion shows clearly the connection between
SS and the probability of visits to the unstable modes. A cursory examination of the
augmented matrix reveals that a balance between the modes and the transition prob-
ability matrix is essential for SS. For the case of one mode operation (no jumps in the
parameters) our criteria reconcile to a well-known stability results for continuous-time
linear systems. When the state space of the Markov process S is finite, MSS and SS
are equivalent, and the Lyapunov equation can be written in two equivalent forms
with each of these forms providing easier-to-check sufficient conditions. These results,
we believe, provide a flexible theory which gives a rather complete and unified picture
of SS and MSS for LSMJP.

Finally, it is noteworthy here that, besides the interest in its own right, matri-
ces with complex coefficients are also interesting from an application point of view.
As pointed out in [32] and [7], in several engineering applications, as in communica-
tion application of signals systems, whirling shafts, vibrational systems, etc., complex
coefficients come into play. In [32] some systems with complex coefficients that nat-
urally arise in mechanics and signal processing are presented, motivating the study
of equations with complex coefficients and illustrating more general situations such
as satellite and cosmic vehicles control. We refer to these papers and the references
therein for further examples and results on systems with complex coefficients.

An outline of the content of this paper is as follows. In section 2 we provide
the bare essentials of notational conventions and some preliminaries. The model and
problem statement are described in section 3. Stochastic and mean square stability for
the homogeneous case (including Lyapunov equations) is treated in section 4. For the
case in which the S is finite it is proved that the Lyapunov equation can be written
down in two equivalent forms with each one providing an easier-to-check sufficient
condition. Section 5 accounts the case with additive disturbances. It embodies two
kinds of analysis: one for the Lm

2 (Ω,F ,P)-disturbances and one for the linear jump-
diffusion case. For all the cases, it is shown that SS is equivalent to the spectrum of an
augmented matrix lying in the open left half plane, and to the existence of a solution
for a certain Lyapunov equation, and implies (is equivalent for S finite) AWSS. In the
appendix we present the proof of some auxiliary results.

2. Notation and preliminaries. For X and Y complex Banach spaces we set
B(X,Y) for the Banach space of all bounded linear operators of X into Y, with the
uniform induced norm represented by ‖.‖. For simplicity we shall set B(X) := B(X,X).
For T ∈ B(X) we denote by σ(T ) the spectrum of T . If X is a Hilbert space, then
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〈.; .〉 will stand for the inner product, and for T ∈ B(X), T � will indicate the adjoint
operator of T . As usual, T ≥ 0 (T > 0) will mean that the operator T ∈ B(X) is
positive semidefinite (positive definite), respectively. In particular, we shall denote
by Cn the n-dimensional complex Euclidean spaces and by B(Cn ,Cm) the normed
bounded linear space of all m × n complex matrices with B(Cn) := B(Cn ,Cn) and
B(Cn)

+
:= {L ∈ B(Cn);L = L∗≥0}. In this case, the superscripts −, ′, and ∗ will

denote complex conjugate, transpose, and conjugate transpose, respectively. Either
the uniform induced norm in B(Cn) or the standard Euclidean norm in Cn is repre-
sented by ‖.‖. We also use R+ to denote the interval [0,∞). Unless otherwise stated,
we define S := {1, 2, . . . }. For Di ∈ B(Cn), i ∈ S, diag(Di) is an infinity square ma-
trix where the matrices Di are put together corner-to-corner diagonally with all other
entries being zero. We refer to I� as the � × � identity matrix and to Ln

2 (R+) as the
space of functions f : [0,∞)→Cn such that each component f i(.) is in the standard
L2 (R+) space of Lebesgue square integrable functions. Similarly, Ln

2 (Ω,F ,P) is the
space of square integrable stochastic process. E[.] denotes the mathematical expec-
tation, and we set for a second order random variable x(t), ‖x(t)‖2

2 := E[‖x(t)‖2],
and for x = {x(t); t ∈ R+} ∈ Ln

2 (Ω,F ,P), ‖x‖2
2 :=

∫∞
0

E[‖x(t)‖2]dt. We denote by
Re{λ} the real part of a complex number λ. We recall that (see Theorem 1.1.2 of
[48]) a linear operator L on a Banach space X is the infinitesimal generator of a uni-
formly continuous semigroup φL(t) if and only if L ∈ B(X). Furthermore, in this case
φL(t) = eLt(.), which is defined as

eLt(.) :=

∞∑
n=0

1

n!
Ln(.)tn ∈ B (X).(2.1)

We set

Re{λ(L)} := sup {Re{λ};λ ∈ σ(L)} .

We recall that the trace operator tr(.) : B(Cn)→C is a linear functional with the
following properties: (i) tr(KL) = tr(LK ); (ii) for any M ,P ∈ B(Cn)

+
with P > 0,

we have (
min

i=1,...,n
λi(P )

)
tr(M) ≤ tr(MP ) ≤

(
max

i=1,...,n
λi(P )

)
tr(M).(2.2)

We shall denote by �n1 , �n2 , �nsup, respectively, the sets made up of all infinite
sequences of complex vectors x = (x1, x2, . . . ), xi ∈ Cn, such that

∑∞
i=1 ‖xi‖ <

∞,
∑∞

i=1 ‖xi‖2 < ∞, and sup{‖xi‖, i = 1, 2, . . . } < ∞. We denote the usual
norms ‖.‖1, ‖.‖2, ‖.‖sup in �n1 , �n2 , and �nsup, respectively, by ‖x‖1 =

∑∞
i=1 ‖xi‖,

‖x‖2 = (
∑∞

i=1 ‖xi‖2)
1
2 , and ‖x‖sup = sup{‖xi‖, i = 1, 2, . . . }. We have that (�n1 , ‖.‖1),

(�n2 , ‖.‖2), (�nsup, ‖.‖sup) are Banach spaces and, in fact, (�n2 , ‖.‖2) is a Hilbert space
equipped with the usual inner product 〈x; y〉 :=

∑∞
i=1 x

∗
i yi (see [47]).

Set H
n,m
1 (respectively, H

n,m
2 , Hn,m

sup ), the linear space made up of all sequence of
complex matrices V = (V1, V2, . . . ) with Vi ∈ B(Cn,Cm) such that

∑∞
i=1 ‖Vi‖ < ∞

(
∑∞

i=1tr(V
∗
i Vi) < ∞, sup{‖Vi‖; i = 1, 2, . . . } < ∞). For simplicity, set Hn

ι := Hn,n
ι ,

ι = 1, 2, sup. For V = (V1, . . . ) ∈ Hn,m
ι , we consider the following norms ‖.‖ι in Hn,m

ι ,
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ι = 1, 2, sup:

‖V ‖1 :=

∞∑
i=1

‖Vi‖,(2.3)

‖V ‖2 :=

( ∞∑
i=1

tr(V ∗
i Vi)

)1/2

,(2.4)

‖V ‖sup := sup{‖Vi‖; i = 1, 2, . . . }.(2.5)

It is easy to verify that (Hn,m
ι , ‖.‖ι) and (�nmι , ‖.‖ι), ι = 1, 2, sup, are uniformly

homeomorphic. Therefore, (Hn,m
ι , ‖.‖ι) are Banach spaces and, in fact, (Hn,m , ‖.‖2)

is a Hilbert space, with the inner product given, for S = (S1, . . . ) and V = (V1, . . . )
in H

n,m
2 , by

〈V ;S〉 =
∑
i∈S

tr(V ∗
i Si).(2.6)

For V = (V1, . . . ) ∈ Hn,m
ι we shall write V ∗ = (V ∗

1 , . . . ) ∈ Hm,n
ι and say that V ∈ Hn

ι

is Hermitian if V = V ∗. We define Hn∗
ι := {V = (V1, . . . ) ∈ Hn

ι ;Vi = V ∗
i , i = 1, . . . }

and Hn+
ι := {V = (V1, . . . ) ∈ Hn∗

ι ;Vi ≥ 0, i = 1, . . . } and shall write, for V =
(V1, . . . ) ∈ Hn

ι and S = (S1, . . . ) ∈ Hn
ι , that V ≥ S if V − S = (V1 − S1, . . . ) ∈ Hn+

ι ,

and that V > S if Vi − Si > 0 for i ∈ S. Finally we say that V = (V1, . . . ) ∈ H̃n+
sup if

V ∈ Hn+
sup and for some α > 0, Vi ≥ αIn for each i ∈ S.

For the case in which S = {1, . . . , N} norms (2.3), (2.4), (2.5) are equivalent,
since the underline spaces are finite-dimensional. For notational simplicity we just
write in this case Hn instead of Hn

ι .
Define now the operators ϕ and ϕ̂ in the following way: for ι = 1, 2, sup, V =

(V1, . . . ) ∈ Hn,m
ι , with Vi = (vi1 . . . vin) ∈ B(Cn,Cm), vij ∈ Cm,

ϕ(Vi) :=

⎡⎢⎢⎢⎢⎣
vi1
.
.
.

vin

⎤⎥⎥⎥⎥⎦ ∈ Cmn and ϕ̂(V ) :=

⎡⎢⎢⎣
ϕ(V1)

.

.

.

⎤⎥⎥⎦ ∈ �mn
ι .

Furthermore, for v = (v1, . . . ) ∈ �nmι , vi ∈ Cmn , we define Vi ∈ B(Cn,Cm) such that
Vi := ϕ−1(vi), and V = (V1, . . . ) ∈ Hn,m

ι , as

V := ϕ̂−1

⎛⎜⎜⎝
⎡⎢⎢⎣

v1

.

.

.

⎤⎥⎥⎦
⎞⎟⎟⎠ :=

[
ϕ̂−1

1 (v), . . .
]

=
[
ϕ−1(v1), . . .

]
.

Remark 2.1. Notice that the mapping ϕ stacks up the column of the matrix from
left to right and makes a long vector out of the matrix. Furthermore, it can be shown,
through the mapping ϕ̂, that (Hn,m

2 , ‖.‖2) and (�mn
2 , ‖.‖2) are isometrically isomorphic

spaces (if V ∈ H
n,m
2 , then ‖V ‖2 = ‖ϕ̂(V )‖2).

With the Kronecker product L ⊗K ∈ B(Csn ,Crm) defined in the usual way for
any L ∈ B(Cs ,Cr ) and K ∈ B(Cn ,Cm), the following properties hold (see, e.g., [9]):

(i) (L⊗K)∗ = L∗ ⊗K∗ and (ii) ϕ(LKH) = (H ′ ⊗ L)ϕ(K).(2.7)
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Recall also that for L∈B(Cn) and K∈B(Cm) the Kronecker sum is defined as

L⊕K := L⊗Im + In⊗K ∈ B(Cnm).

The proof of the next result can be found in [13].
Lemma 2.1. For any H ∈ Hn

ι there exist Hi ∈ Hn+
ι , i = 1, 2, 3, 4, such that

H = (H1 −H2) +
√
−1(H3 −H4).(2.8)

The next result follows immediately from section 4.2 of [48].
Proposition 2.2. Let X be a Banach space. Let L ∈ B(X) be the infinitesimal

generator of the uniformly continuous semigroup φL(t) : X → X. The following
assertions are equivalent:

(i) Re{λ(L)} < 0.
(ii) There are constants k > 0, b > 0 such that

‖φL(t)‖≤ ke−bt for all t ≥ 0.

(iii)
∫∞
0

‖φL(t)x‖dt < ∞ for every x ∈ X.
If X is finite-dimensional, then (iii) can be replaced by

(iii′) ‖φL(t)x‖ → 0 as t → ∞ for every x ∈ X.
We recall from (2.1) that under the conditions of Proposition 2.2, φL(t) = eLt.

From the decomposition of square matrices into positive semidefinite matrices as in
Lemma 2.1 and Proposition 2.2 we have the following result.

Proposition 2.3. Let L ∈ B(Hn
1 ) be the infinitesimal generator of the uniformly

continuous semigroup eLt : Hn
1 → Hn

1 . The following assertions are equivalent.
(i) Re{λ(L)} < 0.
(ii) There are constants k > 0, b > 0 such that

‖eLt‖≤ ke−bt for all t ≥ 0.

(iii)
∫∞
0

‖eLt(V )‖dt < ∞ for every V ∈ Hn+
1 .

For the finite-dimensional case (iii) can be replaced by
(iii′) ‖eLt(V )‖ → 0 as t → ∞ for every V ∈ Hn+.
Proof. See the appendix for the proof.
The next proposition, adapted from [48], will be useful in deriving some stability

results.
Proposition 2.4. Let A ∈ B(�n

2

1 ) and {f(t); t ∈ R+} be a continuous function

in �n
2

1 such that limt→∞ f(t) = f0. Consider

ẏ(t) = Ay(t) + f(t).(2.9)

If Re{λ(A)} < 0, then for any initial condition y(0) = y0 ∈ �n
2

1 ,

lim
t→∞

y(t) = −A−1f0.

3. The models and problem statement. Let (Ω,F ,P) be a complete prob-
ability space equipped with a filtration {Ft, t ∈ R+} satisfying the usual hypothesis,
that is, a right continuous filtration augmented by all null sets in the P-completion of
F , and carrying the following statistically mutually independent objects:

(0.1) An m-dimensional Wiener process W = {(w(t),Ft), t ∈ R+} with an incre-
mental covariance operator Rdt.
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(0.2) A homogeneous Markov process θ = {(θt,Ft), t ∈ R+} with right continuous
trajectories and taking values on the set S. We assume also that

P (θt+h = j|θt = i) =

{
λijh + o(h), i �= j,

1 + λiih + o(h), i = j,
(3.1)

where [(λij)] is the stationary infinite-dimensional transition rate matrix of
{θ} with 0 ≤ λij , i �= j, and 0 ≤ λi := −λii =

∑
{j: j �=i} λij ≤ 
 for all i ∈ S,

i.e., the process is supposed to be conservative (see, e.g., [36]). The notation

o(h) denotes an infinitesimal of higher order than h, i.e., limh↓0
o(h)
h = 0.

We define pij(t):=P(θt+s = j|θs = i), i, j ∈ S, and denote pi(t):=P(θt = i)

for any i ∈ S. Notice that, in this setting, Pt:=(p1(t), . . . )
′

satisfies the
Kolmogorov forward differential equation dPt/dt = ΛPt; P0 = P, t ∈ R+,
where Λ:=[(λij)]

′ . In addition, we assume that {(θt,Ft), t ∈ R+} has initial
distribution {v(i); i ∈ S}.

(0.3) A random variable x0: Ω → Cn with E[‖x0‖2
] < ∞.

We assume that the filtration Ft contains the filtration generated by (0.1)–(0.3), i.e.,
the natural filtration of {(x0, w(s), θ(s))}.

We deal with three types of linear systems with Markovian jump parameters.
First, in order to bring to bear some basic results in its more general form and put
SS in a unified basis, we consider the homogeneous system

ẋ(t) = A(θt)x(t), x(0) = x0, θ0 = v, t ∈ R+.(3.2)

We next consider the class of dynamical systems modeled by the following stochastic
differential equation:

ẋ(t) = A(θt)x(t) + B(θt)w(t), x(0) = x0, θ0 = v, t ∈ R+,(3.3)

where the additive disturbance, w(.), is modeled by

(0.1b) {w(t); t ∈ R+} is any Lm
2 (Ω,F ,P)-function,

which is the usual scenario for the H∞ approach. In addition, in order to reflect
the types of additive disturbances encountered in the specialized literature in detail,
we shall consider also the class of dynamical systems modeled by the following Itô
stochastic differential equation:

dx(t) = A(θt)x(t)dt + B(θt)dw(t), x(0) = x0, θ0 = v, t ∈ R+,(3.4)

where we require, in addition to (0.1)–(0.3), that
(0.4) θ = {(θt,Ft), t ∈ R+} is an irreducible positive Harris recurrent Markov pro-

cess with initial distribution {v(i); i ∈ S}. We recall that, in this setting, it is
a standard result of the Markov chain theory (see [42]) that there exist limit-
ing probabilities {πi; i ∈ S} which do not depend on the initial distribution
with {

∑∞
i=1 πi = 1} and satisfy

lim
t→∞

sup
j∈S

{| pj(t) − πj |} = 0.(3.5)

Furthermore, A(.) and B(.) are such that A(θt) = Aj and B(θt) = Bj for θt = j, j ∈ S,
with Aj , Bj , j ∈ S, being constant matrices in B(Cn) and B(Cm ,Cn), respectively. It
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is assumed that A := (A1, . . . ) ∈ Hn
sup and B := (B1, . . . ) ∈ Hm,n

sup for the case (0.1b),
and B ∈ H

m,n
2 for the case (0.1). In addition, define for t ∈ R+

q(t) := E(x(t)) ∈ Cn,(3.6)

Q(τ, t) := E(x(t + τ)x(t)
∗
) ∈ B(Cn),(3.7)

Q(t) := Q(0, t) ∈ B(Cn)
+

(3.8)

and

qi(t) := E(x(t)1{θt=i}) ∈ Cn,(3.9)

Qi(t) := E(x(t)x(t)∗1{θt=i}) ∈ B(Cn)+,(3.10)

Qi(s, t) := E(x(t + s)x(t)∗1{θt+s=i}) ∈ B(Cn),(3.11)

where 1{.} stands for the Dirac measure. Set also

q̂(t) :=

[
q1(t)

...

]
,

Q̂(t) := (Q1(t), . . . ),

Q̂(s, t) := (Q1(s, t), . . . ).

Since

‖Q̂(t)‖1 =

∞∑
i=1

‖Qi(t)‖ ≤
∞∑
i=1

E[‖x(t)‖21{θt=i}] = E[‖x(t)‖2],(3.12)

it follows that Q̂(t) ∈ Hn+
1 . Similarly we have that q̂(t) ∈ �n1 and Q̂(s, t) ∈ Hn

1 .

Preserving the terminology, often used in the literature for MJLS, we define the
following.

Definition 3.1. A linear system with a Markovian jump parameter is stochas-
tically stable if for arbitrary initial conditions x0 and an arbitrary initial distribution
v we have ∫ ∞

0

‖x(t)‖2dt < ∞.

Definition 3.2. A linear system with a Markovian jump parameter is mean
square stable if there exist q ∈ Cn and Q ∈ B(Cn)+ such that for arbitrary initial
conditions x0 and arbitrary initial distribution v we have

(a) ‖q(t) − q‖ → 0 as t → ∞,
(b) ‖Q(t) −Q‖ → 0 as t → ∞.

Definition 3.3. A linear system with a Markovian jump parameter is asymp-
totically wide sense stationary if there exist q ∈ Cn and Q(τ) ∈ B(Cn)+ such that for
arbitrary initial conditions x0 and an arbitrary initial distribution v we have

(a) ‖q(t) − q‖ → 0 as t → ∞,
(b) ‖Q(τ, t) −Q(τ)‖ → 0 as t → ∞.

Remark 3.1. In the case of systems (3.3), (3.4), we assume also that q, Q, and
Q(τ) are independent of w(t).
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4. SS for the homogeneous case. In this section necessary and sufficient con-
ditions for SS of the homogeneous case are established. It is required that either the
sum of the real part of all the elements in the spectrum of an augmented infinite di-
mensional matrix is less than zero or that there exists a unique solution of a Lyapunov
equation. Moreover, it is shown that for real matrices A(i), the system is stochas-
tically stable for the complex state space if and only if the system is stochastically
stable for the real state space. For the case in which S is finite, more specific results
can be obtained and, in particular, it is proved that the Lyapunov equation can be
written down in two equivalent forms with each one providing an easier-to-check suffi-
cient condition. In this case it is well known that SS and MSS are equivalent concepts
(see, for instance, [24]).

We begin by providing part of the basic common notational machinery, definitions,
and some important basic results, necessary for the analysis of the situations described
in section 3 which resort here, in part, to the methods of operator theory.

4.1. Main operators and auxiliary results. We consider first the homoge-
neous equation (3.2), restated here for convenience:

dx(t) = A(θt)x(t)dt, x(t0) = x0, θt0 = v, t ∈ R+.(4.1)

In addition, let Tn denote the nth jump time of the Markov process {θt; t ≥ 0}
and define Υ := {ω ∈ Ω;Tn(ω) → ∞}. For each realization of the Markov process
{θt; t ≥ 0} in Υ we have that {A(θt); t ≥ 0} are matrix-valued functions on R+ of
the class PC (piecewise continuous, see [10, p. 411]) and, therefore, according to
[10, p. 11], there exists aunique continuous solution Φ(., t0) from R+ to B(Cn) of the
homogeneous linear matrix differential equation

∂Φ(t, t0)

∂t
= A(θt)Φ(t, t0), Φ(t0, t0) = I

for almost all t ∈ R+. Moreover, the solution of (4.1) is given by

x(t) = Φ(t, t0)x0.(4.2)

In what follows we shall be using the following notation:

F := Λ
′ ⊗ In + diag(Ai); V := Λ

′ ⊗ In2 ; G := diag(In ⊕Ai);
H := diag(Āi ⊕Ai); A := V + H; B := V + G.

(4.3)

We define also the following linear operators:

E(.) = (E1(.), . . . ); F(.) = (F1(.), . . . );
L(.) = (L1(.), . . . ); T (.) = (T1(.), . . . );

(4.4)

where for P = (P1, . . . ) ∈ Hn
1 , V = (V1, . . . ) ∈ Hn

sup, and i ∈ S,

Ei(P ) :=

∞∑
j=1

λjiPj ,

Fi(P ) := AiPi +

∞∑
j=1

λjiPj ,

Li(P ) := AiPi + PiA
∗
i +

∞∑
j=1

λjiPj ,

Ti(V ) := A∗
i Vi + ViAi +

∞∑
j=1

λjiVj .

(4.5)
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We now have the following auxiliary results.
Lemma 4.1. For E, L, T , and F defined as in (4.4) and (4.5), we have that
(a) E ∈ B(Hn

1 ), L ∈ B(Hn
1 ), and F ∈ B(Hn

1 );
(b) T ∈ B(Hn

sup);

(c) for any Q = (Q1, . . . ) ∈ Hn
1 , L(Q)

∗
= L(Q∗);

(d) Q ∈ Hn+
1 implies eLt(Q) ∈ Hn+

1 for any t ∈ R+.
Items (c) and (d) also hold replacing Hn

1 by Hn
sup and L by T .

Proof. See the appendix for the proof.
Lemma 4.2. Let f(t) be Ft-measurable and assume that E(f(t)1{θt=i}):=fi(t)

exists. Then

E(f(t)d(1{θt=i})) =

∞∑
j=1

λjifj(t)dt + o(dt).

Proof. See the appendix for the proof.
Proposition 4.3. There exist constants c1 > 0 and c2 > 0 such that for any

H = (H1, . . . ) ∈ Hn
1 , c1‖ϕ̂(H)‖1 ≤ ‖H‖1 ≤ c2‖ϕ̂(H)‖1.

Proof. See the appendix for the proof.
The next proposition provides differential equations to compute the first and

second moments of the state variable of (3.2).
Proposition 4.4. For t ∈ R+, we have for (3.2) that
(a) ˙̂q(t) = F q̂(t),

(b)
˙̂
Q(t) = L(Q̂(t)).

Proof. The proof relies essentially on (3.2), Lemma 4.2, and (3.9)–(3.10). See [28]
for details.

The following result is germane to our approach.
Proposition 4.5. For F , A, B defined as in (4.3) we have that F ∈ B(�n1 ),

A ∈ B(�n
2

1 ), B ∈ B(�n
2

1 ), and A∗ ∈ B(�n
2

sup). Moreover, for any Q ∈ Hn
1 , Q ∈ Hn

1 , and
V ∈ Hn

sup we have
(a) ϕ̂(L(Q)) = Aϕ̂(Q);
(b) ϕ̂(T (V )) = A∗ϕ̂(V );
(c) ϕ̂(F(Q)) = Bϕ̂(Q).
Proof. See the appendix for the proof.
We need also the following auxiliary results.
Lemma 4.6. Let A ∈ B(�n

2

1 ), as defined in (4.3), and consider the homogeneous
system ẏ(t) = Ay(t), t ∈ R+, with the initial condition y(0) = ϕ̂(Q), Q ∈ Hn+

1 . Then
(a) y(t) = ϕ̂(eLt(Q)),
(b) ϕ̂−1(y(t)) ∈ Hn+

1 and consequently ϕ̂j
−1(y(t)) ∈ B(Cn)+, j ∈ S.

The result also holds replacing �n
2

1 , Hn+
1 , A, and L by �n

2

sup, Hn+
sup, A∗, and T , respec-

tively.
Proof. See the appendix for the proof.
Lemma 4.7. For any second order random variable z taking values in Cn and

t, τ ∈ R+, t ≥ τ ,

‖Φ(t, τ)z‖2
2 ≤ n‖eL(t−τ)‖‖z‖2

2.(4.6)

Proof. See the appendix for the proof.
Proposition 4.8. If Re{λ(A)} < 0, then Re{λ(F )} < 0.
Proof. See the appendix for the proof.



1176 MARCELO D. FRAGOSO AND OSWALDO L. V. COSTA

Remark 4.1. It is not difficult to see that Re{λ(F )} < 0 does not imply
Re{λ(A)} < 0. Indeed, consider, for instance, n = 1, S = {1, 2}, λ11 = λ22 =
−1, A1 = 1

2 , and A2 = −5. It is then a straightforward exercise to show that

λ1(F ) =
−6.5 −

√
34.25

2
< 0, λ2(F ) =

−6.5 +
√

34.25

2
< 0

and that

λ1(A) =
−11 +

√
125

2
> 0, λ2(A) =

−11 −
√

125

2
< 0.

4.2. SS results. Our main SS results will follow from the next propositions.
The next result shows a SS result in the spirit of the classical linear case. It shows
that SS is equivalent to the spectrum of an augmented matrix, A, lying in the open
left half plane.

Proposition 4.9. The following affirmatives are equivalent:
(i) System (3.2) is stochastically stable according to Definition 3.1.
(ii) Re{λ(L)} < 0.
(iii) Re{λ(A)} < 0.

Proof. From Proposition 4.4(b) we have that
˙̂
Q(t) = L(Q̂(t)). Therefore, from

(3.12), ∫ ∞

0

‖eLt(Q̂(0))‖1dt =

∫ ∞

0

‖Q̂(t)‖1dt ≤
∫ ∞

0

E(‖x(t)‖2)dt(4.7)

for any initial condition x0 and initial distribution v. Suppose (i) holds, so that∫∞
0

E(‖x(t)‖2)dt < ∞ for any initial condition x0 and initial distribution v. Consider

any H = (H1, . . . ) ∈ Hn+
1 . By taking an initial condition x0 and v such that Qi(0) =

Hi, it follows from (4.7) that for any H = (H1, . . . ) ∈ Hn+
1 ,

∫∞
0

‖eLt(H)‖1dt < ∞,
which implies, from Proposition 2.3, that (ii) holds. From Propositions 2.2 and 4.4(b)
it is immediate that if (ii) holds, then (i) holds. The equivalence between (ii) and
(iii) follows from Propositions 4.3, 4.5, and 2.2, Lemma 4.6, and the fact that for any

y ∈ �n
2

1 ,∫ ∞

0

‖eAty‖1dt =

∫ ∞

0

‖ϕ̂(eLt(ϕ̂−1(y)))‖1dt ≤
1

c1

∫ ∞

0

‖eLt(ϕ̂−1(y)‖1dt,

and similarly, for any H ∈ Hn
1 ,

∫∞
0

‖eLt(H)‖1dt ≤ c2
∫∞
0

‖eAt(ϕ̂(H))‖1dt.
Proposition 4.10. If system (3.2) is stochastically stable according to Definition

3.1, then for every S = (S1, . . . ) ∈ H̃n+
sup, there exists a unique G = (G1, . . . ) ∈ H̃n+

sup

such that

T (G) + S = 0.(4.8)

Proof. See Theorem 8 in [27].

Proposition 4.11. If there exists G = (G1, . . . ) ∈ H̃n+
sup such that (4.8) is

satisfied for some S = (S1, . . . ) ∈ H̃n+
sup, then system (3.2) is stochastically stable

according to Definition 3.1.
Proof. See Theorem 7 in [27].
Proposition 4.12. If Re{λ(A)} < 0, then system (3.2) is mean square stable

according to Definition 3.2 with q = 0 and Q = 0.
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Proof. First notice that since Re{λ(A)} < 0, we have from Proposition 4.8 that
Re{λ(F )} < 0. Thus, from Propositions 4.4(a) and 2.2 it follows that q̂(t)→0 as
t → ∞, and since q(t) =

∑∞
i=1 qi(t) we have that q(t)→0 as t → ∞. Now, from

Propositions 4.4(b) and 4.5(b) we have ϕ̂(
˙̂
Q(t)) = Aϕ̂(Q̂(t)). If we now define y(t) :=

ϕ̂(Q̂(t)), we get ẏ(t) = Ay(t). Now by Proposition 2.2, it follows that ϕ̂(Q̂(t))→0 as
t → ∞. By noting that Q(t) =

∑∞
i=1Qi(t) it follows that Q(t)→0 as t → ∞.

In order to show that our setup encompasses the real case, we consider now the
situation in which the initial condition x0 in (4.1) is real, as in Definition 2.1 of [24]
stated below.

Definition 4.13 (see [24]). System (3.2) is stochastically stable for the real state
space case if for any x0 ∈ Rn and any probability distribution v for θ0,∫ ∞

0

E(‖x(t)‖2)dt < ∞.(4.9)

Notice that in Definition 4.13, we consider only real initial conditions for x0. We
next show that in fact Definitions 3.1 and 4.13 are equivalent.

Proposition 4.14. System (3.2) is stochastically stable for the real state space
case as in Definition 4.13 if and only if it is stochastically stable according to Definition
3.1.

Proof. Clearly if system (3.2) is stochastically stable according to Definition 3.1, it
is stochastically stable for the real state space case as in Definition 4.13. Suppose now
that system (3.2) is stochastically stable for the real state space case as in Definition
4.13. For any H ∈ Hn+, define I(H) ∈ Hn+

1 as follows:

I(H) := (‖H1‖In, ‖H2‖In, . . . ).

Clearly H ≤ I(H). We consider real initial conditions x0 and v such that Qi(0) =
‖Hi‖In so that Q̂(0) = I(H) (for instance, x0 and θ0 are independent of E(x0x

∗
0) =

‖H‖1In and v(i) = ‖Hi‖
‖H‖1

). Let xH(t) denote the trajectory for this initial condition.

From Lemma 4.1, we have that for all t ∈ R+,

0 ≤ eLt(H) ≤ eLt(I(H)).(4.10)

From (3.12) and (4.10),∫ ∞

0

‖eLt(H)‖1dt ≤
∫ ∞

0

‖eLt(I(H))‖1dt ≤
∫ ∞

0

E(‖xH(t)‖2)dt < ∞

for all H ∈ Hn+
1 , and thus from Propositions 2.3 and 4.9, system (3.2) is stochastically

stable according to Definition 3.1.

4.3. The case in which S is finite. We consider in this subsection the case in
which S = {1, . . . , N} so that more specific results can be obtained. The first result
reads as follows.

Lemma 4.15. T �=L, i.e., T is the adjoint operator of L in the Hilbert space
(Hn, ‖.‖2).

Proof. This can be proved easily.
Remark 4.2. From Proposition 4.5 and Lemma 4.15 it is easy to verify that the

following assertions are equivalent:
(i) Re{λ(A)} < 0.
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(ii) Re{λ(L)} < 0.
(iii) Re{λ(A∗)} < 0.
(iv) Re{λ(T )} < 0.
The next result shows that MSS implies that Re{λ(A)} < 0.
Proposition 4.16. If system (3.2) is mean square stable according to Definition

3.2(b) with Q = 0, then Re{λ(A)} < 0.

Proof. We have that Q(t) =
∑N

i=1 Qi(t) and from Proposition 4.4(b) and Propo-

sition 4.5(a) ϕ̂(
˙̂
Q(t)) = Aϕ̂(Q̂(t)). Therefore, ϕ̂(Q̂(t)) = eAtϕ̂(Q̂(0)) and

Q(t) =

N∑
i=1

ϕ̂−1
i (eAtϕ̂(Q̂(0))).

Now, by hypothesis, Q(t)→0 as t → ∞ for any Q(0) = E(x0x
∗
0) and the initial distri-

bution v(ı) = 1. Furthermore, from Lemma 4.6(b) we have that ϕ̂−1
j (eAtϕ̂(Q̂(0))) ≥ 0

for all j = 1, . . . , N , which shows that eAtϕ̂(Q̂(0))→ 0 as t → ∞. Moreover, bearing in
mind that for any Hi ∈ Hn+, i = 1, . . . , N , we can show by straightforward arguments
that there are second order random variables xi such that E(xix

∗
i ) = Hi, we have

that eAtϕ̂(H1, . . . , HN )→ 0 as t → ∞ and from Proposition 2.3 (for finite-dimensional
spaces), Re{λ(A)} < 0.

The next result captures an MSS result in the spirit of the classical linear case.
It shows that MSS stability is equivalent to the spectrum of an augmented matrix,
A, lying in the open left half plane.

Theorem 4.17. System (3.2) is mean square stable according to Definition 3.2
if and only if Re{λ(A)} < 0.

Proof. The proof follows from Propositions 4.12 and 4.16.
The next examples, borrowed from [41], illustrate how sometimes the switching

between operation modes can play tricks with our intuition. They show that system
(3.2) carries a great deal of subtlety which distinguishes it from the linear case and
provides us with a very rich structure. The need to combine the transition probability
of the Markov chain with the eigenvalues of the matrices Ai in order to get an adequate
criterion for MSS is portrayed by matrix A.

Example 4.1 (each mode is unstable but overall system is stable). Consider the
model

A1 =

[
1
2 −1
0 −2

]
, A2 =

[
−2 −1
0 1

2

]
, Λ =

[
−β β
β −β

]
.

Therefore, each mode is unstable. We have that depending on the value of β the
overall system will be mean square stable. For 0 < β ≤ 1.33 we have that for some i,
Re{λi(A)} > 0, and thus the system is not mean square stable. But for β > 1.34, we
get that Re{λ(A)} < 0, and the system is mean square stable. This shows that as the
number of jumps per unit time increases, the effect of switching between the unstable
modes makes the overall system mean square stable.

Example 4.2 (each mode is stable but overall system is unstable). Consider
now the model

A1 =

[
−1 10
0 −1

]
, A2 =

[
−1 0
10 −1

]
, Λ =

[
−β β
β −β

]
.

Therefore, each mode is stable. We have that depending on the value of β the overall
system will be mean square unstable in the mean square sense. For 0 < β ≤ 0.04 we
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have that Re{λ(A)} < 0, and the system is mean square stable. But for β > 0.05, we
get that for some i, Re{λi(A)} > 0, and thus the system is not mean square stable.
This shows that as the number of jumps per unit time increases, the effect of switching
between the stable modes makes the overall system mean square unstable.

More specific results can also be obtained from Proposition 4.10, as follows.
Proposition 4.18. If Re{λ(A)} < 0, then for every S = (S1, . . . , SN ) ∈ Hn,

there exists a unique G = (G1, . . . , GN ) ∈ Hn such that

L(G) + S = 0.(4.11)

Moreover,
(a) Gi = −ϕ̂−1

i (A−1ϕ̂(S));
(b) ϕ̂(G) =

∫∞
0

eAtϕ̂(S)dt;
(c) S ∈ H∗ if and only if G ∈ H∗;
(d) S ∈ H+ implies G ∈ H+;

(e) S ∈ H̃+ implies G ∈ H̃+.
These results also hold replacing L by T .

Proof. (a) From Proposition 4.5(a), we have that ϕ̂(L(G1, . . . , GN )) = Aϕ̂(G1, . . . ,
GN ), and, therefore, (4.11) is equivalent to

Aϕ̂(G1, . . . , GN ) = −ϕ̂(S1, . . . , SN ).(4.12)

The expression for Gi follows immediately from the assumption on A and the def-
inition of ϕ̂. Assume now that there exists Ḡ = (Ḡ1, . . . , ḠN ) ∈ Hn such that
Li(Ḡ)+Si = 0. Then, bearing in mind (4.12), we have Aϕ̂(Ḡ−G) = 0, or ϕ̂(Ḡ−G) =
0, which implies that Ḡ−G = 0 and the uniqueness follows.

(b) Item (b) follows from (4.12) bearing in mind that Re{λ(A)} < 0, Proposition
2.2, and that AφA(t) = d/dt(φA(t)).

(c) From (4.8) and Lemma 4.1(c) we have that L(G∗) + S∗ = 0, and the result
follows from the fact that L(G∗ −G) + (S∗ − S) = 0.

(d,e) Items (d) and (e) are a consequence of eAtϕ̂(Q) = ϕ̂(eLt(Q)), bearing in
mind Lemma 4.1.

We next present equivalent forms of the Lyapunov equation and the Lyapunov
inequality. The next result shows that the dual representation (L instead of T ) of
(4.8) also implies MSS.

Theorem 4.19. The following assertions are equivalent to MSS of system (3.2):
(a) Re{λ(A)} < 0.
(b) For some Gj > 0 ∈ B(Cn), j ∈ S, we have Li(G) < 0, i ∈ S.
(c) For any Si > 0 ∈ B(Cn), i ∈ S, there is a unique G = (G1, . . . , GN ), Gi > 0 ∈

B(Cn), i ∈ S, such that Li(G) + Si = 0, i ∈ S. Moreover,

Gi = ϕ̂−1
i (−A−1ϕ̂(S1, . . . , SN )), i ∈ S.

Proof. Clearly (c) implies (b). Suppose that (b) holds. We consider the homoge-
neous system

ẏ(t) = A∗y(t), t ∈ R+, y(0) ∈ ϕ̂(Hn+),(4.13)

where

ϕ̂(Hn+) = {y ∈ CNn2

; y = ϕ̂(Q), Q ∈ Hn+}.
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From Proposition 4.5, we have that

ϕ̂−1
j (ẏ(t)) = Tj(ϕ̂−1

1 (y(t)), . . . , ϕ̂−1
N (y(t))) , j ∈ S(4.14)

with ϕ̂−1
j (y(0)) ∈ B(Cn)+. It follows from Lemma 4.6 that ϕ̂−1

j (y(t)) ∈ B(Cn)+ for

all j ∈ S and all t ∈ R+, and thus y(t) ∈ ϕ̂(Hn+), t ∈ R+. Define now the function
φ : ϕ̂(Hn+) → R as

φj(y) := tr(ϕ̂−1
j (y)Gj) = tr(G

1/2
j ϕ̂−1

j (y)G
1/2
j ) ≥ 0, j ∈ S,

φ(y) :=
N∑
j=1

φj(y) ≥ 0.

In order to prove that φ is a Lyapunov function for the system (4.13) we do need to
show that

(i) φ(y) → ∞ whenever ‖y‖ → ∞ and y ∈ ϕ̂(Hn+);
(ii) φ(0) = 0;
(iii) φ(y) > 0 for all y �= 0 ∈ ϕ̂(Hn+);
(iv) φ is continuous; and
(v) φ̇(y(t)) < 0 whenever y(t) �= 0 ∈ ϕ̂(Hn+).

Now, for y ∈ ϕ̂(Hn+) let λij(y) ≥ 0 denote the ith eigenvalue of ϕ̂−1
j (y) and λi(Gj) > 0

the ith eigenvalue of Gj . Define

co := min1≤i≤n 1≤j≤N λi(Gj) > 0

(since Gj > 0) and

c1 := max1≤i≤n 1≤j≤N λi(Gj) > 0.

From (2.2(ii)) we have that

c0

⎛⎝ N∑
j=1

n∑
i=1

λji(y)

⎞⎠ ≤ φ(y) ≤ c1

⎛⎝ N∑
j=1

n∑
i=1

λji(y)

⎞⎠ .(4.15)

Note that

‖y‖2
= tr(yy∗) =

N∑
j=1

tr((ϕ̂−1
j (y))2) =

N∑
j=1

n∑
i=1

(λji(y))
2,

and bearing in mind the positiveness of λji(y) we get that ‖y‖ → ∞ if and only if

N∑
j=1

n∑
i=1

(λji(y)) → ∞,

and y = 0 if and only if λji = 0, i = 1, . . . , n, j ∈ S. Thus, from these results and
(4.15) we get (i)–(iii). Since continuity of φ is easily verified, it only remains to show
(v). Now, from the definition of φ, (4.14), and Lemmas 4.1 and 4.15, we have

φ̇(y(t)) =

N∑
j=1

φ̇j(y(t)) =

N∑
j=1

tr
(
ϕ̂−1
j (ẏ(t))Gj

)
=

N∑
j=1

tr
(
Tj(ϕ̂−1

1 (y(t)), . . . , ϕ̂−1
N (y(t)))Gj

)
= 〈T (ϕ̂−1

1 (y(t)), . . . , ϕ̂−1
N (y(t)))∗;G〉 = 〈T

(
(ϕ̂−1(y(t)))∗

)
;G〉

= 〈ϕ̂−1(y(t))∗;L(G)〉 < 0
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whenever y(t) �= 0 ∈ ϕ̂(Hn+). Therefore, we have shown that (4.13) is asymptotically
stable (cf. [33]) and thus ‖exp (A∗t)y‖ → 0 as t → ∞ for all y ∈ ϕ̂(Hn+) which yields
from Proposition 2.3 that Re(λ(A∗)) = Re(λ(A)) < 0.

Finally, from Proposition 4.18 we have that (a) implies (c) and from Theorem
4.17 that (a) is equivalent to MSS.

Remark 4.3. The above theorem also holds if we replace L by T .

Remark 4.4. Note that for the case in which the coefficients are all real, the

Lyapunov operator L works on a Hilbert space of dimension Nn(n+1)
2 rather than

Nn2, the dimension of the matrix A. This information can then be used to write the

Lyapunov operator L as a square matrix of dimension Nn(n+1)
2 . Once this is done, it

would be more advantageous to check if Re{λ(L)} < 0 by looking at the eigenvalues
of this reduced order matrix.

We show now that from Theorem 4.19 we can derive some easier-to-check condi-
tions for MSS of (3.2).

Corollary 4.20. Conditions (i) and (ii) below are equivalent:

(i) ∃ αj > 0, j ∈ S, such that αiλmax(Ai + A∗
i ) +

∑N
i=1 λijαj < 0;

(ii) ∃ αj > 0, j ∈ S, such that αiλmax(Ai + A∗
i ) +

∑N
i=1 λjiαj < 0;

where λmax(T ) := max{λ : λ is an eigenvalue of the operator T }. Moreover, if one
of the above conditions is satisfied, then system (3.2) is mean square stable.

Proof. Consider the homogeneous scalar system

˙̃x(t) = ã(θt)x̃(t), t ∈ R+,(4.16)

where ãi := 1
2λmax(Ai + A∗

i ), i ∈ S. Then by applying Theorem 4.19 (bearing in mind
Remark 4.3) to system (4.16) we obtain that conditions (i) and (ii) are equivalent.
Suppose now that condition (i) is satisfied and set Gj = αjIn > 0, j ∈ S. Since

A∗
iGi + GiAi +

N∑
i=1

λijGj = αi(Ai + A∗
i ) +

N∑
i=1

λijαjIn

≤
(
αiλmax(Ai + A∗

i ) +

N∑
i=1

λijαj

)
In < 0,

we get from Theorem 4.19(a) that system (3.2) is mean square stable.

Corollary 4.21. If for some real number δi > 0, i ∈ S, one of the following
conditions is satisfied:

(1) λmax[Ai + A∗
i + 1

δi
(
∑

{j: j �=i} λijδj)In] < −λii,

(2) λmax[Ai + A∗
i + 1

δi
(
∑

{j: j �=i} λjiδj)In] < −λii,

then system (3.2) is mean square stable. Moreover, these conditions are weaker than
those in Corollary 4.20.

Proof. Suppose that condition (1) is satisfied and set Gi = δiIn > 0, j ∈ S. Then,
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following the arguments of the previous corollary we have

A∗
iGi + GiAi +

N∑
i=1

λijGj = δi(Ai + A∗
i ) +

N∑
i=1

λijδjIn

= δi

⎡⎣Ai + A∗
i +

1

δi

∑
{j: j �=i}

λijδjIn + λiiIn

⎤⎦
≤ δi

⎡⎣λmax

⎛⎝Ai + A∗
i +

1

δi

∑
{j: j �=i}

λijδjIn

⎞⎠ In + λiiIn

⎤⎦ < 0

and, therefore, system (3.2) is mean square stable. The proof for condition (2) is
similar. Now note that if the conditions of Corollary 4.20 are satisfied and defining
|λ|max(T ) := max{|λ|:λ is an eigenvalue of the operator T }, then from condition (i)
we get

λmax

⎡⎣Ai + A∗
i +

1

δi

( ∑
{j: j �=i}

λijδj

)
In

⎤⎦ ≤ |λ|max

⎡⎣Ai + A∗
i +

1

δi

( ∑
{j: j �=i}

λijδj

)
In

⎤⎦
=

∥∥∥∥∥∥Ai + A∗
i +

1

δi

( ∑
{j: j �=i}

λijδj

)
In

∥∥∥∥∥∥
≤ ‖Ai + A∗

i ‖ +
1

δi

∑
{j: j �=i}

λijδj

= λmax(Ai + A∗
i ) +

1

δ i

∑
{j: j �=i}

λijδj < −λii,

which implies that condition (1) above is satisfied. Similarly we can show that condi-
tion (ii) of Corollary 4.20 implies condition (2) above.

5. The Lm
2 (Ω,F , P) and jump diffusion case. We consider in this section

two scenarios regarding the additive disturbance: the one as in (3.3), characterized
by functions in Lm

2 (Ω,F ,P), and that in (3.4), a jump diffusion, where the noise is
characterized via a Wiener process. For both cases, under suitable conditions, it is
shown that SS implies (is equivalent for S finite) to AWSS. In addition, it is shown
that the state x(t) ∈ Ln

2 (Ω,F ,P) for Lm
2 (Ω,F ,P)-disturbances.

5.1. The Lm
2 (Ω,F , P) disturbance case. We consider in this subsection the

class of dynamical systems modeled by the stochastic equation

ẋ(t) = A(θt)x(t) + B(θt)w(t), x(0) = x, θ0 = v, t ∈ R+,(5.1)

where the additive disturbance {w(t); t ∈ R+} is any Lm
2 (Ω,F ,P)-function. The

equation above is restated here just for the sake of convenience. We need the following
result.

Lemma 5.1. Let {w(t); t ∈ R+} ∈ Lm
2 (Ω,F ,P) and define, for λ > 0,

χ(t) =

∫ t

0

e−λ(t−τ)‖w(τ)‖2dτ.(5.2)
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Then χ(t) → 0 as t → ∞.
Proof. See the appendix for the proof.
We shall prove the following result.
Theorem 5.2. The following assertions are equivalent:
1. Re{λ(A)} < 0.
2. {x(t); t ∈ R+} ∈ Ln

2 (Ω,F ,P) for every {w(t); t ∈ R+} ∈ Lm
2 (Ω,F ,P) and

initial conditions x0 and v.
Moreover, if (1) or (2) is satisfied, then the following condition is satisfied.

3. limt→∞E(x(t + s)∗x(t)) = 0 for every s ≥ 0, {w(t); t ∈ R+} ∈ Lm
2 (Ω,F ,P)

and initial conditions x0 and v.
Proof. (1 ⇒ 2): First notice that over the set Υ, we have from (5.1) and Theorem

2.1.70 of [10, p. 17] that

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)B(θτ )w(τ)dτ.(5.3)

By the triangular inequality and recalling that P(Υ) = 1, it follows from (5.3) that

‖x(t)‖2 = ‖Φ(t, 0)x(0)‖2 +

∫ t

0

‖Φ(t, τ)B(θτ )w(τ)‖2dτ.(5.4)

From (4.6),

‖Φ(t, 0)x(0)‖2
2 ≤ n‖eLt‖‖x(0)‖2

2.(5.5)

From (4.6) again, with z = B(θτ )w(τ), we have

‖Φ(t, τ)B(θτ )w(τ)‖2
2 ≤ n‖eL(t−τ)‖‖B(θτ )w(τ)‖2

2

≤ n‖B‖2
sup‖eL(t−τ)‖‖w(τ)‖2

2.(5.6)

From Proposition 4.9 and the hypothesis that Re{λ(A)} < 0, it follows that
Re{λ(L)} < 0, and thus there exist constants λ > 0 and μ > 0 such that

‖eLt‖ ≤ μe−2λt.(5.7)

From (5.4), (5.5), (5.6), and (5.7) we have, for some a > 0,

‖x(t)‖2 ≤ a

(
e−λt‖x(0)‖2 +

∫ t

0

e−λ(t−τ)‖w(τ)‖2dτ

)
.(5.8)

Consider χ(t) as in (5.2). If we define

f(t) =

{
e−λt, t ≥ 0,

0, t < 0,

g(t) =

{
‖w(t)‖2, t ≥ 0,

0, t < 0,

we have that χ can be written as the convolution (denoted here by ∗) of f and g,
that is, χ(t) = (f ∗ g)(t). Since f ∈ L1(R

+) and g ∈ L2(R
+), it follows that the

convolution f ∗ g ∈ L2(R
+) and, moreover, for some b > 0,∫ ∞

0

χ(t)2dt ≤ b2
∫ ∞

0

f(t)dt

∫ ∞

0

g(t)2dt =
b2

λ
‖w‖2

2(5.9)
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(cf. [45]). Taking (5.8) into square, we get

‖x(t)‖2
2 ≤ 2a2(e−2λt

∥∥x(0)‖2
2 + χ(t)2

)
(5.10)

and from (5.9) and (5.10) it follows that for some c > 0,

‖x‖2
2 =

∫ ∞

0

‖x(t)‖2
2dt ≤ c(‖x(0)‖2

2 + ‖w‖2
2)

showing the desired result.
(2 ⇒ 1): Take w(t) = 0 for all t ∈ R+. It follows from the hypothesis that for

any initial condition x0 and initial distribution v, ‖x‖2
2 < ∞, that is,

‖x‖2
2 =

∫ ∞

0

‖x(t)‖2
2dt < ∞.

Thus system (3.2) is stochastically stable as in Definition 3.1, and the result follows
from Proposition 4.9.

(1 ⇒ 3): From Lemma 5.1 and (5.10) it follows that E(‖x(t)‖2) → 0 as t → ∞.
The result follows since

| E(x(t + s)∗x(t)) |≤ E(‖x(t + s)‖‖x(t)‖) ≤ (E(‖x(t + s)‖2)E(‖x(t)‖2))1/2 → 0

as t → ∞.

5.2. The jump diffusion case. In this subsection we deal with MSS issues for
the class of systems described in section 3 by (3.4), i.e.,

dx(t) = A(θt)x(t)dt + B(θt)dw(t), x(0) = x0, θ0 with distribution v, t ∈ R+,

under assumptions (0.1)–(0.4). We recall that in this case we assume that B ∈ H
m,n
2 .

Let R̂(t) := (R1(t), . . . ) ∈ Hn+
1 with Ri(t) := BiRB∗

i pi(t) ∈ B(Cn), where pi(t) =
P(θt = i). The next proposition provides differential equations to compute the first
and second moments of the state variable and can be easily proved using a suitable
version of Itô’s rule in conjunction with Lemma 4.2.

Proposition 5.3. For t ∈ R+ we have
(a) ˙̂q(t) = F q̂(t),

(b)
˙̂
Q(t) = L(Q̂(t)) + R̂(t),

(c)
˙̂Q(s, t) = F(Q̂(s, t)).

Proposition 5.4. If Re{λ(A)} < 0, then system (3.4) is mean square sta-
ble according to Definition 3.2 and asymptotically wide sense stationary according to
Definition 3.3, with q = 0 and

Q =

∞∑
i=1

ϕ̂−1
i (−A−1ϕ̂(R)),(5.11)

Q(s) =

∞∑
i=1

ϕ̂−1
i (eBsA−1ϕ̂(R)),(5.12)

where R = (R1, . . . ) ∈ Hn+
1 , Ri := R̄iπi, and R̄i := BiRB∗

i ; i ∈ S.
Proof. First notice that since Re{λ(A)} < 0, we have from Proposition 4.8 that

Re{λ(F )} < 0. Thus, from Propositions 4.4(a) and 2.3 it follows that q̂(t)→0 as
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t → ∞, and since q(t) =
∑∞

i=1 qi(t) we have that q(t)→0 as t → ∞. Now, from Propo-
sitions 5.3(b) and 4.5(a) we have

ϕ̂(
˙̂
Q(t)) = Aϕ̂(Q̂(t)) + ϕ̂(R̂(t)).

If we now define y(t):=ϕ̂(Q̂(t)) and f(t):=ϕ̂(R̂(t)), we get

ẏ(t) = Ay(t) + f(t).

From the forward differential equation to the Markov chain (section 3), bearing in
mind the definition of R̂(t), it follows that f(t) is continuous. Furthermore, recalling
that θ has limiting probabilities {πi; i ∈ S} satisfying expression (3.5), we get

‖R̂(t) −R‖1 =

∞∑
i=1

‖Ri(t) −Ri‖ ≤ ‖R‖‖B‖2
2 sup

j∈S
{| pj(t) − πj |}

and thus limt→∞R̂(t) = R in Hn
1 . Now by Proposition 2.4, it follows that ϕ̂(Q̂(t))

→−A−1ϕ̂(R) as t → ∞. By noting that Q(t) =
∑∞

i=1Qi(t) it follows that Q(t) → Q
as t → ∞, with Q as in (5.11). From Propositions 4.5(c) and 5.3(c) we have that
˙̂ϕ(Q̂(s, t)) =Bϕ̂(Q̂(s, t)) and, therefore, ϕ̂(Q̂(s, t)) = eBs(Q̂(0, t)). Moreover, as seen
above, we have ϕ̂(Q̂(t)) → A−1ϕ̂(R) as t → ∞. It follows that ϕ̂(Q̂(s, t))→
eBsA−1ϕ̂(R) as t → ∞ and since Q(s, t) =

∑∞
i=1 Qi(s, t), we have Q(t, s)→

∑∞
i=1 ϕ̂−1

i

(eBsA−1ϕ̂(R)) = Q(s).
Remark 5.1. It is a consequence of Proposition 5.4 that the Lm

2 -result of
Theorem 5.2 does not apply for the Wiener disturbance setting.

For the case in which S = {1, . . . , N} we have the following result.
Proposition 5.5. The following affirmatives are equivalent:
(a) Re{λ(A)} < 0.
(b) System (3.4) is mean square stable according to Definition 3.2(b).
(c) System (3.4) is asymptotically wide sense stationary according to Definition

3.3.
Proof. From Proposition 5.4 we have that (a) implies (b) and (c). In addi-

tion, it is obvious that AWSS implies MSS. It remains to prove that (b) implies (a).

First, we have Q(t) =
∑N

i=1 Qi(t) and from Propositions 4.4(b) and 4.5(a) ϕ̂(
˙̂
Q(t)) =

Aϕ̂(Q̂(t)) + ϕ̂(R̂(t)). Therefore, ϕ̂(Q̂(t)) = eAtϕ̂(Q̂(0)) +
∫ t

0
eA(t−s)ϕ̂(R̂(s))ds and

Q(t) =

N∑
i=1

ϕ̂−1
i (eAtϕ̂(Q̂(0))) +

N∑
i=1

ϕ̂−1
i

(∫ t

0

eA(t−s)ϕ̂(R̂(s))ds

)
.(5.13)

Now, by hypothesis, there exists Q ∈ Hn+ (which depends only on R) such that
Q(t) → Q as t → ∞ for any Q(0) = E(x0x

∗
0) and Q does not depend on x0. Further-

more, notice that for x0 = 0 we have that the second term on the right-hand side of
(5.13) converges to Q as t → ∞ and thus the first term goes to zero, for any x0 and
v. The remaining of the proof follows the proof of Proposition 4.16.

Finally, we conclude with the following unifying result.
Theorem 5.6. Consider the following assertions:
(a) Re{λ(A)} < 0.

(b) There exists G ∈ H̃n+
sup such that (4.8) is satisfied for some S ∈ H̃n+

sup.
(c) System (3.2) is stochastically stable according to Definition 3.1.
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(d) System (3.2) is stochastically stable for the real state space case according to
Definition 4.13.

(e) System (3.3) is stochastically stable according to Definition 3.1.
(f) System (3.2) is mean square stable according to Definition 3.2.
(g) System (3.2) is mean square stable according to Definition 3.2(b).
(h) System (3.4) is mean square stable according to Definition 3.2.
(i) System (3.4) is mean square stable according to Definition 3.2(b).
(j) System (3.4) is asymptotically wide sense stationary according to Definition

3.3.
(k) System (3.3) is mean square stable according to Definition 3.2.
(l) System (3.3) is mean square stable according to Definition 3.2(b).

(m) System (3.3) is asymptotically wide sense stationary according to Definition
3.3.

The affirmatives (a), (b), (c), (d), (e) are equivalent and any of them implies affirma-
tives (f), (g), (h), (i), (j), (k), (l), (m). Moreover, if S is finite, then all affirmatives
are equivalent.

Proof. It follows, essentially, from Propositions 4.9, 4.10, 4.11, 4.12, 4.14, 4.16,
5.4, 5.5 and Theorem 5.2.

Appendix. In this section we present the proof of some auxiliary results.
Proof of Proposition 2.3. Suppose

∫∞
0

‖eLt(V )‖1dt < ∞ for every V ∈ Hn+
1 . From

the decomposition (2.8), for any H ∈ Hn
1 we can find Hi ∈ Hn+

1 , i = 1, 2, 3, 4, such
that H = (H1 −H2) +

√
−1(H3 −H4). From linearity of the semigroup eLt, we have∫ ∞

0

‖eLt(H)‖1dt ≤
4∑

i=1

∫ ∞

0

‖eLt(Hi)‖1dt < ∞,

showing the desired result.
Proof of Lemma 4.1. For (a), consider P = (P1, . . . ) ∈ Hn

1 . Then

‖Li(P )‖ =

∥∥∥∥∥AiPi + PiA
∗
i +

∞∑
j=1

λjiPj

∥∥∥∥∥
≤ 2‖A‖sup‖Pi‖ +

∞∑
j=1

| λji | ‖Pj‖.

Taking the sum over i and recalling that 0 ≤ λj ≤ 
, we get

∞∑
i=1

‖Li(P )‖ ≤ 2‖A‖sup

∞∑
i=1

‖Pi‖ +

∞∑
j=1

∞∑
i=1

| λji | ‖Pj‖

≤ 2‖A‖sup‖P‖1 + 2

∞∑
j=1

λj‖Pj‖

≤ 2‖A‖sup‖P‖1 + 2


∞∑
j=1

‖Pj‖

= 2‖P‖1(‖A‖sup + 
),

showing the desired result. The proof for E and F follows the same steps and will be
omitted.
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For (b), it follows that for any P = (P1, . . . ) ∈ Hn
sup,

‖Ti(P )‖ =

∥∥∥∥∥A∗
iPi + PiAi +

∞∑
j=1

λijPj

∥∥∥∥∥
≤ 2‖A‖sup‖P‖sup + ‖P‖sup

∞∑
j=1

|λji|

= 2‖P‖sup(‖A‖sup + λi) ≤ 2‖P‖sup(‖A‖sup + 
),

showing the desired result.
Part (c) follows from the definition of L(.). To prove (d) it suffices to prove that

Yi(t) ∈ B(Cn)
+

for i ∈ S and any t ∈ R+, where Y (t):=(Y1(t), . . . ), with Y (0) = Q
and t ∈ R+, satisfies Ẏ (t) = L(Y (t)) or Ẏi(t) = Li(Y (t)). From (4.5) and defining
Ãi = Ai + 1

2λiiI, we have

Ẏi(t) = ÃiYi(t) + Yi(t)Ã
∗
i +

∑
{j �=i}

λjiYj(t).

Furthermore,

Yi(t) = eĀitQie
Ā∗

i t +

∫ t

0

eĀi (t−s)

( ∑
{j �=i}

λjiYj(s)

)
eĀ

∗
i (t−s)ds.

Now, it is a fait accompli that the above equation has a unique integrable solution
Yi(t) that can be found by successive approximations as follows. Consider the sequence
{Y k

i (t) : k = 0, 1, . . . , t ∈ R+} for i ∈ S obtained recursively as

Y
(k+1)
i (t) = eÃitQie

Ã∗
i t +

∫ t

0

eÃi (t−s)

( ∑
{j �=i}

λjiY
k
j (s)

)
eÃ

∗
i (t−s)ds,

Y 0
i (t) = 0, i ∈ S.

Bearing in mind that λij ≥ 0 for i �= j, i ∈ S, it is a routine exercise to show that

Y
(k+1)
i (t) ≥ Y

(k)
i (t) ≥ 0 for k = 0, 1, . . . and any t ∈ R+. Inspired in [29], we prove

that, for i ∈ S, ‖Y (k)
i (t)‖ ≤ �i(t) for every k = 0, 1, . . . and any t ∈ R+, where

�̇i(t) = 2‖Ãi‖�i(t) +
∑
{j �=i}

λji‖�j(t)‖,

�i(0) = ‖Yi(0)‖.

This is carried out by induction as follows. First notice that the assertion above is

obviously true for k = 0. Assuming now that it holds for some k, i.e., ‖Y (k)
i (t)‖ ≤ �i(t)

for i ∈ S and any t ∈ R+, we have

�i(t) = e2‖Āi‖t�i(0) +

∫ t

0

e2‖Ãi‖(t−s)

( ∑
{j �=i}

λji‖�j(s)‖
)
ds

≥
∥∥∥∥eÃitQie

Ã∗
i t +

∫ t

0

eĀi (t−s)

( ∑
{j �=i}

λjiY
k
j

)
eÃ

∗
i (t−s)ds

∥∥∥∥
= ‖Y (k+1)

i (t)‖,
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and the assertion follows. Finally, using the differential equation for the approximating

sequence, we get that limk→∞ Y
(k)
i (t) = Yi(t) ≥ 0 for i ∈ S and any t ∈ R+, i.e.,

Yi(t) ∈ B(Cn)
+

for i ∈ S and any t ∈ R+, and part (d) follows.
Proof of Lemma 4.2. Bearing in mind that d(1{θt=i}) := 1{θt+dt=i} − 1{θt=i}, we

have

E(f(t)d(1{θt=i})) = E(f(t)1{θt+dt=i}) − E(f(t)1{θt=i})

=

∞∑
j=1

E(E(f(t)1{θt+dt=i}1{θt=j})|Ft) − E(f(t)1{θt=i})

=

∞∑
j=1

P(θt+dt = i|θt = j)fj(t) − fi(t)

=

∞∑
j=1

λjifj(t)dt + o(dt).

Proof of Proposition 4.3. We show now that for some constants c1 > 0 and c2 > 0
we have, for any Hi ∈ B(Cn), that c1‖ϕ(Hi)‖ ≤ ‖Hi‖ ≤ c2‖ϕ(Hi)‖. Since all norms
in finite-dimensional spaces are equivalent (see [44]), for any H = (H1, . . . ) ∈ Hn

1 ,
c1‖ϕ̂(H)‖1 ≤ ‖H‖1 ≤ c2‖ϕ̂(H)‖1.

Proof of Proposition 4.5. The proof follows from the definition of ϕ̂ in section 2,
in conjunction with Proposition 4.3 and the results given by (2.7), bearing in mind
the definition of the operators F , L, and T in (4.4)–(4.5).

Proof of Lemma 4.6. (a) We begin by noticing that the solution of the above
differential equation is given by y(t) = eAty(0). Then

y(t) = eAtϕ̂(Q) =

∞∑
n=0

1

n!
Anϕ̂(Q)tn =

∞∑
n=0

1

n!
ϕ̂(Ln(Q))tn = ϕ̂(eLt(Q)),

where the third equality follows from Proposition 4.5(a). Part (b) follows from Lemma
4.1 and the definitions of ϕ̂ and ϕ̂j

−1.
Proof of Lemma 4.7. Consider (4.1) with initial time t0 = τ and initial condition

x(t0) = z. It follows from (4.2) that over the set Υ,

x(t) = Φ(t, τ)z.

Recalling that P(Υ) = 1, Qi(t) = E(x(t)x(t)∗1{θt=i}), Qi(τ) = E(zz∗1{θτ=i}), it
follows that

‖x(t)‖2
2 = ‖Φ(t, τ)z‖2

2 =

∞∑
i=1

tr(Qi(t))

≤ n
∞∑
i=1

‖Qi(t)‖ = n‖Q̂(t)‖1.(5.14)

From Proposition 4.4(b),

Q̂(t) = eL(t−τ)Q̂(τ).(5.15)

Substituting (5.15) into (5.14) leads to

‖Φ(t, τ)z‖2
2 ≤ n‖eL(t−τ)Q̂(τ)‖
≤ n‖eL(t−τ)‖‖Q̂(τ)‖1.(5.16)
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The result follows from (5.16) after noticing that

‖Q̂(τ)‖1 =

∞∑
i=1

‖Qi(τ)‖ ≤
∞∑
i=1

tr(Qi(τ)) = ‖z‖2
2.(5.17)

Proof of Proposition 4.8. Since Re{λ(A)} < 0 it follows from Propositions 2.3
and 4.9 that ‖eLt‖ ≤ μe−bt for some μ > 0, b > 0. For the homogeneous systems

ẋ(t) = A(θt)x(t), t ∈ R+,

we have from Proposition 4.4(b) and (3.12) that

E(‖x(t)‖2) =

∞∑
j=1

tr(E(x(t)x(t)∗1{θt=j}))

=

∞∑
j=1

tr(Qj(t)) ≤ n

∞∑
j=1

‖Qj(t)‖ = n‖Q̂(t)‖1

= ‖eLt(Q̂(0))‖1 ≤ nμe−bt‖Q̂(0)‖1 ≤ nμe−btE(‖x(0)‖2)

and from Proposition 4.4(a)

‖eFtq̂(0)‖1 = ‖q̂(t)‖1 =

∞∑
j=1

‖qj(t)‖ ≤
∞∑
j=1

E(‖x(t)‖1{θt=j}) = E(‖x(t)‖)

≤ (E(‖x(t)‖2
))1/2 ≤ (nμ)1/2e−

b
2 t(E(‖x(0)‖2))1/2.(5.18)

From Proposition 2.2 and (5.18) we get Re{λ(F )} < 0.
Proof of Lemma 5.1. The proof follows the same arguments as in [48, pp. 119–

120]. Given any ε > 0 consider tε > 0 such that
∫∞
tε

‖w(τ)‖2
2dτ ≤ ε2. Then for

t > tε,

χ(t) = e−λ(t−tε)

∫ tε

0

e−λ(tε−τ)‖w(τ)‖2dτ +

∫ t

tε

e−λ(t−τ)‖w(τ)‖2dτ.(5.19)

We have from the Schwarz inequality that(∫ tε

0

e−λ(tε−τ)‖w(τ)‖2dτ

)2

≤
∫ tε

0

e−2λ(tε−τ)dτ

∫ tε

0

‖w(τ)‖2
2dτ ≤ 1

2λ
‖w‖2

2(5.20)

and (∫ t

tε

e−λ(t−τ)‖w(τ)‖2dτ

)2

≤
∫ t

tε

e−2λ(t−τ)dτ

∫ ∞

tε

‖w(τ)‖2
2dτ ≤ 1

2λ
ε2.(5.21)

Taking the limit as t → ∞ in (5.19), and from (5.20) and (5.21) we obtain that
0 ≤ limt→∞ χ(t) ≤ ε

(2λ)1/2 , showing the desired result.
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CHARACTERIZATION OF GRADIENT CONTROL SYSTEMS∗
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Abstract. Given a general nonlinear affine control system with outputs and a torsion-free
affine connection defined on its state space, we investigate the gradient realization problem: we give
necessary and sufficient conditions under which the control system can be written as a gradient
control system corresponding to some pseudo-Riemannian metric whose Levi-Civita connection is
equal to the given affine connection. The results rely on a suitable notion of compatibility of the
system with respect to the given affine connection, and on the output behavior of the prolonged
system and the gradient extension. The symmetric product associated with an affine connection
plays a key role throughout the discussion.
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1. Introduction. A physically motivated class of nonlinear systems are gradient
control systems; see [4, 5, 10, 22, 23, 25, 26, 27] and the references quoted therein.
These systems are described in the following way: they are nonlinear affine control
systems, which are endowed with a pseudo-Riemannian metric on the state-space
manifold. The drift vector field of the system is the gradient vector field associated
with an internal potential function with respect to the pseudo-Riemannian metric,
and the input vector fields are the gradient vector fields associated with the output
functions of the system. Examples of gradient control systems include nonlinear elec-
trical RLC networks, and dissipative systems where the inertial effects are neglected.
In the case of RL or RC networks, the pseudo-Riemannian metric is positive-definite,
and thus is a usual Riemannian metric, while for general RLC networks the metric
is indefinite. We refer to [4, 5, 10, 25, 26] for more background on the modeling of
nonlinear networks as gradient systems.

Another relevant class of nonlinear systems is the family formed by the Hamil-
tonian control systems; see [13]. In this case, the state-space manifold is equipped
with a symplectic form. The drift vector field and the input vector fields are the
Hamiltonian vector fields associated, respectively, to an internal energy function and
the output functions of the system with respect to the symplectic form. Hamilto-
nian equations are of central importance in the modeling of physical systems as they
are the starting point to describe the dynamics of a very large class of phenomena,
including mechanical, electrical, and electromagnetic systems.
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Apart from their physical and engineering importance, gradient and Hamilto-
nian systems also possess very peculiar mathematical properties. For instance, an
observable and controllable linear input-state-output system is a Hamiltonian control
system [6] (respectively, a gradient control system [27]) if and only if its impulse
response matrix W (t) satisfies W (t) = −WT (−t) (respectively, W (t) = WT (t)). Al-
though they are typically not amenable to linearization techniques, their rich geomet-
ric structure makes it possible to combine powerful tools from nonlinear control theory,
differential geometry, and classical mechanics in the study of a variety of problems
including stability and stabilization, input-output decoupling, structural synthesis,
and interconnection.

Their theoretical and practical relevance, together with their meaningful geo-
metric properties and the wide range of results available for them, make the classes
of Hamiltonian and gradient systems distinct within the family of nonlinear affine
control systems. This explains the interest in identifying those systems that can be
written as either Hamiltonian or gradient. This characterization problem is motivated
by the realization problem in systems theory and the inverse problem in mechanics.
The realization problem addresses the question of when the input-output map of
a system can be realized as the external behavior of a Hamiltonian (respectively,
gradient) input-output system. The inverse problem, which has a longstanding his-
tory in mathematical physics, poses the question of when a second-order differential
equation can be realized as the Euler–Lagrange equations corresponding to certain
Lagrangian function. For further reference on these problems, the reader is referred
to [11, 15, 20, 21].

In [12, 13], necessary and sufficient conditions were given under which a mini-
mal nonlinear affine control system with an equal number of inputs and outputs is a
Hamiltonian control system with respect to some symplectic structure, which turned
out to be unique. A different but somehow related problem is considered in [24]:
assuming the state space of the nonlinear affine control system is already endowed
with a symplectic form, conditions are derived that guarantee that a feedback trans-
formation exists making Hamiltonian the drift vector field of the transformed control
system. As we discuss below, there are a number of key differences in the treatment
of the characterization problem for the Hamiltonian and the gradient cases, which
make the latter more involved. A fundamental observation is that, while every input-
state-output system admits a natural extension to a Hamiltonian system living on the
cotangent bundle of its state space, the construction of a gradient extension on the
cotangent bundle relies on the selection of a torsion-free affine connection on the state
space. This is why our starting point in the gradient setting is the selection of an
appropriate torsion-free affine connection. This appropriateness is defined in terms of
a novel compatibility condition of the given nonlinear system with the selected affine
connection, guaranteeing an appropriate choice of the latter one. The compatibility
condition is expressed as a relation of the symmetric products of the drift vector field
and the input vector fields with the output functions of the system. As a further
remark, the role played in the Hamiltonian setting by the Lie bracket and the Hamil-
tonian vector fields is taken here by the symmetric product associated with the given
affine connection and the gradient vector fields.

The question solved by the main result of this paper (cf. Theorem 5.4) is the
following: given a torsion-free affine connection which is compatible with the nonlinear
control system, find necessary and sufficient conditions under which the system is
gradient with respect to a pseudo-Riemannian metric whose Levi-Civita connection is
the given affine connection. The question that still remains to be addressed in order
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to solve the full characterization problem for gradient control systems is the following:
given a nonlinear control system, when does an affine connection exist such that these
necessary and sufficient conditions are satisfied?

The paper is organized as follows. In section 2 we present the class of nonlinear
systems considered throughout the paper. We also introduce the notions of prolon-
gation and gradient extension of a nonlinear system. The observability properties of
these systems, studied in section 3, together with the concept of (weakly) externally
equivalent systems, introduced in section 4, turn out to be key in establishing Theo-
rem 5.4. In section 5, we introduce the important notion of compatibility between a
nonlinear system and a given affine connection. At this point, we are ready to state
and prove the main result of the paper, namely, the characterization of when a general
nonlinear control system is gradient. This characterization can be roughly described
as follows: under certain technical conditions, a nonlinear affine control system is
gradient if and only if its prolongation and its gradient extension behave similarly
(i.e., have the same input-output behavior). In section 6 we investigate the unique-
ness (up to isometry) of gradient realizations with the same input-output behavior
and we give an alternative proof of a result in [1, 2]. We present our conclusions in
section 7. Finally, an appendix in section 8 contains a simplifying result concerning
the checkability of the compatibility condition for a nonlinear affine control system.

2. Setting. Let M be an n-dimensional (real-)analytic manifold. We will denote
by TM , T ∗M the tangent and cotangent bundles of M , by X(M) the set of analytic
vector fields on M , by Ω1(M) the set of analytic one-forms on M , and by Cω(M)
the set of analytic functions on M . Consider a nonlinear control system Σ with state
space M , affine in the inputs, and with an equal number of inputs and outputs,

Σ :

⎧⎪⎨⎪⎩ẋ = g0(x) +

m∑
j=1

ujgj(x) ,

yj = Vj(x) , j = 1, . . . ,m ,

(2.1)

where x ∈ M , x(0) = x0, and u = (u1, . . . , um) ∈ U ⊂ Rm. The vector fields
g0, g1, . . . , gm on M are assumed to be complete and V1, . . . , Vm are real-valued func-
tions on M . The set U is the control space, which for simplicity is assumed to be
an open subset of Rm, containing 0. The function t �→ u(t) = (u1(t), . . . , um(t)),
which we will commonly denote as u(·), belongs to a certain class of functions of time,
denoted by U , called the admissible controls. For our purposes, we may restrict the
admissible controls to be the piecewise constant right continuous functions.

An important subclass of the family of nonlinear systems (2.1) is formed by the
Hamiltonian control systems; see [13]. Here, we will instead focus our attention on
the family of gradient control systems. Let G be a pseudo-Riemannian metric on M ,
i.e., a nondegenerate symmetric (0,2)-tensor on M (not necessarily positive-definite);
see [7]. Consider the “musical” isomorphisms associated with G, �G : X(M) → Ω1(M),
�G : Ω1(M) → X(M) defined by

�G(X)(Y ) = G(X,Y ) , �G(μ) = �−1
G (μ) ,

where X,Y ∈ X(M) and μ ∈ Ω1(M). The gradient vector field associated with
a function V ∈ Cω(M) is given by gradG V = �G(dV ). Reciprocally, a vector field
X ∈ X(M) is said to be locally gradient if the one-form �G(X) is closed. By Poincaré’s
lemma, this is equivalent to saying that there exists a locally defined function V ∈
Cω(M) such that �G(X) = dV . If this equality holds globally, X is called gradient and
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will be denoted by X = gradG V . Throughout the paper, we will drop the subindex
when the pseudo-Riemannian metric used in the computation of the gradient vector
field is clear from the context. If we fix coordinates (x1, . . . , xn) on M , then the
pseudo-Riemannian metric can be locally expressed as G = Gabdx

a ⊗ dxb, where
(Gab = G( ∂

∂xa ,
∂

∂xb )) is a symmetric matrix. The musical isomorphisms are then given

by �G = Gabdx
a ⊗ dxb, �G = Gab ∂

∂xa ⊗ ∂
∂xb , where (Gab) is the inverse matrix of (Gab).

Finally, the gradient vector field associated with V reads

gradG V = Gab ∂V

∂xb

∂

∂xa
.

Now, assume that the state space M in (2.1) is a pseudo-Riemannian manifold,
(M,G). Furthermore, assume that the drift vector field g0 is locally gradient and
the input vector fields gj , j = 1, . . . ,m, are gradient with respect to the functions
V1, . . . , Vm, i.e., gj = gradG Vj , j = 1, . . . ,m. Then, the resulting system

Σ :

⎧⎪⎨⎪⎩ẋ = g0(x) +

m∑
j=1

uj(t) gradG Vj(x) ,

yj = Vj(x) , j = 1, . . . ,m,

(2.2)

is called a locally gradient control system on M . If the drift g0 is a gradient vector
field, then the system is called a gradient control system on M .

Given an affine connection on M , our objective is to characterize when a nonlinear
system of the form (2.1) is a locally gradient control system (2.2), i.e., find necessary
and sufficient conditions for the existence of a pseudo-Riemannian metric G on the
state space M whose Levi-Civita connection is the given affine connection such that
the system (2.1) equals system (2.2). These conditions will be given in terms of the
output behavior of the so-called prolonged system and the gradient extension of Σ,
which we describe next.

2.1. The prolongation of a nonlinear system. Given an initial state x(0) =
x0, take a coordinate neighborhood of M containing x0. Let t ∈ [0, T ] �→ x(t)
be the solution of (2.1) corresponding to the input function t ∈ [0, T ] �→ u(t) =
(u1(t), . . . , um(t)) and the initial state x(0) = x0, such that x(t) remains within the
selected coordinate neighborhood. Denote the resulting output by t ∈ [0, T ] �→ y(t) =
(y1(t), . . . , ym(t)), with yj(t) = Vj(x(t)). Then the variational system along the input-
state-output trajectory t ∈ [0, T ] �→ (x(t), u(t), y(t)) is given by the following time-
varying system:

v̇(t) =
∂g0

∂x
(x(t))v(t) +

m∑
j=1

uj(t)
∂gj
∂x

(x(t))v(t) +

m∑
j=1

up
jgj(x(t)),(2.3)

ypj (t) =
∂Vj

∂x
(x(t))v(t), j = 1, . . . ,m,

where v(0) = v0 ∈ Rn, and up = (up
1, . . . , u

p
m), yp = (yp1 , . . . , y

p
m) denote the inputs and

the outputs of the variational system. The reasoning behind the term “variational”
comes from the following fact: let (x(t, ε), u(t, ε), y(t, ε)), t ∈ [0, T ], be a family of
input-state-output trajectories of (2.1) parameterized by ε ∈ (−δ, δ), with x(t, 0) =
x(t), u(t, 0) = u(t), and y(t, 0) = y(t), t ∈ [0, T ]. Then, the infinitesimal variations

v(t) =
∂x

∂ε
(t, 0) , up(t) =

∂u

∂ε
(t, 0) , yp(t) =

∂y

∂ε
(t, 0)
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satisfy (2.3). Additionally, if the initial state is the same for the whole family of
trajectories, x(0, ε) = x0, then the variational state v(0) at time 0 is necessarily 0.

The prolongation or prolonged system of (2.1) corresponds to considering together
the original system (2.1) and the variational system

ẋ = g0(x) +

m∑
j=1

ujgj(x),(2.4)

v̇(t) =
∂g0

∂x
(x(t))v(t) +

m∑
j=1

uj(t)
∂gj
∂x

(x(t))v(t) +

m∑
j=1

up
jgj(x(t)) ,

yj = Vj(x) , ypj (t) =
∂Vj

∂x
(x(t)) v(t) , j = 1, . . . ,m,

with inputs uj , u
p
j , outputs yj , y

p
j , and state (x, v). To state a coordinate-free def-

inition of the prolonged system (2.4) on the whole tangent space TM , we need to
introduce the notions of vertical and complete lifts of functions and vector fields. We
do this following [28]. Given a function V on M , the complete lift of V to TM ,
V c : TM → R, is defined by V c(v) = 〈dV, v〉. In the induced local coordinates on
TM , (x1, . . . , xn, v1, . . . , vn), this reads

V c(x, v) =

n∑
a=1

∂V

∂xa
(x) va .

The vertical lift of V to TM , V v : TM → R, is defined by V v = V ◦ τM , where τM
denotes the tangent bundle projection. Given a vector field X on M , the complete lift
of X to TM , Xc ∈ X(TM), is defined as the unique vector field verifying Xc(fc) =
(Xf)c for any f ∈ Cω(M). Alternatively, if Φt : M → M , t ∈ [0, ε), denotes the flow of
X, then we can define Xc as the vector field whose flow is given by (Φt)∗ : TM → TM .
In local coordinates,

Xc(x, v) =

n∑
a=1

Xa(x)
∂

∂xa
+

n∑
a,b=1

∂Xa

∂xb
(x)vb

∂

∂va
.(2.5)

The vertical lift of X to TM , Xv ∈ X(TM), is the unique vector field such that
Xv(fc) = (Xf)v for any f ∈ Cω(M). In local coordinates,

Xv(x, v) =

n∑
a=1

Xa(x)
∂

∂va
.(2.6)

The following definition provides an intrinsic way of pasting together the sys-
tem (2.1) with the variational systems associated with its input-state-output trajec-
tories.

Definition 2.1. The prolonged system Σp of a nonlinear system Σ of the
form (2.1) is defined by

Σp :

⎧⎪⎨⎪⎩ẋp = gc

0(xp) +

m∑
j=1

uj(t)g
c

j (xp) +

m∑
j=1

up
j (t)g

v

j (xp),

yj = V v

j (xp) , ypj = V c

j (xp) , j = 1, . . . ,m ,

(2.7)

where xp = (x, v) ∈ TM and xp(0) = (x0, v0).
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One can easily check that in the induced tangent bundle coordinates, the local
expression of the system (2.7) is precisely (2.4).

Remark 2.2. In the same way as we have presented above, one can also introduce
the notions of adjoint variational system and Hamiltonian extension of the nonlinear
system (2.1). These notions play a key role in the characterization of when a general
system admits a Hamiltonian description; see [13].

2.2. The gradient extension of a nonlinear system. When dealing with the
Hamiltonian extension of a nonlinear system, one relies on the fact that the cotangent
bundle is endowed with a canonical symplectic structure. However, this is not the
case when treating gradient systems, since a canonical pseudo-Riemannian structure
on the cotangent bundle does not exist. In order to define the gradient extension of a
nonlinear system of the form (2.1), we will first select a torsion-free affine connection
∇ on M , and then consider its Riemannian extension to T ∗M (cf. [19]).

Let us briefly present some basic notions on affine connections and Riemannian
geometry. An affine connection [16] on a manifold M is defined as an assignment

∇ : X(M) × X(M) −→ X(M),
(X,Y ) �−→ ∇XY

which is R-bilinear and satisfies ∇fXY = f∇XY and ∇X(fY ) = f∇XY +X(f)Y for
any X, Y ∈ X(M), f ∈ Cω(M). This implies that ∇XY (x) depends only on X(x)
and the value of Y along a curve which is tangent to X at x. Let c : t ∈ [t0, t1] �→
c(t) = (x1(t), . . . , xn(t)) ∈ M be a curve on M and W a vector field along c, i.e., a
map W : [t0, t1] → TM such that τM (W (t)) = c(t) for all t ∈ [a, b]. Let V be a vector
field that satisfies V (c(t)) = W (t). The covariant derivative of W along c is defined
by

DW (t)

dt
= ∇ċ(t)W (t) = ∇ċ(t)V (x)

∣∣
x=c(t)

.

This definition makes sense because of the defining properties of the affine connection.
Now, we may take W (t) = ċ(t) and set up ∇ċ(t)ċ(t) = 0. This equation is called the
geodesic equation, and its solutions are termed the geodesics of ∇. In local coordinates,
this condition can be expressed as ẍa + Γa

bc(x)ẋbẋc = 0, 1 ≤ a ≤ n, where the Γa
bc(x)

are the Christoffel symbols of the affine connection, defined by

∇ ∂

∂xb

∂

∂xc
= Γa

bc(x)
∂

∂xa
.

The vector field S on TM describing the geodesic equation is called the geodesic spray
associated with the affine connection ∇. In local coordinates,

S = va
∂

∂xa
− Γa

bc(x)vbvc
∂

∂va
.

Therefore, the integral curves of the geodesic spray S are the solutions of the geodesic
equation. The torsion tensor of an affine connection is defined by

T : X(M) × X(M) −→ X(M),
(X,Y ) �−→ ∇XY −∇Y X − [X,Y ] .

Locally, we have

T

(
∂

∂xa
,

∂

∂xb

)
= (Γc

ab − Γc
ba)

∂

∂xc
.
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An affine connection is torsion-free if T is identically zero. Given an affine connec-
tion, the symmetric product [18] of two vector fields X,Y ∈ X(M) is defined by the
operation

〈X : Y 〉 = ∇XY + ∇Y X .

The geometric meaning of the symmetric product is the following [17]: a distribution
D on M is geodesically invariant (meaning that each geodesic of ∇ whose initial
velocity is in D has all its velocities in D) if and only if 〈X : Y 〉 ∈ D for all X, Y ∈ D.
The symmetric product plays a crucial role within the so-called affine connection
formalism for mechanical control systems in the study of a variety of aspects such
as controllability, series expansions, motion planning, and optimal control [7]. Note
that if the affine connection ∇ is torsion-free, then ∇XY = 1

2 (〈X : Y 〉 + [X,Y ]) for
all X,Y ∈ X(M), i.e., there is a one-to-one correspondence between the covariant
derivative and the symmetric product.

Associated with the metric G there is a natural affine connection called the Levi-
Civita connection. The Levi-Civita connection ∇G is determined by the formula

2G(∇G
XY,Z) = X(G(Y,Z)) + Y (G(Z,X)) − Z(G(X,Y ))

+G(Y, [Z,X]) − G(X, [Y,Z]) + G(Z, [X,Y ]) , X, Y, Z ∈ X(M) .

One can compute the Christoffel symbols of ∇G to be

Γa
bc =

1

2
Gad

(
∂Gdb

∂xc
+

∂Gdc

∂xb
− ∂Gbc

∂xd

)
.(2.8)

The Levi-Civita connection is torsion-free, that is, T (X,Y ) = 0 for any X, Y ∈ X(M).
Therefore, a pseudo-Riemannian metric on M defines a unique affine torsion-free

connection on M . The converse is, however, not true. Also, note that given an affine
torsion-free connection which is the Levi-Civita connection corresponding to some
pseudo-Riemannian metric, then there exist many more metrics that give rise to the
same affine connection. For instance, any constant metric on the Euclidean space
gives rise to the affine connection with Christoffel symbols Γa

bc = 0, 1 ≤ a, b, c ≤ n.
Given a pseudo-Riemannian metric G on M , we can define the so-called Beltrami

bracket [10, 22] of functions on M ,

{f : g}G = G(gradG f, gradG g) , f, g ∈ Cω(M) .

In local coordinates, one has the expression

{f : g}G =
∂f

∂xa
Gab ∂g

∂xb
.

It is interesting to note that the mapping

gradG : (Cω(M), {· : ·}G) → (X(M), 〈· : ·〉∇G )

is a homomorphism of symmetric algebras, i.e., gradG{f : g}G = 〈gradG f : gradG g〉∇G

for all f, g ∈ Cω(M).
Remark 2.3. The latter observation is the gradient analogue of the following

fact in the Hamiltonian setting: consider the mapping (Cω(M), {·, ·}) → (X(M), [·, ·])
(where {·, ·} denotes the Poisson bracket and [·, ·] denotes the Lie bracket) associ-
ating to each function f its Hamiltonian vector field Xf . Then this mapping is a
homomorphism of Lie algebras, i.e., X{f,g} = [Xf , Xg].
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Let us now turn our discussion to the cotangent bundle of M . First, we introduce
the construction that associates to each vector field X on M a function V X on T ∗M ,
defined by V X(p) = 〈p,X〉. In the induced local coordinates (x1, . . . , xn, p1, . . . , pn) on
T ∗M , this reads V X(x, p) =

∑n
a=1 paXa(x). The complete lift of X to T ∗M , Xc ∈

X(T ∗M), is defined as the Hamiltonian vector field (with respect to the canonical
symplectic form on T ∗M) associated with the function V X . In local coordinates,

Xc(x, p) =

n∑
a=1

Xa
∂

∂xa
−

n∑
a,b=1

∂Xb

∂xa
(x)pb

∂

∂pa
.

The notion of vertical lift of a function V on M to a function V v on T ∗M is given
by V v = V ◦ πM , where πM is the cotangent bundle projection. An object which
will play a key role in the subsequent discussion is the Riemannian extension [19, 28]
of a torsion-free affine connection. Let ∇ be a torsion-free affine connection on M .
Then, ∇ defines a pseudo-Riemannian metric on T ∗M , denoted G∇, as the unique
(0,2)-tensor on T ∗M which satisfies

G∇(Xc, Y c) = −V 〈X:Y 〉 .

The fact that this single equality completely determines the Riemannian extension
G∇ is a consequence of the result in Proposition 4.2 in [28, Chapter VII], which asserts
that any (0, s)-tensor field on T ∗M is univocally defined by its action on the complete
lifts of vector fields of M . The matrix representations of the musical isomorphisms
defined by G∇ in local coordinates are given by

�G∇ ≡
(
−2pcΓ

c
ab In

In 0

)
, �G∇ ≡

(
0 In
In 2pcΓ

c
ab

)
.(2.9)

As for the gradient vector fields associated with the functions V X , V v ∈ Cω(T ∗M),
X ∈ X(M), V ∈ Cω(M), one has the local expressions

gradG∇ V X = Xa ∂

∂xa
+ pa

(
∂Xa

∂xb
+ 2Γa

bcX
c

)
∂

∂pb
, gradG∇ V v =

∂V

∂xa

∂

∂pa
.

(2.10)

Given a metric G on M , one can also verify that the pseudo-Riemannian metric on

T ∗M defined by G∇G
corresponds to the pullback by �G of the complete lift Gc to TM

of G, i.e., G∇G
= �∗G(Gc) (see [28]).

Definition 2.4. The gradient extension Σe of a nonlinear system Σ of the
form (2.1) with respect to a torsion-free affine connection ∇ on M is given by

Σe :

⎧⎪⎨⎪⎩ẋe = gradG∇ V g0(xe) +

m∑
j=1

uj(t) gradG∇ V gj (xe) +

m∑
j=1

ue
j(t) gradG∇ V v

j (xe) ,

yj = V v

j (xe) , yej = V gj (xe) , j = 1, . . . ,m ,

(2.11)

where xe = (x, p) ∈ T ∗M , xe(0) = (x0, p0), u = (u1, . . . , um) ∈ U ⊂ Rm, and
ue = (ue

1, . . . , u
e
m) ∈ Rm.

Remark 2.5. Note that the gradient extension Σe is itself a gradient control
system.



1200 J. CORTÉS, A. VAN DER SCHAFT, AND P. E. CROUCH

3. Observability of the prolongation and the gradient extension. In this
section, we investigate the observability properties of the prolonged system and the
gradient extension of a nonlinear system. Roughly speaking, the observability prop-
erties of a given system determine to what extent one can observe the actual state
of the system from its input-output behavior, i.e., to what extent the knowledge of
the input-output response allows us to infer things about the evolution of the state.
This study will later be key in establishing the characterization of when a nonlinear
control system can be written as a gradient control system.

We start by briefly reviewing some notions such as distinguishable points and
local observability. Let Y denote the space of absolutely continuous functions defined
on R+ = [0,+∞) with values in Rm. For a nonlinear system of the form (2.1), the
input-output map RΣ : M × U → Y, RΣ(x0, u(·)) = y(·) is defined by assigning to
each initial condition x0 ∈ M and any admissible control u ∈ U the output of the
system

y(·) = (V1(x(·, x0, u(·))), . . . , Vm(x(t, x0, u(·)))) ,
where x(·, x0, u(·)) denotes the solution of ẋ(t) = g0(x(t))+

∑m
j=1 uj(t)gj(x(t)) starting

at x0. Now, two points x1, x2 ∈ M are said to be indistinguishable, x1 ∼ x2, if
RΣ(x1, u(·)) = RΣ(x2, u(·)) for any u(·) ∈ U .

Definition 3.1. A system Σ is observable if for any x1, x2 ∈ M , one has
that x1 ∼ x2 ⇒ x1 = x2. Alternatively, for any x1 �= x2, there exists an admissible
control such that the output functions resulting from the initial conditions x(0) = x1,
respectively, x(0) = x2, are different. The system is locally observable at x0 if there
exists a neighborhood N of x0 such that this holds for points in N .

Denote by H the R-linear space in Cω(M) spanned by the functions of the form
LX1

LX2
· · · LXs

Vj , with {Xr}sr=1 ⊂ {gi | i = 0, 1, . . . ,m}, and j ∈ {1, . . . ,m}. Al-
ternatively, we may take Xr to be arbitrary elements of the accessibility algebra
corresponding to the vector fields g0, g1, . . . , gm. H is called the observation space of
Σ. It follows from the analyticity assumption that the system is observable if and
only if H distinguishes points in M , i.e., for every x1, x2 ∈ M with x1 �= x2, there
exists V ∈ H such that V (x1) �= V (x2); cf. [14].

Proposition 3.2 (see [13]). Consider a nonlinear system Σ of the form (2.1),
with observation space H. Then, the observation space Hp of the prolongation Σp is
given by Hp = Hc + Hv, where Hc = {V c | V ∈ H} and Hv = {V v | V ∈ H}.

The following corollary is a modified statement of Corollary 3.3 in [13].
Corollary 3.3. Assume the codistribution dH is of constant rank. Then the

system Σ is (locally) observable if and only if its prolongation is (locally) observable.
Proof. Following [14], Σ is locally observable if and only if rk(dH) = dimM . In

addition, the codistribution dH on M has constant rank if and only if the codistri-
bution dHp on TM has constant rank. Therefore, rk(dH) = dimM if and only if
rk(dHp) = dimTM if and only if Σp is locally observable. The statement regarding
observability is proved as in Corollary 3.3 in [13].

Let us turn our attention to the observability properties of the gradient extension
of a nonlinear system of the form (2.1). The following lemma will be most helpful.

Lemma 3.4. Let ∇ be a torsion-free affine connection on a manifold M , and
let G∇ denote its Riemannian extension to T ∗M . Then, for any vector fields X,
Y ∈ X(M), and any functions f , g ∈ Cω(M), the following identities hold:

(i) (gradG∇ V X)(V Y ) = {V X : V Y }G∇ = V 〈X:Y 〉 = −G∇(Xc, Y c);
(ii) (gradG∇ V X)(fv) = (gradG∇ fv)(V X) = {V X : fv}G∇ = X(f)v;
(iii) (gradG∇ fv)(gv) = {fv : gv}G∇ = 0.
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Proof. The first equality in (i) is the definition of the Beltrami bracket associated
with G∇. For the second one, we resort to the local expressions in (2.9) to compute

{V X : V Y }G∇ =

(
pa

∂Xa

∂xb
, Xb

)(
0 I
I 2peΓ

e
cd

)(
pa

∂Y a

∂xb
, Y b

)T

= pa

(
∂Xa

∂xb
Y b +

∂Y a

∂xb
Xb + 2Γa

bcX
bY c

)
= V 〈X:Y 〉 .

The third equality corresponds to the definition of G∇. The first and second equalities
in (ii) follow again by definition. As for the third one, note that

gradG∇ fv(V X) =
∂f

∂xa

∂

∂pa

(
pbX

b
)

=
∂f

∂xa
Xa = X(f)v.

Finally, the equalities in (iii) are straightforward.
Denote by S0 the R-linear space in X(M) spanned by the vector fields of the

form 〈X1 : 〈X2 : 〈· · · : 〈Xs : gj〉〉 · · · 〉〉, with {Xr}sr=1 ⊂ {gi | i = 0, 1, . . . ,m} and
j ∈ {1, . . . ,m}. Alternatively, one can define S0 as the smallest subspace of X(M) such
that (i) g1, . . . , gm ∈ S0 and (ii) if X ∈ S0, then 〈gi : X〉 ∈ S0 for all i = 0, 1, . . . ,m.
We denote by S0 the distribution on M generated by the space S0,

S0(x) = span{X(x) | X ∈ S0} , x ∈ M .(3.1)

Proposition 3.5. Consider a nonlinear system Σ of the form (2.1), with ob-
servation space H. Let ∇ be a torsion-free affine connection on M . Then, the ob-
servation space He of the gradient extension Σe is given by He = V S0 + (H + h)v,
where V S0 = {V X | X ∈ S0} and h is spanned by LX1LX2 · · · LXsLXVj, with Xr,
r = 1, . . . , s, equal to gi, i = 0, 1, . . . ,m, X ∈ S0, and j = 1, . . . ,m.

Proof. The observation space of the gradient extension of Σ is spanned by

LX1
LX2

· · · LXs
V v

j , LX1
LX2

· · · LXs
V gj ,

where Xr, r = 1, . . . , s, is equal to gradG∇ V gi , gradG∇ V v

j , i = 0, 1, . . . ,m, j =
1, . . . ,m. Now, using Lemma 3.4, we have that

LgradG∇ V giV v

j = (LgiVj)
v , LgradG∇ V giV gj = V 〈gi:gj〉 ,

LgradG∇ V v

j
V v

k = 0 , LgradG∇ V v

j
V gk = (LgkVj)

v ,

with i = 0, 1, . . . ,m and j, k = 1, . . . ,m. Considering the next step of Lie derivatives
yields

LgradG∇ V ghV 〈gi:gj〉 = V 〈gh:〈gi:gj〉〉 , LgradG∇ V gh (LgiVj)
v = (LghLgiVj)

v ,

LgradG∇ V v

k
V 〈gi:gj〉 =

(
L〈gi:gj〉Vk

)
v

, LgradG∇ V v

k
(LgiVj)

v = 0 ,

with h = 0, 1, . . . ,m. Further iterating this process, we get to the desired result.
Corollary 3.6. Consider a nonlinear system Σ of the form (2.1), with ob-

servation space H. Assume the codistribution dH is of constant rank. Let ∇ be a
torsion-free affine connection on M and further assume that the distribution S0 is
full-rank. Then, that Σ is (locally) observable implies that Σe is (locally) observable.

Proof. Since the codistribution dH has constant rank, Σ is locally observable
if and only if dim dH(x) = dimM . Since S0 is full-rank, it is clear that Σ locally
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observable implies that He has constant maximal rank, and therefore Σe is locally
observable. With respect to observability, let (x1, p1), (x2, p2) ∈ T ∗M , and assume
that V e(x1, p1) = V e(x2, p2) for all V e ∈ He. Since Hv ⊂ He, this yields V (x1) =
V (x2) for any V ∈ H. So, under observability of Σ, we conclude that x1 = x2 = x.
Then, we have that V X(x, p1) = V X(x, p2) for all X ∈ S0, which finally implies that
p1 = p2.

4. Externally equivalent systems. In this section we introduce the notion of
(weakly) externally equivalent systems, which will be instrumental in the statement
of the main result in section 5. Consider two nonlinear systems α = 1, 2, of the form

Σα :

⎧⎪⎨⎪⎩ẋα = gα0 (xα) +

m∑
j=1

ujg
α
j (xα) , xα ∈ Mα ,

yj = V α
j (xα) , j = 1, . . . ,m , u = (u1, . . . , um) ∈ U ⊂ Rm .

Denote by Hα, α = 1, 2, the associated observation spaces. Take a function H1 ∈
H1, H1 = LX1

· · · LXs
V 1
j , with Xr = g1

ir
, ir ∈ {0, 1, . . . ,m}, r = 1, . . . , s, and

j ∈ {1, . . . ,m}. Consider the function in H2 defined by H2 = LY1
· · · LYsV

2
j , with

Yr = g2
ir

, r = 1, . . . , s. Then we say that H1 and H2 formally correspond to each
other. This notion is useful in defining the concept of weakly externally equivalent
systems.

Definition 4.1. The systems Σ1 and Σ2 are weakly externally equivalent if and
only if for all x1 ∈ M1, there exists x2 ∈ M2 such that H1(x1) = H2(x2) for all
corresponding H1 ∈ H1, H2 ∈ H2, and reciprocally, for all x2 ∈ M2, there exists
x1 ∈ M1 such that H1(x1) = H2(x2) for all corresponding H1 ∈ H1, H2 ∈ H2.

Definition 4.2. The systems Σ1 and Σ2 are externally equivalent if and only if
for all x1 ∈ M1, there exists x2 ∈ M2 such that the input-output maps corresponding
to x1 and x2 coincide, i.e., RΣ1(x1, u(·)) = RΣ2(x2, u(·)) for all u(·) ∈ U , and recip-
rocally, for all x2 ∈ M2, there exists x1 ∈ M1 such that RΣ1(x1, u(·)) = RΣ2(x2, u(·))
for all u(·) ∈ U .

Equivalently, Σ1 and Σ2 are externally equivalent if and only if their behaviors
are equal. Clearly, if two systems are externally equivalent, then they are weakly
externally equivalent.

Proposition 4.3. Assume that Σ1 and Σ2 are weakly externally equivalent and
observable and that the codistributions dHα, α = 1, 2, have constant rank. Then there
exists a unique diffeomorphism ϕ : M1 → M2 with ϕ∗(H2) = H1.

Proof. Let x1 ∈ M1. By definition, there exists x2 ∈ M2 such that H1(x1) =
H2(x2) for all corresponding H1 ∈ H1, H2 ∈ H2. Since H2 distinguishes points
in M2, it follows that x2 is unique. Define ϕ : M1 → M2, ϕ(x1) = x2. Using
dim dH2 = dimM2 and the inverse function theorem, it follows that ϕ is smooth.
Indeed, for each x2 ∈ M2, there exists a neighborhood V of M2 at x2 and dimM2

independent functions H2
1 , . . . , H

2
dimM2 on V such that ϕ is given by

x2 = (H2
1 , . . . , H

2
dimM2)−1(H1

1 , . . . , H
1
dimM2)(x1) .

Analogously, we can construct the inverse mapping ϕ−1 : M2 → M1, making use of
the fact that Σ1 is observable, which concludes the proof.

Corollary 4.4. Let the systems Σ1 and Σ2 be observable and the codistributions
dHα, α = 1, 2, have constant rank. Then Σ1 and Σ2 are weakly externally equivalent
if and only if they are externally equivalent.
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Proof. We already know that if the systems are externally equivalent, then they
are weakly externally equivalent. Conversely, assume that Σ1 and Σ2 are weakly ex-
ternally equivalent. From Proposition 4.3, we have that there exists a diffeomorphism
ϕ : M1 → M2 with ϕ∗(H2) = H1. Using this latter fact, and since the vector fields
gi0, g

i
j are determined by their action as derivations on Hα, α = 1, 2, we conclude that

ϕ∗g
1
0 = g2

0 , ϕ∗g
1
j = g2

j , j = 1, . . . ,m.
Remark 4.5. The map ϕ in the previous proof is called a state-space diffeomor-

phism.

5. Gradient realization of a nonlinear control system. This section con-
tains the main result of the paper. Under certain technical conditions, Theorem 5.4
characterizes when a nonlinear control systems admits a gradient realization. Before
stating this result, we need to introduce the novel notion of compatibility between a
nonlinear system and an affine connection.

Definition 5.1 (compatibility). Let ∇ be an affine connection on M . A nonlin-
ear control system Σ of the form (2.1) is compatible with ∇ if and only if the following
two conditions hold:

(a) For all vector fields X1, . . . , Xs1 , Y1, . . . , Ys2 ∈ {g0, g1, . . . , gm}, and all in-
dexes j, k = 1, . . . ,m,

L〈X1:〈X2:〈···:〈Xs1
:gj〉〉··· 〉〉

[
LY1LY2 · · · LYs2

Vk

]
= L〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉

[
LX1LX2 · · · LXs1

Vj

]
.

(b) For all vector fields X1, . . . , Xs1 , Y1, . . . , Ys2 , Z1, . . . , Zs3 ∈ {g0, g1, . . . , gm},
and all indexes j, k, l = 1, . . . ,m,

L〈〈X1:〈X2:〈···:〈Xs1
:gj〉〉··· 〉〉:〈Y1:〈Y2:〈···:〈Ys2

:gk〉〉··· 〉〉〉[LZ1LZ2 · · · LZs3
Vl]

= L〈Z1:〈Z2:〈···:〈Zs3 :gl〉〉··· 〉〉[L〈X1:〈X2:〈···:〈Xs1
:gj〉〉··· 〉〉[LY1

LY2 · · · LYs2
Vk]].

Remark 5.2. In case the distribution S0 (cf. (3.1)) is full-rank, note that property
(b) in the above definition implies property (a) up to a constant on each connected
component of M . To see this, one can use the symmetry of the symmetric product
to deduce from (b) that

L〈Z1:〈Z2:〈···:〈Zs3 :gl〉〉··· 〉〉[L〈X1:〈X2:〈···:〈Xs1 :gj〉〉··· 〉〉[LY1
LY2

· · · LYs2
Vk]]

= L〈Z1:〈Z2:〈···:〈Zs3 :gl〉〉··· 〉〉[L〈Y1:〈Y2:〈···:〈Ys2
:gk〉〉··· 〉〉[LX1LX2 · · · LXs1

Vj ]].

Now, one concludes the result from the full-rankness of S0. Another interesting ob-
servation in this case is that the checkability of the compatibility condition can be
performed taking a basis of vector fields in S0, as we discuss later in Lemma 8.1.

Remark 5.3. Note that a locally gradient control system of the form (2.2) is
compatible with the Levi-Civita connection associated with the pseudo-Riemannian
metric G. Indeed, let 〈· : ·〉, {· : ·} denote, respectively, the symmetric product and the
Beltrami bracket corresponding to ∇G and G. Take Xr1 = gradVαr1

, Yr2 = gradVβr2
,

Zr3 = gradVγr3
, ri ∈ {1, . . . , si} (which can always be written at least locally); then

L〈X1:〈X2:〈···:〈Xs1 :gj〉〉··· 〉〉
[
LY1LY2 · · · LYs2

Vk

]
= Lgrad{Vα1

:{Vα2
:{···:{Vαs1

:Vj}}···}}
[
{Vβ1 : {Vβ2 : {· · · : {Vβs2

: Vk}} · · ·}}
]

= Lgrad{Vβ1
:{Vβ2

:{···:{Vβs2
:Vk}}···}}

[
{Vα1 : {Vα2 : {· · · : {Vαs1

: Vj}} · · ·}}
]

= L〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉
[
LX1LX2 · · · LXs1

Vj

]
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and

L〈〈X1:〈X2:〈···:〈Xs1
:gj〉〉··· 〉〉:〈Y1:〈Y2:〈···:〈Ys1

:gk〉〉··· 〉〉〉
[
LZ1

LZ2
· · · LZs3

Vl

]
= Lgrad{{Vα1

:{Vα2
:{···:{Vαs1

:Vj}}···}}:{Vβ1
:{Vβ2

:{···:{Vβs2
:Vk}}···}}}[

{Vγ1 : {Vγ2 : {· · · : {Vγs3
: Vl}} · · ·}}

]
= Lgrad{Vγ1 :{Vγ2 :{···:{Vγs3

:Vl}}···}}[
{{Vα1 : {Vα2

: {· · · : {Vαs1
: Vj}} · · ·}} : {Vβ1

: {Vβ2
: {· · · : {Vβs2

: Vk}} · · ·}}}
]

= L〈Z1:〈Z2:〈···:〈Zs3 :gl〉〉··· 〉〉[L〈X1:〈X2:〈···:〈Xs1 :gj〉〉··· 〉〉[LY1LY2 · · · LYs2
Vk]]

as claimed.
Now, we come to the main result of the paper.
Theorem 5.4. Let Σ be a nonlinear control system of the form (2.1). Let ∇

be a torsion-free affine connection defined on the state manifold M . Assume that Σ
is observable with dim dH constant, compatible with ∇, and that the distribution S0

is full-rank. Then, Σ is a locally gradient control system with respect to a pseudo-
metric whose Levi-Civita connection is ∇ if and only if its prolonged system Σp and
its gradient extension Σe are weakly externally equivalent.

Proof. Consider a locally gradient control system Σ on (M,G) (cf. (2.2)), together
with its prolongation Σp on TM and its gradient extension Σe on T ∗M . Recall that in
the induced bundle coordinates (xa, va) on TM , (xa, pa) on T ∗M , the musical isomor-
phisms associated with G read �G(xa, va) = (xa,Gabv

b) and �G(xa, pa) = (xa,Gabpb).
We are going to show that �G is actually an isomorphism between the prolongation
and the gradient extension, i.e., we will prove that �G(xp(·)) = xe(·) along the solu-
tions of (2.7) and (2.11), respectively. This will be a consequence of the following
equalities:

(�G)∗g
c

i = gradG∇ V gi ◦ �G , V gj ◦ �G = V c

j ,

(�G)∗g
v

j = gradG∇ V v

j ◦ �G , V v

j ◦ �G = V v

j

(5.1)

for all i = 0, 1, . . . ,m, j = 1, . . . ,m. In order to show (5.1), we will make use of the
following identities:

(�G)∗

(
∂

∂xa

)
=

∂

∂xa
+

∂Gcb

∂xa
vb

∂

∂pc
, (�G)∗

(
∂

∂va

)
= Gab

∂

∂pb
.

Let g ∈ X(M). In local coordinates, g = ga∂/∂xa. Using (2.5), we get

(�G)∗ (gc) = ga
∂

∂xa
+

{
gc

∂Gab

∂xc
+ Gac

∂gc

∂xb

}
vb

∂

∂pa
.

On the other hand, we have that

gradG∇ V g ◦ �G = ga
∂

∂xa
+

{
Gbc

∂gc

∂xa
+ 2GbcΓ

c
adg

d

}
vb

∂

∂pa
.

Now, suppose that g is a locally gradient vector field. In local coordinates, this
means that Gacg

c = ∂V/∂xa, for a certain function V , which in turn implies that
∂{Gacg

c}/∂xb = ∂{Gbcg
c}/∂xa, that is,

Gac
∂gc

∂xb
=

∂Gbc

∂xa
gc + Gbc

∂gc

∂xa
− ∂Gac

∂xb
gc .
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Substituting into the above expression for (�G)∗ (gc),

(�G)∗ (gc) = ga
∂

∂xa
+

{
gc

∂Gab

∂xc
+

∂Gbc

∂xa
gc + Gbc

∂gc

∂xa
− ∂Gac

∂xb
gc
}
vb

∂

∂pa

= ga
∂

∂xa
+

{
gc

(
∂Gab

∂xc
+

∂Gbc

∂xa
− ∂Gac

∂xb

)
+ Gbc

∂gc

∂xa

}
vb

∂

∂pa

= ga
∂

∂xa
+

{
2gcGbdΓ

d
ac + Gbc

∂gc

∂xa

}
vb

∂

∂pa
= gradG∇ V g ◦ �G .

Therefore, the first equality in (5.1) holds for every i = 0, 1, . . . ,m. The equality
(�G)∗g

v

j = gradG∇ V v

j ◦ �G , j = 1, . . . ,m, follows by considering (2.6) and the fact that
the vector fields gj are gradient by hypothesis,

(�G)∗ (gv) = Gabg
b ∂

∂pa
=

∂V

∂xa

∂

∂pa
= gradG∇ V v ◦ �G .

As for V gj ◦ �G = V c

j , for each v ∈ TxM , we compute V gj ◦ �G(v) = Gabv
bgaj =

∂Vj/∂x
b · vb = 〈dVj , v〉 = V c

j (v), where, with a slight abuse of notation, we have used
the bracket 〈·, ·〉 to denote the contraction between a covector and a vector. In the
remainder of the paper, the intended use of 〈. , .〉 should be clear from the context.
The last equality follows trivially. Consequently, the prolongation and the gradient
extension of a nonlinear system Σ which is itself gradient are externally equivalent,
in particular weakly externally equivalent systems.

To prove the converse implication, we need some intermediate steps that we de-
scribe in what follows.

Lemma 5.5. Let Σ be a nonlinear system of the form (2.1). Under the hypothesis
of Theorem 5.4, assume that the prolongation Σp and the gradient extension Σe are
weakly externally equivalent. Then there exists a unique diffeomorphism ϕ : TM →
T ∗M such that

(ϕ)∗g
c

i = gradG∇ V gi ◦ ϕ , V gj ◦ ϕ = V c

j ,

(ϕ)∗g
v

j = gradG∇ V v

j ◦ ϕ , V v

j ◦ ϕ = V v

j

(5.2)

for all i = 0, 1, . . . ,m, j = 1, . . . ,m. Moreover, ϕ is a bundle morphism over the
identity IdM : M → M , i.e., in natural coordinates ϕ(x, v) = (x, φ(x, v)), for certain
map φ : TxM → T ∗

xM , x ∈ M .
Proof. By Proposition 3.2 and Corollary 3.6, we have that both the prolonga-

tion and the gradient extension are observable systems. Since they are also weakly
externally equivalent by assumption, Corollary 4.4 ensures that there exists a unique
diffeomorphism ϕ : TM → T ∗M verifying (5.2). Applying now Corollary 4.4 to
Σ1 = Σ = Σ2, we deduce that there exists a unique diffeomorphism from M to M
mapping the original nonlinear system to itself, namely, the identity mapping. Using
uniqueness and the fact that ϕ satisfies (5.2), it then follows that ϕ is of the form
ϕ(x, v) = (x, φ(x, v)), for certain map φ : TxM → T ∗

xM , x ∈ M .
Lemma 5.6. Under the same assumptions as in Lemma 5.5, there exists a unique

pseudo-Riemannian metric G on M such that �G = ϕ, i.e., �G(v) = φ(x, v) for all
v ∈ TxM .

Proof. It follows from V gj ◦ϕ = V c

j (cf. (5.2)) and the structure of the diffeomor-
phism ϕ that

〈φ(x, v), gj(x)〉 = 〈dVj(x), v〉 ∀v ∈ TxM , j = 1, . . . ,m .
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Furthermore, from (ϕ)∗g
c

i = gradV gi ◦ ϕ (see (5.2)), it follows that

LgradV giV gj ◦ ϕ = Lgc

i
V c

j , i = 0, 1, . . . ,m , j = 1, . . . ,m .

Using now Lemma 3.4(i), we get 〈φ(x, v), 〈gi : gj〉(x)〉 = 〈d (LgiVj) (x), v〉. In general
for all v ∈ TxM ,

〈φ(x, v), 〈X1 : 〈X2 : 〈X3, · · · : 〈Xs : gj〉〉 · · · 〉〉(x)〉(5.3)

= 〈d (LX1
LX2

· · · LXs
Vj) (x), v〉,

with the Xr, r = 1, . . . , s, equal to some gi, i = 0, 1, . . . ,m. Since the right-hand
side of this equation is linear in v and the distribution generated by the space S0 is
full-rank by hypothesis, it follows that for each x ∈ M there exists a unique matrix
G(x) such that φ(x, v) = G(x)v. Since ϕ is a diffeomorphism, G(x) is nonsingular for
every x and depends smoothly on the base point. Consider the adjoint mapping of
ϕ, ϕT : TM → T ∗M , defined by 〈ϕ(v), w〉 = 〈v, ϕT (w)〉, v, w ∈ TxM , x ∈ M . Then,
ϕT (x, v) = (x,GT (x)v). It follows from (5.3) that G(x) satisfies

ϕT (〈X1 : 〈X2 : 〈X3, · · · : 〈Xs : gj〉〉 · · · 〉〉(x)) = d (LX1LX2 · · · LXsVj) (x) ,(5.4)

with the Xr as above. Let us see now that G(x) = GT (x). Note that in local coordi-
nates (ϕ)∗g

v

j = gradG∇ V v

j ◦ ϕ yields(
I 0

∂
∂x (G(x)v) G(x)

)(
0

gj(x)

)
=

(
0(

∂Vj

∂x

)T

(x)

)

or, equivalently, G(x)gj(x) = (∂Vj/∂x)
T

(x), j = 1, . . . ,m, which in intrinsic terms,
can be written as ϕ(gj) = dVj . Now,

〈ϕ (〈X1 : 〈X2 : 〈X3, · · · : 〈Xs1 : gj〉〉 · · · 〉〉) , 〈Y1 : 〈Y2 : 〈Y3, · · · : 〈Ys2 : gk〉〉 · · · 〉〉〉
= 〈〈X1 : 〈X2 : 〈X3, · · · : 〈Xs1 : gj〉〉 · · · 〉〉, ϕT (〈Y1 : 〈Y2 : 〈Y3, · · · : 〈Ys2 : gk〉〉 · · · 〉〉)〉.

Using (5.4), the latter is equal to

〈〈X1 : 〈X2 : 〈X3, · · · : 〈Xs1 : gj〉〉 · · · 〉〉, dLY1LY2 · · · LYs2
Vk〉

= 〈dLX1LX2
· · · LXs1

Vj , 〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉〉 ,

where in the last equality we have used the property (a) of the compatibility definition
between the nonlinear system Σ and the affine connection ∇. Finally,

〈ϕ (〈X1 : 〈X2 : 〈X3, · · · : 〈Xs1 : gj〉〉 · · · 〉〉) , 〈Y1 : 〈Y2 : 〈Y3, · · · : 〈Ys2 : gk〉〉 · · · 〉〉〉
= 〈ϕT (〈X1 : 〈X2 : 〈X3, · · · : 〈Xs1 : gj〉〉 · · · 〉〉) , 〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉〉 .

By the assumption on the full-rankness of the distribution S0, we conclude that

ϕ (〈X1 : 〈X2 : 〈X3, · · · : 〈Xs1 : gj〉〉 · · · 〉〉)
= ϕT (〈X1 : 〈X2 : 〈X3, · · · : 〈Xs1 : gj〉〉 · · · 〉〉) ,

which in turn implies that ϕ(x) = ϕT (x), i.e., the matrix G(x) is symmetric.
Lemma 5.7. Under the same assumptions as in Lemma 5.5, the torsion-free affine

connection ∇ is the Levi-Civita connection corresponding to the pseudo-Riemannian
metric G.
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Proof. First of all, note that

〈V 〈〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉:〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉〉, d(LZ1LZ2 · · · LZs3
Vl)〉(5.5)

= L〈〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉:〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉〉
[
LZ1LZ2 · · · LZs3

Vl

]
= L〈Z1:〈Z2:〈···:〈Zs3

:gl〉〉··· 〉〉
[
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉

[
LY1

LY2
· · · LYs2

Vk

]]
= 〈

(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉

[
LY1

LY2
· · · LYs2

Vk

])
c ◦ ϕ−1,

d(LZ1LZ2 · · · LZs3
Vl)〉,

where in the second equality we have used the property (b) of the compatibility
definition between the nonlinear system Σ and the affine connection ∇. Since the
observation space of the nonlinear system Σ is generated by the functions of the form
LZ1LZ2 · · · LZs3

Vl, and Σ is observable by hypothesis, we conclude that

V 〈〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉:〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉〉 ◦ ϕ
=

(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉

[
LY1

LY2
· · · LYs2

Vk

])
c

.

Given the structure of the mapping ϕ (cf. Lemmas 5.5 and 5.6) and (5.4), this equality
can be rewritten as

G(〈〈X1 : 〈X2 : 〈· · · : 〈Xs : gj〉〉 · · · 〉〉 : 〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉〉, ·)
= d〈ϕ(〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉), 〈X1 : 〈X2 : 〈· · · : 〈Xs : gj〉〉 · · · 〉〉〉
= d

(
G(gradG

(
LY1

LY2
· · · LYs2

Vk

)
, gradG (LX1

LX2
· · · LXs

Vj))
)

= d{LY1LY2 · · · LYs2
Vk : LX1LX2 · · · LXsVj}G .

Since gradG{f : g}G = 〈gradG f : gradG g〉∇G , we conclude

〈〈X1 : 〈X2 : 〈· · · : 〈Xs : gj〉〉 · · · 〉〉 : 〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉〉
= 〈〈X1 : 〈X2 : 〈· · · : 〈Xs : gj〉〉 · · · 〉〉 : 〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉〉G .

Using the fact that S0 is full-rank, we deduce that 〈X : Y 〉 = 〈X : Y 〉G for all X,
Y ∈ X(M). Finally, using the fact that ∇ is torsion-free, we compute

∇XY =
1

2
(〈X : Y 〉 + [X,Y ]) =

1

2
(〈X : Y 〉G + [X,Y ]) = ∇G

XY ∀X,Y ∈ X(M) ,

which concludes the result.
We are now ready to conclude the proof of Theorem 5.4.
Proof of Theorem 5.4. Assume the prolongation Σp and the gradient extension

Σe are weakly externally equivalent. From Lemmas 5.5, 5.6, and 5.7, we deduce the
existence of a pseudo-Riemannian metric G on M such that ∇ = ∇G and the unique
diffeomorphism between TM and T ∗M relating Σp and Σe and verifying (5.2) is �G .
From (�G)∗g

v

j = gradG∇ V v

j ◦ �G , we deduce �G(gj) = dVj , and hence gradG Vj = gj ,
j = 1, . . . ,m. Finally, we show that g0 is a locally gradient vector field. From
(�G)∗g

c

0 = gradG∇ V g0 ◦ �G and the local expression (2.8) of the Christoffel symbols of
the Levi-Civita connection ∇G , we deduce that

∂

∂xb
(Gacg

c
0) =

∂

∂xa
(Gbcg

c
0) ∀a, b = 1, . . . , n ,

which implies that the one-form �G(g0) is closed.
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Example 5.8. Consider a linear input-state-output system Σ on M = Rn, i.e.,
ẋ = Ax+Bu, y = Cx, x ∈ Rn, with A an (n× n)-matrix, B an (n×m)-matrix, and
C an (m× n)-matrix. Assume Σ is observable and controllable. Consider the trivial
connection ∇ on Rn whose Christoffel symbols are given by Γa

bc = 0, 1 ≤ a, b, c ≤ n.
One can easily verify that Σ is compatible with ∇, and, using the hypothesis of
controllability, that the distribution S0 has full-rank. The prolonged system consists
of the system itself together with the variational equations v̇ = Av + Bup, yp = Cv,
and the gradient extension consists of the system itself together with the equations
ṗ = AT p+CTue, ye = BT p. Hence the prolonged system and the gradient extension
are weakly externally equivalent if and only if the impulse responses of v̇ = Av+Bup,
yp = Cv and ṗ = AT p + CTue, ye = BT p are equal, that is, W (t) = WT (t), with
W (t) := CeAtB. Thus from Theorem 5.4 we recover the classical result (see, e.g., [27])
that an observable and controllable linear system is a gradient system (with respect
to the trivial connection) if and only if W (t) = WT (t).

Remark 5.9. Note that, given the torsion-free affine connection ∇, the pseudo-
Riemannian metric G obtained in the proof of Theorem 5.4 is unique such that Σ is
locally gradient with respect to it. In section 6 below, we investigate the uniqueness
(up to isometry) of gradient realizations with the same input-output behavior.

Remark 5.10. In general, we cannot ensure that the drift vector field g0 is globally
gradient, unless we impose some additional conditions on the topology of the state
space M (for instance, that the first Betti number of M is zero). This is analogous
to the situation in the Hamiltonian setting [13].

Remark 5.11. As noted in section 2.2, one can verify that the pseudo-Riemannian
metric on T ∗M defined by G∇ corresponds to the pullback by �G of the complete lift
Gc to TM of the original metric G on M .

Remark 5.12. A different way to prove the same result which indeed keeps a
closer parallelism with the proof for the Hamiltonian case [13] would be the following.
Once one has proved Lemmas 5.5 and 5.6, instead of proving Lemma 5.7, one can
show that

(ϕ)∗〈X1 : 〈X2 : 〈· · · : 〈Xs : gj〉〉 · · · 〉〉c = gradV 〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉 ◦ ϕ(5.6)

for any j ∈ {1, . . . ,m} and Xr ∈ {g0, g1, . . . , gm}, r = 1, . . . , s. This can be done by
considering the following vector fields on T ∗M ,

Z1 = (ϕ)∗〈X1 : 〈X2 : 〈· · · : 〈Xs : gj〉〉 · · · 〉〉c ◦ ϕ−1 ,

Z2 = gradV 〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉

and showing that their action on the observation space He of Σe is the same. To see
this, recall from Proposition 3.5 that He = V S0 + (H + h)v. Consider a function of
the form LX1LX2 · · · LXsVj , with Xr, r = 1, . . . , s, equal to gi, i = 0, 1, . . . ,m, and
j = 1, . . . ,m. Then,

LZ1 [(LX1LX2 · · · LXsVj)
v]

=
(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉c [(LX1LX2 · · · LXsVj)

v ◦ ϕ]
)
◦ ϕ−1

=
(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉 [LX1

LX2
· · · LXs

Vj ]
)
V

,

where we have used twice the fact that ϕ is the identity mapping on the base manifold
M . On the other hand,

LZ2 [(LX1LX2 · · · LXsVj)
v] =

(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉 [LX1LX2 · · · LXsVj ]

)
V

,
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using property (ii) in Lemma 3.4. The same argument also guarantees that the action
of Z1 and Z2 is the same over the vertical lifts of the functions spanning h. Finally,
let 〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉 ∈ S0 and consider the corresponding function on
T ∗M , V 〈Y1:〈Y2:〈···:〈Ys2

:gk〉〉··· 〉〉. Then,

LZ1

[
V 〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉

]
(5.7)

=
(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉c

[
V 〈Y1:〈Y2:〈···:〈Ys2

:gk〉〉··· 〉〉 ◦ ϕ
])

◦ ϕ−1

=
(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉c

[
(LY1

LY2 · · · LYs2
Vk)

c
])

◦ ϕ−1

=
(
L〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉

[
LY1LY2 · · · LYs2

Vk

])
c ◦ ϕ−1,

where we have used (5.4). In addition,

LZ2

[
V 〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉

]
= V 〈〈X1:〈X2:〈···:〈Xs:gj〉〉··· 〉〉:〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉〉 ,(5.8)

where we have used property (i) in Lemma 3.4. Now, (5.5) implies that (5.7) and (5.8)
coincide. Therefore, Z1 and Z2 coincide over He, and this concludes the proof of (5.6).

Now, one can proceed by taking local coordinates (x1, . . . , xn) in M such that
every coordinate function xi is of the form LX1 · · · LXsVj for a certain j ∈ {1, . . . ,m}
and certain vector fields Xr ∈ {g0, g1, . . . , gm}, r = 1, . . . , s. It follows from (5.4) that
there exists n independent vector fields k1, . . . , kn of the form 〈X1 : 〈X2 : 〈· · · : 〈Xs :
gj〉〉 · · · 〉〉 such that �G(ki) = dxi. Finally, spelling out (5.6) for the vector fields ki

and making use of the symmetry of G, one obtains that the Christoffel symbols of the
affine connection ∇ are precisely given by (2.8), which concludes the result.

6. Uniqueness of the gradient realization. In this section, we investigate
the gradient analogue of the following well-known result for Hamiltonian systems: if
two minimal Hamiltonian systems have the same input-output map, then they are
symplectomorphic [3, 22]. We will see how the setting of Theorem 5.4 also provides
sufficient conditions under which a similar result holds for gradient realizations.

In [25], Varaiya conjectured that if there exists a state-space diffeomorphism be-
tween two locally controllable gradient systems, then the diffeomorphism is actually
an isometry between the underlying pseudo-Riemannian manifolds (see also [26]).
Subsequently, in [1, 2], Basto Gonçalves produced an example of two locally control-
lable and observable gradient systems living on the same state space with state-space
diffeomorphism given by the identity mapping, where, however, the Riemannian met-
rics are different; thus providing a counterexample to the conjecture by Varaiya. For
the sake of completeness, we review it in the following.

Example 6.1 (see [1, 2]). Consider two gradient systems Σ1 and Σ2 on M1 =
M2 = R4 with Riemannian metrics G1 and G2 given, respectively, by

G1(x1, x2, x3, x4) = dx1 ⊗ dx1 + e−x4dx2 ⊗ dx2 + e−x1dx3 ⊗ dx3 + e−x3dx4 ⊗ dx4 ,

G2(x1, x2, x3, x4) = dx1 ⊗ dx1 + e−x4dx2 ⊗ dx2 +
(
e−x1 + ex3

)
dx3 ⊗ dx3

+ e−x3
(
1 + e2x1

)
dx4 ⊗ dx4 − ex1

(
dx3 ⊗ dx4 + dx4 ⊗ dx3

)
.

Furthermore, let Σ1 and Σ2 have both zero drift vector fields and the same output
functions given by

y1 = V1(x) := x1 , y2 = V2(x) := x2 + x3 + x4 .
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From the definition of G1 and G2, it easily follows that the input vector fields of both
systems are the same, i.e.,

gradG1 V1 = gradG2 V1 =
∂

∂x1
,

gradG1 V2 = gradG2 V2 = ex4
∂

∂x2
+ ex1

∂

∂x3
+ ex3

∂

∂x4
.

Therefore, Σ1 and Σ2 are externally equivalent with state-space diffeomorphism given
by the identity mapping Id : R4 → R4. However, the metrics G1 and G2 are different,
and hence the identity mapping is not an isometry. It should also be noted that Σ1

and Σ2 are both controllable and observable.
The following result shows that, under the hypotheses of Theorem 5.4, a state-

space diffeomorphism linking two gradient systems is an isometry, provided the state-
space diffeomorphism is already known to respect the affine connections determined by
their respective pseudo-Riemannian metrics. A similar statement is already contained
in [1, 2]. Here we make use of an argument given in [13, p. 58] for the case of
Hamiltonian systems.

Proposition 6.2. Let Σ1 and Σ2 be two gradient systems with state spaces(
M1,G1

)
and

(
M2,G2

)
, respectively. For i = 1, 2, assume that Σi is observable

with dim dHi constant, and that the distribution Si
0 is full-rank. Furthermore, let

Σ1 and Σ2 be externally equivalent with the corresponding state-space diffeomorphism
ψ : M1 → M2 satisfying

ψ∗(∇G1

X Y ) ◦ ψ−1 = ∇G2

ψ∗X◦ψ−1(ψ∗Y ◦ ψ−1) ∀X,Y ∈ X(M1) .(6.1)

Then ψ∗G2 = G1, that is, ψ is an isometry.
Proof. By Lemmas 5.5 and 5.6, the map ϕi = �Gi is the unique diffeomorphism

satisfying (5.2) for system Σi, i = 1, 2. It is easily checked that since Σ1 and Σ2

are externally equivalent with state-space diffeomorphism ψ, then their prolongations
Σ1p and Σ2p are externally equivalent with uniquely determined state-space diffeo-
morphism given by ψ∗ : TM1 → TM2. Furthermore, it can be readily checked that
the gradient extensions Σ1e and Σ2e are externally equivalent with state-space dif-
feomorphism ψ∗ : T ∗M2 → T ∗M1, provided ψ satisfies (6.1). This is because (6.1)

implies that ψ∗ respects the Riemannian extensions G∇G1

and G∇G2

determined, re-
spectively, by the affine connections ∇G1

and ∇G2

. Therefore, by the uniqueness of
all these state-space diffeomorphisms, we obtain the following commutative diagram:

TM1 TM2

T ∗M1 T ∗M2�

�

� �

ψ∗

ϕ2ϕ1

ψ∗

that is,

ψ∗ ◦ ϕ2 ◦ ψ∗ = ϕ1 .(6.2)

Recalling that ϕi = �Gi , i = 1, 2, it is readily seen that (6.2) is equivalent to

ψ∗G2 = G1,(6.3)

that is, ψ :
(
M1,G1

)
→

(
M2,G2

)
is an isometry.
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Remark 6.3. Note that in Example 6.1 the torsion-free connections determined
by G1 and G2 are different, and hence the identity map does not respect them.

Remark 6.4. Since (6.2) is equivalent to (6.3), one may also conclude that under
the conditions of Theorem 5.4, the state-space diffeomorphism ψ : M1 → M2 is an
isometry if and only if ψ∗ : T ∗M2 → T ∗M1 is a state-space diffeomorphism between
Σ1e and Σ2e.

7. Conclusions. We have discussed necessary and sufficient conditions for a
nonlinear control system to be realizable as a gradient control system with respect
to a pseudo-Riemannian metric whose Levi-Civita connection coincides with a given
affine connection. The results rely on a suitable notion of compatibility of the system
with respect to the given affine connection, and on the input-output behavior of the
prolonged system and the gradient extension. The symmetric product associated
with an affine connection plays a key role in the discussion. We believe that the
developments in this paper not only give insight in the system-theoretic properties
of the physically motivated class of gradient control systems, but also shed light
on the differential-geometric properties of gradient and Lagrangian control systems.
Future work will include the investigation of necessary and sufficient conditions that
guarantee the existence of an affine connection such that the hypothesis of Theorem 5.4
are satisfied, the development of equivalent characterizations in terms of the input-
output behavior of the original nonlinear system, and the study of the application of
the results to specific classes of nonlinear systems, such as bilinear, homogeneous, and
polynomial systems.

8. Appendix. In this appendix we present a simplifying result concerning the
compatibility hypothesis in the statement of Theorem 5.4. In general, checking condi-
tions (a) and (b) in the definition of compatibility between the affine connection ∇ and
the nonlinear system Σ cannot be performed for every possible choice of vector fields
in {g0, g1, . . . , gm} and {V1, . . . , Vm}. The following result shows that it is enough to
check the compatibility condition on a basis of vector fields and the corresponding
associated functions once we know that the prolongation and the gradient extension
of Σ are weakly externally equivalent.

Lemma 8.1. Let ∇ be a torsion-free affine connection. Assume Σ is observable
with dim dH constant, and that the distribution S0 is full-rank. Assume the prolon-
gation Σp and the gradient extension Σe of Σ are weakly externally equivalent. Then
Σ is compatible with ∇ if and only if properties (a) and (b) are verified by a basis of
vector fields in S0.

Proof. Let R1, . . . , Rn be linearly independent vector fields of the form Ri =
〈Xi

1 : 〈Xi
2 : 〈· · · : 〈Xi

si : gji〉〉 · · · 〉〉, i = 1, . . . , n. Let VRi denote the function on M
given by LXi

1
· · · LXi

si
Vji . From (5.4), we know that ϕT (Ri) = dVRi . Assume prop-

erties (a) and (b) in the definition of the compatibility condition (cf. Definition 5.1)
are verified by any combination of the vector fields R1, . . . , Rn and the functions
VR1

, . . . , VRn
. Let X = 〈X1 : 〈X2 : 〈· · · : 〈Xs : gk〉〉 · · · 〉〉 be any element of S0, and

VX = LX1
LX2

· · · LXs
Vk the associated function on M . Since S0 is full-rank, we have

that X =
∑n

i=1 f
i
XRi. Then,

dVX = dLX1LX2 · · · LXsVk = ϕT (X) =

n∑
i=1

f i
XϕT (Ri) =

n∑
i=1

f i
XdVRi .
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Now, let us see that properties (a) and (b) are naturally verified by all possible choices
of vector fields in S0 and generating functions in H. First,

L〈X1:〈X2:〈···:〈Xs1
:gj〉〉··· 〉〉

[
LY1LY2 · · · LYs2

Vk

]
=

n∑
i=1

f i
Y dVRi

⎛⎝ n∑
j=1

f j
XRj

⎞⎠ =

n∑
i,j=1

f i
Y f

j
XdVRj

(Ri) =

n∑
j=1

f j
XdVRj

(
n∑

i=1

f i
XRi

)

= L〈Y1:〈Y2:〈···:〈Ys2
:gk〉〉··· 〉〉

[
LX1LX2 · · · LXs1

Vj

]
,

where we have used the fact that condition (a) is verified by the vector fields R1, . . . , Rn

and the functions VR1 , . . . , VRn . Second,

L〈〈X1:〈X2:〈···:〈Xs1 :gj〉〉··· 〉〉:〈Y1:〈Y2:〈···:〈Ys2 :gk〉〉··· 〉〉〉
[
LZ1LZ2 · · · LZs3

Vl

]
(8.1)

=

n∑
i=1

f i
ZdVRi

⎛⎝ n∑
j=1

f j
〈X:Y 〉Rj

⎞⎠ =

n∑
i,j=1

f i
Zf

j
〈X:Y 〉dVRj (Ri)

=
n∑

j=1

f j
〈X:Y 〉dVRj

(
n∑

i=1

f i
ZRi

)
=

〈
n∑

j=1

f j
〈X:Y 〉dVRj , Z

〉
.

Let us compute the coefficients f j
〈X:Y 〉. We have

〈〈X1 : 〈X2 : 〈· · · : 〈Xs1 : gj〉〉 · · · 〉〉 : 〈Y1 : 〈Y2 : 〈· · · : 〈Ys2 : gk〉〉 · · · 〉〉〉

=

n∑
i,j=1

〈f i
XRi : f j

Y Rj〉 =

n∑
i,j=1

(
f i
Xf j

Y 〈Ri : Rj〉 + f i
XRi[f

j
Y ]Rj + f j

Y Rj [f
i
X ]Ri

)

=

n∑
k=1

⎛⎝ n∑
i,j=1

f i
Xf j

Y f
k
〈Ri:Rj〉 +

n∑
i=1

f i
XRi[f

k
Y ] +

n∑
j=1

f j
Y Rj [f

k
X ]

⎞⎠Rk .

Now, note that
∑n

k=1〈fk
〈Ri:Rj〉dVRk

, Rl〉 =
∑n

k=1〈fk
〈Ri:Rj〉dVRl

, Rk〉 using condition

(a) for the vector fields R1, . . . , Rn and the functions VR1 , . . . , VRn . Moreover, us-
ing condition (b),

∑n
k=1〈fk

〈Ri:Rj〉dVRl
, Rk〉 = 〈dVRl

, 〈Ri : Rj〉〉 = 〈d(dVRi [Rj ]), Rl〉.
Hence,

∑n
k=1 f

k
〈Ri:Rj〉dVRk

= d(dVRi
[Rj ]). On the other hand,

f i
XRi[f

k
Y ]dVRk

= f i
X〈dfk

Y , Ri〉dVRk

= f i
X〈dVRk

, Ri〉dfk
Y + f i

X

(
dfk

Y ∧ dVRk

)
(Ri, ·).

Since f i
X

(
dfk

Y ∧ dVRk

)
(Ri, ·) = f i

X

(
d
(
fk
Y dVRk

))
(Ri, ·) = f i

X (d (dVY )) (Ri, ·) = 0, we
have

f i
XRi[f

k
Y ]dVRk

= f i
X〈dVRk

, Ri〉dfk
Y .
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Analogously, one can see that f j
Y Rj [f

k
X ]dVRk

= f j
Y 〈dVRk

, Rj〉dfk
X . Finally,

n∑
k=1

fk
〈X:Y 〉dVRk

=

n∑
k=1

⎛⎝ n∑
i,j=1

f i
Xf j

Y f
k
〈Ri:Rj〉 +

n∑
i=1

f i
XRi[f

k
Y ] +

n∑
j=1

f j
Y Rj [f

k
X ]

⎞⎠ dVRk

=

n∑
i,j=1

f i
Xf j

Y d(dVRi
[Rj ]) +

n∑
i,j=1

f i
X〈dVRj , Ri〉df j

Y +

n∑
i,j=1

f j
Y 〈dVRi , Rj〉df i

X

= d

⎛⎝ n∑
i,j=1

f i
Xf j

Y dVRi
[Rj ]

⎞⎠ = d(LY [VX ]) .

Plugging this equality into (8.1), we get the desired result.

Acknowledgment. The authors would like to thank the reviewers for their help-
ful remarks on how to improve the presentation of the paper.
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OPTIMAL CONTROL PROBLEMS WITH FINAL OBSERVATION
GOVERNED BY EXPLOSIVE PARABOLIC EQUATIONS∗
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Abstract. We study optimal control problems with final observation. The governing parabolic
equations or systems involve superlinear nonlinearities, and their solutions may blow up in finite
time. Our proof of the existence, regularity, and optimality conditions for an optimal pair is based
on uniform a priori estimates for the approximating solutions. Our conditions on the growth of the
nonlinearity are essentially optimal. In particular, we also solve a long-standing open problem of
Lions concerning singular systems.

Key words. optimal control problem, nonlinear parabolic equation, blow-up, final observation,
optimality conditions, strong nonlinearities
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1. Introduction. In his book [21], Lions studied several optimal control prob-
lems governed by nonlinear parabolic equations of the form

(1.1) ∂ty − Δy = yλ + u, x ∈ Ω, t ∈ [0, T ],

where Ω is a bounded domain in Rn, λ ∈ {2, 3}, u = u(x, t) is the control, and
y = y(x, t) is the state variable. Equation (1.1) is complemented by suitable boundary
and initial conditions, for example,

(1.2) y = 0 on ∂Ω × (0, T ), y(·, 0) = y0,

where y0 ∈ L∞(Ω). If u is regular enough, then the state problem (1.1)–(1.2) possesses
a unique strong solution y = y(u) defined on the maximal existence interval Ju (see
section 2 for the definition of a strong solution). However, even for smooth controls u,
the solution y(u) need not be global—the interval Ju need not coincide with [0, T ]. In
this case, y(u) blows up at the time t(u) := supJu; i.e., it develops a singularity and
leaves its natural regularity class. After blow-up, the solution either can be continued
in a weak sense (the blow-up is incomplete [16]) or such continuation is not possible
(the solution blows up completely [9]).

Let Uad denote the set of admissible controls,

UG
ad := {u ∈ Uad : the solution y(u) is global},

and let J = J(y, u) be the cost functional. A standard way to solve the optimal control
problem

(1.3) minimize J(y(u), u) over u ∈ UG
ad
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is to consider controls uk, k = 1, 2, . . . , such that (J(y(uk), uk)) is a minimizing
sequence for (1.3) and to show that a suitable subsequence of ((y(uk), uk)) converges
to an optimal pair (y(u), u). Assume, for example, that Uad is a (weakly closed) subset
of a reflexive Banach space. If J is coercive with respect to u (or Uad is bounded), then
the sequence (uk) is bounded and we may assume that uk → u in the weak topology.
Similarly, if J is coercive with respect to y (in a suitable space of functions defined
in Q := Ω × [0, T ]), then the sequence (y(uk)) is bounded and standard compactness
results for the state problem enable us to pass to the limit in order to find a minimizer
for (1.3).

If we consider problems with final observation (where J depends just on u and the
final value y(·, T )), then the coerciveness of J provides a priori estimates for uk and
final values of y(uk). However, such estimates are, in general, not sufficient for the
uniform boundedness of solutions y(uk) on the whole interval [0, T ]. Consequently,
we have to find sufficient conditions on λ and/or other parameters of the problem
which guarantee a priori bounds for global solutions y of (1.1)–(1.2) depending only
on suitable norms of u and y(·, T ).

Let us discuss the question of a priori bounds for problems with final observation
in the particular setting of [21, section I.10]. Fix N > 0, q ≥ 1, yd ∈ Lq(Ω), and set

J(y, u) :=

∫
Ω

|y(x, T ) − yd(x)|q dx + N

∫
Q

u2(x, t) dx dt.

Assume also that Uad ⊂ L2(Q) is closed and convex and that UG
ad �= ∅. If λ = 2,

q = 3, and n ≤ 3, then [21, Theorem I.10.1] and its proof guarantee the required
bounds for the solutions y(uk), hence the existence of an optimal pair (y, u). If, in
addition, n ≤ 2, then optimality conditions for the optimal pair (y, u) were derived
in [21, Theorem I.10.3]. On the other hand, the existence of an optimal pair in
the case λ = 3, q = 4 (or λ = 2, q < 3) and the optimality conditions for n = 3
were left as open problems; see [21, Remarks I.10.1, I.10.2, and I.10.4]. Our results
give, in particular, positive answers to all those open problems. In fact, we consider
an arbitrary dimension n, exponents q ≥ 2, λ > 1 (where either yλ := |y|λ−1y or
yλ := |y|λ), and controls u ∈ Lr([0, T ], L2(Ω)), r ≥ 2, and find sufficient conditions
on q, λ, and r that guarantee the existence of optimal controls and the optimality
conditions (see section 2 for precise statements of our results).

We also show that many of our conditions are essentially optimal. In particular,
if Uad ⊂ L∞([0, T ], L2(Ω)), then our sufficient conditions on q and λ guaranteeing the
existence of optimal controls have the form

λ <
n + 2

(n− 2)+
and q ∈

(
(λ− 1)

n

2
,

2n

(n− 4)+

)
,

where a+ := max(a, 0) and a/b+ := ∞ if a > 0 and b ≤ 0. The upper bound for q
is required by the (low) regularity of controls u: it guarantees y(u) ∈ C([0, T ], Lq(Ω))
so that J(y(u), u) is defined. If q < (λ − 1)n/2 or λ > (n + 2)/(n − 2)+ and n ≤ 10,
then we show that problem (1.3) need not be solvable even if the set Uad is a compact
subset of C∞(Ω̄ × [0, T ]) and UG

ad �= ∅; see Remark 3.4. This nonexistence result is
due to the fact that the set UG

ad need not be closed in Uad: if uk ∈ UG
ad, uk → u ∈ Uad,

then the limiting solution y(u) may blow up at t(u) < T . The conditions on q show
the importance of a good choice of the cost functional in order to control the equation.
On the other hand, if λ > (n+ 2)/(n− 2)+, then (a strong) solvability of our control
problem cannot be guaranteed for any q.
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The solvability of (1.3) with Uad, J as above was proved by Imanuvilov [18,
Theorem 2.1] and Fursikov [15, Theorem 4.3] for r = q = 2 and any λ > 1, but their
function y(u) corresponding to the optimal control u need not be a strong solution in
our sense. In fact, the results of [18], [15] also apply to the example of Remark 3.4(i),
where y(u) blows up at t(u) < T (but can be continued in a weak sense). This lack
of regularity causes serious problems in establishing the optimality conditions. In
order to obtain these conditions, Imanuvilov and Fursikov have to assume q = 2 ≥
(λ− 1)n/2; see [15, Theorem 5.1]. Note also that the proofs in [18], [15] substantially
use the choice q = 2 and hence require λ ≤ 1+4/n. In particular, if n = 3, then their
method cannot be used in the case λ = 3, q = 4 mentioned above.

Our proof of a priori estimates is based on energy and perturbation arguments in
[25], [27]. The same approach can be used for more general problems. For example,
the case of general second-order elliptic operators and/or general nonlinearities with
polynomial growth can be solved by adopting the proofs in [26]. Similarly, if one con-
siders linear or nonlinear parabolic equations complemented by nonlinear Neumann
boundary conditions of the form ∂νy = yλ or ∂νy = yλ+u, then one can use estimates
in [28] and [11].

In this paper we consider two modifications of the model problem (1.1)–(1.2): a
problem with multiplicative control and a problem governed by a parabolic system.

In the case of multiplicative control we replace the state equation (1.1) by

(1.4) ∂ty − Δy = yλ + uy, x ∈ Ω, t ∈ [0, T ],

and we prove the required a priori bounds by using the energy and perturbation
arguments mentioned above. This study is motivated by the fact that multiplicative
controls often appear in the literature.

In section 6 we investigate the existence of optimal controls for problems governed
by the system

(1.5)
∂ty1 − Δy1 = κy1y2 − by1 + u, x ∈ Ω, t ∈ [0, T ],

∂ty2 − dΔy2 = ay1, x ∈ Ω, t ∈ [0, T ],

}
which is complemented by suitable boundary and (nonnegative) initial conditions.
Here d ≥ 0, κ, a > 0, b ∈ R, and u is a nonnegative control. System (1.5) (with
d = 0 and u = 0) was derived in [19] as a model for the dynamics of a nuclear reactor
close to a stationary state. The state variables y1 and y2 correspond to the neutron
flux and the temperature, respectively, and the constant κ represents the temperature
feedback (cf. also [29]). Since this system (with d ≥ 0, κ > 0, and u = 0) possesses
an interesting dynamics with possible blow-up in finite time, it became the object
of study of many mathematical papers (see [10], [17], [23], [24], [31], [32], and the
references therein). We consider the case d = κ = 1 and study the corresponding
optimal control problem with final observation. Since the energy arguments used in
the case of (1.1) or (1.4) cannot be applied, we use a different approach to the proof
of a priori bounds.

This paper is organized as follows. In section 2 we formulate our main results
(Theorems 2.3, 2.6, 2.8, and 2.10). Sections 3 and 4 are devoted to the proof of
existence of optimal controls and optimality conditions, respectively, for the problem
governed by the model equation (1.1). Problems governed by (1.4) and (1.5) are
studied in sections 5 and 6, respectively. In the appendix we recall, for the reader’s
convenience, from [6] the basic existence, uniqueness, and stability results for semi-
linear parabolic equations which are the fundament for our investigations.
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2. Main results. First we introduce some notation which will be used through-
out this paper. If a, b ∈ R, then we denote a ∨ b := max(a, b) and a ∧ b := min(a, b).
If p ∈ (1,∞), then p′ is the dual exponent defined by 1/p + 1/p′ = 1. For X ⊂ Rn

we write D(X) for the space of smooth functions with compact support in X. The
symbols w and w∗ are used to denote the weak and weak-star topology, respectively.
By Ω we mean an open bounded subset of Rn having a smooth boundary Γ. We also
set Q := Ω × J and Σ := Γ × J , where J := [0, T ] with a fixed T > 0. By B we
denote one of the boundary operators γ, ∂ν , where γ is the trace operator and ∂ν is
the derivative with respect to ν, the outer unit normal on Γ.

Let s ∈ [−2, 2] and 1 < q < ∞. We write W s
q := W s

q (Ω) for the usual Sobolev–

Slobodeckǐi spaces; hence W 0
q = Lq(Ω). If B = γ, then we set

W s
q,B :=

⎧⎪⎨⎪⎩
{
u ∈ W s

q ; Bu = 0
}
, 1/q < s ≤ 2,

W s
q , 0 ≤ s < 1/q,

(W−s
q′,B)′, −2 ≤ s < 0, s �= −1 + 1/q,

where X ′ denotes the dual space to X. If B = ∂ν , then

W s
q,B :=

⎧⎪⎨⎪⎩
{
u ∈ W s

q ; Bu = 0
}
, 1 + 1/q < s ≤ 2,

W s
q , 0 ≤ s < 1 + 1/q,

(W−s
q′,B)′, −2 ≤ s < 0, s �= −2 + 1/q.

In either case the dual spaces are determined by means of the standard Lq-duality
pairing. We also set Sq := {−2 + 1/q,−1 + 1/q, 1/q, 1 + 1/q}.

Weak and strong solutions. Consider the problem

(2.1)

∂ty − Δy = f in Q,

By = 0 on Σ,

y(·, 0) = y0 in Ω,

⎫⎪⎬⎪⎭
where y0 ∈ L1(Ω) and f ∈ L1(Q).

Definition 2.1. Assume that s ∈ [0, 2] \ Sq and 1 < p, q < ∞. A weak Lp(W
s
q )-

solution of (2.1) on [0, t], 0 < t ≤ T , is a function y ∈ Lp,loc([0, t),W
s
q,B) such that∫ t

0

∫
Ω

(−∂tϕ− Δϕ)y dx dτ =

∫ t

0

∫
Ω

ϕf dx dτ +

∫
Ω

ϕ(0)y0 dx

for any ϕ ∈ D(Ω × [0, t)) satisfying Bϕ = 0 on Γ × [0, t]. It is global if t = T and
y ∈ Lp((0, T ),W s

q,B).

The differential operator C := 1 − Δ defines an isomorphism between W 2
q,B and

Lq(Ω), and this isomorphism admits a unique extension to an isomorphism C = Cs

between W s
q,B and W s−2

q,B for any s ∈ [0, 2] \ Sq (see [1]). Moreover, −A := 1 −
C generates a strongly continuous analytic semigroup {e−tA ; t ≥ 0} on W r

q,B for
r ∈ [−2, s]\Sq, and

(2.2) (t �→ e−tAx) ∈ C
(
[0, T ],W r

q,B
)
∩ C

(
(0, T ],W s

q,B
)

with

(2.3) ‖e−tAx‖W s
q,B

≤ ct(r−s)/2 ‖x‖W r
q,B

, 0 < t ≤ T,
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for x ∈ W r
q,B (cf. [1, Theorem 5.2] and [2, Theorem V.2.1.3]). Then, provided 1 < q <

n/(n− 2) and 0 ≤ s < 2−n/q′, (the weak form of) problem (2.1) is equivalent to the
abstract evolution equation

(2.4) ẏ + Ay = f in [0, T ], y(0) = y0,

(see [6] for details).
Definition 2.2. A weak Lp(W

s
q )-solution y of (2.1) on [0, t] is a strong Lp(W

s
q )-

solution if

y ∈ W 1
r,loc([0, t),W

s−2
q,B ) ∩ Lr,loc([0, t),W

s
q,B)

for some r > 1 and (2.4) is satisfied a.e. in [0, t]. If, in addition, y ∈ Cρ([0, t),W s
q,B)

for some ρ ∈ [0, 1) then y is called a strong Cρ(W s
q )-solution.

A model problem. Now we are ready to formulate the main results of this paper.
First consider the optimal control problem (1.3) for the model state equation

(2.5)

∂ty − Δy = |y|λ−1y + u in Q,

By = 0 on Σ,

y(·, 0) = y0 in Ω,

⎫⎪⎬⎪⎭
where B ∈ {γ, ∂ν}. As already announced in the introduction, instead of the operator
−Δ and the model nonlinearity |y|λ−1y, we could handle a general second-order el-
liptic operator A and a general superlinear function f(x, y) satisfying suitable growth
conditions (see [26] for details).

In the following theorem we consider cost functionals J which depend on the final
value of y and which satisfy the coercivity condition

(2.6) J(y, u) ≥ c1‖y(·, T )‖Lq(Ω) − c2,

with positive constants c1 and c2.
Theorem 2.3. Let

(2.7) 1 < λ <
n + 2

(n− 2)+
,

(2.8) q ∈
(

(λ− 1)
n

2
,

2n

(n− 4)+

)
and q ≥ 2.

Suppose that r ≥ 2 satisfies

(2.9)
1

r
< 1 − n

4
+

n

2q

and

(2.10) r >
λ + 1

λ

λn− (n + 4)

n + 2 − λ(n− 2)
− 2

λ
.

Assume that y0 ∈ W 2
q,B and Uad is a weakly compact subset of Lr(J, L2(Ω)). If

u ∈ Uad, then (2.5) has a unique strong Lrλ(L2λ)-solution defined on the maximal
existence interval Ju.

Assume UG
ad �= ∅. Let (2.6) be true and assume that J can be written in the

form J(y, u) = JT (y(·, T ), u), where JT : Lq(Ω) × (Lr(J, L2(Ω)), w) → R is lower
semicontinuous. Then the optimal control problem (1.3) governed by (2.5) has a
solution.
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Remark 2.4. (i) Theorem 2.3 remains true if we replace the nonlinearity |y|λ−1y
with |y|λ; see Remark 3.3.

(ii) Let λ, q, r satisfy (2.7)–(2.10), y0 ∈ W 2
q,B,

(2.11) J(y, u) :=

∫
Ω

|y(x, T ) − yd(x)|q dx + N

∫ T

0

(∫
Ω

u2(x, t) dx

)r/2

dt,

where yd ∈ Lq(Ω), N ≥ 0, and let Uad ⊂ Lr(J, L2(Ω)) be closed, convex, and bounded.
Then all assumptions of Theorem 2.3 are satisfied provided UG

ad �= ∅. In addition, if
N > 0, then Uad need not be bounded (we can replace the set Uad in problem (1.3)
with Ũad := Uad ∩ BR, where BR is a large closed ball in Lr(J, L2(Ω))).

(iii) If r = 2, then conditions (2.7)–(2.10) in Theorem 2.3 read

1 < λ <
3n + 8

(3n− 4)+
, q ∈

(
(λ− 1)

n

2
,

2n

(n− 2)+

)
, and q ≥ 2.

In particular, if n ≤ 3, then we may choose λ = 3 and q = 4 (cf. the open problems
of Lions mentioned above).

Example 2.5. Let λ, q, r, y0, J,Uad be as in Remark 2.4(ii). Assume |y0| ≤ C0 for
some C0 ≥ 0 and {u ∈ L∞(Q) ; |u| ≤ Cλ

0 } ⊂ Uad. Then UG
ad �= ∅; hence the optimal

control problem (1.3) has a solution. In fact, the solution ỹ of the linear problem

∂tỹ − Δỹ = 0 in Q,

Bỹ = 0 on Σ,

ỹ(·, 0) = y0 in Ω,

⎫⎪⎬⎪⎭
satisfies |ỹ| ≤ C0 by the maximum principle; thus u := −|ỹ|λ−1ỹ ∈ UG

ad (the function
y := ỹ is a global solution of (2.5)).

Optimality conditions. In order to obtain the optimality conditions, we restrict
ourselves to the case r = 2 and we also fix

(2.12) J(y, u) :=

∫
Ω

|y(x, T ) − yd(x)|q dx + N

∫
Q

u2(x, t) dx dt,

where q > 1, yd ∈ Lq(Ω), and N ≥ 0 are given. This particular choice of r and J

corresponds to the setting of Lions in [21].
Theorem 2.6. Let the assumptions of Theorem 2.3 be fulfilled and let, moreover,

r = 2, Uad be convex, and J be as in (2.12). If (y, u) is an optimal pair for problem
(1.3) governed by (2.5) and p is the solution of

(2.13)

−∂tp− Δp = λ|y|λ−1p in Q,

Bp = 0 on Σ,

p(·, T ) = q|y(·, T ) − yd|q−2(y(·, T ) − yd) in Ω,

⎫⎪⎬⎪⎭
then ∫

Q

(p + 2Nu)(v − u) dx dt ≥ 0 for all v ∈ Uad.

Remark 2.7. (a) The existence of an optimal pair (y, u) in Theorem 2.6 is guaran-
teed by Theorem 2.3. The solvability of (2.13) follows from Lemma 4.1 and Remark 4.2
below.

(b) As in Remark 2.4(ii), in Theorem 2.6 we can allow Uad to be any closed convex
subset of L2(Q) if N > 0.
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Multiplicative controls. Next we consider the optimal control problem (1.3) gov-
erned by the equation

(2.14)

∂ty − Δy = |y|λ−1y + uy in Q,

By = 0 on Σ,

y(·, 0) = y0 in Ω,

⎫⎪⎬⎪⎭
where B ∈ {γ, ∂ν}.

Theorem 2.8. Let (2.6), (2.7), and (2.8) be satisfied, let y0 ∈ W 2
q,B, let Uad ⊂

L∞(Q) be w∗-sequentially compact, and let UG
ad �= ∅. Assume that J can be written in

the form J(y, u) = JT (y(·, T ), u), where JT : Lq(Ω)×(L∞(Q), w∗) → R is sequentially
lower semicontinuous. Then problem (1.3) governed by (2.14) has a solution.

Remark 2.9. Similarly as in Remark 2.4(ii) and Example 2.5, all assumptions of
Theorem 2.8 concerning Uad and J are satisfied if, for example, |y0| ≤ C0, D1 ≥ Cλ−1

0 ,
D2 ≥ 0, N ≥ 0,

Uad = {u ∈ L∞(Q) : −D1 ≤ u ≤ D2},

and

J(y, u) =

∫
Ω

|y(x, T ) − yd(x)|q dx + N‖u‖L∞(Q).

Again, we may take D1 = ∞ and/or D2 = ∞ if N > 0.

Control of systems. Finally, let us formulate our result concerning the parabolic
system

(2.15)

∂ty1 − Δy1 = y1y2 − by1 + u in Q,

∂ty2 − Δy2 = ay1 in Q,

By1 = By2 = 0 on Σ,

y1(·, 0) = y0
1 in Ω,

y2(·, 0) = y0
2 in Ω,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
where a > 0, b ∈ R, B ∈ {γ, ∂ν},

(2.16) y0
1 , y

0
2 ≥ 0, y0

1 , y
0
2 ∈ C2(Ω̄), By0

1 = By0
2 = 0,

(2.17) u ∈ Lr(J, L
+
z (Ω)), r, z > 1,

1

r
+

n

2z
< 1.

As usual, Lr(J, L
+
z (Ω)) is the set of positive functions in Lr(J, Lz(Ω)). The regularity

assumption (2.17) guarantees that (2.15) possesses a unique strong solution (defined
on the maximal existence interval Ju) and that this solution is Hölder continuous in
both x and t.

Theorem 2.10. Consider problem (2.15) with a > 0, b ∈ R. Let (2.16) and
(2.17) be satisfied, where either B = ∂ν and n ≤ 3 or B = γ and n ≤ 2. Assume that
Uad is a compact set in Lr(J, L

+
z (Ω)), UG

ad �= ∅, and J can be written in the form
J(y, u) = JT (y1(T ), u), where

JT : Lq(Ω) × Lr(J, L
+
z (Ω)) → R is lower semicontinuous,
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q ∈ [1,∞], and J(y, u) ≥ c1‖y1(T )‖Lq(Ω)− c2. Then the optimal control problem (1.3)
governed by (2.15) has a solution.

Remark 2.11. As above, we can easily find examples of Uad and J satisfying the
compactness and lower semicontinuity assumptions in Theorem 2.10. The assumption
UG

ad �= ∅ is satisfied if, for example, B = γ, b ≥ 0, 0 ∈ Uad, and y0
1 , y

0
2 are small enough

(e.g., in L∞(Ω)). This is due to the fact that in this case, zero is an asymptotically
stable equilibrium of (2.15) with u = 0. If B = ∂ν , y

0
1 = y0

2 = 0, and 0 ∈ Uad, then
obviously 0 ∈ UG

ad.

3. Solvability of the model problem.
Proof of Theorem 2.3. Set s := 0, q := 2λ, and p := rλ. Since r ≥ 2 and

1 < λ < n+2
(n−2)+

, there exists σ /∈ Sq satisfying

2

rλ′ < σ <
2

r
∧
(
2 − n

2λ′

)
.

Now Theorem A.1 guarantees the existence of a unique Lrλ(L2λ)-solution y of (2.5) de-
fined on the maximal existence interval Ju. Fixing u ∈ UG

ad, this solution is global and
|y|λ ∈ Lr(J, L2(Ω)). The Sobolev maximal regularity for (2.5), [2, Theorem III.4.10.2]
and interpolation theorems in [4] (also see [3, Theorem 3]) imply

(3.1) y ∈ W 1
r (J, L2(Ω)) ∩ Lr(J,W

2
2,B) ↪→ C(J,W 1

2,B) ∩ C(J,W z
q,B) ∩ Lrλ(J, L2λ(Ω))

for any

z < 2 − n

2
+

n

q
− 2

r
,

where the embedding into C(J,W z
q,B) ∩ Lrλ(J, L2λ(Ω)) is compact.

Let (yk, uk) be a minimizing sequence for problem (1.3). We may assume uk →
u weakly in Lr(J, L2(Ω)) and ‖uk‖Lr(J,L2(Ω)) ≤ Cr. Part (a) of the proof of [6,
Theorem 1.1] shows that there exists t0 > 0 independent of k such that

(3.2) yk are uniformly bounded in Lrλ([0, t0], L2λ(Ω)).

Set uk(x, t) := 0 for t ∈ (T, 2T ] and consider problem (2.5) with J replaced by
[0, 2T ]. This problem possesses a unique Lrλ(L2λ)-solution ỹk defined on the maximal
existence interval Jỹk

⊂ [0, 2T ]. The function wk(t) := ỹk(T + t) is the Lrλ(L2λ)-
solution of (2.5) with u ≡ 0, initial condition wk(0) = yk(T ), and the maximal
existence interval Jwk

⊂ [0, T ]. The boundedness of J(yk, uk) implies a bound for
yk(T ) in Lq(Ω), and the well posedness of (2.5) in Lq(Ω), guaranteed by Lemma 3.1
below, shows the existence of t1 > 0 such that [0, t1] ⊂ Jwk

for any k. Consequently,
all solutions yk can be continued on the interval [T, T + t1]. Now Lemma 3.2 below
implies ‖yk(τ)‖Lq(Ω) ≤ Cq for any τ ∈ [0, T ].

Let τ∗ = τ∗(Cr, Cq) be from Lemma 3.1. Fixing δ ∈ (0, t0 ∧ τ∗) and using the
last statement of Lemma 3.1 for wk(t) := yk(τ + t), t ∈ [0, τ∗], τ ∈ [t0 − δ, T − τ∗],
we get a uniform bound for yk in Lrλ([t0, T ], L2λ(Ω)). This bound and (3.2) show
the boundedness of |yk|λ−1yk in Lr(J, L2(Ω)). As in (3.1), we get that the sequence
(|yk|λ−1yk) is compact in Lr(J, L2(Ω)) and (yk(T )) is compact in Lq(Ω). Now it is
easy to pass to the limit to get a solution of (1.3).

Let λ, q be as in Theorem 2.3 and let r ≥ 2 satisfy (2.9). These assumptions
guarantee that there exists s /∈ Sq such that

(3.3)

0∨
(
n

q
− n

λ

)
∨
[
n

q
− 1

λ

(
2 +

n

q

)]
<s<

2

λ
∧
(
2 +

n

q
− n

2
− 2

r

)
∧
[

1

λ

(
2 +

n

q

)
− 2

r
− n

2
+2

]
.
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Lemma 3.1. Let λ, q be as in Theorem 2.3 and let r ≥ 2 satisfy (2.9). Assume
u ∈ Lr(J, L2(Ω)). Then problem (2.5) is well posed in Lq(Ω). More precisely, if the
norm of u in Lr(J, L2(Ω)) is bounded by a constant Cr, y0 ∈ Lq(Ω), ‖y0‖Lq(Ω) ≤ Cq,
and s satisfies (3.3), then there exist τ∗ = τ∗(Cr, Cq) > 0 and a unique solution

(3.4) y ∈ C([0, τ∗], Lq(Ω)) ∩ C((0, τ∗],W s
q,B).

In addition, this solution satisfies

(3.5) ‖y(t)‖Lq(Ω) + ts/2‖y(t)‖W s
q,B

≤ C, t ∈ (0, τ∗],

where C depends only on s, Cr, Cq (and q, r, λ,Ω). If q̂ ≥ q satisfies

(3.6) q̂ <
2n

(n− 4)+
and

1

r
< 1 − n

4
+

n

2q̂
,

then

(3.7) y ∈ C((0, τ∗], Lq̂(Ω))

and

(3.8) ‖y(t)‖Lq̂(Ω) ≤ C(δ, q̂, Cr, Cq), t ∈ [δ, τ∗], δ ∈ (0, τ∗).

Finally,

(3.9) y ∈ C([δ, τ∗],W 1
2,B(Ω)) ∩ Lrλ([δ, τ∗], L2λ(Ω))

for any δ > 0, and the norm of y in this space can be bounded by C(δ, Cr, Cq).

Proof. The proof of the first part is an easy modification of [8, Theorem 4.1]. In
fact, let X be the Banach space of all functions

y ∈ C([0, τ∗], Lq(Ω)) ∩ C((0, τ∗],W s
q,B)

for which

‖y‖X := sup
t∈(0,τ∗]

(‖y(t)‖Lq(Ω) + ts/2‖y(t)‖W s
q,B

) < ∞.

Then it is sufficient to use the Banach fixed point theorem for the mapping

Ky(t) = e−Aty0 +

∫ t

0

e−A(t−τ)(|y(τ)|λ−1y(τ) + u(τ)) dτ

in a large closed ball B of X with radius R, where A is as in (2.4). For example,
assume that y ∈ B and denote by ‖ · ‖s the norm in W s

q,B. Fixing s satisfying (3.3),
there exists

(3.10) z ∈ (1, q] such that λ

(
n

q
− s

)
∨ λ

(
2

r
+

n

2
− 2

)
<

n

z
< 2 +

n

q
− sλ.
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Choose σ1 ∈ (sλ, 2+n/q−n/z) and σ2 ∈ (s+2/r, 2+n/q−n/2), σ1, σ2 /∈ Sq. Then
we have Lz(Ω) ↪→ W σ1−2

q,B and L2(Ω) ↪→ W σ2−2
q,B ; hence it follows from (2.3) that

ts/2‖Ky(t)‖s ≤ C(Cq) + Cts/2
∫ t

0

(t− τ)(σ1−s)/2−1‖|y(τ)|λ−1y(τ)‖σ1−2 dτ

+ Cts/2
∫ t

0

(t− τ)(σ2−s)/2−1‖u(τ)‖σ2−2 dτ

≤ C(Cq) + Cts/2
∫ t

0

(t− τ)(σ1−s)/2−1‖y(τ)‖λs dτ

+ Cts/2
∫ t

0

(t− τ)(σ2−s)/2−1‖u(τ)‖L2(Ω) dτ

≤ C(Cq) + CRλts/2
∫ t

0

(t− τ)(σ1−s)/2−1τ−sλ/2 dτ

+ CCrt
s/2

(∫ t

0

(t− τ)r
′[(σ2−s)/2−1] dτ

)1/r′

,

which shows ts/2‖Ky(t)‖s < R/2 if R = R(Cq) is large enough and t = t(R,Cr) is
small enough. Similar arguments show the same bound for ‖Ky(t)‖Lq(Ω) and the fact
that K is a contraction. Obviously, the fixed point of K is a solution of our problem.
Uniqueness of this solution in the class (3.4) can be proved in the same way as in [7,
pp. 295–296].

We have W s
q,B ↪→ Lq1(Ω) whenever n/q1 > n/q − s. Due to the upper bound for

s in (3.3), q1 is restricted by the conditions

(3.11)
n

q1
> −2 +

2

r
+

n

2
and

n

q1
>

n

q
− ε(q),

where

ε(q) :=
2

λ
+

n

λq
+ 2 − 2

r
− n

2
> 0.

Let q̂ ≥ q satisfy (3.6). If n/q̂ > n/q − ε(q), then W s
q,B ↪→ Lq̂(Ω) since the second

inequality in (3.6) guarantees that the first condition in (3.11) is satisfied with q1 = q̂.
Consequently, (3.7) and (3.8) follow from (3.4) and (3.5). If n/q̂ ≤ n/q − ε(q), then
we fix q1 > q satisfying (3.11) (this is possible due to (2.9)). Now the first part of the
lemma with q replaced by q1 (and t = 0 replaced by t = δ1, where δ1 > 0 is small)
implies y ∈ C((δ1, τ

∗],W s1
q1,B). Similarly as above, W s1

q1,B ↪→ Lq2(Ω), where

n

q2
> −2 +

2

r
+

n

2
and

n

q2
>

n

q1
− ε(q1).

Repeating this bootstrapping argument finitely many times, we obtain (3.7) and (3.8).
It remains to prove (3.9) and the corresponding bound. Fix δ ∈ (0, τ∗) and set

t0 := δ/2, J0 := [t0, τ
∗], and J∗ := [δ, τ∗]. Taking R > 1 large and q̂ close to its upper

bound, we have q̂ > λ and |y|λ ∈ LR(J0, Lq̂/λ(Ω)). Set f1 := |y|λ−1y and f2 := u.
Writing y = y1 + y2 + y3, where Byi = 0, i = 1, 2, 3, and

(3.12)

∂ty1 − Δy1 = f1 in Ω × J0, y1(t0) = 0,

∂ty2 − Δy2 = f2 in Ω × J0, y1(t0) = 0,

∂ty3 − Δy3 = 0 in Ω × J0, y1(t0) = y(t0),

⎫⎪⎬⎪⎭
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the maximal Sobolev regularity implies

y1 ∈ W 1
R(J0, Lq̂/λ(Ω)) ∩ LR(J0,W

2
q̂/λ,B) ↪→ C(J0,W

1
2,B)

since we can take q̂ > 2λn/(n+2) and R arbitrarily large. Similar arguments guarantee
y2 ∈ C(J0,W

1
2,B) and y3 ∈ C(J∗,W 1

2,B); hence y ∈ C(J∗,W 1
2,B) (and the corresponding

estimate in this space is valid).
Choose k > 1 such that q̂ > (λ − 1/k)n/2 and fix m ∈ N such that kmq̂ > 2λ.

Choose also R > rλm+1. Set ti := δ/2 + iδ/(2m + 2), Ji := [ti, τ
∗], and q̂i := kiq̂,

i = 1, 2, . . . ,m. Notice that y2, y3 ∈ Lrλ(J1, L2λ(Ω)) and W 2
q̂/λ,B ↪→ Lq̂1(Ω); hence

y1 ∈ LR(J1, Lq̂1(Ω)). Consequently, |y|λ can be written in the form

|y|λ = f̃1 + f̃2, f̃1 ∈ LR/λ(J1, Lq̂1/λ(Ω)), f̃2 ∈ Lr(J1, L2(Ω)).

Writing y = ỹ1 + ỹ2 + ỹ3, where Bỹi = 0, i = 1, 2, 3, and ỹ1, ỹ2, ỹ3 satisfy (3.12)
with f1, f2, J0, t0 replaced by f̃1, f̃2, J1, t1, respectively, we obtain as above ỹ2, ỹ3 ∈
Lrλ(J2, L2λ(Ω)) and ỹ1 ∈ LR/λ(J2, Lq̂2(Ω)). Repeating this argument m times we get

y ∈ Lrλ(J∗, L2λ(Ω)) + LR/λm(J∗, Lq̂m(Ω)) = Lrλ(J∗, L2λ(Ω))

(and the corresponding estimates), which concludes the proof.
Lemma 3.2. Let λ, q, r be as in Theorem 2.3. Let t1 > 0, u ∈ Lr([0, T + t1],

L2(Ω)), and let its norm in this space be bounded by a positive constant Cr. As-
sume that y is a global solution of (2.5) (with J replaced by [0, T + t1]) and y0 ∈
W 2

q (Ω), ‖y0‖W 2
q (Ω) ≤ Cq. Then there exists a constant C = C(Cr, Cq, t1) such that

‖y(t)‖Lq(Ω) ≤ C for any t ∈ [0, T ].
Proof. The proof is a modification of the proof of the main result in [25] (cf. also

[26] and [27, proof of Theorem 5.1]).
All our constants (and bounds) in this proof may change from line to line and

may depend on Cr, Cq, t1. First we deduce from Lemma 3.1 and the beginning of the
proof of Theorem 2.3 that y ∈ C([0, T + t1],W

1
2,B) and there exists τ > 0 such that

(3.13) y is bounded in C([0, τ ], Lq(Ω)) by a constant C = C(Cq, Cr).

Denote

V (t) =
1

2

∫
Ω

|∇y(x, t)|2 dx− 1

λ + 1

∫
Ω

|y(x, t)|λ+1 dx.

If u is smooth, then

V ′(t) = −
∫

Ω

(∂ty)
2 dx +

∫
Ω

u∂ty dx ≤ 1

2

∫
Ω

u2 dx− 1

2

∫
Ω

(∂ty)
2 dx;

hence

(3.14) V (τ2) − V (τ1) ≤ C − 1

2

∫ τ2

τ1

∫
Ω

(∂ty)
2 dx dt.

Now let u be general. Approximating u by smooth functions uk we see that (3.14)
remains true for any u ∈ Lr([0, T + t1], L2(Ω)).

We will show that V (t) is bounded for t ∈ [0, T ]. The upper estimate for V (t)
follows immediately from (3.14). To prove the lower estimate we assume on the
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contrary that V (t0) ≤ −(C + K) for some t0 ∈ [0, T ], where C is from (3.14) and
K � 1. Then (3.14) guarantees V (t) ≤ −K for all t ≥ t0. Multiplying the equation
in (2.5) by y and integrating over Ω we obtain

(3.15)

1

2

d

dt

∫
Ω

y2 dx = −2V (t) + c1

∫
Ω

|y|λ+1 dx +

∫
Ω

uy dx

≥ K + c2

(∫
Ω

y2 dx

)(λ+1)/2

− C2

∫
Ω

u2 dx,

where the inequality is true for all t ≥ t0. Denote Y (t) =
∫ t

t0

∫
Ω
y2 dx dt. Then

integrating estimate (3.15) we get

Y ′ ≥ c3Y
(λ+1)/2 + 2K(t− t0) − C3.

Let K ≥ 10C3/t1. Integrating the inequality Y ′ ≥ 2K(t − t0) − C3 on [t0, t0 + t1/2]
we obtain

Y (t0 + t1/2) ≥ K
t21
4
− C3

t1
2

≥ K
t21
5
.

We also have

Y ′ ≥ c3Y
(λ+1)/2 for t ≥ t0 +

t1
2
.

Since the solution of the equation Z ′(t) = c3Z
(λ+1)/2(t) for t ≥ 0, Z(0) = Kt21/5,

blows up at t < t1/2 if K is large enough, the function Y (t) ≥ Z(t− t0 − t1/2) blows
up at some t < T + t1, which yields a contradiction. Hence K has to be bounded by
a constant depending only on c3, C3, t1, and λ. Consequently, V is bounded on [0, T ]
and (3.14) provides a bound for y in the space W 1

2 ([0, T ], L2(Ω)).
If λ < 1 + 4/n, then Lemma 3.1 with q replaced by q̃ := 2 and q̂ replaced by q

guarantees a bound for y in L∞([τ, T ], Lq(Ω)) which (together with (3.13)) implies
the assertion.

Let λ ≥ 1 + 4/n. Since y is bounded in W 1
2 ([0, T ], L2(Ω)) ↪→ L∞([0, T ], L2(Ω)),

we have ∫ T

0

‖uy‖zL1(Ω) dt ≤ C

∫ T

0

‖u‖zL2(Ω) dt ≤ C, z ≤ r.

Using this bound and the boundedness of V on [0, T ], we obtain from the equality in
(3.15) ∫ T

0

‖y(t)‖z(λ+1)
Lλ+1(Ω) dt ≤ C

(
1 +

∫ T

0

‖∂ty(t)y(t)‖zL1(Ω) dt

)
.

In particular, if z = 2, then this estimate, the bound for y in W 1
2 ([0, T ], L2(Ω)) and

‖∂ty(t)y(t)‖L1(Ω) ≤ ‖∂ty(t)‖L2(Ω)‖y(t)‖L2(Ω) ≤ C‖∂ty‖L2(Ω)

guarantee a uniform bound for y in

Xz := Lz(λ+1)([0, T ], Lλ+1(Ω)).
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Interpolating between the bound of y in Xz and in W 1
2 ([0, T ], L2(Ω)) yields a bound

in L∞([0, T ], Lm(Ω)) provided

(3.16) m < λ + 1 − λ− 1

z + 1

(cf. [25, (12)]). If r > 2, then we will use the bootstrapping procedure in [25] in order
to get these estimates for some z > 2. Replacing u by y, p by λ, q by z, q̃ by z̃, and
λ by m in [25], denoting

λ1 := (λ + 1)/λ, θ :=
λ + 1

λ− 1

m− 2

m
, β :=

2

(1 − θ)z̃
,

and assuming the estimate in Xz for some z ≥ 2, we get for z̃ > z∫ T

0

‖y(t)‖z̃(λ+1)
Lλ+1(Ω) dt ≤ C

(
1 +

∫ T

0

‖∂ty(t)y(t)‖z̃L1(Ω) dt

)

≤ C

(
1 +

∫ T

0

‖∂ty(t)‖z̃Lm′ (Ω) dt

)

≤ C

(
1 +

∫ T

0

‖∂ty(t)‖θz̃Lλ1
(Ω)‖∂ty(t)‖

(1−θ)z̃
L2(Ω) dt

)

≤ C

⎛⎝1 +

(∫ T

0

‖∂ty(t)‖θβ
′z̃

Lλ1
(Ω) dt

)1/β′⎞⎠
≤ C

⎛⎝1 +

(∫ T

0

‖y(t)‖θβ
′z̃λ

Lλ+1(Ω) dt

)1/β′⎞⎠,
provided z̃ ≤ r and

(3.17) u ∈ Lθβ′z̃(J, Lλ1(Ω)).

Recall from [25] that the bootstrap condition θβ′ ≤ λ1 is satisfied if m is chosen close
to its upper bound and z̃ is close to z. For such m and z̃, one can even check that
θβ′ < (λ + 1)r/(λr + 2) provided z̃ < r. Consequently, θβ′z̃ ∨ z̃ < r (and (3.17) is
true) whenever z̃ < (λr + 2)/(λ + 1). Hence, we obtain a bound for y in Xz for any

(3.18) z < (λr + 2)/(λ + 1).

Recall that this guarantees a bound in L∞([0, T ], Lm(Ω)) for any m satisfying (3.16).
Using (2.10) we can find z satisfying (3.18) and m ∈ ((λ− 1)n/2, q] such that (3.16)
is true. Now we can use Lemma 3.1 with q replaced by m and q̂ replaced by q to
get a bound for y in L∞([τ, T ], Lq(Ω)) which (together with (3.13)) concludes the
proof.

Remark 3.3. We announced in Remark 2.4(i) that Theorem 2.3 remains true if we
replace the nonlinearity |y|λ−1y with |y|λ. Let us sketch the proof of this statement.

Since y satisfies

∂ty − Δy = |y|λ + u ≥ u in Q,
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the parabolic maximum principle implies y ≥ yL, where yL is the solution of the linear
problem

∂tyL − ΔyL = u in Q,

ByL = 0 on Σ,

yL(·, 0) = y0 in Ω.

⎫⎪⎬⎪⎭
Using the same arguments as in (3.1) we see that yL ∈ Lrλ(J, L2λ(Ω)) and that the
norm of yL in this space can be bounded by the norm of u in Lr(J, L2(Ω)) and a
suitable norm of y0. Notice that

|y|λ = |y|λ−1y + 2|y−|λ−1y−,

where y− := −min(0, y) is bounded above by |yL|; hence 2|y−|λ−1y− is bounded in
Lr(J, L2(Ω)). Consequently, replacing u with ũ := u + 2|y−|λ−1y−, we can repeat
word by word the proof of Theorem 2.3.

Optimality of the growth bounds.

Remark 3.4. (i) Consider problem (2.5) with Ω being the unit ball in Rn, n ≥ 3,
B = γ, and λ > (n + 2)/(n− 2)+. If n > 10, then assume also

(3.19) λ < 1 + 4
n− 4 + 2

√
n− 1

(n− 2)(n− 10)
.

Choose a smooth radial, radially decreasing function ψ : Ω̄ → R+ satisfying ψ(0) > 0
and ψ(x) = 0 for x ∈ Γ and denote by wα the (classical) solution of (2.5) with u = 0
and y0 = αψ, α ≥ 0. We deduce from [22] and an obvious modification of [20] that
there exists α∗ > 0 with the following property: if α < α∗, then wα(t) exists for all
t ∈ R+ and wα(t) → 0 as t → ∞; if α > α∗, then this solution blows up in finite time
completely.

From now on fix y0 = α∗ψ. Let yk be the solution of (2.5) with u = 0 and the
nonlinearity yλ replaced by min(yλ, k), k = 1, 2, . . . . Then yk are globally defined
classical solutions, yk+1 ≥ yk. Set y∗(t) = limk→∞ yk(t). The results in [22] and [16]
guarantee that y∗ ∈ Lp,loc([0,∞), Lp(Ω)) is a weak solution of (2.5) with u = 0 and
that there exists T ∗ ∈ (0,∞) such that y∗ is a classical solution on (0, T ∗) but it blows
up at t = T ∗ in the L∞(Ω)-norm. In particular, wα∗ = y∗|[0,T∗). Next [12] shows that
y∗ is a classical solution for all t except for finitely many points T0 = T ∗ < T1 < · · · <
Tk. Choose T > T ∗ such that T �= Tj for any j and let yd(x) := y∗(x, T ). Choose
also 0 < t1 < t2 < T ∗ and a smooth function U : Ω̄ × [0, T ] → [0,∞) with support
KU ⊂ Ω × [t1, t2], KU �= ∅, and denote by y∗β the solution of (2.5) with u = βU and

y0 = α∗ψ.

Since y∗ > 0 in KU and y∗−β → y∗ uniformly in KU as β → 0+, fixing b > 0

small we have |y∗−b|λ−1y∗−b − bU ≥ 0 in KU . Consequently, the maximum principle
implies y∗−b ≥ 0. Choose β ∈ (0, b]. Since y∗(t2) − y∗−β(t2) belongs to the interior of

the positive cone in C1(Ω̄) and wα(t2) → wα∗(t2) = y∗(t2) in C1(Ω̄) as α → α∗−,
there exists α < α∗ such that y∗−β(t2) ≤ wα(t2). Now the maximum principle implies
y∗−β(t) ≤ wα(t) for any t ≥ t2 and y∗−β ≥ y∗−b ≥ 0 for any t ≥ 0; hence y∗−β is a
global nonnegative classical solution. On the other hand, if β ≥ 0, then y∗β ≥ y∗;
hence y∗β blows up at finite time Tβ ≤ T ∗ in the L∞(Ω)-norm and, consequently, in
the Lq(Ω)-norm for any q > n(λ− 1)/2 (cf. [14], [30]).
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Let Uad = {βU ; β ∈ [−b, b]}. Fix q > n(λ − 1)/2 and set J(y, u) =
∫
Ω
|y(T ) −

yd|q dx. The above arguments show that y∗β is a global L∞(Lq)-solution of (2.5) if and
only if β < 0. Moreover, β �→ J(y∗β , βU) is decreasing on [−b, 0). Hence the optimal
control problem (1.3) does not have a solution with y ∈ L∞(J, Lq(Ω)).

(ii) Consider problem (2.5) with Ω being the unit ball in Rn and B = γ and let
1 ≤ q < (λ− 1)n/2. Then there exists a smooth radial positive function y0 such that
the solution y of (2.5) with u = 0 blows up at t = T in the L∞-norm and satisfies
∂ty ≥ 0, yd := y(·, T ) ∈ Lq(Ω) (see [14]). Let U be a smooth nonnegative function
with support K ⊂ {(x, t) ; |x| < 1/2}, K �= ∅, and uc := cU . Then there exists
ε > 0 such that the solution y of (2.5) with u replaced by u−ε remains positive. Let
Uad = {uc ; c ∈ [−ε, 0]} and

J(y, u) =

∣∣∣∣ ∫
Ω

|y(x, T )|q dx−
∫

Ω

yqd dx

∣∣∣∣.
Then (y(u−1/k), u−1/k), k ≥ k0, is obviously a minimizing sequence for the control
problem (1.3), but y(u0) is not a (classical) global solution of (2.5).

4. Proof of the optimality conditions. We start with the following technical
lemma concerning linear problems.

Lemma 4.1. Suppose that β > 2 ∨ (n + 2)/2 and 2 ≤ q < 2n/(n − 2)+. Given
a ∈ Lβ(Q), u ∈ L2(Q), and y0 ∈ Lq′(Ω), the problem

(4.1)

∂ty − Δy = ay + u in Q,

By = 0 on Σ,

y(·, 0) = y0 in Ω

⎫⎪⎬⎪⎭
has a unique solution

y ∈ C([0, T ], Lq′(Ω)) ∩ C((0, T ], Lq(Ω)) ∩ L2(Q).

The map

Lβ(Q) × L2(Q) × Lq′(Ω) → L2(Q) × Lq(Ω), (a, u, y0) �→ (y, y(T )),

is analytic and bounded on bounded sets.
Proof. (i) Writing (4.1) in the abstract form

ẏ + Ay = ay + u in (0, T ], y(0) = y0,

and denoting U(t) := e−tA, we see that we have to prove the unique solvability of

(4.2) y = U ∗ (ay) + U ∗ u + Uy0

in appropriate spaces.
(ii) Fix s ∈ [0, 1) \ {1/q′} such that q ≤ 2n/(n − 2s)+. Then W s

q′,B ↪→ L2(Ω).
Hence we infer from (2.3) (with q replaced by q′ and r := 0) that

‖U(t)y0‖L2(Ω) ≤ c‖U(t)y0‖W s
q′,B

≤ ct−s/2‖y0‖Lq′ (Ω), 0 < t ≤ T.

Since s < 1 it follows that

(y0 �→ Uy0) ∈ L
(
Lq′(Ω), L2((0, T ), L2(Ω))

)
= L

(
Lq′(Ω), L2(Q)

)
,

where L(X,Y ) denotes the space of continuous linear operators from X to Y .
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(iii) It is easy to see that

(u �→ U ∗ u) ∈ L(L2(Q)).

(iv) Put 1/r := 1/β + 1/2 < 1 and note that

Lr(Ω) ↪→ W−2+γ
2,B if 1/2 ≥ 1/r + (γ − 2)/n,

that is, if 0 ≤ γ ≤ 2 − n/β.

(v) For m ∈ R we write L2,m(Q) for L2(Q) endowed with the equivalent norm

y �→
(∫ T

0

e−2mt‖y(t)‖2
L2(Ω) dt

)1/2

.

From (iv), Hölder’s inequality, and (2.3) (with q = 2 and r := γ − 2) we infer that

‖U ∗ (ay)(t)‖L2(Ω) ≤ c

∫ t

0

(t− τ)γ/2−1‖a(τ)‖Lβ(Ω)‖y(τ)‖L2(Ω) dτ

= cemt

∫ t

0

(t− τ)γ/2−1e−m(t−τ)‖a(τ)‖Lβ(Ω)e
−mτ‖y(τ)‖L2(Ω) dτ.

Thus, by Young’s inequality for convolutions (cf. the proof of [5, Lemma 3]), followed
by Hölder’s inequality,

‖U ∗ (ay)‖L2,m(Q) ≤ cI(m)

(∫ T

0

(
‖a(τ)‖Lβ(Ω)e

−mτ‖y(τ)‖L2(Ω)

)r
dτ

)1/r

≤ cI(m)‖a‖Lβ(Q)‖y‖L2,m(Q),

where

I(m) :=

(∫ T

0

t(γ/2−1)β′
e−β′mt dt

)1/β′

,

provided γ > 2/β. Such a choice is possible by (iv), thanks to 2/β < 2 − n/β.

(vi) For a ∈ Lβ(Q) set Ta(y) := U ∗ (ay). Then (v) implies

(a �→ Ta) ∈ L
(
Lβ(Q),L(L2,m(Q))

)
and

‖Ta‖L(L2,m(Q)) ≤ cI(m)‖a‖Lβ(Q).

Note that, by Lebesgue’s theorem, I(m) → 0 as m → ∞. Thus, given R > 0, there
exists m := mR > 0 such that ‖Ta‖L(L2,m(Q)) ≤ 1/2 for all a ∈ Lβ(Q) satisfying
‖a‖Lβ(Q) ≤ R. Consequently, 1−Ta has a bounded inverse on L2,m(Q), and the map
a �→ (1 − Ta)

−1 is analytic for ‖a‖Lβ(Q) ≤ R. Hence, by (4.2),

y = (1 − Ta)
−1(U ∗ u + Uy0) ∈ L2(Q)
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for ‖a‖Lβ(Q) ≤ R, thanks to (ii) and (iii), and the map

Lβ(Q) × L2(Q) × Lq′(Ω) → L2(Q), (a, u, y0) �→ y

is analytic and bounded on bounded sets.
(vii) Let

q′ ≤ q1 ≤ 2 ≤ q2 ≤ q with
1

n
>

1

q1
− 1

q2
.

Choose s such that

(4.3) 1 + n

(
1

2
− 1

q1

)
> s > n

(
1

2
− 1

q2

)
.

Then there exists ξ ∈ (1/2, 1) such that 2 − 2ξ + n(1/2 − 1/q1) > s. This choice of
s, ξ guarantees

(4.4) W s
2,B ↪→ Lq2(Ω)

and

(4.5) Lq1(Ω) ↪→ W s−2+2ξ
2,B .

(viii) Let q1, q2, s, ξ be as in (vii). For m ∈ R we denote by C1−ξ,m((0, T ], Lq2(Ω))
the Banach space of all v ∈ C((0, T ], Lq2(Ω)) such that sup0<t≤T t1−ξ‖v(t)‖Lq2 (Ω) <
∞, endowed with the norm

‖v‖C1−ξ,m
:= sup

0<t≤T
t1−ξe−mt‖v(t)‖Lq2 (Ω).

It is an easy consequence of (2.3), (4.4), and (4.5) that

(y0 �→ Uy0) ∈ L(Lq1(Ω), C1−ξ,m((0, T ], Lq2(Ω))).

(ix) Let q1, q2, s, ξ be as in (vii). Using (2.3) we get

‖U ∗ u(t)‖Lq2 (Ω) ≤ c‖U ∗ u(t)‖W s
2,B

≤ c

∫ t

0

(t− τ)−s/2‖u(τ)‖L2(Ω) dτ

≤ ct(1−s)/2‖u‖L2(Q) ≤ c‖u‖L2(Q)

for 0 < t ≤ T . In particular,

(u �→ U ∗ u) ∈ L(L2(Q), C1−ξ,m((0, T ], Lq2(Ω))).

(x) Let q1, q2, s, ξ be as in (vii) such that s also satisfies

2 − n + 2

β
> s− n

(
1

2
− 1

q2

)
.

Then there exists η > 1/β such that

2 − n

β
− 2η > s− n

(
1

2
− 1

q2

)
.
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Hence

(4.6) Lr(Ω) ↪→ W s−2+2η
2,B ,

where 1/r := 1/β + 1/q2. With this choice it follows that

e−mt‖U ∗ (ay)(t)‖Lq2
(Ω) ≤ ce−mt‖U ∗ (ay)(t)‖W s

2,B

≤ ce−mt

∫ t

0

(t− τ)η−1‖a(τ)‖Lβ(Ω)‖y(τ)‖Lq2 (Ω) dτ

≤ c

∫ t

0

(t− τ)η−1τ ξ−1e−m(t−τ)‖a(τ)‖Lβ(Ω) dτ ‖y‖C1−ξ,m

for 0 < t ≤ T . Thus, by Hölder’s inequality,

t1−ξe−mt‖U ∗ (ay)(t)‖Lq2 (Ω) ≤ cK(t,m)‖a‖Lβ(Q)‖y‖C1−ξ,m
,

where

K(m, t) := t1−ξ

(∫ t

0

(t− τ)(η−1)β′
τ (ξ−1)β′

e−β′m(t−τ) dτ

)1/β′

= tη−1/β

(∫ 1

0

(1 − σ)(η−1)β′
σ(ξ−1)β′

e−β′mt(1−σ) dσ

)1/β′

.

Fix any δ ∈ (0, T ). Then K(t,m) → 0 as m → ∞ by Lebesgue’s theorem, uniformly
with respect to t ∈ [δ, T ]. If 0 < t ≤ δ, then

K(t,m) ≤ cδη−1/β .

Thus, given R > 0, it follows that we can fix m > 0 such that

‖Ta‖L(C1−ξ,m((0,T ],Lq2 (Ω))) ≤ 1/2

for all a ∈ Lβ(Q) satisfying ‖a‖Lβ(Q) < R. Now we infer from (viii) and (ix) that

y = (1 − Ta)
−1(U ∗ u + Uy0) ∈ C1−ξ,m((0, T ], Lq2(Ω))

for y0 ∈ Lq1(Ω) and ‖a‖Lβ(Q) < R and that the map

Lβ(Q) × L2(Q) × Lq1(Ω) → C1−ξ,m((0, T ], Lq2(Ω)), (a, u, y0) �→ y

is analytic and bounded on bounded sets. Using this property for the couple (q1, q2) :=
(q′, 2) and, subsequently, for (q1, q2) := (2, q), we see that the map

Lβ(Q) × L2(Q) × Lq′(Ω) → Lq(Ω), (a, u, y0) �→ y(T )

is analytic and bounded on bounded sets. This concludes the proof.
Remark 4.2. Lemma 4.1 guarantees the solvability of (2.13): notice that r = 2

and (2.9) imply q < 2n/(n−2)+, that a := λ|y|λ−1 ∈ Lβ(Q) for some β > 2∨(n+2)/2
due to y ∈ L2λ(Q) and λ < (n + 2)/(n − 2)+, and that p(·, T ) ∈ Lq′(Ω) due to
y(·, T ) ∈ Lq(Ω).

Proof of Theorem 2.6. Choose v ∈ Uad, μ ∈ [0, 1] and let yμ be the solution of
(2.5) with u replaced by u + μ(v − u). If μ is small enough, say μ ≤ μ0, then due to
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the stability estimates in Theorem A.1 and the regularity results in Theorem 2.3, the
solution yμ is global and satisfies

(4.7) ‖yμ − y‖L2λ(Q) + ‖yμ(·, T ) − y(·, T )‖Lq(Ω) ≤ Cμ‖v − u‖L2(Q).

Assume μ ≤ μ0 and set zμ := (yμ − y)/μ. Then zμ solves the problem

(4.8)

∂tzμ − Δzμ = aμzμ + (v − u), x ∈ Ω, t ∈ J,

Bzμ = 0, x ∈ Γ, t ∈ J,

zμ(·, 0) = 0,

⎫⎪⎬⎪⎭
where aμ := λ

∫ 1

0
|y + θ(yμ − y)|λ−1 dθ. Let z be the solution of

∂tz − Δz = az + (v − u), x ∈ Ω, t ∈ J,

Bz = 0, x ∈ Γ, t ∈ J,

z(·, 0) = 0,

⎫⎪⎬⎪⎭
where a := λ|y|λ−1. Set β := 2λ/(λ−1). Since aμ → a in Lβ(Q) as μ → 0, Lemma 4.1
implies

(4.9) zμ(·, T ) → z(·, T ) in Lq(Ω).

Set

I1(μ) :=

∫
Ω

|yμ(·, T ) − y∗|q dx, I2(μ) := N

∫
Q

(u + μ(v − u))2 dx dt.

The mapping Lq(Ω) → R : ϕ �→
∫
Ω
|ϕ− y∗|q dx is convex. Hence

q

∫
Ω

|y(·, T ) − y∗|q−2(y(·, T ) − y∗)zμ(·, T ) dx ≤ I1(μ) − I1(0)

μ

≤ q

∫
Ω

|yμ(·, T ) − y∗|q−2(yμ(·, T ) − y∗)zμ(·, T ) dx.

Since (4.7) implies

|yμ(·, T ) − y∗|q−2(yμ(·, T ) − y∗) → |y(·, T ) − y∗|q−2(y(·, T ) − y∗)

in Lq′(Ω) and (4.9) is true, we see that I1 is right differentiable at 0 and I ′
1(0+) =∫

Ω
p(·, T )z(·, T ) dx. We also have I ′

2(0) = 2N
∫
Q
u(v − u) dx dt and

(I1 + I2)(μ) = J(yμ, u + μ(v − u)) ≥ J(y, u) = (I1 + I2)(0);

hence ∫
Ω

p(·, T )z(·, T ) dx + 2N

∫
Q

u(v − u) dx dt ≥ 0.

Consequently, it is sufficient to show that∫
Ω

p(·, T )z(·, T ) dx =

∫
Q

p(v − u) dx dt.
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Let ϕk ∈ D(Ω) be such that ϕk → p(·, T ) in Lq′(Ω) and ak ∈ D(Q) be such that
ak → a in Lβ(Q). Let pk be the solution of (2.13) with a = λ|y|λ−1 replaced by ak
and the final condition replaced by pk(·, T ) = ϕk. Then pk is smooth and pk → p
in L2(Q) due to Lemma 4.1. Notice that z ∈ L2λ(Q) due to Theorem A.1 (cf. the
beginning of the proof of Theorem 2.3); hence az ∈ L2(Q), and the maximal Sobolev
regularity implies ∂tz,Δz ∈ L2(Q). We have∫

Q

pk(v − u) dx dt =

∫
Q

pk(∂tz − Δz − az) dx dt

=

∫
Q

(−∂tpk − Δpk − apk)z dx dt +

∫
Ω

ϕkz(·, T ) dx

=

∫
Q

(ak − a)pkz dx dt +

∫
Ω

ϕkz(·, T ) dx →
∫

Ω

p(·, T )z(·, T ) dx,

since the pk stay bounded in L2(Q) due to Lemma 4.1. Now∫
Q

pk(v − u) dx dt →
∫
Q

p(v − u) dx dt

concludes the proof.

5. The case of a multiplicative control.
Proof of Theorem 2.8. The proof is almost the same as in Theorem 2.3 (but the

solutions y are more regular now). The only nontrivial modification is required in the
estimate of the function V and the L2(Q)-norm of ∂ty in the proof of Lemma 3.2.

Hence, assume y ∈ C([0, T+t1],W
1
2,B) is a solution of (2.14), where t1 > 0 is fixed.

Since Uad is bounded in L∞(Q), there exists a constant M such that ‖u‖L∞(Q) ≤ M
for all u ∈ Uad. Let V be defined as in the proof of Lemma 3.2. Then

(5.1)

V ′(t) = −
∫

Ω

(∂ty)
2(t) dx +

∫
Ω

uy∂ty(t) dx

≤ M2

2

∫
Ω

y2(t) dx− 1

2

∫
Ω

(∂ty)
2(t) dx.

Let τ < 1, τ ≤ T + t1, and t ∈ [0, τ ]. Denoting C0 :=
∫
Ω
y2(x, 0) dx, we have∫

Ω

y2(t) dx = C0 + 2

∫ t

0

∫
Ω

y∂ty dx dt ≤ C0 +

∫ τ

0

∫
Ω

y2 dx dt +

∫ τ

0

∫
Ω

(∂ty)
2 dx dt.

Integrating this estimate over t ∈ [0, τ ], we get∫ τ

0

∫
Ω

y2 dx dt ≤ C0τ + τ

∫ τ

0

∫
Ω

y2 dx dt + τ

∫ τ

0

∫
Ω

(∂ty)
2 dx dt;

hence

(5.2)

∫ τ

0

∫
Ω

y2 dx dt ≤ C0τ

1 − τ
+

τ

1 − τ

∫ τ

0

∫
Ω

(∂ty)
2 dx dt.

Let τ1∈(0, 1) be defined by τ1
1−τ1

M2 = 1
2 and τ ∈ [0, τ1] (enlarging M we may assume

τ1 ≤ T + t1). Then integrating (5.1) and using (5.2) we arrive at

(5.3) V (τ) − V (0) ≤ C0

4
− 1

4

∫ τ

0

∫
Ω

(∂ty)
2 dx dt, τ ∈ [0, τ1].

This estimate guarantees V (t) ≤ V (0) + C0/4 on [0, τ1].
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Fix δ ∈ (0, t1 ∧ τ1) and assume V (t0) � −1 for some t0 ∈ [0, τ1 − δ]. Then (5.3)
implies V (t) ≤ −K � −1 for all t ∈ [τ1 − δ, τ1]. As in (3.15) we have

1

2

d

dt

∫
Ω

y2 dx = −2V (t) + c1

∫
Ω

|y|λ+1 dx +

∫
Ω

uy2 dx

≥ K + c2

(∫
Ω

y2 dx

)(λ+1)/2

for any t ∈ [τ1 − δ, τ1]. In the same way as in the proof of Lemma 3.2, this inequality
yields a contradiction if K = K(λ, c2, δ) is large enough. Consequently,

(5.4) V (t) ≥ −C for all t ∈ [0, τ1 − δ].

Now (5.3) implies
∫ τ1−δ

0

∫
Ω
(∂ty)

2 dx dt ≤ C; hence
∫
Ω
y2(t) dx ≤ C for t belonging to

[0, τ1 − δ]. In particular,
∫
Ω
y2(τ1 − δ) dx ≤ C1, where C1 does not depend on u.

Repeating the estimates above on the interval [τ1−δ, 2τ1−δ] instead of [0, τ1] and
then on [2τ1 − 2δ, 3τ1 − 2δ], etc., we obtain the desired bounds for V (t), ‖y(t)‖L2(Ω),
t ∈ J , and ‖∂ty‖L2(Q).

6. Parabolic systems.
Proof of Theorem 2.10. Let ϕ1 > 0 be an eigenfunction corresponding to the first

eigenvalue μ1 of the problem −Δϕ = μϕ in Ω, B1ϕ = 0 on Γ. Notice that ϕ1 is
a positive constant if B1 = ∂ν ; hence the weighted Lebesgue space L1(Ω, ϕ1(x) dx)
equals L1(Ω) in this case.

We shall prove that
(i) any bound of y1(t) in Lp(Ω, ϕ1(x) dx) or Lp(Ω), p ≥ 1, implies a bound of

y2(t) in the same space;
(ii) the space X := L1(Ω, ϕ1(x) dx) × L1(Ω, ϕ1(x) dx) is a continuation space for

problem (2.15); that is, if the solution y is defined on [0, T ∗], T ∗ > 0, and ‖y(T ∗)‖X ≤
M , then this solution can be continued for t ∈ [T ∗, T ∗ + τ ], where τ = τ(M) > 0. In
addition, ‖u(t)‖L∞(Ω)×L∞(Ω) ≤ C(δ,M) for any t ∈ [T ∗ + δ, T ∗ + τ ] and δ > 0;

(iii) all global solutions of problem (2.15) with u bounded in Lr(J, L
+
z (Ω)) and

y1(T ) bounded in Lq(Ω) are uniformly bounded in L∞(Q).
Then the conclusion follows similarly as in the proof of Theorem 2.3.
(i) Let u ∈ Uad. Set w := y2

2/2 − by2 − ay1. One can easily verify

∂tw − Δw ≤ −au ≤ 0;

hence the comparison principle guarantees w ≤ C in Q, where C does not depend on
u. This estimate implies

(6.1) y2
2 ≤ C(1 + y1),

and the conclusion follows.
(ii) Set z := ay1 + by2. Then

(6.2) ∂tz − Δz = ay1y2 + au ≤ C(1 + z3/2) + au.

Since n < 4 if B = ∂ν and n < 3 if B = γ, the problem ∂tz̃−Δz̃ = C(1 + |z̃|3/2) + au,
Bz̃ = 0, is well posed in X1 := L1(Ω, ϕ1(x) dx) due to [30] and [13], respectively. More
precisely, if ‖z̃(0)‖X1 ≤ M , then there exists τ = τ(M) > 0 such that the solution
z̃ exists on [0, τ ] and satisfies ‖z̃(t)‖L∞(Ω) ≤ C(δ,M) for any t ∈ [δ, τ ] and δ > 0.
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A comparison argument shows that the same estimate is true for the function z. In
particular, the space X is a continuation space for (2.15) in the sense described above.

(iii) Now assume that u belongs to a bounded set in UG
ad ⊂ Lr(J, L

+
z (Ω)) and

y1(T ) is bounded in L1(Ω). The above arguments show that the solution y can be
continued for t ∈ [0, T + τ ], where τ > 0 does not depend on u and u(x, t) := 0 if
t > T . Multiplying the second equation in (2.15) with ϕ1 and using (6.1) we obtain

∂t

∫
Ω

y2ϕ1 dx + μ1

∫
Ω

y2ϕ1 dx = a

∫
Ω

y1ϕ1 dx ≥ c

∫
Ω

y2
2ϕ1 dx− C

≥ c

(∫
Ω

y2ϕ1 dx

)2

− C

for any t ∈ [0, T + τ ]. Using standard blow-up arguments (cf. the arguments following
(3.15) in the proof of Lemma 3.2), this estimate guarantees a uniform bound for
y2(t), t ∈ [0, T + τ/2], in the weighted space L1(Ω, ϕ1(x) dx). Integrating the second
equation in (2.15) we now obtain

(6.3)

∫ T+τ/2

0

∫
Ω

y1ϕ1 dx dt ≤ C.

The first equation in (2.15) implies∫
Ω

y1ϕ1 dx
∣∣∣t2
t1

+ (μ1 + b)

∫ t2

t1

∫
Ω

y1ϕ1 dx dt ≥ 0;

hence using (6.3) we deduce

(6.4)

∫
Ω

y1(t2)ϕ1 dx ≥
∫

Ω

y1(t1)ϕ1 dx− C

for any t1, t2 ∈ [0, T + τ/2], t2 > t1.

Obviously, (6.3) and (6.4) imply a uniform estimate for y1(t), t ∈ J , in the space
L1(Ω, ϕ1(x) dx). Now (i) and (ii) imply uniform bounds for y1, y2 in L∞([δ, T ] × Ω)
for any δ > 0. Since the bounds for y1, y2 in L∞([0, δ]×Ω) for δ > 0 small enough are
guaranteed by the well posedness of (2.15) in L∞(Ω) × L∞(Ω) and the boundedness
of u in Lr(J, Lz(Ω)), the conclusion follows.

Appendix: The basic existence, uniqueness, and stability theorem for
semilinear problems. For the reader’s convenience we collect here the main exis-
tence, uniqueness, and stability results for strong solutions of the semilinear problem

(A.1) ẏ + Ay = F (y) in [0, T ], y(0) = y0,

where A = As is the isomorphism between W s
q,B and W s−2

q,B mentioned in section 2.
They follow from [6, Theorems 3.3 and 3.4] and [5, Theorems 5 and 7(ii)]. Analogous
results are true in the case of systems.

We write C1−
b (Y,X) for the space of all maps from Y into X which are uniformly

Lipschitz continuous on bounded sets. If X and Y are paces of functions defined on
[0, T ], then F : X → Y is said to possess the Volterra property if, given any u ∈ X
and t ∈ (0, T ), the restriction of F (u) to [0, t] depends on the values of u | [0, t] only.
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Theorem A.1. Assume

(A.2) s, σ /∈ Sq, 0 ≤ s < σ < 2,

and suppose that r > 1, r �= 2/(σ − s), σ − 2/r /∈ Sq, y0 ∈ Y 0 := W
σ−2/r
q,B . Denote

Xt := Lr([0, t],W
σ−2
q,B ).

If r < 2/(σ − s), fix p ∈ [1, 2/(s− σ + 2/r)) and set Yt := Lp([0, t],W
s
q,B),

if r > 2/(σ − s), fix ρ ∈ [0, (σ − s− 2/r)/2) and set Yt := Cρ([0, t],W s
q,B).

Let F ∈ C1−
b (YT , XT ) have the Volterra property. If r < 2/(σ − s) or r > 2/(σ − s),

then (A.1) has a unique strong Lp(W
s
q )- or Cρ(W s

q )-solution y(y0, F ), respectively,
defined on the maximal existence interval [0, t(y0, F )). If y(y0, F ) ∈ Yt(y0,F ) or
F (y(y0, F )) ∈ Xt(y0,F ), then y(y0, F ) is global.

The map (y0, F ) �→ y(y0, F ) is Lipschitz continuous in the following sense: Fix
t < t(y0, F ) (we can take t = t(y0, F ) = T if y(y0, F ) is global). Let ω1 > 0, and let
ω2 : R+ → R+ be an increasing function

(A.3)
‖y0‖Y 0 + ‖F (0)‖XT

≤ ω1,

‖F (y1) − F (y2)‖XT
≤ ω2(R)‖y1 − y2‖YT

}

for any R > 0 and y1, y2 ∈ YT whose norms are bounded by R. Fix R > ‖y(y0, F )‖Yt
.

Then there exist positive constants ε, c (depending only on R, t, ω1, ω2) with the fol-
lowing property: If ỹ0 ∈ Y 0, F̃ ∈ C1−

b (YT , XT ) has the Volterra property, ỹ0 and F̃
satisfy (A.3), and

‖y0 − ỹ0‖Y 0 + sup
‖y‖YT

≤R

‖(F − F̃ )(y)‖XT
≤ ε,

then t ≤ t(ỹ0, F̃ ), y(ỹ0, F̃ ) ∈ Yt, and

‖y(y0, F ) − y(ỹ0, F̃ )‖Yt ≤ c

(
‖y0 − ỹ0‖Y 0 + sup

‖y‖YT
≤R

‖(F − F̃ )(y)‖XT

)
.

If y = y(y0, F ) is global, then

(A.4) y ∈ Lr(J,W
σ̃
q,B) ∩W 1

r (J,W σ̃−2
q,B )

for any σ̃ < σ, and the norm of y in this space can be estimated by a constant
C = C(‖F (y)‖XT

, ‖y0‖Y 0).
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Abstract. We consider optimal investment problems for a diffusion market model with nonob-
servable random drifts that evolve as an Itô’s process. Admissible strategies do not use direct
observations of the market parameters, but rather use historical stock prices. For a nonlinear prob-
lem with a general performance criterion, the optimal portfolio strategy is expressed via the solution
of a scalar minimization problem and a linear parabolic equation with coefficients generated by the
Kalman filter.
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1. Introduction. The paper investigates an optimal investment problem for a
market which consists of a locally risk free asset, bond or bank account with in-
terest rate r(t), and a finite number n of risky stocks. We assume that the vec-
tor of stock prices S(t) evolves according to an Itô stochastic differential equation
dSi(t) = Si(t)[ai(t) dt +

∑
j σij(t) dwj(t)], i = 1, . . . , n, with a vector of apprecia-

tion rates a(t) and a volatility matrix σ(t). The problem goes back to Merton [26],
who found strategies which solve the optimization problem in which EU(X(T )) is
to be maximized, where X(T ) represents the wealth at the final time T , and where
U(·) is a utility function. If the market parameters are observed, then the optimal
strategies (i.e., current vector of stock holdings) are functions of the current vector
(r(t), a(t), σ(t), S(t), X(t)) (see, e.g., the survey in Hakansson [15] and Karatzas and
Shreve [18]). But in practice, a(t) and σ(t) have to be estimated from historical stock
prices or some other observation process. There are many papers devoted to esti-
mation of (a(·), σ(·)), mainly based on modifications of Kalman–Bucy filtering or the
maximum likelihood principle (see, e.g., Lo [25], Chen and Scott [3], Pearson and Sun
[27]). Unfortunately, the process a(·) is usually hard to estimate in real-time markets,
because the drift term, a(·), is usually overshadowed by the diffusion term, σ(·). On
the other hand, σ(t) can, in principle, be found from stock prices. Thus, there remains
the problem of optimal investment with unobservable a(·).

In fact, the problem is one of linear filtering. If Ri(t) is the return on the ith
stock, then dR(t) = a(t)dt + σ(t)dw(t), so the estimation of a(t) given {R(τ), τ < t}
(or {S(τ), τ < t}) is a linear filtering problem. If a(·) is conditionally Gaussian, then
the Kalman filter provides the estimate which minimizes the error in the mean square
sense.

A popular tool in optimal control and filtering theory is the separation theorem.
This theorem has an analog in portfolio theory: it is the so-called “certainty equiv-
alence principle”: agents who know the solution of the optimal investment problem
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30354 and Research Grant 88051.
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for the case of directly observable a(t) can solve the problem with unobservable a(t)
by substituting E{a(t)|S(τ), τ < t} (see, e.g., Gennotte [14]). Unfortunately, this
principle does not hold in the general case of nonlog utilities (see Kuwana [21]). Note
that this principle is unrelated to the much more recent notion of “certainty equivalent
value” to be found in the work of Frittelli [13].

Williams [30], Detemple [4], Dothan and Feldman [11], Gennotte [14], and Bren-
nan [2] solved the investment problem using the Kalman–Bucy filter and dynamic
programming. By this method, the optimal strategy can be calculated via solution of
the Bellman parabolic equation; this equation is nonlinear.

Karatzas [16], Karatzas and Zhao [20], Dokuchaev and Zhou [10], and Dokuchaev
and Teo [9] have obtained optimal portfolio strategies in general non-Gaussian setting,
but only for case of time independent coefficients.

An approach based on Malliavin calculus gives a possibility of considering a more
general setting. Lakner [22], [23] assumes that S(·) and w(·) have equal dimension
(as we do), and that r(·) and σ(·) are deterministic. This again guarantees that
the filtration of S(·) is Brownian. Results from filtering theory give a representation
of the optimal portfolio, which is explicit in terms of a conditional expectation of
a Malliavin derivative when the ai(·) are Ornstein–Uhlenbeck processes independent
of w(·). Karatzas and Xue [19] assume that there are more Brownian motions than
stocks. They assume that r(·) and σ(·) are adapted to the observable S(·). After
projecting onto an n-dimensional Brownian motion which generates the same filtration
as S(·), they obtain a reduced, completely observable model; existence of an optimal
portfolio follows, but the optimal strategy is, as usual, defined only implicitly.

We also consider the optimal investment problem with random and unobservable
a(·). Following Lakner [23] and Rishel [28], we assume that a(t) is a Gaussian process
modelled by a system of linear Itô’s equations. However, we consider a more general
case when (a(·), r(·)) may depend on the realized returns (i.e., b(·) �= 0 in (2.4) below,
and r(·) is correlated with S(·)). We express the optimal strategy via solution of a
Cauchy problem (4.3), (4.8) for a linear parabolic equation in (n + 1)-dimensional
vector space. Thus, we propose a simpler method than dynamic programming: the
nonlinear parabolic Bellman equation is replaced for a linear parabolic equation. Note
that the solution in Lakner [23] expresses the optimal strategy via a conditional ex-
pectation of a random claim that depends on w(·); the solution presented below is
also based on the martingale method but is more constructive, provided we can solve
the Cauchy problem (4.3), (4.8). Using the technique of backward stochastic par-
tial differential equations, we prove existence and uniqueness of the solution for this
Cauchy problem. Furthermore, the most restrictive condition in Lakner [23] was that
the initial covariance of a(0) is small enough (condition (3.5)). We replace it by an-
other condition (4.9) that depends on U : it is less restrictive than (3.5) for some
U ’s and more restrictive for others U ’s. For some problems, our condition (4.9) is
automatically satisfied. In addition, we allow correlated a(·) and w(·).

2. The model and definitions. Consider a diffusion model of a market con-
sisting of a locally risk free bank account or bond with price B(t), t ≥ 0, and n risky
stocks with prices Si(t), t ≥ 0, i = 1, 2, . . . , n, where n < +∞ is given. The prices of
the stocks evolve according to the following equations:

dSi(t) = Si(t)

(
ai(t)dt +

n∑
j=1

σij(t)dwj(t)

)
, t > 0,(2.1)
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where wi(t) are standard independent Wiener processes, ai(t) are appreciation rates,
and σij(t) are volatility coefficients. The initial price Si(0) > 0 is a given nonrandom
constant. The price of the bond evolves according to the following equation:

B(t) = B(0) exp

(∫ t

0

r(t)dt

)
,(2.2)

where B(0) is a given constant which we take to be 1 without loss of generality, and
r(t) is the random process of the risk free interest rate.

We are given a probability space (Ω,F ,P), where Ω is a set of elementary events,
F is a complete σ-algebra of events, and P is a probability measure.

We introduce the vector processes (� denoted transpose)

w(t) = (w1(t), . . . , wn(t))
�
, S(t) = (S1(t), . . . , Sn(t))

�
, a(t) = (a1(t), . . . , an(t))

�
,

and the matrix process σ(t) = {σij(t)}ni,j=1 .

Let 1
Δ
= (1, . . . , 1)� ∈ Rn, and ã(t)

Δ
= a(t) − r(t)1.

We define the return to time t by dRi(t) = dSi(t)/Si(t), Ri(0) = 0, and introduce

the vector of returns R(t) = (R1(t), . . . , Rn(t))
�

and of excess returns R̃i(t) = Ri(t)−∫ t

0
r(s) ds.

Let {FS,r
t }0≤t≤T be the filtration generated by the process (r(t), S(t)) completed

with the null sets of F .
Set S̃(t)

Δ
= exp

(
−

∫ t

0
r(s)ds

)
S(t).

We denote by |x| the Euclidean norm of a vector x ∈ Rk. For an Euclidean
space E, we denote by B([0, T ];E) the set of bounded measurable functions f(t) :
[0, T ] → E. We denote by In the identity matrix in Rn×n. As usual, we say that
A < B for symmetric matrices if the matrix B − A is definitely positive. We denote

φ− Δ
= max(0,−φ), and we denote by I{·} the indicator function.

The model for r, σ, and a. To describe the distribution of ã(t), we shall use
the model introduced in Lakner [23, p. 84], generalized for our case of random r, non-
constant coefficients for the equation for ã, and correlated r, ã, and w. We assume
that we are given measurable deterministic processes α(t), β(t), b(t), and δ(t) such
that

dã(t) = α(t)[δ(t) − ã(t)]dt + b(t)dR̃(t) + β(t)dW (t),(2.3)

where α(t) ∈ Rn×n, β(t) ∈ Rn×n, b(t) ∈ Rn×n, δ(t) ∈ Rn, and where W is an
n-dimensional Wiener process in (Ω,F , P ). We assume that α(t), β(t), b(t), and δ(t)
are continuous in t and such that the matrix β(t) is invertible and |β(t)−1| ≤ c, where
c > 0 is a constant. Further, we assume that ã(0) follows an n-dimensional normal
distribution with mean vector m0 and covariance matrix γ0. The vector m0 and the
matrix γ0 are assumed to be known. We note that this setting covers the case when
ã is an n-dimensional Ornstein–Uhlenbeck process with mean-reverting drift.

Clearly, (2.3) can be rewritten as

dã(t) =
(
α(t)δ(t) + [b(t) − α(t)]ã(t)

)
dt + b(t)σ(t)dw(t) + β(t)dW (t).(2.4)

In addition, it can be seen that R̃i(t) evolves as

dR̃i(t) = ãi(t)dt +

n∑
j=1

σij(t)dwj(t), t > 0.(2.5)
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We assume that the process σ(t) is continuous in t, nonrandom, and such that
σ(t)σ(t)� ≥ cσIn, where cσ > 0 is a constant.

Further, we assume that r(·) = φr(R̃(·),Θ), where Θ is a random element in a
metric space Xr, and where φr : C([0, T ];Rn) × Xr → B([0, T ];R) is a measurable
function, and Θ does not depend on (w(·),W (·), ã(0)). In addition, we assume that the

process r(t) is adapted to the filtration generated by (R̃(t),Θ). Note that the closed

system (2.4)–(2.5) for the pair (ã(t), R̃(t)) does not include r(·), and (ã(·), R̃(·)) does
not depend on Θ. Therefore, the market model is well defined. The assumptions for
measurability of r don’t look very natural. However, they cover generic models when
r is independent on R̃ or nonrandom, and we can still consider some models with
correlated r and R̃.

Under these assumptions, the solution of (2.1) is well defined, but the market is
incomplete.

Let φ̃m(t, s), m = 0, 1, be the solution of the matrix equation⎧⎨⎩
d φ̃m

dt (t, s) = [m · b(t) − α(t)]φ̃m(t, s),

φ̃m(s, s) = In.

Let

K̃m(t)
Δ
=

∫ t

0

φ̃m(t, s)b(s)σ(s)σ(s)�b(s)�φ̃m(t, s)�ds, m = 0, 1.(2.6)

We have that

ã(t) = φ̃1(t, 0)ã(0) +

∫ t

0

φ̃1(t, s)[α(s)δ(s)ds + b(s)σ(s)dw(s) + β(s)dW (s)].

It follows that K̃1(t) is the covariance matrix for ã(t) calculated with β(t) ≡ 0 and

ã(0) = 0. By the linearity of (2.4), it follows that K̃1(t) is the conditional covariance
for ã(t) given (W (·)|[0,t], ã(0)) or (W (·)|[0,T ], ã(0)).

Note that K̃m(t) can be found as solutions of linear equations that one can easily
derive from (2.4) and (4.1) (see, e.g., Arnold [1, Chapter 8]).

We assume that b is “small.” More precisely, we assume that there exists ε > 0
such that

TK̃m(t) + εIn < σ(t)σ(t)� ∀t ∈ [0, T ], m = 0, 1.(2.7)

The risk neutral probability measure. Set Q(t)
Δ
= (σ(t)σ(t)�)−1, and set

Z Δ
= exp

(∫ T

0

[σ(t)−1ã(t)]�dw(t) +
1

2

∫ T

0

ã(t)�Q(t)ã(t)dt

)
.(2.8)

Proposition 2.1.

E
{

exp
1

2

∫ T

0

ã(t)�Q(t)ã(t)dt
∣∣∣W (·), ã(0)

}
< +∞ a.s.(2.9)

By this proposition, the Novikov’s condition is satisfied conditionally, and
E{Z−1 |W (·), ã(0)} = 1, then EZ−1 = 1.

Define the (equivalent) probability measure P∗ by dP∗/dP = Z−1. Let E∗ be
the corresponding expectation.
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The wealth and strategies. Let X0 > 0 be the initial wealth at time t = 0,
and let X(t) be the wealth at time t > 0, X(0) = X0. We assume that

X(t) = π0(t) +

n∑
i=1

πi(t),(2.10)

where the pair (π0(t), π(t)) describes the portfolio at time t. The process π0(t) is the

investment in the bond, πi(t) is the investment in the ith stock π(t) = (π1(t), . . . , πn(t))
�

,
t ≥ 0.

Definition 2.2. The process X̃(t)
Δ
= exp

(
−

∫ t

0
r(s)ds

)
X(t) is called the nor-

malized (or discounted) wealth.

Let S(t)
Δ
= diag (S1(t), . . . , Sn(t)) and S̃(t)

Δ
= diag (S̃1(t), . . . , S̃n(t)) be diagonal

matrices with the corresponding diagonal elements. The portfolio is said to be self-
financing if

dX(t) = π(t)�S(t)−1dS(t) + π0(t)r(t)dt = π(t)�dR(t) + π0(t)r(t)dt.(2.11)

It follows from (2.10) that for such portfolios

dX(t) = r(t)X(t) dt + π(t)� (ã(t) dt + σ(t) dw(t)) ,

dX̃(t) = B(t)−1π(t)�dR̃(t),
(2.12)

so π alone suffices to specify the portfolio; the process π0 is uniquely defined by π via
(2.10), (2.12); π it is called a self-financing strategy.

Definition 2.3. Let Σ̄ be the class of all FS,r
t -predictable processes π(·) such

that
•

∫ T

0

(
|π(t)�ã(t)|2 + |π(t)�σ(t)|2

)
dt < ∞ a.s.

• there exists a constant qπ such that P
(
X̃(t) −X0 ≥ qπ ∀t ∈ [0, T ]

)
= 1.

A process π(·) ∈ Σ̄ is said to be an admissible strategy with corresponding wealth
X(·).

For an admissible strategy π(·), X(t, π(·)) denotes the corresponding total wealth,

and X̃(t, π(·)) the corresponding normalized total wealth. It follows that X̃(t, π(·)) is

a P∗-supermartingale with E∗X̃(t, π(·)) ≤ X0 and E∗|X̃(t, π(·))| ≤ |X0| + 2|qπ|.
Note that by definition, admissible strategies from Σ̄ use observations of r(t) and

S(t) only. For these strategies, the processes X(t) and X̃(t) are FS,r
t -adapted.

The following definition is standard.
Definition 2.4. Let ξ be a given random variable. An admissible strategy π(·)

is said to replicate the claim ξ if X(T, π(·)) = ξ a.s.

3. Problem statement and preliminary results. Let T > 0, let D̂ ⊂ R be
convex and bounded below, and let X0 ∈ D̂ be given. Let U(·) : D̂ → R ∪ {−∞} be
such that U(X0) > −∞.

We may state our general problem as follows: Find an admissible self-financing
strategy π(·) which solves the following optimization problem:

Maximize EU(X̃(T, π(·))) over π(·) ∈ Σ̄(3.1)

subject to

{
X̃(0, π(·)) = X0,

X̃(T, π(·)) ∈ D̂ a.s.
(3.2)
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The condition X̃(T, π(·)) ∈ D̂ may represent a requirement for a minimal normalized

terminal wealth if D̂ = [k,+∞), k > 0. This condition may also represent a require-

ment for the normalized terminal wealth in goal achieving problems if D̂ = [k0, k1],
k0 < k1.

We assume that U , X0, and D̂ satisfy the following two conditions.

Condition 3.1. There exists a measurable set Λ ⊆ [0,∞), and a measurable

function F (·, ·) : (0,∞)× Λ → D̂ such that for each z > 0, x̂ = F (z, λ) is a solution
of the optimization problem

Maximize zU(x) − λx over x ∈ D̂.(3.3)

Note that the usual concavity hypotheses imply this condition, but more general
utility functions are also covered. For example, this condition is satisfied for the goal
achieving problem when U(x) is a step function (see, e.g., Karatzas [16], Dokuchaev
and Zhou [10]).

Let Z̄ Δ
= E{Z|FS,r

T }. Since (R̃(·), ã(·)) does not depend on Θ, we have that Z
does not depend on Θ, and Z̄ = E{Z|R̃(·)}. Let F (·) be as in Condition 3.1.

Condition 3.2. There exists λ̂ ∈ Λ such that E∗|F (Z̄, λ̂)| < +∞ and E∗F (Z̄, λ̂) =
X0.

We solve our problem in two steps using the martingale approach. First we
show that EU(F (Z̄, λ̂)) is an upper bound for the expected utility of normalized
terminal wealth for π(·) ∈ Σ̄. Then we find a portfolio π̂(·) which replicates the claim

B(T )F (Z̄, λ̂). This establishes the optimality of π̂(·).

The optimal claim. The following theorem is a reformulation of Theorem 2.5
from Lakner [23] under slightly more general conditions that allow discontinuous func-
tions F and U such as step functions.

Theorem 3.1. (Dokuchaev and Haussmann [8]). With λ̂ as in Condition 3.2,

let ξ̂
Δ
= F (Z̄, λ̂). Then

(i) EU−(ξ̂) < ∞, ξ̂ ∈ D̂ a.s.;

(ii) EU(ξ̂) ≥ EU(X̃(T, π(·))) ∀π(·) ∈ Σ̄;

(iii) The claim B(T )ξ̂ is attainable in Σ̄, and there exists a replicating strategy in
Σ̄. This strategy is optimal for problem (3.1)–(3.2).

This theorem uses the duality approach for constrained optimization that goes
back to Lagrange, and λ̂ as the corresponding Lagrange multiplier.

Remark 3.1. Theorem 2.5 from Lakner [23] was stated under some additional
assumptions that can be formulated in our notations as

(i) b(t) ≡ 0, r is nonrandom, r, σ, α, β, δ are constant, and D̂ = (0,+∞);
(ii) U is strictly concave and continuously differentiable on (0,+∞), and

limx→+∞ U ′(x) = 0;

(iii) there exists a function J(·) : D̂ → R such that J(λ/x) ≡ F (x, λ);
(iv) E∗J(λ/Z̄) < +∞ for any λ > 0.

Solution via conditional expectation. Let

â(t)
Δ
= E

{
ã(t)

∣∣FS,r
t

}
.

Set α̃(t)
Δ
= α(t) − b(t) and m0

Δ
= Eã(0).
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Let γ(t) ∈ Rn×n be the unique solution (in the class of symmetric nonnegative
definite matrices) of the deterministic Riccati’s equation⎧⎪⎪⎨⎪⎪⎩

dγ
dt (t) = −[b(t)σ(t)� + γ(t)]Q(t)[b(t)σ(t)� + γ(t)]�

−α̃(t)γ(t) − γ(t)α̃(t)� + β(t)β(t)�,

γ(0) = γ0.

(3.4)

Here γ0
Δ
= E[ã(0)−m0][ã(0)−m0]

�. In fact, γ(t) = E
{

[ã(t) − â(t)][ã(t) − â(t)]�
∣∣FS,r

t

}
.

Let A(t)
Δ
= −α̃(t) − γ(t)Q(t), and let φ(t) be the solution of the matrix equation{

dφ
dt (t) = A(t)φ(t),
φ(0) = In,

where In is the unit matrix in Rn×n.
The following theorem is a reformulation of Theorem 4.3 from Lakner [23]. It

gives the solution of the investment problem via conditional expectation of future
values of some processes with known evolution.

Theorem 3.2. (Lakner [23]). Let conditions (i)–(iv) in Remark 3.1 hold, let
U(x) be twice differentiable on (0,+∞), and let

tr γ0 + T‖β‖2 < K1, K1 =
1

360T‖σ−1‖2K0
, K0 = max

t∈[0,T ]
‖e−αt‖2,(3.5)

where ‖ · ‖ denotes the Frobenius matrix norm, i.e., ‖σ−1‖2 = tr [σ−1σ−1�]. Further,
let

J(x) < K(1 + x−5), −J ′(x) < K(1 − x−2)(3.6)

for some K > 0. Then the optimal strategy is

π(t)� = H(t)Z̄(t)E

{
J ′(λ̂Z̄)Z̄−2

[
−γ(t)[φ(t)�]−1

∫ T

t

φ(s)�[σ�]−1dŵ(s)−â(t)

]∣∣∣∣FS,r
t

}
,

where H(t)
Δ
= λ̂er(t−T )Q and ŵ(t)

Δ
= w(t) −

∫ t

0
σ−1â(s)ds.

We propose below another solution such that the optimal strategy is presented
via solution of a linear deterministic parabolic equation. We replace conditions (3.5)

by condition (4.9) which can be less restrictive and is always satisfied if D̂ is bounded.
In addition, we dropped condition (3.6) and the condition that (r, a) and w are inde-

pendent: we allow b(·) �= 0 and r = φr(R̃(·),Θ).

4. Main results: Solution via linear parabolic equation.
Let y(t) = (y1(t), . . . , yn+1(t)) = (â(t), yn+1(t)) be a process in Rn+1, where

â(t) = E{ã(t)|FS,r
t },

yn+1(t) = −1

2

∫ t

0

â(s)�Q(s)â(s)ds +

∫ t

0

â(s)�Q(s) dR̃(s).

Let functions f(·) : Rn+1 × [0, T ] → Rn+1 and g(·) : Rn+1 × [0, T ] → R(n+1)×n

be such that

f(x, t)
Δ
=

(
[A(t) − b(t)σ(t)�Q(t)]x̂ + α(t)δ(t)

− 1
2 x̂

�Q(t)x̂

)
,

g(x, t)
Δ
=

(
[b(t)σ(t)� + γ(t)]Q(t)

x̂�Q(t)

)
.
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Here A(t) and γ(t) are matrices defined above, γ(t) is the solution of (3.4), and

x = (x1, . . . , xn+1)
� =

(
x̂

xn+1

)
, x̂ = (x1, . . . , xn)

�
.

By Theorem 10.3 from Liptser and Shiryaev [24, p. 396], the equation for â(t) is{
dâ(t) = [A(t)â(t) − b(t)σ(t)�Q(t)â(t) + α(t)δ(t)]dt + [b(t)σ(t)� + γ(t)]Q(t)dR̃(t),
â(0) = m0.

(4.1)
By (4.1)–(4.6), it follows that y(·) is the solution of the Itô’s equation{

dy(t) = f(y(t), t)dt + g(y(t), t) dR̃(t),
y(0) = y0,

(4.2)

with

y0 =

(
m0

0

)
∈ Rn+1, m0 = Eã(0).

The function f(y, t) here does not satisfy Lipschitz condition with respect to y ∈ Rn+1.
However, the solution of this equation is uniquely defined. (It is shown in the proof of
Lemma 4.1 below that the solution of (4.2) can be presented as a part of the unique
solution of some Itô’s equation with coefficients that are affine with respect to the
state variable.)

Lemma 4.1. Let a function Φ(·) : Rn+1 → R be such that
(i) E∗Φ(y(T )) = X0;
(ii) Φ(x) is continuously twice differentiable;
(iii) E∗Φ(y(T ))2 < +∞.

Then there exists a unique classical solution V : Rn+1 × [0, T ] → R of the boundary
value problem

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, t) +

1

2
tr

{
∂2V

∂x2
(x, t) g(x, t)σ(t)σ(t)�g(x, t)�

}
= 0,(4.3)

V (x, T ) = Φ(x).(4.4)

Further, the processes X̃(t, π(·)) Δ
= V (y(t), t) and π(t)�

Δ
= B(t)∂V∂x (y(t), t)g(y(t), t),

are uniquely defined as elements of the spaces C([0, T ], L2(Ω,F , P∗)) and L2([0, T ],
L2(Ω,F , P∗)), respectively, and there exists a constant C > 0 such that

sup
t∈[0,T ]

E∗|X̃(t, π(·))|2 + E∗

∫ T

0

B(t)−2|π(t)|2dt ≤ CE∗|Φ(y(T ))|2(4.5)

for all these Φ. Further, the strategy π(t) = (π1(t), . . . , πn(t)) belongs to Σ̄ and repli-
cates the claim B(T )Φ(y(T )) given the initial wealth X0 with the normalized wealth

X̃(t) = V (y(t), t).
Note that estimate (4.5) restates the Krylov–Ficera estimate (see Theorem 5.3.3

from Rozovskii [29]) or its modification from Dokuchaev [5]).
Further, we have that

dZ̄(t) = â(t)Z̄(t)dR̃(t).(4.6)
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Formula (4.6) was derived in Theorem 3.1 from Lakner [23] for the case when σ is
constant and b = 0. The proof for a nonconstant σ(t) and b �= 0 can be found in
Dokuchaev and Haussmann [8] and in Chapter 9 from Dokuchaev [6]. It follows that

yn+1(t) = ln Z̄(t).(4.7)

Introduce the function e(·) : Rn+1 → R such that e(y) = exp[yn+1] for y =
(y1, . . . , yn+1)

�. Note that Z̄ = e(y(T )).
Let V = V (x, t, λ) : Rn+1 × [0, T ]×Λ → R be the solution of partial differential

equation (4.3) with the condition

V (x, T, λ) = F (e(x), λ).(4.8)

The following result is now immediate.
Theorem 4.2. Let λ̂ be such as in Condition 3.2. Assume that the function

F (·, λ̂) : R → R is such that conditions (i)–(ii) of Lemma 4.1 are satisfied with

Φ(x)
Δ
= F (e(x), λ̂), and

E∗F (Z̄, λ̂)2 < +∞.(4.9)

Then there exists an unique classical solution V of problem (4.3)–(4.8) for λ = λ̂, and
there exists an admissible self-financing strategy π(·) ∈ Σ̄ which replicates the claim

B(T )F (Z̄, λ̂). This strategy is an optimal solution of problem (3.1)–(3.2) and

π̂(t)� = B(t)
∂V

∂x
(y(t), t, λ̂)b(y(t), t), X̃(t, π(·)) = V (y(t), t, λ̂).(4.10)

Note that it is possible that condition (4.9) is not satisfied but the optimal claim

F (Z̄, λ̂) is still replicable in the class of strategies Σ̄. For example, let U(x) ≡ log x,

X0 = 1, and (0,+∞) ⊆ D̂, then Λ = (0,∞), F (z, λ) = z/λ, λ̂ = 1, and the strategy
is π(t)� = B(t)â(t)�Z̄(t)Q(t) is replicating (and optimal) even in the case when (4.9)
is not satisfied.

5. Special cases. Note that conditions (3.5) were imposed in Lakner [23] with
the only purpose to ensure that

E∗Z̄5 < +∞, E∗Z̄−4 < +∞.(5.1)

Our condition (4.9) for examples (i)–(iii) listed below is satisfied if E∗Z̄μ < +∞
for some μ ∈ R. For example (i), condition (4.9) is less restrictive than (5.1) if l < 5/2
and more restrictive if l > 5/2. For example (ii), condition (4.9) is less restrictive than
(5.1) if l < 2 and more restrictive if l > 2. For example (iii), condition (4.9) is always
less restrictive than (5.1). These examples are from Dokuchaev and Haussmann [7]:

(i) Power utility. Assume D̂ = [0,+∞), X0 > 0, U(x) = d−1xd, where either

d ∈ (0, 1) or d < 0. Then Λ = (0,∞), F (z, λ) = (z/λ)l, and λ̂ = X
−1/l
0 (E∗Z̄ l)1/l,

where l = 1/(1 − d).

(ii) Assume D̂ = [0,+∞), U(x) = −xd + x, where d = 1 + 1/l, and l > 0 is

an integer, X0 > d−l. Then Λ = [0,∞), F (z, λ) = (1 + λ/z)ld−l, λ̂ is a root of a
polynomial of degree l.

(iii) Mean-variance utility. Assume D̂ = R, U(x) = −kx2 + cx, where k ∈ R and
c ≥ 0, X0 > 0, then F (z, λ) = (c− λ/z)/(2k).
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We present below some sufficient conditions that ensure E∗Z̄μ < +∞ and, there-
fore, can be useful for verifying (6.2).

Let K̃(t) be the covariance for ã(t) under the probability measure P∗, and let

K̂(t) be the covariance for â(t) under P∗.
Lemma 5.1. If μ ∈ [0, 1], then E∗Z̄μ < +∞. Let μ < 0 or μ > 1. Then

E∗Z̄μ < +∞ if there exist ε > 0 and p > 1 such that at least one of the following
conditions holds:

(i) κ(p)K̂(t) < σ(t)σ(t)�− εIn for t ∈ [0, T ], where κ(p)
Δ
= qT (μ2p−μ) > 0 with

q
Δ
= p(p− 1)−1.

(ii) κ(p)K̃(t) < σ(t)σ(t)� − εIn for t ∈ [0, T ].

It follows from Proposition 7.2 that K̃(t) and K̂(t) are the covariances of the

processes defined by (2.4) and (4.1), respectively, with R̃(·) replaced by R̃∗(·). Thus,
these covariances can be found as solutions of linear deterministic equations that one
can easily derive from (2.4) and (4.1) (see, e.g., Arnold [1, Chapter 8]).

6. Case of discontinuous F . To proceed further, we shall need a special
weighted L2-space with a weight defined via some parabolic equation. First, we
introduce the operator

M(t)p
Δ
= −

n+1∑
i=1

∂

∂xi
(p(x)fi(x, t)) +

1

2

n+1∑
i,j=1

∂2

∂xi∂xj
(p(x)ĝij(x, t)) ,

where ĝ
Δ
= gσσ�g�.

Let ρi ∈ L2(R
n+1) ∩ C2(Rn+1), i = 0, 1, be given such that ρi(x) > 0 for all

x ∈ Rn+1 and
∫
Rn+1 ρi(x)dx = 1.

We consider the following parabolic equation:{
∂p
∂t (x, t) = M(t)p(x, t) + ρ1(x), t ∈ [0, T ],
p(x, 0) = ρ0(x).

(6.1)

This boundary value problem has the unique classical solution p(x, t) that is contin-
uous in Rn+1 × [0, T ]. Let

ρ(x)
Δ
= min

t∈[0,T ]
p(x, t).

We have that

p(·, t) = G(t, 0)ρ0 +

∫ t

0

G(t, s)ρ1ds,

where G(t, s) is the semigroup operator generated by (6.1) (with ρ1 ≡ 0) and such
that G(s, s)ρi ≡ ρi. We have that (G(t, s)ρi)(x) > 0 for t ∈ [s, s + ε) for some
ε = ε(x, s) > 0. Hence p(x, t) > 0 for all x, t, and ρ(x) > 0 for all x ∈ Rn+1. We shall
use this ρ as a weight function.

We have that ρ ∈ L2(R
n+1)∩L1(R

n+1), since |ρ(x)| ≤ |ρ0(x)|. We introduce the
weighted space L2,ρ(R

n+1) with the norm

‖u‖L2,ρ(Rn+1)
Δ
=

(∫
Rn+1

ρ(x)|u(x)|2dx
)1/2

.
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We introduce the space Yk of functions u = {ui(x, t)}ki=1 : Rn+1 × [0, T ] → Rk with
the norm

‖u‖Yk

Δ
=

(
k∑

i=1

∫ T

0

‖ui(·, t)‖2
L2,ρ(Rn+1) dt

)1/2

.

Further, we introduce the space W1 of functions u = u(x, t) : Rn+1× [0, T ] → R with
the norm

‖u‖W1
Δ
= ‖u‖Y1

+

∥∥∥∥∂u∂x g

∥∥∥∥
Yn

.

Finally, we introduce the space W1
C consisting of all functions u(·) ∈ W1 such

that u(·) ∈ C([0, T ];L2,ρ(R
n+1)) with the norm

‖u‖W1
C

Δ
= sup

t∈[0,T ]

‖u(·, t)‖L2,ρ(Rn+1) + ‖u‖W1 .

The above space is a Banach space, since the weighted space L2,ρ(R
n+1) is a Hilbert

space.
In fact, the spaces Yk, W1, and W1

C , are the completions in the corresponding
norms of the set of smooth functions u : Rn+1× [0, T ] → Rk or u : Rn+1× [0, T ] → R,
respectively, that have finite support.

Theorem 6.1. Let p be the solution of (6.1), and let W1
C be the corresponding

space defined via the weight ρ(x) = mint∈[0,T ] p(x, t). Let Φ(·) : Rn+1 → R be a
measurable function such that∫

Rn+1

p(x, T )Φ(x)2dx < +∞.(6.2)

Then boundary value problem (4.3)–(4.4) admits a unique solution V ∈ W1
C . More-

over, there exists a constant C > 0 independent on Φ(·) and such that

‖V ‖2
W1

C
≤ C

∫
Rn+1

p(x, T )Φ(x)2dx.(6.3)

Note that condition (6.2) allows discontinuous Φ.
Remark 6.1. The definition of W1

C ensures that problem (4.3)–(4.4) can be stated
in W1

C . The functions V and (∂V/∂x)g are measurable and L2,ρ-integrable. The
equality in (4.4) is the equality for elements of the space L2,ρ(R

n+1), it is meaningful
since V (·, t) is continuous in t in L2,ρ(R

n+1). The equality in (4.3) is the equality for el-

ements of the dual space W1∗, since all components of ∂2V
∂x2 (x, t) g(x, t)σ(t)σ(t)�g(x, t)�

belong to W1∗.
It follows from the proof of Theorem 6.1 below that ‖p(·, T )‖L1(Rn+1) = 2.

Hence (6.2) is satisfied for any bounded Φ. In addition, it can be shown that
‖p(·, T )‖L2(Rn+1) ≤ C

∑
i=1,2 ‖ρi(·)‖L2(Rn+1), where C > 0 is a constant that does

not depend on ρi. Therefore, (6.2) is satisfied for any Φ ∈ L4(R
n+1).

Theorem 6.1 gives the possibility to present the optimal investment strategy via
the solution of (4.3)–(4.4) for the case of discontinuous F . An example is the goal-

achieving problem, when D̂ = [0,∞), X0 ∈ (0, α), and U(x) = 0 if 0 ≤ x < α,
U(x) = 1 if x ≥ α. Then Λ = (0,∞), F (z, λ) = α if 0 < λ ≤ z/α, F (z, λ) = 0 if
λ > z/α, and (6.2) holds for Φ(x) = F (e(x), λ) (∀λ).
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7. Appendix: Proofs.
Proof of Proposition 2.1. By Jensen’s inequality, it follows that

E
{

exp 1
2

∫ T

0
ã(t)�Q(t)ã(t)dt

∣∣∣W (·), ã(0)
}

= E
{

exp 1
T

∫ T

0
T
2 ã(t)

�Q(t)ã(t)dt
∣∣∣W (·), ã(0)

}
≤ 1

T

∫ T

0
E
{

exp T
2 ã(t)

�Q(t)ã(t)dt
∣∣∣W (·), ã(0)

}
.

For definitely positive matrices we have that if A > B > 0, then B−1 > A−1. By
condition (2.7) with m = 1, it follows that

K̃0(t)
−1 > T [σ(t)σ(t)� − εIn]−1 = TQ(t)[In − εQ(t)]−1

= TQ(t)
[
In +

∑+∞
k=1{εQ(t)}k

]
> TQ(t) + TεQ(t)2 > TQ(t) + M,

(7.1)

where M = M(ε) > 0 is a definitely positive constant matrix. Clearly, we can take
ε > 0 small enough to ensure convergency of the series in (7.1).

To complete the proof, we shall use the following fact. Let ξ be a Gaussian n-

dimensional vector, Kξ
Δ
= E(ξ − Eξ)(ξ − Eξ)� > 0. It is known that the probability

density function for ξ is C exp[− 1
2 (x−Eξ)�K−1

ξ (x−Eξ)], where C > 0 is a constant. It

follows that E exp( 1
2ξ

�Pξ) < +∞ for any matrix P ∈ Rn×n such that 0 < P < K−1
ξ .

Then the proof follows from (7.1).
We introduce the process

R̃∗(t)
Δ
=

∫ t

0

σ(s) dw(s).

Let n-dimensional vector random process ã∗(t) be defined as the solution of

dã∗(t) =
(
α(t)δ(t) − α(t)ã∗(t)

)
dt + b(t)dR̃∗(t) + β(t)dW (t), ã∗(0) = ã(0).

Set

Z∗
Δ
= exp

(∫ T

0

[σ(t)−1ã∗(t)]
�dw(t) − 1

2

∫ T

0

ã∗(t)
�Q(t)ã∗(t)dt

)
.(7.2)

Proposition 7.1. There exists a measurable function ψ : C([0, T ];Rn)×B([0, T ];

Rn) → R such that Z∗ = ψ(R̃∗(·), ã∗(·)) and Z = ψ(R̃(·), ã(·)).
Proof. Clearly, ψ is defined by

logZ∗ =

∫ T

0

ã∗(t)
�Q(t)

(
dR̃∗(t) −

1

2
ã∗(t)dt

)
.(7.3)

Let r∗(·)
Δ
= φr(R̃∗(·),Θ) and B∗(t)

Δ
= B(0) exp

(∫ t

0
r∗(s)ds

)
(φr is defined in

section 2). Let

Z̄∗
Δ
= E{Z∗|R̃∗(·), r∗(·)}.(7.4)

Let T Δ
= C([0, T ];Rn) × Rn. Clearly, there exists a measurable mapping A :

[0, T ] × C([0, T ];Rn) × T → C([0, T ];Rn) such that ã∗(t) = A(t, R̃∗(·),W (·), ã(0))

and ã(t) = A(t, R̃(·),W (·), ã(0)).
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We have that Z̄∗ = E{Z∗|R̃∗(·)} = ψ̄(R̃∗(·)) and

Z̄∗ = E{ψ([R̃∗(·), ã∗(·))]|R̃∗(·)} = E{ψ[R̃∗(·),A
(
·, R̃∗(·),W (·), ã(0)

)
]|R̃∗(·)}.

By Proposition 7.1, it follows that

Z̄ = E{ψ[R̃(·), ã(·)]|R̃(·)} = E{ψ[R̃(·),A
(
·, R̃(·),W (·), ã(0)

)
]|R̃(·)}.

Hence there exists a measurable mapping ψ̄(·) : C([0, T ];Rn) → R such that

Z̄ = ψ̄(R̃(·)), Z̄∗ = ψ̄(R̃∗(·)).(7.5)

Proposition 7.2. Let a function φ : C([0, T ];Rn)×B([0, T ];Rn)×B([0, T ];R) →
R be such that Eφ−(R̃(·), ã(·), r(·)) < +∞. Further, let a function φ̂ : C([0, T ];Rn)×
B([0, T ];R) → R be such that Eφ̂−(R̃(·), r(·)) < +∞ . Then

Eφ(R̃(·), ã(·), r(·)) = EZ∗φ(R̃∗(·), ã∗(·), r∗(·)),(7.6)

Eφ̂(R̃(·), r(·)) = EZ̄∗φ̂(R̃∗(·), r∗(·)),(7.7)

E∗φ̂(R̃(·), r(·)) = Eφ̂(R̃∗(·), r∗(·)).(7.8)

Proof. By assumption (Θ,W (·), ã(0)) is independent of w(·). To prove (7.6) it
suffices to prove

E
{
φ(R̃(·), ã(·), r(·))

∣∣∣Θ,W (·), ã(0)
}

= E
{
Z∗φ(R̃∗(·), ã∗(·), r∗(·))

∣∣∣Θ,W (·), ã(0)
}

a.s.

(7.9)
Thus, for the next paragraph, without loss of generality, we shall suppose that
(Θ,W (·), ã(0)) is deterministic, since for each value of (Θ,W (·), ã(0)) we can con-

struct R̃, R̃∗, ã, ã∗.
By the linearity of (2.4), it follows that K̃0(t) defined by (2.6) is the conditional

covariance for ã∗(t) given (W (·), ã(0)). Similar to the proof of Proposition 2.1, it can
be shown that (2.7) with m = 0 ensures that E{Z∗|Θ,W (·), ã(0)} = 1 and EZ∗ = 1.
We define the probability measure P̄ by dP̄/dP = Z∗. (Each value of (Θ,W (·), ã(0))
generates its own P̄.) By Girsanov’s theorem, the process

w̄(t)
Δ
= w(t) −

∫ t

0

σ(s)−1ã∗(s)ds

is a Wiener process under P̄. From this we obtain

dR̃(t) = A(t, R̃(·),W (·), ã(0))dt + σ(t)dw(t),

dR̃∗(t) = A(t, R̃∗(·),W (·), ã(0))dt + σ(t)dw̄(t).

Then for each value of (Θ,W (·), ã(0)) the processes (R̃(·), ã(·), r(·)) and (R̃∗(·), ã∗(·), r∗(·))
have the same distribution on the probability spaces defined by P and P̄, respectively,
and (7.9), hence (7.6) follows.

Further, (7.7) follows by taking conditional expectation in (7.6). Finally, using
Proposition 7.1 and (7.6),

E∗φ̂(R̃(·), r(·)) = EZ−1φ̂(R̃(·), r(·)) = Eψ(R̃(·), ã(·))−1φ̂(R̃(·), r(·))
= EZ∗ψ(R̃∗(·), ã∗(·))−1φ̂(R̃∗(·), r∗(·)) = Eφ̂(R̃∗(·), r∗(·)).
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We turn now to Theorem 3.1. Define ξ̂∗
Δ
= F (Z̄∗, λ̂). It follows from (7.5) that if

we define φ̃ by ξ̂ = φ̃(R̃(·)), then ξ̂∗ = φ̃(R̃∗(·)).
Proof of Theorem 3.1. Let us show that EU−(ξ̂) < ∞ so that EU(ξ̂) is well

defined. For k = 1, 2, . . ., we introduce the random events

Ω
(k)
∗

Δ
=

{
−k ≤ U(ξ̂∗) ≤ 0

}
, Ω(k) Δ

=
{
−k ≤ U(ξ̂) ≤ 0

}
,

along with their indicator functions, I
(k)
∗ and I(k), respectively. The number ξ̂∗ pro-

vides the unique maximum of the function Z̄∗U(ξ∗) − λ̂ξ∗ over D̂, and X0 ∈ D̂. By
Proposition 7.2, we have for all k = 1, 2, . . . ,

EI(k)U(ξ̂) − EI
(k)
∗ λ̂ξ̂∗ = EI

(k)
∗

(
Z̄∗U(ξ̂∗) − λ̂ξ̂∗

)
≥ EI

(k)
∗

(
Z̄∗U(X0) − λ̂X0

)
= EI(k)U(X0) − λ̂X0P(Ω

(k)
∗ ) ≥ −|U(X0)| − |λ̂X0| > −∞.

Further, we have that E|ξ̂∗| = E∗|ξ̂| < +∞. Hence EU−(ξ̂) < ∞.

Now observe that for any π ∈ Σ̄ we can apply (7.7) and (7.8) to U(X̃π(T )) (and
use (7.5)) to obtain

EU(X̃π(T )) = E∗{Z̄U(X̃π(T ))} ≤ E∗{Z̄U(X̃π(T )) − λ̂X̃π(T )} + λ̂X0

≤ E∗{Z̄U(ξ̂) − λ̂ξ̂} + λ̂X0 = E∗Z̄U(ξ̂) = EU(ξ̂).

Thus (ii) is satisfied.

Let us show (iii). Since σ is nonrandom, hence w-adapted, then ξ̂∗ = φ̂(w(·)),
where φ̂(·) : B([0, T ];Rn) → R is a measurable functions. By the Martingale repre-
sentation theorem,

ξ̂∗ = Eξ̂∗ +

∫ T

0

f(t, w(·)|[0,t])�dw(t),

where f(t, ·) : B([0, t];Rn) → Rn is a measurable function such that
∫ T

0
|f(t, w(·)|[0,t])|2dt

< +∞ a.s. There exists a unique measurable function f0(t, ·) : B([0, t];Rn) → Rn

such that f(t, w(·)|[0,t]) ≡ f0(t, R̃∗(·)|[0,t]). Thus,

ξ̂∗ = Eξ̂∗ +

∫ T

0

f0(t, R̃∗(·)|[0,t])�dw(t) = Eξ̂∗ +

∫ T

0

f0(t, R̃∗(·)|[0,t])�σ(t)−1dR̃∗(t).

Proposition 7.2 implies that Eξ̂∗ = E∗ξ̂ = X0, and

ξ̂ = X0 +

∫ T

0

f0(t, R̃(·)|[0,t])�σ(t)−1dR̃(t).

Hence the strategy π̂(t)� = B(t)f0(t, R̃(·)|[0,t])�σ(t)−1 replicates B(T )ξ̂. It belongs

to Σ̄; in particular, since w and R̃ generate the same sigma-algebra and D̂ is convex,

then X̃(t, π(·)) = E
{
ξ̂ | R̃(·)|[0,t]

}
∈ D̂, hence bounded below. This completes the

proof of Theorem 3.1.

Proof of Lemma 4.1. Let V Δ
= Rn ×R×R

n(n+1)
2 . Clearly, V is an ñ-dimensional

linear vector space, where ñ
Δ
= n + 1 + n(n + 1)/2. Let ỹ(t) = (ỹ1(t), ỹ2(t), ỹ3(t)) be

a process in V such that

ỹ(t) = (y(t), ỹ3(t)) = (ỹ1(t), ỹ2(t), ỹ3(t)) =
(
â(t), ln Z̄(t), â(t)â(t)�

)
.
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The last equality is satisfied by (4.7). It can be seen that the equation for ỹ(t) is
linear:

dỹ1(t) = [Â(t)ỹ1(t) + v(t)]dt + E(t) dR̃(t),

d ỹ2(t) = − 1
2Tr{Q(t)ỹ3(t)} dt + ỹ1(t)

�Q(t) dR̃(t),

d ỹ3(t) = [Â(t)ỹ3(t) + ỹ3(t)
�Â(t)� + v(t)ỹ2(t)

�

+ỹ2(t)v(t)
� + 1

2{E(t)σ(t)σ(t)�E(t)�}]dt
+E(t) dR̃(t)ỹ2(t)

� + y2(t) dR̃(t)�E(t)�.

Here Â(t), v(t), E(t) are known deterministic functions in Rn×n, Rn and Rn×n,

respectively. In particular, Â(t) = A(t) − b(t)σ(t)�Q(t). Thus, the equation for ŷ(t)
can be rewritten as{

dỹ(t) = f̃(ỹ(t), t)dt +
∑n

i=1 g̃i(ỹ(t), t) dR̃i(t),
ỹ(0) = ỹ0,

(7.10)

with ỹ0 =
(
m0, 0,m0m

�
0

)
, and with some functions f̃(x̃, t) : V × [0, T ] → V and

g̃i(x̃, t) : V × [0, T ] → V, i = 1, . . . , n, that are affine in x̃ ∈ V with continuous in t

coefficients. In particular, ∂f̃(x̃, t)/∂x̃ and ∂g̃i(x̃, t)/∂x̃ depend only on t, and they
are uniformly bounded. Hence (7.10) has a unique solution. Therefore, (4.2) has the
unique solution y(t).

Let Ṽ (x̃, t)
Δ
= E∗Φ(ȳx̃,s(T )), where the process ȳx̃,s(·) takes values in Rn+1 and is

such that ỹx̃,s(·) = (ȳx̃,s(·), ỹx̃,s3 (·)) is the solution of (7.10) given the initial condition

ỹ(s) = x̃ ∈ V. Then Ṽ (x̃, t) is the classical solution of the boundary value problem
for the corresponding backward Kolmogorov’s equation{

∂Ṽ
∂t (x̃, t) + L(t)Ṽ (x̃, t) = 0, t ∈ [0, T ],
V (x̃, T ) = Φ(x̃1, x̃2),

(7.11)

where x̃ = (x̃1, x̃2, x̃3) ∈ Rn × R × R
n(n+1)

2 , and where L(t) is the second order
differential operator on functions v : V → R generated by the Markov process ỹ(t).

Let yx,s(·) = (yx,s1 (·), . . . , yx,sn+1(·)) be the solution of (4.2), and let V (x, t)
Δ
=

E∗Φ(yx,t(T )). Clearly,

ỹx̃,s(t) ≡ (yx,s(t), ŷx,s(t)ŷx,s(t)�) =
(
yx,s1 (t), . . . , yx,sn (t), yx,sn+1(t), ŷ

x,s(t)ŷx,s(t)�
)
,

if

x̃ = (x, x̃3) = (x̂, xn+1, x̂x̂
�), x̂ = (x1, . . . , xn),

x = (x1, . . . , xn, xn+1) = (x̂, xn+1) ∈ Rn+1,
x̃3 = x̂x̂� ∈ Rn(n+1)/2, ŷx,s(·) = (yx,s1 (·), . . . , yx,sn (·)).

In that case, V (x, t) ≡ Ṽ (x1, x̂2, x̂2x̂
�
2 ), where x = (x̂, xn+1), x̂ ∈ Rn. Therefore,

V (x, t) is the classical solution of problem (4.3)–(4.4).

Let y∗(·) denote the solution of (4.2) with R̃(·) replaced by R̃∗(·) =
∫ ·
0
σ(t) dw(t).

Set X̃∗(t)
Δ
= V (y∗(t), t). From (4.3) and Itô’s lemma, it follows that

X̃∗(T ) = X̃∗(t) +

∫ T

t

B∗(s)
−1π∗(s)

�dR̃∗(s),
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where π∗(t)
� Δ

= B∗(t)
∂V
∂x (y∗(t), t)g(y∗(t), t). It follows that X̃∗(0) = V (y∗(0), 0) =

EV (y∗(T ), T ) = X0 and

dX̃∗(t) = B∗(t)
−1π∗(t)

�dR̃∗(t), X̃∗(T ) = Φ(y∗(T )).(7.12)

Then X̃∗(t) = ψ̃(t, R̃∗) for some measurable ψ̃, and the result follows if we observe that

X̃(t) = ψ̃(t, R̃) replicates the claim as desired for π(t)�
Δ
= B(t)∂V∂x (y(t), t)g(y(t), t).

To continue, we require some a priori estimates. Let ζ∗(t)
Δ
= B∗(t)

−1σ(t)�π∗(t).

We consider the conditional probability space given in (Θ,W (·), ã(0)). With
respect to the conditional probability space, it follows from (7.12) that{

dX̃∗(t) = ζ∗(t)
�dw(t),

X̃∗(T ) = Φ(y∗(T )).
(7.13)

By Proposition 2.2 from El Karoui, Peng, and Quenez [12], the (unique) solution

(ζ∗(t), X̃∗(t)) of linear stochastic backward equation (7.13) is a process in
L2([0, T ], L2(Ω,F , P )) × C([0, T ], L2(Ω,F , P )), and there exists a constant c0, in-
dependent of (Φ(·),Θ,W (·), ã(0)), and such that

supt∈[0,T ] E
{
|X̃∗(t)|2

∣∣Θ,W (·), ã(0)
}

+E

{∫ T

0
|ζ∗(t)|2dt

∣∣∣∣Θ,W (·), ã(0)

}
≤ c0E

{
Φ(y∗(T ))2

∣∣Θ,W (·), ã(0)
}

a.s.

Hence

sup
t∈[0,T ]

E|X̃∗(t)|2 + E

∫ T

0

B∗(t)
−2|π∗(t)|2dt ≤ c1EΦ(y∗(T ))2,(7.14)

where c1 > 0 is a constant that does not depend on Φ(·). Then (4.5) follows. This
completes the proof.

Proof of Theorem 4.2. Clearly, the equation for y(t) is{
dâ(t) = [A(t)ŷ(t) − b(t)σ(t)�Q(t) + α(t)δ(t)]dt + γ(t)Q(t) dR̃(t),

dyn+1(t) = 1
2 â(t)

�Q(t)â(t)dt− â(t)�Q(t) dR̃(t).

As in the proof above, it can be shown that X̃(t) = V (y(t), t, λ̂) is the solution of
(7.12), i.e., it is the normalized wealth. Then the proof follows.

Let N2 be the set of all Gaussian processes ā(t) : [0, T ] × Ω → Rn which are
progressively measurable with respect to the filtration generated by [a(0), w(t),W (t)]

and such that E
∫ T

0
|ā(t)|2dt < +∞. For ā(·) ∈ N2, let

Z(t, ā(·)) Δ
= exp

[∫ t

0

ā(s)�Q(s)dR̃(s) − 1

2

∫ t

0

ā(s)�Q(s)ā(s)ds

]
.

Proposition 7.3. Let ā(·) ∈ N2, let p ∈ (1,+∞), and let μ ∈ R, μ < 0 or μ > 1.

Let K̄(t) be the covariance matrix of ā(t) under P∗, and let κ(p)
Δ
= qT (μ2p−μ), where

q
Δ
= p(p − 1)−1. Let κ(p)K̄(t) < σ(t)σ(t)� − εIn, where ε > 0 is a constant. Then

E∗Z(t, ā(·))μ < +∞.
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Proof of Proposition 7.3. If μ ∈ [0, 1], then E∗Z(t, ā(·))μ < +∞ (see Lakner [23,
p. 93]). Therefore, we can assume without loss of generality that μ < 0 or μ > 1.
Clearly,

Z(t, ā(·))μ = exp
[
μ
∫ t

0
ā(s)�Q(s)dR̃(s) − μ

2

∫ t

0
ā(s)�Q(s)ā(s)ds

]
= ζ(t)ζ0(t),

where

ζ(t)
Δ
= exp

[
μ

∫ t

0

ā(s)�Q(s)dR̃(s) − μ2p

2

∫ t

0

ā(s)�Q(s)ā(s)ds

]
,

and

ζ0(t)
Δ
= exp

[
μ2p− μ

2

∫ t

0

ā(s)�Q(s)ā(s)ds

]
.

By Hölder inequality, E∗Zμ ≤ [E∗ζ(T )p]
1/p

[E∗ζ0(T )q]
1/q

.
Similar to the proof of Lemma A.1 from Lakner [23], we have that E∗ζ(T )p < +∞

because ζ(t)p is a positive local martingale with respect to P∗, thus by Fatou’s lemma
it is a supermartingale.

By Jensen’s inequality,

E∗ζ0(T )q = E∗ exp
[
q μ2p−μ

2

∫ T

0
ā(s)�Q(s)ā(s)ds

]
= E∗ exp

[
1

2T κ(p)
∫ T

0
ā(s)�Q(s)ā(s)ds

]
≤ 1

T

∫ T

0
E∗ exp

[
1
2κ(p)ā(s)�Q(s)ā(s)

]
ds.

(7.15)

Remember that Q
Δ
= (σσ�)−1, and κ(p) > 0. Similar to (7.1), we obtain

K̄(t)−1 > κ(p)[σ(t)σ(t)� − εIn]−1 = κ(p)Q(t)[In − εQ(t)]−1

= κ(p)Q(t)
[
In +

∑+∞
k=1{εQ(t)}k

]
> κ(p)Q(t) + κ(p)εQ(t)2

> κ(p)Q(t) + M1,

(7.16)

where M1 = M1(ε) > 0 is a definitely positive constant matrix. (We can take ε > 0
small enough to ensure convergency.) Similar to the proof of Proposition 2.1, it follows
from (7.15), (7.16) that E∗ζ0(T )q < +∞ and E∗Z(t, ā(·))μ < +∞.

Proof of Lemma 5.1. If μ ∈ [0, 1], then E∗Z̄μ < +∞ (see Lakner [23, p. 93]).
Therefore, we can assume without loss of generality that μ < 0 or μ > 1. Note that
â(·) ∈ N2. By Proposition 7.3, if (i) is satisfied, then E∗Z̄μ < +∞.

Further, let (ii) be satisfied. Clearly, ã(·) ∈ N2. By Proposition 7.3 again,

E∗Z(T, ã(·))μ < +∞. By (7.4), Z̄∗ = E{Z(T, ã∗(·))|R̃∗(·), r∗(·)}. Hence, by Jensen’s
inequality E∗Z̄μ ≤ E∗Z(T, ã(·))μ < +∞.

Proof of Theorem 6.1. Let τ be a random variable that takes values in [0, T ]
and such that P(τ = 0) = 1/2 and P(τ ∈ (t1, t2]) = (t2 − t1)/(2T ) for 0 < t1 <
t2 ≤ T . Let ηi ∈ L2(Ω,F ,P,Rn+2) be random vectors such that they have the
probability density functions ρi(x), i = 0, 1. We assume that τ, η0, η1, w,Θ,W (·), ã(0)
are mutually independent.

Let η
Δ
= η0I{τ=0} + η1I{τ>0}, and let η∗(·) be the solution of the Itô’s equation{

dη∗(t) = f(η∗(t), t)dt + g(η∗(t), t)dR̃∗(t), t > τ,
η∗(τ) = η.

(7.17)
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Equation (6.1) is the forward Kolmogorov’s equation for the case when time of birth is
distributed as τ , and the vector η∗(t) has the conditional probability density function
p(x, t)/2 in the sense that P(η∗(t) ∈ Γ, t ≥ τ) = 1/2

∫
Γ
p(x, t)dx for any domain

Γ ⊂ Rn+1, where p is the solution of (6.1).
Note that we need random τ with the selected probability density on (0, T ] to

generate the free term in parabolic equation (6.1).

Assume that Φ(·) ∈ C2(Rn+1) and it has finite support. Let V (x, t)
Δ
= E∗Φ(yx,t(T )),

where yx,s(·) is the solution of (4.2). Then V (x, t) is the classical solution of problem

(4.3)–(4.4). Set Ỹ∗(t)
Δ
= V (η∗(t), t). From (4.3) and Itô’s lemma, it follows that

Ỹ∗(T ) = Ỹ∗(t) +

∫ T

t

B∗(s)
−1�∗(s)

�dR̃∗(s), τ ≤ t ≤ T,

where �∗(t)
� Δ

= B∗(t)
∂V
∂x (η∗(t), t)g(η∗(t), t). Hence

dỸ∗(t) = B∗(t)
−1�∗(t)

�dR̃∗(t), Ỹ∗(T ) = Φ(η∗(T )).(7.18)

To continue, we require some estimates. Let ζ̂∗(t)
Δ
= B∗(t)

−1σ(t)��∗(t).
Consider the conditional probability space given in (τ, η,Θ,W (·), ã(0)). With

respect to the conditional probability space, it follows from (7.18) that{
dỸ∗(t) = ζ̂∗(t)

�dw(t),

Ỹ∗(T ) = Φ(η∗(T )).
(7.19)

By Proposition 2.2 from El Karoui, Peng, and Quenez [12] again, the (unique) solution

(ζ̂∗(t), Ỹ∗(t)) of stochastic backward equation (7.19) is a process in
L2([τ, T ], L2(Ω,F , P )) × C([τ, T ], L2(Ω,F , P )) given (τ, η,Θ,W (·), ã(0)), and there
exists a constant C0 that is independent of (Φ(·), τ, η,Θ,W (·), ã(0)), and such that

supt∈[0,T ] EI{t≥τ}

{
|Ỹ∗(t)|2

∣∣ τ, η,Θ,W (·), ã(0)
}

+ E
{∫ T

0
I{t≥τ}|ζ̂∗(t)|2dt

∣∣ τ, η,Θ,W (·), ã(0)
}

= supt∈[τ,T ] E
{
|Ỹ∗(t)|2

∣∣ τ, η,Θ,W (·), ã(0)
}

+ E
{∫ T

τ
|ζ̂∗(t)|2dt

∣∣∣ τ, η,Θ,W (·), ã(0)
}

≤ C0E
{
Φ(η∗(T ))2

∣∣ τ, η,Θ,W (·), ã(0)
}

a.s.

Hence there exists a constant c0, independent of Φ(·) and such that

sup
t∈[0,T ]

EI{t≥τ}|Ỹ∗(t)|2 + E

∫ T

0

I{t≥τ}B∗(t)
−2|�∗(t)|2dt ≤ c0EΦ(η∗(T ))2.(7.20)

Let Φ(·) be a general measurable function satisfying the conditions specified in
the theorem. Then, there exists a sequence {Φ(i)(·)}, where Φ(i)(·) ∈ C2(Rn+1) are
such that they all have finite support and

E|Φ(i)(η∗(T )) − Φ(η∗(T ))|2 =
∫
Rn+2 p(x, T )|Φ(i)(x) − Φ(x)|2dx → 0 as i → ∞.

(7.21)

Let Ỹ
(i)
∗ (·), �(i)

∗ (·), and V (i)(·) be the corresponding processes and functions. Let

Ψi,j
Δ
= sup

t∈[0,T ]

EI{t≥τ}|Ỹ (i)
∗ (t) − Ỹ

(j)
∗ (t)|2 + E

∫ T

0

I{t≥τ}B∗(t)
−2|�(i)

∗ (t) − �
(j)
∗ (t)|2dt.
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By (7.20)–(7.21) and the linearity of (7.19), it follows that

Ψi,j ≤ c0E|Φ(i)(η∗(T )) − Φ(j)(η∗(T ))|2 → 0 as i, j → ∞.

We have that V (j) ∈ W1
C , since they are bounded together with their partial deriva-

tives with respect to x1, . . . , xn+1. Remember that 0 < ρ(x) ≤ p(x, t) for all x, t.
Further, we have that

Ψi,j = sup
t∈[0,T ]

∫
Rn+1

p(x, t)|V (i)(x, t) − V (j)(x, t)|2dx

+

∫ T

s

dt

∫
Rn+1

p(x, t)

∣∣∣∣[∂V (i)

∂x
(x, t) − ∂V (j)

∂x
(x, t)

]
g(x, t)

∣∣∣∣2 dx.
Hence ‖V (i) − V (j)‖2

W1
C

≤ Ψi,j → 0 as i, j → ∞. Therefore, V (i) is a Cauchy

sequence in W1
C , and it has the limit V in W1

C . This V is the desired solution, and
(6.3) is satisfied. This completes the proof.

Note that it follows from the proof above that the sequences
{
Ỹ

(i)
∗ (·)

}∞
i=1

and{
�
(i)
∗ (·)

}∞
i=1

are Cauchy sequences in the spaces C([τ, T ];L2(Ω,F ,P{· | τ})) and

L2([τ, T ];L2(Ω,F ,P{· | τ})), respectively. Hence the corresponding limits Ỹ∗(·), �∗(·)
exist and belong to these spaces given τ .

This paper presents the development of some results and ideas that grew from
our collaboration with Ulrich Haussmann during the author’s stay at Pacific Institute
for the Mathematical Sciences, Vancouver (see, e.g., Dokuchaev and Haussmann [8]).

Acknowledgments. The author wishes to thank Prof. U. Haussmann for the
support and useful discussion. The author also wishes to thank the anonymous referees
for their insightful comments which greatly strengthened the paper.
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HYBRID CONTROL SYSTEMS AND VISCOSITY SOLUTIONS∗

SHEETAL DHARMATTI† AND MYTHILY RAMASWAMY‡

Abstract. We investigate a model of hybrid control system in which both discrete and contin-
uous controls are involved. In this general model, discrete controls act on the system at a given set
interface. The state of the system is changed discontinuously when the trajectory hits predefined
sets, namely, an autonomous jump set A or a controlled jump set C where the controller can choose
to jump or not. At each jump, the trajectory can move to a different Euclidean space. We prove
the continuity of the associated value function V with respect to the initial point. Using the dy-
namic programming principle satisfied by V , we derive a quasi-variational inequality satisfied by V
in the viscosity sense. We characterize the value function V as the unique viscosity solution of the
quasi-variational inequality by the comparison principle method.

Key words. dynamic programming principle, viscosity solution, quasi-variational inequality,
hybrid control

AMS subject classifications. 34H05, 34K35, 49L20, 49L25
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1. Introduction. Many complicated control systems, like flight control and
transportation, perform computer coded checks and issue logical as well as contin-
uous control commands. The interaction of these different types of dynamics and
information leads to hybrid control problems. Thus hybrid control systems are those
having continuous and discrete dynamics and continuous and discrete controls. Many
control systems, which involve both logical decision making and continuous evolution,
are of this type. Typical examples of such systems are constrained robotic systems [1]
and automated highway systems [8]. See [5], [6], and the references therein for more
examples of such systems.

In [5], Branicky, Borkar, and Mitter presented a model for the most general hybrid
control system in which continuous controls are present and, in addition, discrete
controls act at a given set interface, which corresponds to the logical decision making
process as in the above examples. The state of the system is changed discontinuously
when the trajectory hits these predefined sets, namely, an autonomous jump set A or a
controlled jump set C where the controller can choose to jump or not. They prove right
continuity of the value function corresponding to this hybrid control problem. Using
the dynamic programming principle they arrive at the partial differential equation
satisfied by the value function, which turns out to be the quasi-variational inequality,
referred hereafter as QVI.

In [4], Bensoussan and Menaldi study a similar system and prove that the value
function u is close to a certain uε which they mention to be continuous indicating the
use of the basic ordinary differential equation estimate for continuous trajectories and
the continuity of the first hitting time (see [4, Theorem 2.5 and Remark 3.5]). They
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prove its uniqueness as a viscosity solution of the QVI in a certain special case where
the autonomous jump set is empty and the controlled jump set is the whole space.

In our work, we study this problem in a more general case in which the au-
tonomous jump set is nonempty and the controlled jump set can be arbitrary. Our
model is based on that of [5]. Our main aim is to prove uniqueness in the most gen-
eral case when the sets A and C are nonempty and also to obtain precise estimates
to improve the earlier continuity results. Our motivation comes from the fact that in
all the real-life models mentioned above, logical decision making is always involved
as well as the continuous control. This will correspond to a nonempty autonomous
jump set A.

Here we prove the local Hölder continuity of the value function under a transver-
sality condition, the same as the one assumed in [5] and [4] (see (2.36) in [4]). For
this we need to follow the trajectories starting from two neighboring points, through
their continuous evolution, and through their discrete jumps since the autonomous
jump set is nonempty. This involves careful estimation of the distance between the
trajectories in various time intervals and summing up these terms to show that the
distance remains small for initial points sufficiently close enough. Although the basic
estimates used are similar to those available in the literature (e.g., [3], [4]), the crucial
point in our proof is the convergence of the above summation. This also allows us to
get the precise Hölder exponent for the continuity of the value function.

As in [5] and [4], using the dynamic programming principle, we arrive at the QVI
satisfied by the value function. Then we show that the value function is the unique
viscosity solution of the QVI. Our proof is very different from [4]. Their approach
using a fixed point method does not seem to be suitable, as it is for the general case of
a nonempty autonomous jump set. Our approach is based on the comparison principle
in the class of bounded continuous functions. It is inspired by earlier work on impulse
and switching control and game theoretic problems in the literature, namely, [2], [7],
[9], particularly the idea of defining a sequence of new auxiliary functions. But the
presence of the autonomous and controlled jump sets leads to different equations on
these sets, and hence some new ideas are needed to arrive at the conclusion.

2. Notation and assumptions. In a hybrid control system, as in [5], the state
vector during continuous evolution is given by the solution of the following problem:

Ẋ(t) = f(X(t), u(t)),(2.1)

X(0) = x,(2.2)

where X(t) ∈ Ω :=
⋃

i Ωi × {i}, with each Ωi a closed connected subset of Rdi , i,
di ∈ Z+; x ∈ Ω; and f : Ω × U → Ω. Actually, f = fi with the understanding that
Ẋ(t) = fi(X(t), u(t)) whenever x ∈ Ωi. U is the continuous control set

U = {u : [ 0,∞) → U | u measurable, U compact metric space} .

The trajectory also undergoes discrete jumps when it hits predefined sets A, the
autonomous jump set, and C, the controlled jump set. A predefined set D is the
destination set for both autonomous jumps as well as controlled jumps:

A =
⋃
i

Ai × {i}, Ai ⊆ Ωi ⊆ Rdi ,

C =
⋃
i

Ci × {i}, Ci ⊆ Ωi ⊆ Rdi ,

D =
⋃
i

Di × {i}, Di ⊆ Ωi ⊆ Rdi .



HYBRID CONTROL SYSTEMS AND VISCOSITY SOLUTIONS 1261

The trajectory starting from x ∈ Ωi, on hitting A, that is the respective Ai ⊆ Ωi,
jumps to the destination set D according to the given transition map g. g uses
discrete controls from the discrete control set V1 and can move the trajectory from
Ai to Dj ⊆ Ωj ⊆ Rdj . The trajectory then will continue its evolution under fj till
it again hits A or C, in particular Aj or Cj . On hitting C the controller can choose
either to jump or not to jump. If the controller chooses to jump, then the trajectory
is moved to a new point in D. In this case the controller can also move from Ωi to
any of the Ωj .

This gives rise to a sequence of hitting times of A, which we denote by σi, and a
sequence of hitting times of C, where the controller chooses to make a jump which is
denoted by ξi. Thus σi and ξi are the times when continuous and discrete dynamics
interact. Hence the trajectory of this problem is composed of continuous evolution
given by (2.1) between two hitting times and discrete jumps at the hitting times. We
denote (X(σ−

i ), u(·)) by xi and g(X(σ−
i ), v) by x′

i and the destination of X(ξ+
i , u(·))

by X(ξi)
′
. In general we take the trajectory to be left continuous so that Xx(σi)

means Xx(σ−
i ) and Xx(ξi) means Xx(ξ−i ), whereas Xx(σ+

i ) will be denoted by x′
i and

Xx(ξ+
i ) will be denoted by Xx(ξi)

′
.

We give the inductive limit topology on Ω, namely,

(xn, in) ∈ Ω converges to (x, i) ∈ Ω if for some N large and ∀n ≥ N,

in = i, x, xn ∈ Ωi, Ωi ⊆ Rdi for some i, and ‖xn − x‖Rdi < ε.

With the understanding of the above topology we suppress the second variable i from
Ω. We follow the same for A, C, and D. We make the following basic assumptions
on the sets A,C,D, and on functions f and g.

(A1): Each Ωi is the closure of a connected, open subset of Rdi .
(A2): Ai, Ci, Di are closed, ∂Ai,∂Ci are C2. For all i and for all x ∈ Di, |x| < R,

and ∂Ai ⊇ ∂Ωi for all i.
(A3): g : A × V1 → D is a bounded, uniformly Lipschitz continuous map, with

Lipschitz constant G with the understanding that g = {gi} and gi : Ai × V → Dj .
(A4): Vector field f is Lipschitz continuous with Lipschitz constant L in the state

variable x and uniformly continuous in control variable u. Also,

|f(x, u)| ≤ F ∀x ∈ Ω and ∀u ∈ U.(2.3)

(A5): We assume ∂Ai is compact for all i, and for some ξ0 > 0, following trans-
versality condition holds

f(x0, u) · η(x0) ≤ −2ξ0 ∀x0 ∈ ∂Ai ∀u ∈ U,(2.4)

where η(x0) is the unit outward normal to ∂Ai at x0. We assume a similar transver-
sality condition on ∂Ci.

(A6):

inf
i
d(Ai, Ci) ≥ β and inf

i
d(Ai, Di) ≥ β > 0,(2.5)

where d is the appropriate Euclidean distance. Note that the above rules out infinitely
many jumps in finite time.

(A7): We assume the control sets U and V1 to be compact metric spaces.
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Now (u(·), v, ξi, X(ξi)
′
) is the control, and the total discounted cost is given by

J(x, u(·), v, ξi, X(ξi)
′
) =

∫ ∞

0

K(Xx(t), u(t))e−λtdt +

∞∑
i=0

Ca(X(σi), v)e
−λσi(2.6)

+
∑

Cc(X(ξi), X(ξi)
′
)e−λξi ,

where λ is the discount factor, K : Ω × U →R+ is the running cost, Ca : A × V1 →
R+ is the autonomous jump cost, and Cc : C ×D → R+ is the controlled jump cost.
The value function V is then defined as

V (x) = inf
θ∈(U×V1×[0,∞)×D)

J(x, u(·), v, ξi, X(ξi)
′
).(2.7)

We assume the following conditions on the cost functionals.
(C1): K is Lipschitz continuous in the x variable with Lipschitz constant K1 and

is uniformly continuous in the u variable. Moreover, K is bounded by K0.
(C2): Ca and Cc are uniformly continuous in both variables and bounded below

by C ′ > 0. Moreover, Ca is Lipschitz continuous in the x variable with Lipschitz
constant C1 and is bounded above by C0. Also we assume

Cc(x, y) < Cc(x, z) + Cc(z, y) ∀x ∈ Ci, z ∈ D ∩ Cj , y ∈ D.

We now give two simple examples of hybrid control systems. For more examples,
see [5].

Example 2.1 (collisions). Consider the ball of mass m which is moving in vertical
and horizontal directions in a room under gravity with gravitational constant g. The
dynamics can be given as

ẋ = vx, v̇x = 0,

ẏ = vy, v̇y = −mg.

On hitting the boundaries of the room A1 = {(x, y)|y = 0, or y = R1} we instantly
set vy to −ρvy for some ρ ∈ [0, 1], the coefficient of restitution. Similarly we reset vx
to −ρvx on hitting the boundary A2{(x, y)|x = 0 or x = R2}. Thus in this case the
sets A1 and A2 are autonomous jump sets. We can generalize the above system by
allowing dynamics to occur in different Rd after hitting.

The next example illustrates the importance of the transversality condition, in
the absence of which the optimal trajectory and hence the optimal control may fail
to exist.

Example 2.2. Consider the dynamical system in R2 given by

ẋ1(t) = 1, x1(0) = 0,

ẋ2(t) = u, x2(0) = 0,

where u ∈ [0, 1], and when the trajectory hits the set A given by A = {(x1, x2)|(x1 −
1)2 +(x2 +1)2 = 1} it jumps to (1010, 1010). The cost is given by

∫∞
0

e−t min{|x1(t)+
x2(t)|, 21010}.

Here the vector field (u, 1) is not transversal to the boundary at (1, 0) for u =
0. Hence optimal trajectory does not exist and, moreover, the value function is
discontinuous at (1, 0).
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In the following sections we are interested in exploring the value function of the
hybrid control problem defined in (2.7). In section 2 we show that the value function is
bounded and locally Hölder continuous with respect to the initial point. In section 3,
we use viscosity solution techniques and the dynamic programming principle to derive
a partial differential equation satisfied by V in the viscosity sense, which turns out to
be the Hamilton–Jacobi–Bellman QVI. Section 4 deals with uniqueness of the solution
of the QVI. We give a comparison principle proof characterizing the value function as
unique viscosity solution of the QVI.

3. Continuity of the value function. Let the trajectory given by the solution
of (2.1) and starting from the point x be denoted by Xx(t, u(·)). Since x ∈ Ω, it
belongs in particular to some Ωi. Then we have from the theory of ordinary differential
equations

|Xx(t, u(·)) −Xz(t, u(·))| ≤ eLt|x− z|,(3.1)

|Xx(t, u(·)) −Xx(t̄, u(·))| ≤ F |t− t̄|,(3.2)

where F and L are as in (A4).
Define the first hitting time of the trajectory as

T (x) = inf
u

{t > 0 | Xx(t, u) ∈ A} .

Notice that this T (x) is in particular with respect to Ai as x ∈ Ωi. By assuming a
suitable transversality condition on ∂Ai and ∂Ci we prove the continuity of T in the
topology of Rdi . This is equivalent to proving the continuity of T on Ω with respect
to the inductive limit topology on Ω. Hereafter by convention we assume the topology
to be of that Ωi, in which the respective points belong.

Theorem 3.1. Assume (A1)–(A7). Let X(t) be the trajectory given by the
solution of (2.1). Let the first hitting time T (x) be finite. Then it is locally Lipschitz
continuous, i.e., there exists a δ1 > 0 depending on f, ξ0, and the distance function
from ∂Ai such that for all y, ȳ in B(x, δ1), a δ1 neighborhood of x in Ω

|T (y) − T (ȳ)| < C|y − ȳ|, where C depends on ξ0.

Proof. Step 1. Estimates for points near ∂A. First we show that there exist
δ > 0 and C > 0 such that

T (x) < C d(x) ∀x ∈ B(Ai, δ)\
◦
A,

where B(Ai, δ) is a δ neighborhood of Ai and d(x) is a signed distance of x from ∂Ai

given by

d(x) =

⎧⎪⎨⎪⎩
−dist(x, ∂Ai) if x ∈

◦
Ai,

0 if x ∈ ∂Ai,

dist(x, ∂Ai) if x ∈ Āc
i .

For simplicity of notation we drop the suffix i from now on, remembering that the
distances are in Rdi . It is possible to choose R > 0 such that in a small neighborhood
of ∂A, say B(∂A,R), the above signed distance function d is C1, thanks to our
assumption (A2).
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Now for x0 ∈ ∂A choose u0 in U such that u0(t) = u0 for all t and r0 < R such
that

f(x, u0) ·Dd(x) < −ξ0 ∀x ∈ B(x0, r0).(3.3)

Observe that we can choose r0 independent of x0 by using compactness of ∂A. Now
consider the trajectory starting from x, given by

Ẋ(t) = f(X(t), u0),

X(0) = x,

where x ∈ B(x0, r0). Then

d(X(s)) − d(x) =

∫ s

0

Dd(x) · f(x, u0) dτ +

∫ s

0

(
Dd(X(τ)) −Dd(x)

)
· f(X(τ), u0) dτ

+

∫ s

0

Dd(x) · (f(X(τ), u0) − f(x, u0)) dτ.

By using (3.3) and (2.3),

d(X(s)) − d(x) ≤
∫ s

0

− ξ0 dτ + F

∫ s

0

(Dd(X(τ)) −Dd(x)) dτ

+

∫ s

0

Dd(x) · (f(X(τ), u0) − f(x, u0)) dτ.

Let c be the bound on Dd on B(∂A, r0). Restricting s to be small so that X(τ) is in
the r0 neighborhood of ∂A, we are assured that Dd is continuous. So is f . Thus

d(X(s)) − d(x) ≤ −ξ0s + o(Fs) + o(cLs)

< −1

2
ξ0s for 0 < s < s̄

for some s̄ dependent only on modulus of continuity of f and Dd and independent
of x. Choose δ = min{r0, s̄ξ0

2 }. If x is in the δ ball around x0, then d(x) < s̄ξ0
2 and,

choosing sx = 2d(x)
ξ0

, will imply

sx < s̄ and hence d (X(sx)) < 0.

Thus by our definition of d, X(sx) ∈
◦
A, which implies

T (x)<sx = 2
d(x)

ξ0
.

Then for C = 2
ξ0

we have

T (x) < Cd(x) ∀x ∈ B(x0, δ)\
◦
A .

Step 2. Estimate for any two points in Ω. In this step we estimate |T (x)− T (x̄)|
for any x, x̄ ∈ Ω. Define

t(x̄, ū) = inf{t > 0 | X(t) ∈ A, Ẋ(t) = f(X(t), ū), X(0) = x̄}.
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For given 0 < ε < 1, and x̄ ∈ Ω by the definition of T (x̄), we can choose ū ∈ U such
that

t̄ = t(x̄, ū) < T (x̄) + ε.(3.4)

Using estimate (3.1),

|Xx̄

(
t̄, ū

)
−Xx

(
t̄, ū

)
| ≤ |x̄− x|eLt̄ ≤ |x̄− x|eL(T (x̄)+ε).(3.5)

Define δ1 = δe−L(T (x̄)+1), where δ is as in Step 1. Let us choose x such that |x− x̄| <
δ1. Then

|Xx̄(t̄, ū) −Xx(t̄, ū)| ≤ |x̄− x|eLt̄ < |x̄− x|eL(T (x̄)+1) < δ.

Also we have Xx̄(t̄, ū) ∈ ∂A. Hence, Xx(t̄, ū) ∈ B(∂A, δ)\
◦
A. Therefore, by Step 1,

T (Xx

(
t̄, ū)

)
<Cd(Xx(t̄, ū)).(3.6)

We claim that

T (x) ≤ t̄ + T (Xx(t̄, ū)).(3.7)

For given ε1 > 0, choose u1 ∈ U such that

T
(
Xx(t̄, ū)

)
≥ t

(
Xx(t̄, ū), u1

)
− ε1.

Define a new control u2 by

u2(s) =

{
ū(s) if s ≤ t̄,

u1(s− t̄) if s > t̄.

Then

T (x) ≤ t(x, u2) ≤ t̄ + t (Xx(t̄, ū), u1) ≤ t̄ + T (Xx(t̄, ū)) + ε1.

Since ε1 is arbitrary, this proves (3.7). Using (3.4) and (3.7) for x ∈ B(x̄, δ1) we get

T (x) ≤ T (x̄) + T
(
Xx(t̄, ū)

)
+ ε

≤ T (x̄) + C d
(
Xx(t̄, ū)

)
+ ε by (3.6).

Notice that d(Xx(t̄, ū)) ≤ |Xx(t̄, ū) −Xx̄(t̄, ū)|. So by (3.5)

T (x) ≤ T (x̄) +C |x− x̄| eL(T (x̄) + ε) + ε.

Interchanging the roles of x and x̄ we get

|T (x) − T (x̄)| ≤ C |x− x̄| eL(T (x̄)∨T (x))(3.8)

as ε tends to 0, where T (x̄) ∨ T (x) = max{T (x̄), T (x)}. Also observe that

T (x) ≤ T (x̄) +C |x− x̄| eL(T (x̄)+ε) + ε

≤ T (x̄) +Cδ + ε≤T (x̄) +Cδ + 1

≤ T (x̄) + 2.
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Hence for all x belonging to B(x̄, δ1), T is bounded. Let this bound be T0. Then we
have

|T (x) − T (x̄)| < C|x− x̄|eLT0 .

Hence we conclude that the first hitting time of trajectory is locally Lipschitz contin-
uous with respect to the initial point.

Now we take up the issue of continuity of the value function. For this proof we
need some estimates on hitting times of trajectories starting from two nearby points.
We prove these estimates in the following lemmas. We fix the controls ū and v̄ and
suppress them in the following calculations.

Lemma 3.2. Let σ1 and Σ1 be the first hitting times of trajectories evolving with
fixed controls ū and v̄ according to (2.1) starting from x and z, respectively. Let x1

and z1 be points where these trajectories hit A for the first time:

x1 = Xx(σ1), z1 = Xz(Σ1), x1, z1 ∈ ∂A.

If |x− z| < δ1, where δ1 is as in Theorem 3.1, then

|x1 − z1| ≤ (1 + FC)eL(Σ1∨σ1)|x− z|.(3.9)

Proof. Note here that by Theorem 3.1 we have the estimate on |σ1 − Σ1| given
by (3.8),

|σ1 − Σ1| < CeL(Σ1∨σ1) |x− z|.(3.10)

Using this we estimate |x1 − z1|. Without loss of generality we assume that Σ1 > σ1,

|x1 − z1| = |Xx(σ1)−Xz(Σ1)|
≤ |Xx(σ1)−Xz(σ1)| + |Xz(σ1)−Xz(Σ1)|.

Using (3.1) we get

|Xx(σ1)−Xz(σ1)| < eLσ1 |x− z|,

while (3.2) and (3.10) lead to

|Xz(σ1)−Xz(Σ1)| ≤ F |σ1 − Σ1| ≤ FCeLΣ1 |x− z|.

Combining these estimates, we get

|x1 − z1| ≤ eLΣ1 |x− z|(1 + FC) for z ∈ B(x, δ1).

Observe that the destination points of x1 and z1, which are denoted by x1
′ =

g(x1, v̄) and z1
′ = g(z1, v̄), may belong to Ωj ⊆ Rdj . Without loss of generality we

assume that x1
′, z1

′ ∈ Ω2 ⊆ Rd2 , and the evolution of trajectories takes place in Ω2

till the next hitting time. Let σ2 and Σ2 be the next hitting times of the trajectories
when they hit A once again. The next lemma deals with the estimate of |σ2 − Σ2|.

Lemma 3.3. Let the first hitting time of trajectories starting from x and z, and
evolving with fixed control ū, be σ1 and Σ1, and the second hitting times are σ2 and
Σ2. Then there exists δ2 such that for |x− z| < δ2,

|σ2 − Σ2| ≤ Ce(Σ2∨σ2)(FC + G(FC + 1))|x− z|(3.11)
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and if we denote

x2 =Xx′
1
(σ2 − σ1), x′

2 = g(x2),
z2 =Xz′

1
(Σ2 − Σ1), z′2 = g(z2),

then

|x2 − z2| ≤ (FC + 1)eL(Σ2∨σ2)(FC + G(FC + 1))|x− z|.(3.12)

Proof. Without loss of generality let σ1 < Σ1. Observe that σ2 and Σ2 are the
first hitting times of trajectories starting from points Xx′

1
(Σ1 − σ1) and z′1 at time

t = Σ1. Then

T (z′1) = (Σ2 − Σ1) and T (Xx′
1
(Σ1 − σ1)) = σ2 − Σ1.

Hence by (3.8)

|σ2 − Σ2| ≤ CeL(Σ2−Σ1)|Xx′
1
(Σ1 − σ1) − z′1|

whenever |Xx′
1
(Σ1 − σ1) − z′1| ≤ δ1. Now

|Xx′
1
(Σ1 − σ1) − z′1| ≤ |Xx1

′(Σ1 − σ1) − x′
1| + |x′

1 − z′1|.

Hence by using estimate (3.2) and (3.10) for the first term we have

|Xx′
1
(Σ1 − σ1) − x′

1| ≤ F |Σ1 − σ1| ≤ FCeLΣ1 |x− z|,

whereas using Lipschitz continuity of g and (3.9) for the second term we get

|x′
1 − z′1| ≤ G|x1 − z1| ≤ G(FC + 1)eLΣ1 |x− z| for z ∈ B(x, δ1).

Combining the above two estimates we have

|Xx′
1
(Σ1 − σ1) − z′1| ≤ eLΣ1(FC + G(FC + 1))|x− z|(3.13)

and by our choice of δ2 = min{δ1, δ1e
−LΣ1

FC+G(FC+1)}, |Xx′
1
(Σ1 − σ1) − z′1| < δ1. Using

(3.13) in the estimate of |σ2 − Σ2| for z ∈ B(x, δ2) we have

|σ2 − Σ2| ≤ CeLΣ2(FC + G(FC + 1))|x− z|.(3.14)

Now we estimate |x2 − z2|:

|x2 − z2| = |Xx′
1
(σ2 − σ1) −Xz′

1
(Σ2 − Σ1)|

≤ |Xx′
1
(σ2 − σ1) −Xz′

1
(σ2 − Σ1)| + |Xz′

1
(σ2 − Σ1) −Xz′

1
(Σ2 − Σ1)|.

Observe that by the semigroup property

Xx′
1
(σ2 − σ1) = XXx′

1
(Σ1−σ1)(σ2 − Σ1).

Hence

|Xx′
1
(σ2 − σ1) −Xz′

1
(σ2 − Σ1)| = |XXx′

1
(Σ1−σ1)(σ2 − Σ1) −Xz′

1
(σ2 − Σ1)|
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and by (3.1)

|Xx′
1
(σ2 − σ1) −Xz′

1
(σ2 − Σ1)| ≤ eL(σ2−Σ1)|Xx′

1
(Σ1 − σ1) − z′1|.(3.15)

From (3.2) and (3.14) we get

|Xz′
1
(σ2 − Σ1) −Xz′

1
(Σ2 − Σ1)| ≤ F |σ2 − Σ1 − (Σ2 − Σ1)|

≤ FCeLΣ2(FC + G(FC + 1))|x− z|.(3.16)

Together these estimates yield, for z ∈ B(x, δ2),

|x2 − z2| ≤ eLΣ2(FC + 1)(FC + G(FC + 1))|x− z|.

Let σi and Σi be the ith hitting times of trajectories starting from x and z,
respectively. With the above notation we assume that xi

′, zi
′ ∈ Ωi+1 ⊆ Rdi+1 . We

apply Theorem 3.1 and the above lemmas recursively to find estimates on successive
hitting times and points where trajectories hit A. We generalize the above estimates
for the ith hitting times of trajectories when they hit A. For simplicity of calculations
we denote FC + G(FC + 1) by P hereafter.

Remark 3.4. Let the control ū be fixed. Let σi and Σi be the ith consecutive
hitting time of the trajectory starting from x and z, respectively, when they hit A, and
let xi, zi be the points on ∂A where trajectories hit A. Then proceeding along lines
similar to those of Lemmas 3.2 and 3.3 we get the estimates for |σi−Σi| and |xi−zi|
which are given by

|σi − Σi| ≤ CeLΣiP i−1|x− z|,
|xi − zi| ≤ eLΣi(FC + 1)P i−1|x− z|

whenever |x− z| < δi, where δi := min{δ1, δ2, . . . , δ1e
−LΣi

P i−1 }.
Theorem 3.5 (continuity of the value function). Under the assumptions of

Theorem 3.1, value function V of hybrid control problem defined by (2.7) is bounded
and locally Hölder continuous with respect to the initial point.

Proof. First we show that the value function is bounded. For any u ∈ U and
v ∈ V1,

V (x) ≤
∫ ∞

0

K(Xx(t), u(t))e−λtdt +

∞∑
i=0

Ca(X(σi), v)e
−λσi .

By our assumptions (C1) and (C2),

V (x) ≤ K0

∫ +∞

0

e−λt dt +

+∞∑
i=1

C0e
λσi ≤ K0

λ
+ C0

+∞∑
i=1

e−λσi .

From (A5), recalling that β = inf d(Ai, Di),

σi+1 ≥ σi +
β

sup |f(x, u)| ≥ σi + β/F.(3.17)

Hence we get

∞∑
i=1

e−λσi ≤ e−λσ1

∞∑
i=1

(
e−λβ/F

)i ≤ e−λσ1
1

1 − e−λβ/F
,(3.18)
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leading to

V (x) ≤ K

λ
+ C0e

−λσ1
1

1 − e−λβ/F
.

This proves V (x) is bounded.

We now show that V defined in (2.7) is locally Hölder continuous with respect
to the initial point. Let x, z ∈ Ω. Regarding V (x) as in (2.7), we assume that the
controller chooses not to make any controlled jumps. Note that the controller has
this choice because in the interior of C he can always choose not to jump. On the
boundary of C that is ∂C by the transversality condition, vector field is nonzero and
hence he can continue the evolution without jumping. Thus in any case he can choose
not to jump. Then given ε > 0, we can choose the controls u, v depending on ε such
that

V (z)≥
∫ ∞

0

K(Xz(t), u(t))e−λtdt +

∞∑
i=1

Ca(Xz(Σi), v)e
−λΣi − ε.

Also

V (x) ≤
∫ ∞

0

K(Xx(t), ū(t))e−λtdt +

∞∑
i=1

Ca(Xx(σi), v̄)e
−λσi .

Hence

V (x) − V (z)≤
∫ ∞

0

|K(Xx(t), u(t)) −K(Xz(t), u(t))|e−λtdt

+

∞∑
i=1

|Ca(Xx(σi), v) − Ca

(
Xz(Σi), v

)
|e−λ(σi∨Σi) + ε,

where σi ∨Σi = max{σi,Σi}. Now for T large to be chosen precisely later on we split
the integral and summation as follows:

V (x) − V (z) ≤
∫ T

0

|K(Xx(t), u(t)) −K(Xz(t), u(t))|e−λtdt(3.19)

+

N∑
i=1

|Ca(Xx(σi), v) − Ca(Xz(Σi), v)|e−λ(σi∨Σi)

+

∫ ∞

T

|K(Xx(t), u(t)) −K(Xz(t), u(t))|e−λtdt

+

∞∑
i=N+1

|Ca(Xx(σi), v) − Ca(Xz(Σi), v)|e−λ(σi∨Σi) + ε,

where T will be chosen so that the tail end of the integral and summation become
small and T is in between the Nth and (N + 1)th hitting times of the trajectories.
By using the bound K0 on K given by (C1) we get∫ ∞

T

|K(Xx(t), u(t)) −K(Xz(t), u(t))|e−λtdt ≤ 2K0

λ
e−λT(3.20)
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and by using bound C0 on Ca given by (C2) and doing calculations along lines similar
to those of (3.18) we get the estimate

∞∑
i=N+1

|Ca(Xx(σi), v) − Ca(Xz(Σi), v)|e−λ(σi∨Σi) ≤ 2C0

(
e−λβ/F

)N 1

1 − e−λβ/F
.

(3.21)

Now we calculate
∫ T

0
|K(Xx(t), u(t)) −K(Xz(t), u(t))|e−λtdt. We will show that

there exists δ̄ > 0 such that if |x− z| < δ̄, then the sequence of σi and Σi can be, for
example,

0 ≤ σ1 ≤ Σ1 ≤ σ2 ≤ Σ2 ≤ · · · ≤ σn ≤ Σn ≤ T(3.22)

or 0 ≤ Σ1 ≤ σ1 ≤ · · · ≤ Σn ≤ σn ≤ T.

That is, every A hitting time of trajectory starting from x is followed by A hitting
time of trajectory starting from z.

Without loss of generality let us assume σ1 < Σ1. If Σ1 < σ1, the following
calculations go through with appropriate changes and hence we split this integral,
assuming (3.22) as follows:∫ T

0

Ie−λtdt ≤
∫ σ1

0

Ie−λtdt +

∫ Σ1

σ1

Ie−λtdt +

∫ σ2

Σ1

Ie−λtdt + · · ·(3.23)

+

∫ Σn

σn

Ie−λtdt +

∫ σn+1

Σn

Ie−λtdt,

where I = |K(Xx(t), u(t)) −K(Xz(t), u(t))|. In this there are two types of integrals:

1.
∫ Σi

σi
Ie−λtdt;

2.
∫ σi+1

Σi
Ie−λtdt.

If |x − z| < δN , where δN = min{δ1, δ2, . . . , δ1e
−LΣN

PN−1 }, we can estimate the above
integrals using Lemmas 3.2 and 3.3 and Remark 3.4. We use the bound on K to
evaluate the first integral.∫ Σi

σi

Ie−λtdt ≤ 2K0

λ

(
e−λσi − e−λΣi

)
≤ 2K0

λ
λ|σi − Σi|.

Using Remark 3.4, ∫ Σi

σi

Ie−λtdt ≤ 2K0CP i−1eLΣi .(3.24)

To evaluate the second integral we use the Lipschitz continuity of K.∫ σi+1

Σi

Ie−λtdt =

∫ σi+1

Σi

|K
(
Xx′

i
(t− σi)

)
−K

(
Xz′

i
(t− Σi)

)
|e−λtdt(3.25)

≤ K1

∫ σi+1

Σi

|Xx′
i
(t− σi) −Xz′

i
(t− Σi)|e−λtdt.
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By the semigroup property,

|Xx′
i
(t− σi) −Xz′

i
(t− Σi)| = |XXxi

′ (Σi−σi)(t− Σi) −Xz′
i
(t− Σi)|

≤ eL(t−Σi)|Xxi
′(Σi − σi) − z′i| by (3.1).

Now by generalizing the estimate in (3.13) we get

|Xxi
′(Σi − σi) − z′i| ≤ P ieLΣi |x− z|.(3.26)

Hence substituting the above estimates in (3.25), we get∫ σi+1

Σi

Ie−λtdt ≤ K1e
−LΣiP ieLΣi |x− z|

∫ σi+1

Σi

e(L−λ)tdt.

For L = λ, ∫ σi+1

Σi

Ie−λtdt ≤ K1P
i |x− z| e

(L−λ)(σi+1) − e(L−λ)Σi

L− λ
(3.27)

≤ K1P
i|x− z| e

(L−λ)T − 1

L− λ

and for L = λ, ∫ σi+1

Σi

Ie−λtdt ≤ K1e
−LΣiP ieLΣi |x− z|

∫ σi+1

Σi

dt(3.28)

≤ K1P
i|x− z| |σi+1 − Σi|

≤ K1P
i |x− z| 2T.

For L = λ, by using (3.24), (3.27),
∫ T

0
Ie−λtdt becomes∫ T

0

Ie−λtdt ≤
N∑
i=1

2K0CP i−1eLT |x− z| +
N∑
i=1

K1

L− λ
P i

(
e(L−λ)T − 1

)
|x− z|.

Hence ∫ T

0

Ie−λtdt ≤ 2K0C
[
PN−1

P−1

]
|x− z|

+K1

[
PN−1
P−1

]
e(L−λ)T−1

L−λ |x− z|

⎫⎪⎬⎪⎭ for L = λ(3.29)

and for L = λ, using (3.24) and (3.28),∫ T

0

Ie−λtdt ≤
N∑
i=1

2K0|σi − Σi| +
N∑
i=1

K1TP
i|x− z|

≤
N∑
i=1

2K0CP i−1|x− z| +
N∑
i=1

K1TP
i|x− z|.

Thus ∫ T

0

Ie−λtdt ≤ 2K0C
(

PN−1
P−1

)
|x− z|

+2K1T
(

PN−1
P−1

)
|x− z|

⎫⎪⎬⎪⎭ for L = λ.(3.30)
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Furthermore, by using (C2) and Remark 3.4 we get

N∑
i=1

|Ca(xi, v) − Ca(zi, v)|e−λ(σi∨Σi) ≤
N∑
i=1

2C1|xi − zi|e−λ(σi∨Σi)

≤ 2C1

N∑
i=1

(FC + 1)eLTP i−1|x− z|,

N∑
i=1

|Ca(xi, v) − Ca(zi, v)|e−λ(σi∨Σi) ≤ 2C1(FC + 1)eLT |x− z|
(
PN−1 − 1

P − 1

)
.

(3.31)

Since P is a constant, without loss of generality we can assume

PN

P − 1
< 2PN .(3.32)

Also observe that σi − σi+1 ≥ β/F implies that T ≥ σN+1 − σ1 ≥ Nβ/F and hence

N < TF/β.(3.33)

Using (3.20), (3.21), (3.29), (3.31), (3.32), (3.33) in (3.19) for L = λ we have

V (x) − V (z) ≤ 4K0CeLTPTF/β |x− z|+ 2K1P
TF/β e(L−λ)T − 1

L− λ
|x− z|

+
2K0

λ
e−λT + 2C1e

LTPTF/β |x− z|

+ 2C0

(
e−λβ/F

)TF/β 1

1 − e−λβ/F
.

Now we further restrict |x − z| < (δ1)
1

1−θ for some θ such that 0 < θ < 1. Then
choose T such that

PTF/βeLT = |x− z|−θ.

This gives

T =
−θ log |x− z|
λ + F logP/β

.(3.34)

This together with the choice of |x− z| implies

δN =
δ1

eLΣNPN−1
>

δ1
eLTPTF/β

= δ1|x− z|θ > |x− z|.(3.35)

Thus |x− z| < δN and hence the above estimate holds true for our choice of T . Then
substituting the value of T in the above estimate, for L = λ, we get

V (x) − V (z) ≤ 4K0C|x− z|1−θ +
K1

L− λ
|x− z|1−θ + C1|x− z|1−θ

+
2K0

λ
|x− z|

λθ
(F log P/β)+L + 2C0|x− z|

λθ
(F log P/β)+L .
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Here we have used the fact that e(L−λ)T − 1 < eLT . Thus we have proved that in

the δ
1

1−θ

1 ball around x,

V (x) − V (z) < C1|x− z|θ1 for some constant C1,

where

θ1 = min

{
1 − θ,

λ θ

(F logP/β) + L

}
for 0 < θ < 1.

For L = λ, using (3.20), (3.21), (3.30), (3.31), (3.32), and (3.34) in (3.19), we
have

V (x) − V (z) ≤ 4K0C|x− z|1−θ + 2
K1

(F logP/β) + L
log(|x− z|)|x− z|1−θ

+ 2C1(FC + 1)|x− z|1−θ +
2K0

L
|x− z|

Lθ
(F log P/β)+L

+ 2C0|x− z|
Lθ

(F log P/β)+L .

Since |x− z|1−θ goes to 0 faster than log(|x− z|) goes to −∞ as |x− z| → 0, all
terms on the right-hand side (RHS) go to 0. The modulus of continuity of V is the

same as that of log(r)r1−θ. This suggests that in the δ
1

1−θ

1 ball around x,

V (x) − V (z) < C1|x− z|θ1 for some constant C1

and for all θ1 such that

θ1 < min

{
1 − θ,

Lθ

(F logP/β) + L

}
for 0 < θ < 1.

Thus in any case we have shown that (for θ1 chosen depending on L = λ or L = λ)

V (x) − V (z) ≤ C1|x− z|θ1 for some constant C1.

Interchanging the roles of x and z we will get

V (z) − V (x) ≤ C2|x− z|θ1 for some constant C2.

Together these will give

|V (x) − V (z)| ≤ C|x− z|θ1 for some constant C.

This proves the Hölder continuity of V .
Now we want to justify our claim in (3.22), i.e., if σ1 < Σ1, we can choose

|x− z| small enough such that (3.22) holds. If we restrict |x− z| such that |x− z| ≤
min( β

4FC , ( β
4CF )

1
1−θ ), then by Remark 3.4,

|Σi − σi| ≤ CeLT (FC + G(FC + 1))TF/β |x− z|.

By our choice of T ,

|Σi − σi| ≤C|x− z|1−θ ≤ 1

4

β

F
<

1

2
|σi − σi+1|

and this together with the assumption σ1 < Σ1 implies σi < Σi < σi+1 for all i. So
our claim is justified.
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4. Dynamic programming principle and the QVI. Under our assumptions
(A1)–(A7), an optimal trajectory exists for any initial condition as shown in [5, Theo-
rem 6.4]. The following dynamic programming principle and derivation of the QVI is
also found in the literature [5], [4]. For the sake of completeness we prove it in detail
here.

Theorem 4.1 (dynamic programming principle). Let V be the value function of
the hybrid control problem as given in (2.7). If t1 is the first hitting time of A, then

V (x) = inf
u

{∫ t1

0

K(X(t), u(t))e−λtdt + e−λtMV (Xx(t1))

}
,(DPPA)

where

Mφ(x) = inf
v∈V

{φ(g(x, v)) + Ca(x, v)}

and if t1 is the first hitting time of C, then

V (x) = inf
u

{∫ t1

0

K(X(t), u(t))e−λtdt + e−λtNV (Xx(t1))

}
,(DPPC)

where

Nφ(x) = inf
x′∈D

{(φ(x′)) + Cc(x, x
′)} .

For any T > 0,

V (x) = inf
u,v,ξi,X(ξi)

′

{∫ T

0

K(Xx(t), u(t))e−λtdt +
∑
σi<T

e−λσiCa(X(σi), v)

+
∑
ξi<T

e−λξiCc

(
X(ξi), X(ξi)

′)
+ e−λTV (Xx(T ))

}
.

(DPP)

Proof. Let t1 be the first hitting time of trajectory when it hits A ∪ C. If t1 is a
first hitting time of A, we denote it by σ1,

V (x)≤
∫ σ1

0

K(X(t), u(t))e−λtdt + Ca(X(σ1), v)e
−λσ1

+

[∫ ∞

σ1

K(X(t), u(t))e−λtdt +

∞∑
i=2

Ca(X(σi), v)e
−λσi

+

∞∑
i=1

Cc

(
X(ξi), X(ξi)

′)e−λξi

]
.

We change the variable t′ = t−σ1 in the square bracket. Then taking the infimum in
the square brackets over the control variables we get a value function of the trajectory
starting from the point g(Xx(σ1), v). Hence,

V (x) ≤
∫ σ1

0

K(X(t), u(t))e−λtdt + e−λσ1Ca(X(σ1), v)

+ e−λσ1V (g(Xx(σ1), v).
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Now taking the infimum over discrete controls v belonging to V in the last two terms
we get

V (x) ≤
∫ σ1

0

K(X(t), u(t))e−λtdt + MV (Xx(σ1)).

Further taking the infimum over continuous controls u in U we have the one-way
inequality in (DPPA). For the reverse inequality, let ε > 0 be given. Choose the control
θε = (uε, vε, ξiε, X(ξi)

′
ε) such that

V (x) + ε≥
∫ σ1

0

K(X(t), uε(t))e
−λtdt + Ca(X(σ1), vε)e

−λσ1

+ e−λσ1

[∫ ∞

σ1

K(X(t), uε(t))e
−λtdt +

∞∑
i=2

Ca(X(σi), vε)e
−λσi

+

∞∑
i=1

Cc

(
X(ξiε), X(ξi)

′
ε

)
e−λξiε

]

with calculations similar to those earlier, we can conclude that

V (x) + ε ≥
∫ σ1

0

K(X(t), u(t))e−λtdt + MV (Xx(σ1))

≥ infu

∫ σ1

0

K(X(t), u(t))e−λtdt + MV (Xx(σ1)).

Hence as ε → 0 we have other way inequality. Thus (DPPA) is proved. Now we
proceed to prove (DPPC). Let t1 be the first hitting time of C where the controller
chooses to jump. In this case we write t1 = ξ1. Then

V (x)≤
∫ ξ1

0

K(X(t), u(t))e−λtdt + Cc

(
X(ξ1), X(ξ1)

′)e−λξ1

+

[ ∫ ∞

ξ1

K(X(t), u(t))e−λtdt +

∞∑
i=1

Ca(X(σi), v)e
−λσi

+

∞∑
i=2

Cc

(
X(ξi), X(ξi)

′)e−λξi

]
.

Doing the change of variables t′ = t−ξ1 in the square brackets and taking the infimum
over the control variables, it is the value function of trajectory starting from (Xx(ξ1))

′
.

Hence,

V (x) ≤
∫ ξ1

0

K(X(t), u(t))e−λtdt + e−λξ1Cc(X(ξ1), X(ξ1)
′
) + e−λξ1V (Xx(ξ1)

′
).

Now taking the infimum over (Xx(ξ1))
′ ∈ D in the last two terms we get

V (x) ≤
∫ ξ1

0

K(X(t), u(t))e−λtdt + NV (Xx(ξ1)),

and taking the infimum over u in U on the RHS we will get the one-way inequality of
(DPPC).
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For the reverse inequality, given ε > 0 choose θε = (uε, vε, ξiε, X(ξi)
′
ε) such that

V (x) + ε ≥
∫ ξ1ε

0

K(X(t), uε(t))e
−λtdt+NV (Xx(ξ1ε))

≥ infu

∫ ξ1ε

0

K(X(t), u(t))e−λtdt+NV (Xx(ξ1ε)).

As ε → 0 we will get

V (x) = inf
u

{∫ ξ1

0

K(X(t), u(t))e−λtdt + NV (Xx(ξ1))

}
,

which proves (DPPC). The proof of (DPP) for any T > 0 follows similarly, which we
skip here.

Theorem 4.2 (quasi-variational inequality). Under the assumptions (A1)–(A7)
and (C1), (C2), the value function V described in (2.7) satisfies the following the QVI
in the viscosity sense:

V (x) =

⎧⎪⎨⎪⎩
MV (x) ∀x ∈ A,

min {NV (x),−H(x,DV (x))} ∀x ∈ C,

−H(x,DV (x)) ∀x ∈ Ω \A ∪ C,

(QVI)

where H is the Hamiltonian given by

H(x, p) = sup
u∈U

{
−K(x, u) − f(x, u) · p

λ

}
.

Proof. Let x ∈ A. In this case we have to show that V (x) = MV (x). Since
x ∈ A, the first hitting time of trajectory is σ1 = 0. Hence, by (DPPA) we get
V (x) = MV (x).

Now we consider the case x ∈ Ω \ A ∪ C. In this case we want to show that V
satisfies the Hamilton–Jacobi–Bellman (HJB) equation in the viscosity sense. For we
need to show the following: for all φ ∈ C1(Ω) and x local maximum of V − φ

V (x) + H(x,Dφ(x)) ≤ 0

and for all φ ∈ C1(Ω) and x local minimum of V − φ

V (x) + H(x,Dφ(x)) ≥ 0.

Let r = min {d(x, ∂A),d(x, ∂C)}. Choose R < r. Then in the ball B(x,R) no
impulses are applied. Now V is continuous at x, and assume that V − φ has local
maximum at x. Choose τ small enough such that Xx(τ) ∈ B(x,R). By our choice of
R and τ , τ is less than the first hitting time. Then, since x is the local maximum of
V − φ,

φ(x) − φ(Xx(τ))≤V (x) − V (Xx(τ))

≤
∫ τ

0

K(Xx(t), u(t))e−λtdt + (e−λτ − 1)V (Xx(τ)),

where the second inequality follows by (DPP), since τ < σ1 and τ < ξ1. Dividing by
τ and taking the limit as τ → 0 we get

−Dφ(x) · f(x) ≤ K(x, u(0)) − λV (x),
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which implies

V (x) +
−K(x, u(0) −Dφ(x) · f(x)

λ
≤ 0.

Taking the supremum over all u ∈ U we will get

V (x) + H(x,Dφ(x)) ≤ 0.

Hence V is a viscosity subsolution of HJB equation.
To show that V is a viscosity supersolution, let V − φ have local minimum at x.

Then for τ such that Xx(τ) ∈ B(x,R),

φ(Xx(τ)) − φ(x)≤V (Xx(τ)) − V (x)

≤ (1 − e−λτ )V (Xx(τ)) −
∫ τ

0

K(Xx(t), u(t))e−λtdt by (DPP).

Dividing by τ and taking the limit as τ → 0 we get

λV (x) −K(x, u(0)) −Dφ(x) · f(x) ≥ 0,

V (x) +
−K(x, u(0)) −Dφ(x) · f(x)

λ
≥ 0.

Taking the supremum over all u we will get

V (x) + H(x,Dφ(x)) ≥ 0.

Hence V is a viscosity supersolution of the HJB equation. Thus we have shown that
in the case x ∈ Ω \A ∪ C, V satisfies the HJB equation in the viscosity sense.

Now consider the case x ∈ C. We observe that if x ∈ C, and the controller
chooses to jump, then by (DPPC), V should satisfy NV (x). Whereas if the controller
decides not to jump, then the system undergoes some continuous evolution and we
can analyze as before to conclude that V satisfies the HJB equation in the viscosity
sense. In this case we have to show that V satisfies the following equation in the
viscosity sense:

min{V (x) −NV (x), V (x) + H(x,DV (x))} = 0.

For this we need to show that, for all φ ∈ C1(Ω), x local minimum of V − φ

min{V (x) −NV (x), V (x) + H(x,DV (x))} ≥ 0,

and for all φ ∈ C1(Ω), x local maximum of V − φ,

min{V (x) −NV (x), V (x) + H(x,DV (x))} ≤ 0.

Now if V (x) = NV (x), there is nothing to prove.
Suppose V (x) < NV (x); then we need to show that V satisfies the HJB equation

in the viscosity sense. We show that whenever V (x) < NV (x) there exists r > 0 and
a ball B(x, r) around x such that it is not optimal to apply any impulses on B(x, r).
Then we can do the analysis in this ball to conclude as in the case of x ∈ Ω \ A ∪ C.
For we claim that there exists ε > 0 such that

V (x) = inf
u,v,ξi,X(ξi)′

{∫ t1

0

K(Xx(t), u(t))e−λtdt + NV (Xx(t1)) | t1 > ε

}
.



1278 SHEETAL DHARMATTI AND MYTHILY RAMASWAMY

Suppose not; then ε = 0, which implies ξ1 = 0, which by (DPPC) implies V (x) =
NV (x); this is a contradiction of our hypothesis V (x) < NV (x). Hence ε > 0. Choose
r < min{d(x,Xx(ε)), d(A,C)}. Then in the ball B(x, r), no impulses are applied. So
we can do the analysis in this ball around x and conclude as in the earlier case. This
proves the QVI for the case x ∈ C.

5. Uniqueness. We take up the issue of uniqueness of the viscosity solutions of
(QVI) in this section. Inspired by the earlier work on impulse control problem (see
[2], [9]), we prove the comparison between any two solutions of the QVI.

Theorem 5.1. Assume (A1)–(A7) and (C1), (C2). Let u1, u2 ∈ BC(Ω), bounded
continuous functions on Ω, be two viscosity solutions of the QVI given by (QVI). Then
u1 = u2.

Proof. The idea of the proof is to show that u1(x) ≤ u2(x) for all x ∈ Ω. We
define the following auxiliary function Φ on

⋃∞
i=1 (Ωi × Ωi) that is Φi on each Ωi×Ωi

by

Φi(x, y) = u1(x) − u2(y) −
1

ε
|x− y|2 − κ

(
|x|2 + |y|2

)
,(5.1)

where ε and κ are small positive parameters to be chosen suitably later on. Observe
that for each i,Φi attains its supremum over Ωi × Ωi, thanks to the last two terms,
which become large negative as |x|, |y| goes to 0. We prove the theorem in two steps.
In the first step of the proof we show that supi supΩi×Ωi

Φi(x, y) ≤ 0. In the next
step we prove the uniqueness using Step 1.

Step 1. Let

sup
i

sup
Ωi×Ωi

Φi(x, y) = C > 0.

Fix κ > 0 such that κ < min{C
2 ,

C′

2 }. If the above supremum is achieved at some
(x0, y0), the following proof gets simplified. If not, corresponding to this κ we can
choose (xκ, yκ) in some Ωi × Ωi, say, Ω1 × Ω1, such that

Φ1(xκ, yκ) > C − κ >
C

2
.(5.2)

Let Φ1 attain its supremum at some finite point, say, at (x0, y0) in Ω1 × Ω1. Then

sup
Ω1×Ω1

Φ1(x, y) = Φ1(x0, y0) > C − κ >
C

2
.(5.3)

Since x0 and y0 can lie in different sets in Ω1, u1(x0) and u2(y0) will satisfy
different equations from the QVI. We list below the different cases which arise:

1. (x0, y0) ∈ A× C or C ×A.
2. (x0, y0) ∈ Ω \ (A ∪ C) × Ω \ (A ∪ C).
3. x0, y0 /∈ A and one of x0 or y0 ∈ C. This takes care of (x0, y0) ∈ C × Ω \

(A ∪ C), (x0, y0) ∈ Ω \ (A ∪ C) × C, (x0, y0) ∈ C × C.
4. x0, y0 /∈ C and one of the x0 or y0 ∈ A, i.e., (x0, y0) ∈ A × A or (x0, y0) ∈

A× Ω \ (A ∪ C), (x0, y0) ∈ Ω \ (A ∪ C) ×A.
Our idea is to show that in any of these cases, u1(x)− u2(x) is arbitrarily small for ε
and κ small. For this we will estimate u1(x0)−u2(y0) at the maximum point (x0, y0)
of Φ1 or u1(xn) − u2(yn) at the maximum point (xn, yn) of ψn, a suitably defined
auxiliary function. The crucial point in our proof is that after at most finitely many
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steps, say n0, at the maximum point of ψn0
both u1 and u2 satisfy the HJB equation.

Then we can use the usual comparison principle available in the literature. We first
list some standard estimates needed later in the proof.

Lemma 5.2. Let Φ and (x0, y0) be as above. Then

(i) |x0−y0|2
ε ≤ C for some C independent of κ and ε;

(ii)
√
κ|x0|,

√
κ|y0| ≤ Ĉ for some Ĉ independent of κ and ε;

(iii) |x0−y0|2
ε ≤ ω1

κ(
√
Cε), where ω1

κ is the local modulus of continuity of both
u1 and u2 in the ball of radius R, dependent on κ but independent of ε,
R = R(κ) = Ĉ/

√
κ in Ω1.

Proof. By our assumption

2Φ1(x0, y0) ≥ Φ1(x0, x0) + Φ1(y0, y0).(5.4)

Hence

2

ε
|x0 − y0|2 ≤ u1(x0) − u1(y0) + u2(x0) − u2(y0).(5.5)

Since u1 and u2 are bounded,

|x0 − y0|2
ε

≤ C,

which proves (i). This also implies

|x0 − y0| ≤
√
Cε.

To prove (ii), fix some z ∈ Ω1 such that |z| = 1; then Φ1(x0, y0) ≥ Φ1(z, z), which
implies

κ
(
|x0|2 + |y0|2

)
≤ u1(x0) − u1(z) − u2(y0) + u2(z) −

1

ε
|x0 − y0|2 + 2κ|z|2

≤ C + 2κ ≤ C + 2.

Hence
√
κ|x0| ≤ Ĉ,where Ĉ is independent of κ and ε. Similarly,

√
κ|y0| ≤ Ĉ. This

proves (ii). Hence x0 and y0 lie in some ball BR of radius R = R(κ).
Now using the estimate in (i) and the modulus of continuity of u1 and u2 in the

compact set B̄R(κ) in Ω1, we get

|x0 − y0|2
ε

≤ ω1
κ(
√
Cε).

This proves (iii).
Now we consider the different cases listed earlier.
Case 1. (x0, y0) ∈ A× C or C ×A.
Claim. This case does not occur.
Without loss of generality let (x0, y0) ∈ A× C. Since d(A,C) > β,

⇒ |x0 − y0| > β.

On the other hand by Lemma 5.2(i),

|x0 − y0| <
√
Cε.
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So choosing ε such that
√
Cε < β

2 ,

|x0 − y0| <
β

2
,

which is a contradiction. Hence Case 1 does not occur, for small ε.
Case 2. (x0, y0) ∈ Ω \ (A ∪ C) × Ω \ (A ∪ C).
In this case at (x0, y0) ∈ Ω1 × Ω1, u1, u2 both satisfy the HJB equation. Hence

we do all the calculations in Ω1. Let us define the test functions φ1 and φ2 on Ω1 as
follows:

φ1(x) = u2(y0) +
1

ε
|x− y0|2 + κ

(
|x|2 + |y0|2

)
,(5.6)

φ2(y) = u1(x0) −
1

ε
|x0 − y|2 − κ

(
|x0|2 + |y|2

)
.(5.7)

Then, since (x0, y0) is point of supremum for Φ1, u1 −φ1 attains its maximum at
x0 and u2 − φ2 attains its minimum at y0. Also observe

Dφ1(x0) =
2

ε
(x0 − y0) + 2κx0,(5.8)

Dφ2(y0) =
2

ε
(x0 − y0) − 2κy0,(5.9)

and by Lemma 5.2

|Dφ2(y0)| ≤
2

ε
|x0 − y0| +

√
κĈ.(5.10)

Now by definition of the viscosity sub- and supersolutions, and using u1 as the
subsolution and u2 as the supersolution,

u1(x0) + H(x0, Dφ1(x0)) ≤ 0 ≤ u2(y0) + H(y0, Dφ2(y0))

⇒ u1(x0) − u2(y0) ≤ H(y0, Dφ2(y0)) −H(x0, Dφ1(x0)).

By our assumptions (A1)–(A7) and the definition of Hamiltonian H, one can easily
prove that H satisfies the structural condition

|H(x, p) −H(y, q)| ≤ F |p− q| + L|q||x− y| + K1|x− y|,(5.11)

where K1 is the Lipschitz constant for the running cost k. Using (5.11) we get

u1(x0) − u2(y0) ≤ L |Dφ2(y0)| |x0 − y0| + K1|x0 − y0|
+F |Dφ2(y0) −Dφ1(x0)|.

Substituting from (5.8), (5.9), and (5.10),

u1(x0) − u2(y0) ≤
2L

ε
|x0 − y0|2 +

√
κLĈ|x0 − y0| + K1|x0 − y0| + 2κF |x0 + y0|.

By Lemma 5.2 we then get

u1(x0) − u2(y0) ≤ 2Lω1
κ(
√
Cε) + LĈ

√
Cκε + K1(

√
Cε) + 4FĈ

√
κ.(5.12)



HYBRID CONTROL SYSTEMS AND VISCOSITY SOLUTIONS 1281

Also observe that by (5.2)

C

2
< C − κ < Φ1(xκ, xκ)

≤ Φ1(x0, y0)

≤ u1(x0) − u2(y0)

≤ 2Lω1
κ

(√
Cε

)
+ 2LĈ

√
Cκε + K1

(√
Cε

)
+ 4FĈ

√
κ.

Now fixing κ and sending ε to 0 and then choosing κ such that 4FĈ
√
κ < C

4 we
will have

C

2
<

C

4
.

This is a contradiction. Hence,

sup
i

sup
Ωi×Ωi

Φi(x, y) ≤ 0.

Case 3. x0, y0 /∈ A, and one of x0, y0 ∈ C. Without loss of generality let y0 ∈ C.
x0 /∈ A and u1 is a subsolution of the QVI implies

u1(x0) + H(x0, Du1(x0)) ≤ 0,

y0 ∈ C ⇒ max {u2(y0) + H(y0, Du2(y0)), u2(y0) −Nu2(y0)} = 0,

and u2 is a solution of the QVI, in particular it is a supersolution. Hence either
u2 + H ≥ 0 or u2 −Nu2 ≥ 0 at y0.

If u2(y0) +H(y0, Du2(y0)) ≥ 0, we can proceed as in Case 2 and get a contradic-
tion. Otherwise assume u2(y0) −Nu2(y0) ≥ 0. Since u2 is also a subsolution

u2(x) ≤ Nu2(x) ∀x ∈ C.

Therefore,

u2(y0) = Nu2(y0) = inf
y′∈D

u2(y
′) + cc(y0, y

′) = inf
i

inf
Di

u2(y
′) + cc(y0, y

′).

As each Di is compact, the infimum is attained on each Di. If the infimum over i is
not attained, then we can choose y′0 in, say, D2 such that

u2(y0) = Nu2(y0) > u2(y
′
0) + cc(y0, y

′
0) − κ, y′0 ∈ D2.

Also y′0 /∈ A. We estimate the difference Φ1(x0, y0) and Φ2(y′0, y
′
0) in the following

lemma, which we will use to define another auxiliary function ψ1, and consider the
maximum point (x1, y1) of ψ1, in the same spirit as in the earlier work on the impulse
control problem (see [2], [7], [9]). We will show that after at most a finite number of
such auxiliary functions, we necessarily arrive at Case 2.

Recall that y′0 lies in D, hence by (A2), |y′0| < R. We will also need that x0

and y0 are not too close to y′0 in case y′0 ∈ Ω1. The following lemma proves this fact.
More generally we prove here that whenever u(x) = Nu(x) or u(x) = Mu(x) the
destination point is at a certain positive distance away from the point of supremum.
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Lemma 5.3. Let u ∈ BC(Ω) be a solution of (QVI). If x, x′, and g(x, v′) belong
to D1 ⊆ Ω1 and if

u(x) =Nu(x)>u(x′) + cc(x, x
′) − κ

or u(x) =Mu(x) =u(g(x, v′)) + ca(x, v
′),

then there exists an α1 > 0 depending only on the uniform continuity of u on D1 ⊆ Ω1

but independent of ε and κ such that

|x− x′| > α1(5.13)

or |x− g(x, v′)| > α1,(5.14)

depending on which equation u(x) satisfies.
Proof. We claim that there exists α1 > 0 such that |x − x′| > α1. Suppose the

contrary. That is, there exists sequence xn, x
′
n ∈ Ω1 such that

u(xn) > u
(
x′
n

)
+ cc

(
xn, x

′
n

)
− κ and |xn − x′

n| → 0.

Then by continuity of u, |u(xn) − u(x′
n)| → 0. But

|u(xn) − u
(
x′
n

)
| = cc

(
xn, x

′
n

)
− κ > C ′ − κ >

C ′

2
> 0,

which is a contradiction. Hence given C′

4 choose the corresponding α1 given by uniform

continuity of u on D1 ⊆ Ω1 such that |y − z| < α1 ⇒ |u(y) − u(z)| < C′

4 . Then

|x− x′| > α1.

This proves (5.13).
To prove that |x − g(x, v′)| > α1, we proceed with arguments similar to those

above and choose α1 corresponding to the C′

4 in the definition of uniform continuity
of u on D1.

In the next lemma we estimate the difference Φ1(x0, y0) and Φ2(y′0, y
′
0), which we

are going to use to define new auxiliary function ψ1.
Lemma 5.4. Let Φ be as defined in (5.1) and let (x0, y0) ∈ Ω1×Ω1 be as in (5.3),

the point where Φ1 attains supremum. Let y′0 ∈ D2 be such that

u2(y0) = Nu2(y0) > u2

(
y′0
)

+ cc
(
y0, y

′
0

)
− κ.(5.15)

Then

Φ1(x0, y0) − Φ2
(
y′0, y

′
0

)
≤ κK

for some constant K > 1 depending only on the constants of the problem and inde-
pendent of ε and κ.

Proof.

Φ1(x0, y0) − Φ2
(
y′0, y

′
0

)
= u1(x0) − u2(y0) −

1

ε
|x0 − y0|2 − κ

(
|x0|2 + |y0|2

)
− u1

(
y′0
)

+ u2

(
y′0
)

+ 2κ|y′0|2.
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Using (5.15) we get

Φ1(x0, y0) − Φ2
(
y′0, y

′
0

)
< u1(x0) − cc

(
y0, y

′
0

)
− 1

ε
|x0 − y0|2 − κ

(
|x0|2 + |y0|2

)
− u1

(
y′0
)

+ 2κ|y′0|2 + κ.

Also u1(y0) ≤ Nu1(y0) ≤ u1(y
′
0) + cc(y0, y

′
0). Hence,

Φ1(x0, y0) − Φ2
(
y′0, y

′
0

)
≤ u1(x0) − u1(y0) −

1

ε
|x0 − y0|2 − κ

(
|x0|2 + |y0|2

)
+ 2κ|y′0|2

+κ ≤ u1(x0) − u1(y0) + 2κ|y′0|2 + κ

≤ u1(x0) − u1(y0) + 2κR2 + κ

≤ ω1
κ

(√
Cε

)
+ 2κR2 + κ.

Using the modulus of continuity of u1, on B̄R in Ω1 for a given κ > 0 choose ε > 0
such that

ω1
κ

(√
Cε

)
< κ ⇒ Φ1(x0, y0) − Φ2

(
y′0, y

′
0

)
≤ κK.

This proves the lemma.
We use the above difference to define another auxiliary function ψ1. We further

restrict α2 given by Lemma 5.3, if necessary, so that α2 < β
2 . Define

ψ2
1(x, y) = Φ2(x, y) + 2κK ζ1(x, y),

ψi
1(x, y) = Φi(x, y) ∀i = 2,

where, ζ1(x, y) ∈ C∞
0 (Ω2 × Ω2), such that

ζ1
(
y′0, y

′
0

)
= 1; 0 ≤ ζ1 ≤ 1; |Dζ1| ≤

2

α2
;

ζ1(x, y) < 1 if (x, y) =
(
y′0, y

′
0

)
;

and ζ1(x, y) = 0 ∀(x, y) such that |x− y′0|2 + |y − y′0|2 > α1,

i.e., ζ1 has support in the α1 ball around (y′0, y
′
0) ∈ Ω2 × Ω2, having maximum at

(y′0, y
′
0) and it vanishes on all Ωi × Ωi other than i = 2.

Observe that by the definition of ψi
1,

ψ2
1

(
y′0, y

′
0

)
= Φ2

(
y′0, y

′
0

)
+ 2κK

≥ Φ1(x0, y0) −Kκ + 2κK

≥ sup
i

sup
Ωi×Ωi

Φi(x, y) + κK − κ

≥ ψ2
1(x, y) − 2κK ζ1(x, y) + κ(K − 1).

As ζ1 is 0 for all (x, y) ∈ Ωi × Ωi, i = 2, and for (x, y) outside the α1 ball around
(y′0, y

′
0) in Ω2 × Ω2, we have for all such (x, y)

ψ2
1

(
y′0, y

′
0

)
> ψ2

1(x, y).
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Hence ψ2
1 has the supremum over Ω2 ×Ω2 in the α1 ball around (y′0, y

′
0). Let (x1, y1)

be such that

sup
Ω2×Ω2

ψ2
1 = ψ2

1(x1, y1).

Then

ψ2
1(x1, y1) ≥ ψ1

1(x0, y0) = Φ1(x0, y0) > C − κ.(5.16)

Since α1 < β
2 , x1, y1 /∈ A. We remark here that by using the technique of Lemma 5.2,

we can prove that

|x1 − y1|2
ε

≤ ω2
κ

(√
Cε

)
+ 2Kκ and |x1|, |y1| < Ĉ

√
κ.

Thus either x1, y1 /∈ C or one of them is in C. If x1, y1 /∈ C, we are in Case 2 or
Case 4. If we are in Case 2, we can get the comparison by working with ψ1 instead
of Φ as in Case 2. We will show in the next step of the proof how to handle Case 4.
Now if one of x1, y1 ∈ C, we are again in Case 3. So without loss of generality let
y1 ∈ C and y1 be such that u2(y1) −Nu2(y1) ≥ 0. Then, as earlier, the approximate
infimum will be attained at some point, say, y′1 ∈ D, some Di which we call D3. That
is

u2(y1) = Nu2(y1) > u2

(
y′1
)

+ cc
(
y1, y

′
1

)
− κ.

We define ψ2 on
⋃

Ωi × Ωi, that is, ψi
2 on Ωi × Ωi, by

ψi
2(x, y) = Φi(x, y) + 2κK

2∑
j=1

ζj(x, y),

where ζ2(y
′
1, y

′
1) = 1 and ζ2 has support in the α3 ball around (y′1, y

′
1) in Ω3 × Ω3

with the properties ζ2 ∈ C∞
0 (Ω × Ω), 0 ≤ ζ2 ≤ 1, |Dζ2| ≤ 2

α3
, ζ2(x, y) < 1 if

(x, y) = (y′1, y
′
1). Hence as before we can show that the supremum of ψ2 is attained in

the α3 ball around (y′1, y
′
1). Also we can show that ψ3

2 satisfies the inequality similar
to (5.16), namely,

ψ2
2(x1, y1) ≥ ψ2

1(x1, y1) = Φ1(x0, y0) > C − κ.

Thus we can proceed to define ψ3, ψ4, . . . , ψn and so on, in case u2(yi) = Nu2(yi).
We now claim that this process has to terminate in finitely many steps, which is the
content of the following lemma.

Lemma 5.5. Suppose (xn, yn) ∈ Ωn+1 × Ωn+1, y′n ∈ Dn+2 are sequences such
that

u2(yn) = Nu2(yn) > u2(y
′
n) + cc(yn, y

′
n) − κ, yn ∈ B(y′n−1, αn+1);

ψn(x, y) = ψn−1(x, y) + 2κK ζn(x, y); ψn(xn, yn) = sup
Ωn+1×Ωn+1

ψn(x, y);

where ζn is such that ζn ∈ C∞
0 (Ω × Ω); actually ζn has support in the αn+1 ball

around (y′n, y
′
n) ∈ Ωn+2 × Ωn+2. 0 ≤ ζn ≤ 1; |Dζn| < 2

αn+1
; ζn(y′n−1, y

′
n−1) = 1,

n = 1, 2, . . . . Then n < n0 = [ 8ĈC′ ], where Ĉ is a bound on u1 and u2 and C ′ is the
lower bound on cc.
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Proof. Observe that y′i, yi+1 ∈ Di+2. By uniform continuity of u2 on Di+2 ⊆
Ωi+2, for all i,

|yi+1 − y′i| < αi+1 ⇒ |u2(yi+1) − u2

(
y′i
)
| < C ′

4
.

By assumption,

u2(y0) > u2

(
y′0
)

+ cc
(
y0, y

′
0

)
− κ

> u2

(
y′0
)

+ C ′ − κ ; because cc ≥ C ′ > 0

> u2(y1) −
C ′

4
+ C ′ − κ=u2(y1) +

3

4
C ′ − κ

> u2

(
y′1
)

+ cc
(
y1, y

′
1

)
+

3

4
C ′ − 2κ > u2

(
y′1
)

+ C ′ +
3

4
C ′ − 2κ

> u2(y2) −
C ′

4
+ C ′ +

3

4
C ′ − 2κ = u2(y2) +

6

4
C ′ − 2κ.

Therefore, at the nth stage we will get

Ĉ ≥ u2(y0)>u2(yn) +
3

4
nC ′ − nκ.

By using κ < C′

2 , if n > n0 = [ 8ĈC′ ], then u2(y0) > Ĉ, which is a contradiction, because

|u2| < Ĉ.
Thus we have only a finite sequence of {yn} such that u2(yn) = Nu2(yn) . So,

for n > n0 = [ 8ĈC′ ] necessarily u2(yn) < Nu2(yn) and hence

u2(yn) + H(yn, Du2(yn)) ≥ 0.

Hence both u1 and u2 satisfy the HJB at the supremum point of auxiliary function
ψn. Now we proceed as in Case 2 taking care of the extra terms.

In this case we define test functions φ1 and φ2 by

φ1(x) = u2(yn) +
1

ε
|x− yn|2 + κ

(
|x|2 + |yn|2

)
− 2κK

n∑
j=1

ζj(x, yn),(5.17)

φ2(y) = u1(xn) − 1

ε
|xn − y|2 − κ

(
|xn|2 + |y|2

)
+ 2κK

n∑
j=1

ζj(xn, y).(5.18)

Then by the definition of (xn, yn), u1 −φ1 has maximum at xn and u2 −φ2 has mini-
mum at yn. Using u1 as the viscosity subsolution and u2 as the viscosity supersolution,
we get

u1(xn) − u2(yn) ≤ H(yn, Dφ2(yn)) −H(xn, Dφ1(xn)).

Let α = min{α1, . . . , αn+1}. Also, whenever (xn, yn) ∈ Ωj+1 × Ωj+1 we can write

Dφ1(xn) =
2

ε
(xn − yn) + 2κxn − 2Kκ

n∑
j=1

Dζj(xn, yn),(5.19)

Dφ2(yn) =
2

ε
(xn − yn) − 2κyn + 2Kκ

n∑
j=1

Dζi(xn, yn),(5.20)

|Dφ1(yn)| ≤ 2

ε
(xn − yn) + 2κ|yn| +

4nKκ

α
.(5.21)
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Hence by structural condition on H given by (5.11),

u1(xn) − u2(yn) ≤ L|Dφ2(yn)| |xn − yn| + K1|xn − yn| + F |Dφ2(yn) −Dφ2(xn)|.
(5.22)

By using (5.19), (5.20), (5.21) in the above we get

u1(xn) − u2(yn) ≤ 2L

ε
|xn − yn|2 + 2κL|yn| |xn − yn| +

(
4Kκn

α

)
|xn − yn|(5.23)

+K1|xn − yn| + 4Fκ(|xn| + |yn|) +
8κKn

α
.

Now by using the technique of Lemma 5.2 for ψn, we can prove that

|xn − yn| <
√
Cε,

|xn − yn|2
ε

≤ ωn
κ

(√
Cε

)
+ 2κK,

|xn| |yn| ≤
√
κĈ,

where Ĉ,K, and C are independent of ε and κ. Using these estimates in (5.23) we
will get

u1(xn) − u2(yn) ≤ 2Lωn
κ

(√
Cε

)
+ 4LκK + 2LĈ

√
Cκε +

(
4Kκn

α

)√
Cε(5.24)

+K1

(√
Cε

)
+ 8FĈ

√
κ +

8κKn

α
.

Also observe that from (5.3),

C

2
< C − κ < Φ1(x0, y0) ≤ ψn+1

n (xn, yn).

Hence

C

2
< C − κ ≤ u1(xn) − u2(yn) − |xn − yn|2

ε
−
(
|xn|2 + |yn|2

)
+ 2κK

n∑
j=1

ζj(x
n, yn)

≤ u1(xn) − u2(xn) + 2κKn.

By using (5.24 ) in the above, with n ≤ n0 given by Lemma 5.5, we get

C

2
≤ 2Lωn

κ

(√
Cε

)
+ 4LκK + 2LĈ

√
Cκε +

(
4Kκn0

α

)√
Cε

+K1(
√
Cε) + 8FĈ

√
κ +

8κKn0

α
+ 2κKn0.

Now first fixing κ and sending ε to 0 we get

C

2
≤ 8FĈ

√
κ + 4LκK +

8κKn0

α
+ 2κKn0.

Now we can choose κ so that the RHS of the above expression is strictly less than C
4

and hence we will get C
2 ≤ C

4 . This is a contradiction; hence, supi supΩi×Ωi
ψi
n(x, y) ≤

0. This implies that

sup
i

sup
Ωi×Ωi

Φi(x, y) ≤ sup
i

sup
Ωi×Ωi

ψi
n(x, y) ≤ 0.
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Thus in this case also we have supi supΩi×Ωi
Φi(x, y) ≤ 0.

Case 4. Now consider the last case where one of the x0 or y0 is in A. Without
loss of generality we assume that y0 ∈ A.

Lemma 5.6. Let Φ be as defined by (5.1) and let (x0, y0) be as in (5.24), that
is, Φ1(x0, y0) = supΩ1×Ω1

Φ1. Moreover, let y0 be such that u2(y0) = Mu2(y0) =
u2(g(y0, v0)) + ca(y0, v0), where g(y0, v0) ∈ Ω2. Then

Φ1(x0, y0) − Φ2(g(y0, v0), g(y0, v0)) < κK

for some constant K > 1 depending only on the constants of the problem and inde-
pendent of ε and κ.

Proof.

Φ1(x0, y0)−Φ2(g(y0, v0),(g(y0, v0)) = u1(x0)−u2(y0) −
1

ε
|x0 − y0|2 − κ(|x0|2 + |y0|2)

−u1(g(y0, v0)) +u2(g(y0, v0)) + 2κ|g(y0, v0)|2

= u1(x0) − ca(y0, v0) −
1

ε
|x0 − y0|2

−κ(|x0|2 + |y0|2)−u1(g(y0, v0))+2κ|g(y0, v0)|2.

We add and subtract u1(y0) in the above, and observing that u1(y0) ≤ Mu1(y0) ≤
u1(g(y0, v0)) + ca(y0, v0), we get

Φ1(x0, y0) − Φ2(g(y0, v0), g(y0, v0)) ≤ u1(x0) − u1(y0) − ca(y0, v0)

−u1(g(y0, v0)) + u1(y0) + 2κ|g(y0, v0)|2

≤ u1(x0) − u1(y0) + 2κ|g(y0, v0)|2

≤ ω1
κ(|x0 − y0|) + 2κR2.

We can choose ε such that ω1
κ(
√
Cε) < κ. Then by the Lemma 5.2,

ω1
κ(|x0 − y0|) ≤ ω1

κ

(√
Cε

)
< κ

⇒ Φ1(x0, y0)−Φ2(g(y0, v0), g(y0, v0)) ≤ Kκ,

where K depends on the modulus of continuity of u1 and R. This proves the
lemma.

To proceed, if necessary, we restrict α2 < β
2 , where α2 is as in Lemma 5.3 and

define a C∞
0 function ζ1 on Ω × Ω by

ζ1(g(y0, v0), g(y0, v0)) = 1; 0 ≤ ζ1 ≤ 1; |Dζ1| <
2

α2
;

ζ1(x, y) < 1 if (x, y) = (g(y0, v0), g(y0, v0));

and supp ζ1 ⊆ B((g(y0, v0), g(y0, v0)), α2).

Note that ζ1 is nonzero only on Ω2 × Ω2 and it vanishes on all other Ωi × Ωi. Define
a new auxiliary function ψ1 on Ω × Ω denoted by ψi

1 on Ωi × Ωi such that

ψ2
1(x, y) = Φi(x, y) + 2Kκζ1(x, y),

ψi
1(x, y) = Φi(x, y) for i = 2.
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Then arguing as in Case 3 we can conclude that ψ2
1 attains its maximum in the α2

ball around (g(y0, v0), g(y0, v0)). Let (x1, y1) be such that ψ2
1(x1, y1) = supΩ2×Ω2

ψ2
1 .

Since α2 < β
2 , x1, y1 /∈ A. Using techniques similar to those of Lemma 5.2 we can

prove that

|x1 − y1|2
ε

≤ ω2
κ

(√
Cε

)
+ 2Kκ,

|x1|, |y1| < Ĉ
√
κ.

Now either (x1, y1) ∈ Ω \ (A ∪ C)×Ω \ (A ∪ C) or one of x1 or y1 ∈ C. In both cases,
we are either in Case 2 or in Case 3. Thus in any case, after finitely many steps, we
will arrive at Case 2 and get that supi supΩi×Ωi

Φi(x, y) ≤ 0. This proves the claim
in Step 1.

Step 2. In Step 2 we show the uniqueness. For any x ∈ Ω,

u1(x) − u2(x) ≤ Φ(x, x) + 2κ|x|2.

Sending κ to 0, we get

u1(x) − u2(x) ≤ Φ(x, x)

≤ sup
i

sup
Ωi×Ωi

Φi(x, y)

≤ 0,

where the last inequality follows by Step 1. Now interchanging the roles of u1 and u2,
we get other way inequality, which proves that u1 = u2 for all x ∈ Ω, and hence the
uniqueness.
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BOUNDED VARIATION SINGULAR STOCHASTIC CONTROL AND
DYNKIN GAME∗

FREDERIK BOETIUS†

Abstract. We consider a bounded variation singular stochastic control problem with value V
in a general situation with control of a diffusion and nonlinear cost functional defined as solution
to a backward stochastic differential equation (BSDE). Associated with this is a Dynkin game with
value u. We establish the well-known relation ∂

∂x
V = u for this general situation. A saddle point

for the Dynkin game is given by the pair of first action times of an optimal control.
The methods are from stochastic analysis and include a priori estimates, pathwise construction,

and comparison theorems for forward stochastic differential equations (FSDE) and BSDE.

Key words. backward stochastic differential equation, singular stochastic control, optimal stop-
ping, Dynkin game, nonlinear cost functional, comparison theorem for SDE, pathwise construction

AMS subject classifications. Primary, 93E20; Secondary, 49J30, 60G40, 60H10, 60K30,
90B05, 90B50, 91A15
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1. Introduction. Recent years have seen a steeply increasing interest in math-
ematical finance. Among other theories, the theory of irreversible investment under
uncertainty has benefited from this development and received treatment in both math-
ematical and economical journals (see the references below). Many examples for dif-
ferent kinds of real-life investment problems are collected in the monograph by Dixit
and Pindyck [25]. Furthermore, the subject attracts attention because it is intimately
related to the behavior and treatment of options. Whereas the option is typical for
a single irreversible decision of a small investor, the irreversible investment problem
is a large-scale analogue requiring continuous decision making. Both aspects, and
the implications for economic equilibrium, are discussed at length by Baldursson and
Karatzas [5]. The mathematical counterpart of this “duality” between irreversible in-
vestment and options is found in the relation between singular stochastic control and
optimal stopping, which has been studied extensively for simple models and, recently,
also in some complex situations.

One of the key elements in modern mathematical finance is the use of backward
stochastic differential equations (BSDE) for pricing and hedging contingent claims,
both in perfect and imperfect markets. With the help of BSDE these problems can
be solved in the original probability spaces. Furthermore, they provide the means to
overcome some shortcomings in the standard expected utility framework. An overview
of the broad range of applications is given by El Karoui, Peng, and Quenez [31].

This paper tries to further extend the mathematical results on singular control and
optimal stopping to more general situations. Allowing for partly reversible investment,
the related stopping problem becomes a game of optimal stopping or Dynkin game.
Cost functionals are defined as solutions to BSDE, so the optimization problem is
posed in the context of g-semisolutions, in the terminology of Peng [61].
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There are two major approaches to the problem based on analytical or on proba-
bilistic tools. To arrive at our results we make use of results from stochastic analysis,
in particular, comparison theorems and a priori estimates for SDE. Keeping in mind
the analytical characterizations in optimal control and optimal stopping, the main
theorem, Theorem 1.3 below, also deals with the old relationship of smooth fit in
control and the smooth pasting condition in optimal stopping.

1.1. Problem formulation. Assume as given a probability space (Ω,F,P ),
a time interval ı̄ := [0, T ], and a filtration {Ft}t∈ı̄ satisfying the usual conditions,
generated by a standard d-dimensional Brownian motion Wt. For a random starting
point η with values in Rn and initial time t0 ∈ ı̄ we consider the controlled forward
backward stochastic differential equations (FBSDE) on [t0, T ]:

dXu = b(u,Xu) du− dCu + σ(u,Xu)� dWu,

dYu = −g(u,Xu, Yu, Zu) du− a�u dCu + Z�
u dWu,

Xt0 = η,

YT = ξ = h(XT ).

(1.1)

We use the notation a� dC := aU
�
dCU−aL

�
dCL. C is called the control, and a class

of admissible controls will be introduced in Definition 2.1. Further assumptions on
the data (b, σ, C, h, g, a) will be fixed in Definition 2.2 below, which states conditions
for existence and uniqueness of solutions to (1.1) for an n-dimensional state process
X. We will focus on n = 1 and η = x ∈ R.

Control problem. The solution to (1.1) is denoted by (Xt0,x,C
t , Y t0,x,C

t , Zt0,x,C
t ).

Then Xt0,x,C is called the state process, and Y t0,x,C is the cost associated with control
C. To justify terminology, write the backward state component Y = Y t0,x,C

t in the
standard representation

Yt = E

[
h(XT ) +

∫ T

t

g(s,Xs, Ys, Zs) ds +

∫
[t,T )

aUs dCU
s −

∫
[t,T )

aLs dCL
s

∣∣∣∣Ft

]
.

Viewing h, g, and a as the terminal, running, and control cost, the process Y can be
seen as the dynamic version of some cost functional dependent on the state process
X and the control C exercised. If g is linear in y, then Yt is obtained by integrating
over appropriately discounted costs after time t.

To ease notation we set t0 = 0 and omit this index henceforth.
Definition 1.1. The control problem comprises determining the value function

V and finding an optimal control C� ∈ A with the property

V (t0, x) := V (x) := ess inf
C∈A

Y x,C
0 = Y x,C�

0 [P ].(1.2)

The problem is said to be well-posed if |V (x)| < ∞.
While V (x) < ∞ is obvious, we assume −∞ < V (x) < ∞ for all x.
Thus in the control problem one faces the problem of minimizing the cost func-

tional Y , which is defined in an unusual way as solution to a BSDE. Taking a look
at its representation above we see that its components are more or less standard in a
control problem, namely, a terminal cost h dependent on the state XT when reaching
the time horizon, proportional cost aU for decreasing X, and proportional recovery of
cost aL for increasing X, and a running cost g. The unusual fact is that the running
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cost depends not only on the state of the system but also on the current cost level and
the process Z from the martingale representation of Y . Observe that if the running
cost is of the form g(t, x, y, z) = g1(t, x) + g2(t)y, then the effect of g2 is discounting
and Y0 can be written as a standard expected value without reference to Yt.

A similar situation in a control problem was considered by Peng [60]. Including Y
in the running cost is a step toward using his g-expectation concept [61]. In economic
terms, a nonlinear cost g corresponds to a nonadditive stochastic differential utility as
introduced by Duffie and Epstein [26]. Its main feature is that, in contrast to standard
additive utility, preferences with respect to timing differences need not be induced by
discounting. As an example in applications one may consider a situation where the
credit rating and therefore the financing cost of an investor depend on the prospects
of his business, measured by the expected payoff Y . In financial applications Z has an
interpretation as information process or hedging portfolio, whence its inclusion may
turn out to be useful.

As the data need not be Markov, b, σ, a, g, h, and therefore V also may depend
on ω in an Ft0-measurable way; we omit this dependence in the notation. One might
wish to consider also the behavior of the value V as the system evolves, and we
actually need to do so when we introduce the associated Dynkin game. Then one
has to take the past of ω into account. Observe that an extension of (1.2) by using

ess infC∈A Y x,C
t for t > 0 leads to senseless results. To avoid a cumbersome definition

we set Vt(x) := Y x,C∗

t for an optimal control C∗, as we will consider such Vt only in
the case that there is a solution to the control problem.

Associated stochastic game of optimal stopping. Now we turn to a two-player
stochastic game of optimal stopping or Dynkin game associated with the above control
problem. It will turn out that its value is the derivative of the value in the control
problem and that a pair of optimal stopping times is determined by the first action
time of an optimal control.

So denote by Tt the class of Fs-stopping times with values a.s. in [t, T ], and
T := T0. Assume for a while that b, h, and g are partially differentiable with respect
to (x, y, z), σ is linear in x, and g is linear in z (hence Dg is independent of z). Γx

denotes a deflator process (see (2.2)). For initial condition (t0, x) (again, we omit t0)
and σ, τ ∈ T0 define the payoff Rt0,x

t (σ, τ) = Rx
t = Rt, where (R,Q) is the solution of

the BSDE

dRu = −〈Dg(t,Xx,0,0
t , Vt(x)), (Γx

t , Rt, Qt)〉χt≤σ∧τ dt + Q�
t dWt,

RT =
(
hx(Xx,0,0

T )χσ∧τ=T + aLτ χτ<σ
τ<T

+ aUσ χσ≤τ
σ<T

)
Γx
σ∧τ∧T .

(1.3)

Interpretation. Rx defined through (1.3) has the integral representation

(1.4) Rt(σ, τ) = E

[∫ σ∧τ

t

〈Dg(s,Xx,0,0
s , Vs(x)), (Γx

s , Rs, Qs)〉 ds

+ hx(Xx,0,0
T )Γx

Tχσ∧τ=T + aUσ Γx
σχσ≤τ

σ<T
+ aLτ Γx

τχτ<σ
τ<T

∣∣∣∣Ft

]
.

We interpret this as a game for two players MIN and MAX: MIN pays MAX at rate
〈Dg, ·〉 as long as the game continues and the amount hxΓT upon reaching the time
horizon T . If one of the players chooses to terminate early at times σ or τ , MIN
pays MAX aUσ Γσ or aLτ Γτ , depending on whether MIN or MAX stopped the game.
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So MIN seeks to minimize Rx(σ, τ) by choice of σ, whereas MAX wishes to maximize
the payoff by choice of τ .

Formally we define the upper and lower values

u+(x) := ess inf
σ∈T

ess sup
τ∈T

Rx
0(σ, τ),(1.5a)

u−(x) := ess sup
τ∈T

ess inf
σ∈T

Rx
0(σ, τ).(1.5b)

We assume −∞ < u−(x). By the definition of u+ and u−, u− ≤ u+ holds P -a.s.
A solution of the game consists of a pair of stopping times such that neither of

the two players has an incentive to deviate from his strategy. The optimization of
the opponent is anticipated, and the right of choosing one’s strategy first gives no
advantage, i.e., has no additional value, which is the meaning of the Isaac’s equation
(1.6) below.

Definition 1.2. The associated stochastic game of optimal stopping or Dynkin
game consists of determining the upper and lower values u+ and u− and the value
function u as solution to the Isaac’s equation

u(x) := u+(x) = u−(x),(1.6)

and of finding a saddle point (σ�, τ�) ∈ T × T, i.e., stopping times such that

u(x) = Rx
0(σ�, τ�)

= ess inf
σ∈T

Rx
0(σ, τ�) = ess sup

τ∈T
Rx

0(σ�, τ) [P ].(1.7)

To obtain the relation between the two problems we will make some convexity
(2.8) and smoothness (3.15) assumptions. These could be relaxed up to some point.

Our main result is the following theorem.
Theorem 1.3. Let the dimension of the state process be n = 1 and assume that

(2.8) and (3.15) hold and that there exists an optimal control C = (CU ,−CL) for the
control problem introduced in Definition 1.1 starting at x. Then the value function of
the control problem V is partially differentiable at x with respect to the space variable.
The associated Dynkin game introduced in Definition 1.2 has a solution, and its value
is the partial derivative of the value of the control problem:

∂

∂x
V (x) = u(x).(1.8)

Let σ0 := inf{t ≥ 0 |CU
t > CU

0 } and τ0 := inf{t ≥ 0 |CL
t > CL

0 } denote the first
action times of the controls CU and CL. They form a saddle point for the Dynkin
game which has value

u(x) = Rx
0(σ0, τ0).(1.9)

1.2. Remarks and references. Singular stochastic control problems, their con-
nection with a problem of optimal stopping, and the relation ∂

∂xV = u date back to
an investigation of spaceship control by Bather and Chernoff [7]. The optimization
problem received much interest after the work of Beneš, Shepp, and Witsenhausen
[11], who were able to obtain some explicit solutions. The methods employed in their
work and by several authors thereafter include characterizations of the value as a
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solution to a Hamilton–Jacobi–Bellman PDE restricted to a bounded domain, with
terminal condition and gradient constraints at the boundaries. If systems of this
type are solved directly, additional information about the behavior of the value at
the boundary is required. This usually takes the form of the principle of smooth fit
stating that the value should be twice continuously differentiable across the boundary.
Alternatively, one tries to derive the value from solutions to a related free boundary
problem; thus in essence one establishes a relation with a stopping problem of the
form ∂

∂xV = u, where it is known as the principle of smooth pasting that the value u
of the stopping problem is once continuously differentiable across the boundary. This
was made rigorous by Karatzas [42].

In contrast to this analytical approach, probabilistic methods, namely, a path-
wise construction, were introduced by Karatzas and Shreve [44] for the link between
monotone follower and optimal stopping of Brownian motion. The rule for deriving
an optimal stopping time as first action time of an optimal control is also due to [44].
These results were extended by the same authors in [45], [46] and also by Karatzas
[43], Baldursson [4], El Karoui and Karatzas [29], [30], Baldursson and Karatzas [5],
and Boetius and Kohlmann [18], among others. In the latter paper, instead of a mono-
tone follower problem, the control of a diffusion is considered. Therefore exercise of
control feeds back into the dynamics of the system, requiring the use of a comparison
theorem.

The relation between singular stochastic control and Dynkin games was, to our
knowledge, first noted by Taksar [67]. A result similar to ours for control of Brow-
nian motion and very general cost data was obtained by Karatzas and Wang [49].
An extension to infinite time horizon and additional absolutely continuous control
(“mixed control” and “mixed game” problems) is treated by Hamadene, Lepeltier,
and Wu [39]. Theorem 1.3 focuses on the relation of the value functions and optimal
strategies, respectively, saddle point, for the general case of bounded variation control
of a diffusion with stochastic dynamics and cost structure and with a cost functional
defined as solution to a nonlinear BSDE. Again, the basic ideas are those of Karatzas
and Shreve [44], but the general formulation especially for the cost functional in the
problem poses some technical difficulties and requires the frequent use of comparison
theorems for BSDE.

It should be noted that the pathwise approach of [44] breaks down if control may
be exercised in more than one dimension, as there is no extension of the powerful tool
of comparison theorems in that case. This is due to the phenomenon of coalescing
stochastic flows; see, e.g., Baxendale [8] and Darling [22]. Consequently, singular
control problems in higher dimensions are inherently difficult. Results for that case,
including existence of optimal controls, were obtained by Menaldi and Taksar [59],
Soner and Shreve [66], and Kruk [52], [53], to mention but a few.

We should note that existence of an optimal control is an essential element in this
paper. A simple example for nonexistence of an optimal control in a finite horizon
problem by Lalley is presented in Karatzas and Shreve [44, p. 863], who also pro-
vide a nonconstructive general existence result for monotone control problems using
weak-∗ compactness arguments. Compactness arguments relying on strong growth
assumptions for the data are used by Haussmann and Suo [40], and Ma and Yong
[55] provide a proof for the case when cost data grow less than linearly. A general
existence result for bounded variation control by Karatzas and Wang [49] makes use
of a result of Komlós [51] on L1-convergence of the Cesàro sequences of ε-optimal pro-
cesses. Hamadene and Lepeltier [37], [36] obtain existence of a solution to both, the
control problem and the Dynkin game, using BSDE if the Isaac’s condition is satisfied.



1294 FREDERIK BOETIUS

Properties of optimal controls and state processes can be found in, e.g., Fleming and
Soner [33, p. 360] and have been subject to a number of articles by several authors.

Besides the problems of irreversible or partially reversible investment mentioned
already, applications extend from the original problem of spaceship control in [7] to
queueing systems, control of storage or manufacturing systems, mathematical biology,
optimal dividend distribution and risk control (in particular, in the insurance indus-
try), optimal consumption and investment, portfolio optimization under transaction
costs, and hedging and pricing under constraints. Some of the more recent articles
in this context are those by Højgaard and Taksar [41], Cadenillas [19], Alvarez [2],
Kushner [54], Benth, Karlsen, and Reikvam [13], and Schmock, Shreve, and Wystup
[64], to mention but a few. We should point to Davis and Norman [24] for their
treatment of a control problem in two dimensions. Further references are given, e.g.,
in [17].

The valuation of American contingent claims is one of the most prominent ex-
amples of optimal stopping problems in finance; the problem was first investigated in
Samuelson [63] and McKean [58]. An account of this valuation problem is given, e.g.,
in Karatzas and Shreve [48], which we also cite for further references.

Further applications are given in the field of real options, where they usually
exhibit the phenomenon of hysteresis or the “value of waiting to invest”; see, e.g.,
McDonald and Siegel [57] and especially Dixit and Pindyck [25] for an account of
investment decisions where real options play an important role. Recent applications
for technology adoption or credit default are given in, e.g., Alvarez [1] and Alvarez
and Stenbacka [3].

Applications of Dynkin games in financial markets are considered in Ma and Yong
[56] and Kifer [50]. Games and their applications in economics are widely discussed
by Fudenberg and Tirole [35]. More recently it was discovered that the value of an
optimal stopping problem or a Dynkin game can be represented as the solution to
an appropriately reflected BSDE; see the articles by Cvitanić and Karatzas [21] and
El Karoui, Kapoudjian, Pardoux, Peng, and Quenez [28]. Hamadene and Lepeltier
[38] obtained the saddle point strategy for the mixed game problem when the Isaac’s
condition is satisfied.

There is a vast general literature on problems of optimal stopping, and one may
refer to, e.g., Friedman [34, Chap. 16], Shiryaev [65], and Bensoussan and Lions [12]
for an analytical approach and to Davis and Karatzas [23] for a probabilistic approach.
The game of stopping under consideration was introduced by Dynkin [27] and studied
further by Bismut [14], [15] and others. Further references are given in [17].

This paper is organized as follows. In section 1 we introduce the optimization
problems, state the main result, and note some applications. Section 2 is devoted to
notation and the basic tools from stochastic analysis. It also contains some conse-
quences of the convex structure in the control problem. Section 3 contains the proof of
Theorem 1.3. Here we perform the pathwise analysis and obtain the crucial estimates
for the difference quotient of cost functionals. Finally, section 4 takes a look at several
possible extensions.

2. Preliminaries. We now introduce in more detail terminology and basic as-
sumptions (subsection 2.1), recall a priori estimates and comparison theorems (sub-
section 2.2) that are essential to many arguments, and discuss some consequences of
the convex structure (subsection 2.3) that we will investigate.

2.1. Basic notation. We use the following notation as defined in Ma and Yong
[56] for the different spaces of measurable random variables:
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• For a σ-algebra, G ⊂ FT Lp
G(Ω; Rk) denotes the set of G-measurable Rk-valued

random variables X such that E
[
|X|p dt

]
< ∞.

• Lp
F(Ω;Lp(0, T ; Rk)) denotes the set of Ft-progressively measurable Rk-valued

processes Xt such that E
[∫ T

0
|Xt|p dt

]
< ∞; we write Lp

F(0, T ; Rk) if there is
no danger of confusion.

• Lp
F(Ω;C (̄ı; Rk)) denotes the set of Ft-progressively measurable continuous

Rk-valued processes Xt such that E
[
supı̄|Xt|p

]
< ∞.

• W 1,∞(M,N) for Euclidean spaces M,N denotes the set of functions f : M →
N that are Lipschitz continuous w.r.t. the metrices derived from the scalar
products.

• Lp
F(0, T ;W 1,∞(M,N)) for Euclidean spaces M,N denotes the set of functions

f : ı̄ × M × Ω → N such that (a) for fixed m ∈ M , (t, ω) �→ f(t,m, ω) is
Ft-progressively measurable, (b) f(t, 0, ω) ∈ Lp

F(0, T ;N), and (c) there exists
a constant L ∈ R>0 such that∣∣f(t,m, ω) − f(t,m′, ω)

∣∣ ≤ L|m−m′| ∀m,m′ ∈ M, a.e. t ∈ ı̄, P -a.s.

• Lp
FT

(Ω;W 1,∞(M,N)) for Euclidean spaces M,N denotes the set of functions
f : M × Ω → N such that for any m ∈ M , ω �→ f(m,ω) is FT -measurable,
m �→ f(m,ω) is uniformly Lipschitz, and f(0, ω) ∈ Lp

F(Ω;N).
‖·‖p denotes the usual p-norm in the spaces defined above.

For an Rk-valued process B = (Bj)�1≤j≤k of bounded variation its absolute varia-

tion is denoted by |B| :=
∑k

j=1|Bj |; i.e., if μj = μ+
j −μ−

j is the (ω-dependent) signed

measure (with Hahn-decomposition (μ+
j , μ

−
j )) defined by

μj(A) :=

∫
χA dBj , then

∫
χA d|B| =

k∑
j=1

(μ+
j (A) + μ−

j (A)).

For an Rk-valued progressively measurable process a = (aj)1≤j≤k and an Rk-valued
bounded variation process C = (Cj)1≤j≤k we use—depending on whether we focus
on a norm for a or C—the notation

‖a‖2
[C,̄ı] := E

⎡⎣ k∑
j=1

(∫
ı̄

|ajs| d|Cj |s
)2
⎤⎦ =: |C|2[a,̄ı].(2.1)

Using the Hölder inequality we obtain the estimates

E

[(∫
ı̄

a�s dCs

)2
]
≤ k‖a‖2

[C,̄ı] = k|C|2[a,̄ı] ≤ kE

⎡⎣ k∑
j=1

(
|Cj |T

∫
ı̄

|aj(s)|2 d|Cj |s
)⎤⎦ .

For a function f : R → R we define the Dini derivatives

Δ±f(x) := lim sup
δ↘0

f(x± δ) − f(x)

±δ
, Δ±f(x) := lim inf

δ↘0

f(x± δ) − f(x)

±δ

and the one-sided differentials D+f := Δ+f = Δ+f and D−f := Δ−f = Δ−f if they
exist. Note that D+f and D−f exist for convex functions f , are left continuous and
right continuous, respectively, and satisfy D−f(x) ≤ D+f(x) ≤ D−f(y) for x < y
(cf. problem 3.6.19 of Karatzas and Shreve [47]).
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Definition 2.1. Denote by A the class of admissible controls. It consists of
all R-valued, {Ft}-adapted processes C with paths P -a.s. left continuous with right-
hand limits (LCRL) and of bounded variation satisfying |C|2[1,̄ı] = E

[
|C|2T

]
< ∞. We

write C decomposed in C = CU −CL, where CU , CL are nonnegative, increasing, and
LCRL, and the decomposition is minimal. We also use the notation C = (CU ,−CL).

Definition 2.2. Data (b, σ, C) for the forward and (h, g, a, C) for the backward
equation in (1.1) are called standard data if they satisfy

• b ∈ L2
F(0, T ;W 1,∞(R,R)) and σ ∈ L2

F(0, T ;W 1,∞(R,Rd));
• C ∈ A and a = (aU , aL) : ı̄ × Ω → R2 progressively measurable such that
aU ≥ aL and for all C̃ ∈ A the process∫

[0,t)

a�s dC̃s :=

∫
[0,t)

aUs dC̃U
s −

∫
[0,t)

aLs dC̃L
s

is in L2
F(0, T ; R) and has LCRL paths P -a.s.;

• g ∈ L2
F(0, T ;W 1,∞(R × R × Rd,R)) and h ∈ L2

FT
(Ω;W 1,∞(R,R)).

So apart from sufficient measurability we require uniform Lipschitz continuity
of the data (b, σ, g, h) and square integrability and we consider bounded variation
control. The processes involved need not be Markov.

Note that (1.1) is well defined even for decompositions of C that are not minimal.
At times, we will work with such decompositions as well. From the requirements on

a it is clear that Y x,CU ,CL ≤ Y x,C̄U ,C̄L

if (CU , CL) and (C̄U , C̄L) are nonnegative,
increasing, LCRL decompositions of the same process C ∈ A and (CU , CL) is minimal.

Using a transformation as in Peng [61], which shifts the control C from the equa-
tion into the data, it is easy to see that (1.1) has a unique solution (X,Y, Z) ∈
L2

F(0, T ; Rn × R × Rd). See also the construction in subsection 3.2, where this trans-
formation is applied expressis verbis. Dependence on data and parameters η, b, σ,
C, ξ, h, a, g may be expressed by a superscript, and we also refer to the components
of C, in particular when using a certain decomposition. Results on existence and
uniqueness of solutions to FSDE can be found in, e.g., Karatzas and Shreve [47]; for
BSDE one may consider, e.g., El Karoui, Peng, and Quenez [31] or the monographs
by Yong and Zhou [68, Chap. 7] or Ma and Yong [56].

Sometimes we consider the backward equation without reference to a particular
forward process. We then omit dependence of g on x and write ξ for the terminal
condition, with suitably adapted meaning of standard data.

We further introduce deflator processes to refer to some flow properties of solu-
tions to the forward equation in (1.1), under the additional convexity assumptions
in (2.8) below. In effect we will require σ to be affine and b to be convex in x; thus

σx(t) and D+
x b are well defined. The biased deflator process Γx,CU ,CL

for a control
(CU ,−CL) ∈ A is given as solution to the FSDE

dΓx,CU ,CL

t = Γx,CU ,CL

t

(
Dxb(t,X

x,CU ,CL

t ) dt + σx(t)� dWt

)
,

Γx,CU ,CL

0 = 1.
(2.2)

Its uncontrolled version is abbreviated as Γx := Γx,0,0, which serves as deflator for the
payoff in the Dynkin game (1.3). Properties of the deflator processes are discussed in
more detail in subsection 2.3.

2.2. Comparison theorems and a priori estimates. Comparison theorems
lie at the heart of the pathwise approach taken in this paper, and in some instances
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we need a priori estimates for BSDE to obtain convergence results. Due to the impact
of controls they appear in a slightly different form from those known commonly in
the literature.

Lemma 2.3 (a priori estimates for FSDE). For i ∈ {1, 2} let (bi, σi, Ci) denote
standard data, let xi ∈ R, and let Xi be the corresponding solutions of the FSDE.
Define

δXt := X1
t −X2

t , δx := x1 − x2, δCt = C1
t − C2

t ,

δbt := b1(t,X2
t ) − b2(t,X2

t ), δσt := σ1(t,X2
t ) − σ2(t,X2

t ).

Then there is a constant K4 depending only on T and L such that

E
[
sup
ı̄
|δXt|2

]
≤ K4

(
|δx|2 + ‖δb‖2

2 + ‖δσ‖2
2 + E

[
|δC|2T

])
.(2.3)

Lemma 2.4 (a priori estimates for BSDE). Let, for i ∈ {1, 2}, (Y i, Zi) be the
solutions of the BSDE (1.1) corresponding to standard data (gi, ξi, ai, Ci), and define

δYt := Y 1
t − Y 2

t , δZt := Z1
t − Z2

t , δξ := ξ1 − ξ2,

δgt := g1(t, Y 2
t , Z

2
t ) − g2(t, Y 2

t , Z
2
t ), δat := a1

t − a2
t , δCt := C1

t − C2
t .

There are constants depending only on L and T such that for all t ≤ T

E

[∫ T

t

|δZs|2 ds
]
≤ K2

(
‖δξ‖2

2 + ‖δg‖2
2 + ‖δa‖2

[C1 ,̄ı] + |δC|2[a2 ,̄ı]

)(
1 + eK3(T−t)

)(2.4)

and the running maximum of differences satisfies

E
[
sup
ı̄
|δYt|2

]
≤ K4

(
‖δξ‖2

2 + ‖δg‖2
2 + ‖δa‖2

[C1 ,̄ı] + |δC|2[a2 ,̄ı]

)
.(2.5)

The proof for both lemmata is along the lines of El Karoui, Peng, and Quenez [31] or
Peng [61], the main tools being the Itô formula, and the Burkholder–Davis–Gundy,
Hölder, and Gronwall inequalities. It may be worthwhile noting that an application
of the latter requires a.e. continuity of the functions involved. We do not encounter
difficulties in using the Gronwall inequality as the maps t �→ E

[
|δXt|2

]
and t �→

E
[
|C|t
]

are continuous a.e. in ı̄. Details are given in [17]. An even stronger result
on jumps of right continous with left-hand limits (RCLL) processes can be found in
Proposition 1.2.26 of Karatzas and Shreve [47].

Theorem 2.5 (comparison theorem for FSDE). Consider, for i ∈ {1, 2}, the solu-
tions Xi of the FSDE corresponding to standard data (bi, σi, Ci) and initial condition
xi ∈ R. Assume further that

b1(ω, t, x) ≥ b2(ω, t, x), σ1(ω, t, x) = σ2(ω, t, x),

− d(δCt) ≥ 0 (i.e., δC decreasing), δx ≥ 0.

Then the difference δXt is positive a.s.:

X1
t ≥ X2

t ∀t ∈ ı̄ [P ].

Corollary 2.6. It is easy to see that instead of b1 ≥ b2 it is actually sufficient
if one of the conditions

b1(ω, t,X1
t ) ≥ b2(ω, t,X1

t ), b1(ω, t,X2
t ) ≥ b2(ω, t,X2

t )(2.6)

holds. If, e.g., b1 is independent of x, this reduces to b1(ω, t) ≥ b2(ω, t,X1
t ).
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The comparison theorem for the backward equation in (1.1) is quite similar.
Theorem 2.7 (comparison theorem for BSDE). Let, for i ∈ {1, 2}, (gi, ξi, ai, Ci)

denote standard data and (Y i, Zi) denote the corresponding solutions of the BSDE.
ai may depend on Y . Assume further that P -a.s.

g1(t, y, z) − g2(t, y, z) ≥ 0, ξ1 − ξ2 ≥ 0,(2.7a)

a1(t)� d(C1
t − C2

t ) ≥ 0, (a1(t) − a2(t))� dC2
t ≥ 0.(2.7b)

Then the difference δYt := Y 1
t − Y 2

t is nonnegative P -a.s.
Both theorems can be proved using the linearization arguments of El Karoui,

Peng, and Quenez [31] or El Karoui and Quenez [32], which only need to be adapted
to include the control process C. Note that the equality σ1 = σ2 is vital for this
argument in the forward case.

It follows from the arguments in [31], [32] that, instead of the first inequality in
(2.7a), it is sufficient if one of the conditions

g1(t, Y 1
t , Z

1
t ) − g2(t, Y 1

t , Z
1
t ) ≥ 0, g1(t, Y 2

t , Z
2
t ) − g2(t, Y 2

t , Z
2
t ) ≥ 0(2.7c)

holds. This will prove useful in situations where we make use of the convexity of
the driver g(t, x, y, z). In situations where, e.g., g1 does not depend on (Y 1, Z1), we
conclude that g1

t ≥ g2(t, Y 1
t , Z

1
t ) is also sufficient.

Instead of (2.7b) it is actually sufficient if we have∫
[0,t)

a1(s)� dC1
s −
∫

[0,t)

a2(s)� dC2
s is increasing in t.(2.7d)

Hence the theorem remains true if (2.7b) is replaced by (2.7d) or

a2(t)� d(C1
t − C2

t ) ≥ 0, (a1(t) − a2(t))� dC1
t ≥ 0.(2.7e)

Often we can use properties of Y i when verifying (2.7a), e.g., Y i ≥ 0, because
then we can restrict the estimate to y ∈ R≥0. On the contrary, we usually know very
little about the processes Zi. Hence, if one of the drivers is linear in z, (2.7a) in effect
requires that the partial derivatives g1

z , g
2
z agree. This will force us to assume that gz

is independent of x, y, z, as in the associated Dynkin game the driver takes the form
〈(gx, gy, gz), (Γ, R,Q)〉.

Note that all of the above results still hold if we use Ci = (Ci,U , Ci,L) where the
decomposition is not minimal.

2.3. Convex structure of the control problem. An important prerequisite
for our proof of the relation ∂

∂xV = u is convexity of the value V , which will be dis-
cussed in Theorem 2.10 below. We also include some useful estimates and comparison
results for controlled forward processes and biased deflators in section 2.4 below.

Definition 2.8. Let the dimension of the state space be n = 1. The control
problem (1.2) has convex structure if the data satisfy

b is convex in the space variable x,(2.8a)

σ is affine in the space variable x,(2.8b)

h is convex and increasing in the space variable x,(2.8c)

g is convex in the variables (x, y, z) and increasing in x.(2.8d)
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It should be noted that in the case of affine dynamics b, σ in the forward equation,
monotonicity of h and g in x is not required. In fact, most arguments in the discussion
below remain unchanged or could even be simplified in that case.

Let, for i ∈ {1, 2}, (b, σ, Ci, g, h, a) denote standard data for the controlled
forward-backward system (1.1), and let xi ∈ R and λ ∈ [0, 1]. Denote, for j ∈ {1, 2, λ},

xλ = λx1 + (1 − λ)x2, Cλ = λC1 + (1 − λ)C2,

Xj = Xxj ,b,Cj ,σ, (Y j , Zj) = (Y,Z)g,h(T,Xj
T ),a,Cj

.

Thus Xλ starts at a convex combination of x1, x2 and is controlled by a convex
combination of controls C1, C2.

Proposition 2.9. Assume (2.8). Then the following inequalities hold P -a.s. for
all t ∈ ı̄:

X̄λ
t := λX1

t + (1 − λ)X2
t ≥ Xλ

t ,(2.9a)

Ȳ λ
t := λY 1

t + (1 − λ)Y 2
t ≥ Y λ

t .(2.9b)

The proof can be done for the forward and backward cases separately: Starting
with the forward equation, let

b̄λt := λb(t,X1
t ) + (1 − λ)b(t,X2

t )

denote the driver of X̄λ. Then b̄λt ≥ b(t, X̄λ
t ) as b is convex, which suffices according

to Corollary 2.6. Now observe that we just need to prove (2.9b) with Y λ defined
by the (not necessarily minimal) decomposition λ(C1,U , C1,L) + (1 − λ)(C2,U , C2,L);
here δC = 0. Defining the driver ḡλ for Ȳ λ analogously and using (2.9a), (2.8c), and
(2.8d) we obtain (2.9b).

The linearity assumption on σ may not be dropped easily, as the following example
shows. Let b = C = 0 and σ(t, x) = |x|. Then the FSDE has a unique strong solution
for each initial value x ∈ R. Define Xi by

X1
t = 1 +

∫ t

0

|X1
s | dWs, X2

t = −1 +

∫ t

0

|X2
s | dWs;

hence

X1
t = exp(Wt − 1

2 t), X2
t = − exp(−Wt − 1

2 t).

Let λ = 1
2 ; then Xλ

t = 0 is the solution of Xλ
t =

∫ t

0
|Xλ

s | dWs. But

2X̄λ
t = exp

(
−1

2
t

)(
exp(Wt) − exp(−Wt)

)
,

so P {X̄λ
t > Xλ

t } = P {X̄λ
t < Xλ

t } = 1
2 .

We then have as an easy consequence of (2.9) the following theorem.
Theorem 2.10 (convexity of the value). Assume that (2.8) holds. Then V is

convex with respect to the starting point; i.e., if x1, x2 ∈ R and λ ∈ [0, 1], then

V (λx1 + (1 − λ)x2) ≤ λV (x1) + (1 − λ)V (x2).

The proof is analogous to the arguments in Karatzas and Shreve [44].



1300 FREDERIK BOETIUS

2.4. Properties of controlled forward processes. In this section we use the
comparison theorem to work out some properties of the state process under a convex
structure. We analyze differences of state processes and recall a result from the theory
of stochastic flows on differentiability with respect to the initial condition.

Recall that the biased deflator process Γx,CU ,CL

for control (CU ,−CL) (with the
uncontrolled version abbreviated as Γx := Γx,0,0) of (2.2) is the solution to the FSDE

dΓx,CU ,CL

t = Γx,CU ,CL

t

(
D+

x b(t,X
x,CU ,CL

t ) dt + σx(t)� dWt

)
,

Γx,CU ,CL

0 = 1.

When there is no ambiguity we also write Γx,C := Γx,CU ,CL

, as we do for controlled
processes Xx,C . We further define geometric Brownian motions Γup and Γlo:

dΓup
t = Γup

t Ldt + Γup
t σx(t)� dWt, Γup

0 = 1,(2.10)

dΓlo
t = −Γlo

t Ldt + Γlo
t σx(t)� dWt, Γlo

0 = 1.(2.11)

Here L is a Lipschitz constant for b. These processes form universal bounds for
“difference quotients” and differentials of the forward process.

Lemma 2.11. Let (b, σ, C) denote standard data of the FSDE satisfying (2.8a)
and (2.8b). Then the following estimates hold for all t ∈ ı̄ a.s.:

Xx+δ,CU ,0
t −Xx,CU ,0

t ≤ Xx+δ,0,0
t −Xx,0,0

t ≤ Xx+δ,0,CL

t −Xx,0,CL

t ,(2.12)

δΓlo
t ≤ δΓx,CU ,CL

t ≤ Xx+δ,CU ,CL

t −Xx,CU ,CL

t ≤ δΓx+δ,CU ,CL

t ≤ δΓup
t ,(2.13)

Xx+δ,CU ,0
t −Xx,CU ,0

t ≥ 0, and Γlo
t > 0. Furthermore, we have

lim
δ↘0

1

δ

(
Xx+δ,C

t −Xx,C
t

)
= Γx,C

t .(2.14)

Proof. Nonnegativity of the first term in (2.12) follows from the comparison
theorem, Theorem 2.5, as both processes have the same driver and controls.

For the first inequality in (2.12), define the stopping time

ρ := inf{t ∈ ı̄ |Xx+δ,CU ,0
t ≤ Xx,0,0

t }

and observe that, due to the left continuity of both processes and the comparison the-
orem (Theorem 2.5), ρ separates the intervals where the difference of these processes
is positive and negative, respectively:

Xx+δ,CU ,0
t ≥ Xx,0,0

t if t ≤ ρ,

Xx+δ,CU ,0
t ≤ Xx,0,0

t if t > ρ.

Now set X̂1 := Xx+δ,0,0 −Xx,0,0 and X̂2 := Xx+δ,CU ,0 −Xx,CU ,0. For t ≤ ρ consider

X̃1 := Xx+δ,0,0 −Xx+δ,CU ,0 and X̃2 := Xx,0,0 −Xx,CU ,0. As X̂1 − X̂2 = X̃1 − X̃2

it suffices to prove X̃1 ≥ X̃2. Both processes are nonnegative and have the same
starting point 0 and control process 0. Their diffusion matrices are σ(s, X̃1

s ) and
σ(s, X̃2

s ). Their drivers b̃1 and b̃2 satisfy

b̃1s = b(s,Xx+δ,0,0
s ) − b(s,Xx+δ,CU ,0

s ) ≥ D+
x b(s,X

x+δ,CU ,0
s )X̃1

s ,

b̃2s = b(s,Xx,0,0
s ) − b(s,Xx,CU ,0

s ) ≤ D−
x b(s,X

x,0,0
s )X̃2

s ,
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due to the convexity of b in the space variable. As D+
x b(s,X

x+δ,CU ,0
s ) ≥ D−

x b(s,X
x,0,0
s )

for s ≤ ρ, the first inequality in (2.12) for t ≤ ρ follows from the comparison theorem
(Theorem 2.5) and Corollary 2.6.

For t > ρ consider X̂1 and X̂2. They are nonnegative, satisfy X̂1
ρ − X̂2

ρ ≥ 0 by
the above argument, and have the same control process 0. Their diffusion matrices

are σ(s, X̂1
s ) and σ(s, X̂2

s ). Their drivers b̂1 and b̂2 satisfy

b̂1s = b(s,Xx+δ,0,0
s ) − b(s,Xx,0,0

s ) ≥ D+
x b(s,X

x,0,0
s )X̂1

s ,

b̂2s = b(s,Xx+δ,CU ,0
s ) − b(s,Xx,CU ,0

s ) ≤ D−
x b(s,X

x+δ,CU ,0
s )X̂2

s ,

due to the convexity of b in the space variable. Then X̂1
t ≥ X̂2

t for t > ρ follows from

D+
x b(s,X

x,0,0
s ) ≥ D−

x b(s,X
x+δ,CU ,0
s ) and Corollary 2.6. This completes the proof of

the first inequality in (2.12).

For the second inequality consider the stopping time

� := inf{t ∈ ı̄ |Xx+δ,0,0
t ≤ Xx,0,CL

t }

and define the processes X̄1 := Xx+δ,0,CL −Xx+δ,0,0, X̄2 := Xx,0,CL −Xx,0,0, X̌1 :=

Xx+δ,0,CL −Xx,0,CL

, and X̌2 := Xx+δ,0,0−Xx,0,0. Analogous arguments as employed
for the first inequality show that X̄1 − X̄2 ≥ 0 for t ≤ � and X̌1 − X̌2 ≥ 0 for t > �,
which are equivalent to the second inequality in (2.12).

The proof of (2.13) rests on quite similar arguments. Γlo > 0 P -a.s. is a standard
property of geometric Brownian motion. The first and last inequalities follow from
the Lipschitz property of b, linearity of σ, and the comparison theorem (Theorem 2.5).
For the second and third inequalities, use convexity of b in x, which gives the estimate

D+
x b(t,X

x,CU ,CL

t )
(
Xx+δ,CU ,CL

t −Xx,CU ,CL

t

)
≤ b(t,Xx+δ,CU ,CL

t ) − b(t,Xx,CU ,CL

t )

≤ D+
x b(t,X

x+δ,CU ,CL

t )
(
Xx+δ,CU ,CL

t −Xx,CU ,CL

t

)
,

and apply, again, the comparison theorem.

Equation (2.14) is a standard property of stochastic flows; see, e.g., section V.7
of Protter [62]. We give a short outline of the argument in our situation. In view of
(2.13) it suffices to prove

Γx+δ,C
t ↘ Γx,C

t as δ ↘ 0.(2.15)

It is obvious from Theorem 2.5 that Xx+δ,C
t and hence Γx+δ,C

t decrease as δ ↘ 0. By
the dominated convergence theorem, with

‖δD+
x b‖2

2 := E

[∫ T

0

(D+
x b(s,X

x+δ,C
s ) −D+

x b(s,X
x,C
s ))2|Γx,C

s |2 ds
]
,

‖δD+
x b‖2

2
δ↘0−→ 0. Hence E

[
sup0≤s≤T

∣∣Γx+δ,C
s −Γx,C

s

∣∣2] converges to zero as the a priori

estimates of Lemma 2.3 show. Hence Γx+δ,C
t − Γx,C

t also converges uniformly in t
P -a.s. to zero, so (2.14) follows.
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3. Bounded variation control and associated Dynkin game. The proof
of Theorem 1.3 essentially rests on the four relations

u−(x) ≤ u+(x), Δ−V (x) ≤ Δ+V (x),

Δ+V (x) ≤ u−(x), u+(x) ≤ Δ−V (x).

Here Δ+V and Δ−V denote the upper right and lower left Dini derivatives of the value
function V . The first inequality follows from the definitions (1.5) and the second from
Theorem 2.10. The third and fourth are the subject of this section and are proved in
Lemmata 3.8 and 3.15.

For our investigation of the value function of the control problem we choose an
optimal trajectory and a state process that tracks it from a nearby starting point,
up to a pair of stopping times. The essentials of this construction are illustrated
best in the context of monotone controls, and we therefore recommend consulting,
e.g., [44], [5], or [18]. In what follows, properties of tracking processes in a monotone
control problem for the left- and right-hand side Dini derivative, respectively, are
combined, which makes the construction more intricate. The aim of this pathwise
analysis is to construct controls such that the difference of costs, calculated for original
and disturbed starting points, resembles the payoff of a stochastic game of optimal
stopping. Thus we establish correspondence between “difference quotients” of the
control cost process and the cost of stopping times.

The formulation of tracking and the analysis of cost behavior is carried out with-
out reference to specific properties of the trajectory tracked, but to draw conclusions
on the value process we will have to assume that an optimal policy exists. We start
with a discussion of right-hand side difference quotients. The left-hand side difference
quotient is almost parallel, and there is a brief outline in section 3.3 of the steps
necessary. The section closes with the proof of the main theorem.

3.1. Upper right Dini derivative: Construction and properties of the
tracking process. First we will introduce the construction of a tracking process and
recall some properties of the state processes in this situation. Then we analyze charac-
teristics of the control involved and of the cost functionals. To also have these results
available when discussing the lower left Dini derivatives we restrict our assumptions
for a while to

b is differentiable in x and either convex or concave;(3.1a)

σ is linear in the space variable x;(3.1b)

h is increasing in the space variable x;(3.1c)

g is increasing in the space variable x;(3.1d)

both components of a are nonnegative.(3.1e)

Making use of the convexity of the data and its consequences presented in Lemma
2.11, we then find estimates for the difference quotient of cost functionals and inves-
tigate its limit behavior. This enables us to find an estimate for the upper right Dini
derivative of the value function V in terms of the value function of a Dynkin game.

Construction of the tracking process from above. We consider a controlled

process X� = Xx,CU ,CL

and a process Xδ starting in x + δ and tracking X� from
above.
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Let σ ∈ T and define the crossing time

τ δ := inf{t ≥ 0 |Xx+δ,CU ,0
t ≤ Xx,CU ,CL

t }.(3.2)

The tracking process Xδ for the starting point x + δ is given by

Xδ
t :=

{
Xx+δ,CU ,0

t , t ≤ σ ∧ τ δ,

Xx,CU ,CL

t , t > σ ∧ τ δ.
(3.3)

Its upper control is parallel to that of the state traced, and it has no lower control

until σ occurs or Xx,CU ,CL

crosses its trajectory.

We want to obtain Xδ as controlled process Xx+δ,Cδ,U ,Cδ,L

to compare the costs
associated with Xδ and X�. To achieve this, define

Cδ,U
t :=

⎧⎪⎨⎪⎩
CU

t , t ≤ σ,

CU
t + Xx+δ,CU ,0

σ −Xx,CU ,CL

σ , t > σ, σ ≤ τ δ,

CU
t , t > σ, σ > τ δ,

(3.4a)

Cδ,L
t :=

⎧⎪⎨⎪⎩
0, t ≤ σ ∧ τ δ,

CL
t − Cλ

σ , t > σ, σ ≤ τ δ,

CL
t − CL

τδ − (Xx+δ,CU ,0
τδ −Xx,CU ,CL

τδ ), t > τ δ, σ > τ δ.

(3.4b)

We have to check that Cδ,L is increasing at τ δ: Consider t > τ δ on {σ > τ δ}. Then
by definition of τ δ

0 ≤ CL
t − CL

τδ+ + Xx,CU ,CL

τδ+
−Xx+δ,CU ,0

τδ+

= CL
t − CL

τδ+ + Xx,CU ,CL

τδ − (CU
τδ+ − CU

τδ)

+ (CL
τδ+ − CL

τδ) −
(
Xx+δ,CU ,0

τδ − (CU
τδ+ − CU

τδ)
)

= CL
t − CL

τδ −
(
Xx+δ,CU ,0

τδ −Xx,CU ,CL

τδ

)
.

(3.5)

Hence Cδ := (Cδ,U ,−Cδ,L) is in A. The elements of this decomposition are nonneg-
ative, increasing, and LCRL, but need not be minimal. We take up this question in
Lemma 3.8.

The next lemma tells us that Cδ is really the control needed to obtain Xδ.

Lemma 3.1. Let Cδ ∈ A as defined in (3.4). Then Xx+δ,Cδ,U ,Cδ,L

= Xδ and

0 ≤ Xx+δ,Cδ,U ,Cδ,L

t −Xx,CU ,CL

t ≤ Xx+δ,CU ,0
t −Xx,CU ,0

t .(3.6)

Furthermore, Y x+δ,Cδ,U ,Cδ,L

t = Y x,CU ,CL

t and Zx+δ,Cδ,U ,Cδ,L

t = Zx,CU ,CL

t for σ ∧ τ δ <
t ≤ T .

See Baras, Elliott, and Kohlmann [6] for a treatment of jumps between stochastic
processes in the context of stochastic flows.

Proof. Xδ
t = Xx+δ,Cδ,U ,Cδ,L

t for t ≤ σ ∧ τ δ is obvious from the construction.

Consider the right-hand side limit Xx+δ,Cδ,U ,Cδ,L

σ∧τδ+
, which equals Xx,CU ,CL

σ∧τδ+
by definition

of Cδ; hence Xx+δ,Cδ,U ,Cδ,L

t = Xδ
t for t > σ ∧ τ δ. The equalities for Y x,CU ,CL

and

Zx,CU ,CL

on (σ ∧ τ δ, T ] follow from the uniqueness of solutions to BSDE.
It remains to prove (3.6). The first inequality follows from (3.3) and the definition

of τ δ. Observe that Xx,CU ,CL ≥ Xx,CU ,0 from the comparison theorem (Theorem 2.5).
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For t ≤ σ ∧ τ δ the second inequality then follows from the definition of Cδ. Further-

more, Xx+δ,Cδ,U ,Cδ,L

t = Xx,CU ,CL

t for t > σ ∧ τ δ; it follows from the comparison
theorem (Theorem 2.5) that the right-hand side is nonnegative, which completes the
proof.

Thus we may introduce the notation

X�
t := Xx,CU ,CL

t , Y �
t := Y x,CU ,CL

t , Z�
t := Zx,CU ,CL

t ,

Y δ
t := Y x+δ,Cδ,U ,Cδ,L

t , Zδ
t := Zx+δ,Cδ,U ,Cδ,L

t .

1
δ

(
Y δ − Y �

)
will be the difference quotient under observation later in this section.

We will also make use of the following estimate, which reformulates some results
on controlled processes of Lemma 2.11 for our situation.

Lemma 3.2. Assume (3.1b) holds. Then for any C ∈ A and initial values x, x+δ
the estimate

0 < δΓlo
t ≤ Xx+δ,CU ,CL

t −Xx,CU ,CL

t ≤ δΓup
t(3.7)

holds, and Xx+δ,CU ,CL

t decreases as δ decreases. Furthermore, Xδ decreases to X�.
These are consequences of the Lipschitz property of the data b and σ, linearity of

σ, and the comparison theorem (Theorem 2.5).
Some characteristics of the tracking process. Next define the first action time τ0

of CL by

τ0 := inf{t ≥ 0 |Xx,CU ,0
t < X�

t } = inf{t ≥ 0 |CL
t > CL

0 }.(3.8)

Observe that τ δ ↘ τ0 a.s. Due to their definition, this follows from the right-hand
side in (3.7) and existence of right-hand limits for all processes involved.

We know further that P -a.s. if CL
τ0+(ω) > CL

τ0(ω), there is a δ0(ω) such that

τ δ(ω) = τ0(ω) for all δ ≤ δ0. This again follows from (3.7) if we set δ0 := (CL
τ0+ −

CL
τ0)/Γ

up
τ0 .

Next assume (2.8a) and (2.8b) hold. Then for t ∈ ı̄

δΓx,CU ,0
t χt≤σ∧τ0 ≤ Xδ

t −X�
t ≤ δΓx+δ,CU ,0

t χt≤σ∧τδ P -a.s.(3.9)

This follows from the convexity of b and definition of τ0, τ δ, and Xδ as in Lemma 2.11.
At the end of this section we will assume that (CU , CL) is in fact optimal for the

control problem, but this is of no importance in the development of the next results.
Bounds for CL. We wish to give an estimate for CL

t if t ≤ τ δ. We derive this

from the definition of τ δ in the following way: Let Θ̃t(ω) ∈ [Xx,CU ,0
t (ω), X�

t (ω)] ⊂ R

such that

bx(t, Θ̃t)
(
X�

t −Xx,CU ,0
t

)
= b(t,X�

t ) − b(t,Xx,CU ,0
t ) P -a.s.

Observe that bx is either nondecreasing or nonincreasing in x, so Θ̃t can be chosen in

an Ft-measurable, LCRL way. Thus Θ̃ is progressively measurable, and we let ΓΘ̃
t be

the solution of the linear SDE

dΓΘ̃
t = bx(t, Θ̃t)Γ

Θ̃
t dt + σx(t,ΓΘ̃

t )� dWt, ΓΘ̃
0 = 1.



CONTROL AND DYNKIN GAME 1305

It is obvious from the comparison theorem (Theorem 2.5) and Lipschitz continuity of b

that Γlo
t ≤ ΓΘ̃

t ≤ Γup
t a.s. Hence ΓΘ̃

t ∈ R>0 for t ≤ τ δ a.s. Now consider X�−Xx,CU ,0:

Apply the Itô formula to
(
ΓΘ̃
t

)−1(
X�

t −Xx,CU ,0
t

)
and recall that this equals zero for

t ≤ τ0 to get the representation

X�
t −Xx,CU ,0

t =

∫ t

0

bx(s, Θ̃s)
(
X�

s −Xx,CU ,0
s

)
ds + CL

t

+

∫ t

0

σ(s,X�
s −Xx,CU ,0

s )� dWs =

∫ τ0∨t

τ0

ΓΘ̃
t

(
ΓΘ̃
s

)−1
dCL

s .

This leads to the following estimate for τ0 < t ≤ τ δ:(
sup

τ0<s≤t

ΓΘ̃
s

)−1

ΓΘ̃
t C

L
t =

(
inf

τ0<s≤t

(
ΓΘ̃
s

)−1
)
ΓΘ̃
t C

L
t

≤
∫ t

τ0

ΓΘ̃
t

(
ΓΘ̃
s

)−1
dCL

s = X�
t −Xx,CU ,0

t

≤ Xx+δ,CU ,0
t −Xx,CU ,0

t ≤ δΓup
t .

Similarly we obtain a lower bound on CL
t for t with CL

t > 0, i.e., t > τ0. The results
are summarized in the following lemma.

Lemma 3.3. Let τ0 and τ δ be as defined in (3.8) and (3.2), and assume (3.1)
holds. Then CL

t has P -a.s. upper and lower bounds for τ0 < t ≤ τ δ:(
X�

t −Xx,CU ,0
t

) 1

ΓΘ̃
t

(
inf

τ0<s≤t
ΓΘ̃
s

)
≤ CL

t ≤
(
X�

t −Xx,CU ,0
t

) 1

ΓΘ̃
t

(
sup

τ0<s≤t

ΓΘ̃
s

)
.

Thus CL satisfies

CL
t ≤ δΓup

t

(
Γlo
t

)−1
(

sup
τ0≤s≤t

Γup
s

)
=: δ · CL,δ

t for t ≤ τ δ P -a.s.

Note that if (2.8) and (3.15) hold, it follows from convexity of b and the compar-
ison theorem (Theorem 2.5) that for t ≤ τ δ

Γx,CU ,0
t ≤ ΓΘ̃

t ≤ Γx+δ,CU ,0
t .(3.10)

Limit behavior of cost functionals. Our plan is to find bounds for the process
1
δ

(
Y δ − Y �

)
, which will result in a first connection with a Dynkin game. But before

we can investigate this “difference quotient” we need more information about the
processes Y δ and their behavior as δ ↘ 0. We start with the following lemma.

Lemma 3.4. Assume that (3.1) holds. Let, for δ, δ′ ∈ R>0, the processes Y δ, Y δ′

be the cost functionals associated with x+δ, x+δ′ according to the construction (3.3).
Then

Y �
t ≤ Y δ

t ≤ Y δ′

t for δ ≤ δ′ for all t P -a.s.

Proof. Let us look at the inequality Y �
t ≤ Y δ

t first. For t > σ ∧ τ δ equality holds
by definition of (Cδ,U , Cδ,L).

Now let t ≤ σ ∧ τ δ. We wish to apply the comparison theorem, Theorem 2.7.
From Lemma 3.1 and properties (3.1c) and (3.1d) of h, g it follows that

h(Xδ
T ) ≥ h(X�

T ), g(t,Xδ
t , y, z) ≥ g(t,X�

t , y, z).
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Consider the difference of control processes δC :=
(
Cδ,U − CU ,−(Cδ,L − CL)

)
. The

components have the representation

Cδ,U
t − CU

t =
(
Xδ

σ −X�
σ

)
χ t>σ

σ≤τδ
,

Cδ,L
t − CL

t = −CL
t χt≤σ∧τδ − CL

σ χt>σ∧τδ

σ≤τδ

−
(
CL

τδ + (Xδ
τδ −X�

τδ)
)
χt>σ∧τδ

σ>τδ

.

Recall the argument in (3.5) to see that both components of δC are increasing and
therefore

∫
[0,t)

a�s d(δCs) is increasing in t.

So the assumptions of the comparison theorem (Theorem 2.7) are satisfied, which
completes the proof of the first inequality.

For the second inequality observe that we are done if t > σ∧τ δ, as then Y δ
t = Y �

t .
For t ≤ σ ∧ τ δ the processes satisfy

Y δ′

t − Y δ
t = Y δ′

σ∧τδ − Y δ
σ∧τδ +

∫ σ∧τδ

t

g(s,Xδ′

s , Y δ′

s , Zδ′

s ) − g(s,Xδ
s , Y

δ
s , Z

δ
s ) ds

−
∫ σ∧τδ

t

Zδ′

s − Zδ
s dWs.

Hence it suffices to prove Y δ′

σ∧τδ ≥ Y δ
σ∧τδ , as g(s,Xδ′

s , y, z) ≥ g(s,Xδ
s , y, z) and an

application of the comparison theorem (Theorem 2.7) will complete the argument.
To this end use a slightly different representation (cf. (3.11) below):

Y δ
σ∧τδ − Y �

σ∧τδ =
(
h(Xδ

T ) − h(X�
T )
)
χσ∧τδ=T + aUσ

(
Xδ

σ −X�
σ

)
χσ≤τδ

σ<T

+ aLτδ

(
Xδ

τδ −X�
τδ

)
χτδ<σ

τδ<T

≤
(
h(Xδ′

T ) − h(X�
T )
)
χσ∧τδ=T + aUσ

(
Xδ′

σ −X�
σ

)
χσ≤τδ

σ<T

+ aLτδ

(
CL

τδ+ − CL
τδ

)
χτδ<σ

τδ<T

+
(
Y δ′

σ∧τδ+ − Y �
σ∧τδ+

)
χτδ<σ

τδ<T

= Y δ′

σ∧τδ − Y �
σ∧τδ ,

where the inequality is due to the definition of Cδ,L and (3.5), Y δ′ ≥ Y � and (3.1c),
and (3.1e) and the monotonicity of Xδ in δ. The last equality follows from τ δ ≤ τ δ

′
.

This completes the proof.
Observe that we can interpret Y δ −Y � as solution to a BSDE where the terminal

value is Fσ∧τδ -measurable. In this form it resembles the payoff of a stochastic game
of optimal stopping:

Y δ
t − Y �

t = E

[∫ σ∧τδ

t

g(s,Xδ
s , Y

δ
s , Z

δ
s ) − g(s,X�

s , Y
�
s , Z

�
s ) ds

+
(
h(Xδ

T ) − h(X�
T )
)
χσ∧τδ=T + aUσ

(
Xδ

σ −X�
σ

)
χσ≤τδ

σ<T

+ aLτδ

(
Xδ

τδ −X�
τδ

)
χτδ<σ

τδ<T

+

∫
[t,σ∧τδ)

aLs dCL
s

∣∣∣∣∣ Ft

]
.

(3.11)

We will use this representation in the discussion of limit behavior of 1
δ

(
Y δ − Y �

)
. As

a first step we establish a result on the convergence of Y δ to Y �.
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Lemma 3.5. Assume that (3.1) holds. Then Y δ
t converges to Y �

t P -a.s. uniformly
in t, and further,

lim
δ↘0

E

[
sup

t≤s≤T

∣∣Y δ
s − Y �

s

∣∣2] = 0,(3.12)

lim
δ↘0

E

[∫ T

t

∣∣Zδ
s − Z�

s

∣∣2 ds] = 0.(3.13)

The convergence in (3.12) is monotone.
Proof. We know from Lemma 3.4 that supt≤s≤T (Y δ

s − Y �
s ) is nonnegative and

decreases as δ decreases to zero. If we set A := {ω | limδ↘0(supt≤s≤T Y δ
s − Y �

s ) > 0},
then P (A) = 0 follows from (3.12).

But (3.12) and (3.13) follow from Lemma 2.4 if we can show that—in the notation
of that lemma—‖δξ‖2

2, ‖δg‖2
2, and |δC|2[a,̄ı] converge to zero. Hence it suffices to prove

convergence of the data in the respective 2-norms.
We first consider the driver and write

δgs = g(s,Xδ
s , Y

�
s , Z

�
s ) − g(s,X�

s , Y
�
s , Z

�
s ) ≤ L · δ · Γup

s ,

where L denotes a Lipschitz constant of g. Hence ‖δgs‖2
2 ≤ L2 · δ2 · ‖Γup

s ‖2
2, which

converges to zero as δ ↘ 0. The same argument can be applied to δξ = h(Xδ
T ) −

h(X�
T ).
From the definition of the processes Xδ, X� we have

(
Xδ

τδ −X�
τδ

)
=
(
Xδ

τ0 −X�
τ0

)
+

∫ τδ

τ0

(
b(s,Xδ

s ) − b(s,X�
s )
)
ds

+

∫ τδ

τ0

σ
(
s, (Xδ

s −X�
s )
)
dWs − (CL

τδ − CL
τ0).

(3.14)

Also recall that Cδ,L is constant on [t, τ0]. Therefore we can estimate the difference
of controls in the following way:

|δC|2[a,̄ı] = E

[(∫
ı̄

aLs d
∣∣Cδ,L − CL

∣∣
s

)2

+

(∫
ı̄

aUs d
∣∣Cδ,U − CU

∣∣
s

)2]
= E

[((
aLτδ(X

δ
τδ −X�

τδ)
)
χτδ<σ

τδ<T

+

∫
[t,σ∧τδ)

aLs dCL
s

)2

+
(
aUσ (Xδ

σ −X�
σ)
)2

χσ≤τδ

σ<T

]
≤ E

[((
aLτδ(X

δ
τδ −X�

τδ)
)

+

∫
[τ0,τδ)

aLs dCL
s

)2

χτ0<σ
τ0<T

+
(
aUσ (Xδ

σ −X�
σ)
)2

χσ≤τδ

σ<T

]

≤ δ2E

⎡⎣3

(
max

τ0≤s≤τδ
aLs

)2
⎛⎝|Γup

τ0 |2 +

(∫ τδ

τ0

LΓup
s ds

)2

+

∫ τδ

τ0

|σ(s,Γup
s )|2 ds

⎞⎠ ⎤⎦+ δ2E
[(
aUσ Γup

σ

)2]
.
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The second inequality is due to (3.14), where we have used (3.7), (3.6), Lipschitz
continuity of b, and linearity of σ. The last term obviously converges to zero as
δ ↘ 0, which completes the proof.

3.2. Upper right Dini derivative: Estimates for the difference quotient.
From now on we assume smoothness of the data of the FBSDE (1.1):

b is differentiable in x;(3.15a)

h is differentiable in x;(3.15b)

g is partially differentiable in x, y, and z;(3.15c)

gy is increasing in x;(3.15d)

gz is independent of x, y, and z;(3.15e)

both components of a are nonnegative and continuous.(3.15f)

Under (3.15e) we may drop dependence on z in the notation for gx, gy, and gz.

We now define processes R̃up,δ and R̃lo,δ, which converge to the same limiting
process R̃ as δ ↘ 0 and serve as majorants and minorants to the difference quotient
1
δ

(
Y δ − Y �

)
. Thus they help us investigate its limit behavior. To facilitate the

argument we use the translation to a control-free FBSDE as in Peng [61]; we define

Ỹ δ
t :=

1

δ

(
(Y δ

t − Y �
t ) +

∫
[0,σ∧τδ∧t)

aLs dCL
s

)
and Z̃δ

t :=
1

δ

(
Zδ
t − Z�

t

)
.

Then (Ỹ δ, Z̃δ) is solution to a BSDE with data

ξỸ :=
1

δ

(
h(Xδ

T ) − h(X�
T )
)
χσ∧τδ=T + aUσ

1

δ

(
Xδ

σ −X�
σ

)
χσ≤τδ

σ<T

+ aLτδ

1

δ

(
Xδ

τδ −X�
τδ

)
χτδ<σ

τδ<T

+
1

δ

∫
[0,σ∧τδ)

aLs dCL
s ,

gỸ (t, y, z) :=

(
Δxg̃t

1

δ
(Xδ

t −X�
t ) + Δy g̃tχy≥0 · y

−Δy g̃t
1

δ

∫
[0,t)

aLs dCL
s

)
χt≤σ∧τδ + Δz g̃t · zχt≤σ,

C Ỹ
t := (0, 0).

Here Δxg̃t, Δy g̃t, and Δz g̃t are defined as

Δxg̃t :=
(
g(t,Xδ

t , Y
�
t , Z

�
t ) − g(t,X�

t , Y
�
t , Z

�
t )
) 1

Xδ
t −X�

t

χXδ
t =X�

t
,

Δy g̃t :=
(
g(t,Xδ

t , Y
δ
t , Z

�
t ) − g(t,Xδ

t , Y
�
t , Z

�
t )
) 1

Y δ
t − Y �

t

χY δ
t =Y �

t
,

Δz g̃t :=
(
g(t,Xδ

t , Y
δ
t , Z

δ
t ) − g(t,Xδ

t , Y
δ
t , Z

�
t )
) 1

Zδ
t − Z�

t

χZδ
t =Z�

t
.

Observe that Y δ
t − Y �

t = 0 for t > σ ∧ τ δ; hence Y δ
t − Y �

t is Fσ∧τδ -measurable.
Therefore Zδ

t −Z�
t = 0 for t > σ ∧ τ δ and we can in effect extend the Δz g̃-component

in the definition of gỸ from [0, σ ∧ τ δ] to [0, σ]. Observe also that Ỹ δ ≥ 0 by (3.15f)
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and Lemma 3.4, and that Ỹ δ
t = 1

δ (Y δ
t − Y �

t ) for t ≤ σ ∧ τ0. The representation of

(Ỹ δ, Z̃δ) as solution of a BSDE with the data (ξỸ , gỸ , C Ỹ ) can be verified directly.
From now on we will assume that (3.15) holds. Therefore we drop the z-variable

in the notation of partial derivatives of g. Observe also that Δxg̃, Δy g̃, and Δz g̃ do
not depend on Z� and Zδ in this case.

Now assume g to be partially differentiable and define (R̃up,δ, Q̃up,δ) as solution
to the BSDE with data

ξup,δ := hx(Xx+δ,CU ,0
T )Γx+δ,CU ,0

T χσ∧τδ=T + aUσ Γx+δ,CU ,0
σ χσ≤τδ

σ<T

+
(

max
τ0≤s≤τδ

aLs
)(

sup
τ0≤s≤τδ

Γx+δ,CU ,0
s

)2(
inf

τ0≤s≤τδ
Γx,CU ,0
s

)−1
χτ0<σ

τ0<T

,

gup,δ(t, y, z) :=
(
gx(t,Xδ

t , Y
�
t )Γx+δ,CU ,0

t + gy(t,X
δ
t , Y

δ
t )χy≥0χA+

g,δ
· y

+ L
(

max
τ0≤s≤τδ∧t

aLs
)
CL,δ

t

)
χt≤σ∧τδ + gz(t) · zχt≤σ,

Cup,δ
t := (0, 0).

Similarly we let (R̃lo,δ, Q̃lo,δ) be the solution to the BSDE with data

ξlo,δ := hx(Xx,CU ,0
T )Γx,CU ,0

T χσ∧τ0=T + aUσ Γx,CU ,0
σ χσ≤τ0

σ<T

+
(

min
τ0≤s≤τδ

aLs
)(

inf
τ0≤s≤τδ

Γx,CU ,0
s

)2(
sup

τ0≤s≤τδ

Γx+δ,CU ,0
s

)−1
χτδ<σ

τδ<T

,

glo,δ(t, y, z) := gx(t,X�
t , Y

�
t )Γx,CU ,0

t χt≤σ∧τ0 +
(
gy(t,X

�
t , Y

�
t )χy≥0χA−

g,δ
· y

− L
(

max
τ0≤s≤τδ∧t

aLs
)
CL,δ

t

)
χt≤σ∧τδ + gz(t) · zχt≤σ,

Clo,δ
t := (0, 0).

Recall the definition of CL,δ
t in Lemma 3.3. L again denotes a Lipschitz constant of g.

We need A+
g,δ and A−

g,δ to eliminate the negative and positive parts in the gy · y -

terms for t > σ ∧ τ0. The reason is that χt≤τδ decreases to χt≤τ0 in δ, so we have to
add a condition that ensures the required monotonicity of the data. More specifically,
we define

A+
g,δ := {t ≤ σ ∧ τ0} ∪ {gy(t,Xδ

t , Y
δ
t ) ≥ 0},

A−
g,δ := {t ≤ σ ∧ τ0} ∪ {gy(t,X�

t , Y
�
t ) ≤ 0}.

We also use the nonstandard convention maxτ0≤s≤τδ∧t a
L
s = 0 for t < τ0.

We are now in a position to formulate the estimate.
Lemma 3.6. Assume that (2.8) and (3.15) hold. Then R̃up,δ, Ỹ δ, R̃lo,δ satisfy

R̃lo,δ
t ≤ Ỹ δ

t ≤ R̃up,δ
t ∀t ∈ ı̄ P -a.s.(3.16)

Further, R̃up,δ decreases and R̃lo,δ increases as δ ↘ 0 to the same limiting process R̃
defined below, in L2

F(0, T ; R) and for all t ∈ ı̄ P -a.s.
Proof. To apply the comparison theorem (Theorem 2.7) with supplementary

condition (2.7c) to R̃up,δ, Ỹ δ, R̃lo,δ, we have to estimate the drivers and terminal
conditions of the three processes.
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Consider the drivers first. Their components satisfy

gx(t,X�
t , Y

�
t )Γx,CU ,0

t χt≤σ∧τ0 ≤ Δxg̃t
1

δ

(
Xδ

t −X�
t

)
χt≤σ∧τδ

≤ gx(t,Xδ
t , Y

�
t )Γx+δ,CU ,0

t χt≤σ∧τδ ,

gy(t,X
�
t , Y

�
t )

1

δ

(
Y δ
t − Y �

t

)
χA−

g,δ
≤ Δy g̃t

1

δ

(
Y δ
t − Y �

t

)
≤ gy(t,X

δ
t , Y

δ
t )

1

δ

(
Y δ
t − Y �

t

)
χA+

g,δ
,

gy(t,X
�
t , Y

�
t )

1

δ

∫
[τ0,τδ∧t)

aLs dCL
s − L

(
max

τ0≤s≤τδ∧t
aLs
)
CL,δ

t

≤ Δy g̃t
1

δ

∫
[τ0,τδ∧t)

aLs dCL
s − Δy g̃t

1

δ

∫
[τ0,τδ∧t)

aLs dCL
s

(which equals zero)

≤ gy(t,X
δ
t , Y

δ
t )

1

δ

∫
[τ0,τδ∧t)

aLs dCL
s + L

(
max

τ0≤s≤τδ∧t
aLs
)
CL,δ

t ,

gz(t)
1

δ

(
Zδ
t − Z�

t

)
= Δz g̃t

1

δ

(
Zδ
t − Z�

t

)
.

The estimates for Δxg̃ follow from (3.15c), (2.8d), and (3.9). For the estimates of
Δy g̃ use (2.8d), (3.15c), Lemma 3.4, and the definition of A±

g,δ.

For the third line estimate of the LaL -term recall Lipschitz continuity of g and
Lemma 3.3. As gz is independent of (x, y, z) and τ δ ≥ τ0, we can summarize this as

glo,δ(t, Ỹ δ, Z̃δ) ≤ gỸ (t, Ỹ δ, Z̃δ) ≤ gup,δ(t, Ỹ δ, Z̃δ).(3.17)

In a similar way we can estimate the terms in hx, aU , and h, respectively, in the

definitions of ξlo,δ, ξỸ , and ξup,δ by (2.8c), (3.15b), and (3.9). For the terms in aL

observe that by Lemma 3.3, (2.13), and (3.10),

aLτδ

1

δ

(
Xδ

τδ −X�
τδ

)
χτδ<σ

τδ<T

+
1

δ

∫
[σ∧τ0,σ∧τδ)

aLs dCL
s

≤ 1

δ

(
max

τ0≤s≤τδ
aLs
)(

Xδ
τδ −X�

τδ +
(
X�

τδ −Xx,CU ,0
τδ

)
(ΓΘ̃

τδ)
−1
(

sup
τ0≤s≤τδ

ΓΘ̃
s

))
χτ0<σ

τ0<T

≤
(

max
τ0≤s≤τδ

aLs
)(

sup
τ0≤s≤τδ

Γx+δ,CU ,0
s

)2(
inf

τ0≤s≤τδ
Γx,CU ,0
s

)−1
χτ0<σ

τ0<T

.

Similarly we can estimate the aL-term in ξlo,δ:(
min

τ0≤s≤τδ
aLs
)(

inf
τ0≤s≤τδ

Γx,CU ,0
s

)2(
sup

τ0≤s≤τδ

Γx+δ,CU ,0
s

)−1
χτδ<σ

τδ<T

≤ aLτδ

1

δ

(
Xδ

τδ −X�
τδ

)
χτδ<σ

τδ<T

+
1

δ

∫
[σ∧τ0,σ∧τδ)

aLs dCL
s .

Hence ξlo,δ ≤ ξỸ
δ ≤ ξup,δ. An application of the comparison theorem (Theorem 2.7)

and (2.7c) completes the proof of (3.16).
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Let us now prove monotony of R̃lo,δ and R̃up,δ in δ. We show that the data are
monotone in δ so that we can again apply the comparison theorem (Theorem 2.7).

Consider the terminal values first. The summands in ξup,δ are nonnegative. The
terms in hx and aU decrease with δ by (3.15b), (3.15f), (2.15), and τ δ ↘ τ0. The

third term decreases to aLτ0Γ
x,CU ,0
τ0 , as aL and Γ are continuous.

The terms in hx and aU of ξlo,δ are independent of δ. The aL-term increases as

δ ↘ 0, as supτ0≤s≤τδ Γx+δ,CU ,CL

s decreases and χτδ<σ,τδ<T increases. Hence ξup,δ

and ξlo,δ decrease and increase, respectively, to ξ̃, where

ξ̃ := hx(Xx,CU ,0
T )Γx,CU ,0

T χσ∧τ0=T + aUσ Γx,CU ,0
σ χσ≤τ0

σ<T

+ aLτ0Γ
x,CU ,0
τ0 χτ0<σ

τ0<T

.

Next we show that the drivers gup,δ and glo,δ decrease and increase, respectively, and
for t �= σ ∧ τ0 converge to g̃ defined by

g̃(t, y, z) :=
(
gx(t,X�

t , Y
�
t )Γx,CU ,0

t + gy(t,X
�
t , Y

�
t )χy≥0 · y

)
χt≤σ∧τ0

+ gz(t) · zχt≤σ.

Convergence and monotony of the gx-term of gup,δ is obvious; for glo,δ it is trivial.
The terms in ±L(maxτ0≤s≤τδ∧t a

L
s ) equal zero for t < σ ∧ τ0; they are decreasing in

absolute value. As χτ0≤t≤σ∧τδ converges to zero, both terms decrease and increase,
respectively, to zero for t �= σ ∧ τ0.

For t ≤ σ ∧ τ0 the gy · y -term in gup,δ decreases by (3.15d), monotony of Xδ in δ
and Lemma 3.4. For t > σ∧τ0 it decreases and is nonnegative thanks to the definition
of A+

g,δ. As χt≤σ∧τδ decreases to zero, the full gy · y -component also decreases to
zero.

Convergence of the gy · y -term in glo,δ for t ≤ σ ∧ τ0 is trivial. For t > σ ∧ τ0 we
are restricted to the negative values by definition of A−

g,δ, and as χt≤σ∧τδ decreases
to zero, the gy · y -term increases to zero.

The gz-term remains unaffected by (3.15e). So glo,δ ↗ g̃ and gup,δ ↘ g̃ as δ ↘ 0
for t �= σ ∧ τ0.

Let (R̃, Q̃) be the solution to the BSDE with data (ξ̃, g̃, 0). R̃ will serve as
limiting process for R̃up,δ and R̃lo,δ. By the comparison theorem, left continuity of the
processes involved, and the above discussion of the data (ξup,δ, gup,δ) and (ξlo,δ, glo,δ),
we have

R̃lo,δ
t ≤ R̃t ≤ R̃up,δ

t ∀t ∈ ı̄ P -a.s.,

and R̃t − R̃lo,δ
t and R̃up,δ

t − R̃t decrease as δ ↘ 0.

Furthermore, the differences of the data and hence the processes R̃t − R̃lo,δ
t and

R̃up,δ
t − R̃t decrease to zero in L2

F(0, T ; R). To be precise, set

‖δgup,δ‖2
2 := E

[∫ σ∧τδ

0

∣∣g̃(s, R̃s, Q̃s) − gup,δ(s, R̃s, Q̃s)
∣∣2 ds] ,

‖δglo,δ‖2
2 := E

[∫ σ∧τδ

0

∣∣g̃(s, R̃s, Q̃s) − glo,δ(s, R̃s, Q̃s)
∣∣2 ds] ,

‖δξup,δ‖2
2 := E

[∣∣ξ̃ − ξup,δ
∣∣2],

‖δξlo,δ‖2
2 := E

[∣∣ξ̃ − ξlo,δ
∣∣2],
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which converge to zero as δ ↘ 0 by the dominated convergence theorem. The a priori
estimates in Lemma 2.4 show that

lim
δ↘0

E
[

sup
0≤s≤T

∣∣R̃up,δ
s − R̃s

∣∣2] = lim
δ↘0

E
[

sup
0≤s≤T

∣∣R̃lo,δ
s − R̃s

∣∣2] = 0.

By monotony of R̃lo,δ and R̃up,δ, these converge also P -a.s. to R̃ uniformly in t. As
T ∈ R>0 is bounded, R̃lo,δ and R̃up,δ converge to R̃ in L2

F(0, T ; R).
Recall the payoff R of the associated Dynkin game in Definition 1.2. Now define

the data

ξR :=
(
hx(Xx,0,0

T )χσ∧τ0=T + aUσ χσ≤τ0

σ<T

+ aLτ0χτ0<σ
τ0<T

)
Γx
σ∧τ0∧T ,

gR(t, y, z) :=
(
gx(t,Xx,0,0

t , Y �
t )Γx

t + gy(t,X
x,0,0
t , Y �

t ) · y
)
χt≤σ∧τ0

+ gz(t) · zχt≤σ,

and CR := 0. Then the solution (R,Q) of the BSDE with data (ξR, gR, a, 0) is the
payoff defined in (1.3) and has the representation

(3.18) Rx
t (σ, τ0) = E

[∫ σ∧τ0

t

〈Dg(s,Xx,0,0
s , Y �

s ), (Γx
s , Rs, Qs)〉 ds

+ hx(Xx,0,0
T )Γx

Tχσ∧τ0=T + aUσ Γx
σχσ≤τ0

σ<T

+ aLτ0Γx
τ0χτ0<σ

τ0<T

∣∣∣∣∣ Ft

]
.

Lemma 3.7. Assume that (2.8) and (3.15) hold. Then

lim
δ↘0

1

δ

(
Y δ
t − Y �

t

)
≤ Rx

t (σ, τ0)(3.19)

holds P -a.s. for all t ≤ σ ∧ τ0.
Proof. We use the notation of Lemma 3.6. From the construction of Ỹ δ we have

Ỹ δ
t = 1

δ

(
Y δ
t − Y �

t

)
for t ≤ σ ∧ τ0. Hence by (3.16)

R̃lo,δ
t ≤ 1

δ

(
Y δ
t − Y �

t

)
≤ R̃up,δ

t for t ≤ σ ∧ τ0 P -a.s.

As R̃lo,δ and R̃up,δ converge to R̃, so does 1
δ

(
Y δ − Y �

)
. Hence the limit in (3.19)

exists, and it suffices to prove

R̃t ≤ Rx
t (σ, τ0) for t ≤ σ ∧ τ0 P -a.s.

First observe that R̃ remains unchanged if we restrict the gz-term in the definition
of g̃ to [0, σ∧τ0]. This follows from the fact that R̃t is Fσ∧τ0-measurable for t > σ∧τ0;
hence Q̃t = 0 on (σ ∧ τ0, T ].

Recall that X�
t = Xx,CU ,0

t for t ≤ τ0 by definition and that Xx,CU ,0 ≤ Xx,0,0 and

Γx,CU ,0 ≤ Γx,0,0 by (2.8a) and the comparison theorem (Theorem 2.5).
Hence g̃(t, y, z) ≤ gR(t, y, z) is a consequence of (2.8d), (3.15c). Using (2.8c),

(3.15b), and (3.15f) we deduce ξ̃ ≤ ξR. Hence the assumptions of the comparison
theorem are satisfied, which completes the proof.
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Let us now consider the case where C = (CU ,−CL) is optimal for the problem
starting in x; i.e., the value Vt(x) is the state process of a controlled BSDE:

Vt(x) = Y �
t = Y x,C

t ∀t ≥ 0.

Lemma 3.8. Assume that (2.8) and (3.15) hold and that there exists an optimal
control (CU , CL) for the control problem 1.1 in x. Let V (x) be its value. Then the
upper right Dini derivative of V with respect to the initial condition satisfies

Δ+V (x) ≤ u−(x).

Proof. By optimality of C in x and Lemma 3.7 we have

lim sup
δ↘0

1

δ

(
V (x + δ) − V (x)

)
≤ lim sup

δ↘0

1

δ

(
Y δ

0 − Y �
0

)
≤ Rx

0(σ, τ0).

This holds even if the decomposition (3.4) is not minimal. As σ ∈ T is arbitrary we
obtain

Δ+V (x) ≤ ess inf
σ∈T

R0(σ, τ
0) ≤ u−(x).(3.20)

3.3. Lower left Dini derivative. The construction of an estimate for the lower
left Dini derivative of V is essentially the same as that in section 3.1. This is intuitively
obvious if we consider −X instead of X as the controlled forward process, and all
proofs relying on the set of conditions in (3.1) translate one to one to the new situation.
For example, CU and CL just change their roles. We therefore only outline the
argument by listing the statements.

However, for our investigation of the difference quotient the transformation X �→
−X cannot be applied as it does not preserve convexity of the data. So we give the
definitions of upper and lower bounds and limiting process for the difference quotient
in detail.

Construction of the tracking process from below. We construct a process X−δ

that tracks a given controlled process X� = Xx,CU ,CL

, starting at a distance δ below
x and jumping on X� some time afterwards.

Let τ ∈ T arbitrary and set the crossing time

σδ := inf{t ≥ 0 |Xx−δ,0,CL

t ≥ Xx,CU ,CL

t }.(3.21)

The tracking process X−δ for the starting point x− δ is defined as

X−δ
t :=

{
Xx−δ,0,CL

t , t ≤ σδ ∧ τ,

Xx,CU ,CL

t , t > σδ ∧ τ.
(3.22)

It has parallel lower and no upper control as long as either τ occurs or X� crosses its
path.

To obtain X−δ as a controlled process define C−δ = (C−δ,U ,−C−δ,L) by

C−δ,U
t :=

⎧⎪⎨⎪⎩
0, t ≤ σδ ∧ τ,

CU
t − CU

σδ −
(
Xx,CU ,CL

σδ −Xx−δ,0,CL

σδ

)
, t > σδ, σδ ≤ τ,

CU
t − CU

τ , t > τ, σδ > τ,

(3.23a)

C−δ,L
t :=

⎧⎪⎨⎪⎩
CL

t , t ≤ τ,

CL
t , t > τ, σδ ≤ τ,

CL
t + (Xx,CU ,CL

τ −Xx−δ,0,CL

τ ), t > τ, σδ > τ.

(3.23b)
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From the definition of σδ we have for t > σδ, σδ ≤ τ

0 ≤ CU
t − CU

σδ+ + Xx−δ,0,CL

σδ+
−Xx,CU ,CL

σδ+

= CU
t − CU

σδ+ + Xx−δ,0,CL

σδ + (CL
σδ+ − CL

σδ)

−
(
Xx,CU ,CL

σδ − (CU
σδ+ − CU

σδ) + (CL
σδ+ − CL

σδ)
)

= CU
t − CU

σδ −
(
Xx,CU ,CL

σδ −Xx−δ,0,CL

σδ

)
so C−δ,U is increasing; hence C−δ ∈ A. Again, this decomposition need not be
minimal. In addition to the notation of X�, Y �, and Z� in section 3.1 we set

Y −δ
t := Y x−δ,C−δ,U ,C−δ,L

t , Z−δ
t := Zx−δ,C−δ,U ,C−δ,L

t .

The following statements and their proofs are parallel to Lemmata 3.1, 3.2, 3.3,
3.4, and 3.5. As noted above, instead of a line-by-line imitation we could use a
transformation

b̌(t, x) := −b(t,−x), σ̌(t, x) := σ(t, x),

ȟ(x) := −h(−x), ǧ(t, x, y, z) := −g(t,−x,−y,−z)

by which

(Xx,CU ,CL

, Y x,CU ,CL

, Zx,CU ,CL

) �→(X̌−x,CL,CU

, Y̌ −x,CL,CU

, Ž−x,CL,CU

)

= (−Xx,CU .CL

,−Y x,CU ,CL

,−Zx,CU ,CL

)

and apply the results of section 3.1.
Lemma 3.9. Let C−δ be as defined in (3.23) and assume (3.1) holds. Then we

have Xx−δ,C−δ,U ,C−δ,L

= X−δ and

0 ≤ Xx,CU ,CL

t −Xx−δ,C−δ,U ,C−δ,L

t ≤ Xx,0,CL

t −Xx−δ,0,CL

t .(3.24)

Furthermore, Y x−δ,C−δ,U ,C−δ,L

t = Y x,CU ,CL

t and Zx−δ,C−δ,U ,C−δ,L

t = Zx,CU ,CL

t for

σδ ∧ τ < t ≤ T . As δ decreases, Xx−δ,CU ,CL

t increases and X−δ increases to X�.
A bound for CU . Define the first action time σ0 of CU by

σ0 := inf{t ≥ 0 |Xx,0,CL

t > X�
t } = inf{t ≥ 0 |CU

t > CU
0 }(3.25)

and observe that σδ ↘ σ0 P -a.s. With Θ̂ defined suitably and ΓΘ̂ the solution of the
linear SDE

dΓΘ̂
t = bx(t, Θ̂t)Γ

Θ̂
t dt + σx(t,ΓΘ̂

t ) dWt, X̂0 = 1,

the following representation leads to the analogue of Lemma 3.3:

Xx,0,CL

t −X�
t =

∫ t

0

bx(s, Θ̂s)
(
Xx,0,CL

s −X�
s

)
ds + CU

t

+

∫ t

0

σ(s,Xx,0,CL

s −X�
s ) dWs =

∫ σ0∨t

σ0

ΓΘ̂
t

(
ΓΘ̂
s

)−1
dCU

s .
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Lemma 3.10. Let σ0 and σδ be as defined in (3.25) and (3.21), and assume (3.1)
holds. Then CU

t has P -a.s. upper and lower bounds for σ0 < t ≤ σδ:

(
Xx,0,CL

t −X�
t

) 1

ΓΘ̂
t

(
inf

σ0<s≤t
ΓΘ̂
s

)
≤ CU

t ≤
(
Xx,0,CL

t −X�
t

) 1

ΓΘ̂
t

(
sup

σ0<s≤t

ΓΘ̂
s

)
.

Thus CU satisfies

CU
t ≤ δΓup

t

(
Γlo
t

)−1
(

sup
σ0≤s≤t

Γup
s

)
=: δ · CU,−δ

t for t ≤ σδ P -a.s.

Limit behavior of cost functionals. The difference of tracked and tracking cost
functional has the representation

Y �
t − Y −δ

t = E

[∫ σδ∧τ

t

g(s,X�
s , Y

�
s , Z

�
s ) − g(s,X−δ

s , Y −δ
s , Z−δ

s ) ds

+
(
h(X�

T ) − h(X−δ
T )
)
χσδ∧τ=T + aLτ

(
X�

τ −X−δ
τ

)
χτ<σδ

τ<T

+ aUσδ

(
X�

σδ −X−δ
σδ

)
χσδ≤τ

σδ<T

+

∫
[t,σδ∧τ)

aUs dCU
s

∣∣Ft

]
.

(3.26)

Again the value is monotone in δ, and (Y −δ, Z−δ) converges to (Y �, Z�).

Lemma 3.11. Assume that (3.1) holds. Let, for δ, δ′ ∈ R>0, the processes
Y −δ, Y −δ′ be as defined in Lemma 3.9. Then

Y −δ′

t ≤ Y −δ
t ≤ Y �

t for δ ≤ δ′ ∀ t P -a.s.

Lemma 3.12. Assume that (3.1) holds. Then Y −δ
t converges to Y �

t P -a.s. uni-
formly in t, and further,

lim
δ↘0

E
[

sup
t≤s≤T

∣∣Y �
s − Y −δ

s

∣∣2] = 0,(3.27)

lim
δ↘0

E

[∫ T

t

∣∣Z�
s − Z−δ

s

∣∣2 ds] = 0.(3.28)

The convergence in (3.27) is monotone.

Estimates for the difference quotient 1
δ

(
Y �−Y −δ

)
. The structure of our approach

is the same as in section 3.2, but we have to make slight modifications in the definitions
of upper and lower bounds R̂up,−δ and R̂lo,−δ for the transformed process Ŷ −δ. Again,
the bounds converge to a common limit R̂ that gives an estimate for the payoff of the
associated Dynkin game.

We rewrite 1
δ

(
Y � − Y −δ

)
as an uncontrolled process similar to the construction

in Lemma 3.6 and consider

Ŷ −δ
t :=

1

δ

(
(Y �

t − Y −δ
t ) +

∫
[0,σδ∧τ∧t)

aUs dCU
s

)
and Ẑ−δ

t :=
1

δ

(
Z�
t − Z−δ

t

)
.
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It can be verified directly that (Ŷ −δ, Ẑ−δ) is the solution of a BSDE with data

ξŶ :=
1

δ

(
h(X�

T ) − h(X−δ
T )
)
χσδ∧τ=T + aLτ

1

δ

(
X�

τ −X−δ
τ

)
χτ<σδ

τ<T

+ aUσδ

1

δ

(
X�

σδ −X−δ
σδ

)
χσδ≤τ

σδ<T

+
1

δ

∫
[0,σδ∧τ)

aUs dCU
s ,

gŶ (t, y, z) :=
(
Δxĝt

1

δ
(X�

t −X−δ
t ) + Δy ĝtχy≥0 · y

− Δy ĝt
1

δ

∫
[0,t)

aUs dCU
s

)
χt≤σδ∧τ + Δz ĝt · zχt≤τ ,

C Ŷ
t := (0, 0).

Here Δxĝt, Δy ĝt, and Δz ĝt are defined as

Δxĝt :=
(
g(t,X�

t , Y
�
t , Z

�
t ) − g(t,X−δ

t , Y �
t , Z

�
t )
) 1

X�
t −X−δ

t

χX−δ
t =X�

t
,

Δy ĝt :=
(
g(t,X−δ

t , Y �
t , Z

�
t ) − g(t,X−δ

t , Y −δ
t , Z�

t )
) 1

Y �
t − Y −δ

t

χY −δ
t =Y �

t
,

Δz ĝt :=
(
g(t,X−δ

t , Y −δ
t , Z�

t ) − g(t,X−δ
t , Y −δ

t , Z−δ
t )
) 1

Z�
t − Z−δ

t

χZ−δ
t =Z�

t
.

Observe that Ŷ −δ ≥ 0 by (3.15f) and Lemma 3.11, and that for t ≤ σ0 ∧ τ , Ŷ −δ
t =

1
δ (Y �

t − Y −δ
t ).

We will assume that (3.15) holds. Again we define processes (R̂up,−δ, Q̂up,−δ)
and (R̂lo,−δ, Q̂lo,−δ) as solutions to the BSDE with data (ξup,−δ, gup,−δ, Cup,−δ) and
(ξlo,−δ, glo,−δ, Clo,−δ), where

ξup,−δ := hx(Xx,0,CL

T )Γx,0,CL

T χσδ∧τ=T + aLτ Γx,0,CL

τ χτ<σδ

τ<T

+
(

max
σ0≤s≤σδ

aUs
)(

sup
σ0≤s≤σδ

Γx,0,CL

s

)2(
inf

σ0≤s≤σδ
Γx−δ,0,CL

s

)−1
χσ0≤τ

σ0<T

,

ξlo,−δ := hx(Xx−δ,0,CL

T )Γx−δ,0,CL

T χσ0∧τ=T + aLτ Γx−δ,0,CL

τ χτ<σ0

τ<T

+
(

min
σ0≤s≤σδ

aUs
)(

inf
σ0≤s≤σδ

Γx−δ,0,CL

s

)2(
sup

σ0≤s≤σδ

Γx,0,CL

s

)−1
χσδ≤τ

σδ<T

,

gup,−δ(t, y, z) :=
(
gx(t,X�

t , Y
�
t )Γx,0,CL

t + gy(t,X
�
t , Y

�
t )χy≥0χA+

g,−δ
· y

+ L
(

max
σ0≤s≤σδ∧t

aUs
)
CU,−δ

t

)
χt≤σδ∧τ + gz(t) · zχt≤τ ,

glo,−δ(t, y, z) := gx(t,X−δ
t , Y �

t )Γx−δ,0,CL

t χt≤σ0∧τ

+
(
gy(t,X

−δ
t , Y −δ

t )χy≥0χA−
g,−δ

· y

− L
(

max
σ0≤s≤σδ∧t

aUs
)
CU,−δ

t

)
χt≤σδ∧τ + gz(t) · zχt≤τ ,

Cup,−δ
t := Clo,−δ

t := (0, 0).
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Here A+
g,−δ and A−

g,−δ are defined as

A+
g,−δ := {t ≤ σ0 ∧ τ} ∪ {gy(t,X�

t , Y
�
t ) ≥ 0},

A−
g,−δ := {t ≤ σ0 ∧ τ} ∪ {gy(t,X−δ

t , Y −δ
t ) ≤ 0}.

We use the convention supσ0≤s≤σδ∧t a
U
s = 0 for t < σ0. L denotes a Lipschitz constant

for g.
The limiting process R̂ is defined as the state process of a BSDE with data

ξ̂ := hx(Xx,0,CL

T )Γx,0,CL

T χσ0∧τ=T + aLτ Γx,0,CL

τ χτ<σ0

τ<T

+ aUσ0Γ
x,0,CL

σ0 χσ0≤τ
σ0<T

,

ĝ(t, y, z) :=
(
gx(t,X�

t , Y
�
t )Γx,0,CL

t + gy(t,X
�
t , Y

�
t )χy≥0 · y

)
χt≤σ0∧τ

+ gz(t) · zχt≤τ

and control zero. Its property as limit of the difference quotient is the subject of the
following lemma, which is the analogue to Lemma 3.6. The proof is straightforward.

Lemma 3.13. Assume that (2.8) and (3.15) hold. The processes R̂up,−δ, Ŷ −δ,
R̂lo,−δ satisfy

R̂lo,−δ
t ≤ Ŷ −δ

t ≤ R̂up,−δ
t ∀t ∈ ı̄ P -a.s.(3.29)

Further, R̂up,−δ
t decreases and R̂lo,−δ

t increases as δ ↘ 0 to the same limiting process
R̂ defined above, in L2

F(0, T ; R) and for all t ∈ ı̄ P -a.s.
We now can formulate the estimate in terms of the Dynkin game 1.2.
Lemma 3.14. Assume that (2.8) and (3.15) hold. Then

lim
δ↘0

1

δ

(
Y �
t − Y −δ

t

)
≥ Rx

t (σ0, τ)(3.30)

holds P -a.s. for all t ≤ σ0 ∧ τ .
Proof. By Lemma 3.13 it suffices to prove

R̂t ≥ Rx
t (σ0, τ) P -a.s. for t ≤ σ0 ∧ τ .

This follows from the comparison theorem (Theorem 2.7), if the data satisfy ĝ(t, y, z) ≥
gR(t, y, z) and ξ̂ ≥ ξR. But this is a consequence of the convexity assumptions. Es-

pecially observe that Γx,0,CL ≥ Γx,0,0 holds for the deflator processes, as b is convex

and Xx,0,CL ≥ Xx,0,0.
We now conclude this discussion with the following lemma.
Lemma 3.15. Assume that (2.8) and (3.15) hold and that there exists an optimal

control (CU , CL) for the control problem 1.1 in x. Let V (x) be its value. Then the
lower left Dini derivative of V with respect to the initial condition satisfies

Δ−V (x) ≥ u+(x).

Proof. By the optimality of (CU ,−CL) in x and Lemma 3.7 we have

lim inf
δ↘0

1

δ

(
V (x) − V (x− δ)

)
≥ lim inf

δ↘0

1

δ

(
Y �

0 − Y −δ
0

)
≥ Rx

0(σ0, τ).

As τ ∈ T is arbitrary this gives

Δ−V (x) ≥ ess sup
τ∈T

Rx
0(σ0, τ) ≥ u+(x) P -a.s(3.31)
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3.4. Proof of Theorem 1.3. By Lemma 3.15, the definitions in (1.5), Lemma
3.8, and Theorem 2.10 we have the relations

Δ+V (x) ≤ u−(x) ≤ u+(x) ≤ Δ−V (x) ≤ Δ+V (x).(3.32)

Consequently, equality holds in (3.32). So V is differentiable at x with partial deriva-
tive equal to the solution of the Isaac’s equation u−(x) = u+(x) = u(x).

Let us suppress dependence on x. By (3.20), (3.31), (3.32), and the Isaac’s equa-
tion

ess inf
σ∈T

R0(σ, τ
0) = ess sup

τ∈T
ess inf
σ∈T

R0(σ, τ)

= u(x) = ess inf
σ∈T

ess sup
τ∈T

R0(σ, τ) = ess sup
τ∈T

R0(σ
0, τ).

Hence (σ0, τ0) is an optimal pair or saddle point for the associated Dynkin game.

4. Extensions. In this section we briefly discuss some variations, such as weaker
assumptions on the data and certain subspaces of controls.

Relaxing requirements on the data. Although the results of Theorem 1.3 are
presented in a fairly general situation, some of the conditions in (2.8) and (3.15)
can be found to be very restrictive. So we note that the removal of global Lipschitz
conditions on the cost data g, h w.r.t. the state X and extension to a stochastic,
possibly infinite time horizon can be achieved through similar localization arguments
as in Boetius and Kohlmann [18]. To ensure validity of comparison theorems and
a priori estimates one may consult, e.g., El Karoui and Quenez [32].

Removing the monotonicity of the cost data in x will be possible in exchange
for stronger assumptions on the forward equation, notably the requirement that b is
affine, and integrability conditions to ensure existence of the cost functionals of the
Dynkin game. In this way quadratic costs can be included in our considerations.

To lift the assumption of Lipschitz continuity for the running cost g w.r.t. y and
z is less easy because then the BSDE may no longer have a solution; see Bender and
Kohlmann [10] or Bender [9] for solvability of BSDE under weak conditions.

Relaxation of convexity assumptions without losing convexity of the value is con-
sidered by Alvarez [2].

Monotone control as limiting case. From Definitions 1.1 and 1.2 we obtain a
monotone control problem and a problem of optimal stopping if we require CL = 0
and τ = T . Let V m and um denote the respective values. The monotone control
problem models an irreversible investment problem, so it is natural to ask whether
this is obtainable as a limit in some sense of partially reversible investment problems.
In fact, when we consider the control problem and Dynkin game under the convex
structure (2.8) and choose aL ≤ 0, we obtain

V m(x) = V (x), um(x) = u(x).

For the control problem this becomes intuitively clear if we recall that the cost data
are increasing in x; thus exercising control CL leads to a worse cost situation in the
running and terminal costs for any future time, and, in addition, we incur the cost
−aLt dCL

t . Thus, letting aL = 0 will allow us to treat the monotone case as a limiting
situation. This is even more obvious in the Dynkin game: if aL ≤ 0, the player seeking
to maximize the cost functional R will never terminate the game, because he would
forego the chance of profiting from the running cost gx and the terminal cost hx.



CONTROL AND DYNKIN GAME 1319

Modifications on the space of controls. Monotone follower problems with finite
fuel, a limitation on the amount of control to be exercised, form a particularly inter-
esting class of control problems. In many situations it is possible to express the value
of the control problem with finite fuel in terms of the value without such additional
condition and the risk with zero control available; see e.g., Chow, Menaldi, and Robin
[20], or Karatzas [43]. The most interesting element is that for the monotone follower
there is no time value of control or additional hysteresis effect, so a control optimal
under a finite fuel restriction does not save resources compared to optimal behavior
without restriction. The reason for this is that the “displacement” caused by a certain
amount of controlling activity is constant over time, and so is its influence on the cost
functional.

This result carries over to the situation of Theorem 1.3 if one considers a general-
ized finite fuel condition defined as follows: Take the starting values from an interval
[a, b] ⊂ R and call controls C ∈ A admissible, or elements of A[a,b], if the controlled

forward process X0,x,C stays in the moving interval [X0,a,0, X0,b,0]. Denoting the
value by V[a,b] it is easy to see that Theorem 1.3 still holds.

The same is true if we consider subclasses of A or A[a,b] whose elements have a
finite partition of monotone control P -a.s., which means that there exists a sequence
of Ft-stopping times (θn)N such that θ0 = 0,

θn
=−→ T, Ct is monotone in [θn−1, θn).

Details can be found in [17] or Boetius and Kohlmann [18].
These modifications are useful when one tries to construct solutions to the par-

tially irreversible investment problem from optimal strategies of small investors. The
latter take the form of optimal stopping or “entry-exit” sequential stopping problems;
see [16] or Baldursson and Karatzas [5]. In the case of monotone control one finds
that the control problem and a family of stopping problems are equivalent. In the
case of bounded variation control this leads to a representation of the Dynkin game
in terms of two closely related entry-exit problems; see [17].

Acknowledgments. I am very much indebted to Michael Kohlmann for many
helpful and constructive discussions and to two unknown referees for their useful and
precise remarks and recommendations that made this paper more readable.
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Abstract. The goal of this paper is to solve an optimal consumption-investment problem in the
context of an incomplete financial market. The model is a generalization of the Black and Scholes
diffusion model, where the coefficients of the diffusion modelling the stock’s price depend on some
stochastic economic factors. Based on the martingale approach, a basic methodology to get the
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1. Introduction. Since the fundamental work of Black and Scholes to value
European options, their model has become a cornerstone in the development and study
of many problems in mathematical finance. In recent years, different generalizations of
this classical model have been studied, trying to model more precisely the dynamics
of the asset prices. In this sense, it is natural to consider a model with stochastic
coefficients (interest rate, return rate, and volatility), depending on economic external
factors. In fact, several contributions show empirical arguments justifying these kinds
of models. For example, Fouque, Papanicolaou, and Sircar [FPS00] present a detailed
analysis when the external factor is a mean reverting Ornstein–Uhlenbeck (O–U)
process, which can be, for instance, a leader interest rate. On the other hand, recently,
Barndorff–Nielsen and Shephard [BaSp02] propose a model for volatility based on the
O–U process with background subordinator (nonnegative Levy process). They also
give a detailed statistical analysis, identifying important volatility effects in the asset
prices: heavy tailed of returns, volatility clustering, and right skewness in some cases.

The relevance of the diffusion models presented in this paper is not limited only
to economical or empirical qualities, they also have proved to be tractable. For ex-
ample, we can find explicit solutions of problems in the context of optimal invest-
ment (Zariphopoulou [Za01]), optimal consumption process (Fleming and Hernández-
Hernández [FlHe02]), and valuation (Davis [Da00]). This feature contrasts with tech-
nical constraints or difficulties in the implementation of other affine approaches. For
instance, in the model proposed by Barndorff–Nielsen and Shephard [BaSp02] their
background subordinator induces a constraint for the trading portfolio proportion,
which should belong to the interval [0, 1] . This fact was mentioned by Benth, Karlsen,
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juato, Gto., C.P. 36000, México (dher@cimat.mx). The research of this author was supported by
Conacyt grant 37643-E.

1322



OPTIMAL CONSUMPTION INVESTMENT IN INCOMPLETE MARKETS 1323

and Reikvam [BKR03] in their study of some investment problems.
The goal of this work is to solve the problem of maximizing the expected utility

of terminal wealth and/or consumption in some finite time interval [0, T ], as well as
to find an optimal trading strategy.

The investor’s financial market is composed of a bank account, a risky asset, and
an economic external correlated factor. The dynamics of the risky asset price and
the external factor are diffusion processes where, as it was already mentioned, this
last one affects the coefficients of the model. On the other hand, since the external
factor is not traded, this problem drops into the family of incomplete markets. We
deal with two particular utility functions: hyperbolic absolute risk aversion (HARA)
and logarithmic. However, since the arguments are similar, most of the effort is
concentrated in solving the optimization problem when the utility function is HARA,
which is also the most complex.

We will use the martingale method to solve this problem, formulating the in-
vestor’s problem as a convex optimization one, referred to as the primal problem. In
this context, the primal problem has an associated dual problem, which turns out to
be an stochastic optimal control problem, where the control processes belong to the
set of equivalent local martingale measures.

The martingale method goes back to the fundamental contribution by Harrison
and Pliska [HaPl81], and it has now become a popular approach to study optimal
terminal wealth and/or consumption problems. This method is particularly power-
ful when the financial market is incomplete. For instance, in Karatzas and Shreve
[KaSr98] and some references therein, a wide class of optimization problems for in-
complete markets are studied using this approach. However, explicit optimal solutions
are not presented in general, except for logarithmic utility or when the coefficients are
deterministic. In Kramkov and Schachermayer [KrSc99] optimal investment problems
for incomplete markets are analyzed when the stock prices are driven by semimartin-
gales, for a wide class of utility functions. In both references, under suitable condi-
tions, some characterizations of the optimization problem are presented. In particular,
they show that there is no duality gap between the primal and dual problems.

We shall solve the investor’s problem using a composition of the martingale
method and stochastic control techniques. With this goal in mind, we pose the pri-
mal and dual problems and state the existence of their solutions, which shall imply
the absence of duality gap. When the utility function is HARA, the solution to the
dual problem relies on stochastic control techniques, while in the logarithmic case the
solution is straightforward.

The paper is organized as follows. In section 2 the model and the investor’s
problem as well as its primal representation is established. Next, in section 3 we
write down the associated dual problem. The martingale method is also explained,
and a practical condition for absence of duality gap is given. Furthermore, a relevant
relationship between optimal solutions of both problems is obtained. Also, we present
the basic steps of the martingale method. Finally, in section 4 closed form solutions,
when the utility function is HARA and logarithmic, are presented.

Throughout the paper all inequalities involving random variables are understood
to be satisfied almost surely.

2. The model and primal problem. In this section the underlying model
of the financial market is introduced, and a stochastic dynamic model for optimal
consumption and investment on a finite horizon is considered.

Let (Ω,FT , P ) be a complete probability space, where a two-dimensional standard
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Brownian motion (BM) {(W1t,W2t) ,Ft}0≤t≤T is defined, with {Ft}0≤t≤T being the

augmentation of the filtration
{
F (W1t,W2t)

t

}
0≤t≤T

. The securities market is modelled

using this BM and involves a risky asset, a bond, and an external economic factor
such that, for 0 ≤ t ≤ T :

1. The bond price process is given by S0
t � exp

∫ t

0
r (Ys) ds, where the interest

rate r (·) is a real function in C2
b (R), where C2

b (R) is the class of C2 (R)
functions which are bounded together with their first and second derivatives.

2. The asset price process St satisfies the stochastic differential equation (SDE)

dSt = St [μ (Yt) dt + σ (Yt) dW1t] , with S0 = 1.(2.1)

It is assumed that the functions μ (·) and σ (·) belong to C2
b (R), with σ (·) ≥

σ0, for some constant σ0 > 0.
3. The dynamics of the external factor Yt is modelled as a diffusion process

solving the SDE

dYt = g (Yt) dt + β (ρdW1t + εdW2t) , with Y0 = y ∈ R,(2.2)

where |ρ| ≤ 1, ε �
√

1 − ρ2, β �= 0, and g (·) belongs to C1 (R), with g′ (·)
bounded.

The parameter ρ is the correlation coefficient between the BM W1 driving the
asset price and the BM from the external factor W̌ � ρW1 + εW2. Except when
ρ = ±1, the securities market is incomplete, since the external factor Y cannot be
traded. Finally, without loss of generality, we fix β = 1.

Let πt be the net amount of capital allocated in the risk asset, and ct the rate at
which capital is consumed at time t. Then, the investor’s wealth process evolves as

dXt = −ctdt +
Xt − πt

S0
t

dS0
t +

πt

St
dSt,

with initial capital X0 = x > 0. Formally, {πt,Ft}0≤t≤T is a trading portfolio

process if it is progressively measurable and
∫ T

0
π2
udu < ∞, whereas {ct,Ft}0≤t≤T

is a consumption process if it is nonnegative and progressively measurable with∫ T

0
ctdt < ∞. Their associated wealth process, denoted by Xπ,c � Xx,y,π,c, is the

solution to the integral equation

Xπ,c
t +

∫ t

0

csds � x +

∫ t

0

[r (Ys)X
π,c
s + [μ (Ys) − r (Ys)]πs] ds +

∫ t

0

πsσ (Ys) dW1s.

We say that a trading strategy (π, c) is admissible if Xπ,c ≥ 0; the set of such
strategies is denoted as A (x, y).

The investor’s problem consists of

maximizing E

{
U1 (Xπ,c

T ) +

∫ T

0

U2 (ct) dt

}
, over (π, c) ∈ A (x, y) ,(2.3)

as well as to find an optimal trading strategy (π̂, ĉ). The utility functions U1, U2 :
R+ → R are differentiable, strictly increasing, and concave. In addition to these
fundamental properties, it is assumed that U ′

i (∞) � limb→∞ U ′
i (b) = 0 and U ′

i (0+) �
limb↓0 U

′
i (b) = ∞, for i = 1, 2.
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The solution of this optimization problem will be obtained using the martingale
approach (see [HaPl81]), and the first step in this direction will be to characterize the
family A(x, y) and get the primal representation of the investor’s problem (2.3); see
Lemma 2.2 and expression (P) below.

Define the function θ : R → R as

θ (y) � μ (y) − r (y)

σ (y)
, y ∈ R.

Now, denote by M the set of progressively measurable processes {νt,Ft}t∈[0,T ] such

that E
∫ T

0
ν2
udu < ∞ and the local martingale, given by

Zν
t � exp

(
−
∫ t

0

[θ (Yu) dW1u + νudW2u] − 1

2

∫ t

0

[
θ2 (Yu) + ν2

u

]
du

)
,(2.4)

is a martingale for all y ∈ R. Note that all bounded processes belong to M, since
θ (·) is bounded. Then, for each ν ∈ M we can define a probability measure P ν on
(Ω,FT ) as

dP ν � Zν
T dP.(2.5)

Observe that P � P ν � P and Zν
t � dP ν/dP |Ft

, for t ∈ [0, T ] . Under the measure
P ν , the two-dimensional process {(W ν

1t,W
ν
2t) ,Ft}0≤t≤T

W ν
1t � W1t +

∫ t

0

θ (Yu) du and W ν
2t � W2t +

∫ t

0

νudu,(2.6)

is a BM, and the dynamics of the processes Yt and Zt can be written as

dYt = [g (Yt) − ρθ (Yt) − ενt] dt + ρdW ν
1t + εdW ν

2t,(2.7)

dZν
t = Zν

t

([
θ2 (Yt) + ν2

t

]
dt− θ (Yt) dW

ν
1t − νtdW

ν
2t

)
.(2.8)

Furthermore, the discounted price and wealth processes satisfy

d

[
St

S0
t

]
=

St

S0
t

σ (Yt) dW
ν
1t,(2.9)

d

[
Xπ,c

t

S0
t

]
+

ct
S0
t

dt =
πt

S0
t

σ (Yt) dW
ν
1t, (π, c) ∈ A (x, y) .(2.10)

Remark 2.1. The above displayed equations imply the following:
(i) The process St/S

0
t is a continuous P ν-martingale, since σ (·) is bounded.

Hence, M ⊂ P � {Q : P � Q � P and S/S0 is a Q-local martingale for all y ∈ R
}
,

in the sense that P ν ∈ P for each ν ∈ M.
(ii) The discounted process Xπ,c

t /S0
t +

∫ t

0

(
cs/S

0
s

)
ds is a nonnegative continuous

P ν-local martingale and, by Fatou’s lemma, is also a P ν-supermartingale.
The following lemma allows us to characterize the set of admissible trading strate-

gies A(x, y), and it will be useful to write down the primal problem. It is analogous to
Theorem 1 in [Cu97] and Theorem 5.6.2 in [KaSr98], and even though it is a known
result its proof is crucial to put into firm ground the main contributions of this paper.
Some parts of the proof are quoted from the above references. Condition (2.11) below
is referred hereafter as the budget constraint.
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Lemma 2.2. Let B be a nonnegative FT -measurable random variable and ct a
consumption rate process such that

sup
ν∈M

Eν

{
B

S0
T

+

∫ T

0

ct
S0
t

dt

}
≤ x.(2.11)

Then, there exists a trading portfolio π such that (π, c) ∈ A (x, y) and Xπ,c
T ≥ B.

Conversely, if (π, c) ∈ A(x, y), then B � Xπ,c
T satisfies the budget constraint (2.11).

Proof. The last part of the lemma is straightforward, since, from Remark 2.1,
when π ∈ A (x, y) and ν ∈ M the discounted process Xπ,c

t /S0
t +

∫ t

0

(
cs/S

0
s

)
ds is a

P ν-supermartingale. Hence

Eν

[
Xπ,c

T

S0
T

+

∫ T

0

ct
S0
t

dt

]
≤ EνXπ,c

0 = x,

and, since ν was chosen arbitrarily, the budget constraint (2.11) follows.
Now, to establish the first part, we define the following discounted process:

X̌t

S0
t

� ess supν∈MEν

[
B

S0
T

+

∫ T

t

cu
S0
u

du | Ft

]
, t ∈ [0, T ] .(2.12)

Note that, by hypothesis,

X̌0 = sup
ν∈M

Eν

{
B

S0
T

+

∫ T

0

ct
S0
t

dt

}
≤ x and X̌T ≡ B.(2.13)

It will be shown that the process X̌ induces an admissible trading strategy (π, c) such
that Xπ,c

T ≥ B. First, it will be verified that X̌ satisfies the dynamic programming
equation (DPE)

X̌s

S0
s

= ess sup
ν∈M

Eν

[
X̌t

S0
t

+

∫ t

s

cu
S0
u

du | Fs

]
, 0 ≤ s ≤ t ≤ T.(2.14)

From the definition of X̌t it follows that

Eν

[
B

S0
T

+

∫ T

t

cu
S0
u

du | Fs

]
= Eν

[
Eν

(
B

S0
T

+

∫ T

t

cu
S0
u

du | Ft

)
| Fs

]
≤ Eν

[
X̌t

S0
t

| Fs

]
,

and then

X̌s

S0
s

= ess sup
ν∈M

Eν

[
B

S0
T

+

∫ T

s

cu
S0
u

du | Fs

]

= ess sup
ν∈M

Eν

[
B

S0
T

+

∫ T

t

cu
S0
u

du +

∫ t

s

cu
S0
u

du | Fs

]

≤ ess sup
ν∈M

Eν

[
X̌t

S0
t

+

∫ t

s

cu
S0
u

du | Fs

]
.
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Next, the reverse inequality shall be verified, namely

X̌s

S0
s

≥ Eν

[
X̌t

S0
t

+

∫ t

s

cu
S0
u

du | Fs

]
, for each ν ∈ M.(2.15)

Given ν ∈ M and t ∈ [0, T ] fixed, define Mν (t) � {η ∈ M : η ≡ ν in [0, t]} and

Jη
t � Eη

[
B

S0
T

+

∫ T

t

cu
S0
u

du | Ft

]
= E

[
Zη
T

Zη
t

(
B

S0
T

+

∫ T

t

cu
S0
u

du

)
| Ft

]
, η ∈ Mν (t) .

The second equality in the last expression is due to Bayes’ formula for conditional ex-
pectations; see III.3.9 in [JaSh87] or Lemma 3.5.3 in [KaSr91]. On the other hand, note
that Zη

T /Z
η
t depends only on the values of ν in [t, T ]. Then, X̌t/S

0
t = supη∈Mν(t) J

η
t .

In fact,

X̌t

S0
t

= lim
n→∞

Jηn

t ,(2.16)

for some increasing sequence {Jηn

t }n≥1 , with ηn ∈ Mν (t). This is true since the set

{Jη
t }η∈Mν(t) is a closed family by pair maximization (see Theorem A.3 in [KaSr98]).

From (2.16) and the conditional monotone convergence theorem, inequality (2.15)
holds if for all n ≥ 1

X̌s

S0
s

≥ Eν

[
Jηn

t +

∫ t

s

cu
S0
u

du | Fs

]
.

This inequality is established observing that

X̌s

S0
s

≥ Eηn

[
B

S0
T

+

∫ T

s

cu
S0
u

du | Fs

]
= Eηn

[
B

S0
T

+

∫ t

s

cu
S0
u

du +

∫ T

t

cu
S0
u

du | Fs

]

= Eηn

[
Eηn

(
B

S0
T

+

∫ T

t

cu
S0
u

du | Ft

)
+

∫ t

s

cu
S0
u

du | Fs

]

= Eν

[
Jηn

t +

∫ t

s

cu
S0
u

du | Fs

]
.

Now, from the DPE (2.14), it follows that the process X̌·/S
0
· +

∫ ·
0

(
ct/S

0
t

)
dt is

a P ν-supermartingale with a right continuous with left limits (RCLL) modification,
for each ν ∈ M. Using the Doob–Meyer supermartingale decomposition theorem and
the local martingale representation theorem, this process can be written as

X̌t

S0
t

+

∫ t

0

cs
S0
s

ds =: X̌0 +

∫ t

0

(ψν
1sdW

ν
1s + ψν

2sdW
ν
2s) −Aν

t ,(2.17)

where ψν
1 , ψν

2 , are progressively measurable processes with
∫ T

0
([ψν

1s]
2
+[ψν

2s]
2
)ds < ∞,

and Aν is a predictable integrable increasing process with Aν
0 ≡ 0; see Theorem 3.3.9

in [LiSh01] and Problem 3.4.16 in [KaSr91]. Thus, denoting by 0 the null process
ν ≡ 0, and using (2.17), the following identity holds:∫ t

0

(ψν
1sdW

ν
1s + ψν

2sdW
ν
2s) −Aν

t =

∫ t

0

(
ψ0

1sdW
0
1s + ψ0

2sdW
0
2s

)
−A0

t .
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According to expression (2.6), we obtain that

0 =

∫ t

0

[(
ψν

1s − ψ0
1s

)
dW1s +

(
ψν

2s − ψ0
2s

)
dW2s

]
+ A0

t −Aν
t

+

∫ t

0

[(
ψν

1s − ψ0
1s

)
θ (Ys) + ψν

2sνs
]
ds.

This equation has the form L + V + φ ≡ 0, where L is a continuous P -local mart-
ingale, V is a predictable finite variation process, and φ is a continuous process with
zero quadratic variation, such that L0 = V0 = φ0 = 0. The above suggests that all
those terms should be the zero process. In fact, from Proposition I.4.49.d in [JaSh87],
the covariation 〈L, V 〉 is identically zero. Thus, 0 = 〈φ, φ〉 = 〈L + V,L + V 〉 =
〈L〉 + 〈V 〉 + 2 〈L, V 〉 . Hence 〈L〉 = 〈V 〉 = 0, i.e.,

ψν
1 ≡ ψ0

1 , ψν
2 ≡ ψ0

2 , and Aν
· ≡ A0

· +

∫ ·

0

ψ0
2sνsds ≥ 0, ν ∈ M.

This, together with the fact that
{∫ t

0
ψ0

2sds < 0
}
∪
{∫ t

0
ψ0

2sds > 0
}

is a null event,

implies that Aν
t = A0

t for t ∈ [0, T ]. Hence

ψ � ψ0
1 ≡ ψν

1 , ψν
2 ≡ 0, and Aν ≡ A0, ν ∈ M.

Thus, (2.17) can be written as

X̌t

S0
t

+

∫ t

0

cs
S0
s

ds = X̌0 +

∫ t

0

ψsdW
ν
1s −A0

t , ν ∈ M.(2.18)

Now, assume for a moment that the budget constraint (2.11) holds with equality

X̌0 = sup
ν∈M

Eν

{
B

S0
T

+

∫ T

0

ct
S0
t

dt

}
= x.(2.19)

Next, define the trading portfolio πt � S0
t ψt/σ (Yt) , for t ∈ [0, T ] . Then, using (2.10),

(2.18), and (2.19), it follows that Xx,y,π,c satisfies

Xx,y,π,c
t

S0
t

= x−
∫ t

0

cs
S0
s

ds +

∫ t

0

πs

S0
s

σ (Ys) dW
ν
1s = x−

∫ t

0

cs
S0
s

ds +

∫ t

0

ψsdW
ν
1s

=
X̌t

S0
t

+ A0
t ≥ X̌t

S0
t

≥ 0.

In particular, Xx,y,π,c
T ≥ X̌T ≡ B. On the other hand, when X̌0 < x, substituting

X̌0 by x and applying the above arguments to the trading strategy (π, c), but also
investing in the bank account the exceeding initial capital x− X̌0, we get

Xx,y,π,c ≥ XX̌0,y,π,c ≥ 0 and Xx,y,π,c
T ≥ B.

Thanks to Lemma 2.2, the original investor’s problem can be written as a convex
optimization problem, referred to as primal problem, consisting of

maximizing E

{
U1 (B) +

∫ T

0

U2 (ct) dt

}
over (B, c) ∈ B (x, y) ,(P)
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where B (x, y) is the set of pairs (B, c) such that B is a nonnegative FT -measurable
random variable and c is a consumption rate process satisfying the budget constraint
(2.11).

The next theorem suggests the relationship between the trading portfolio π and
the final wealth B. Its proof is based on arguments given in the proof of the previous
lemma. This result is analogous to Theorem 5.8.9 in [KaSr98].

Theorem 2.3. Let c be a consumption rate process and ν̌ ∈ M. Then, the
following statements are equivalent:
(i)

(B, c) ∈ B (x, y) and Eν̌

[
B

S0
T

+

∫ T

0

ct
S0
t

dt

]
= x,

(ii) (π, c) ∈ A (x, y) , Xπ,c
T ≡ B, and Xπ,c/S0 +

∫ ·
0

(
cs/S

0
s

)
ds is a P ν̌-martingale

with representation

Xπ,c
t

S0
t

+

∫ t

0

cs
S0
s

ds = x +

∫ t

0

ψsdW
ν̌
1s, t ∈ [0, T ] ,(2.20)

where ψ is a progressively measurable process with
∫ T

0
ψ2
udu < ∞.

Proof. (i) implies (ii): We shall verify that Xπ,c
t ≡ X̌t, where

πt =
S0
t

σ (Yt)
ψt(2.21)

is the trading portfolio and X̌t is defined in (2.12). From (2.13) and (i), we have

Eν̌

[
X̌T

S0
T

+

∫ T

0

ct
S0
t

dt

]
= Eν̌

[
B

S0
T

+

∫ T

0

ct
S0
t

dt

]
= x = sup

ν∈M
Eν

[
B

S0
T

+

∫ T

0

ct
S0
t

dt

]
= X̌0.

Then X̌·/S
0
· +

∫ ·
0

(
cs/S

0
s

)
ds is a P ν̌-martingale, since it is a P ν̌-supermartingale with

constant mean. Thus, from (2.18), A0 ≡ 0 and Xπ,c ≡ X̌. The rest follows from the
martingale representation theorem.

(ii) implies (i): From Remark 2.1, for each ν ∈ M the discounted process
Xπ,c

· /S0
· +

∫ ·
0

(
cs/S

0
s

)
ds is a P ν-supermartingale; in particular, it is a P ν̌-martingale.

Hence, (B, c) ∈ B (x, y) and Eν̌
[
B/S0

T +
∫ T

0

(
cs/S

0
s

)
ds
]

= x, where B ≡ Xπ,c
T .

Remark 2.4. The following identities will be used later; see [Cu97]. For any
consumption process c, ν ∈ M and t ∈ [0, T ],

Eν

[∫ T

t

cu
S0
u

du | Ft

]
= E

[∫ T

t

Zν
u

Zν
t

cu
S0
u

du | Ft

]
,(2.22)

Eν

∫ T

0

cu
S0
u

du = E

∫ T

0

Zν
u

S0
u

cudu.(2.23)
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3. Dual problem. In this section the dual problem is posed using techniques
from convex optimization, and the relationship between the optimal values of the
primal and dual problems is studied.

The Legendre–Frechel transform Ũi corresponding to the utility function Ui is
defined as

Ũi (z) � max
b≥0

{Ui (b) − zb} , z > 0.(3.1)

From the definition of Ũi (·) and elementary calculus, it follows that, for z > 0,

Ũi (z) =: Ui (Ii (z)) − zIi (z) ,(3.2)

where I (·) is the inverse function of U ′
i (·) . The associated dual functional to the

primal problem (P) is defined, for ν ∈ M and λ ≥ 0, as follows:

L (ν, λ) � L (ν, λ;x, y)

� sup
B≥0,c≥0

{
E

[
U1 (B) +

∫ T

0

U2 (ct) dt

]
− λEν

[
B

S0
T

+

∫ T

0

ct
S0
t

dt

]}
+ λx.

Here the argument “B ≥ 0, c ≥ 0” means that B is a nonnegative FT -measurable
random variable and c is a consumption rate process. We point out that the present
definition is a variant of the classical dual functional given in (8.6.2) in [Lu69]. The
dual problem consists of

minimizing L (ν, λ) , over ν ∈ M and λ > 0.(D)

It is not difficult to verify that the following inequality, relating the optimal values of
the primal and dual problems, holds:

sup
(B,c)∈B(x,y)

E

{
U1 (B) +

∫ T

0

U2 (ct) dt

}
≤ inf

ν∈M,λ>0
L (ν, λ) .(3.3)

When equality holds in (3.3), we say that there is no duality gap. In the next
section we will establish this property for HARA utility functions. On the other hand,
note that using (2.23), (3.1), and (3.2) the dual functional can be written as

L (ν, λ) = E

[
Ũ1

(
λ
Zν
T

S0
T

)
+

∫ T

0

Ũ2

(
λ
Zν
t

S0
t

)
dt

]
+ λx, ν ∈ M, λ > 0.(3.4)

This representation of L (ν, λ) is inspired as a natural extension, from complete to
incomplete markets, of the results presented in section 3.6 in [KaSr98].

The next proposition shows, under suitable conditions, the relationship between
the optimal solutions of the primal (P) and dual (D) problems.

Proposition 3.1. Assume that for some (ν̂, λ̂) ∈ M×R+ the pair (B̂, ĉ), defined
as

B̂ � I1

(
λ̂
Z ν̂
T

S0
T

)
and ĉt � I2

(
λ̂
Z ν̂
t

S0
t

)
, t ∈ [0, T ] ,(3.5)
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belongs to B (x, y) and

Eν̂

[
B̂

S0
T

+

∫ T

0

ĉt
S0
t

dt

]
= x.(3.6)

Then, (B̂, ĉ) is the optimal solution to the primal problem (P ), whereas (ν̂, λ̂) is the
optimal solution to the dual problem (D). In particular, there is no duality gap.

Proof. From (3.4) and (3.2), it follows that

inf
ν∈M,λ>0

L (ν, λ) = inf
ν∈M,λ>0

E

{
Ũ1

(
λ
Zν
T

S0
T

)
+

∫ T

0

Ũ2

(
λ
Zν
t

S0
t

)
dt + λx

}

≤ E

[
Ũ1

(
λ̂
Z ν̂
T

S0
T

)
+

∫ T

0

Ũ2

(
λ̂
Z ν̂
t

S0
t

)
dt

]
+ λ̂x

= E

[
U1(B̂) +

∫ T

0

U2 (ĉt) dt

]
− λ̂E

[
Z ν̂
T

S0
T

B̂

S0
T

+

∫ T

0

Z ν̂
t

S0
t

ĉtdt

]
+ λ̂x

= E

[
U1(B̂) +

∫ T

0

U2 (ĉt) dt

]
− λ̂Eν̂

[
B̂

S0
T

+

∫ T

0

ĉt
S0
t

dt

]
+ λ̂x

= E

[
U1(B̂) +

∫ T

0

U2 (ĉt) dt

]

≤ sup
(B,c)∈B(x,y)

E

{
U1 (B) +

∫ T

0

U2 (ct) dt

}
.

Using (3.3), we conclude that there is no duality gap and, furthermore, (B̂, ĉ) is the

optimal solution to the primal problem (P), whereas (ν̂, λ̂) is the optimal solution to
the dual problem (D).

Remark 3.2. The optimal pair (B̂, ĉ) given in (3.5) is similar to the one given

in (6.3.16) and (6.3.17) in [KaSr98], with λ̂ = Yν̂ (x) and Yν̂ (·) being the inverse
function of Xν̂ (·). An existence result and a characterization of the optimal solution
to the dual problem (D) are also given in section 6.5 in [KaSr98]. However, except
for deterministic coefficients (section 6.6) and logarithmic case (Example 6.7.2), the
optimal process ν̂ is not obtained explicitly.

Remark 3.3. Based on the previous results, the following steps can be formulated
to solve the investor’s problem using the martingale method:

1. Given the utility function U1 (·) and U2 (·), write down the dual problem and

obtain its optimal solution (ν̂, λ̂) ∈ M× R+.
2. Verify that the pair (B̂, ĉ) given by (3.5) belongs to B (x, y) and satisfies (3.6),

and then apply Proposition 3.1 and Theorem 2.3.
3. Finally, from (2.21) and (2.20), the optimal trading portfolio π̂ is obtained.
These steps will be applied successfully for HARA and logarithmic utility func-

tions in the next section.

4. Results for HARA utility function. In this section we solve explicitly
the optimal consumption-investment problem for HARA utility functions U1 (b) =
U2 (b) = 1

γ b
γ with parameter γ �= 0 and γ < 1.

The corresponding Legendre–Frechel transform Ũi : R+ → R is given by Ũ (z) =
U (I (z)) − zI (z) = −zα/α, where I (z) = zα−1 and α � −γ/ (1 − γ). Notice that
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α < 1, α �= 0 and γ = −α/ (1 − α) . Hence, the dual functional (3.4) can be written
as

L (ν, λ) =: λx− 1

α
λαΛν ,(4.1)

where Λν � E
([

Zν
T /S

0
T

]α
+
∫ T

0

[
Zν
t /S

0
t

]α
dt
)
. Fixing ν ∈ M, and using elementary

calculus, the optimal value of the parameter λ can be derived and is given by

λ̂ (ν) = (Λν/x)
1/(1−α)

;

see definition of the dual problem (D). Substituting this value in (4.1), we obtain

L(ν, λ̂ (ν)) =
1

γ
xγΛ1−γ

ν , ν ∈ M.

Depending on the sign of the HARA parameter, 0 < γ < 1 [γ < 0], the dual problem

consisting of minimizing L(ν, λ̂ (ν)) over the set of processes ν in M, is equivalent to

minimize [maximize] J (T, y, ν) � Λν , over ν ∈ M.(4.2)

This is a stochastic control problem, referred to as the auxiliary problem, and will be
solved using dynamic programming techniques as well as analytic arguments. Note
that, in this case, the martingale method reduces the original investor’s problem with
two control variables to only one control process ν ∈ M.

On the other hand, observe that

[Zν
t ]

α
= e

−α
∫ t

0
[θ(Ys)dW1s+νsdW2s]− 1

2α
2
∫ t

0
[θ2(Ys)+ν2

s ]ds− 1
2α(1−α)

∫ t

0
[θ2(Ys)+ν2

s ]ds

= Zα,ν
t e

− 1
2α(1−α)

∫ t

0
[θ2(Ys)+ν2

s ]ds, t ∈ [0, T ] ,(4.3)

with Zα,ν (see (2.4)) given by

Zα,ν
t � exp

(
−α

∫ t

0

[θ (Yu) dW1u + νudW2u] − 1

2
α2

∫ t

0

[
θ2 (Yu) + ν2

u

]
du

)
.

Proceeding as in (2.5) and (2.6), we can define a new measure Pα,ν in FT and a BM
(Wα,ν

1 ,Wα,ν
2 ) , respectively. Under this measure, the dynamics of the external factor

Y evolves as

dYt = [g (Yt) − αρθ (Yt) − αενt] dt + ρdWα,ν
1t + εdWα,ν

2t , with Y0 = y ∈ R.(4.4)

Now, from (4.3) and (2.23), we obtain the following representation for the functional
J(T, y, ν):

J (T, y, ν) = E

[(
Zν
T

S0
T

)α

+

∫ T

0

(
Zν
t

S0
t

)α

dt

]

= Eα,ν

[
e
−α

∫ T

0
[r(Yt)+

1
2 (1−α)(θ2(Yt)+ν2

t )]dt

+

∫ T

0

e
−α

∫ t

0
[r(Ys)+

1
2 (1−α)(θ2(Ys)+ν2

s)]dsdt

]

= Eα,ν

[
e

∫ T

0
q(Yt,νt)dt +

∫ T

0

e

∫ t

0
q(Ys,νs)dsdt

]
, (T, y, ν) ∈ R+ × R ×M,
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where q (y, v) � −α
[
r (y) + 1

2 (1 − α)
(
θ2 (y) + v2

)]
, for (y, v) ∈ R2.

Case γ < 0. The value function associated with the auxiliary problem (4.2) is
defined as

W (T, y) � sup
ν∈M

J (T, y, ν) , (T, y) ∈ R+ × R,(4.5)

with W (0, y) = 1. Some basic properties of the value function will be established
next, in order to solve this optimal control problem.

First, note that, denoting by | · |∞ the supremum norm, the following estimates
hold:

E

[
e
−α

∫ T

0
(|r|∞+ 1

2 (1−α)(|θ|2∞+ν2
u))du +

∫ T

0

e
−α

∫ t

0
(|r|∞+ 1

2 (1−α)(|θ|2∞+ν2
u))dudt

]
(4.6)

≤ J (T, y, ν) ≤ 1 + T,

and they imply that

0 < K1 ≤ W (T, y) ≤ 1 + T,(4.7)

where

K1 � (1 + T ) e−α(|r|∞+ 1
2 (1−α)|θ|2∞)T .(4.8)

Note that the constant K1 does not depend on the initial condition y.
Now, it will be verified that the function W (T, ·) is Lipschitz. Using the fact

that q (y, v) is bounded above, the dominated convergence theorem can be applied to
establish the y-differentiability of J (T, y, ν) (see Theorem 5.5.5 in [Fr75]). In fact,

Jy(T, y, ν)=Eα,ν

[
e

∫ T

0
q(Yt,νt)dt

∫ T

0

qy(Yt, νt)
∂

∂y
Ytdt

+

∫ T

0

e

∫ t

0
q(Ys,νs)ds

∫ t

0

qy(Ys, νs)
∂

∂y
Ysdsdt

]
,

where ∂
∂yYs = exp

(∫ s

0
[g′ (Yu) − αρθ′ (Yu)] du

)
. Furthermore,

∣∣∣∣∣
∫ T

0

qy (Ys, νs)
∂

∂y
Ysds

∣∣∣∣∣ ≤ K2 � α (|r′|∞ + (1 − α) |θ|∞|θ′|∞)Te(|g
′|∞+α|θ′|∞)T ,

which implies that

|Jy (T, y, ν)| ≤ K2 (1 + T ) .

Observe that K2 does not depend on ν and y, and hence W (T, ·) is Lipschitz with
constant K2 (1 + T ) . This estimate together with (4.7) yields that, when Wy is well
defined,

|Wy (T, y)|
W (T, y)

≤ K � K2

K1
(1 + T ) .(4.9)
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The above estimate will be used later in this section.
It is convenient to restrict for a moment the set of control processes to those in M

taking values in [−M,M ] for a fixed constant M > 0. This set will be denoted by MM ,
and the corresponding constrained value function by WM (T, y) . This restriction will
be removed later.

The verification theorem below states that

w (T, y) = WM (T, y) ,

where w (T, y) is the unique smooth function (see Theorem IV.4.3 and Remark IV.4.1
in [FlSo93]) in C1,2

(
R̄+ × R

)
∩ Cp

(
R̄+ × R

)
satisfying the associated Hamilton–

Jacobi–Bellman (HJB) equation:

wT = 1 +
1

2
wyy + (g − αρθ)wy − α

[
r +

1

2
(1 − α) θ2

]
w(4.10)

+α sup
v∈[−M,M ]

{
−εwyv −

1

2
(1 − α)wv2

}
with w (0, y) = 1.

The supremum selector on the r.h.s. of the above equation induces a Markov policy
defined, for (t, y) ∈ [0, T ] × R, as follows:

(4.11)

ν∗ (t, y) � arg max
v∈[−M,M ]

{
−εwy (t, y) v − 1

2
(1 − α)w (t, y) v2

}

=

⎧⎨⎩ − ε

1 − α

wy (t, y)

w (t, y)
, if

ε

1 − α

|wy (t, y)|
w (t, y)

≤ M and w (t, y) �= 0

−M sgn wy (t, y) , otherwise.

Theorem 4.1 (verification). Given T > 0, let w (T, y) be the unique solution to
(4.10). Then,

(i) w (T, y) ≥ J (T, y, ν) , for (T, y) ∈ R̄+ × R and ν ∈ MM ,
(ii) w (T, y) = WM (T, y) = J (T, y, ν̂) , where ν̂ ∈ MM is the Markov policy

given by

ν̂t � ν∗ (T − t, Yt) , t ∈ [0, T ] .(4.12)

In particular, ν̂ is the optimal process for the constrained auxiliary problem associated
with (4.5).

Proof. (i) Given v ∈ [−M,M ] , define the functional Lv as

Lvf � ft +
1

2
fyy + (g − αρθ − αεv) fy, with f ∈ C1,2 ([0, T ] × R) .

In particular, when f (t, y) = w (T − t, y) , we get

[Lv + q (y, v)]w (T − t, y) = −wt +
1

2
wyy + (g − αρθ)wy − α

[
r +

1

2
(1 − α) θ2

]
w

+α

[
−εwyv −

1

2
(1 − α)wv2

]
.

Hence, from (4.10), we have

[Lνt + q (Yt, νt)]w (T − t, Yt) ≤ −1; t ∈ [0, T ] ν ∈ MM .(4.13)
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This inequality together with the Feynman-Kac formula imply, using a change of
variable in the time parameter, that

w(T, y) = Eα,ν

[
e

∫ T

0
q(Yu,νu)du

w (0, YT )

−
∫ T

0

e

∫ t

0
q(Yu,νu)du

[Lνt + q(Yt, νt)]w(T − t, Yt)dt

]

≥ Eα,ν

[
e

∫ T

0
q(Yu,νu)du

+

∫ T

0

e

∫ t

0
q(Yu,νu)du

dt

]
(4.14)

= J (T, y, ν) .

See, for instance, (D.13) in [FlSo93] and Corollary 4.4.5 in [KaSr91].
(ii) Since wy (t, y) is continuous, the Markov policy ν∗ (t, y) defined in (4.11)

is bounded, continuous, and y-locally Lipschitz. Hence, the Markov control process
ν̂ defined in (4.12) belongs to MM and, from the definition of ν∗ (t, y) , for ν � ν̂
inequalities (4.13) and (4.14) become equalities. Therefore, w (T, y) = WM (T, y) =
J (T, y, ν̂) .

Corollary 4.2. Let w (T, y) be the unique solution to (4.10), with M > εK/ (1 − α) .
Then,

w (T, y) = W (T, y) ,

where W (T, y) is the unconstrained value function defined in (4.5), and

ν̂t � ν∗ (T − t, Yt) = − ε

1 − α

Wy (T − t, Yt)

W (T − t, Yt)
, t ∈ [0, T ] ,(4.15)

is the optimal control process. Furthermore, W (T, y) ∈ C1,2
(
R̄+ × R

)
∩C0,1

b

(
R̄+ × R

)
and solves the following partial differential equation (PDE):

WT = 1 +
1

2
Wyy + (g − αρθ)Wy − α

[
r +

1

2
(1 − α) θ2

]
W − 1

2
γε2

W 2
y

W
,(4.16)

with initial data W (0, y) = 1.
Proof. Using (4.9) it follows that, for M > εK/ (1 − α) , we have

ε

1 − α

|Wy(T, y)|
W (T, y)

< M,

and hence w (T, y) = WM (T, y) = W (T, y) . Thus, using (4.12) and (4.11), the
optimal process is given by (4.15). Finally, substituting the Markov policy (4.11) in
the HJB equation (4.10), we obtain (4.16).

Case 0 < γ < 1. In this case the value function associated with the auxiliary
problem (4.2) is defined as

W (T, y) � inf
ν∈M

J (T, y, ν) = inf
ν∈M

Eα,ν

{
e

∫ T

0
q(Yt,νt)dt +

∫ T

0

e

∫ t

0
q(Ys,νs)dsdt

}
.

(4.17)
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As in the previous case, we expect similar conclusions if a suitable bound for the
ratio Wy (T, y) /W (T, y) can be obtained. However, in this case we cannot apply the
dominated convergence theorem to find an estimate of Wy (T, y) independent of M ,
because q (y, v) is not bounded above. Instead, a more involved technique will be
used, exploring qualitative properties of the corresponding HJB equation.

First, note that it is not difficult to prove that W (T, y) is increasing with respect
to T, and also that estimate (4.7) holds in the reverse sense, with K1 given by (4.8),
i.e.,

1 + T ≤ W (T, y) ≤ K1.(4.18)

Now, let us restrict the control processes to the set MM , for some positive con-
stant M > 0. Hence, taking [−M,M ] as the control space, the following verification
theorem holds. Its proof is based on the same arguments used in the case when γ is
negative and will be omitted. In this case, it can also be guaranteed the existence
and uniqueness of w (T, y) ∈ C1,2

(
R̄+ × R

)
∩Cp

(
R̄+ × R

)
, satisfying the associated

HJB equation (4.10), with α < 0.

Theorem 4.3 (verification). Given M > 0, let w (T, y) be the unique solution to
(4.10). Then,

(i) w (T, y) ≤ J (T, y, ν) , for (T, y) ∈ R+ × R and ν ∈ MM ,

(ii) w (T, y) = WM (T, y) = J (T, y, ν̂) , where ν̂ is the Markov control process in
MM given by (4.12), with ν∗ (t, y) as in (4.11). In particular, ν̂ is the optimal control
process for the constrained auxiliary problem related with (4.17).

The following is the main result of this paper.

Theorem 4.4. There exists a constant K̃ > 0 such that for M > εK̃/ (1 − α) ,

w (T, y) = W (T, y)

and ν̂, given by (4.15), is an optimal control process, where W (T, y) is the uncon-
strained value function (4.17). Furthermore, W ∈ C1,2

(
R̄+ × R

)
∩ C0,1

b

(
R̄+ × R

)
and solves the PDE (4.16), with initial data W (0, y) = 1.

Proof. To estimate Wy (T, y) we shall obtain first an upper bound for WM
T (T, y)

and then extract qualitative properties of WM (T, y) from the HJB equation (4.10),
where w (T, y) = WM (T, y). To get such an upper bound for WM

T (T, y), we extend,
and denote by the same symbol, the optimal process ν̂ from the constrained problem
in [0, T ] to the interval [0, T + Δ] , in such a way that it vanishes in (T, T + Δ]; see
(4.12) and (4.11). This extended process belongs to M (T + Δ) , since θ (·) is bounded.
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Therefore,

WM (T + Δ, y)−WM (T, y) ≤ J (T + Δ, y, ν̂) − J (T, y, ν̂)

= Eα,ν̂
T+Δ

[
e

∫ T+Δ

0
q(Yt,ν̂t)dt +

∫ T+Δ

0

e

∫ t

0
q(Ys,ν̂s)dsdt

]

−Eα,ν̂
T

[
e

∫ T

0
q(Yt,ν̂t)dt +

∫ T

0

e

∫ t

0
q(Ys,ν̂s)dsdt

]

= Eα,ν̂
T+Δ

[
e

∫ T

0
q(Yt,ν̂t)dt

(
e

∫ T+Δ

T
q(Yt,0)dt − 1

)
+e

∫ T

0
q(Yt,ν̂t)dt

∫ T+Δ

T

e

∫ t

T
q(Ys,0)dsdt

]

≤ Eα,ν̂
T+Δe

∫ T

0
q(Yt,ν̂t)dt

[
e−α(|r|∞+ 1

2 (1−α)|θ|2∞)Δ − 1

+

∫ T+Δ

T

e
−α

∫ t

T
(|r|∞+ 1

2 (1−α)|θ|2∞)dsdt

]

=

[
eK3Δ − 1 +

∫ Δ

0

eK3tdt

]
Eα,ν̂

T+Δe

∫ T

0
q(Yt,ν̂t)dt.

The last inequality is due to the fact that q (y, 0) ≤ K3 � −α
[
|r|∞ + 1

2 (1 − α) |θ|2∞
]
.

Observe that K3 does not depend on M and y. Then, from the dominated convergence
theorem, we have

0 ≤ WM
T (T, y) ≤ (1 + K3)W

M (T, y) .(4.19)

The next step in the proof shall be to get upper and lower bounds for WM
y (T, y).

This will be done only when y is positive; the same arguments can be adapted when
y is negative. Define

Φ (p) � sup
v∈[−M,M ]

{
−εpv − 1

2
(1 − α) v2

}
, p ∈ R.(4.20)

Then, the HJB equation (4.10) can be written as

WM
T = 1 +

1

2
WM

yy + (g − αρθ)WM
y − α

[
r +

1

2
(1 − α) θ2

]
WM + αWMΦ

(
WM

y

WM

)
.

(4.21)

On the other hand, the mean value theorem and (4.18) enables us to find a
sequence {yn}, with yn ∈ [n, 2n], such that∣∣WM

y (T, yn)
∣∣ =

1

n

∣∣WM (T, 2n) −WM (T, n)
∣∣ ≤ 2

n
K1.

This inequality allows us to reduce the analysis of WM
y to only the critical points

of WM
y (T, ·) , i.e., the points ỹ > 0 where WM

yy (T, ỹ) = 0. We study three different

cases, based on the coefficient of WM
y in the PDE (4.21):
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(a) g (ỹ) − αρθ (ỹ) ≤ −1 and WM
y (T, ỹ) > 0 or g (ỹ) − αρθ (ỹ) ≥ 1 and

WM
y (T, ỹ) < 0,

(b) g (ỹ) − αρθ (ỹ) ≥ −1 and WM
y (T, ỹ) > 0, and

(c) g (ỹ) − αρθ (ỹ) ≤ 1 and WM
y (T, ỹ) < 0.

Case (a): Condition (a) is equivalent to |g (ỹ) − αρθ (ỹ)| ≥ 1 and [g (ỹ) − αρθ (ỹ)]
WM

y (T, ỹ) < 0. Thus, from (4.21), (4.19), and (4.18), we get

0 < − [g (ỹ) − αρθ (ỹ)]WM
y

= −WM
T + 1 − α

[
r (ỹ) +

1

2
(1 − α) θ2 (ỹ)

]
WM + αWMΦ

(
WM

y

WM

)

≤ 1 − α

[
r (ỹ) +

1

2
(1 − α) θ2 (ỹ)

]
WM

≤ 1 + K1K3.

That is,
∣∣(g (ỹ) − αρθ (ỹ))WM

y (T, ỹ)
∣∣ ≤ K̃1 � 1 + K1K3, where K̃1 does not depend

on ỹ and M . Hence ∣∣WM
y (T, ỹ)

∣∣ ≤ K̃1.(4.22)

To study cases (b) and (c) we use the logarithmic transformation V (T, y)
� logWM (T, y) . Noting that WM

T = WMVT , WM
y = WMVy, and WM

yy =

WM
(
V 2
y + Vyy

)
, the PDE (4.21) can be written in terms of V as

1

2
V 2
y + [g − αρθ]Vy +

1

2
Vyy = VT − 1

WM
+ α

[
r +

1

2
(1 − α) θ2

]
− αΦ (Vy) .(4.23)

Note that from (4.19) and (4.20),

VT ≤ 1 + K3 and 0 ≤ −αΦ (Vy) ≤
1

2
γε2V 2

y .

These estimates, together with (4.23), imply that

1

2

(
1 − γε2

)
V 2
y + [g − αρθ]Vy +

1

2
Vyy ≤ (K3 + 1) + α

[
r +

1

2
(1 − α) θ2

]
≤ 1 + 2K3.

Then, V 2
y + 2g̃Vy + 1

1−γε2Vyy ≤ α̃, with α̃ � 2 (1 + 2K3) /
(
1 − γε2

)
> 0 and

g̃ (y) � (g (y) − αρθ (y)) /
(
1 − γε2

)
.

If ỹ > 0 is a critical point of Vy (T, ·), it follows that

V 2
y (T, ỹ) + 2g̃ (ỹ)Vy (T, ỹ) ≤ α̃,

which is equivalent to [Vy (T, ỹ) + g̃ (ỹ)]
2 ≤ α̃ + g̃2 (ỹ) . Thus,

−g̃ (ỹ) −
√
α̃ + g̃2 (ỹ) ≤ Vy (T, ỹ) ≤ −g̃ (ỹ) +

√
α̃ + g̃2 (ỹ).(4.24)

Case (b): When g̃ (ỹ) ≥ −1 and Vy (T, ỹ) > 0. Since the function h̃ (u) � −u +√
α̃ + u2 is bounded when u ≥ −1, then the r.h.s. of (4.24) is bounded. Hence,

0 < Vy (T, ỹ) ≤ K̃2 � 1 +
√

1 + α̃.(4.25)
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Note that the constant K̃2 does not depend on ỹ and M .
Case (c): When g̃ (ỹ) ≤ 1 and Vy (T, ỹ) < 0. Similarly, since the function h̃ (u) �

−u−
√
α̃ + u2 is bounded when u ≤ 1, then the l.h.s. of (4.24) is bounded, and hence

−K̃2 ≤ Vy (T, ỹ) < 0.(4.26)

Putting together (4.22), (4.25), and (4.26), we get

|Vy (T, ỹ)| ≤ K̃ � K̃1 ∨ K̃2,(4.27)

for any positive critical point ỹ of Vy (T, ·) . Now, if M > [ε/ (1 − α)]K̃, using (4.27)
we conclude that

ε

1 − α

∣∣WM
y

∣∣
WM

< M and w (T, y) = WM (T, y) = W (T, y) .

This implies, using (4.12) and (4.11), that the control process ν̂ defined in (4.15) is
optimal. Finally, substituting the Markov policy (4.11) in the HJB equation (4.10)
yields (4.16).

Solution to the investor’s problem. Now we shall obtain explicitly an optimal
trading strategy for the investor’s problem when the utility function is HARA. The
main argument is based on a Dynkin’s result, which turns out to be the key idea to
go back from the dual optimization problem solved above to the investor’s one; see
Proposition 5.4.2 in [KaSr98].

The optimal process ν̂ for the associated dual problem is given by (4.15), with
W (T, y) being the smooth solution of the HJB equation (4.16). According to the
steps described at the end of the last section, we consider as candidates for being the
optimal final wealth and consumption process to

B̂ � I

(
λ̂
Z ν̂
T

S0
T

)
=

x

Λν̂

(
Z ν̂
T

S0
T

)α−1

and ĉt � I

(
λ̂
Z ν̂
t

S0
t

)
=

x

Λν̂

(
Z ν̂
t

S0
t

)α−1

, t ∈ [0, T ] ,

where

λ̂ =

(
Λν̂

x

) 1
1−α

and Λν̂ = E

[(
Z ν̂
T

S0
T

)α

+

∫ T

0

(
Z ν̂
t

S0
t

)α

dt

]
= W (T, y) .

To derive the expression of the optimal trading portfolio π̂, we will prove first that
the process defined as

Mt �
(
Z ν̂
t

S0
t

)α

W (T − t, Yt) +

∫ t

0

(
Z ν̂
u

S0
u

)α

du, t ∈ [0, T ] ,

is a martingale, and then find its stochastic integral representation. Note first that
the initial and terminal expectation of this process coincides, i.e., EMT = M0, since

M0 = W (T, y) = Λν̂ and MT =
(
Z ν̂
T /S

0
T

)α
+

∫ T

0

(
Z ν̂
t /S

0
t

)α
dt. Under the original

measure P, we write down the system of SDE in [0, T ],

dYt = g (Yt) dt + ρdW1t + εdW2t, Y0 = y,

d

[
Z ν̂
t

S0
t

]
= −Z ν̂

t

S0
t

[r (Yt) dt + θ (Yt) dW1t + ν̂tdW2t] ,
Z ν̂

0

S0
0

= z = 1.
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This system has associated a differential operator, defined as

Lf � ft + gfy − rzfz − z (ρθ + εν∗) fyz +
1

2
fyy +

1

2
z2

(
θ2 + ν∗2

)
fzz,

for f ∈ C1,2,2 ([0, T ] × R × R+) . In particular, when f (t, y, z) � W (T − t, y) zα, and
using (4.15) and (4.16), it is not difficult to verify that

Lf (t, y, z) = −zα.

Therefore,

Mt = f

(
t, Yt,

Z ν̂
t

S0
t

)
−
∫ t

0

Lf
(
s, Ys,

Z ν̂
s

S0
s

)
ds.

Thus, from Proposition 5.4.2 in [KaSr91], M is a nonnegative local martingale. Fur-
thermore, it is also a martingale since it is a supermartingale with constant mean.

Now define the nonnegative process

X̂t

S0
t

� Eν̂

[
B̂

S0
T

+

∫ T

t

ĉu
S0
u

du | Ft

]
, t ∈ [0, T ] .

From (2.4), we obtain

X̂t

S0
t

= Eν̂

[
B̂

S0
T

+

∫ T

t

ĉu
S0
u

du | Ft

]

=
x

W (T, y)Z ν̂
t

E

[(
Z ν̂
T

S0
T

)α

+

∫ T

t

(
Z ν̂
u

S0
u

)α

du | Ft

]

=
x

W (T, y)Z ν̂
t

E

[
MT −

∫ t

0

(
Z ν̂
u

S0
u

)α

du | Ft

]
= x

[
Z ν̂
t

]α−1

[S0
t ]

α
W (T − t, Yt)

W (T, y)
.

However, by Ito’s formula

d
[
Z ν̂

]α−1
= (1 − α)

[
Z ν̂

]α−1
[(

1 − α

2

) (
θ2 + ν̂2

)
dt + θdW1 + ν̂dW2

]
,

dW =

(
−Wt +

1

2
Wyy + gWy

)
dt + Wy (ρdW1 + εdW2) ,

d
[
S0

]−α
= −αr

[
S0

]−α
dt.

Here W represents the process W (T − t, Yt) , for t ∈ [0, T ] . Then, using (4.15) and
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(4.16), we get

d

([
Z ν̂

]α−1

[S0]
α W

)
=

[
Z ν̂

]α−1

[S0]
α

(
−αrWdt + (1 − α)W

[(
1 − α

2

) (
θ2 + ν̂2

)
dt + θdW1 + ν̂dW2

]
+

[
−Wt +

1

2
Wyy + gWy

]
dt

+Wy (ρdW1 + εdW2) + (1 − α) (ρθ + εν̂)Wydt)

=

[
Z ν̂

]α−1

[S0]
α

(
−dt + W

[
(1 − α) θ + ρ

Wy

W

]
[θdt + dW1]

)
=

[
Z ν̂

]α−1

[S0]
α

(
−dt + W

[
(1 − α) θ + ρ

Wy

W

]
dW ν̂

1

)
.

Thus,

d
X̂

S0
+

ĉ

S0
dt =

x

W (T, y)
d

([
Z ν̂

]α−1

[S0]
α W

)
+

x

W (T, y)

(
Z ν̂

S0

)α−1
1

S0
dt

=
x

W (T, y)

[
Z ν̂

]α−1

[S0]
α W

[
(1 − α) θ + ρ

Wy

W

]
dW ν̂

1

= :
π̂

S0
σdW ν̂

1 ,

where

π̂t � X̂t

σ (Yt)

[
(1 − α) θ (Yt) + ρ

Wy (T − t, Yt)

W (T − t, Yt)

]
=: π∗(T − t, X̂t, Yt),

with

π∗ (t, x, y) � x

σ (y)

[
(1 − α) θ (y) + ρ

Wy (t, y)

W (t, y)

]
, (t, x, y) ∈ [0, T ] × R+ × R.

Moreover, the optimal consumption process ĉ can be written in a feedback form as

ĉt =
x

Λν̂

(
Z ν̂
t

S0
t

)α−1

= x

(
Z ν̂
t

S0
t

)α−1
W (T − t, Yt)

W (T, y)

1

W (T − t, Yt)

= : c∗
(
T − t, X̂t, Yt

)
,

with

c∗ (t, x, y) � x

W (t, y)
, (t, x, y) ∈ [0, T ] × R+ × R.

From the formula of X̂ together with (2.10), we conclude that (π̂, ĉ) ∈ A (x, y) and

X π̂,ĉ ≡ X̂. Moreover, X π̂,ĉ
T ≡ B̂ is the optimal terminal wealth.

The optimal investment and consumption policies obtained above depend on the
solution of the PDE (4.16). Performing a power transformation, it is possible to
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get a functional representation, which might be useful to approximate its solution
through a fixed point algorithm. Suppose that W (T, y) =: [h (T, y)]

δ
, for some δ > 0.

Then, WT = δhδ−1hT , Wy = δhδ−1hy, W
2
y /W = δ2hδ−2h2

y, and Wyy = δhδ−1hyy +

δ (δ − 1)hδ−2h2
y. Using (4.16), it follows that h (T, y) solves the PDE

hT =
1

δ
h1−δ +

1

2
hyy + (g − αρθ)hy −

α

δ

[
r +

1

2
(1 − α) θ2

]
h +

1

2

(
δ − 1 − γδε2

) h2
y

h
,

with initial condition h (0, y) = 1. However, observe that when δ � 1/
(
1 − γε2

)
the

last nonlinear term in the previous PDE vanishes. Hence, for this value of δ, the PDE
(4.16) is equivalent to

hT =
1

δ
h1−δ +

1

2
hyy + (g − αρθ)hy −

α

δ

[
r +

1

2
(1 − α) θ2

]
h, with h (0, y) = 1.

(4.28)

The previous power transformation was introduced by Zariphopoulou in [Za01] for an
optimal investment problem.

On the other hand, since the function h (T, y) belongs to the set of functions
C1,2

(
R̄+ × R

)
∩ C0,1

b

(
R̄+ × R

)
, the Feynman–Kac formula can be used to get the

following representation:

h (T, y) = E

(
e
−α

δ

∫ T

0
[r(Y̌u)+ 1

2 (1−α)θ2(Y̌u)]du(4.29)

+
1

δ

∫ T

0

h1−δ
(
T − u, Y̌u

)
e
−α

δ

∫ u

0
[r(Y̌s)+

1
2 (1−α)θ2(Y̌s)]dsdu

)
,

for (T, y) ∈ R̄+ × R. Here {Y̌t}t∈[0,T ] is the solution of the SDE

dY̌t =
[
g(Y̌t) − αρθ(Y̌t)

]
dt + dW̌t,(4.30)

with initial condition Y̌0 = y and W̌t being a Brownian motion; see Theorem 5.7.6
and Corollary 4.4.5 in [KaSr91].

Remark 4.5 (logarithmic utility). Analogous results can be derived when U1 (b) =
U1 (b) = log b. In this case, the dual optimization problem is equivalent to

minimize E

{∫ T

0

ν2
t dt +

∫ T

0

∫ t

0

ν2
sdsdt

}
over ν ∈ M.

The optimal solution can be easily obtained and is given by (ν̂, λ̂) ≡ (0, (1 + T ) /x) .

Further, the optimal trading strategy (π̂, ĉ) is given by π̂t = π∗(t,X π̂,ĉ
t , Yt) and ĉt =

c∗(t,X π̂,ĉ
t , Yt), where

π∗ (t, x, y) � x
μ (y) − r (y)

σ2 (y)
and c∗ (t, x, y) � x

1 + T − t
,

for (t, x, y) ∈ [0, T ] × R+ × R.
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Remark 4.6 (investment or consumption). Modifying slightly the above argu-
ments it is also possible to get explicit optimal solutions for optimal investment or
consumption problems. The optimal investment problem is defined as the investor’s
problem (2.3) with U2(·) = 0, whereas when U1(·) = 0 it corresponds to the optimal
consumption problem. These results are summarized below.

1. Investment problem with logarithmic utility function. The dual functional is

L (ν, λ) = E

∫ T

0

r (Yu) du− 1 + λx− log λ− E logZν
T ,

whereas the optimal values for both the dual and primal problems are, respectively,
λ̂ = 1/x, ν̂ = 0,

X π̂
t = x

S0
t

Z0
t

, and π̂t =
μ (Yt) − r (Yt)

σ2 (Yt)
X π̂

t , t ∈ [0, T ] .

2. Investment problem with HARA utility function. The dual functional is

L (ν, λ) = λx− 1

α
λαΛν ,

where Λν � E
(
Zν
T /S

0
T

)α
; the optimal control process ν̂ is given by (4.15). Here the

corresponding value function W (T, y) is the solution of the PDE

WT =
1

2
Wyy + (g − αρθ)Wy − α

[
r +

1

2
(1 − α) θ2

]
W − 1

2
γε2

W 2
y

W
,

with W (0, y) = 1. The optimal wealth and trading portfolio processes are

X π̂
t = x

(
S0
t

Z0
t

)α
W (T − t, Yt)

W (T, y)
, π̂t = π∗ (T − t,X π̂

t , Yt

)
, t ∈ [0, T ] ,

where π∗ (t, x, y) = (x/σ (y)) [(1 − α) θ (y) + ρWy (t, y) /W (t, y)]; for details see
[CaHe03].

3. Consumption problem with logarithmic utility function. The dual functional
is

L (ν, λ) = E

∫ T

0

∫ t

0

r (Yu) dudt + λx− T (1 + log λ) − E

∫ T

0

logZν
t dt,

and the optimal values are λ̂ = T/x, ν̂ = 0. Furthermore,

X π̂,ĉ
t = x

T − t

T

S0
t

Z0
t

, π̂t =
μ (Yt) − r (Yt)

σ2 (Yt)
X π̂,ĉ

t , and ĉt =
1

T − t
X π̂,ĉ

t , t ∈ [0, T ] .

4. Consumption problem with HARA utility function. The dual functional is

L (ν, λ) = λx− 1

α
λαΛν , where Λν � E

∫ T

0

(
Z ν̂
t

S0
t

)α

dt.
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The optimal solution to the dual problem is the process ν̂ given by (4.15), where the
corresponding value function W (T, y) solves the PDE

WT = 1 +
1

2
Wyy + (g − αρθ)Wy − α

[
r +

1

2
(1 − α) θ2

]
W − 1

2
γε2

W 2
y

W
,

with W (0, y) = 0. The optimal processes are

X π̂,ĉ
t = x

(
S0
t

Z0
t

)α
W (T − t, Yt)

W (T, y)
, π̂t = π∗(T − t,X π̂,ĉ

t , Yt),

and ĉt = c∗(T − t,X π̂,ĉ
t , Yt),

where π∗ (t, x, y) � (x/σ (y)) [(1 − α) θ (y) + ρWy (t, y) /W (t, y)] and c∗ (t, x, y) �
x/W (t, y) .
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GENERALIZED SAMPLED-DATA STABILIZATION OF
WELL-POSED LINEAR INFINITE-DIMENSIONAL SYSTEMS∗

HARTMUT LOGEMANN† , RICHARD REBARBER‡ , AND STUART TOWNLEY§

Abstract. We consider well-posed linear infinite-dimensional systems, the outputs of which are
sampled in a generalized sense using a suitable weighting function. Under certain natural assump-
tions on the system, the weighting function, and the sampling period, we show that there exists
a generalized hold function such that unity sampled-data feedback renders the closed-loop system
exponentially stable (in the state-space sense) as well as L2-stable (in the input-output sense). To
illustrate our main result, we describe an application to a structurally damped Euler–Bernoulli beam.

Key words. generalized hold, generalized sampling, infinite-dimensional systems, sampled-data
control, stabilization

AMS subject classifications. 34G10, 47D06, 93C25, 93C57, 93D15

DOI. 10.1137/S0363012903434340

1. Introduction. The design of sampled-data controllers is important both for
applications, because of digital implementation issues, and for theoretical develop-
ment. Sampled-data control for infinite-dimensional systems has been considered in
a number of papers; see [12, 13, 14, 15, 18, 19, 30]. In this paper we develop general-
ized sampled-data control for well-posed linear continuous-time infinite-dimensional
systems. Generalized sampled-data control has been frequently studied for finite-
dimensional systems (see, for instance, [2, 10]) and for infinite-dimensional systems in
Tarn et al. [28] and Tarn, Zavgren, and Zeng [29]. A well-posed system Σ has generat-
ing operators (A,B,C), where A is the generator of a strongly continuous semigroup
T = (Tt)t≥0 governing the state evolution of the uncontrolled system, B is the con-
trol operator, and C is the observation operator; see, for example, [5, 23, 25, 27, 31].
Denote by u and y the input and output of Σ. For a given sampling period τ > 0, a
generalized sampled-data feedback control will have the form

u(t) = v(t) −H(t− kτ)yk, t ∈ [kτ, (k + 1)τ), k = 0, 1, 2, . . . .(1.1)

In (1.1), H(·) represents a generalized hold element in the feedback, v(·) denotes an
external input to the closed-loop sampled-data feedback system, and yk is the kth
sample of the output y. In the most general setting, yk is obtained via generalized
sampling (i.e., weighted averaging):

yk :=

∫ τ−δ

0

w(s)y((k − 1)τ + δ + s) ds,
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where δ ∈ (0, τ) and w is a suitable scalar-valued weighting function defined on
[(k− 1)τ + δ, kτ ]. This kind of generalized sampling is natural for well-posed systems
where the output typically is in L2

loc but is not necessarily continuous. The feedback
element H(·) in (1.1) is also referred to as a periodic gain, as in [28, 29] and Chammas
and Leondes [2].

Control objective. Choose a generalized hold function H defined on [0, τ ], such
that the unity sampled-data feedback given by (1.1), when applied to the well-posed
system Σ, yields an exponentially stable closed-loop system.

Our main result is Theorem 4.4. Loosely speaking, Theorem 4.4, part (1), states
that for a given well-posed system Σ, we can choose H to meet the control objective
if

(i) the unstable portion of the spectrum of A consists of at most finitely many
eigenvalues with finite algebraic multiplicities,

(ii) the semigroup generated by the stable part of A is exponentially stable,
(iii) the unstable (finite-dimensional) part of the observed discrete-time system

(C,Tτ ) is observable,

(iv)
∫ τ−δ

0
w(s)eλsds �= 0 for all unstable eigenvalues λ of A,

(v) the unstable subspace of Σ is contained in the closure of its reachable sub-
space.

In Proposition 4.6 we show that conditions (i)–(iv) above are in fact necessary, and
in Remark 4.3 it is noted that condition (iv) is in fact satisfied “generically.” Further-
more, if the semigroup generated by A is analytic, then (v) is also necessary. In [19]
we showed, however, that in general (v) is not necessary for stabilization by ideal-
ized sampling and generalized hold sampled-data control. This necessity issue is also
discussed in [18, 19, 30].

In Theorem 4.4, part (2), we show that the resulting closed-loop system with
external input v is L2-stable in an input-output sense. In part (3) we show that if
the square-integrable input v is such that v̇ is also square-integrable, and if the initial
state satisfies a certain natural smoothness condition, then the output y(t) of the
sampled-data feedback system converges to 0 as t → ∞.

Our main result extends, generalizes, and improves the basic result in [29] in a
number of ways. First, the results in [29] are proved for systems with bounded oper-
ators B and C and then stated without proof for a class of systems with unbounded
B and C satisfying the conditions of the set-up developed in [4]. The unboundedness
in this class of systems is quite limited and allows only a few systems described by
partial differential equations with boundary control and observation. The results in
[29] were further developed in [28] to encompass a class of neutral systems. In our
paper, we work in the context of the theory of well-posed systems, the largest class of
infinite-dimensional systems for which there exists a well-developed state-space and
frequency-domain theory; see, for example, [5, 22, 23, 25, 26, 27, 31, 32]. Well-posed
systems allow for considerable unboundedness of the control and observation oper-
ators B and C, and they encompass many of the most commonly studied partial
differential equations with boundary control and observation and all functional differ-
ential equations of retarded and neutral type with delays in the inputs and outputs.
Second, in contrast to [28, 29], not only do we prove results on exponential stability
but we also obtain results on input-output stability.

The paper is organized as follows: In section 2 we describe in detail various results
relevant to the sampled-data control of well-posed systems. In section 3 we discuss
issues relating to sampled-data feedback stabilization. In section 4 we present our
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main result. In section 5 we illustrate our results by applying them to a structurally
damped Euler–Bernoulli beam.

Notation. N denotes the set of positive integers; N0 := N ∪ {0}; R+ := [0,∞);
for α ∈ R, set Cα := {s ∈ C | Re s > α}; for a real or complex Banach space Z, α ∈ R

and 0 < p ≤ ∞, we define the exponentially weighted spaces Lp
α(R+, Z) := {f ∈

Lp
loc(R+, Z) : f(·) exp(−α ·) ∈ Lp(R+, Z)} and W 1,p

α (R+, Z) := {f ∈ Lp
loc(R+, Z) :

f(·) exp(−α ·) ∈ W 1,p(R+, Z)}; we endow Lp
α(R+, Z) with the norm ‖f‖Lp

α
:=

‖e−α ·f(·)‖Lp ; W 1,p
c ([a, b], Z) denotes the subspace of all functions in W 1,p([a, b], Z)

with support contained in the open interval (a, b); B(Z1, Z2) denotes the space of
bounded linear operators from a Banach space Z1 to a Banach space Z2; we write
B(Z) for B(Z,Z); let A : dom(A) ⊂ Z → Z be a linear operator, where dom(A)
denotes the domain of A; the resolvent set of A and the spectrum of A are denoted by
�(A)and σ(A), respectively; if A ∈ B(Z), then r(A) denotes the spectral radius of A.

2. Preliminaries on well-posed systems. Before developing our main results
for generalized sampled-data control of well-posed linear systems we first need to cover
some basic background material on well-posed linear systems. We cover only those
basic properties we need and some specific results relevant in a context of sampled-
data control. There are a number of equivalent definitions of well-posed systems;
see [5, 22, 23, 25, 26, 27, 31, 32]. We will be brief in the following and refer the
reader to [22, 23] for the original definition of a well-posed system, to [31] for issues
related especially to admissibility, and to [25] for a more comprehensive treatment.
Throughout this section, we will consider a well-posed system Σ with state-space X,
input space Rm, and output space Rp, generating operators (A,B,C), input-output
operator G, and transfer function G. Here X is a real Hilbert space with norm denoted
by ‖ · ‖, A is the generator of a strongly continuous semigroup T = (Tt)t≥0 on X,
B ∈ B(Rm, X−1), and C ∈ B(X1,R

p), where X1 denotes the space dom(A) endowed
with the norm ‖z‖1 := ‖(s0I − A)z‖, while X−1 denotes the completion of X with
respect to the norm ‖z‖−1 = ‖(s0I −A)−1z‖, where s0 ∈ �(A) (different choices of s0

lead to equivalent norms). Clearly, the norm ‖ · ‖1 is equivalent to the graph norm of
A. Moreover, X1 ⊂ X ⊂ X−1 and the canonical injections are bounded and dense.
The semigroup T restricts to a strongly continuous semigroup on X1 and extends
to a strongly continuous semigroup on X−1 with the exponential growth constant
being the same on all three spaces; the generator of the restriction (extension) of
T is a restriction (extension) of A; we shall use the same symbol T (respectively,
A) for the original semigroup (respectively, generator) and the associated restrictions
and extensions: with this convention, we may write A ∈ B(X,X−1) (considered as
a generator on X−1, the domain of A is X). The spectra of A and its extension
coincide. For s0 ∈ �(A), s0I − A, considered as an operator in B(X,X−1), provides
an isometric isomorphism from X to X−1 (we refer the reader to [7] for more details
on the extrapolation space X−1). The operator B is an admissible control operator
for T; i.e., for each t ∈ R+ there exists βt ≥ 0 such that∥∥∥∥∫ t

0

Tt−sBu(s) ds

∥∥∥∥ ≤ βt‖u‖L2([0,t],Rm) ∀u ∈ L2([0, t],Rm).

The operator C is an admissible observation operator for T; i.e., for each t ∈ R+ there
exists γt ≥ 0 such that(∫ t

0

‖CTsz‖2ds

)1/2

≤ γt‖z‖ ∀ z ∈ X1.
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The control operator B is said to be bounded if it is so as a map from the input
space Rm to the state space X; otherwise it is said to be unbounded. The observation
operator C is said to be bounded if it can be extended continuously to X; otherwise
C is said to be unbounded.

The so-called Λ-extension CΛ of C is defined by

CΛz = lim
s→∞, s∈R

Cs(sI −A)−1z,

with dom(CΛ) consisting of all z ∈ X for which the above limit exists. For every
z ∈ X, Ttz ∈ dom(CΛ) for almost all (a.a.) t ∈ R+, and if α > ω(T), then CΛTz ∈
L2
α(R+,R

p), where

ω(T) := lim
t→∞

1

t
ln ‖Tt‖

denotes the exponential growth constant of T. The transfer function G satisfies

1

s− s0
(G(s) − G(s0)) = −C(sI −A)−1(s0I −A)−1B ∀ s, s0 ∈ Cω(T), s �= s0,(2.1)

and for every α > ω(T), G is analytic and bounded on Cα. Moreover, the input-
output operator G : L2

loc(R+,R
m) → L2

loc(R+,R
p) is continuous and right-shift in-

variant; for every α > ω(T), G ∈ B(L2
α(R+,R

m), L2
α(R+,R

p)) and

(L(Gu))(s) = G(s)(L(u))(s) ∀ s ∈ Cα, ∀u ∈ L2
α(R+,R

m),

where L denotes the Laplace transform. It follows from (2.1) that if two well-posed
systems have the same generating operators, then the difference of their transfer
functions is constant: roughly speaking, the generating operators determine the input-
output behavior of a well-posed system up to a constant.

In the following, let s0 ∈ Cω(T) be fixed but arbitrary. For x0 ∈ X and u ∈
L2

loc(R+,R
m), let x and y denote the state and output functions of Σ, respectively,

corresponding to the initial condition x(0) = x0 ∈ X and the input function u. Then

x(t) = Ttx
0 +

∫ t

0
Tt−sBu(s) ds for all t ∈ R+, and y(t) = CΛTtx

0 + (Gu)(t) for a.a.
t ∈ R. Moreover, x(t) − (s0I −A)−1Bu(t) ∈ dom(CΛ) for a.a. t ∈ R+ and

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, for a.a. t ∈ R+,(2.2a)

y(t) = CΛ

(
x(t) − (s0I −A)−1Bu(t)

)
+ G(s0)u(t) for a.a. t ≥ 0.(2.2b)

Of course, the differential equation (2.2a) has to be interpreted in X−1. In the follow-
ing, we identify Σ and (2.2) and refer to (2.2) as a well-posed system. We say that the
well-posed system (2.2) is exponentially stable if ω(T) < 0. If the well-posed system
(2.2) is regular, i.e., the limit

lim
s→∞, s∈R

G(s) = D

exists, then x(t) ∈ dom(CΛ) for a.a. t ∈ R+ and the output equation (2.2b) simplifies
to

y(t) = CΛx(t) + Du(t) for a.a. t ≥ 0.

Moreover, in the regular case, we have that (sI − A)−1BRm ⊂ dom(CΛ) for all
s ∈ �(A) and

G(s) = CΛ(sI −A)−1B + D ∀ s ∈ Cω(T).
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The matrix D ∈ Rp×m is called the feedthrough matrix of (2.2). We mention that if
the control operator B or the observation operator C is bounded, then (2.2) is regular.

The following result relates to the asymptotic behavior of the output y of the well-
posed system (2.2) under the assumption that x0 and u satisfy certain “smoothness”
conditions.

Proposition 2.1. Let α > ω(T), x0 ∈ X, and u ∈ W 1,2
α (R+,R

m). If there
exists t0 ∈ R+ such that Tt0(Ax0 + Bu(0)) ∈ X, then the output y of the well-posed
system (2.2) is continuous on [t0,∞) 1 and satisfies

lim
t→∞

y(t)e−αt = 0.

Proof. Let x0 ∈ X, t0 ∈ R+, and u ∈ W 1,2
α (R+,R

m) be such that Tt0(Ax0 +
Bu(0)) ∈ X. The output y of the well-posed system (2.2) is given by

y(t) = CΛTtx
0 + (Gu)(t) for a.a. t ∈ R+.(2.3)

Let us first assume that α = 0. Then, by hypothesis, 0 = α > ω(T); that is, the
well-posed system (2.2) is exponentially stable. Define a right-shift-invariant operator
F : L2

loc(R+,R
m) → L2

loc(R+,R
p) by setting

(Ff)(t) :=

∫ t

0

((Gf)(ζ) − G(0)f(ζ)) dζ ∀ f ∈ L2
loc(R+,R

m), ∀ t ∈ R+.

The transfer function F of F is given by F(s) = (G(s)−G(0))/s. Clearly, F is analytic
and bounded on C0 and so, F ∈ B(L2(R+,R

m), L2(R+,R
p)). Using that G commutes

with the integration operator (by right-shift invariance), a routine calculation gives

Gu = Fu̇ + G(0)u + G(u(0)θ) − G(0)u(0),

where θ denotes the unit-step function. Setting

y1 := Fu̇ + G(0)u and y2 := CΛTx0 + G(u(0)θ) − G(0)u(0),

it follows from (2.3) that

y(t) = y1(t) + y2(t) for a.a. t ∈ R+.(2.4)

It is clear that y1 is continuous. Since u, u̇ ∈ L2(R+,R
m), we may conclude that

limt→∞ u(t) = 0. Using again that u̇ ∈ L2(R+,R
m), it follows from the boundedness

of F and G that Fu̇ and (d/dt)(Fu̇) are in L2(R+,R
p), showing that limt→∞(Fu̇)(t) =

0. Thus, limt→∞ y1(t) = 0. Taking the Laplace transform of y2 gives

(Ly2)(s) = C(sI −A)−1x0 +
1

s
(G(s) − G(0))u(0) ∀ s ∈ C0.

Invoking (2.1) we obtain that for all s ∈ C0,

(Ly2)(s) = C(sI−A)−1x0+C(sI−A)−1A−1Bu(0) = C(sI−A)−1A−1(Ax0+Bu(0)),

1The output y of the well-posed system (2.2) is an element in L2
loc(R+,Rm), and so, strictly

speaking, y is not a function but an equivalence class of functions coinciding almost everywhere in
R+. We say that y is continuous on [t0,∞) if there exists a representative in the equivalence class
which is continuous on [t0,∞).
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implying that y2(t) = CΛTtA
−1(Ax0+Bu(0)) for a.a. t ∈ R+. Hence, since Tt0(Ax0+

Bu(0)) ∈ X,

y2(t) = CTt−t0A
−1Tt0(Ax0 + Bu(0)) for a.a. t ∈ [t0,∞).(2.5)

Obviously, the right-hand side of (2.5) is continuous on [t0,∞) and converges to 0 as
t → ∞. The claim now follows from (2.4).

Let us now assume that α �= 0. Define the operator Gα : L2
loc(R+,R

m) →
L2

loc(R+,R
p) by setting Gα(u) := e−α ·G(eα ·u). It is trivial that there exists a well-

posed system Σα with generating operators (A−αI,B,C) and input-output operator
Gα (the exponentially weighted version of the well-posed system (2.2)). Since α >
ω(T), it is clear that Σα is exponentially stable. If y is the output of the well-posed
system (2.2), then

y(t)e−αt = CΛTte
−αtx0 + (Gα(e−α ·u))(t) for a.a. t ∈ R+.(2.6)

The right-hand side of (2.6) is the output of the exponentially stable well-posed
system Σα corresponding to the initial value x0 and the control function e−α ·u ∈
W 1,2(R+,R

m). Moreover, since Tt0(Ax0 + Bu(0)) ∈ X,

Tt0e
−αt0

(
(A− αI)x0 + B(e−α ·u)(0)

)
= e−αt0Tt0

(
Ax0 + Bu(0) − αx0

)
∈ X.

Thus, by what we have already proved, it follows that the right-hand side of (2.6),
and hence the function t �→ y(t)e−αt, is continuous on [t0,∞) and converges to 0 as
t → ∞.

We close this section with a simple sufficient condition for a triple of opera-
tors (A,B,C) to be the generating operators of a well-posed system. Here A :
dom(A) ⊂ X → X generates a strongly continuous semigroup T = (Tt)t≥0, and
B ∈ B(Rm, X−1) and C ∈ B(X1,R

p) are admissible control and observation opera-
tors for T, respectively. Assume that the semigroup T is analytic; let s0 ∈ �(A) and
let α ≥ 0. Then the fractional powers (s0I − A)−α and (s0I − A)α are well-defined
(where (s0I − A)0 := I), (s0I − A)α is closed, and (s0I − A)−α ∈ B(X). We endow
the domain of (s0I −A)α with the norm

‖z‖α := ‖(s0I −A)αz‖

and denote the resulting Hilbert space by Xα. Let X−α be the completion of X with
respect to the norm

‖z‖−α := ‖(s0I −A)−αz‖.

It is trivial that X0 = X and (s0I − A)−α ∈ B(X,Xα). If α ∈ (0, 1), then Xα and
X−α can be interpreted as interpolation spaces: between X and X1 in the case of the
former and between X and X−1 in the case of the latter. The operator (s0I − A)α

extends to an operator in B(X,X−α) and similarly, (s0I−A)−α extends to an operator
in B(X−α, X); we shall use the same symbol (s0I − A)α (respectively, (s0I − A)−α)
to denote the extensions.

Proposition 2.2. Assume that the semigroup T generated by A is analytic and
that B ∈ B(Rm, X−1) and C ∈ B(X1,R

p) are admissible control and observation
operators for T, respectively. If there exist α, β ∈ [0, 1] with α + β ≤ 1 and such that
B ∈ B(Rm, X−α) and C ∈ B(Xβ ,R

p), then there exists a regular well-posed system
with generating operators (A,B,C).
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Proof. Fix λ ∈ �(A). It follows from the hypothesis that B̃ := (λI − A)−αB ∈
B(Rm, X) and C̃ = C(λI − A)−β ∈ B(X,Rp). Since α + β ≤ 1, the operator (λI −
A)α+β(sI − A)−1 is in B(X) for all s ∈ �(A). Consequently, the function G defined
by

G(s) := C̃(λI −A)α+β(sI −A)−1B̃

is analytic on �(A). Moreover,

(λI −A)α+β(sI −A)−1 = (λI −A)α+β−1(λI −A)(sI −A)−1

= (λI −A)α+β−1[(λ + s)(sI −A)−1 + I] ∀ s ∈ �(A).(2.7)

Fix γ > ω(T). The fact that A generates an analytic semigroup guarantees the
existence of a constant M > 0 such that ‖(sI − A)−1‖ ≤ M/|s − γ| for all s ∈ Cγ .
Therefore we obtain from (2.7) that the B(X)-valued function s �→ (λI −A)α+β(sI −
A)−1 is bounded on Cγ . Consequently, G is bounded on Cγ . Moreover, since

(sI −A)−1(λI −A)αz = (λI −A)α(sI −A)−1z ∈ X ∀ z ∈ X, ∀ s ∈ �(A)

and

(λI −A)α(λI −A)βz = (λI −A)α+βz ∈ X ∀ z ∈ X1,

an application of the resolvent identity yields for all s, s0 ∈ �(A) with s �= s0

1

s0 − s
(G(s) − G(s0)) = C̃(λI −A)α+β(sI −A)−1(s0I −A)−1B̃

= C(sI −A)−1(s0I −A)−1B.

Invoking a result in [5], we may now conclude that there exists a well-posed system
with generating operators (A,B,C). To show that this system is regular, it suffices
to prove that (s0I − A)−1BRm ⊂ domCΛ for s0 ∈ �(A); see [31]. But this follows
trivially from the identity

C(sI −A)−1(s0I −A)−1B = C̃(λI −A)α+β(s0I −A)−1(sI −A)−1B̃

and the facts that C̃ ∈ B(X,Rp), (λI − A)α+β(s0I − A)−1 ∈ B(X), and B̃ ∈
B(Rm, X).

3. The sampled-data system. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), w ∈
L2([0, τ−δ],R), and v ∈ L2

loc(R+,R
m). We apply the following sampled-data feedback

control law to the well-posed system (2.2):

u(t) =

{
v(t) −H(t− kτ)yk, t ∈ [kτ, kτ + δ)

v(t), t ∈ [kτ + δ, (k + 1)τ)
∀ k ∈ N0, where(3.1a)

y0 := 0 and yk :=

∫ τ−δ

0

w(s)y((k − 1)τ + δ + s) ds ∀ k ∈ N.(3.1b)

The function v represents the input signal of the sampled-data feedback system and
emphasises our input-output as well as state-space point of view.

Remark 3.1. Defining Hτ ∈ L2([0, τ ],Rm×p) by

Hτ (t) :=

{
H(t), t ∈ [0, δ],

0, t ∈ (δ, τ ],
(3.2)
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Fig. 1. Feedback system with generalized sampling S and generalized hold H.

and setting (
H((yk))

)
(t) := Hτ (t− kτ)yk ∀ t ∈ [kτ, (k + 1)τ), ∀ k ∈ N0,

(3.1a) can be written in the form u = v − H((yk)). The operator H represents a
generalized hold operation with hold function Hτ (see, for example, [1]). Similarly,
(3.1b) describes a generalized sampling operation (see [1]). The function w is called
the weighting function of the sampler (3.1b). Note that instantaneous sampling of the
form yk = y(kτ) is in general not possible since typically the output y of a well-posed
system (2.2) need not be continuous. Indeed, the state-space formula (2.2b) for the
output does not hold for all t ∈ R+, but only for a.a. t ∈ R: in particular, it might
not hold at t = kτ for some k ∈ N0.

The sampled-data feedback system obtained by applying the control law (3.1) to
the well-posed system (2.2) is illustrated in Figure 1, where S denotes the generalized
sampling operation given by (3.1b).

It is clear that for given initial state x0 ∈ X and given input function v ∈
L2

loc(R+,R
m), the (unique) state trajectory x(·;x0, v) of the sampled-data feedback

system given by (2.2) and (3.1) can be obtained recursively from (2.2b), (3.1b), and

x(0;x0, v) = x0,(3.3a)

x(kτ + t;x0, v) = Ttx(kτ ;x0, v) +

∫ t

0

Tt−sB(v(kτ + s) −Hτ (s)yk) ds

∀ t ∈ (0, τ ], ∀ k ∈ N0.(3.3b)

Note that x(·;x0, v) is a continuous X-valued function defined on R+. For simplicity,
in the following we shall occasionally use the abbreviation x := x(·;x0, v). We define

xk := x(kτ), xk,δ := x(kτ + δ) ∀ k ∈ N0.

For σ, τ > 0, we define the left-shift/truncation operator Lτ
σ : L2

loc(R+,R
m) →

L2(R+,R
m) by setting

(Lτ
σf)(t) :=

{
f(t + σ), t ∈ [0, τ ],

0, t ∈ (τ,∞).

In the following lemma we establish the basic discrete-time equations (involving xk,
xk,δ, yk, and Lτ

kτ+δv) associated with the sampled-data feedback system given by
(2.2) and (3.1).
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Lemma 3.2. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ − δ],R). We
assume that ∫ τ−δ

0

w(s)Tsz ds ∈ X1 ∀ z ∈ X.(3.4)

Then the following statements hold.
(1) The operator

Lw : X → X1, z �→
∫ τ−δ

0

w(s)Tsz ds(3.5)

is in B(X,X1).
(2) The sequences (xk), (xk,δ), and (yk) satisfy, for all k ∈ N0,

xk+1 = Tτ−δxk,δ +

∫ τ−δ

0

Tτ−δ−sBv(kτ + δ + s) ds,(3.6)

yk+1 = CLwxk,δ + MwLτ
kτ+δv,(3.7)

xk+1,δ = (Tτ + KHCLw)xk,δ + MH,wLτ
kτ+δv,(3.8)

where KH ∈ B(Rp, X), Mw ∈ B(L2(R+,R
m),Rp), and MH,w ∈ B(L2(R+,R

m), X)
are defined by

KHz = −
∫ δ

0

Tδ−sBH(s)z ds ∀ z ∈ Rp,(3.9)

Mwf =

∫ τ−δ

0

w(s)(Gf)(s) ds ∀ f ∈ L2(R+,R
m),(3.10)

MH,wf = KHMwf +

∫ τ

0

Tτ−sBf(s) ds ∀ f ∈ L2(R+,R
m),(3.11)

respectively.
Remark 3.3. It is easy to show, using integration by parts, that (3.4) holds for

any w ∈ L2([0, τ−δ],R) for which there exist a partition 0 = t0 < t1 < · · · < tn = τ−δ
and functions wj ∈ W 1,1([tj−1, tj ],R) such that w(t) = wj(t) for all t ∈ (tj−1, tj) and
all j = 1, 2, . . . , n.

Proof of Lemma 3.2. Statement (1) follows from a routine application of the
closed-graph theorem. To prove statement (2), note first that (3.6) follows immedi-
ately from the variation-of-parameters formula combined with the fact that the control
u given by (3.1a) satisfies

u(t) = v(t) ∀ t ∈ [kτ + δ, (k + 1)τ).(3.12)

To derive (3.7), we use (2.2b) and (3.12) to obtain

y(kτ + δ + s) = CΛ

(
x(kτ + δ + s) − (s0I −A)−1Bv(kτ + δ + s)

)
+ G(s0)v(kτ + δ + s) for a.a. s ∈ [0, τ − δ].(3.13)

It follows from the variation-of-parameters formula that the function x̃ : s �→ x(kτ +
δ + s) is the state trajectory of (2.2) corresponding to the initial condition x̃(0) =
x(kτ + δ) = xk,δ and the control function s �→ v(kτ + δ + s). By (3.13), the function
s �→ y(kτ + δ + s) is the corresponding output, and thus

y(kτ + δ + s) = CΛTsxk,δ + (GLτ
kτ+δv)(s) for a.a. s ∈ [0, τ − δ].
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Combining this with (3.1b) gives

yk+1 =

∫ τ−δ

0

w(s)
(
CΛTsxk,δ + (GLτ

kτ+δv)(s)
)
ds.

A standard argument involving the approximation of xk,δ by elements in X1, the
admissibility of C and the boundedness of the operator Lw (see statement (1)) shows
that ∫ τ−δ

0

w(s)CΛTsxk,δ ds = CLwxk,δ.

Hence, with Mw given by (3.10),

yk+1 = CLwxk,δ + MwLτ
kτ+δv,

which is (3.7). To prove (3.8), note that kτ + δ + s ∈ [(k + 1)τ, (k + 1)τ + δ] for all
s ∈ [τ − δ, τ ] and so, by (3.1a),

u(kτ + δ + s) = v(kτ + δ + s) −H(s + δ − τ)yk+1 ∀ s ∈ [τ − δ, τ ], ∀ k ∈ N0.

Combining this with (3.12), we may conclude that

xk+1,δ = Tτxk,δ +

∫ τ

0

Tτ−sBv(kτ + δ + s) ds−
∫ τ

τ−δ

Tτ−sBH(s + δ − τ)yk+1 ds.

Changing the integration variable s in the second integral to ζ = s + δ − τ gives

xk+1,δ = Tτxk,δ +

∫ τ

0

Tτ−sBv(kτ + δ + s) ds−
∫ δ

0

Tδ−ζBH(ζ)yk+1 dζ

= Tτxk,δ + KHyk+1 +

∫ τ

0

Tτ−sBv(kτ + δ + s) ds ∀ k ∈ N0,

where KH is given by (3.9). Together with (3.7) and (3.11) this yields (3.8).
The sampled-data feedback system given by (2.2) and (3.1) is called exponentially

bounded if there exist constants N ≥ 1 and ν ∈ R such that

‖x(t;x0, 0)‖ ≤ Neνt‖x0‖ ∀ t ∈ R+, ∀x0 ∈ X,(3.14)

where x(t;x0, 0) is given by (3.3) (with v = 0). The number ν is called an exponential
bound of the sampled-data feedback system. Obviously any bounded operator Δ ∈
B(X) satisfies ‖Δk‖ ≤ ‖Δ‖k; i.e., Δ is power bounded. If q > 0 is such that there
exists M ≥ 1 so that

‖Δk‖ ≤ Mqk ∀ k ∈ N0,(3.15)

then q is a power bound for Δ.
Lemma 3.4. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ − δ],R).

Let Lw ∈ B(X,X1) and KH ∈ B(Rp, X) be given by (3.5) and (3.9), respectively, and
assume that (3.4) holds. Furthermore, let ν ∈ R. Then the following statements hold.

(1) If eντ is a power bound for the operator Tτ + KHCLw, then ν ∈ R is an
exponential bound for the sampled-data feedback system given by (2.2) and (3.1).
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(2) Under the additional assumption that T is a group, the converse of statement
(1) holds; that is, if ν ∈ R is an exponential bound for the sampled-data feedback
system given by (2.2) and (3.1), then eντ is a power bound for Tτ + KHCLw.

The lemma shows in particular that the sampled-data feedback system is expo-
nentially bounded. We define the exponential growth ωsd of the sampled-data feedback
system to be the infimum of all ν ∈ R for which there exists N ≥ 1 such that (3.14)
holds. Note that −∞ ≤ ωsd < ∞. If ωsd < 0, then we say that the sampled-data
feedback system is exponentially stable. Similarly, the infimum of all q > 0 for which
there exists M ≥ 1 such that (3.15) holds is called the power growth of Δ. If the power
growth is smaller than 1, we say that Δ is power stable. It follows from Gelfand’s
spectral radius formula

r(Δ) = lim
k→∞

‖Δk‖1/k

that the power growth of Δ coincides with r(Δ). As a consequence, Lemma 3.4 has
the following corollary.

Corollary 3.5. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ − δ],R).
Let Lw ∈ B(X,X1) and KH ∈ B(Rp, X) be given by (3.5) and (3.9), respectively, and
assume that (3.4) holds. Then r(Tτ +KHCLw) ≥ eωsdτ ; under the additional assump-
tion that T is a group, we have r(Tτ + KHCLw) = eωsdτ (we adopt the convention
e−∞τ := 0).

Proof of Lemma 3.4. We define Δ ∈ B(X) by setting

Δ := Tτ + KHCLw.

To prove statement (1), let ν ∈ R and assume that eντ is a power bound for Δ. By
the variation-of-parameter formula we obtain for the state trajectory x(·;x0, 0) of the
sampled-data feedback system

x(kτ + t;x0, 0) = Ttxk −
∫ t

0

Tt−sBHτ (s)yk ds ∀ t ∈ [0, τ), ∀ k ∈ N0,

where Hτ is given by (3.2). Using (3.6) and (3.7), we obtain

x(kτ+t;x0, 0) = Tt+τ−δxk−1,δ−
∫ t

0

Tt−sBHτ (s)CLwxk−1,δ ds ∀ t ∈ [0, τ), ∀ k ∈ N.

Invoking the admissibility of B, (3.8), and the hypothesis, we may conclude that there
exist N1, N2 ≥ 0 such that

‖x(kτ + t;x0, 0)‖ ≤ N1‖xk−1,δ‖ ≤ N2(e
ντ )k−1‖x0,δ‖ ∀ t ∈ [0, τ), ∀ k ∈ N.

Noting that x(t;x0, 0) = Ttx
0 for all t ∈ [0, τ ] and setting

N :=

(
max{ sup

0≤s≤τ
‖Ts‖, N2‖Tδ‖e−ντ}

)
sup

0≤s≤τ
e−νs,

it follows that

‖x(kτ + t;x0, 0)‖ ≤ Neν(kτ+t)‖x0‖ ∀ t ∈ [0, τ), ∀ k ∈ N0.

This holds for all x0 ∈ X, showing that ν is an exponential bound for the sampled-data
feedback system.
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To prove statement (2), assume that T is a group and let ν ∈ R be an exponential
bound for the sampled-data feedback system. Then there exists N ≥ 1 such that
(3.14) holds and therefore

‖xk,δ‖ ≤ Neν(kτ+δ)‖x0‖ = Neνδ(eντ )k‖x0‖ ∀ k ∈ N0.

Since x0,δ = Tδx
0, it follows from (3.8) that xk,δ = ΔkTδx

0. Hence, using the group
property of T, we obtain

‖ΔkTδx
0‖ ≤ N‖T−δ‖eνδ(eντ )k‖Tδx

0‖ ∀ k ∈ N0.

Since this holds for all x0 ∈ X, it follows that eντ is a power bound for Δ.

4. Main result. We first state and prove a technical lemma.
Lemma 4.1. Let S ∈ Rn×n, a > 0, and f ∈ L1([0, a],R). The matrix

∫ a

0
f(t)eSt dt

is invertible if and only if
∫ a

0
f(t)eλt dt �= 0 for all λ ∈ σ(S).

Proof. Using the Jordan form of S, it is easy to show that a complex number μ
is an eigenvalue of the matrix

∫ a

0
f(t)eStdt if and only if μ =

∫ a

0
f(t)eλt dt for some

λ ∈ σ(S).
In the following we shall impose a number of assumptions on the well-posed system

(2.2), the weighting function w, and the sampling constants τ > δ > 0.
A1. There exists β < 0 such that σ(A) ∩ Cβ consists of finitely many isolated

eigenvalues of A with finite algebraic multiplicities.
If A1 holds, then there exists a simple closed curve Γ in the complex plane not
intersecting σ(A), enclosing σ(A) ∩ Cβ in its interior and having σ(A) ∩ (C \ Cβ) in
its exterior. The operator

Π :=
1

2πi

∫
Γ

(sI −A)−1 ds(4.1)

is a projection operator, and we have

X = X+ ⊕X−, where X+ := ΠX, X− := (I − Π)X.(4.2)

It follows from a standard result (see, for example, Lemma 2.5.7 in [6]) that dim X+ <
∞, X+ ⊂ X1, X

+ and X− are Tt-invariant for all t ≥ 0, and

σ(A|X+) = σ(A) ∩ Cβ , σ(A|X−) = σ(A) ∩ (C \ Cβ).

It is useful to introduce the notation

A+ := A|X+ , A− := A|X1∩X− , T+
t := Tt|X+ , T−

t := Tt|X− .(4.3)

Clearly, T+
t is a semigroup on the finite-dimensional space X+ with generator A+,

i.e., T+
t = eA

+t, and T−
t is a strongly continuous semigroup on X− with generator

A−. Since the spectrum of A considered as an operator on X coincides with the
spectrum of A considered as an operator on X−1, the projection operator Π on X
defined in (4.1) extends to a projection on X−1. We will use the same symbol Π
for the original projection and its associated extension. Obviously, the operator A−

extends to an operator in B(X−, (X−1)
−), and the same symbol A− will be used to

denote this extension. The decomposition (4.2) induces decompositions of the control
operator B ∈ B(Rm, X−1) and the observation operator C ∈ B(X1,R

p):

B+ := ΠB, B− := (I − Π)B, C+ := C|X+ , C− := C|X1∩X− .(4.4)
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The following simple lemma will be useful in the proof of Theorem 4.4.
Lemma 4.2. Assume that A1 holds. There exists a well-posed system Σ− with

generating operators (A−, B−, C−) 2 and input-output operator G− := G−G+, where
G+ denotes the input-output operator of the (finite-dimensional) system (A+, B+, C+),

that is, (G+u)(t) =
∫ t

0
C+eA

+(t−s)B+u(s) ds for all t ∈ R+ and all u ∈ L2
loc(R+,R

m).

Moreover, for any x0 ∈ X and u ∈ L2
loc(R+,R

m), the output y of the well-posed
system (2.2) can be written in the form

y(t) = (C−)ΛT−
t (I − Π)x0 + (G−u)(t) + C+Πx(t) for a.a. t ∈ R+,(4.5)

where x(t) = Ttx
0 +

∫ t

0
Tt−sBu(s) ds for all t ∈ R+. The Λ-extension of C− satisfies

(C−)Λz = CΛz ∀ z ∈ dom((C−)Λ) = dom(CΛ) ∩X−.(4.6)

Proof. It is trivial that the Λ-extension of C− satisfies (4.6). The admissibility of
B and C immediately implies that B− and C− are admissible control and observation
operators for T−, respectively. Defining G+(s) := C+(sI−A+)−1B+, it follows from
(2.1) that

1

s− s0
(G(s) − G(s0)) −

1

s− s0
(G+(s) − G+(s0)) =

− C−(sI −A−)−1(s0I −A−)−1B− ∀ s, s0 ∈ Cω(T), s �= s0.

Choosing α > ω(T) and setting G−(s) := G(s) − G+(s) for all s ∈ Cα, it is clear
that G− is analytic and bounded on Cα and G− satisfies

1

s− s0

(
G−(s) − G−(s0)

)
= −C−(sI −A−)−1(s0I −A−)−1B− ∀ s, s0 ∈ Cα, s �= s0.

Invoking a result in [5], we may now conclude that there exists a well-posed system Σ−

with generating operators (A−, B−, C−) and input-output operator G− (or, equiva-
lently, transfer function G−).3 To prove (4.5), let x0 ∈ X and u ∈ L2

loc(R+,R
m) and

note that

ΠTtx
0 ∈ X+ ⊂ X1 ⊂ dom(CΛ) ∀ t ∈ R+

and

(I − Π)Ttx
0 = T−

t (I − Π)x0 ∈ dom(CΛ) ∩X− = dom((C−)Λ) for a.a. t ∈ R+.

Thus, by (4.6), we may write the output y = CΛTx0 + Gu in the form

y = (C−)ΛT−(I − Π)x0 + G−u + C+T+Πx0 + G+u.(4.7)

2For (A−, B−, C−) to be the generating operators of a well-posed system it is of course necessary
that B− maps into (X−)−1 = ((I − Π)X)−1, the extrapolation space associated with A−. Since,
by definition, B− maps into (I − Π)X−1 =: (X−1)−, there seems to be a difficulty. However, it
is clear that the spaces (X−)−1 and (X−1)− are both completions of X− endowed with the norm
‖ · ‖−1. Hence there exists an isometric isomorphism (X−)−1 → (X−1)− whose restriction to X− is
the identity, and so we can safely identify (X−)−1 and (X−1)−.

3Alternatively, the claim that there exists a well-posed system Σ− with generating operators
(A−, B−, C−) and input-output operator G− can be proved by direct verification of the defining
properties of a well-posed system as given in, for example, [25, 27, 31].
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With x given by x(t) = Ttx
0 +

∫ t

0
Tt−sBu(s) ds, it is clear that Πx is the state

trajectory of the finite-dimensional system given by (A+, B+, C+) corresponding to
the initial state Πx0 and the input function u. Therefore, C+T+Πx0 +G+u = C+Πx,
and (4.5) follows from (4.7).

We recall that the linear bounded map

Rt0 : L2([0, t0],R
m) → X, f �→

∫ t0

0

Tt0−sBf(s) ds(4.8)

is called the reachability operator of the well-posed system (2.2) at time t0.
We assume, in addition to A1, that the following conditions are satisfied. Let

t0 > 0 be fixed and assume that τ > δ ≥ t0.
A2. The semigroup T− is exponentially stable; that is, ω(T−) < 0.
A3. The pair (C+,T+

τ ) is observable.
A4. The constants τ and δ and the function w ∈ L2([0, τ − δ],R) are such that

(3.4) holds and ∫ τ−δ

0

w(s)eλs ds �= 0 ∀λ ∈ σ(A+).(4.9)

A5. imRt0 ⊃ X+.
Remark 4.3. Of course, A2 holds if the generator A− satisfies the spectrum-

determined-growth assumption. Trivially, for A5 to hold, it is sufficient that the
well-posed system (2.2) is approximately controllable in time t0. If the function w is
a nonzero constant, then it is clear that (4.9) holds if and only if

(τ − δ)λ �= 2πik ∀λ ∈ σ(A+), ∀ k ∈ Z \ {0}.

The observability condition A3 is implied by observability of the pair (C+, A+) and
the nonpathological sampling assumption

τ(λ− μ) �= 2πik ∀λ, μ ∈ σ(A+), ∀ k ∈ Z \ {0}.(4.10)

We do not want to focus here on the issue of pathological sampling and instead refer
the reader to Proposition 6.2.11 in [24] for more on this. We note that conditions
(4.10) and (4.9) are “generically” satisfied in the following sense: the set of all τ > t0
for which (4.10) holds is open and dense in (t0,∞), and, for given τ > δ ≥ t0, the set
of all w ∈ L2([0, τ − δ],R) for which (4.9) holds is open and dense in L2([0, τ − δ],R).

The control function u generated by the sampled-data control law (3.1) depends
on the initial value x0 ∈ X and the input function v ∈ L2

loc(R+,R
m). We express this

dependence by writing u = u(·;x0, v). It is natural to define the output y(·;x0, v) of
the sampled-data feedback system given by (2.2) and (3.1) to be the output of (2.2)
corresponding to the initial condition x0 and the control u(·;x0, v). We are now in
the position to formulate the main result of this paper.

Theorem 4.4. Assume that A1–A5 are satisfied. For every ε ∈ (0,−ω(T−))
there exists H ∈ L2([0, δ],Rm×p) such that the following statements hold.

(1) The sampled-data feedback system given by (2.2) and (3.1) is exponentially
stable with exponential growth ωsd < ω(T−) + ε < 0.

(2) For every α ∈ [ω(T−) + ε, 0] there exists N ≥ 1 such that

‖y(·;x0, v)‖L2
α
≤ N(‖x0‖ + ‖v‖L2

α
) ∀x0 ∈ X, ∀ v ∈ L2

α(R+,R
m).
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(3) If α ∈ [ω(T−)+ε, 0], x0 ∈ X, and v ∈ W 1,2
α (R+,R

m) and there exists t1 ∈ R+

such that Tt1(Ax0 + Bv(0)) ∈ X, then y(·;x0, v) is continuous on [t1,∞) and

lim
t→∞

y(t;x0, v)e−αt = 0.

Statement (2) shows in particular that there exists H ∈ L2([0, δ],Rm×p) such that
the sampled-data feedback system given by (2.2) and (3.1) is L2

α-input-output stable.

Proof of Theorem 4.4. We define ΔH ∈ B(X) by setting

ΔH := Tτ + KHCLw,(4.11)

where the operators Lw ∈ B(X,X1) and KH ∈ B(Rp, X) are given by (3.5) and (3.9),
respectively. It is convenient to set ω− := ω(T−). Let ε ∈ (0,−ω−).

(1) To prove that for a suitable hold function H, ωsd < ω− + ε, we note that, by
Corollary 3.5, it is sufficient to show the existence of a function H ∈ L2([0, δ],Rm×p)

such that r(ΔH) < e(ω−+ε)τ . Defining the operators

K+
H := ΠKH , K−

H := (I − Π)KH , L±
w := Lw|X± =

∫ τ−δ

0

w(s)T±
s ds,(4.12)

we have K±
H ∈ B(Rp, X±), L+

w ∈ B(X+), and L−
w ∈ B(X−, X1 ∩X−), where X1 ∩X−

is endowed with the norm ‖ · ‖1. The operator ΔH can then be written in the form

ΔH =

(
T+

τ + K+
HC+L+

w K+
HC−L−

w

K−
HC+L+

w T−
τ + K−

HC−L−
w

)
.(4.13)

By A4,
∫ τ−δ

0
w(s)eλs ds �= 0 for all λ ∈ σ(A+) and hence an application of Lemma 4.1

shows that the matrix L+
w =

∫ τ−δ

0
w(s)eA

+s ds is invertible. Since L+
w and T+

τ = eA
+τ

commute, we have that

(C+L+
w , (L

+
w)−1T+

τ L
+
w) = (C+L+

w ,T
+
τ ).(4.14)

Using A3, i.e., observability of the pair (C+,T+
τ ), it follows that the pair (C+L+

w ,T
+
τ )

is observable. Hence, by the pole-placement theorem for finite-dimensional systems,
there exists Q ∈ B(Rp, X+) such that

σ(T+
τ + QC+L+

w) = {0}.(4.15)

Denoting the canonical basis of Rp by (e1, e2, . . . , ep), it follows from the fact that
δ ≥ t0 (see A4) combined with assumption A5 that for every η > 0, there exist
h1, h2, . . . , hp ∈ L2([0, δ],Rm) such that

p∑
j=1

‖Rδhj −Qej‖2 ≤ η2.(4.16)

Setting H := −(h1, h2, . . . , hp) ∈ L2([0, δ],Rm×p), it follows that

Rδhj = KHej ∀ j ∈ {1, 2, . . . , p}.
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Therefore, invoking (4.16), we obtain that for all z = (z1, z2, . . . , zp)
T ∈ Rp,

‖KHz −Qz‖ =

∥∥∥∥∥∥
p∑

j=1

zj(KHej −Qej)

∥∥∥∥∥∥ ≤
p∑

j=1

‖KHej −Qej‖ |zj |

≤

⎛⎝ p∑
j=1

‖KHej −Qej‖2

⎞⎠1/2

‖z‖ ≤ η‖z‖.

Thus, ‖KH −Q‖ ≤ η, and so, since Q maps into X+,

‖K+
H −Q‖ = ‖Π(KH −Q)‖ ≤ ‖Π‖η,(4.17a)

‖K−
H‖ = ‖(I − Π)(KH −Q)‖ ≤ ‖I − Π‖η.(4.17b)

Using (4.13), we may write

ΔH =

(
T+

τ + QC+L+
w QC−L−

w

0 T−
τ

)
+

(
(K+

H −Q)C+L+
w (K+

H −Q)C−L−
w

K−
HC+L+

w K−
HC−L−

w

)
.

(4.18)

We denote the first operator on the right-hand side of (4.18) by Δ and the second

by PH . Obviously, by (4.15), r(Δ) = eω
−τ . By upper semicontinuity of the spectrum

(see [11], pp. 208), there exists γ > 0 such that

r(ΔH) = r(Δ + PH) < e(ω−+ε)τ ,(4.19)

provided that ‖PH‖ ≤ γ. It follows from (4.17) that the latter can be accomplished
by choosing η > 0 sufficiently small.

(2) To prove statement (2) of the theorem, choose H ∈ L2([0, δ],Rm×p) such that
(4.19) holds. Choose ν ∈ (ω−, ω− + ε) such that eντ is a power bound for ΔH . Let
x0 ∈ X, α ∈ (ν, 0], and v ∈ L2

α(R+,R
m). Recall that the feedback control produced

by the sampled-data control law (3.1) is denoted by u(·;x0, v). With Hτ defined by
(3.2) we have

u(t;x0, v)e−αt = e−αtv(t)−e−α(t−kτ)Hτ (t−kτ)yke
−αkτ ∀ t ∈ [kτ, (k+1)τ), ∀ k ∈ N0.

In the following, the numbers Ni > 0 are suitable constants, depending only on α but
not on x0 and v. It follows from the above identity that

∫ (k+1)τ

kτ

‖u(t;x0, v)e−αt‖2dt ≤ N1

(
‖yke−αkτ‖2 +

∫ (k+1)τ

kτ

‖v(t)e−αt‖2dt

)
∀ k ∈ N0.

(4.20)

Using that eντ is a power bound for ΔH and that 0 ≥ α > ν, we may conclude from
(3.7), (3.8), and (4.11) that

∞∑
k=0

‖xk,δe
−αkτ‖2 ≤ N2

(
‖x0,δ‖2 +

∫ ∞

0

‖v(t)e−αt‖2dt

)
(4.21)
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and

∞∑
k=0

‖yke−αkτ‖2 ≤ N3

(
‖x0,δ‖2 +

∫ ∞

0

‖v(t)e−αt‖2dt

)
.(4.22)

Now y0 = 0, and so u(t) = v(t) for all t ∈ [0, τ). Hence,

x(t;x0, v) = Ttx
0 +

∫ t

0

Tt−sBv(s) ds ∀ t ∈ [0, τ),(4.23)

showing that

‖x0,δ‖ = ‖x(δ;x0, v)‖ ≤ N4(‖x0‖ + ‖v‖L2) ≤ N4(‖x0‖ + ‖v‖L2
α
).(4.24)

Inserting this into (4.21) and (4.22) yields

∞∑
k=0

‖xk,δe
−αkτ‖2 ≤ N5(‖x0‖2 + ‖v‖2

L2
α
)(4.25)

and

∞∑
k=0

‖yke−αkτ‖2 ≤ N6(‖x0‖2 + ‖v‖2
L2

α
).(4.26)

It follows from (4.20) and (4.26) that

‖u(·;x0, v)‖L2
α
≤ N7(‖x0‖ + ‖v‖L2

α
).(4.27)

To derive a similar estimate for x(·;x0, v), we note that by the variations-of-parameter
formula we have, for k ∈ N and t ∈ [0, τ),

x(kτ + t;x0, v) = Tt+τ−δxk−1,δ −
∫ kτ+t

kτ

Tkτ+t−sBHτ (s− kτ)yk ds

+

∫ kτ+t

(k−1)τ+δ

Tkτ+t−sBv(s) ds,

where Hτ is defined in (3.2). A change of variables leads to

x(kτ + t;x0, v) = Tt+τ−δxk−1,δ −
∫ t

0

Tt−sBHτ (s)yk ds +

∫ t

δ−τ

Tt−sBv(kτ + s) ds.

Hence,

(4.28) ‖x(kτ + t;x0, v)e−α(kτ+t)‖2 ≤ N8

(
‖xk−1,δe

−α(k−1)τ‖2 + ‖yke−αkτ‖2

+

∫ (k+1)τ

(k−1)τ

‖v(s)e−αs‖2ds

)
∀ k ∈ N, ∀ t ∈ [0, τ),
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and so,

(4.29)

∫ (k+1)τ

kτ

‖x(t;x0, v)e−αt‖2dt ≤ N9

(
‖xk−1,δe

−α(k−1)τ‖2 + ‖yke−αkτ‖2

+

∫ (k+1)τ

(k−1)τ

‖v(s)e−αs‖2ds

)
∀ k ∈ N.

Combining this with (4.23), (4.25), and (4.26) shows that

‖x(·;x0, v)‖L2
α
≤ N10(‖x0‖ + ‖v‖L2

α
).(4.30)

Using that α > ν > ω−, we have that the weighted semigroup t �→ T−
t e

−αt is
exponentially stable and G− ∈ B(L2

α(R+,R
m), L2

α(R+,R
p)). Combining this with

(4.27) and (4.30), an application of (4.5) (with u = u(·;x0, v), x = x(·;x0, v), and
y = y(·;x0, v)) yields the claim.

(3) Since the space of all W 1,2
c ([0, δ],Rm×p) is dense in L2([0, δ],Rm×p), an inspec-

tion of the proof of statement (1) shows that there exists H ∈ W 1,2
c ([0, δ],Rm×p) such

that (4.19) holds. Choose ν ∈ (ω−, ω− + ε) such that eντ is a power bound for ΔH .
Fix α ∈ (ν, 0]. Let x0 ∈ X and v ∈ W 1,2

α (R+,R
m) be such that Ax0 + Bv(0) ∈ X. It

follows from (3.1a) and (4.22) that u(·;x0, v) ∈ W 1,2
α (R+,R

m). Denoting the output
of the well-posed system Σ− corresponding to the initial value (I − Π)x0 and the
control u(·;x0, v) by y−, we have that

y− = (C−)ΛT−(I − Π)x0 + G−u(·;x0, v).(4.31)

Since u(0;x0, v) = v(0), we may conclude that

T−
t1

(
A−(I − Π)x0 + B−u(0;x0, v)

)
= (I − Π)Tt1

(
Ax0 + Bv(0)

)
∈ (I − Π)X = X−.

An application of Proposition 2.1 to Σ− now yields that y− is continuous on [t1,∞)
and

lim
t→∞

‖y−(t)e−αt‖ = 0.(4.32)

Since v ∈ L2
α(R+,R

m), it is clear that
∫ (k+1)τ

(k−1)τ
‖v(s)e−αs‖2ds converges to 0 as k → ∞.

Furthermore, it follows from (4.25) and (4.26) that xk,δe
−αkτ and yke

−αkτ converge
to 0 as k → ∞. Consequently, the right-hand side of (4.28) converges to 0 as k → ∞
and therefore,

lim
t→∞

‖x(t)e−αt‖ = 0.(4.33)

Finally, by (4.31) and Lemma 4.2 (applied to the well-posed system (2.2) with control
u = u(·;x0, v)),

y(·;x0, v) = y−(t) + C+Πx(·;x0, v).

Therefore, y(·;x0, v) is continuous on [t1,∞), and, furthermore, we may conclude from
(4.32) and (4.33) that limt→∞ y(t;x0, v)e−αt = 0.

Remark 4.5. (1) If in Theorem 4.4 assumption A5 is replaced by the stronger
assumption that imRt0 ⊃ X+ (that is, every state in X+ is reachable from 0 in time
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t0), then an inspection of the above proof shows that there exists H ∈ L2([0, δ],Rm×p)
such that (i) ωsd ≤ ω(T−) and (ii) the conclusions of statements (2) and (3) of
Theorem 4.4 remain true for every α ∈ (ω(T−), 0].

(2) From a practical point of view, it is important that the “structure” of the
stabilizing hold function H (the existence of which is guaranteed by Theorem 4.4)
is as simple as possible. In this context, we define S([0, δ],Rm×p) to be the space of
Rm×p-valued step functions on [0, δ] and CPLc([0, δ],R

m×p) to be the space of Rm×p-
valued continuous piecewise affine-linear functions with support contained in the open
interval (0, δ). We recall that S([0, δ],Rm×p) and CPLc([0, δ],R

m×p) are dense in
L2([0, δ],Rm×p). Moreover, it is clear that CPLc([0, δ],R

m×p) ⊂ W 1,2
c ([0, δ],Rm×p).

Therefore an inspection of the proof of Theorem 4.4 shows that, for every ε ∈
(0,−ω(T−), there exist

(i) H ∈ S([0, δ],Rm×p) such that statements (1) and (2) of Theorem 4.4 hold;
(ii) H ∈ CPLc([0, δ],R

m×p) such that statements (1)–(3) of Theorem 4.4 hold.
It follows from [18, 30] that assumptions A1 and A2 are necessary conditions for

the stabilization of (2.2) by any of the commonly used sampled-data feedback designs
including the control law (3.1) (see [18, 30]). In this context the following proposition
is of interest.

Proposition 4.6. Let τ > δ > 0, H ∈ L2([0, δ],Rm×p), and w ∈ L2([0, τ−δ],R).
Assume that (3.4) holds. If the sampled-data feedback system given by (2.2) and (3.1)
is exponentially stable, then conditions A1–A4 hold, and if the semigroup T is analytic,
then A5 holds also.

Proof. Assume that the sampled-data feedback system given by (2.2) and (3.1)
is exponentially stable. It follows from [30] that A1 and A2 hold. We claim that the
pair (C+L+

w ,T
+
τ ) is observable. Suppose not; then we can find z ∈ X+, z �= 0, and

ζ ∈ C with |ζ| ≥ 1 so that

T+
τ z = ζz and C+L+

wz = 0.

Now choose z0 ∈ X+ such that z = T+
δ z

0. We consider the state trajectory x(·;x0, 0)
of the sampled-data feedback system corresponding to the initial state

x0 :=

(
z0

0

)
and the external input function v = 0. Then, using (4.13),

x(kτ + δ;x0, 0) = xk,δ = Δk
Hx0,δ = Δk

HTδx
0 = Δk

H

(
T+

δ z
0

0

)
= Δk

H

(
z
0

)
= ζk

(
z
0

)
.

Since z �= 0, we may conclude that x(kτ + δ;x0, 0) does not converge to 0 as k → ∞,
yielding a contradiction to the exponential stability of the sampled-data feedback
system. Hence the pair (C+L+

w ,T
+
τ ) is observable. To show that A3 and A4 hold,

let OL and O be the observability matrices for the pairs (C+L+
w ,T

+
τ ) and (C+,T+

τ ),

respectively. Since L+
w and T+

τ = eA
+τ commute, it follows that

OL = OL+
w .

If (4.9) fails to hold, then, by Lemma 4.1, L+
w is singular, implying that OL loses rank.

If A3 fails to hold, then (C+,T+
τ ) is not observable and again OL will lose rank. In

both cases (C+L+
w ,T

+
τ ) will not be observable, which is impossible. Therefore both

A3 and A4 must hold.
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To complete the proof we just need to show that A5 also holds if T is analytic.
Define the operator B+

τ : Rp → X+ by

B+
τ z =

∫ τ

0

T+
τ−sB

+Hτ (s)z ds ∀ z ∈ Rp,

where Hτ is defined in (3.2). It follows from [30] that the pair (T+
τ , B

+
τ ) is controllable.

A routine argument based on the Hautus criterion for controllability then shows that
the pair (A+, B+) is also controllable. Finally, an application of Proposition 1.2 in
[19] yields that condition A5 is satisfied.

5. Example. We will illustrate Theorem 4.4 with a standard model for an Euler–
Bernoulli beam with structural damping (see Chen and Russell [3]). Let z(ξ, t) be the
lateral deflection of a beam, where ξ ∈ [0, 1] and t > 0 denote space and time, respec-
tively. We assume that the flexural rigidity EI and the mass density per unit length
m are both constant. We normalize so that EI/m = 1. The Euler–Bernoulli beam
with structural damping is described by the following fourth-order partial differential
equation

ztt(ξ, t) − 2γztξξ(ξ, t) + zξξξξ(ξ, t) = 0,(5.1)

where γ ∈ (0, 1) denotes the damping constant. We assume that the beam is hinged
at ξ = 0 and has a freely sliding clamped end at ξ = 1, with shear (also known as
lateral) force u(t) at ξ = 1:

z(0, t) = 0, zξξ(0, t) = 0,(5.2a)

zξ(1, t) = 0,− zξξξ(1, t) = u(t).(5.2b)

For this system we consider a standard observation, the velocity at ξ = 1:

y(t) = zt(1, t).(5.3)

The applicability of our considerations below to other boundary conditions is briefly
discussed in Remark 5.1 at the end of this section.

Our first aim is to represent the controlled and observed partial differential equa-
tion given by (5.1)–(5.3) as an abstract well-posed system of the form (2.2). We write
L2(0, 1) and W q,2(0, 1), respectively, in place of the more cumbersome L2([0, 1],R)
and W q,2([0, 1],R). Let A0 : dom(A0) ⊂ L2(0, 1) → L2(0, 1) be given by

A0f = d4f/dξ4,

dom(A0) = {f ∈ W 4,2(0, 1) : f(0) = 0, f ′′(0) = 0, f ′(1) = 0, f ′′′(1) = 0}.

The operator A0 is closed, bijective, self-adjoint, and coercive and has compact re-
solvent. The numbers (−π/2 + πk)4, where k ∈ N, are the eigenvalues of A0 with
associated eigenvectors ek given by

ek(ξ) =
√

2 sin((−π/2 + πk)ξ), k ∈ N.

The family (ek)k∈N forms an orthonormal basis of L2(0, 1). Moreover,

A
1/2
0 f = −f ′′, dom(A

1/2
0 ) = {f ∈ W 2,2(0, 1) : f(0) = 0, f ′(1) = 0}.
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Let X := dom(A
1/2
0 ) × L2(0, 1). Endowed with the inner product

〈(x1, x2)
T , (y1, y2)

T 〉 := 〈A1/2
0 x1, A

1/2
0 y1〉L2 + 〈x2, y2〉L2 ,

X becomes a Hilbert space. Defining the operator

A =

(
0 I

−A0 −2γA
1/2
0

)
, dom(A) = dom(A0) × dom(A

1/2
0 ),(5.4)

(5.1) and (5.2) (with u = 0) can be written in the form ẋ = Ax, where x(t) =
(z(·, t), zt(·, t))T . The eigenvalues of A are given by

λ±k = (−γ ± i
√

1 − γ2)(−π/2 + πk)2, k ∈ N,(5.5)

with associated eigenvectors

f±k =

√
2

1 − e∓2iϕ

(
ek/λ±k

ek

)
, k ∈ N,

where ϕ := arccos(−γ), so that eiϕ = −γ+ i
√

1 − γ2. It is a routine exercise to check
that (f±k)k∈N is a Riesz basis for X. For k ∈ N, the unit vectors

g±k =
1√
2

(
−ek/λ∓k

ek

)
∈ dom(A∗)

are eigenvectors of A∗ with associated eigenvalues λ̄±k = λ∓k. Furthermore, intro-
ducing the set Z∗ := Z \ {0}, we have that

〈fj , gl〉 =

{
0, j �= l,
1, j = l,

i.e., (fj)j∈Z∗ and (gj)j∈Z∗ are biorthogonal. Consequently, A is a Riesz spectral op-
erator (as defined in [6]) and thus can be represented in the form

Ax =
∑
j∈Z∗

λj〈x, gj〉fj ∀x ∈ dom(A) =

⎧⎨⎩x ∈ X :
∑
j∈Z∗

|λj |2|〈x, gj〉|2 < ∞

⎫⎬⎭ ;

moreover, σ(A) = {λj : j ∈ Z∗} and A generates a strongly continuous semigroup T
given by

Ttx =
∑
j∈Z∗

eλjt〈x, gj〉fj ∀x ∈ X;

see, e.g., Theorem 2.3.5 in [6]. It follows from the location of σ(A) combined with a
standard result in semigroup theory (see, e.g., Theorem 5.2 in [16, p. 61]) that the
semigroup T is analytic.

To write the controlled partial differential equation given by (5.1) and (5.2) in
the abstract form (2.2a), we need to determine the input operator B. Moreover, in
order to prove admissibility of B, we need to expand B in terms of the functions
fj . To this end it is useful to recall that the inner product on X has a continuous
extension to X−1 × dom(A∗), where dom(A∗) is endowed with the graph norm of
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A∗. More precisely, there exists a bounded nondegenerate sesquilinear form [ ·, · ] on
X−1×dom(A∗) such that [x1, x2] = 〈x1, x2〉 for all (x1, x2) ∈ X×dom(A∗). The space
X−1 may be identified with the dual of dom(A∗). Following the procedure outlined
in [8], we obtain that

B = (0, δ1)
T ,(5.6)

where δ1 denotes the Dirac distribution (or unit mass) with support at ξ = 1.4 Con-
sequently, the controlled partial differential equation given by (5.1) and (5.2) can be
written in the form (2.2a) with x(t) = (z(·, t), zt(·, t))T and the operators A and B
given by (5.4) and (5.6), respectively.

In order to verify that B is admissible, we first note that (fj)j∈Z∗ is a Schauder
basis of X−1. Indeed, for arbitrary x ∈ X−1, we have that

x = AA−1x = A
∑
j∈Z∗

〈A−1x, gj〉fj =
∑
j∈Z∗

〈A−1x, gj〉λjfj ,

and it is clear that the coefficients 〈A−1x, gj〉λj in the expansion on the right-hand
side are unique. It is easy to see that 〈A−1x, gj〉 = [x, gj ]/λj for x ∈ X−1 and j ∈ Z∗.
Thus, for arbitrary x ∈ X−1,

x =
∑
j∈Z∗

[x, gj ]fj .

Since [B, gj ] = sin(−π/2 + π|j|) = (−1)|j|+1, we obtain the following expansion for B
in X−1:

B =
∑
j∈Z∗

(−1)|j|+1fj .(5.7)

A standard application of the Carleson measure criterion (see [8, 33]) yields that B is
an admissible control operator for the semigroup T. Since the observation (5.3) is de-
scribed by the operator C := B∗, we conclude that C is an admissible observation op-
erator. From (5.5) and (5.7), it is easy to see that for any ε > 0, B ∈ B(R, X−(1/4+ε))
and C ∈ B(X1/4+ε,R). Hence we can apply Proposition 2.2 to conclude that (A,B,C)
are the generating operators of a regular well-posed system.

The semigroup generated by A has exponential growth constant −γπ2/4, the
real part of the rightmost eigenvalue of A. Our aim is to construct a hold function
H such that the sampled-data feedback control law (3.1) with weighting w(s) ≡
1 achieves closed-loop exponential growth ωsd ≤ −9γπ2/4. To this end, fix β ∈
(−9γπ2/4,−γπ2/4). Then assumption A1 holds, the subspace X+ of X is spanned by
{f−1, f1}, and σ(A+) = σ(A)∩Cβ = {λ1, λ1}. It is clear that ω(T−) = −9γπ2/4 < 0,
showing that A2 holds. It is straightforward to show that (fj)j∈Z∗ is a Schauder basis
of X1, so that (fj)j∈Z∗ is a Schauder basis of each of the three spaces X1, X, and
X−1. With respect to this basis we have that

A = diagj∈Z∗(λj), Tt = diagj∈Z∗(eλjt), B = (((−1)|j|+1)j∈Z∗)T , C = (cj)j∈Z∗ ,

where

ck = 2(−1)k+1/(1 − e−2iϕ), c−k = ck ∀ k ∈ N.

4Strictly speaking, B is the operator in B(R, X−1) given by Bv = v(0, δ1)T , but it is convenient
to identify B and B1 = (0, δ1)T .
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Furthermore,

A+ = diag(. . . , 0, 0, λ1, λ1, 0, 0, . . . ), T+
t = diag(. . . , 0, 0, eλ1t, eλ1t, 0, 0, . . . ),

B+ = (. . . , 0, 0, 1, 1, 0, 0, . . . )T , C+ = (. . . , 0, 0, c1, c1, 0, 0, . . . ).

It follows in particular that assumption A3 is satisfied. Furthermore, since∑
j∈Z∗

1

|Reλj |
= 2

∞∑
j=1

1

γ(−π/2 + πj)2
< ∞,

Theorem 4.1 in [20] implies that, for any t > 0, there exists a unique sequence (pj)j∈Z∗

in L2([0, t],C) such that ∫ t

0

eλjs pl(s) ds =

{
0, j �= l,
1, j = l;

(5.8)

that is, (eλj ·)j∈Z∗ and (pj)j∈Z∗ are biorthogonal (note that pj = p−j for all j ∈ Z∗).
Consequently,

imRt0 ⊃ X+ ∀ t0 ∈ (0,∞),(5.9)

where Rt0 is the reachability operator given by (4.8). The inclusion (5.9) shows in
particular that A5 holds for every t0 > 0. Since σ(A+) = {λ1, λ1}, condition (4.10)
is satisfied, provided that

τ �= 4k

π
√

1 − γ2
∀ k ∈ N.(5.10)

Furthermore, since w(s) ≡ 1 and Reλ1 �= 0, (4.9) holds for all τ > δ > 0, and
therefore, we may conclude that assumption A4 is satisfied.

Choose τ > 0 such that (5.10) holds and fix δ ∈ (0, τ). It follows from Theorem
4.4 (combined with Remark 4.5 and (5.9)) that there exists H ∈ L2([0, δ],R) such
that the sampled-data feedback control law (3.1) with weighting w(s) ≡ 1 achieves
closed-loop exponential growth ωsd ≤ −9γπ2/4. We now use the construction in the
proof of Theorem 4.4 to compute such a hold function H. To this end, note that the
operator L+

w defined in (4.12) can be represented as

L+
w = diag(. . . , 0, 0, λ, λ, 0, 0, . . . ), where λ := (eλ1(τ−δ) − 1)/λ1.

We first find Q ∈ B(C, X+) such that (4.15) holds. Since Q is of the form

Q = (. . . , 0, 0, q−1, q1, 0, 0, . . . )
T ,

we do this by computing q−1, q1 ∈ C with the property that the two eigenvalues of
the matrix(

eλ1τ 0
0 eλ1τ

)
+

(
q−1

q1

)
(c1, c1)

(
λ 0
0 λ

)
=

(
eλ1τ + q−1c1λ q−1c1λ

q1c1λ eλ1τ + q1c1λ

)
are both equal to 0. A routine calculation leads to

q1 =
−e2λ1τ

(eλ1τ − eλ1τ )c1λ
=

e2λ1τλ1

c1(eλ1τ − eλ1τ )(1 − eλ1(τ−δ))
, q−1 = q1.(5.11)
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We now compute h ∈ L2([0, δ],R) such that Rδh = Q, in which case (4.16) holds for
every η > 0. Using (5.8) to solve Rδh = Q for h, we find that

h(t) = q1p1(δ − t) + q1p1(δ − t) ∀ t ∈ [0, δ].

The control law (3.1) with H = −h (and with w(s) ≡ 1) achieves closed-loop expo-
nential growth ωsd ≤ −9γπ2/4. It is shown in [21, section 4] how to construct the
functions pj .

Remark 5.1. If we kept the same form for the boundary control in (5.2) but
modified the remaining boundary conditions to other “natural” boundary conditions,
identified in [9, 21], we could go through the same process to find a “stabilizing”
generalized hold function H. The only difference being that the eigenvalues and
eigenvectors would be given by asymptotic formulas—see, e.g., [17] for the formulas
for such a beam with one end clamped and the other end free. On the other hand,
if the control appears as a bending moment force (e.g., zξξ(1, t) = u(t)), then the
resulting system will not be well-posed, and our theory does not apply.
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Abstract. We study the existence of Lipschitz minimizers of integral functionals

I(u) =

∫
Ω

ϕ(x, detDu(x)) dx,

where Ω is an open subset of RN with Lipschitz boundary, ϕ : Ω×(0,+∞) → [0,+∞) is a continuous
function, and u ∈ W 1,N (Ω,RN ), u(x) = x on ∂Ω. We consider both the cases of ϕ convex and
nonconvex with respect to the last variable. The attainment results are obtained passing through
the minimization of an auxiliary functional and the solution of a prescribed Jacobian equation.
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1. Introduction. In this paper we consider integral functionals

I(u) =

∫
Ω

ϕ(x,detDu(x)) dx,(1.1)

where Ω is a bounded open subset of RN with a Lipschitz boundary, N ≥ 2, ϕ :
Ω × (0,+∞) → [0,+∞) is a continuous function, and u ∈ W 1,N (Ω,RN ).

We aim at proving the existence of Lipschitz solutions to the variational problem

min
{
I(u) : u ∈ W 1,N (Ω,RN ), detDu > 0 a.e., u(x) = x on ∂Ω

}
.(1.2)

Notice that even if a growth condition from below of the type tp ≤ ϕ(x, t) (which is
common in the theory of calculus of variations) is assumed, no coercivity of I follows
in any Sobolev space, preventing us from establishing the existence of minimizers
via the direct method. Nevertheless many problems of this type have a solution,
and the question of fixing which conditions on ϕ ensure the existence of solutions is
worthy of interest, as is its applications in physics, mainly in elasticity theory and
in the problem of the equilibrium of gases (see [17], [5], [6], and [12]). For instance,
(1.2) is the variational problem corresponding to a nonhomogeneous elastic material
with reference configuration Ω whose stored energy ϕ is a nonnegative, continuous
function depending on the position x in the reference configuration and the size of
the deformation of the volume element detDu(x) > 0.

It is well known that an important role is played by the convexity of ϕ with respect
to the last variable: when ϕ is convex, then I is said to be a polyconvex functional;
if not, then I is nonpolyconvex. The polyconvex case ϕ = ϕ(t) has been studied by
Dacorogna [5] and the nonpolyconvex case by Mascolo and Schianchi [14] and Cellina
and Zagatti [4].
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In order to solve (1.2) our strategy is the following: The first step is to look for
solutions to the following problem (from now on referred to as the auxiliary problem)

(1.3)

min

{
J (v) =

∫
Ω

ϕ(x, v(x)) dx : v ∈ L1(Ω), v > 0 a.e.,

∫
Ω

v(x) dx = |Ω|
}
,

where |Ω| stands for the N -dimensional Lebesgue measure of Ω. Then, if v is a solution
to (1.3), the second step is to solve in W 1,N (Ω) the boundary value problem{

detDu(x) = v(x) for a.e. x in Ω,
u(x) = x on ∂Ω.

(1.4)

A solution u to (1.4) is a solution to (1.2), too. In fact, if w ∈ W 1,N (Ω), w(x) = x on
∂Ω, then detDw ∈ L1(Ω) and

∫
Ω

detDw(x) dx = |Ω|; therefore, if detDw > 0 a.e.,
then

I(u) = J (v) ≤ J (detDw) = I(w) .

Following the above scheme, Mascolo in [13] proves the existence of minimizers of (1.2)
for smooth domains Ω and ϕ ∈ C2(Ω × (0,+∞)) strictly convex in the last variable.

As far as problem (1.3) is concerned, Ekeland and Temam in [8] prove a relax-
ation result and Ball and Knowles in [1] obtain an attainment result with the tool of
the Young measures; see also Friesecke [10] for related results. The boundary value
problem (1.4) may have no solution unless v is sufficiently regular. For instance, the
simple continuity of v is not a sufficient condition to get Lipschitz solutions; see the
counterexamples independently given by Burago and Kleiner [2] and McMullen [15].
Thus, also the regularity properties of minimizers of the auxiliary problem have to
be studied. The pioneering papers on (1.4) are due to Moser [16] and Dacorogna and
Moser [7]. In particular, in [7] the authors prove that if v is in Ck,α(Ω), k ≥ 0, and
∂Ω ∈ Ck+3,α, then there exists a diffeomorphism of class Ck+1,α(Ω) solution to (1.4).
Later results are due to Rivière and Ye, who prove in [18, Theorem 4] the existence of
a bi-Lipschitz homeomorphism u solution to (1.4) under less restrictive assumptions
on Ω with v satisfying a Dini-type continuity property. In [19] Ye proves existence
results in the framework of the Sobolev spaces.

The plan of the paper is the following. In section 2 we introduce a class of open
sets, invariant under bi-Lipschitz homeomorphisms, which is slightly larger than that
of open sets with Lipschitz boundaries; see Definition 2.1. In Theorem 2.4 we state
the existence of Lipschitz solutions to (1.4) with Ω in this class of open sets and
Hölder continuous datum v. It is a variant of the above-cited Theorem 4 in [18], and
in the appendix we give the details of the proof. In section 3 we deal with polyconvex
functionals. We consider the class of functions ϕ strictly convex in the last variable
satisfying, as a substitute for the growth conditions,

lim
t→0+

Dtϕ(x, t) = λ0 with λ0 ∈ R ∪ {−∞}, lim
t→+∞

Dtϕ(x, t) = +∞,(1.5)

uniformly with respect to x. In Proposition 3.1 we prove that a unique solution v to
(1.3) exists and that v is in L∞(Ω). In Proposition 3.5, under more regularity assump-
tions on ϕ, we prove that v is Hölder continuous. Therefore, the Lipschitz solution
u to (1.4), which exists by Theorem 2.4, is a minimizer of (1.2); see Theorem 3.6.
In section 4 we deal with a function ϕ nonconvex with respect to t, satisfying (1.5).



1372 GIOVANNI CUPINI AND ELVIRA MASCOLO

Denoting ϕ∗∗ the convex envelope of ϕ with respect to t, we assume that there exist
α, β ∈ L∞(Ω), β(x) > α(x), inf α > 0 such that for every x ∈ Ω,

t �→ ϕ∗∗(x, t) is affine in [α(x), β(x)]

and

ϕ(x, ·) ≡ ϕ∗∗(x, ·) and ϕ(x, ·) is strictly convex in (0, α(x)] and [β(x),+∞).

Under these assumptions in Theorem 4.1 we prove the existence of a bounded solu-
tion v to the auxiliary problem (1.3). In section 5 under regularity assumptions on
ϕ we get that v is piecewise Hölder continuous; see Theorem 5.2. In section 6 first
we prove that if in (1.4) the datum v is piecewise Hölder continuous, there exists
a Lipschitz solution; see Proposition 6.2. Then, solving (1.4) with v the piecewise
Hölder continuous solution to the auxiliary problem, in Theorems 6.3 and 6.4 we get
a Lipschitz continuous minimizer of functional (1.1). In section 7 we consider special
classes of nonpolyconvex functionals. First we consider the class of functionals with
a nonconvex ϕ satisfying ϕ(x, α(x)) = ϕ(x, β(x)) = 0. This class has been consid-
ered by Zagatti [20] (see also Celada and Perrotta [3] for the case ϕ(x, u, t)) with the
assumption

∫
Ω
α(x) dx < |Ω| <

∫
Ω
β(x) dx. In [20] and [3] the attainment result is

proved using different arguments: the Baire category method and the convex integra-
tion method, respectively. Theorems 7.1 and 7.2 are attainment results including the
cases

∫
Ω
αdx ≥ |Ω| and

∫
Ω
β(x) dx ≤ |Ω|. Theorem 7.4 deals with a perturbation of

these functionals; see problem (7.2). We conclude the section considering functionals
with ϕ satisfying the structure condition ϕ(x, t) = ϕ̃(|x|, t). In this case the exis-
tence of bounded radial solutions to (1.3) directly implies the existence of Lipschitz
solutions to (1.4).

2. Notation and preliminary results. In the following if Ω is a measurable
subset of RN , then |Ω| stands for its N -dimensional Lebesgue measure. We write Q
in place of (0, 1)N and Br(x) denotes the ball in RN with center at x and radius r.
If ϕ : Ω × (0,+∞) → [0,+∞), then ϕ∗∗ is the convex envelope of ϕ with respect
to the second variable, i.e., t �→ ϕ∗∗(x, t) is the greatest convex function lower than
t �→ ϕ(x, t). For the sake of simplicity we write ϕ(x, ·) instead of t �→ ϕ(x, t),

D−
t ϕ(x, s) := lim

t→s−

ϕ(x, t) − ϕ(x, s)

t− s
, D+

t ϕ(x, s) := lim
t→s+

ϕ(x, t) − ϕ(x, s)

t− s
,

and ∂ϕ(x, s) := {d ∈ R : ϕ(x, t) ≥ ϕ(x, s) + d(t− s) for every t ∈ (0,+∞)}.
We define a class of bounded open subsets of RN .
Definition 2.1. We say that a bounded open set Ω of RN is of class (L) if

Ω has a covering of finitely many open sets Ωj such that for every j there exists a
bi-Lipschitz homeomorphism ψj : Ωj ∩ Ω → Q satisfying

(a) ψj(Ωj ∩ ∂Ω) = {0} × [0, 1]N−1, whenever Ωj ∩ ∂Ω is not empty;
(b) detDψj is Lipschitz continuous and there exists A ≥ 1 such that 1

A ≤ detDψj

≤ A.
The above definition describes a larger class than that of open sets with Lipschitz

boundary, i.e., with the boundary which locally is the graph of a Lipschitz function.
This result can be proved in a way similar to that of Proposition A.1 in [7].

Lemma 2.2. If a bounded open set Ω of RN has a Lipschitz boundary, then it is
of class (L).
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An easy consequence of the chain rule for Lipschitz functions is that Definition 2.1
is invariant under bi-Lipschitz homeomorphisms.

Lemma 2.3. Let u0 : RN → RN be a bi-Lipschitz homeomorphism, with detDu0

Lipschitz continuous, 1
A ≤ detDu0 ≤ A for some A. If Ω is of class (L), then u0(Ω)

is of class (L), too.
On the contrary, there are examples of bounded open sets of RN with Lipschitz

boundary which are mapped by a bi-Lipschitz homeomorphism u : RN → RN onto
sets with a not (Lipschitz) continuous boundary; see, e.g., [11, pp. 8–9]. Therefore,
the converse of Lemma 2.2 is not true.

Now, we state an existence result of Lipschitz solutions to{
det Du = f in Ω,
u(x) = x on ∂Ω

(2.1)

with f Hölder continuous.
Theorem 2.4. Let Ω ⊂ RN be a bounded connected open set of class (L). Let

f be a Hölder continuous function, inf f > 0,
∫
Ω
f(x) dx = |Ω|. Then there exists a

bi-Lipschitz homeomorphism u : Ω → Ω solution to (2.1).
A similar result is proved in [18, Theorem 4], with a weaker assumption on v,

which is assumed to satisfy a Dini-type continuity property, and a regular domain Ω.
In [18] the proof is given for cubes only. The proof of Theorem 2.4, based upon the
application to open sets of class (L) of the partition method due to Moser [16], is in
the appendix.

3. Polyconvex problems: An attainment result. In this section we consider
the variational problem

(3.1)

min

{∫
Ω

ψ(x,detDu(x)) dx : u∈W 1,N (Ω,RN ), detDu> 0 a.e., u(x) =x on ∂Ω

}
,

where Ω is a bounded open subset of RN with a Lipschitz boundary and ψ : Ω ×
(0,+∞) → [0,+∞) is a continuous function.

To get solutions to (3.1), we first consider the following variational problem:

min

{∫
Ω

ψ(x, v(x)) dx : v ∈ L1(Ω), v > 0 a.e.,

∫
Ω

v(x) dx = a

}
, a > 0.(3.2)

As far as the problem (3.2) is concerned, the Lipschitz regularity of the boundary of
Ω can be dropped.

We prove that there exists a (unique) bounded solution to (3.2) if
(H1) t �→ ψ(x, t) is strictly convex for all x ∈ Ω;
(H2) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

D+
t ψ(x, t) = λ0, lim

t→+∞
D−

t ψ(x, t) = +∞, uniformly in x.

Proposition 3.1. Assume that ψ : Ω × (0,+∞) → [0,+∞) is a continuous
function satisfying (H1) and (H2). Then for every λ > λ0 there exists a unique
uλ ∈ L∞(Ω), inf uλ > 0 such that

λ ∈ ∂ψ(x, uλ(x)) ∀x ∈ Ω.(3.3)
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Moreover, there exists λa > λ0 such that uλa
is the unique solution to (3.2).

Proof. We proceed as follows: At first we prove that for every λ > λ0 there exists
a function uλ such that (3.3) holds. Then, we prove that uλ is in L∞(Ω), inf uλ > 0,
and there exists λa such that

∫
Ω
uλa dx = a. Thus, it turns out that uλa is a solution

to (3.2) and it is unique, because of the strict convexity of the functional.
Step 1. The definition of uλ. Fixing x ∈ Ω, we define the sets

C(x) :=
{
s ∈ (0,+∞) : D−

t ψ(x, s) < D+
t ψ(x, s)

}
, ΩC := {x ∈ Ω : C(x) = ∅} .

Notice that ∂ψ(x, s) = [D−
t ψ(x, s), D+

t ψ(x, s)] for all (x, s) ∈ Ω × (0,+∞).
Suppose that x ∈ Ω \ ΩC . From (H1) and the definition of ΩC , the function

Dtψ(x, ·) : (0,+∞) → (λ0,+∞) is well defined, continuous, and strictly increasing.
Moreover, it is a surjective function because of (H2). Let u(x, ·) be its inverse function,
i.e., u(x, ·) : (λ0,+∞) → (0,+∞) is such that u(x, λ) (from now on denoted by uλ(x))
is the unique positive number such that λ = Dtψ(x, uλ(x)). u(x, ·) is a well defined,
strictly increasing, and continuous function.

Now let us consider x ∈ ΩC . From (H1), C(x) is (at most) a countable set, so
that we denote C(x) = {tn(x)}n∈J(x), where J(x) ⊆ N. As in the above case, if
λ ∈ ∪n∈J(x)∂ψ(x, tn(x)), we define uλ(x) as the unique positive number such that
Dtψ(x, uλ(x)) = λ. If instead λ ∈ ∂ψ(x, tn(x)) for some n ∈ J(x), then we set
uλ(x) = tn(x). Notice that if uλ(x) is chosen greater (less) than tn(x), then λ <
D−

t ψ(x, uλ(x)) (λ > D+
t ψ(x, uλ(x))). It is easy to prove that for each x ∈ ΩC the

function u(x, ·) : (λ0,+∞) → (0,+∞) is well defined, increasing, and continuous.
Thus, uλ : Ω → (0,+∞) is the unique function satisfying (3.3) and it is measur-

able, since

{x ∈ Ω : uλ(x) < t} =
{
x ∈ Ω : D−

t ψ(x, t) > λ
}

and D−
t ψ(x, t) = suph<0(ψ(x, t+h)−ψ(x, t))/h. By the second limit in (H2) for every

λ > λ0 there exists R > 0 such that D−
t ψ(x,R) > λ for every x ∈ Ω, which implies

uλ(x) < R for every x ∈ Ω. In fact, if uλ(x) ≥ R for some x, then by the convexity of
ψ with respect to the second variable it would be D−

t ψ(x,R) ≤ D−
t ψ(x, uλ(x)) and

by (3.3) we would obtain D−
t ψ(x,R) ≤ λ, which is a contradiction. Thus, uλ is in

L∞(Ω). The first limit in (H2) implies that for each λ > λ0 there exists c(λ) > 0 such
that supy∈Ω D+

t ψ(y, t) < λ for every t < c(λ). Therefore, it cannot be uλ(x) < c(λ),

because λ ≤ D+
t ψ(x, uλ(x)), so that inf uλ > 0.

Step 2. The definition of λa. Define Ψ : (λ0,+∞) → (0,+∞), Ψ(λ) :=
∫
Ω
uλ(x) dx,

where uλ(x) = u(x, λ) is defined as in Step 1. By the monotonicity of u with respect
to λ, Ψ is increasing. It holds true that limλ→λ+

0
uλ(x) = 0. In fact, suppose that

limλ→λ+
0
uλ(x) = δ(x) > 0. By (H1), the first limit in (H2), and (3.3), we get

λ0 < D−
t ψ(x, δ(x)) ≤ D−

t ψ(x, uλ(x)) ≤ λ .

Therefore, letting λ go to λ+
0 we get a contradiction. Analogously it can be proved

that limλ→+∞ uλ(x) = +∞. Hence,

lim
λ→λ+

0

Ψ(λ) = 0, lim
λ→+∞

Ψ(λ) = +∞.(3.4)

From the previous step λ �→ uλ(x) is continuous and increasing for all x and uλ ∈
L∞(Ω) for all λ, and therefore Ψ is a continuous function. Thus, there exists λa > λ0
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such that Ψ(λa) = a. We claim that uλa
is a solution to (3.2). In fact, from (H1) and

(3.3) for every w ∈ L1(Ω) such that w > 0 and
∫
Ω
w(x) dx = a, we have that

ψ(x,w(x)) ≥ ψ(x, uλa(x)) + λa

(
w(x) − uλa(x)

)
∀x ∈ Ω.

Thus, ∫
Ω

ψ(x,w(x)) dx ≥
∫

Ω

ψ(x, uλa
(x)) dx + λa

∫
Ω

(w(x) − uλa
(x)) dx

=

∫
Ω

ψ(x, uλa
(x)) dx .

Remark 3.2. The growth conditions

lim
t→0+

inf
y∈Ω

ψ(y, t) = +∞ , lim
t→+∞

inf
y∈Ω

ψ(y, t)

t
= +∞

imply (H2). If the first limit in (H2) is not uniform with respect to x, then maybe
inf uλ = 0. Moreover, the proof of Proposition 3.1 works also if we replace
limt→+∞ D−

t ψ(x, t) = +∞ with the more general

lim
t→+∞

D−
t ψ(x, t) = λ∞, λ∞ ∈ R ∪ {+∞}.

It is easy to prove the following refinement of Proposition 3.1.
Proposition 3.3. Let ψ : Ω × (0,+∞) → [0,+∞) be a continuous function,

differentiable with respect to the last variable, Dtψ ∈ C(Ω × (0,+∞)). If (H1) and
(H2) hold, then the functions uλ in Proposition 3.1 are continuous for every λ > λ0.

Proof. For every λ > λ0 let uλ ∈ L∞(Ω) be as in Proposition 3.1. uλ is lower
semicontinuous. In fact, if

lim inf
x→x0

uλ(x) < α < uλ(x0) ,(3.5)

then (H1) and (3.3) imply Dtψ(x0, α) < λ. By continuity of Dtψ there exists δ > 0
such that Dtψ(x, α) < λ for every x ∈ (x0 − δ, x0 + δ). Then, from (3.3) again we
have that Dtψ(x, α) < Dtψ(x, uλ(x)) for every x ∈ (x0 − δ, x0 + δ), which implies
α < uλ(x), in contradiction with (3.5). Analogously the upper semicontinuity of uλ

can be proved.
To get Hölder continuous solutions to (3.2) we require more regularity on ψ:

(H3) there exists 0 < σ ≤ 1 such that for every compact K ⊂ (0,+∞) and for every
t ∈ K the function x �→ Dtψ(x, t) is of class C0,σ(Ω) with [Dtψ(·, t)]0,σ ≤ kK ;

(H4) for every m > 0 there exists cm > 0 such that

ψ(x, t) ≥ ψ(x, s) + Dtψ(x, s)(t− s) + cm|t− s|2+ε

for every t > s ≥ m, for every x ∈ Ω, and for some ε ≥ 0.
Remark 3.4. Assumption (H4) is equivalent to assuming that for every m > 0

there exists c̃m > 0 such that

Dtψ(x, t) −Dtψ(x, s) ≥ c̃m|t− s|1+ε ∀ t > s ≥ m ∀x ∈ Ω.(3.6)

Roughly speaking, if ψ ∈ C2 satisfies (H4), then Dttψ may vanish provided that a
suitable growth near the zeros is satisfied; see (3)(a) below.

Notice that if ψ0 satisfies (H4) and ψ1 = ψ1(x, t) is such that ψ1(x, ·) is convex
and C1, then ψ = ψ0 + ψ1 satisfies (H4), too. Examples of functions ψ0 satisfying
(H4) are as follows.
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(1) ψ0(t) := (1 + t2)p/2, p ≥ 2. See [9] for details.
(2) ψ0(x, t) := |t− a(x)|p with a : Ω → R and p ≥ 2.
(3) ψ0 : Ω× (0,+∞) → [0,+∞) of class C2, strictly convex with respect to t such

that for every x there exist at most finitely many positive numbers {si(x)}
such that Dttψ0(x, si(x)) = 0 and the following hold:
(a) there exist ε, c > 0 such that Dttψ0(x, t) ≥ c|t− si(x)|ε for every t in a

neighborhood of si(x);
(b) there exists M > 0 such that inf{Dttψ0(x, t) : (x, t) ∈ Ω × [M,+∞)} >

0.
Proposition 3.5. Let ψ : Ω × (0,+∞) → [0,+∞) be a continuous function,

differentiable with respect to the last variable, satisfying (H1)–(H4). Then for each
λ > λ0, the function uλ in Proposition 3.1 is in C0,σ/(1+ε)(Ω). In particular, for
every a > 0 the unique solution uλa to (3.2) is Hölder continuous.

Proof. Fix λ and let uλ, from now on referred to as u, be the correspondent
function as described in Proposition 3.1. From the strict convexity of ψ with respect
to the last variable and since λ = Dtψ(x, u(x)) for every x ∈ Ω it is easy to check
that u is γ-Hölder continuous with Hölder constant [u]γ if and only if

Dtψ
(
y, u(x) + [u]0,γ |x− y|γ

)
−Dtψ(x, u(x)) ≥ 0 ∀x, y ∈ Ω.(3.7)

Fix x, y ∈ Ω. By (H4) and (3.6) there exist ε ≥ 0 and c̃ > 0 such that

Dtψ(x, t) −Dtψ(x, s) ≥ c̃(t− s)1+ε ∀ t > s ≥ inf u > 0 ∀x ∈ Ω.(3.8)

Consider the compact interval K = [inf u, ‖u‖∞] and let s and t be equal to u(x) and
u(x) + (kc̃ |x − y|σ)1/(1+ε), respectively, with σ and kK as in (H3). Using (3.8) and
(H3) to estimate Dtψ(y, t)−Dtψ(y, s) and Dtψ(y, s)−Dtψ(x, s), respectively, we get

Dtψ(y, t) −Dtψ(x, s) = Dtψ(y, t) −Dtψ(y, s) + Dtψ(y, s) −Dtψ(x, s) ≥ 0.

Then u is γ-Hölder continuous with γ = σ
1+ε .

Thus, for fixed a > 0, the solution uλa to (3.2), which exists by Proposition 3.1,
is Hölder continuous.

Now we are ready to state an existence result of Lipschitz solutions to the poly-
convex problem (3.1).

Theorem 3.6. Suppose that Ω is a bounded open subset of RN with Lipschitz
boundary and let ψ : Ω × (0,+∞) → [0,+∞) be a continuous function, differentiable
with respect to the last variable, satisfying (H1)–(H4). Then there exists a Lipschitz
continuous solution to (3.1).

Proof. Set a = |Ω| and consider the variational problem (3.2). From Propositions
3.1 and 3.5 such a problem has a (unique) solution uλa ∈ C0,γ(Ω), γ > 0, and
inf uλa > 0. Hence, from Theorem 2.4 there exists a bi-Lipschitz homeomorphism u
solving {

detDu = uλa
in Ω,

u(x) = x on ∂Ω,

and u is a solution to (3.1), too.

4. Nonpolyconvex problems: Attainment result for the auxiliary prob-
lem. In this section we consider the variational problem

min

{∫
Ω

ϕ(x, v(x)) dx : v ∈ L1(Ω), v > 0 a.e.,

∫
Ω

v(x) dx = a

}
, a > 0,(4.1)
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where Ω is a bounded open subset of RN , and ϕ : Ω × (0,+∞) → [0,+∞) is a
continuous function, nonconvex with respect to the last variable t.

Let ϕ∗∗ be the convex envelope of ϕ with respect to the second variable and define

ΩA := {x ∈ Ω : t → ϕ(x, t) is not strictly convex}.

We assume that the following assumptions hold:
(K1) ΩA is a (not empty) measurable set and there exist α, β ∈ L∞(ΩA), β(x) >

α(x) for all x, inf α > 0, such that ϕ(x, ·) and ϕ∗∗(x, ·) both coincide and are
strictly convex in (0, α(x)] and [β(x),+∞) for every x ∈ ΩA;

(K2) ϕ∗∗(x, ·) is affine in [α(x), β(x)] for all x ∈ ΩA, i.e., for every α(x) ≤ t ≤ β(x),

ϕ∗∗(x, t) = h(x)t + q(x) with h(x) =
ϕ(x, β(x)) − ϕ(x, α(x))

β(x) − α(x)
;

(K3) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

D+
t ϕ(x, t) = λ0, lim

t→+∞
D−

t ϕ(x, t) = +∞, uniformly in x.

Theorem 4.1. Assume (K1), (K2), and (K3). Then there exist λa > λ0 and
vλa ∈ L∞(Ω), inf vλa > 0 such that

(i) vλa(x) /∈ (α(x), β(x)) for every x ∈ ΩA;

(ii) λa ∈ ∂ϕ∗∗(x, vλa(x)) for every x ∈ Ω;

(iii)
∫
Ω
vλa(x) dx = a.

In particular, vλa is a solution to (4.1). Moreover, if Ω = B1(0) and ϕ(x, t) = ϕ̃(|x|, t),
then vλa is a radial function.

We postpone the proof of Theorem 4.1 to the following lemma.
Lemma 4.2. Let O be a bounded measurable subset of RN . Let α, β ∈ L1(O) be

such that α(x) ≤ β(x) for a.e. x and suppose∫
O

α(x) dx < κ <

∫
O

β(x) dx .(4.2)

Then there exists r > 0 such that Θ : O → R, Θ(x) := α(x) if x ∈ O ∩ Br(0) and
Θ(x) := β(x) else, satisfying

∫
O

Θ(x) dx = κ.
Proof. Let R be such that O ⊂ BR(0). Consider the functions θρ : O → R,

0 ≤ ρ ≤ R, defined as follows: θ0 := β and if ρ = 0, then θρ(x) := α(x), if x ∈ O∩Br(0)
and θρ(x) := β(x) else. The continuity of ρ →

∫
O
θρ(x) dx and (4.2) imply that there

exists 0 < r < R such that
∫
O
θr(x) dx = κ.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. We divide the proof into three steps. In Step 1 we define

a family of functions v−λ : Ω → (0,+∞), λ > λ0, such that

v−λ (x) /∈ (α(x), β(x)) ∀x ∈ ΩA ∀λ > λ0(4.3)

and

λ ∈ ∂ϕ∗∗(x, v−λ (x)
)

∀x ∈ Ω ∀λ > λ0.(4.4)

In Step 2 we define a function vλa satisfying (i), (ii), and (iii). Finally, in Step 3 we
consider the case ϕ(x, t) = ϕ̃(|x|, t).
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Step 1. The definition of v−λ . Let us define the function ψ : Ω×(0,+∞) → [0,+∞)
such that ψ ≡ ϕ in (Ω \ ΩA) × (0,+∞) and

ψ(x, t) :=

⎧⎨⎩
ϕ(x, t) if x ∈ ΩA, 0 < t ≤ α(x),
ϕ(x, t + β(x) − α(x)),
−ϕ(x, β(x)) + ϕ(x, α(x)) if x ∈ ΩA, t > α(x).

(4.5)

(K1) and (K2) imply that for every x ∈ ΩA

D−
t ϕ(x, α(x)) ≤ h(x) =

ϕ(x, β(x)) − ϕ(x, α(x))

β(x) − α(x)
≤ D+

t ϕ(x, β(x))(4.6)

and that ψ satisfies (H1). Moreover, for every x /∈ ΩA and every t > 0 we have
∂ψ(x, t) = ∂ϕ(x, t) = ∂ϕ∗∗(x, t). If instead x ∈ ΩA, then

∂ψ(x, t) =

⎧⎨⎩
∂ϕ(x, t) if 0 < t < α(x),
∂ϕ∗∗(x, α(x)) ∪ ∂ϕ∗∗(x, β(x)) if t = α(x),
∂ϕ(x, t + β(x) − α(x)) if t > α(x).

(4.7)

We claim that (K3) implies that ψ satisfies (H2).
The first limit in (K3) and the assumption inf α > 0 imply limt→0+ D+

t ψ(x, t) =
λ0, uniformly. Let us prove that ψ satisfies the property on the second limit in (H2).
Since α, β ∈ L∞(ΩA), then for every x ∈ Ω and t > ‖α‖L∞(ΩA),

inf
y∈Ω

D−
t ϕ(y, t) ≤ min

{
inf

y∈ΩA

D−
t ϕ(y, t + β(y) − α(y)), inf

y∈Ω\ΩA

D−
t ϕ(y, t)

}
= inf

y∈Ω
D−

t ψ(y, t) ≤ D−
t ψ(x, t) ≤ D−

t ϕ(x, t + ‖β − α‖L∞(ΩA))

so that by (K3) as t goes to +∞, we get

lim
t→+∞

inf
y∈Ω

D−
t ψ(y, t) = lim

t→+∞
D−

t ψ(x, t) = +∞ ∀x ∈ Ω.

Since ψ satisfies the assumptions of Proposition 3.1, then for every λ > λ0 there exists
uλ ∈ L∞(Ω), inf uλ > 0, satisfying (3.3). Moreover, for every x ∈ ΩA,

uλ(x) < α(x) if λ < D−
t ϕ(x, α(x)),

uλ(x) = α(x) if λ ∈ [D−
t ϕ(x, α(x)), D+

t ϕ(x, β(x))],
uλ(x) > α(x) if λ > D+

t ϕ(x, β(x)).
(4.8)

Let us define v−λ : Ω → (0,+∞),

v−λ (x) := uλ(x) + (β(x) − α(x))χ{y∈ΩA :h(y)<λ}(x).

Since uλ ∈ L∞(Ω) and α, β ∈ L∞(ΩA), then v−λ ∈ L∞(Ω). From (3.3), (4.6), (4.7),
and (4.8) if x ∈ ΩA, the following implications hold:

• if λ < D−
t ϕ(x, α(x)), then v−λ (x) = uλ(x) < α(x) and λ ∈ ∂ψ(x, uλ(x)) =

∂ϕ(x, v−λ (x));
• if λ ∈ [D−

t ϕ(x, α(x)), h(x)], then v−λ (x) = uλ(x) = α(x) and λ ∈ ∂ϕ∗∗(x, α(x));
• if λ ∈ (h(x), D+

t ϕ(x, β(x))], then v−λ (x) = β(x) and λ ∈ ∂ϕ∗∗(x, β(x));
• if λ > D+

t ϕ(x, β(x)), then v−λ (x) = uλ(x) + β(x) − α(x) > β(x) and λ ∈
∂ψ(x, uλ(x)) = ∂ϕ(x, v−λ (x)).
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Thus (4.3) holds and

λ ∈ ∂ϕ∗∗(x, v−λ (x)
)

(4.9)

for every x ∈ ΩA and λ > λ0. When x ∈ ΩA, the equality v−λ (x) = uλ(x) and (3.3)
imply (4.9). Therefore, (4.4) holds true.

Step 2. The definition of λa and vλa . Let us define Φ : (λ0,+∞) → (0,+∞),

Φ(λ) :=

∫
Ω

v−λ (x) dx =

∫
Ω

(
uλ(x) + (β(x) − α(x))χ{y∈ΩA :h(y)<λ}(x)

)
dx.

As in the proof of (3.4) we have that limλ→λ+
0

Φ(λ) = 0 and limλ→+∞ Φ(λ) = +∞.

For each λ > λ0, define v+
λ : Ω → (0,+∞),

v+
λ (x) := uλ(x) + (β(x) − α(x))χ{y∈ΩA :h(y)≤λ}(x).

For every μ > λ0,

lim
λ→μ−

Φ(λ) = Φ(μ), lim
λ→μ+

Φ(λ) =

∫
Ω

v+
μ (x) dx.

Thus, Φ is discontinuous at μ if and only if |{y ∈ ΩA : h(y) = μ}| > 0.
Only one of the following cases is possible:
1. there exists λa > λ0 such that Φ(λa) = a;
2. there exists λa > λ0 such that Φ(λa) < a = limλ→λ+

a
Φ(λ);

3. there exists λa > λ0 such that Φ(λa) < a < limλ→λ+
a

Φ(λ).

Case 1. As proved in Step 1, v−λa
satisfies (i), (ii), and inf v−λa

≥ inf uλa > 0.

Moreover, by definition of λa, (iii) holds. Thus, define vλa = v−λa
.

Case 2. As above, v−λa
satisfies (i), (ii), and inf v−λa

≥ inf uλa > 0. It is easy to

check that a property analogous to (i) is satisfied by v+
λa

and that inf v+
λa

≥ inf v−λa
> 0.

By the very definition of v+
λa

we have also
∫
Ω
v+
λa

dx = a.

Let us prove that λa ∈ ∂ϕ∗∗(x, v+
λa

(x)) for every x. If x /∈ ΩA or if x ∈ ΩA

and h(x) = λa, then v−λa
(x) = v+

λa
(x) and the above inclusion follows. Suppose that

x ∈ ΩA and h(x) = λa. Then v−λa
(x) = α(x) < β(x) = v+

λa
(x) and (K2) implies

λa ∈ ∂ϕ∗∗(x, β(x)) = ∂ϕ∗∗(x, v+
λa

(x)).

We have so proved that λa ∈ ∂ϕ∗∗(x, v+
λa

(x)) for every x ∈ Ω. Thus, define

vλa := v+
λa

.

Case 3. Define O := {x ∈ ΩA : λa = h(x)} and κ := a −
∫
Ω\O v−λa

(x) dx. The

assumption Φ(λa) < a < limλ→λ+
a

Φ(λ) implies∫
O

α(x) dx =

∫
O

v−λa
(x) dx < κ <

∫
Ω

v+
λa

(x) dx−
∫

Ω\O
v−λa

(x) dx =

∫
O

β(x) dx.

From Lemma 4.2, there exists Θ : O → R, Θ(x) ∈ {α(x), β(x)} such that
∫
O

Θ(x) dx =

κ. Define vλa : Ω → R, vλa(x) = v−λa
(x) if x /∈ O and vλa(x) = Θ(x) else.

It is easy to prove that vλa satisfies (i), (ii), (iii), and inf vλa > 0.
Since ϕ ≥ ϕ∗∗, then for every v ∈ L1(Ω) such that v > 0 a.e. and

∫
Ω
v dx = a, we

have that∫
Ω

ϕ(x, v(x)) dx ≥
∫

Ω

ϕ∗∗(x, v(x)) dx(4.10)

≥
∫

Ω

ϕ∗∗(x, vλa
(x)) dx + λa

∫
Ω

(v(x) − vλa
(x)) dx =

∫
Ω

ϕ(x, vλa
(x)) dx.
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Thus, vλa
is a solution to (4.1).

Step 3. The case ϕ(x, t) = ϕ̃(|x|, t). Assume that Ω is the unit ball B1(0) and
that ϕ has the radial structure ϕ(x, t) = ϕ̃(|x|, t). It is easy to prove that ϕ∗∗(x, t) =
(ϕ̃)∗∗(|x|, t) and that α, β, h are radial functions. Moreover, the sets ΩA, {y ∈ ΩA :
h(y) < λ} and {y ∈ ΩA : h(y) = λ} are symmetric sets with respect to the origin. If
ψ is defined as in Step 1 above, then it immediately follows that ψ(x, t) = ψ̃(|x|, t).
Looking at the first step of the proof of Proposition 3.1, it turns out that uλ, satisfying
∂ψ(x, uλ(x)) = λ, is a radial function for all λ. All these facts allow us to conclude that
whenever Cases 1 or 2 in Step 2 hold, i.e., Φ(λa) = a or Φ(λa) < a = limλ→λ+

a
Φ(λ),

respectively, then vλa is a radial function. To prove that vλa is radial in the third
case it is sufficient to notice that the sets O, O ∩Br(0), and O \Br(0) are symmetric
with respect to the origin and consequently the function Θ is radial.

5. Nonpolyconvex problems: Regularity result for the auxiliary prob-
lem. In this section we prove a regularity result for solutions to the nonconvex varia-
tional problem (4.1). Let Ω be a bounded open subset of RN and let ϕ : Ω×(0,+∞) →
[0,+∞) be a continuous function, differentiable with respect to the last variable,
Dtϕ ∈ C0,δ(Ω ×K), 0 < δ ≤ 1, for every compact K in (0,+∞) such that

(A1) there exist α, β ∈ C0,δ(Ω), β(x) > α(x) for every x, inf α > 0 such that ϕ(x, ·)
and ϕ∗∗(x, ·) both coincide and are strictly convex in (0, α(x)] and [β(x),+∞)
for every x ∈ Ω;

(A2) t → ϕ∗∗(x, t) is affine in [α(x), β(x)] for every x ∈ Ω, i.e., for every α(x) ≤
t ≤ β(x),

ϕ∗∗(x, t) = h(x)t + q(x) with h(x) =
ϕ(x, β(x)) − ϕ(x, α(x))

β(x) − α(x)
.

Moreover,

|∂{x : h(x) = λ}| = 0 ∀λ ∈ R;

(A3) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

Dtϕ(x, t) = λ0, lim
t→+∞

Dtϕ(x, t) = +∞, uniformly in x;

(A4) for every m > 0 there exists cm > 0 such that

ϕ(x, t) ≥ ϕ(x, s) + Dtϕ(x, s)(t− s) + cm|t− s|2+ε

for every s, t ≥ m such that s < t ≤ α(x) or β(x) ≤ s < t for every x ∈ Ω
and some ε ≥ 0.

The following result is in the same spirit of Lemma 4.2.
Lemma 5.1. Let O be an open set in RN . Let α, β ∈ L1(O) be such that α(x) ≤

β(x) for a.e. x and suppose that∫
O

α(x) dx < κ <

∫
O

β(x) dx.(5.1)

Then there exists a finite number of balls Bρj (yj), j = 1, . . . ,m, satisfying
(1) Bρj (yj) ⊂⊂ O, j = 1, . . . ,m;

(2) Bρi(yi) ∩Bρj (yj) = ∅ for every i = j;
(3)

∫
O

Θ(x) dx = κ,
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where Θ(x) := α(x) if x ∈ ∪1≤j≤mBρj
(yj) and Θ(x) := β(x) else.

Proof. Since O is open, there exist (at most) countably many pairwise disjoint
balls {BRj (yj)}j∈J in O, and a negligible set N such that O = N ∪ (

⋃
j∈J BRj (yj)).

Without loss of generality we assume J = {1, 2, . . . ,m} if cardJ = m ∈ N and J = N

if J is countable. For every n ∈ J , let us define the function θn : O → R,

θn(x) :=

⎧⎨⎩α(x) if x ∈
⋃

1≤j≤n

BRj
(yj),

β(x) else.

If J is finite, then (5.1) implies
∫
O
θm(x) dx < κ. If J = N, it is easy to check that

limn→+∞
∫
O
θn(x) dx < κ; thus, there exists m ∈ N such that∫

O

θm(x) dx =

∫
∪1≤j≤mBRj

(yj)

α(x) dx +

∫
O\∪1≤j≤mBRj

(yj)

β(x) dx < κ .

Aiming at (1) and (2), we slightly reduce the radius of the previously selected balls
{BRj (yj)}1≤j≤m. This can easily be done by noticing that

lim
ε→0+

∫
∪m

j=1
BRj

(yj)\BRj−ε(yj)

(β(x) − α(x)) dx = 0.

Thus, there exists 0 < ε < min{Rj : 1 ≤ j ≤ m} such that∫
∪1≤j≤mBRj−ε(yj)

α(x) dx +

∫
O\∪1≤j≤mBRj−ε(yj)

β(x) dx < κ .(5.2)

Set R := max {Rj − ε : 1 ≤ j ≤ m} and define θ : O × [0, R] → R, θ(x, 0) := β(x)
and

θ(x, ρ) :=

⎧⎨⎩α(x) if x ∈
⋃

1≤j≤m

(BRj−ε(yj) ∩Bρ(yj)),

β(x) else

for every ρ > 0. From (5.2) we have that∫
O

θ(x,R) dx < κ <

∫
O

θ(x, 0) dx =

∫
O

β(x) dx.

Since ρ →
∫
O
θ(x, ρ) dx is a continuous function, there exists ρ such that

∫
O
θ(x, ρ) dx =

κ. The claim of the theorem follows by defining Θ(x) := θ(x, ρ) and ρj := min{Rj −
ε, ρ}, 1 ≤ j ≤ m.

Let h be as in (A2). For every λ > λ0 we define

Ω+
λ := {x : h(x) > λ}, Ω−

λ := {x : h(x) < λ}, Ω=
λ := {x : h(x) = λ}.(5.3)

Under (A1)–(A4) there exists a piecewise Hölder continuous solution to (4.1).
Theorem 5.2. Let ϕ : Ω × (0,+∞) → [0,+∞) be a continuous function, differ-

entiable with respect to the last variable, Dtϕ(x, t) in C0,δ(Ω ×K) for every compact
K ⊂ (0,+∞). Suppose that (A1)–(A4) hold. Then, with fixed a > 0 there exist
λa > λ0 and vλa ∈ L∞(Ω), inf vλa > 0, satisfying the following properties:

(i) Dtϕ
∗∗(x, vλa

(x)) = λa for every x ∈ Ω;
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(ii)
∫
Ω
vλa

(x) dx = a;

(iii) vλa is Hölder continuous in Ω+
λa

∪ Ω−
λa

;

(iv) vλa(x) < α(x) for all x ∈ Ω+
λa

and vλa(x) > β(x) for all x ∈ Ω−
λa

;
(v) in Ω=

λa
either vλa

≡ α or vλa
≡ β or

vλa(x) =

{
α(x) if x ∈

⋃
1≤j≤m Bρj (yj),

β(x) if x ∈ Ω=
λa

\
⋃

1≤j≤m Bρj (yj)
(5.4)

with Bρj (yj) ⊂⊂ int Ω=
λa

, j = 1, . . . ,m such that Bρi(yi) ∩ Bρj (yj) = ∅ if
i = j.

Moreover, vλa is a solution to (4.1).
Proof. Let ψ : Ω × (0,+∞) → [0,+∞) be defined as

ψ(x, t) :=

⎧⎨⎩
ϕ(x, t) if 0 < t ≤ α(x) , x ∈ Ω,
ϕ(x, t + β(x) − α(x)),
−ϕ(x, β(x)) + ϕ(x, α(x)) if t > α(x) , x ∈ Ω.

(5.5)

It holds true that ψ is a continuous function, differentiable with respect to the last
variable, satisfying (H1)–(H4) in section 3, with possibly different constants. By
Proposition 3.5 for every λ > λ0, there exists uλ such that uλ ∈ C0,γ(Ω) for some
0 < γ ≤ 1, inf uλ > 0, and

Dtψ(x, uλ(x)) = λ ∀x ∈ Ω.(5.6)

Moreover (see (4.6) and (4.8)),

uλ < α in Ω+
λ , uλ = α in Ω=

λ , uλ > α in Ω−
λ .(5.7)

Let Φ : (λ0,+∞) → R be the left-continuous function defined as

Φ(λ) :=

∫
Ω

(
uλ(x) + (β(x) − α(x))χΩ−

λ
(x)

)
dx, λ > λ0.

We have three different cases:
1. there exists λa > λ0 such that Φ(λa) = a;
2. there exists λa > λ0 such that Φ(λa) < a = limλ→λ+

a
Φ(λ);

3. there exists λa > λ0 such that Φ(λa) < a < limλ→λ+
a

Φ(λ).
Let us consider the first two cases: since (A1)–(A3) imply (K1)–(K3), then by pro-
ceeding as in Theorem 4.1 there exists vλa ∈ L∞(Ω), inf vλa > 0, which satisfies (i)
and (ii). Moreover, if case 1 holds, then vλa := uλa + (β − α)χ{h<λa}, i.e.,

vλa := uλa in Ω+
λa
, vλa := α in Ω=

λa
, vλa := uλa + β − α in Ω−

λa
;

if instead case 2 holds, then vλa
:= uλa

+ (β − α)χ{h≤λ}, i.e.,

vλa := uλa in Ω+
λa
, vλa := β in Ω=

λa
, vλa := uλa + β − α in Ω−

λa
.

Therefore, from the Hölder continuity of α and β, (5.6) and (5.7) it follows that vλa

satisfies (iii), (iv), and (v). Moreover, reasoning as in (4.10) we get that vλa is a
solution to (4.1).

Suppose the third case holds. We define vλa as in the proof of Theorem 4.1, but
using Lemma 5.1 instead of Lemma 4.2. Precisely, since∫

Ω=
λa

α(x) dx < κ <

∫
Ω=

λa

β(x) dx
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with

κ := a−
∫

Ω\Ω=
λa

(
uλa(x) + (β(x) − α(x))χΩ−

λa

(x)
)
dx,

then from Lemma 5.1 there exist m balls Bρj
(yj) ⊂⊂ int Ω=

λa
, j = 1, . . . ,m, Bρi

(yi)∩
Bρj (yj) = ∅ for every i = j such that Θ : int Ω=

λa
→ R,

Θ := α in
⋃

1≤j≤m Bρj (yj), Θ := β in int Ω=
λa

\
⋃

1≤j≤m Bρj (yj)

satisfies
∫
int Ω=

λa

Θ(x) dx = κ .

Define vλa as follows:

vλa(x) :=

⎧⎪⎪⎨⎪⎪⎩
uλa(x) if x ∈ Ω+

λa
,

α(x) if x ∈
⋃

1≤j≤m Bρj (yj),

β(x) if x ∈ Ω=
λa

\
⋃

1≤j≤m Bρj (yj),

uλa(x) + β(x) − α(x) if x ∈ Ω−
λa
.

We have that vλa ∈ L∞(Ω), inf vλa > 0, and it satisfies (i)–(v). Moreover, vλa
is a

solution to (4.1).

6. Nonpolyconvex problems: Attainment result in a general setting.
In this section we consider the variational problem

min

{∫
Ω

ϕ(x,detDu(x)) dx : u ∈ W 1,N (Ω,RN ), detDu > 0 a.e., u(x) = x on ∂Ω

}
,

(6.1)
where Ω is a bounded open subset of RN with Lipschitz boundary and ϕ : Ω ×
(0,+∞) → [0,+∞) is a nonconvex function with respect to the second variable.

Before stating an attainment result for (6.1), we need some preliminary results.
Lemma 6.1. Let Ω be a bounded open set with Lipschitz boundary and let Ω =

∪m
i=1Ωi with {Ωi} pairwise disjoint open connected sets with Lipschitz boundary.

Consider αi > 0, i = 1, . . . ,m, with
∑m

i=1 αi = |Ω|. Then there exists a bi-
Lipschitz homeomorphism u0 : Ω → Ω such that detDu0 ∈ C∞(Ω), inf detDu0 > 0,
and

u0(x) = x on ∂Ω, |u0(Ωi)| = αi, i = 1, . . . ,m.(6.2)

Moreover, u0(Ωi) is an open set of class (L) for every i.
Proof. Fix 0 < δ < min{αi/|Ωi| : i = 1, . . . ,m}. For every 1 ≤ i ≤ m let

ηi ∈ C∞
c (Ωi) be such that

∫
Ωi

ηi(x) dx = 1. Define

f(x) = δ +

m∑
i=1

(αi − δ|Ωi|)ηi(x), x ∈ Ω.

Hence, f ∈ C∞(Ω), inf f > 0,
∫
Ωi

f(x) dx = αi for every i, and
∫
Ω
f(x) dx = |Ω|.

From Theorem 2.4 there exists a bi-Lipschitz homeomorphism u0 : Ω → Ω such that

detDu0 = f in Ω, u0(x) = x on ∂Ω.

Therefore,

|u0(Ωi)| =

∫
Ωi

detDu0(x) dx =

∫
Ωi

f(x) dx = αi, i = 1, . . . ,m;
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moreover, Lemma 2.3 implies that u0(Ωi) is an open set of class (L) for each i.
Proposition 6.2. Let Ω and Ωi, i = 1, . . . ,m, be as in Lemma 6.1. Suppose

that gi : Ωi → [c0,+∞), with c0 > 0, i = 1, . . . ,m, are Hölder continuous functions
satisfying

m∑
i=1

∫
Ωi

gi(x) dx = |Ω|.

Then there exists a Lipschitz continuous function u : Ω → Ω such that

u(x) = x on ∂Ω, detDu(x) = gi(x) ∀x ∈ Ωi ∀i = 1, . . . ,m.(6.3)

Proof. By Lemma 6.1 there exists a bi-Lipschitz homeomorphism u0 : Ω → Ω
such that

u0(x) = x on ∂Ω, |u0(Ωi)| =

∫
Ωi

gi(x) dx

and u0(Ωi) is of class (L) for each i = 1, . . . ,m. Moreover, f := detDu0 is of class
C∞(Ω) and inf f > 0. Since gi

f ◦ u−1
0 is Hölder continuous in u0(Ωi) and it satisfies∫

u0(Ωi)

gi
f

◦ u−1
0 (y) dy =

∫
Ωi

gi(x) dx = |u0(Ωi)|,

then from Theorem 2.4 there exists a bi-Lipschitz homeomorphism zi : u0(Ωi) →
u0(Ωi) such that {

det Dzi =
gi
f

◦ u−1
0 in u0(Ωi),

zi(y) = y on ∂u0(Ωi).

Thus, ui = zi ◦ u0 is a Lipschitz homeomorphism such that{
det Dui = gi in Ωi,
ui = u0 on ∂Ωi.

Hence, the Lipschitz continuous function u : Ω → Ω such that u(x) = ui(x) for every
x ∈ Ωi, i = 1, . . . ,m, satisfies (6.3).

We are in position to state an existence result for the nonpolyconvex problem
(6.1). The sets Ω+

λ , Ω−
λ , and Ω=

λ are defined in (5.3).
Theorem 6.3. Let Ω be a bounded open subset of RN with Lipschitz boundary

and let ϕ : Ω×(0,+∞) → [0,+∞) be a continuous function, differentiable with respect
to the last variable, Dtϕ ∈ C0,δ(Ω ×K), 0 < δ ≤ 1, for every compact K ⊂ (0,+∞).

Suppose that (A1)–(A4) hold and assume that, for every λ > λ0, Ω+
λ , Ω−

λ , and
int Ω=

λ are either empty or connected open sets with Lipschitz boundary. Then the
variational problem (6.1) has a Lipschitz continuous solution.

Proof. From Theorem 5.2, applied with a = |Ω|, there exist λa > λ0 and a solution
vλa to (4.1) with inf vλa > 0. Throughout we write v instead of vλa .

From Theorem 5.2 v is Hölder continuous in Ω+
λa

∪ Ω−
λa

. If int Ω=
λa

is empty, we

get the thesis applying Proposition 6.2 with Ω1 = Ω+
λa

, Ω2 = Ω−
λa

, and replacing g1

and g2 with the continuous extension of v to Ω+
λa

and to Ω−
λa

, respectively.



MINIMIZERS FOR POLYCONVEX AND NONPOLYCONVEX PROBLEMS 1385

If int Ω=
λa

is not empty, correspondingly to (v) of Theorem 5.2 we have to consider
three cases.

If v = α in Ω=
λa

, the thesis follows by applying Proposition 6.2 with m = 3,

choosing Ω1 = Ω+
λa

, Ω2 = Ω−
λa

, Ω3 = int Ω=
λa

, and replacing, as above, g1 and g2

with the continuous extension of v to Ω+
λa

and Ω−
λa

, respectively, and g3 with α.
Analogously, we proceed if v = β in Ω=

λa
, but defining g3 = β.

Now suppose that (5.4) holds. In this case the thesis follows by Proposition 6.2
choosing Ω1 = Ω+

λa
, Ω2 = Ω−

λa
, Ω3 = int Ω=

λa
\ ∪1≤j≤nBρj

(yj), Ω3+i = Bρi
(yi) for

every i = 1, . . . , n and g1 = v, g2 = v, g3 = β, g3+i = α, for every i = 1, . . . , n.

With obvious changes in the proof above, we get the following theorem.

Theorem 6.4. Let Ω and ϕ be as in Theorem 6.3. Suppose that (A1)–(A4) hold
and assume that for every λ > λ0,

Ω+
λ =

h⋃
i=1

Ai, Ω−
λ =

k⋃
i=h+1

Ai, int Ω=
λ =

l⋃
i=k+1

Ai(6.4)

with Ai either empty or pairwise disjoint open connected sets with Lipschitz boundary.
Then the variational problem (6.1) has a Lipschitz continuous solution.

Remark 6.5. The following are examples of sets Ω and functions h : Ω → R

such that for every λ ∈ R (6.4) holds with either empty or disjoint open sets {Ai}
with Lipschitz boundary:

(a) Ω is a bounded and convex set and h is strictly convex in Ω and constant on
∂Ω;

(b) Ω = B1(0) and h is a radial function, h(x) = h̃(|x|), with h̃ piecewise mono-
tone, i.e., there exists 0 = s0 < s1 < · · · < sm = 1 such that h̃|[si,si+1] is
monotone for all i.

7. Nonpolyconvex problems: Some special cases. In this section we con-
sider particular classes of the variational problem (6.1), where Ω is a bounded open
subset of RN with Lipschitz boundary and ϕ : Ω× (0,+∞) → [0,+∞) is a continuous
function satisfying (A1) and (A2). We begin considering the case of functions ϕ such
that h in (A2) is a constant. See [20] and [3] for related results.

Theorem 7.1. Let ϕ : Ω×(0,+∞) → [0,+∞) be a continuous function satisfying
(A1) and (A2) with h constant. If

∫
Ω
α(x) dx ≤ |Ω| ≤

∫
Ω
β(x) dx, then (6.1) has a

Lipschitz continuous solution.

Proof. Consider the auxiliary problem (4.1) with a = |Ω|. If
∫
Ω
α(x) dx is equal

to |Ω|, then α solves (4.1). Then from Theorem 2.4 there exists a Lipschitz homeo-
morphism u solution to (2.1) with f = α. Moreover, u is a solution of (6.1). The same
argument works if

∫
Ω
β(x) dx is equal to |Ω|. Of course in this case choose f = β.

Suppose
∫
Ω
α(x) dx < |Ω| <

∫
Ω
β(x) dx. Then using Lemma 5.1 with O = Ω,

we get that a Lipschitz continuous solution u to (4.1) exists with u ≡ α on pairwise
disjoint balls Bρj (yj) ⊂⊂ Ω, j = 1, . . . , n, and with u ≡ β outside these balls. The
thesis follows by Proposition 6.2 with m = n + 1, Ωj = Bρj (yj), and gj = α if
j = 1, . . . ,m− 1 and with Ωm = Ω \

⋃n
j=1 Bρj

(yj), gm = β.

Theorem 7.2. Let ϕ : Ω × (0,+∞) → [0,+∞) be a continuous function, differ-
entiable with respect to the last variable, Dtϕ ∈ C0,δ(Ω × K), 0 < δ ≤ 1, for every
compact K ⊂ (0,+∞). Suppose that (A1), (A2) with h constant, (A3), and (A4)
hold. If

∫
Ω
α(x) dx > |Ω| or

∫
Ω
β(x) dx < |Ω|, then (6.1) has a Lipschitz continuous

solution.
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Proof. Let a = |Ω|. From Theorem 5.2 there exist λa > λ0 and vλa
∈ L∞(Ω)

satisfying

vλa(x) ∈ (α(x), β(x)), Dtϕ
∗∗(x, vλa(x)) = λa,

∫
Ω

vλa(x) dx = |Ω|.(7.1)

(A1), (A2), and (A3) imply h = Dtϕ(x, α(x)) = Dtϕ(x, β(x)) and the definition
of {vλ} (see the proofs of Theorems 4.1 and 5.2) gives that λ < h if and only if
vλ(x) < α(x) for all x, λ > h if and only if vλ(x) > β(x) for all x. Therefore, if∫
Ω
α(x) dx > |Ω|, then λa < h and vλa(x) < α(x). Thus, using the notation in (5.3),

Ω+
λa

= Ω. Analogously, if
∫
Ω
β(x) dx < |Ω|, then λa > h and vλa(x) > β(x), so that

Ω−
λa

= Ω. Therefore, Theorem 5.2 implies that vλa
is Hölder continuous in Ω. A

Lipschitz continuous solution u to{
detDu = vλa

in Ω,
u(x) = x on ∂Ω ,

solution also to (6.1), exists because of Theorem 2.4.
In Propositions 7.3 and 7.4 we deal with a variant of functionals considered above,

precisely

(7.2)

min

{∫
Ω

Φ(x,detDu(x)) dx : u ∈ W 1,N (Ω,RN ), detDu > 0 a.e., u(x) = x on ∂Ω

}
with Φ(x, t) = ϕ(x, t) + f(x)t.

Proposition 7.3. Let Ω be a bounded open convex set in RN and let ϕ : Ω ×
(0,+∞) → [0,+∞) satisfy the assumptions of Theorem 7.2 with λ0 = −∞ in (A3).
Suppose that f : Ω → (0,+∞) is a strictly convex function, constant on ∂Ω. Then
there exists a Lipschitz solution to (7.2).

Proof. It is easy to see that Φ satisfies the assumptions of Theorem 6.3. Since
Φ∗∗(x, t) = ϕ∗∗(x, t) + f(x)t for every x ∈ Ω, then in (0, α(x)] and in [β(x),+∞) we
have that Φ(x, ·) = Φ∗∗(x, ·). Moreover, for every t ∈ [α(x), β(x)] it holds true that
Φ∗∗(x, t) = H(x)t + q(x) with H(x) := μ + f(x) and the superlevel, sublevel, and
level sets of H satisfy the assumptions in Theorem 6.3. (A3) implies that DtΦ(x, t) =
Dtϕ(x, t)+f(x) goes to −∞ as t → −∞ and goes to +∞ as t → +∞, uniformly with
respect to x. The thesis easily follows from Theorem 6.3.

From now on, Ω is the unit ball B in RN centered at the origin.
Proposition 7.4. Let ϕ : B × (0,+∞) → [0,+∞) satisfy the assumptions of

Theorem 7.2 with λ0 = −∞ in (A3). Let f ∈ C0,γ([0, 1]), 0 < γ ≤ 1, f(s) > 0 for
every s, f piecewise monotone. Then there exists a Lipschitz continuous solution to
(7.2) with Φ(x, t) = ϕ(x, t) + f(|x|)t.

Proof. Proceeding as in the proof of Proposition 7.3, the thesis easily follows from
Remark 6.5(b) and from Theorem 6.4 applied to Φ(x, t) = ϕ(x, t) + f(|x|)t.

Now, we deal with one more class of nonpolyconvex functionals, characterized by
an integrand ϕ with radial structure ϕ(x, t) = ϕ̃(|x|, t). Precisely, we deal with the
variational problem

(7.3)

min

{∫
B

ϕ̃(|x|,detDu(x)) dx : u ∈ W 1,N (B,RN ), detDu > 0 a.e., u(x) = x on ∂B

}
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and ϕ̃ : [0, 1) × (0,+∞) → [0,+∞) is a continuous function.
Theorem 7.5. Let ϕ̃ : [0, 1) × (0,+∞) → [0,+∞) be a continuous function

satisfying the following assumptions:
(i) there exist a, b ∈ L∞(0, 1), b(s) > a(s) > 0 for every s, inf a > 0, such

that ϕ̃(s, ·) and ϕ̃∗∗(s, ·) both coincide and are strictly convex in (0, a(s)] and
[b(s),+∞) for all s ∈ [0, 1);

(ii) ϕ̃∗∗(x, ·) is affine in [a(s), b(s)] for all s ∈ [0, 1);
(iii) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

D+
t ϕ̃(s, t) = λ0, lim

t→+∞
D−

t ϕ̃(s, t) = +∞, uniformly in s.

Then there exists a Lipschitz solution to (7.3).
Proof. Let us define ϕ(x, t) := ϕ̃(|x|, t) for every x ∈ B. Notice that ϕ∗∗(x, t) =

ϕ̃∗∗(|x|, t) and that assumptions (K1), (K2), and (K3) of Theorem 4.1 holds with
Ω = ΩA = B, α(x) = a(|x|), and β(x) = b(|x|). Let v ∈ L∞(B), inf v > 0, be
the radial solution of (4.1). It is a known fact (see, e.g., [15]) that there exists a
bi-Lipschitz solution u to (2.1) with f = v and Ω = B. Thus, u is a solution to (7.3),
too.

Appendix. Proof of Theorem 2.4. In the following we use the arguments of
the proof of Lemma 1 in [16] and the fact, proved in [18], that if Ω = (0, 1)N and f is
Hölder continuous, then there exists a bi-Lipschitz homeomorphism solution to (2.1).
We divide the proof into steps.

Step 1. Let Ω be a bounded open connected subset of RN of class (L). Thus,
there exist m open sets Ωj such that Ω ⊂ ∪jΩj and m bi-Lipschitz homeomorphisms
ψj : Σj → Q, with Σj = Ω ∩ Ωj and Q = (0, 1)N such that detDψj ∈ Lip(Σj) and
1
A < detDψj < A for some A ≥ 1. Consider a partition of unity {φj}mj=1 subordinate

to such a covering of Ω: {φj}mj=1 is a family of smooth and nonnegative functions,∑
j φj(x) = 1 for every x ∈ Ω and

suppφj ⊂⊂ Ωj ∀ j = 1, . . . ,m.(7.4)

Since Ω = ∪m
j=1Σj and Ω is connected, we can assume that for every k = 2, . . . ,m

there exists ρ(k) < k such that Σk ∩ Σρ(k) is not empty. Define the matrix (αhk),
1 ≤ h ≤ m, 2 ≤ k ≤ m,

αhk =

⎧⎨⎩
1 ifh = k,
−1 ifh = ρ(k),
0 else.

Each of the m − 1 columns contains exactly one pair +1, −1 so that
∑m

k=2 αhk = 0
for every h.

Define ηk ∈ C∞
c (Σk ∩ Σρ(k)) such that

∫
Ω
ηk(x) dx = 1. Let g ∈ C0,α(Ω) be such

that
∫
Ω
g(x) dx = 0. Define the Hölder continuous functions gh : Ω → R, 1 ≤ h ≤ m,

gh := gφh|Ω −
m∑

k=2

λkαhkηk,

where λ2, . . . , λm are real numbers solutions of the following system of m equations

m∑
k=2

λkαhk =

∫
Ω

gφh dx, h = 1, . . . ,m.(7.5)
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Since the rank of (αhk) is m−1 and both
∑m

h=1

∑m
k=2 λkαhk and

∑m
h=1

∫
Ω
gφh dx are

equal to 0, then system (7.5) is uniquely solvable.
We claim that supp gh ⊆ Σh. In fact supp φh|Ω ⊆ Σh and, since αhk = 0 if and

only if h = k or h = ρ(k),

suppλkαhkηk ⊂ Σk ∩ Σρ(k) ⊆ Σh

for every k = 2, . . . ,m. Moreover, from (7.5) there exists M > 0 depending on Ω,
{φj}j , and {ηj}j only such that sup |gh| ≤ M sup |g|.

Step 2. Let Ω, {Σj}j , {ψj}j , {φj}j , {ηj}j , m, and M be as above. Let f in
(2.1) be such that sup |f − 1| < m−1M−1. Define m Hölder continuous functions gh
reasoning as in the previous step with g replaced by f − 1. For every j = 1, . . . ,m+1
define fj : Ω → (0,+∞),

fj(x) :=

{
1 if j = 1,

1 +
∑j−1

h=1 gh(x) if j > 1.

In particular fm+1 = f . Notice that each fj is a Hölder continuous function, and
since sup |f − 1| < m−1M−1, then inf fj > 0. Fixed j = 1, . . . ,m, we have that

fj+1−fj = 0 in Ω \ Σj ,

∫
Ω

fj(x) dx = |Ω|,
∫

Σj

fj+1(x) dx =

∫
Σj

fj(x) dx.(7.6)

Define f∗
j , f

∗
j+1 : Q → (0,+∞),

f∗
j := fj

(
ψ−1
j

)
detDψ−1

j , f∗
j+1 := fj+1

(
ψ−1
j

)
detDψ−1

j ,

so that f∗
j , f

∗
j+1 ∈ C0,α(Q) and

∫
Q
f∗
j dx =

∫
Q
f∗
j+1 dx.

As proved in [18] there exist two bi-Lipschitz homeomorphisms vj , wj : Q → Q
solutions to⎧⎨⎩detDvj =

f∗
j∫

Q
f∗
j
dx

in Q,

vj(y) = y on ∂Q,
and

⎧⎨⎩detDwj =
f∗
j+1∫

Q
f∗
j
dx

in Q,

wj(y) = y on ∂Q,

respectively. Let us consider ϕj : Q → Q, ϕj(y) := (v−1
j ◦ wj)(y). Then

detDϕj(y) = detDv−1
j (wj(y)) detDwj(y) =

f∗
j+1(y)

f∗
j (ϕj(y))

∀ y ∈ Q

so that

fj
(
(ψ−1

j ◦ ϕj)(y)
)
detDψ−1

j (ϕj(y)) detDϕj(y) = fj+1

(
ψ−1
j (y)

)
detDψ−1

j (y) ∀y ∈ Q.

Using the invertibility of ψj the equality above implies that

fj(uj(x)) detDuj(x) = fj+1(x) ∀x ∈ Σj ,(7.7)

where uj : Σj → Σj is the Lipschitz continuous function defined as uj(x) := (ψ−1
j ◦

ϕj ◦ ψj)(x).
Since ϕj(ψj(x)) = ψj(x) for all x ∈ ∂Σj , we have that uj(x) = x for every

x ∈ ∂Σj . Then ũj : Ω → R, j = 1, . . . ,m,

ũj(x) :=

{
uj(x) if x ∈ Σj ,
x else
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is Lipschitz continuous and from (7.6) and (7.7)

fj(ũj(x)) detDũj(x) = fj+1(x) ∀x ∈ Ω.

Iterating this argument on j and recalling that f1 = 1 and fm+1 = f , we get that
ũ1 ◦ · · · ◦ ũm is a Lipschitz solution to (2.1).

Step 3. Now we suppose that f in (2.1) satisfies sup |f − 1| ≥ m−1M−1. There
exists c1 > 0 and 0 < t1 < 1 such that

∫
Ω
c1f

t1(x) dx = |Ω| and sup |c1f t1 − 1| <
m−1M−1. Applying the same arguments described in Step 2 to g := c1f

t1 − 1, we
obtain a Lipschitz function u1 satisfying (2.1) with f replaced by c1f

t1 . Applying
again this procedure to g := c2f

t2 − c1f
t1 , with a suitable choice of c2 and t2 in such

a way that t1 < t2 ≤ 1,
∫
Ω
c2f

t2 dx = |Ω| and sup |c2f t2 − c1f
t1 | < m−1M−1, we get

u2 Lipschitz solution to{
c1f

t1(u2)detDu2 = c2f
t2 in Ω,

u2(x) = x on ∂Ω.

Hence, u1 ◦ u2 solves (2.1) with f replaced by c2f
t2 . It can be proved that the

exponents {ti} can be chosen such that in finitely many steps, say n, we get tn = 1.
The existence of a Lipschitz continuous solution to (2.1) follows.
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ε-OPTIMAL BIDDING IN AN ELECTRICITY MARKET WITH
DISCONTINUOUS MARKET DISTRIBUTION FUNCTION∗

EDWARD J. ANDERSON† AND HUIFU XU‡

Abstract. This paper investigates the optimal bidding strategy (supply function) for a gen-
erator offering power into a wholesale electricity market. The model has three characteristics: the
uncertainties facing the generator are described by a single probability function, namely the market
distribution function; the supply function to be chosen is nondecreasing but need not be smooth;
the objective function is the expected profit which can be formulated as a Stieltjes integral along
the generator’s supply curve. In previous work the market distribution function has been assumed
smooth, but in practice this assumption may not be satisfied. This paper focuses on the case that
the market distribution function is not continuous, and hence an optimal supply function may not
exist. We consider a modified optimization problem and show the existence of an optimal solution
for this problem. Then we show constructively how such an optimum can be approximated with an
ε-optimal supply function by undercutting when the generator does not hold a hedging contract (and
possibly overcutting when the generator has a hedging contract). Our results substantially extend
previous work on the market distribution model.

Key words. electricity markets, discontinuous market distribution function, R-semicontinuity,
ε-optimal supply function

AMS subject classifications. 90C46, 65K10, 49K30
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1. Introduction. In recent years many countries have carried out substantial
restructuring of their electricity industries. Though each country has adopted its own
solution, the trend has been towards increased market mechanisms, particularly at
the wholesale level. It is important to understand the operation of these electricity
markets, and yet the special features that are characteristic of wholesale electricity
markets make this a challenging task.

We begin by sketching the fundamentals of the way that a wholesale market for
electricity works. Generators compete to supply electricity to users (primarily retailers
providing electricity to consumers). The price paid fluctuates as demand (and supply)
varies. The price is determined through a process that is a type of sealed bid auction.
In each time period each generator submits a bid, which we refer to as a supply
function S(p), which gives the quantity of electricity that the generator is willing to
supply for any price p (strictly, this is a price per megawatt hour and the quantity is
measured in megawatts). The supply function is increasing (not necessarily strictly)
and often has to satisfy other restrictions imposed by the market operator. The spot
price is determined from the combined supply functions of all the generators, and is
such that supply at the spot price is just sufficient to meet demand. In practice this
has to take account of the location of both the generators and the demand within the
network, but we will ignore location effects in this paper. A generator needs to decide
on the supply function to offer into the market in order to maximize profits. The
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demand at any time is uncertain and the offers of other generators are also unknown.

A number of authors have used equilibrium concepts to look at the operation
of an electricity market. An important set of papers is that by Green and Newbery
[8], Green [9], Newbery [12], and Green [7], in which they analyze the experience in
the pool market of England and Wales using the concept of an equilibrium in supply
functions (see Klemperer and Meyer [10]). The concept of supply function equilibria
has also been applied in this context by Rudkevich [13, 14], Anderson and Philpott
[1], and Baldick, Grant, and Kahn [5]. The equilibrium models usually assume the
smoothness or piecewise linearity of generators’ supply functions and consequently it
becomes relatively easy to find the optimal choice of strategy by a single generator.
However, this may not be the case when we allow general supply functions.

Some recent papers have looked in detail at the optimal strategy for a generator
offering power in an electricity spot market. The conclusions depend largely on the
models that are used to describe both the generator’s objective and constraints, and
the market mechanisms. Anderson and Philpott [2] study strategies for generators
making offers into an electricity market when either or both of the demand and the
offers of competing generators are stochastic. They introduce the market distribution
function and use it to describe the residual demand for a generator. The market
distribution function ψ is a function of price p and quantity q and the value ψ(q, p)
represents the probability that a generator is not fully dispatched if it offers a quantity
q of electricity at price p. The advantage of this approach is that in many circum-
stances a single function ψ(q, p) is enough to determine a generator’s expected profit
given any particular offer curve.

Anderson and Philpott [2] explore the problem of finding an offer curve that
maximizes the expected value of the profit made by an individual generator. The
offer curve is simply a monotonic continuous curve in the two-dimensional (quantity,
price) space. This curve need not be smooth; indeed, in practice it will often take the
form of a series of steps. Anderson and Philpott show that the problem of maximizing
expected profit is, in some circumstances, equivalent to maximizing a line integral
along the offer curve of the market distribution function and they derive necessary
conditions for a supply offer curve to be optimal. Anderson and Xu [4] study the
same model and extend the analysis to include necessary conditions of a higher order
in the presence of horizontal and/or vertical sections in an offer curve. They also
derive sufficient conditions for an offer curve to be locally optimal. Neame, Philpott,
and Pritchard [11] use Anderson and Philpott’s model to study a generator’s optimal
choice of supply offer curve under the assumption that the generator is a price taker.

All of this work has been carried out under the assumption that the market
distribution function ψ(q, p) is continuously differentiable in both price p and quantity
q. In this paper we address the problem of finding optimal offer strategies when ψ
may be discontinuous in price.

In many electricity wholesale markets, a generator’s offer curve consists of a finite
number of steps. For instance, in Australia generator bids are restricted to have no
more than ten prices. We can model a generator’s offer strategy as a step function of
price. In this case the market clearing price will not have a continuous distribution;
instead, the distribution of clearing price will be concentrated at certain prices. The
consequence of this is that the market distribution function will be discontinuous at
these prices. The probability of not being fully dispatched if an offer is made of a
quantity q at a price p (i.e., the value of ψ) will increase discontinuously as the price
moves from just below the offer of another generator to the same price as the other
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generator, when the dispatch will be shared between the two generators. In fact this
discontinuity happens in both directions of price movement, since as the price moves
from being the same as the other generator to just above this level, there is another
discontinuous jump in the probability of not being fully dispatched. Previous work in
this area has generally made the assumption that the market has a large number of
participants, with offer prices well diversified, and so the market distribution function
for a generator is nearly continuous and can be approximated with a continuous
function.

In this paper we look in more detail at what happens with a discontinuous market
distribution function. In the most natural models for this, the existence of an optimal
solution for a generator will not be guaranteed (and indeed will occur only rarely).
The lack of an optimal solution just reflects the actual difficulty associated with un-
dercutting that can occur in practice. Suppose we know that another generator is
offering power at $30 per MWh, and we have to choose our best offer curve. For ex-
ample, we might suppose that the other generator is nonstrategic and always submits
the same offer. Power we offer at any price up to $30 will be used in preference to the
other generator, power at $30 will involve a sharing out of the demand between us
and the other generator, and power offered at any price higher than $30 will be dis-
patched only when the power from the other generator is insufficient to meet demand.
This leads to a profit function that is discontinuous in price (in both directions) if
we choose to offer power at a single price. A typical good solution to this problem
involves offering some power at a price just below the $30 mark. The closer to $30 the
better for us, but the price must remain below $30 in order to avoid having to share
dispatch. In other words, as we indicated, there is no optimal solution unless we take
explicit account of the discretization that may be forced on us by market rules such
as, for example, the restriction that we use whole numbers of cents as prices.

In theory at least, this type of undercutting behavior, when translated into the
framework of a Nash equilibrium, with different generators all engaged in the same
process, will lead to very competitive outcomes as generators repeatedly lower their
offer prices towards their true marginal costs. This is essentially the same kind of
argument that gives rise to low consumer prices in the Bertrand equilibrium of classical
microeconomics. But it can be argued that this is misleading, since markets usually
operate in the form of a sealed bid auction, with participants unaware of the bids of
other generators. This leads to the possibility of less competitive outcomes through
the use of strategies which randomize over the prices offered (see von der Fehr and
Harbord [15]).

In this paper, however, we will not discuss equilibrium solutions. Instead we
seek to characterize solutions which approach optimality in the undercutting case. In
practice it is not unusual for a generator to know the prices at which one or more of the
other generators will offer power. For example, there may be nonstrategic generators
who offer some quantity of energy at fixed prices which do not vary from day to day. It
may be surprising that this occurs, since it is clear that this policy will not in general
be optimal for the nonstrategic generator. One explanation is that more complex
randomized policies may offer only a limited improvement in profit. As a concrete
example of this behavior, consider the Australian market, in which a single generation
unit offers power at 10 different price points, set for a 24-hour period (with quantities
offered at each price point set separately for each half-hour). These price points are
not usually varied from one day to the next; moreover, complete information on all
bids is freely available one day after the event (see the web site www.nemmco.com).
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For example, power from the Bayswater (coal-fired) power station in New South Wales
is offered at a number of price points, but these have included the price $22.89 for
many months on end.

In order to deal with the undercutting behavior, our approach is to alter the
model to ensure that the limit of undercutting solutions is a solution with the limiting
value. The fundamental idea is to suppose that the generator we are interested in has
automatic priority of dispatch when there are other generators offering at the same
price. This will ensure that the market distribution function has sufficient continuity
properties to guarantee that there will be an optimal solution. Though the exact
optimal value is unachievable, the generator can operate in a way that gets as close
as it likes to this value. From a practical point of view, establishing the supremum
value, and the limiting solution which achieves this, is useful since it enables the
generator to find a good solution near the limit, and also bounds the opportunity cost
of accepting a suboptimal outcome. In practice market rules imply further restrictions
on bids offered, but knowledge of the best possible limit solution will help to guide
the selection of a suitable bidding policy.

There is another complication we need to consider. In most cases a generator will
have hedging contracts for a significant part of its output. As we shall see, this can
have the effect of reversing some of the incentives for the generator. If the generator
has contracted for a larger quantity than will actually be dispatched in a certain
period, then the generator will benefit from lower prices. The consequence is that,
in this case, it will usually be optimal to “overcut” another generator’s offer. Hence,
to use the same example as above, if another generator has offered some quantity at
$30 per MWh, then we could well decide to make an offer of some amount of power a
little above this level (and the closer to $30 the better). In the case that offers have
to be made in whole numbers of cents this would lead to an offer at $30.01.

We can summarize this paper as follows. We first demonstrate the existence of
an optimal solution for a modified problem (section 2). The modified problem differs
from the original problem through the method used to determine the sharing of dis-
patch when two generators offer power at the same price: essentially, the optimizing
generator is given the ability to choose its best sharing rule. Care is needed in de-
termining the precise form of the objective function in these circumstances (Theorem
2.9) and in establishing the appropriate form of continuity in order to show the exis-
tence result (Lemma 2.7). Then we explore the necessary conditions for an optimal
solution to this modified problem (section 3). Next we show how to use an optimal
solution for the modified problem to generate an ε-optimal solution for the original
problem (section 4). Finally, we illustrate all this with an example (section 5).

2. Problem formulation and fundamentals. In this section we will introduce
some notation and formulate the problem that we shall consider.

We consider the behavior of a single generator, which we call A, and we let R(q, p)
be the profit for generator A if it is dispatched q at a clearing price p. Usually R(q, p)
has three components. First there is the cost, C(q), of generating a quantity q of
electricity, which is often taken to be an increasing convex function. Second there is
the money, pq, paid to the generator through the market clearing mechanism. Finally,
we must also consider the hedging contracts entered into by the generator. These are
financial instruments which do not involve the actual generation of electricity; the
money paid under the contract is tied to the pool price. If the generator enters into
a contract at a strike price f for a quantity Q, and the actual spot price is p, then
the generator will pay an amount Q(p − f) to the other party in the contract. The
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contracts we consider are two-way contracts for differences, so if the spot price is lower
than the contract strike price, then the generator will receive an amount Q(f − p).
Contracts of this sort are a common feature of electricity markets operating with a
“pool” structure in which prices for all traded electricity are determined through a
combined pricing and dispatch mechanism (such as the markets operating in Australia
and New Zealand and the old pool arrangements in England and Wales). Note that
this is a different environment than that of markets which are based on bilateral
contracts, such as in the new trading arrangements in England and Wales.

Thus we arrive at the following expression for the profit to generator A as a
function of spot price p and dispatched quantity q:

R(q, p) = pq − C(q) + Q(f − p).(2.1)

We will not assume any particular functional form for the function R. However,
throughout this paper we will assume that R has continuous bounded partial deriva-
tives, Rq and Rp, and is strictly concave in q for fixed p. Thus we have Rq(·, p)
strictly decreasing for each fixed p. In the case that (2.1) holds, this assumption will
be satisfied provided that the marginal cost of generation is strictly increasing, since
Rq(q, p) = p− C ′(q).

Next we consider the market dispatch mechanism. We will restrict attention to
the case where there is a single node. We consider this from the point of view of
generator A. We model the sequence of events in this way. First generator A submits
a supply function SA(p), which gives the total amount of power that generator A is
prepared to supply as a function of the price p. Then all the other generators submit
their supply functions, which we collectively write as SB(p)—this is the total amount
of power that all the other generators are prepared to supply as a function of price.
We take both SA and SB as right-continuous increasing functions (not necessarily
strictly increasing). Where there is a discontinuity in SA, a jump up occurs at a
certain price p, and this corresponds to a certain quantity of power being offered at p
and all available at that price. Hence right-continuity is a natural assumption here.

Finally, a demand occurs, where demand at this node is given by a function D(p)
of price. We suppose that from the point of view of generator A, both SB(p) and D(p)
are uncertain and must be modeled as stochastic. The market clears at the lowest
price p for which SA(p) + SB(p) ≥ D(p).

In the model we are considering, which corresponds to the most common type of
pool market, all generators are paid this clearing price for all the electricity that they
are dispatched. This is a type of uniform price auction mechanism. There are other
(discriminatory) auction price mechanisms that have been proposed.

Throughout this paper, we assume that a generator’s supply function (or equiv-
alently supply curve) is nondecreasing. It can be step-like or strictly increasing, or
both. Rather than dealing with a supply function SA(·) directly, it is convenient to
model the offer using a continuous curve s = {(q̂(τ), p̂(τ)), 0 ≤ τ ≤ T}, in which the
components q̂(τ) and p̂(τ) are continuous monotonic increasing function of τ , and
q̂(τ) and p̂(τ) trace, respectively, the quantity and price components. Without loss
of generality we may take q̂(0) = p̂(0) = 0 and p̂(T ) ≤ pM , where pM is a bound on
the price of any offer. It is quite common for electricity markets to have a cap on
prices; for example, this is $10,000 per MWh in Australia. We also assume that qM
is a bound on the generation capacity of generator A, and thus q̂(T ) ≤ qM .

In all markets there are restrictions on the form of offers made into the market;
we have already mentioned the need for offers to consist of step functions in many
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cases. But in this paper we will not include any constraints on the form of offers. Our
perspective is that a generator which has a specific optimal offer curve will usually
be able to approximate this within the rules of the market. Owners of generators will
often be offering power from more than one generation set in a coordinated way, and
this can also increase their flexibility.

We use a single market distribution function ψ(q, p) to describe the uncertainty in
the market. Following Anderson and Philpott [2], ψ(q, p) is defined as the probability
of generator A not being fully dispatched if it offers an amount of generation q at a
price p. Different generators will have different market distribution functions, but we
just write ψ rather than ψA for this function. It turns out that when ψ(q, p) is contin-
uous, knowledge of the single function ψ is enough to determine the expected profit
for a generator. When ψ is continuous, Anderson and Philpott [2] have demonstrated
that the expected profit if a generator offers in a supply curve s can be expressed as
a Stieltjes integral along the line s:

v(s) =

∫
s

R(q, p) dψ(q, p).(2.2)

The generator’s aim is to choose an optimal supply curve s so that v(s) is maximized.
Note that the market distribution function ψ is assumed to be known. Anderson and
Philpott [3] have proposed a Bayesian inference method to estimate ψ given data on
the market behavior in previous days. Note that although the setting is a stochastic
one, this formulation of the problem of maximizing expected profit has converted the
objective function into a deterministic optimization problem.

When the function ψ is discontinuous we need a different form of the fundamental
relationship (2.2), and this will be derived in Theorem 2.9 below.

2.1. Discontinuous ψ function. Previous work in this area has assumed that
the market distribution function is continuous. In this paper, rather than requiring
ψ to be continuous, we assume that ψ may be discontinuous at a finite number of
prices. Since ψ is a type of probability distribution function, a discontinuity in its
value corresponds to a single price at which there is a jump in the probability of
being fully dispatched. For this to occur two things have to happen. First some other
generator has to make an offer which contains a “step,” a distinct tranche of energy at
a given price, and second this price has to be determined in advance (in other words,
it cannot be drawn from a continuous distribution). The first condition may be met
because of market rules which only allow step function offers, but for a discontinuity
in ψ it is also necessary to be able to predict the prices at which other generators
make offers.

We illustrate this with an example.
Example 2.1. Suppose that just two generators A and B are offering power into

the spot market. Generator B is nonstrategic: its offer does not vary and is known in
advance from previous market data. Thus the only uncertainty is in relation to the
level of demand. Suppose that the generator B offers 200 MW at a price of $10 per
MWh, 300 MW at a price of $14, and 300 MW at a price of $18. Thus generator B’s
supply function is

SB(p) =

⎧⎪⎪⎨⎪⎪⎩
0 for 0 ≤ p < 10,

200 for 10 ≤ p < 14,
500 for 14 ≤ p < 18,
800 for p ≥ 18.
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Consider generator A offering 100 MW at price $10 per MWh. We suppose that
demand, which can be a function of price, is uncertain. If the market clears at price
$10 with a total demand of 300 MW, then all the power offered at this price is
dispatched. However, if the demand is below 300 MW at price $10, then market rules
will impose some sharing of dispatch should the market clear at this price. Suppose
that the market rules share dispatch proportionately to the quantity offered at that
price, so that one third of demand is met from generator A and two thirds from
generator B. Thus neither of the generators gets fully dispatched at price $10. On the
other hand, if generator A offers 100 MW at price $10− ε, where ε > 0 is small, then
it is fully dispatched provided that the demand at price $10 is greater than or equal
to 100 MW. Therefore the probability of not being fully dispatched if generator A
offers at price $10 with a quantity of 100 MW is strictly greater than the probability
of not being fully dispatched if A offers at price $10 − ε with a quantity of 100 MW;
i.e.,

lim
ε↓0

ψ(100, 10 − ε) < ψ(100, 10).

This example motivates us to consider discontinuities in the functions SB(p). We
write P for the entire set of prices at which the other generators may make significant
offers, and hence at which there may be discontinuities in SB(p). Let P≡ {p1, . . . , pn},
where 0 < p1 < · · · pn ≤ pM . We assume that the prices in P are known in advance.

For clarity we write ω1 ∈ Ω1 for the realizations of the demand, and ω2 ∈ Ω2

for realizations of the other generator offers. More formally, we assume a probability
space (Ω1×Ω2,F ,Pr). The demand need not be independent of other generator offers.
We shall assume that for every realization ω1, the demand, D(p, ω1), is a continuously
differentiable decreasing function of p. Moreover we assume that for every realization
ω2, the total of the other generator offers, SB(p, ω2), is a continuously differentiable
increasing function of p except at points in P. We will normally omit the explicit
dependence on ω1 and ω2, and write D(p) and SB(p).

Observe that in any realization (of demand and other generator offers) for which
D(p) < q + limε↓0 SB(p− ε), an offer of q at price p cannot be fully dispatched (since
if it were fully dispatched, then the price is at least p and so the other generators
would be dispatched at least limε→0 SB(p− ε), giving a contradiction). Hence

ψ(q, p) ≥ Pr(D(p) < q + lim
ε↓0

SB(p− ε)).(2.3)

If p /∈P, then for every realization of other generator offers limε↓0 SB(p− ε) = SB(p)
and thus ψ(q, p) ≥ Pr(D(p) < q + SB(p)).

On the other hand, in any realization for which an offer of q at price p is not
fully dispatched we can show that D(p) < q + limε↓0 SB(p+ ε) (since in this case the
clearing price is p or less, and so the maximum quantity dispatched from the other
generators is limε↓0 SB(p + ε)). Thus

ψ(q, p) ≤ Pr(D(p) < q + lim
ε↓0

SB(p + ε))(2.4)

and ψ(q, p) ≤ Pr(D(p) < q + SB(p)) when p /∈P. Hence, except at points of disconti-
nuity in SB ,

ψ(q, p) = Pr(D(p) < q + SB(p)).(2.5)
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We may use this as a definition of ψ(q, p) for p /∈P, but for p ∈P the value of ψ
depends on the sharing rule.

Since in any realization of demand and other generator offers in which D(p) <
q+SB(p) the same inequality holds for any higher value of p or q, we can deduce that
ψ(q, p) is increasing in both its arguments at prices p /∈P. Moreover we can use (2.3)
and (2.4) to show that ψ(q, p) is also increasing in p at prices p ∈P.

Note that since ψ is monotonic increasing in p and bounded, the two limits
limδ↓0 ψ(q, pj + δ) and limδ↓0 ψ(q, pj − δ) will both exist. For convenience, we will
use the following notation: for j = 1, . . . , n,

ψ+(q, pj) = lim
δ↓0

ψ(q, pj + δ),

ψ−(q, pj) = lim
δ↓0

ψ(q, pj − δ),

Φ(q, pj) ≡ ψ+(q, pj) − ψ−(q, pj).(2.6)

Thus Φ(q, pj) is the jump in the probability of dispatch that takes place if the generator
offers an amount q at a price just below pj in comparison with what happens if the
price is increased to be just above pj .

It is important to consider the expected return for a generator offering a curve
s when the market distribution function is discontinuous: in the continuous case we
have the expression (2.2). In general we would expect to have, in addition to an
integral, a sum of discrete values R(q, p) at points (q, p) on s at which there is a jump
in the value of ψ. This is indeed what happens when the curve s is strictly increasing.
We will show later that if we define qj(s) as the point at which the curve s crosses
the discontinuity pj , then

v(s) =

∫
sC

R(q, p) dψ(q, p) +

n∑
j=1

R(qj(s), pj)Φ(qj(s), pj),(2.7)

where sC is the part of curve s excluding the points (qj(s), pj). However, when the
curve s has a horizontal section at one of the prices pj , things are more complex.

2.2. Sharing rules. If we suppose that the generator is offering power at the
same price pj as another generator, then we cannot calculate the expected profit
without knowledge of the market rules concerning the sharing of dispatch between
two generators offering at the same price. Moreover, the value of ψ at pj gives just the
probability of complete dispatch, whereas the sharing rules imply more information
than this. Specifically the values of ψ might not be enough to determine a generator’s
expected profit. It may be that two different sharing rules give the same ψ values
but different expected profit. To illustrate this we return to Example 2.1.

Example 2.2. Suppose as before that generator B offers 200 MW at price $10
and 300 MW at $14, while generator A offers 100 MW at $10. Suppose that sharing
of dispatch between two generators offering at the same price is proportional to the
offers made at that price. Suppose now that generator A has costs of $8 per MWh and
demand is uniformly distributed between 0 MW and 500 MW. Thus with probability
0.4 demand is greater than 300 MW, the market clears at $14, and the profit to
generator A is $600 per hour. On the other hand, with probability 0.6 the market
will clear at $10 and generator A will be only partially dispatched. It is not hard to
see that the total expected profit per hour is given by

v = 0.6

∫ 100

0

2
x

100
dx + 0.4 × 600 = 300.
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Consider now a sharing rule which gives priority to generator B. In this case with
probability 0.4 the demand is less than 200 MW and generator A is not dispatched
at all (while generator B is partially dispatched). We have the following expression
for expected profit:

v = 0.2

∫ 100

0

2
x

100
dx + 0.4 × 600 = 260.

Notice that in this second case, too, generator A is not fully dispatched unless demand
is greater than 300 MW. So both these sharing rules have the same value for ψ(100, 10),
which is the probability of generator A not being fully dispatched with this offer.
Indeed the two rules will give the same value of ψ(q, 10) for any value of q.

In order to make further progress we need to consider specific sharing rules. We
will write v(s,L) for the expected profit when an offer curve of s is used together with
market sharing rules defined by L. We will investigate the particular choice of sharing
rule which is best for generator A.

Suppose that generator A uses the supply function SA(p) and the other generators
use the supply function SB(p). We write SB(p−) for the limit limε↓0 SB(p − ε) and
SA(p−) for the limit limε↓0 SA(p− ε).

We are interested in the sharing rule to be applied when the market clears at
price pj . The market clears at this price if and only if D(pj) satisfies

SA(pj−) + SB(pj−) ≤ D(pj) ≤ SA(pj) + SB(pj).(2.8)

A sharing rule L is any method for determining the dispatch quantity γA(L) for
generator A in this case. Though this is not made explicit in the notation, the sharing
rule is applied at a particular price pj ; and in general we need to define a sharing rule
for each price p ∈P. Notice that γA(L) is a function of the demand, but we suppress
this dependence in the notation.

A feasible sharing rule has to satisfy the following inequalities:

SA(pj−) ≤ γA(L) ≤ SA(pj),(2.9)

SB(pj−) ≤ D(pj) − γA(L) ≤ SB(pj).(2.10)

The right-hand inequalities correspond to the restriction that no generator can be
dispatched more than it offers at price pj . The left-hand inequalities correspond
to the restriction that any power offered at prices less than pj must be completely
dispatched.

More generally, we can make the following definition.
Definition 2.3. Let the market clear at price p ∈ (0, pM ), and thus

SA(p−) + SB(p−) ≤ D(p) ≤ SA(p) + SB(p).

Then L is a feasible sharing rule if it determines uniquely the respective dispatch
quantities γA ∈ [SA(p−), SA(p)] for generator A, and γB ∈ [SB(p−), SB(p)] for the
other generators, such that

γA + γB = D(p).

Notice that unless two generators both offer power at the price p there will only
be one possible choice for γA and γB . Thus the only prices at which the sharing rule
needs to be defined are pj , j = 1, 2, . . . , n.
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We let q∗(pj) be the value of q at which R(q, pj) achieves its maximum over [0, qM ].
Our assumptions on R imply that this is unique. We have q∗(pj) = 0 if Rq(0, p

j) < 0,
q∗(pj) = qM if Rq(qM , pj) > 0, and Rq(q

∗(pj), pj) = 0 otherwise. Notice that q∗(pj)
is not affected by any hedging contracts.

Now we define the sharing rule L∗ as follows. Let

qj =

⎧⎨⎩
SA(pj) if SA(pj) < q∗(pj),

q∗(pj) if SA(pj−) ≤ q∗(pj) ≤ SA(pj),

SA(pj−) if q∗(pj) < SA(pj−).

It is easy to see that qj maximizes R(q, pj) subject to SA(pj−) ≤ q ≤ SA(pj).
Since we also require that (2.10) be satisfied, we define the dispatch amount γA from
generator A under L∗ (when the price is pj) as

γA(L∗) =

⎧⎨⎩ (a) D(pj) − SB(pj−) if D(pj) − SB(pj−) < qj ,
(b) D(pj) − SB(pj) if D(pj) − SB(pj) > qj ,
(c) qj otherwise.

The lemma below demonstrates that L∗ is the best choice of sharing rule for
generator A, in the sense that no other sharing rule will produce such a large profit
for A.

Lemma 2.4. L∗ is a feasible sharing rule, and v(s,L∗) ≥ v(s,L) for every feasible
sharing rule L.

Proof. We consider the profit when the clearing price is pj ∈ P, since if the
clearing price is not in P no sharing rule will be needed. We write IA for the interval
[SA(pj−), SA(pj)] and IB for the interval [D(pj)−SB(pj), D(pj)−SB(pj−)]. The length
of interval IA is the offer from A at price pj , while IB is the range of possible residual
demand for A at this price. Therefore a feasible sharing rule has γA in both IA and
IB .

We wish to establish that γA is the unique optimal solution to

max
q∈IA∩IB

R(q, pj).(2.11)

From (2.8) we observe that IA and IB will overlap, so the feasible set for the maxi-
mization problem is nonempty. Observe also that qj is the unique optimal solution
to the problem

max
q∈IA

R(q, pj),

which implies that, within interval IA, R(·, pj) is strictly increasing for q ≤ qj and
strictly decreasing for q > qj .

We consider the three cases in the definition of γA(L∗). In case (a) qj falls to
the right of the interval IB , hence the right end point of IB , D(pj) − SB(pj−), is the
optimal solution of (2.11). Similarly in case (b) qj falls to the left of the interval
IB , and hence the left-hand end point of interval IB , D(pj) − SB(pj), is the optimal
solution of (2.11). In case (c) qj is in IB and is therefore the optimal solution of
(2.11). This shows γA(L∗) is the optimal solution of (2.11).

2.3. R-semicontinuous ψ function. We need to define a specific type of dis-
continuity behavior for the function ψ. In fact, at some points in the (q, p) plane we
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need ψ to be continuous from above, and at other points to be continuous from below,
depending on the characteristics of the function R.

Definition 2.5. Suppose that the market distribution function ψ(q, p) is contin-
uous at all prices p /∈ P. ψ is called R-semicontinuous if ψ−(q, pj) = ψ(q, pj) when
Rq(q, p

j) ≥ 0 and ψ+(q, pj) = ψ(q, pj) when Rq(q, p
j) < 0, j = 1, . . . , n.

With the form of profit function given in (2.1) we can see that an R-semicontinuous
market distribution function will have the property of being continuous from below
(in the (q, p) plane) when p > C ′(q), and will be continuous from above when the
reverse inequality holds. We will show that ψ will be R-semicontinuous when the
sharing rule L∗ is applied.

Though we have assumed that both demand and other generator offers are well
behaved in any given realization, we also need to have the realizations of demand and
offers in some sense continuously distributed through the appropriate spaces.

Assumption 2.6 (continuity). The function q �−→ Pr(D(p) < q + SB(p)) is
continuous on [0, qM ], and the function q �−→ Pr(D(p) < q + SB(p)) is continuous on
[0, pM ]\P .

This assumption implies, from (2.5), that ψ(q, p) is continuous at all prices p /∈ P.
Lemma 2.7. Under Assumption 2.6, if the sharing rule L∗ is used, then the

market distribution function ψ is R-semicontinuous.
Proof. We consider an offer of an amount q by generator A at a price pj , where

ψ(q, ·) is discontinuous. We suppose that there is no other offer by generator A. Thus
SA(pj) = q and SA(pj−) = 0.

Suppose first that Rq(q, p
j) ≥ 0, so q ≤ q∗(pj). From the definition of qj , we

have qj = q, thus L∗ will choose to dispatch an amount q, if this is possible when the
constraints due to the demand realization are considered.

Recall that ψ(q, pj) is defined as the probability of not being fully dispatched when
A makes an offer of q at pj . Under L∗, the probability of not being fully dispatched
is the probability of either the market clearing at a price below pj or clearing at price
pj but D(pj) − SB(pj−) < q, which means generator B’s offer at pj is not dispatched
at all, and the residual demand for generator A falls below q. In this case A gets
dispatched D(pj) − SB(pj−). This is exactly the case (a) in the definition of γA(L∗).

Define the event

H = {(ω1, ω2) : D(pj , ω1) < q + SB(pj−, ω2)}.

Then

ψ(q, pj) = Pr(H).

In what follows, we show ψ(q, ·) is continuous at p = pj from below. We write Gε for
the event that an offer of q at price pj − ε is not fully dispatched; i.e.,

Gε = {(ω1, ω2) : D(pj − ε, ω1) < q + SB(pj − ε, ω2)}.

Then the Gε are monotonically increasing sets as ε decreases to zero, with, say, a
limit G. D is a continuous function of p in each realization, and so if (ω1, ω2) ∈ H,
then for some choice of ε0 > 0, D(pj − ε, ω1) < q + SB(pj − ε, ω2) for 0 < ε < ε0.
Therefore H ⊂ G. From the axioms of probability, Pr(G) = limε→0 Pr(Gε). Thus
ψ(q, pj) ≤ limε→0 ψ(q, pj − ε). But since ψ is increasing in p, there must be equality
here, i.e., ψ−(q, pj) = ψ(q, pj), as required.

Now consider the case that Rq(q, p
j) < 0 and we show ψ(q, ·) is continuous at

p = pj from above.
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In this case q > q∗(pj). The probability of not being fully dispatched under L∗ is
the probability of either the market clearing at a price below pj or of clearing at pj

with D(pj) − SB(pj) < q. Thus ψ(q, pj) = Pr(J) where

J = {(ω1, ω2) : D(pj , ω1) < q + SB(pj , ω2)}.

We write Fε for the event that an offer of q at price pj + ε is not fully dispatched.
Then Fε is monotonically decreasing as ε decreases to zero, with a limit F , say. So
every realization in F is in every Fε for ε < ε0, where ε0 depends on the realization;
i.e., for every (ω1, ω2) ∈ F , D(pj + ε, ω1) < q + SB(pj + ε, ω2) for ε > 0. Thus from
the continuity of D and SB , F ⊂ {(ω1, ω2) : D(pj , ω1) ≤ q + SB(pj , ω2)}. Thus from
Assumption 2.6

Pr(F ) ≤ Pr((ω1, ω2) : D(pj , ω1) ≤ q + SB(pj , ω2))

= Pr((ω1, ω2) : D(pj , ω1) < q + SB(pj , ω2)) = ψ(q, pj).

Now, since limε→0 Pr(Fε) = Pr(F ), we have established that ψ+(q, pj) ≤ ψ(q, pj),
and the monotonicity of ψ shows that these are equal.

The reverse implication does not hold: we can have an R-semicontinuous ψ with-
out using the sharing rule L∗.

2.4. Expected profit. We let Ψ = {(q, p) : 0 < ψ(q, p) < 1}. In line with
Definition 2.5, we can divide Ψ into two regions Ψ+ and Ψ−, where

Ψ+ = {(q, p) ∈ Ψ : Rq(q, p) ≥ 0}, Ψ− = {(q, p) ∈ Ψ : Rq(q, p) < 0}.

In the case that ψ is R-semicontinuous, to calculate the expected profit from a supply
curve s when it has a segment on the horizontal line {(q, pj) : q ∈ [0, qM ]}, we need to
think of it as part of the region below that line in the set Ψ+ and part of the region
above that line in the set Ψ−. This motivates the following definitions:

Ψj = {(q, p) ∈ Ψ : 0 ≤ q ≤ qM , pj−1 < p < pj} ∪ {(q, pj) ∈ Ψ+}
∪{(q, pj−1) ∈ Ψ−}, j = 2, . . . , n,

Ψ1 = {(q, p) ∈ Ψ : 0 ≤ q ≤ qM , 0 ≤ p < p1} ∪ {(q, p1) ∈ Ψ+},
Ψn+1 = {(q, p) ∈ Ψ : 0 ≤ q ≤ qM , pn < p ≤ pM} ∪ {(q, pn) ∈ Ψ−},

sj = s∩Ψj .

It is not hard to see that the values qj which we introduced in relation to the
sharing rule L∗ also define the points at which an offer curve s moves from Ψj to
Ψj+1. Thus, writing qj as a function of s,

qj(s) = sup{q : (q, pj) ∈ sj}

for j = 1, . . . , n. From the monotonicity of the offer curve s, and because Rq is
decreasing, we can also write

qj(s) = inf{q : (q, pj) ∈ sj+1}.

Under the assumptions of Lemma 2.7, we can take ψ as R-semicontinuous and
made up from a number of different pieces ψj , where ψj is defined on the interval
between pj−1 and pj and is well behaved on that interval. Thus we let

ψj(q, p) =

⎧⎨⎩
ψ+(q, pj−1) for p = pj−1,
ψ(q, p) for pj−1 < p < pj ,
ψ−(q, pj) for p = pj
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for j = 2, . . . , n, and

ψ1(q, p) =

{
ψ(q, p) for 0 ≤ p < p1,
ψ−(q, p1) for p = p1,

ψn+1(q, p) =

{
ψ+(q, pn) for p = pn,
ψ(q, p) for pn < p ≤ pM .

We need to make an assumption on the behavior of the function ψ.
Assumption 2.8 (continuous differentiability). ψ(q, p) is continuously differen-

tiable for p /∈ P and each ψj can be extended to a continuously differentiable function
on an open set W j which contains the closure of the set Ψj .

Theorem 2.9. Suppose that a generator offers a curve s and Assumptions 2.6
and 2.8 are satisfied. If sharing rule L∗ is used, then the expected profit for the
generator is

v(s) =

n+1∑
j=1

∫
sj
R(q, p) dψj(q, p) +

n∑
j=1

R(qj(s), pj)Φ(qj(s), pj),(2.12)

where Φ is defined in (2.6).
Proof. To simplify our presentation we prove the theorem for n = 1 with just

one price discontinuity at p1. The case with n > 1 can be dealt with similarly. We
suppose that generator A uses an offer curve s which we take as s ={(x(τ), y(τ))} in
parameter form.

We write γA for the dispatch quantity from generator A given the offer curve s.
We start by showing that ψ(x(τ), y(τ)) is the probability that γA is less than x(τ). In
the case that ψ is continuous in a neighborhood of (x(τ), y(τ)), this is straightforward
and is implicitly established in [2]. But when y(τ) = p1 we need to be more careful.
Observe that from the definition of L∗, if x(τ) < q1, then

Pr(γA < x(τ)) = Pr(D(p1) − SB(p1
−) < x(τ)).

But the probability of an offer of x(τ) at price p1 is not fully dispatched under L∗

with the same probability. Hence Pr(γA < x(τ)) = ψ(x(τ), y(τ)) as required. The
case when x(τ) ≥ q1 can be dealt with similarly.

We let τ1 be such that y(τ1) = p1 and x(τ1) = q1. We consider the expected
profit on a segment, sδ ≡ {(x(τ), y(τ)) : τ1 − δ < τ ≤ τ1 + δ}, of curve s. From our
observation on ψ(x(τ), y(τ)) we know that the probability that the market clears at
a price p and quantity q on the offer curve in the segment sδ is given by ψ(x(τ1 +
δ), y(τ1 + δ)) − ψ(x(τ1 − δ), y(τ1 − δ)).

The expected profit from the line segment sδ is bounded above (below) by this
probability multiplied by the supremum (infimum) of R over the set sδ. Since R is
continuously differentiable, for δ small enough, the expected profit from segment sδ is

v(sδ) = R(x(τ1), y(τ1))(ψ(x(τ1 + δ), y(τ1 + δ)) − ψ(x(τ1 − δ), y(τ1 − δ))) + o(δ).

The total expected profit from the offer curve s can be written as v(s) = v(s1
δ) +

v(sδ)+ v(s2
δ), where s1

δ , s2
δ are the other components of s created when sδ is removed.

So s1
δ = {(x(τ), y(τ)) : τ ≤ τ1 − δ} and s2

δ = {(x(τ), y(τ)) : τ ≥ τ1 + δ}. These
components lie entirely within the regions where ψ is continuously differentiable (and
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given by ψi), using Assumption 2.8. Using the result of Anderson and Philpott [2] we
know that

v(siδ) =

∫
si
δ

R(q, p) dψi(q, p), i = 1, 2.

By driving δ to zero, we have

lim
δ→0

v(sδ) = R(x(τ1), y(τ1))(ψ2(x(τ1), y(τ1)) − ψ1(x(τ1), y(τ1)))

= R(q1, p1)Φ(q1, p1),

and

lim
δ→0

∫
si
δ

R(q, p) dψi(q, p) =

∫
si
R(q, p) dψi(q, p), i = 1, 2.

This completes the proof.

2.5. Existence of an optimal solution. Having established the objective func-
tion formula (2.12), our approach to showing that an optimal solution exists is to
concentrate on the formal problem of maximizing (2.12) given an R-semicontinuous
market distribution function ψ.

In order to discuss the optimality of a continuous offer curve, we need to compare
the line integrals on two distinct curves. When ψ is continuous, Anderson and Philpott
[2] use Green’s theorem and observe that∫ ∫

S
Z(q, p) dpdq =

∫
C
R(q, p) dψ(q, p),

where S is a region enclosed by a curve C and

Z(q, p) =

{
Rqψp −Rpψq, (q, p) ∈ Ψ,

0 otherwise.
(2.13)

Clearly this result will not hold when the curve C crosses one of the lines of disconti-
nuity at p ∈ P.

Our approach will be to calculate the change in v that arises from a change in
offer curve s by applying Green’s theorem separately to each region Ψj together with
a calculation of the change that arises across the lines of discontinuity. We need to
start with a lemma that can be established using an integration by parts argument.

Lemma 2.10. Suppose pj ∈ P and 0 ≤ q1 < q2 ≤ qM . Then, under Assumption
2.8, ∫ q2

q1

R(q, pj) dψj(q, pj) −
∫ q2

q1

R(q, pj) dψj+1(q, pj) + R(q2, p
j)Φ(q2, p

j)

−R(q1, p
j)Φ(q1, p

j)

=

∫ q2

q1

Φ(q, pj)Rq(q, p
j) dq.

Proof. Let

v1 =

∫ q2

q1

R(q, pj) dψj(q, pj) + R(q2, p
j)Φ(q2, p

j)
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and

v2 =

∫ q2

q1

R(q, pj) dψj+1(q, pj) + R(q1, p
j)Φ(q1, p

j).

From Assumption 2.8, both ψj(·, pj) and ψj+1(·, pj) are continuously differentiable,
and we have already assumed that R(·, pj) is continuously differentiable. Integrating
both v1 and v2 by parts, we obtain

v1 − v2 = R(q2, p
j)ψj(q2, p

j) −R(q1, p
j)ψj(q1, p

j) −
∫ q2

q1

ψj(q, pj)Rq(q, p
j) dq

− R(q2, p
j)ψj+1(q2, p

j) + R(q1, p
j)ψj+1(q1, p

j) +

∫ q2

q1

ψj+1(q, pj)Rq(q, p
j) dq

+ R(q2, p
j)Φ(q2, p

j) −R(q1, p
j)Φ(q1, p

j)

=

∫ q2

q1

Φ(q, pj)Rq(q, p
j) dq,

as required.
Note that v1 is the expected return of the generator for offering q2 − q1 at price

just under pj , and v2 is the expected return of the generator for offering q2−q1 at price
just above pj . The lemma states that the difference between these two values can be
expressed as the integral of Φ(q, pj)Rq(q, p

j) with respect to q from q1 to q2. Since
Rq is the marginal profit, Φ(q, pj)Rq(q, p

j) represents the difference of the marginal
profits between the offer of q at just above pj and the offer of q at just below pj .

Anderson and Philpott [2] and Anderson and Xu [4] treat v(s) in (2.2) as an
objective function and investigate the necessary and sufficient conditions for an offer
curve s to be a local maximum. When ψ is continuously differentiable on Ψ, Anderson
and Xu prove that there exists a maximum over the set of curves that are considered.
However, the existence result is not straightforward when ψ is not continuous, and
our first result is to confirm that a maximum does exist provided that ψ satisfies the
conditions we have given.

A generator need not offer all its generation capacity into the market; the offer
curve will start at some point (0, p̂(0)) and finish at (q̂(T ), p̂(T )). However, the clearing
price is determined as though the offer curve began with a vertical segment from the
origin to (0, p̂(0)) and finished with a vertical segment from (q̂(T ), p̂(T )) to (q̂(T ), pM ).
Hence we assume that Λ, the set of possible offer curves, has these characteristics.
The following result has been established by Anderson and Xu [4].

Lemma 2.11. Let Λ be the set of monotonic continuous curves starting at the
origin and ending on the closed line segment from (0, pM ) to (qM , pM ). Then Λ is
compact under the Hausdorff metric:

|s1 − s2|H = max
(q1,p1)∈s1

min
(q2,p2)∈s2

√
(q1 − q2)2 + (p1 − p2)2.

We need some sort of compactness result such as this to ensure the existence
of an optimal solution; once compactness is established in some topology, then the
existence result follows provided that we have a suitable continuity property in that
topology. Our next result uses compactness to establish that the problem of finding
a curve s which maximizes the expected profit v(s) in (2.12) has an optimal solution.
But before we prove this theorem we need to establish a preliminary lemma (which
is required because qj(s) is not a continuous function of s).
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Lemma 2.12. If sk → s in the Hausdorff metric and for some j: limk→∞ qj(sk) =
q0, then ∫ q0

qj(s)

Φ(q, pj)Rq(q, p
j) dq ≤ 0.(2.14)

Proof. Observe that if qj(s) = q0 there is nothing to prove, so we suppose
these two are unequal. Since sk → s in the Hausdorff metric we can deduce that

min(q,p)∈s

(
(q0 − q)2 + (pj − p)2

)1/2
= 0 and hence that (q0, p

j) ∈ s. Thus, from
monotonicity, all of the line interval (qj(s), pj) to (q0, p

j) is in s. First we suppose
that qj(s) < q0. Then, from the definition of qj , this line interval lies in Ψj+1 and
hence is part of Ψ−, where Rq < 0. Since Φ(q, pj) ≥ 0, the inequality (2.14) follows.
On the other hand, if qj(s) > q0, then the line interval (q0, p

j) to (qj(s), pj) lies in Ψj

and hence is part of Ψ+, where Rq ≥ 0. Again, we have shown the desired inequality
(2.14) after noting that the limits of the integral are reversed.

Theorem 2.13 (existence). Let Λ be defined as above and let v be the expected
return function given in (2.12). Under Assumptions 2.6 and 2.8, if the market distri-
bution function is R-semicontinuous, then v achieves its maximum on Λ.

Proof. Let v∗ = sups∈Λ v(s), which exists since R is bounded and ψ lies between
0 and 1. For every k > 0, there exists a supply curve sk ∈ Λ such that v∗−v(sk) ≤ 1

k .
Since Λ is a compact set, there exists s∗ ∈ Λ such that |sk − s∗|H → 0 (we can take a
subsequence if necessary). In addition we shall arrange that for each j, limk→∞ qj(sk)
exists. We want to prove that v(s∗) = v∗. We will do this by showing that v(sk) →
v(s∗), using Green’s theorem on each of the Ψj regions together with Lemma 2.10 for
the crossovers from one Ψj to the next.

We define s∗j = s∗∩Ψj and sjk = sk∩Ψj . Thus

v(s∗) =

n+1∑
j=1

∫
s∗j

R(q, p) dψj(q, p) +

n∑
j=1

R(qj(s∗), pj)Φ(qj(s∗), pj),

v(sk) =

n+1∑
j=1

∫
sj
k

R(q, p) dψj(q, p) +

n∑
j=1

R(qj(sk), p
j)Φ(qj(sk), p

j).

Let sign(q, p) be a function such that sign(q, p) = 1 if (q, p) is located below the
curve s∗; sign(q, p) = −1 if (q, p) is located above the curve s∗; and sign(q, p) = 0 if
(q, p) is located on the curve s∗. Now, using Green’s theorem∫

sj
k

R(q, p) dψj(q, p) −
∫
s∗j

R(q, p) dψj(q, p)

=

∫ ∫
Aj

k

sign(q, p)Z(q, p) dq dp +

∫ qj(sk)

qj(s∗)

R(q, pj) dψj(q, pj)

−
∫ qj−1(sk)

qj−1(s∗)

R(q, pj−1) dψj(q, pj),

where Aj
k is the area between s∗j and sjk, and Z is given by (2.13). Let Ak be the

entire area between s∗ and sk. Then

v(sk) − v(s∗) =

∫ ∫
Ak

sign(q, p)Z(q, p) dq dp
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+

n∑
j=1

∫ qj(sk)

qj(s∗)

R(q, pj) dψj(q, pj) −
n∑

j=1

∫ qj(sk)

qj(s∗)

R(q, pj) dψj+1(q, pj)

+

n∑
j=1

R(qj(sk), p
j)Φ(qj(sk), p

j) −
n∑

j=1

R(qj(s∗), pj)Φ(qj(s∗), pj)

=

∫ ∫
Ak

sign(q, p)Z(q, p) dq dp +

n∑
j=1

∫ qj(sk)

qj(s∗)

Φ(q, pj)Rq(q, p
j) dq

using Lemma 2.10.
Since |sk − s∗|H → 0 and Z is bounded from Assumption 2.6, the area integral

approaches zero as k → ∞. Also from Lemma 2.12, we know that

lim
k→∞

∫ qj(sk)

qj(s∗)

Φ(q, pj)Rq(q, p
j) dq ≤ 0.

Thus v(s∗) ≥ limk→∞ v(sk) = v∗, but from the definition of v∗, v(s∗) ≤ v∗, and thus
we have established the desired equality.

Using this theorem and the results of Theorem 2.9 and Lemma 2.7, we have the
immediate corollary.

Corollary 2.14. Under Assumptions 2.6 and 2.8, if the sharing rule L∗ is used,
then there is an optimal supply curve.

3. Necessary conditions for optimality. From Theorem 2.13, we know that
the problem of maximizing profit using the sharing rule L∗ is well defined. This is
equivalent to the following maximization problem:

max
s∈Λ

v(s) ≡
n+1∑
j=1

∫
sj
R(q, p) dψj(q, p) +

n∑
j=1

R(qj(s), pj)Φ(qj(s), pj).(3.1)

In this section, we discuss necessary conditions for an offer curve to be optimal for
this problem.

When ψ is continuously differentiable, optimality conditions were derived by An-
derson and Philpott [2] and extended by Anderson and Xu [4]. Let s = {(q̂(τ), p̂(τ)) :
0 ≤ τ ≤ T} be the offer curve. The main tool that is used in investigating the
optimality conditions of s is the line integral of Z along s, which is defined by

w(τ) =

∫ τ

0

Z(q̂(t), p̂(t))(q̂′(t) + p̂′(t)) dt.

When ψ is not continuously differentiable, we need to use a different approach.
We take ψ as R-semicontinuous and we define, for (q, p) ∈ Ψj , the function

Zj(q, p) = Rqψ
j
p − Rpψ

j
q . This will make Zj match Z in the interior of Ψj and be

defined by continuity for points in Ψj that lie on its boundary.
Given a monotonic continuous, piecewise smooth offer curve s = {(q̂(τ), p̂(τ)), 0 ≤

τ ≤ T}, for each τ we let J(τ) be the index of the region Ψj in which (q̂(τ), p̂(τ)) lies
and we let τ j be the parameter value at which the curve moves from Ψj to Ψj+1, and
thus q̂(τ j) = qj . Then we define

w(τ) =

∫ τ

0

ZJ(τ)(q̂(t), p̂(t))(q̂′(t) + p̂′(t)) dt +

J(τ)−1∑
j=1

Φ(qj , pj)Rq(q
j , pj).
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Theorem 3.1 (first order necessary conditions). Suppose that s = {q̂(τ), p̂(τ), 0 ≤
τ ≤ T} is an offer curve and Assumptions 2.6 and 2.8 are satisfied. Suppose that there
exist m numbers 0 ≤ τ1 < τ2 < · · · < τm ≤ T with 0 < q̂(τ) < qM and 0 < p̂(τ) < pM
for τ1 < τ < τm. Suppose further that on each section (τi−1, τi), i = 2, . . . ,m, s is
either strictly increasing in both components, or horizontal, or vertical, with different
characteristics in successive segments and with τ1(τm) the smallest (largest) param-
eter value such that (q̂(τ), p̂(τ)) ∈ Ψ. If s is optimal for (3.1), then w(τ1) = 0 and
w(τm) = w(T ). Moreover, for each interval I being one of (τi−1, τi), i = 2, . . . ,m,
one of the following holds:

(i) s is strictly increasing in both components and w(τ) = w(τi−1) for τ ∈ I.
(ii) s is horizontal on I. For τ ∈ I with (q̂(τ), p̂(τ)) ∈ Ψ+, then w(τ) ≤ w(τi−1);

for τ ∈ I with (q̂(τ), p̂(τ)) ∈ Ψ−, then w(τ) ≤ w(τi). Moreover, if p̂(τi) �∈ P,
then w(τi−1) = w(τi).

(iii) s is vertical on I, w(τi−1) = w(τi), and w(τ) ≥ w(τi) for τ ∈ I.
Proof. We begin by looking at the w values at τ1 and τm. First, we prove w(τ1) = 0

(the proof that w(τm) = w(T ) is similar). By assumption, for any τ < τ1, (q̂(τ), p̂(τ))
is located outside the Ψ region where Z and w(τ) are zero. Note that if p̂(τ1) �∈ P,
then w is continuous at τ1 and w(τ1) = 0. Thus we only need to consider the case
that p̂(τ1) = pj ∈ P. This means that the lower boundary of Ψ contains a horizontal
section p = pj and the point (q̂(τ1), p̂(τ1)) is located on the horizontal section. We
consider three cases according to whether the point (q̂(τ1), p̂(τ1)) is located in Ψ+, in
Ψ−, or on the line separating these regions. In the latter case Rq(q̂(τ1), p̂(τ1)) = 0,
and hence w(τ1) = 0. If (q̂(τ1), p̂(τ1)) is in Ψ+, then J(τ1) = j − 1 and w(τ1) = 0 by
the definition of the w function. Thus we are left with the case when (q̂(τ1), p̂(τ1)) is
in Ψ−, when J(τ1) = j. By definition, since Z is zero outside Ψ,

w(τ1) = Rq(q̂(τ1), p
j)Φ(q̂(τ1), p

j) ≤ 0.

Suppose for a contradiction that w(τ1) < 0. Since Φ(q, pj) = ψ(q, pj+) for all q

with (q, pj) at the boundary, this implies that ψ(q̂(τ1), p
j
+) > 0. By Assumption 2.8,

ψ(q, pj+) is continuous in q, and so there exists δ > 0 such that ψ(q̂(τ1) − δ, pj+) > 0.

Consider another supply curve r which enters Ψ at a point (q̂(τ1) − δ, pj+) and then

goes horizontally until it reaches the point (q̂(τ1), p
j
+) and then joins s to the end.

Using Lemma 2.10, it is easy to verify the difference between the expected profits of
the two supply curves,

E(s) − E(r) =

∫ q̂(τ1)

q̂(τ1)−δ

Rq(x, p
j)Φ(x, pj)dx = δw(τ1) + o(δ) < 0,

for δ sufficiently small. This contradicts the optimality of s and establishes w(τ1) = 0.
Part (i). This part of the theorem amounts to the statement that if q̂(τ) and

p̂(τ) are both increasing in an interval τ ∈ (τA, τB) and we choose a point (q̂, p̂) =
(q̂(τ∗), p̂(τ∗)) in this interval, then Z(q̂, p̂) = 0 if (q̂, p̂) is in the interior of a Ψj ,
and Φ(q̂, p̂)Rq(q̂, p̂) = 0 if p̂ ∈ P. The first statement is proved in Anderson and
Philpott [2], but for convenience we will repeat their argument here. We begin by
defining a small perturbation of s around the point (q̂(τ∗), p̂(τ∗)). Reparameterizing
s if necessary, we can assume that q̂′(τ∗) > 0. Let

rδ(τ) =

⎧⎨⎩
(q̂(2τ − (τ∗ − δ)), p̂(τ∗ − δ)), τ∗ − δ ≤ τ ≤ τ∗,
(q̂(τ∗ + δ), p̂(2τ − (τ∗ + δ)), τ∗ ≤ τ ≤ τ∗ + δ,
(q̂(τ), p̂(τ)), otherwise.
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Fig. 1. Perturbations for first order optimality.

This perturbation is illustrated in Figure 1 at the point marked a.
In the case that p̂(τ∗) /∈ P we can avoid any discontinuities within the perturba-

tion by taking δ small enough. In this case

v(rδ) − v(s) =

∫ ∫
A(δ)

Z(q, p) dqdp,

where A(δ) is the region between the two curves. Since s is optimal and Z is continuous
in this region we obtain the conclusion that Z(q̂(τ∗), p̂(τ∗)) ≤ 0, since otherwise we
have v(rδ) > v(s) for δ small enough. If we reverse the direction of the perturbation
(going above (q̂(τ∗), p̂(τ∗)) rather than below it) we can show that Z(q̂(τ∗), p̂(τ∗)) ≥ 0.
The two inequalities show that Z = 0 as required.

Now suppose that p̂(τ∗) = pj ∈ P. Using Lemma 2.10 and the usual Green’s
theorem argument we have

v(rδ) − v(s) =

∫ ∫
Aj(δ)

Z(q, p) dqdp +

∫ ∫
Aj+1(δ)

Z(q, p) dqdp

+

∫ q̂(τ∗+δ)

q̂(τ∗)

Φ(q, pj)Rq(q, p
j) dq,

where Ai(δ) = A(δ) ∩ Ψi. But we have just shown that Z(q, p) = 0 along the s curve
(except where s crosses the pj line). The continuity of Z implies that both the first
two integrals are o(δ). Thus the continuity of Φ and Rq will imply that

v(rδ) − v(s) = (q̂(τ∗ + δ) − q̂(τ∗))Φ(q̂(τ∗), pj)Rq(q̂(τ
∗), pj) + o(δ).

Since q̂′(τ∗) > 0, q̂(τ∗+δ)− q̂(τ∗) is O(δ), and thus Φ(q̂(τ∗), pj)Rq(q̂(τ
∗), pj) ≤ 0 from

the optimality of s. Again reversing the perturbation shows Φ(q̂(τ∗), pj)Rq(q̂(τ
∗), pj) ≥

0, and thus

Φ(q̂(τ∗), pj)Rq(q̂(τ
∗), pj) = 0,

as required.
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Part (ii). As before we consider a point with parameter τ∗ ∈ (τi−1, τi), a hori-
zontal section. We will need to use two different types of perturbation. Suppose first
that (q̂(τi−1), p̂(τi−1)) ∈ Ψ+. There are two possibilities: s is vertical immediately
before τi−1 and s is strictly increasing immediately before τi−1. We only consider the
first case in detail.

Let δ > 0 be small and define τi−1(−δ) = p̂−1(p̂(τi−1) − δ) so that this is the
parameter value at which s reaches a price level δ below p̂(τi−1). Let rδ be the
perturbation of s which moves a horizontal section from q̂(τi−1) to q̂(τ∗) down by an
amount δ. Thus

rδ(τ) =

⎧⎪⎪⎨⎪⎪⎩
(q̂(τ), p̂(τ)), 0 ≤ τ < τi−1(−δ),
(q̂(τi−1 − τi−1(−δ) + τ), p̂(τi−1) − δ), τi−1(−δ) ≤ τ < τ∗ − τi−1 + τi−1(−δ),
(q̂(τ∗), p̂(τ + τi−1 − τ∗)), τ∗ − τi−1 + τi−1(−δ) ≤ τ < τ∗,
(q̂(τ), p̂(τ)), τ∗ ≤ τ ≤ T.

This perturbation is illustrated in Figure 1, with (q̂(τ∗), p̂(τ∗)) shown as the point
marked b. If (q̂(τ∗), p̂(τ∗)) ∈ Ψ+, then this perturbation does not involve a disconti-
nuity in Z, and thus

v(rδ) − v(s) =

∫ p̂(τi−1)

p̂(τi−1)−δ

∫ q̂(τ∗)

q̂(τi−1)

Z(q, p) dqdp

= δ

∫ q̂(τ∗)

q̂(τi−1)

Z(q, p̂(τi−1)) dq + o(δ).

Since s is optimal, we obtain the conclusion that
∫ q̂(τ∗)

q̂(τi−1)
Z(q, p̂(τi−1))dq ≤ 0, since

otherwise we have v(rδ) > v(s) for δ small enough. Thus w(τ∗) ≤ w(τi−1). In the
case that s is strictly increasing immediately before τi−1, we need to make a slightly
more complex definition for rδ(τ) and the area over which Z is integrated is no longer
rectangular, but the basic argument is the same.

Now if (q̂(τ∗), p̂(τ∗)) ∈ Ψ−, then (q̂(τi), p̂(τi)) ∈ Ψ− and we choose a perturbation
that moves a horizontal section of s from q̂(τ∗) to q̂(τi) upward by an amount δ.
If (q̂(τ∗), p̂(τ∗)) ∈ Ψ−, then the continuity of Z for this perturbation implies that∫ q̂(τi)

q̂(τ∗)
Z(q, p̂(τi))dq ≥ 0 and hence w(τ∗) ≤ w(τi).

When p̂(τi) �∈ P we have continuity for Z without having to restrict ourselves to
(q̂(τ∗), p̂(τ∗)) ∈ Ψ+ for a perturbation downwards at the beginning of the horizontal
section, or (q̂(τ∗), p̂(τ∗)) ∈ Ψ− for a perturbation upwards at the end of the horizontal
section. Hence we can take τ∗ = τi for the first argument and τ∗ = τi−1 for the second
argument to show that both the inequalities w(τi) ≤ w(τi−1) and w(τi−1) ≤ w(τi)
hold, and hence that there is equality.

Part (iii). Suppose s is vertical on the interval between τi−1 and τi. We establish
the result using perturbations of either end of the interval. We begin with a perturba-
tion that moves the lower part of the interval to the left. There are two possibilities:
s is horizontal immediately before τi−1 or s is strictly increasing immediately before
τi−1. The first case makes it slightly simpler to give an explicit perturbation, and we
restrict ourselves to this.

Let δ > 0 be small and define τi−1(−δ) = q̂−1(q̂(τi−1) − δ) so that this is the
parameter value at which s reaches a quantity q̂(τi−1)− δ. Let rδ be the perturbation
of s which moves a vertical section from p̂(τi−1) to p̂(τ∗) to the left by an amount δ;
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thus:

rδ(τ) =

⎧⎪⎪⎨⎪⎪⎩
(q̂(τ), p̂(τ)), 0 ≤ t < τi−1(−δ),
(q̂(τi−1) − δ), p̂(τi−1 − τi−1(−δ) + t), τi−1(−δ) ≤ t < τ∗ − τi−1 + τi−1(−δ),
(q̂(t + τi−1 − τ∗), p̂(τ∗)), τ∗ − τi−1 + τi−1(−δ) ≤ t < τ∗,
(q̂(τ), p̂(τ)), τ∗ ≤ t ≤ T.

This perturbation is illustrated in Figure 1, with (q̂(τ∗), p̂(τ∗)) shown as the point
marked c. In general this perturbation may involve a number of different regions Ψj .
Suppose that (q̂(τi−1), p̂(τi−1)) ∈ Ψf and (q̂(τ∗), p̂(τ∗)) ∈ Ψg. Write A(δ) for the
region between the two curves, s and rδ, and Aj(δ) = A(δ) ∩ Ψj . Then

v(s) − v(rδ) =

g∑
j=f

∫ ∫
Aj(δ)

Z(q, p) dqdp +

g−1∑
j=f

∫ q̂(τi−1)

q̂(τi−1)−δ

Φ(q, pj)Rq(q, p
j) dq

= δ

∫ pf

p̂(τi−1)

Z(q̂(τi−1), p) dp + δ

g−1∑
j=f+1

∫ pj

pj−1

Z(q̂(τi−1), p) dp

+ δ

∫ p̂(τ∗)

pg−1

Z(q̂(τi−1), p) dp + δ

g−1∑
j=f

Φ(q̂(τi−1), p
j)Rq(q̂(τi−1), p

j) + o(δ)

= δ(w(τ∗) − w(τi−1)) + o(δ).

As s is optimal we obtain the conclusion that w(τ∗) ≥ w(τi−1), since otherwise we
have v(rδ) > v(s) for δ small enough.

The other perturbation to be considered involves a section of the vertical segment
from τ∗ to τi, which moves to the right. The argument in this case is exactly the
same and we can show that w(τ∗) ≥ w(τi). Moreover, since these results also apply
with τ∗ = τi−1 and with τ∗ = τi, we see that w(τi) = w(τi−1).

In many cases there will only be a single solution which satisfies the necessary
conditions, and hence the optimal solution can be identified without further compu-
tation. Later we will illustrate the application of these conditions on an example, but
first it is helpful to give some more general discussion.

In practice, the nature of the optimal solution will be quite dependent on the
form of the Z = 0 curve. If, as is usually the case, this is a monotonic increasing
curve, then the optimal solution will typically follow it for much of its length, with
some small variations introduced by the discontinuities. We see this behavior in the
example we consider in the next section.

On a vertical section of the offer curve we must have w values greater than at the
end points of the section. In the case when neither of the end points is on a horizontal
price discontinuity, then this will imply that the beginning (bottom) of the vertical
section is in a region where Z > 0 and the end of the section is in a region where Z < 0.
If the bottom end point, say (q̂(τi−1), p̂(τi−1)), lies on a horizontal price discontinuity,
say pj , then we need to consider two cases. First suppose that (q̂(τi−1), p̂(τi−1)) ∈ Ψ−,
which in turn implies (q̂(τi−1), p̂(τi−1)) ∈ Ψj+1. Then J(τi−1) = j + 1 and w(τi−1)
already incorporates the jump at this discontinuity; thus the vertical section must
begin in a region where Z > 0 to avoid contradicting the necessary conditions. The
other case occurs when (q̂(τi−1), p̂(τi−1)) ∈ Ψ+, in which case Rq ≥ 0 and the jump
in value is positive. In this case, we can draw no immediate conclusion on the sign of
Z at the start of the vertical section. The same kind of argument shows that if the
top end of a vertical section is at a price discontinuity, then when this point is in Ψ+
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we can conclude that the vertical section finishes in a region where Z < 0, and no
conclusion can be drawn when the point is in Ψ−.

Now consider a horizontal section that does not coincide with a price discontinuity.
In this case the condition of the theorem simply says that w(τ) is less than the w
values at both end points. So the left-hand end of the horizontal section must be in
a region where Z < 0 and the right-hand end in a region where Z > 0.

When the horizontal section runs along a price discontinuity the situation is a
little more complex. Suppose first that the left-hand end of the horizontal section is
in Ψ+. Then the necessary conditions for optimality imply that w is decreasing and
hence that the beginning of the horizontal section is in a region where Z ≤ 0. In the
same way, if the right-hand end of the horizontal section is in Ψ−, then we can deduce
that this end point is in a region where Z ≥ 0.

4. Construction of an approximate optimal supply function through
undercutting and overcutting. We have found a form of sharing rule for which
there will be an optimal solution. However, this form of sharing rule will not occur
in practice. Our eventual aim is to have a way of generating ε-optimal solutions for
problems with arbitrary sharing rules.

We suppose that we have found an optimal solution s∗ for the modified problem
with sharing rule L∗. The next step is to create an ε-optimal solution for the problem
using undercutting and overcutting. We define the solution s∗(δ) for any δ > 0 by
following s∗ except at the prices in P. In essence, where s∗ = pj and lies in Ψ+, we
undercut the solution and set s∗(δ) = s∗ − δ. Where s∗ = pj and lies in Ψ−, we
overcut the solution and set s∗(δ) = s∗ + δ. To make this definition more precise
involves some messy technical details, which we will give below. We shall assume that
the equation Rq(q, p) = 0 defines a single monotonically increasing line which divides
Ψ+ and Ψ−, and we write this in the form p = Γ(q). In the case in which R is given
by (2.1), Γ is just C ′. If s∗ moves from the region Ψ+ to the region Ψ− at a single
value pj , then s∗(δ) follows the line p = Γ(q) to join the undercutting section to the
overcutting one.

We need to go back to the individual component functions q̂(τ) and p̂(τ), say,
that define s∗. We let qδ(τ) = q̂(τ) for every τ . We have the following definitions for
pδ(τ):

pδ(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pj − δ for {τ : pj − δ ≤ p̂(τ) ≤ pj , (q̂(τ), pj − δ) ∈ Ψ+},
pj + δ for {τ : pj ≤ p̂(τ) ≤ pj + δ, (q̂(τ), pj + δ) ∈ Ψ−},
Γ(q̂(τ)) for {τ : pj − δ ≤ p̂(τ) ≤ pj , (q̂(τ), pj − δ) /∈ Ψ+, (q̂(τ), pj) ∈ Ψ+},
Γ(q̂(τ)) for {τ : pj ≤ p̂(τ) ≤ pj + δ, (q̂(τ), pj + δ) /∈ Ψ−, (q̂(τ), pj) ∈ Ψ−},
p̂(τ) otherwise.

As it stands this defines pδ(τ) in such a way that it may not be continuous. We need
to make the definition of pδ continuous by filling in these (vertical) gaps. Suppose
that

p̂(τ0−) = lim
τ↑τ0

p̂(τ) = lim
τ↓τ0

p̂(τ) − η

for some η > 0. Then we define

(p̃δ(τ), q̃δ(τ)) =

⎧⎨⎩
(pδ(τ), qδ(τ)) for τ < τ0,
(pδ(τ0−) + τ − τ0, qδ(τ0)) for τ0 ≤ τ ≤ τ0 + η,
(pδ(τ − γ), qδ(τ − γ)) for τ > τ0 + η.
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Fig. 2. Construction of s∗(δ).

This removes one of the discontinuities, and we can continue in the same way to
remove each of the other discontinuities (at most one of which is introduced at each
pj). Then s∗(δ) is defined by (p̃δ(τ), q̃δ(τ)). Figure 2 illustrates this construction.

Our key result is that s∗(δ) is ε-optimal for small enough δ. We are now in a
position to prove this.

Theorem 4.1. Suppose that s∗ maximizes the expected profits of the generator
when the sharing rule L∗ is used. Then

lim
δ↓0

u(s∗(δ)) = sup
s∈Λ

u(s),

where u(r) denotes the expected profits of the generator given a supply curve r with
some other sharing rule L .

Proof. We write v(r) for the expected profit of the generator given a supply curve
r with the ideal sharing rule L∗. From Lemma 2.4 we know that v(s) ≥ u(s). Thus

v(s∗) ≥ sup
s∈Λ

u(s).

Moreover, as each s∗(δ) ∈ Λ, limδ↓0 u(s∗(δ)) ≤ sups∈Λ u(s). So it is enough to show
limδ↓0 u(s∗(δ)) = v(s∗).

Now it is not hard to see that qj(s∗(δ)) = qj(s∗) for each j. This is a result of
the construction we have used for s∗(δ). Thus

v(s∗) − v(s∗(δ)) =

n+1∑
j=1

(∫
s∗j

R(q, p) dψj(q, p) −
∫
s∗(δ)j

R(q, p) dψj(q, p)

)
.

Since the end points of the segments s∗j and s∗(δ)j coincide within each Ψj , we can use
Green’s theorem within this region to show that the difference between the integrals
tends to zero as δ → 0. So v(s∗) = limδ→0 v(s

∗(δ)). But as s∗(δ) does not contain a
tranche offered at any pj the sharing rule used will not affect the expected profit, and
hence v(s∗(δ)) = u(s∗(δ)) for each δ.

5. An example. In order to illustrate the ideas we have discussed above we
return to the example we considered before. We now suppose that the market demand
is given by D(p) + ε where D(p) = 800 − 10

3 p2, and the random shock ε ranges
uniformly over [0, 2300]. We wish to find the optimal offer curve for generator A. For
p �= 10, 14, 18, we can derive the market distribution function for generator A:

ψ(q, p) =
1

2300
(q −D(p) + SB(p))
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and

Ψ =

{
(q, p) : 0 <

1

2300
(q −D(p) + SB(p)) < 1

}
.

The values of ψ at p = 10, 14, 18 will depend on the market sharing rules, which we
do not need to specify.

We need to specify a contract position and the cost of generation. We suppose
that generator A has contracts for a total quantity of 800 MW at a strike price of $15
per MWh (that is, Q = 800 MW), and we take the total capacity for the generators
to offer into the market as 1100 MW. We also take the costs generator A incurs for
generating an amount q MWh as nonlinear and given by C(q) = 10q + 0.004q2. Thus
the profit function (in $ per hour) is

R(q, p) = qp− 10q − 0.004q2 + 800(15 − p).

We wish to find an optimal supply curve for generator A so that its expected profit
is maximized. However, since ψ here is discontinuous, an optimal supply curve may
not exist.

Note that

Rq(q, p) = p− 10 − 0.008q.

Thus q∗(pj) = 125(pj − 10), and

Ψ+ = {(q, p) ∈ Ψ : q ≤ 125(p− 10)},
Ψ− = {(q, p) ∈ Ψ : q > 125(p− 10)}.

The optimal sharing rule L∗ is defined according to the rules set out earlier. Essen-
tially, the aim of the sharing rule is to obtain a dispatch of 125(pj − 10) for generator
A at each of the prices pj = 10, 14, 18 (or as close to this figure as possible).

In what follows, we derive the optimal supply curve, assuming the sharing rule
L∗, using Theorem 3.1. Note that for p �= 10, 14, or 18,

Z(q, p) = Rqψp −Rpψq =
1

2300

[
(p− 10 − 0.008q)

(
20

3
p

)
− q + 800

]
.

In Figure 3 we show the upper and lower boundaries of the region Ψ (i.e., where
ψ = 0 and ψ = 1) together with the curve (in fact a parabola) where Z = 0 and the
straight line p = C ′(q) = 10 + 0.008q.

We will try to identify an optimal offer curve which satisfies the first order nec-
essary conditions that are derived in Theorem 3.1. To do this we consider tracing a
curve starting at the lower boundary ψ = 0 and finishing at ψ = 1. According to part
(i) of Theorem 3.1, the optimal offer curve must follow the Z = 0 line at any point
where it is neither horizontal nor vertical, and it is natural to start by considering a
solution which follows this line. The argument given below shows that, for this exam-
ple, there will be only one solution that satisfies the necessary optimality conditions.
This is often the case for this type of problem (but not always). If there is more than
one solution satisfying the optimality conditions, then the expected profits for the
different offer curves need to be compared directly in order to find a global optimum.

Observe, though, that a solution which follows the line Z = 0 from the point
B = (507.2, 9.372) where it crosses ψ = 0 through the point D cannot be optimal.
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Fig. 3. An optimal solution for the example.

The line Z = 0 crosses p = 10 at D = (521.7, 10), and at this point there is a
discontinuity in w which would contradict the necessary condition (i) of the theorem.
In fact, Φ(521.7, 10)Rq(521.7, 10) = −0.363.

Thus we need to consider the possibility of a vertical segment finishing at the
p = 10 line. In order to satisfy the conditions of the theorem, the integral of Z along
the vertical section would have to exactly match the jump down that occurs at p = 10.
For convenience we define

W1(q, a, b) =

∫ b

a

Z(q, p)dp + Φ(q, b)Rq(q, b)

to be the w integral over a vertical segment at q starting at p = a and finishing at
p = b where there is supposed to be a discontinuity. Thus in this case we are interested
in finding a starting point (q, a) for which W1(q, a, 10) = 0. The possibilities here are
to begin by following the line Z = 0 from the point B, but to start a vertical segment
before reaching D, or to start from some point between A and B with a vertical section.
However, it is not hard to check that in all cases W1(q, a, 10) will be negative.

Therefore we next consider a horizontal segment starting from some point in JA.
This is in the region Ψ−, and thus the necessary conditions will just imply that w(τ)
is less than the w value at the next corner point. This condition will be satisfied
since Z is positive in this region. However, this same condition will ensure that this
horizontal section of the optimal offer curve does not go beyond D where Z changes
sign. In fact, the necessary conditions imply that the horizontal segment starts at
J = (266.6, 10).

Now we consider the possibility of a vertical section which finishes on the hori-
zontal line p = 14. Again, using the necessary conditions will imply that we should
start this vertical segment at a point (q, a) where W1(q, a, 14) = 0. This equation
defines a curve which crosses the Z = 0 line at the point K = (643.7, 13.4). Again we
can establish that the horizontal section must run from L = (643.7, 14) to the point
M = (671.8, 14) on the Z = 0 line and no further.

The solution then has to follow the Z = 0 line until the point E = (898.0, 18). At
this point it starts a horizontal segment. Since the solution is now in the Ψ+ region,
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the start of this horizontal section remains in the region “below the line” including
14 < p < 18. For this reason there is no jump in the w value until the line leaves
the horizontal, and there cannot be a solution with a vertical segment ending at the
p = 18 line which satisfies the necessary conditions.

To make our discussion here easier we define

W2(q, a, b) = Φ(q, a)Rq(q, a) +

∫ b

a

Z(q, p)dp,

which is the w integral over a vertical segment starting at (q, a) ∈ Ψ+ when a is a
price discontinuity. In this case, we need to continue with a vertical segment starting
at a point (q, 18) and ending at a point (q, b), either on the Z = 0 line or on the upper
boundary ψ = 1, with W2(q, 18, b) = 0. Now the curve defined by W2(q, 18, b) = 0
intersects the Z = 0 line at G = (921.2, 18.36). The optimal solution then continues
along the Z = 0 line until crossing the upper boundary at H = (1009.6, 19.675). The
complete optimal solution is shown in Figure 1.

Having found the optimal solution to the problem when L∗ is used, it is straight-
forward to generate ε-optimal solutions for the case where we do not have the ideal
sharing rule when prices coincide. We should follow the solution described above, but
overcutting slightly for horizontal sections of the offer curve in Ψ− and undercutting
in Ψ+. It will not matter what the offer looks like outside the region Ψ. If we choose
to undercut and overcut by an amount of $0.01, we end up with the following offer
schedule:

(a) an amount of 266.6 MW at price $0 (or any price below $10),
(b) an amount of 521.7–266.6 = 255. 1 MW at price $10.01,
(c) an amount of 643.7–521.7 = 122.0 MW in a smooth curve rising to a price
of $13.40,
(d) an amount of 671.8–643.7 = 28. 1 MW at a price of $14.01,
(e) an amount of 898.0–671.8 = 226. 2 MW in a smooth curve rising to a price
of $17.99,
(f) an amount of 921.2–898.0 = 23.2 MW at a price of $17.99,
(g) an amount of 1009.6–921.2 = 88.4 MW in a curve from a price of $18.36
to $19.67,
(h) an amount of 1100–1009.6 = 90.4 MW at $50 (or any price above $19.67).

The offer schedule above now needs to be altered in line with market rules. In the
case that only step functions are allowed as offers, then the smooth curves of (c), (e),
and (g) will need to be approximated with step functions. In the case that piecewise
linear offers are required, then these curves would be approximated by one or more
linear segments.

6. Discussion. Work on optimal offer policies and on Nash equilibria in an elec-
tricity market setting has often confronted the issue of undercutting (though our dis-
cussion of overcutting solutions is new). The essential problem is that the possibility
of undercutting on price will in many models lead to highly competitive (Bertrand-
type) equilibrium solutions, with no possibility of supporting an equilibrium in which
generators offer at prices above their marginal costs. However, this idealized behavior
is very far from that which is observed in actual markets around the world. Different
authors have suggested a variety of methods to address the issue.

Using supply functions as a model for the offer procedure is one approach which
avoids the difficulty of undercutting. In this framework we usually assume that there
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is no single price at which a generator offers a significant quantity of power, and this
allows us to formulate models in which Nash equilibria exist for supply functions.

An alternative approach which has been suggested by von der Fehr and Harbord
[15], and which has been used by Wolfram [16] and Brunekreeft [6], is to assume
that offers are made at one or a small number of prices but that these prices are not
revealed in advance to the other players. This allows a type of mixed strategy to be
played which chooses prices according to a continuous distribution. This clearly rules
out the possibility of undercutting, since even though we know the strategy of the
other player, we do not know a price which we can then undercut.

In this paper we do not try to establish equilibrium conditions; instead we concen-
trate on the question of evaluating the optimal (or ε-optimal) offer strategy. From a
generator’s viewpoint this is valuable if the generator wishes to achieve the maximum
one period profit. The analysis we give can then point to the best possible policy
which is likely to involve some part of the offer either just below or just above other
players’ prices. But the analysis is also valuable if the generator decides to adopt a
less aggressive policy, since it indicates the degree of suboptimality involved in adopt-
ing any other (nonundercutting) solution. In practice generators will also need to
build an offer according to specific market rules: again we can think of the optimal
supply function strategy as setting a benchmark against which other policies can be
compared. Sometimes, as in Australia and New Zealand, these market rules imply
that a step function is used, in which case a step function approximation to the type
of policy shown in Figure 3 should be constructed. Other markets allow an offer to
be piecewise linear, which will enable a much closer approximation to be achieved.

It is natural to ask whether the type of analysis we give here could be extended
to an equilibrium analysis. In fact it is not possible to construct an exact Nash equi-
librium in offers with the type of undercutting behavior we have analyzed. However,
an interesting area for further research is the existence of an ε-equilibrium, in which
player i submits an offer Si (being a step function satisfying the market rules) in such
a way that the expected profit for player i, vi(Si), is within ε of the best possible ex-
pected profit for player i given the offers of the other generators. Such a step function
ε-equilibrium will not be unique, and so there will be the usual conceptual problems
of coordination on nonunique equilibria, coupled here with additional difficulties in
coordinating on an appropriate value of ε. Nevertheless, such ε-equilibrium might be
arrived at in practice through repeated adjustment of generator offers in response to
the other generators, but where generators prefer not to change their offer strategy
unless this will lead to an increase in expected profit of at least ε.
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Abstract. This paper deals with two interrelated issues. One is an invariant subspace approach
to finding solutions for the algebraic Riccati equation for a class of infinite dimensional systems.
The second is approximation of the solution of the algebraic Riccati equation by finite dimensional
approximants. The theory of exponentially dichotomous operators and bisemigroups is instrumental
in our approach.
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1. Introduction. The goal of this paper is twofold. The first goal is to use the
theory of exponentially dichotomous operators and bisemigroups to derive a result
from the existence of solutions to an algebraic Riccati equation of the type occurring
in LQ-optimal control. This approach allows one to mimic the finite dimensional
approach to algebraic Riccati equations; that is, it allows one to use an invariant
subspace argument to obtain the extremal solutions to the algebraic Riccati equation.
This topic is dealt with in section 2. It is a continuation of earlier work in this direction
presented in [18, 19].

The second goal is to use the results obtained in section 2 to discuss finite dimen-
sional approximations of the solutions of the algebraic Riccati equation and of the
corresponding closed loop semigroup. Our results in this direction are presented in
section 3.

The work on which this paper reports is loosely based on the work done by the
first author for his masters thesis, in combination with work on the perturbation of
bisemigroup generators of the last two authors [19].

Finite dimensional approximations of solutions of algebraic Riccati equations and
of the corresponding closed loop semigroups are the topic of several earlier contribu-
tions; see [2, 8, 14, 12, 13, 20]. In comparison with [14] we do not discuss the algebraic
Riccati equation coming from H∞-control theory, but rather confine ourselves to the
one stemming from LQ-optimal control. The result we obtain is, in this special case,
the same, under slightly different assumptions, but with a completely different, and
in our view, more transparent proof. In [20] attention was also focused on the alge-
braic Riccati equation from LQ-optimal control. The assumptions there are seriously
weaker than the ones imposed in previous works. In particular, instead of exponen-
tial stability (or exponential stabilizability) in [20] strong stabilizability is assumed.
Instead, we consider exponentially dichotomous operators, which allows us to deal
with Hamiltonian operators of linear systems that have no spectrum within a strip
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about the imaginary axis and for which one of the off-diagonal operators is compact.
However, we obtain stronger results on the closed loop approximants (compare our
Theorem 3.4 with Theorem 4.2 in [20]) in return for our stronger assumptions. Again,
our methods of proof are quite different from the ones in [20].

Our approach is part of a long tradition of studying stability results for solutions
of Riccati equations by performing a stability analysis of certain invariant subspaces
of the Hamiltonian operator, while also linking these to stable factorizations of a
transfer function [3, 17]. Structural similarities between these interlocking problems
and state space approaches to solve convolution equations [5] and stationary transport
equations [10] have naturally led to the formal study of exponentially dichotomous
operators [4], results on their perturbation [19], and its present stability analysis of
Hamiltonian operators of autonomous linear systems.

In [19] we have linked the left and right canonical Wiener–Hopf factorizability of
a transfer function built from the Hamiltonian operator(

A0 −D
−Q −A1

)
(1.1)

of a linear system to the existence of the stable and anti-stable solution of a Ric-
cati equation, under hardly more than the assumption that −A0 and −A1 gener-
ate exponentially decaying C0-semigroups on a general Banach space. Even though
not stated explicitly, stability results for these solutions of the Riccati equations are
expected (and thus now conjectured) to hold if the transfer function has a left or
right canonical Wiener–Hopf factorization. Using the well-known fact that this is true
for positive selfadjoint transfer functions on a Hilbert space, we naturally arrive at
the basic outline of the present paper. The stability analysis itself appears to be
straightforward.

Our present approach may be viewed as a tool to derive stability results for Riccati
equations starting from the Hamiltonian operator, where the derivation of the latter
is standard system theory [7, 15]. Many of the existing results (but not all; see [20])
can thus be derived in a transparent way, but the present approach potentially leads
to useful applications to delay systems where the underlying spaces are L1 [11].

When dealing with Hamiltonian operators of the type (1.1) with D = BR−1B∗,
Q = C∗C, and A0 = A∗

1 = A, the infinitesimal generator of a C0-semigroup on a
separable Hilbert space H, it is sufficient to require the exponential stabilizability
of (A,B) or the exponential detectability of (C,A) to arrive at an exponentially di-
chotomous operator on H+̇H after a similarity implementing state feedback or output
injection (e.g., see [7]). Thus for the purpose of this article it is sufficient to deal with
Hamiltonian operators that are exponentially dichotomous.

Let us conclude the introduction with some notations and definitions. By D(A),
KerA, and ImA we denote the domain, kernel, and range of a linear operator A,

respectively, and by IH the identity operator on a Hilbert space H. By H def
= H1+̇H2

we denote the orthogonal direct sum of the Hilbert spaces H1 and H2 and by A
def
=

A1+̇A2 the linear operator on H with domain {(x1, x2) : xj ∈ D(Hj), j = 1, 2} defined
by A(x1, x2) = (A1x1, A2x2).

2. Preliminaries. A closed and densely defined linear operator −S on a Hilbert
space H is called exponentially dichotomous [4] if for some bounded projection P com-
muting with S, the restrictions of S to ImP and of −S to KerP are the infinitesimal
generators of exponentially decaying C0-semigroups. We then define the bisemigroup
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generated by −S as

E(t;−S) =

{
e−tS(I − P ), t > 0

−e−tSP, t < 0.

Its separating projection P is given by P = −E(0−;−S) = IH − E(0+;−S). One
easily verifies [4] the existence of ε > 0 such that {λ ∈ C : |Reλ| ≤ ε} is contained in
the resolvent set ρ(S) of S and for every x ∈ H

(λ− S)−1x = −
∫ ∞

−∞
eλtE(t;−S)x dt, |Reλ| ≤ ε.(2.1)

As a result, ‖(λ− S)−1x‖ → 0 as λ → ∞ in {λ ∈ C : |Reλ| ≤ ε′} for some ε′ ∈ (0, ε].
We have the following perturbation result given also in [19]. We shall give its

proof for selfcontainedness.
Theorem 2.1. Let −S0 be exponentially dichotomous, Γ be a compact operator,

and −S = −S0 +Γ, where D(S) = D(S0). Suppose the imaginary axis is contained in
the resolvent set of S. Then −S is exponentially dichotomous. Moreover, E(t;−S)−
E(t;−S0) is a compact operator, also in the limits as t → 0±.

Proof. There exists ε > 0 such that∫ ∞

−∞
eε|t|‖E(t;−S0)‖ dt < ∞.(2.2)

Using the resolvent identity

(λ− S)−1 − (λ− S0)
−1 = −(λ− S0)

−1Γ(λ− S)−1, |Reλ| ≤ ε,

for some ε > 0, we obtain the convolution integral equation

E(t;−S)x−
∫ ∞

−∞
E(t− τ ;−S0)ΓE(τ ;−S)x dτ = E(t;−S0)x,(2.3)

where x ∈ H and 0 �= t ∈ R. In (2.3), the convolution kernel E(·;−S0)Γ is continuous
in the norm except for a jump discontinuity in t = 0, as a result of the strong continuity
(except for the jump) of E(·;−S0) and the compactness of Γ. Further, (2.2) implies
that eε|·|E(·;−S0)Γ is Bochner integrable.

The symbol of the convolution integral equation (2.3), which equals IH + (λ −
S0)

−1Γ = (λ−S0)
−1(λ−S), tends to IH in the norm as λ → ∞ in the strip |Reλ| ≤ ε,

since Γ is compact and (λ− S0)
−1 tends to zero strongly. Moreover, it is a compact

perturbation of the identity which, by definition, only takes invertible values on the
imaginary axis. Thus there exists ε0 ∈ (0, ε] such that the symbol only takes invertible
values on the strip |Reλ| ≤ ε0.

Before proceeding with the proof we now state the Bochner–Phillips theorem
[6, 9]:

• Let A0 be a Banach algebra, A its natural extension to a Banach algebra with
unit element, and WA0 the Banach algebra of all ordered pairs (A∞, A), where
A∞ ∈ A and A is a Bochner integrable function from R into A0, endowed
with the norm

‖(A∞, A)‖WA0

def
= ‖A∞‖A +

∫ ∞

−∞
‖A(t)‖A0 dt.
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Then (A∞, A) is invertible in WA0
if and only if A∞ and all of the Fourier

transform values

A∞ +

∫ ∞

−∞
eiλtA(t) dt, λ ∈ R,

are invertible elements of A. In that case the inverse (B∞, B) is given by
B∞ = (A∞)−1 and

B∞ +

∫ ∞

−∞
eiλtB(t) dt =

[
A∞ +

∫ ∞

−∞
eiλtA(t) dt

]−1

, λ ∈ R.

We now apply this result in two different situations: (i) A = A0 = L(H) is the
Banach algebra of bounded linear operators on H, and (ii) A0 = K(H) is the Banach
algebra of compact operators on H and A = {λIH + K : λ ∈ C,K ∈ K(H)}. We
then also use that an element (A∞, A) ∈ WL(H) induces a bounded linear operator
on BC(R−;H) ⊕ BC(R∗;H), the bounded continuous functions from R into H with
a jump discontinuity at t = 0, by convolution.

By the Bochner–Phillips theorem, the convolution equation (2.3) has a unique
solution u(·;x) = E(·;−S)x with the following properties:

1) E(·;−S) is strongly continuous, except for a jump discontinuity at t = 0,
2)

∫∞
−∞ eε0|t|‖E(t;−S)‖ dt < ∞; hence E(·;−S) is exponentially decaying,

3) E(t;−S)−E(t;−S0) is a compact operator, also in the limits as t → 0±, and
4) the identity (2.1) holds.

As result [4], −S is exponentially dichotomous.
The set θ = (A0, Q,D;H) is called a triple if H is a complex Hilbert space, A0

generates a strongly continuous semigroup on H of negative exponential type, and Q
and D are bounded selfadjoint operators on H. Then obviously −S0 = (−A0)+̇A∗

0 is
exponentially dichotomous on H+̇H and P0 = IH+̇0 is the separating projection of
the corresponding bisemigroup E(·;−S0). The triple θ is called semicompact if D is
a compact operator on H, and compact if both D and Q are compact operators on
H. The triple θ is called positive semidefinite if Q and D are positive semidefinite
selfadjoint, and antipodal if one of Q and D is positive semidefinite selfadjoint and
the other is negative semidefinite selfadjoint.

Theorem 2.1 can be used to prove the following more specific result.
Theorem 2.2. Let θ = (A0, Q,D;H) be a positive semidefinite and semicompact

triple. Then the block matrix operator −S defined on H+̇H by

S =

[
A0 −D
−Q −A∗

0

]
,

is exponentially dichotomous.
Proof. Suppose (2.2) is satisfied. Let us define the operator

SQ =

[
A0 0
−Q −A∗

0

]
, D(SQ) = D(S0).

Consider the unique and positive semidefinite solution X of the Lyapunov equation
(e.g., [7, (1.12)–(1.13)])

A∗
0X + XA0 = −Q,
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given by

Xx =

∫ ∞

0

eτA
∗
0Qe−τA0x dτ, x ∈ H.

Note that [
I 0

−X I

]
SQ

[
I 0
X I

]
= S0.

So SQ and S0 are similar. Hence −SQ is exponentially dichotomous, and we obtain

E(·;−SQ) =

[
I 0
X I

]
E(·;−S0)

[
I 0

−X I

]
.

We also see that the separating projection PQ of E(·;−SQ) is given by

PQ =

[
I 0
X 0

]
.

Next, we remark that S − SQ is a compact operator. Hence by Theorem 2.1, to
prove that −S is exponentially dichotomous, it suffices to prove that −S does not
have imaginary eigenvalues. Indeed, let λ be an imaginary eigenvalue of −S. Then
there exist x ∈ D(A0) and y ∈ D(A∗

0) such that

(λ + A0)x−Dy = 0,

−Qx + (λ−A∗
0)y = 0.

Then, since λ is purely imaginary, we have

〈Qx, x〉 + 〈Dy, y〉 = 〈(λ−A∗
0)y, x〉 + 〈(λ + A0)x, y〉 = 0,

which implies Qx = Dy = 0. But then (λ−A0)x = (λ+A∗
0)y = 0 for some imaginary

λ, and hence x = y = 0, as claimed.
Let

P = −E(0−;−S) = IH+̇H − E(0+;−S)

denote the separating projection of E(·;−S). Consider the indefinite scalar product
generated by

J1 =

[
0 −IH

−IH 0

]
on H+̇H. Since J1S + S∗J1 = 2(Q+̇D), the real part 1

2 (S + J−1
1 S∗J1) of S with

respect to the indefinite scalar product generated by J1 is positive semidefinite selfad-
joint whenever θ = (A0, Q,D;H) is a positive semidefinite triple. Hence, in this case
it is clear that ImP is a J1-nonpositive and KerP is a J1-nonnegative S-invariant
subspace of H+̇H (cf. [1, section 3.2]). Also [1], since iS is selfadjoint with respect
to the indefinite scalar product generated by

J2 =

[
0 iIH

−iIH 0

]
,
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it is clear that ImP and KerP are J2-neutral S-invariant subspaces of H+̇H (i.e., on
these subspaces the sesquilinear form (x, y) �→ (J2x, y) is trivial).

Further, with X as above and θ = (A0, Q,D;H) a positive semidefinite triple, we
have

−SX
def
=

[
IH 0

−X IH

]
(−S)

[
IH 0
X IH

]
= −S0 +

[
IH

−X

]
D

[
X IH

]
,

which implies that (A0 −DX,XDX,−D;H) is an antipodal compact triple.
We need the following definitions. Suppose W is a continuous function from the

extended imaginary axis i(R ∪ {∞}) into L(H). Then by a left canonical (Wiener–
Hopf ) factorization of W we mean a representation of W of the form

W (λ) = W+(λ)W−(λ), Reλ = 0,

in which W±(±λ) is continuous on the closed right half-plane (the point at ∞ in-
cluded), is analytic on the open right half-plane, and takes only invertible values for
λ in the closed right half-plane (the point at infinity included). Obviously, such an
operator function only takes invertible values on the extended imaginary axis. By a
right canonical (Wiener–Hopf ) factorization we mean a representation of W of the
form

W (λ) = W−(λ)W+(λ), Reλ = 0,

where W±(λ) is as above.
Theorem 2.3. Let θ = (A0, Q,D;H) be a positive semidefinite and semicompact

triple. Then we have the following decompositions:

ImP +̇KerP0 = H+̇H,(2.4)

KerP +̇ImP0 = H+̇H.(2.5)

Proof. Let us introduce the operators

V = P0P + (I − P0)(I − P ),(2.6)

VQ = P0PQ + (I − P0)(I − PQ).(2.7)

Then

VQ =

[
IH 0
0 0

] [
IH 0
X 0

]
+

[
0 0
0 IH

] [
0 0

−X IH

]
=

[
IH 0
−X IH

]
,

so that VQ is invertible. On the other hand, the identity

E(t;−S) −
∫ ∞

−∞
E(t− τ ;−SQ)

[
0 D
0 0

]
E(τ ;−S) dτ

= E(t;−S) −
∫ ∞

−∞
E(t− τ ;−SQ)

[
0 D1/2

0 0

](
E(τ ;−S∗)

[
0 0

D1/2 0

])∗
dτ

= E(t;−SQ),

which is analogous to (2.3) and where the integrand is norm continuous in τ , implies
that

P − PQ = −
∫ ∞

−∞
E(−τ ;−SQ)

[
0 D
0 0

]
E(τ ;−S) dτ,
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is compact. Further,

V − VQ = [P0 − (I − P0)] (P − PQ)

implies that V − VQ is compact. As a result, V is a Fredholm operator of index zero.
Now the operator V satisfies the identities

KerV = [ImP ∩ KerP0] +̇ [KerP ∩ ImP0],

ImV = [ImP + KerP0] ∩ [KerP + ImP0].

So, in order to establish (2.4) and (2.5) it suffices to prove that

ImP ∩ KerP0 = KerP ∩ ImP0 = {0}.

Indeed, the operator function

W (λ) = I +

[
Q1/2 0

0 D1/2

]
(λ− S0)

−1

[
0 D1/2

Q1/2 0

]
= I +

[
Q1/2 0

0 D1/2

] [
0 (λ + A∗

0)
−1

(λ−A0)
−1 0

] [
Q1/2 0

0 D1/2

]
(2.8)

has the identity operator as its real part for imaginary λ and hence

sup
Reλ=0

‖IH − cW (λ)‖ < 1

for some c > 0.
Also, W belongs to the Wiener algebra in the sense that there exists a norm

measurable operator function L(·) for which W is equal to I plus the Fourier transform
of L, and with L having only compact operators as its values such that∫ ∞

−∞
eε|t|‖L(t)‖ dt < ∞,

because of the norm continuity of L(t) for t ∈ R \ {0} and the exponential decay of
‖L(t)‖ as t → ±∞. As a result [9], cW and hence W has left and right canonical
factorizations

W (λ) = W
(l)
− (λ)W

(l)
+ (λ) = W

(r)
+ (λ)W

(r)
− (λ), |Reλ| ≤ ε,(2.9)

for some ε > 0, where W
(l)
− (λ), W

(r)
− (λ) and their inverses are analytic in the half-

plane Reλ < ε and tend to the identity in the norm as λ → ∞ in this half-plane and

W
(l)
+ (λ), W

(r)
+ (λ) and their inverses are analytic in the half-plane Reλ > −ε and tend

to the identity in the norm as λ → ∞ in this half-plane. Using

S = S0 −
[

0 D1/2

Q1/2 0

] [
Q1/2 0

0 D1/2

]
and

W (λ)−1 = I −
[
Q1/2 0

0 D1/2

]
(λ− S)−1

[
0 D1/2

Q1/2 0

]
,
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we obtain

W (λ)−1

[
Q1/2 0

0 D1/2

]
(λ− S0)

−1 =

[
Q1/2 0

0 D1/2

]
(λ− S)−1.(2.10)

Letting x ∈ KerP0∩ImP , we substitute the first of the factorizations (2.9) into (2.10),
observe that the left- and right-hand sides of the resulting identity

W
(l)
− (λ)−1

[
Q1/2 0

0 D1/2

]
(λ− S0)

−1x = W
(l)
+ (λ)

[
Q1/2 0

0 D1/2

]
(λ− S)−1x

are analytic in λ for Reλ < ε and Reλ > −ε, respectively, apply Liouville’s theorem,
and obtain [

Q1/2 0
0 D1/2

]
(λ− S0)

−1x =

[
Q1/2 0

0 D1/2

]
(λ− S)−1x = 0.

Next, we employ the equality

(λ− S)−1x− (λ− S0)
−1x = −(λ− S)−1

[
0 D
Q 0

]
(λ− S0)

−1x

= −(λ− S)−1

[
0 D1/2

Q1/2 0

]
·
[
Q1/2 0

0 D1/2

]
(λ− S0)

−1x = 0

to enable the application of Liouville’s theorem to the analytic continuation of (λ −
S)−1x = (λ− S0)

−1x and conclude that x = 0. As a result, KerP0 ∩ ImP = {0}, as
claimed. In a similar way we prove that ImP0 ∩ KerP = {0}.

Theorem 2.3 implies that (λ − S0)
−1(λ − S) has left and right canonical factor-

izations (as in (2.9)). Letting

Γ =

[
0 D
Q 0

]
,

these factorizations have the following form ([3, Chapter 1])

(λ− S0)
−1(λ− S) =

[
I + (λ− S0)

−1(I − P)Γ
] [
I + P(λ− S0)

−1Γ
]
,

where

(I + (λ− S0)
−1(I − P)Γ)−1 = I − (I − P)(λ− S)−1Γ,

(I + P(λ− S0)
−1Γ)−1 = I − (λ− S)−1PΓ.

Here P is either the projection of H+̇H onto ImP along KerP0 (for the right canonical
factorization) or the projection of H+̇H onto KerP along ImP0 (for the left canonical
factorization).

The following result has been established in [18] for a positive semidefinite triple,
without assuming the compactness of D. As a result, in [18] one does not get the
compactness of Π+, only its boundedness.

Theorem 2.4. Let (A0, Q,D;H) be a positive semidefinite and semicompact
triple. Then there exist unique positive semidefinite selfadjoint operators −Π+ and
Π− on H, where Π+ is compact and Π− is bounded, such that
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(1) the image and kernel of the separating projection P of E(·;−S) are graph
subspaces in the sense that

ImP = Im

[
IH
Π−

]
, KerP = Im

[
Π+

IH

]
,(2.11)

(2) Π− maps D(A0) into D(A∗
0) and Π+ maps D(A∗

0) into D(A0),
(3) Π− is a solution of the operator Riccati equation

ΠA0x + A∗
0 Πx + Qx− ΠDΠx = 0, x ∈ D(A0),(2.12)

and Π+ is a solution of the operator Riccati equation

A0Πx + ΠA∗
0 x + ΠQΠx−Dx = 0, x ∈ D(A∗

0),(2.13)

(4) and A0−DΠ− and A0+Π+Q are the infinitesimal generators of exponentially
decaying C0-semigroups on H.

Proof. According to Theorem 2.3, there exist bounded projections P(l) and P(r)

on H+̇H such that P(l) projects H+̇H onto KerP along ImP0 and P(r) projects
H+̇H onto ImP along KerP0. Hence there exist bounded linear operators Π− and
Π+ on H, so-called angular operators (cf. [3, Chapter 5]), such that

P(l) =

[
IH 0
Π− 0

]
, P(r) =

[
0 Π+

0 IH

]
.(2.14)

As a result, there exist bounded linear operators Π− and Π+ on H such that (2.11)
is true.

One easily proves that

P(l) = V −1(IH − P0), P(r) = V −1P0,

where V is given by (2.6). Since the projections P0 and I−P0 commute with (λ−S0)
−1

and P and I − P commute with (λ − S)−1 whenever |Reλ| ≤ ε for some ε > 0, the
invertible operator V maps D(S0) = D(S) = D(A0)+̇D(A∗

0) onto itself. Consequently,
P(l) and P(r) map this domain into itself and hence Π− maps D(A0) into D(A∗

0) and
Π+ maps D(A∗

0) into D(A0).
The Riccati equations (2.12) and (2.13) follow from the identities

S

[
IH
Π−

]
x =

[
IH
Π−

]
(A0 −DΠ−)x, S

[
Π+

IH

]
y =

[
Π+

IH

]
(−A∗

0 −QΠ+)y,(2.15)

where x ∈ D(A0) and y ∈ D(A∗
0), in the standard way. Furthermore, since S is

exponentially dichotomous with separating projection P and

KerP = Im

[
IH
Π−

]
, ImP = Im

[
Π+

IH

]
,

we immediately have part (4) of Theorem 2.4.
Now remark that Π− and Π+ are selfadjoint (because of the J2-neutrality of

ImP and KerP ), while −Π+ and Π− are positive semidefinite (because of the J1-
nonpositivity of ImP and the J1-nonnegativity of KerP ).
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Finally, from the compactness of V − VQ and hence from the compactness of

V −1 − V −1
Q =

[
IH Π+

Π− IH

]
−
[
IH 0
X IH

]
=

[
0 Π+

Π− −X 0

]
,

where V and VQ are given by (2.6) and (2.7), it follows directly that Π+ and Π− −X
are compact operators.

In [16] a closely related existence result was obtained under the assumption that
the spectrum of the block matrix operator S only consists of algebraically and geo-
metrically simple eigenvalues and does not have finite accumulation points.

3. Approximation. Letting Hn be a sequence of closed linear subspaces of H,
there exist unique operators πn : H → Hn and ın : Hn → H such that ınπn is the
orthogonal projection of H onto Hn and πnın is the identity operator on Hn. We
assume that ınπn tends to IH in the strong sense.

Starting from a given triple θ = (A0, Q,D;H), we define Qn = πnQın, Dn =
πnDın, which are selfadjoint on Hn and positive semidefinite whenever Q and D are
positive semidefinite. Let A0n be a generator of a strongly continuous semigroup on
Hn of negative exponential type. Then a sequence of triples θn = (A0n, Qn, Dn;Hn)
is called an approximant to the triple θ if the following condition holds: for some ε > 0
we have the approximation

lim
n→∞

eε|t| ‖ı̂nE(t;−S0n)π̂nx− E(t;−S0)x‖H = 0(3.1)

for every x ∈ H, uniformly in t ∈ R \ {0}. Here π̂n = πn+̇πn, ı̂n = ın+̇ın and S0n =
A0n+̇(−A∗

0n) on Hn+̇Hn. The sequence of triples θn is called a finite dimensional
approximant to θ if it is an approximant to θ and the spaces Hn = πn[H] are finite
dimensional.

We remark that it is easily seen that ınQnπn converges to Q strongly, while
ınDnπn converges to D in norm because of the compactness of D.

Theorem 3.1. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant
to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Put

Sn =

[
A0n −Dn

−Qn −A∗
0n

]
.

Then

lim
n→∞

‖ı̂nE(t;−Sn)π̂nx− E(t;−S)x‖H = 0(3.2)

for every x ∈ H+̇H, uniformly in t ∈ R \ {0}.
Proof. Consider the sequence of triples θQn = (A0n, Qn, 0;Hn) approximant to the

positive semidefinite triple θ = (A0, Q, 0;H). Put

SQ
n =

[
A0n 0
−Qn −A∗

0n

]
.

In analogy with (2.3) we obtain

E(t;−SQ
n )x = E(t;−S0n)x +

∫ ∞

−∞
E(t− τ ;−S0n)ΓQE(τ ;−SQ

n )x dτ.
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Because of (3.1), we see that ‖E(t;−S0n)‖ has a finite upper bound which is inde-
pendent of t ∈ R \ {0} and n ∈ N. Using dominated convergence, we take the limit
under the integral sign and find that for some ε > 0

lim
n→∞

eε|t|
∥∥ı̂nE(t;−SQ

n )π̂nx− E(t;−SQ)x
∥∥
H = 0(3.3)

for every x ∈ H, uniformly in t ∈ R \ {0}.
Next, in analogy with (2.3) we have

E(t;−Sn) −
∫ ∞

−∞
E(t− τ ;−SQ

n )ΓD
n E(τ ;−Sn) dτ = E(t;−SQ

n ),

where ΓD
n =

(
0 Dn

0 0

)
. This integral equation implies that

ı̂nE(t;−Sn)π̂nx−
∫ ∞

−∞
ı̂nE(t− τ ;−SQ

n )ΓD
n E(τ ;−Sn)π̂nx dτ

= ı̂nE(t;−SQ
n )π̂nx,(3.4)

where x ∈ H+̇H. Note that ΓD
n = π̂nΓD ı̂n, so that (3.4) can be written in the form

ı̂nE(t;−Sn)π̂nx−
∫ ∞

−∞
ı̂nE(t− τ ;−SQ

n )π̂nΓD · ı̂nE(τ ;−Sn)π̂nx dτ

= ı̂nE(t;−SQ
n )π̂nx,

where x ∈ H+̇H. Equation (3.3) and the compactness of ΓD imply that for some
ε > 0

lim
n→∞

eε|t|
∥∥ı̂nE(t;−SQ

n )π̂nΓD − E(t;−SQ)ΓD

∥∥
H = 0,

uniformly in t ∈ R \ {0}. Because of the unique solvability of (3.4) on the complex
Banach space of bounded continuous Hn-valued functions on the real line with a
possible jump discontinuity in t = 0, in combination with (3.3), we obtain (3.2) as
claimed.

Let

Xn =

∫ ∞

0

eτA
∗
0nQne

τA0n dτ

be the unique solution of the Lyapunov equation

A∗
0n Xn + XnA0n = −Qn.

Using dominated convergence one easily proves that, under the hypotheses of Theorem
3.1,

lim
n→∞

‖ınXnπnx−Xx‖ = 0, x ∈ H.(3.5)

Similarly, the unique solution

Yn =

∫ ∞

0

eτA0nDne
τA∗

0n dτ
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of the Lyapunov equation

A0nYn + YnA
∗
0n = −Dn

has the property that

lim
n→∞

‖ınYnπnx− Y x‖ = 0, x ∈ H,

where

Y =

∫ ∞

0

eτA0D eτA
∗
0 dτ

is the unique solution of the Lyapunov equation

A0Y + Y A∗
0 = −D.

Let us now prove the strong stability of Π− and the stability of Π+ in the norm
if a positive semidefinite and semicompact triple is approximated by a sequence of
triples in the sense of the above definition. The obvious way to do so is to study the
operator Wiener–Hopf equation

u(t;x) −
∫ ∞

0

E(t− τ ;−S0)Γu(τ ;x) dτ = E(t;−S0)x,(3.6)

where x ∈ KerP0 and t > 0, or the operator Wiener–Hopf equation

v(t;x) −
∫ 0

−∞
E(t− τ ;−S0)Γv(τ ;x) dτ = E(t;−S0)x,(3.7)

where x ∈ ImP and t < 0. Unfortunately, their integral kernel E(·;−S0)Γ is, in
general, not Bochner integrable. If it were, one would trivially obtain the solutions of
(3.6) and (3.7) as follows:

u(t;x) = E(t;−S)P(l)x, v(t;x) = E(t;−S)P(r)x.

Let us therefore introduce the modified operator convolution kernel

K(t;−S0) =

[
Q1/2 0

0 D1/2

]
E(t;−S0)

[
0 D1/2

Q1/2 0

]

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
0 −Q1/2e−tA0D1/2

0 0

]
, t < 0,

[
0 0

D1/2etA
∗
0Q1/2 0

]
, t > 0.

Note that K(t;−S0) is compact and norm continuous in t �= 0. This integral kernel
satisfies [

Q1/2 0
0 D1/2

]
E(t;−S0)Γ = K(t;−S0)

[
Q1/2 0

0 D1/2

]



APPROXIMATION OF SOLUTIONS OF RICCATI EQUATIONS 1431

and leads to operator Wiener–Hopf equations with Bochner integrable convolution
kernel and symbol W (λ) defined by (2.8). Indeed, these equations are given by

w(t;x) −
∫ ∞

0

K(t− τ ;−S0)w(τ ;x) dτ =

[
Q1/2 0

0 D1/2

]
E(t;−S0)x,(3.8)

where x ∈ KerP0 and t > 0, and by

z(t;x) −
∫ 0

−∞
K(t− τ ;−S0)z(τ ;x) dτ =

[
Q1/2 0

0 D1/2

]
E(t;−S0)x,(3.9)

where x ∈ ImP and t < 0. Equations (3.8) and (3.9) are uniquely solvable, because
their symbol W (λ) has left and right canonical Wiener–Hopf factorizations. Once
(3.8) and (3.9) have been solved, we have

u(t;x) = E(t;−S0)x +

∫ ∞

0

E(t− τ ;−S0)

[
0 D1/2

Q1/2 0

]
w(τ ;x)dτ(3.10)

for x ∈ KerP0 and t > 0, and

v(t;x) = E(t;−S0)x +

∫ 0

−∞
E(t− τ ;−S0)

[
0 D1/2

Q1/2 0

]
z(τ ;x)dτ(3.11)

for x ∈ ImP0 and t < 0. We then finally obtain

P(l)x = u(0+;x), P(r)x = −v(0−;x),

and hence [cf. (2.14)]

Π−x =
[
0 IH

]
u(0+;x), Π+x = −

[
IH 0

]
v(0−;x).(3.12)

Theorem 3.2. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant
to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Then

lim
n→∞

‖ınΠ−,nπnx− Π−x‖ = 0,(3.13)

and

lim
n→∞

‖ınΠ+,nπnx− Π+x‖ = 0(3.14)

for every x ∈ H.

Proof. From (3.1), the strong convergence ınQ
1/2
n πn → Q1/2 and the compactness

of D1/2, we obtain for some ε > 0

lim
n→∞

eε|t| ‖ı̂nK(t;−S0n)π̂n −K(t)‖ = 0,

uniformly in t ∈ R \ {0}, and hence for some ε > 0

lim
n→∞

∫ ∞

−∞
eε|t| ‖ı̂nK(t;−S0n)π̂n −K(t)‖ dt = 0.

Thus, using (3.1) and the unique solvability of (3.8), we get for some ε > 0

lim
n→∞

eε|t| ‖ı̂nwn(t; π̂nx) − w(t;x)‖ = 0
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for every x ∈ H+̇H, uniformly in t ∈ R+. Similarly, for some ε > 0 we have

lim
n→∞

eε|t| ‖ı̂nzn(t; π̂nx) − z(t;x)‖ = 0

for every x ∈ H+̇H, uniformly in t ∈ R−. With the help of (3.1), (3.10), and (3.11),
we find for some ε > 0

lim
n→∞

eε|t| ‖ı̂nun(t; π̂nx) − u(t;x)‖ = 0

for every x ∈ H+̇H, uniformly in t ∈ R+, as well as

lim
n→∞

eε|t| ‖ı̂nvn(t; π̂nx) − v(t;x)‖ = 0

for every x ∈ H+̇H, uniformly in t ∈ R−. Using (3.12) we then easily obtain (3.13)
and (3.14).

The following result strengthens the convergence properties stated in Theorem
3.2.

Theorem 3.3. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant
to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Then

lim
n→∞

‖ın(Π−,n −Xn)πn − (Π− −X)‖ = 0,(3.15)

lim
n→∞

‖ınΠ+,nπn − Π+‖ = 0.(3.16)

Proof. From (3.8) and E(t;−S0) = 0+̇etA
∗
0 for t > 0 it is clear that for every

t > 0 the right-hand side of (3.8) can be viewed as the result of applying a compact
operator to a vector x ∈ H. Since (3.1) and the compactness of D1/2 imply that for
some ε > 0

lim
n→∞

∥∥∥ınD1/2
n etA

∗
0n(I − P0n)πn −D1/2etA

∗
0 (I − P0)

∥∥∥ = 0, t > 0,

we have

lim
n→∞

∥∥∥∥∥ı̂n
[
Q

1/2
n 0

0 D
1/2
n

]
E(t;−S0n)π̂n −

[
Q1/2 0

0 D1/2

]
E(t;−S0)

∥∥∥∥∥ = 0,

and this allows one to sharpen the derivation of (3.14) and to obtain (3.16) instead.
To prove (3.15), we replace (3.7), (3.9), and (3.11) by

vQ(t;x) −
∫ 0

−∞
E(t− τ ;−SQ)ΓDvQ(τ ;x) dτ = E(t;−SQ)x,(3.17)

zQ(t;x) −
∫ 0

−∞
K(t− τ ;−SQ)zQ(τ ;x) dτ =

[
0 0
0 D1/2

]
E(t;−SQ)x,(3.18)

vQ(t;x) = E(t;−SQ)x +

∫ 0

−∞
E(t− τ ;−SQ)

[
0 D1/2

0 0

]
zQ(τ ;x)dτ ,(3.19)

respectively, where x ∈ H, ΓD =

(
0 D
0 0

)
, and the convolution kernel K(t;−SQ)

satisfies

K(t;−SQ)

[
0 0
0 D1/2

]
=

[
0 0
0 D1/2

]
E(t;−SQ).
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Repeating the proof of (3.16) with the help of (3.17), (3.18), and (3.19) we obtain
(3.15).

It remains to consider the approximation of the C0-semigroups generated by A0−
DΠ− and A∗

0 + QΠ+. Indeed, from (2.15) we easily derive the identity

S

[
IH Π+

Π− IH

]
=

[
A0 −D
−Q −A∗

0

] [
IH Π+

Π− IH

]
=

[
IH Π+

Π− IH

] [
A0 −DΠ− 0

0 −A∗
0 −QΠ+

]
,

where A0−DΠ− and A∗
0 +QΠ+ both generate exponentially decaying C0-semigroups

on H. Writing down the analogous identity for resolvent operators and applying the
inverse Laplace transform, we get[

IH Π+

Π− IH

]−1

E(t;−S)

[
IH Π+

Π− IH

]
=

{
et(A0−DΠ−)+̇0H, t > 0,

0H+̇
(
−e−t(A∗

0+QΠ+)
)
, t < 0,

(3.20)

where 0H denotes the zero operator on H.
Theorem 3.4. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant

to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Then for t > 0 we
have

lim
n→∞

∥∥∥ınet(A0n−DnΠ−,n)πn − et(A0−DΠ−)
∥∥∥ = 0,(3.21)

lim
n→∞

∥∥∥ınet(A∗
0n+QnΠ+,n)πn − et(A

∗
0−QΠ+)

∥∥∥ = 0,(3.22)

uniformly in t on compact intervals of either [0,∞) or (−∞, 0].
Proof. Because of (3.2) and (3.20), it suffices to prove that for each x ∈ H we

have

lim
n→∞

‖[̂ınMnπ̂n −M ]x‖ = 0,(3.23)

lim
n→∞

∥∥[ı̂nM−1
n π̂n −M−1

]
x
∥∥ = 0,(3.24)

where

M =

[
IH Π+

Π− IH

]
, Mn =

[
IHn

Π+,n

Π−,n IHn

]
.

Indeed, (3.13), (3.16), and the compactness of the operator Π+ imply that

lim
n→∞

‖ın(IHn
− Π−,nΠ+,n)πn − (IH − Π−Π+)‖ = 0.

Now note that IH −Π−Π+ is invertible, as a result of the existence of the projection
P [cf. (2.11)]. Thus

lim
n→∞

∥∥ın(IHn − Π−,nΠ+,n)−1πn − (IH − Π−Π+)−1
∥∥ = 0,

and by taking the adjoint

lim
n→∞

∥∥ın(IHn − Π+,nΠ−,n)−1πn − (IH − Π+Π−)−1
∥∥ = 0.

We now easily show that

M−1 =

[
(IH − Π+Π−)−1 −(IH − Π+Π−)−1Π+

−(IH − Π−Π+)−1Π− (IH − Π−Π+)−1

]
.(3.25)

Hence from (3.25) and the analogous expression for M−1
n , we now easily derive (3.23)

and (3.24).
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4. Conclusions and remarks. In this paper, exponentially dichotomous block
matrix operators on H+̇H have been studied as additive perturbations of exponen-
tially dichotomous operators of the type A0+̇(−A∗

0). This allows a considerable range
of LQ-optimal control theory applications; for instance, the example in [16] concern-
ing the heat equation could be dealt with in this way. (We did not do so explicitly,
because we expect no better results than the ones one can expect for a Hamiltonian
that is a Riesz spectral operator, and taking as approximations for Hn the spaces
spanned by the first n vectors in a properly constructed Riesz basis of eigenvectors
of the Hamiltonian. The results would be no better than the ones already existing in
the literature.)

Also we considered (possibly finite dimensional) approximations. In connection
with the latter topic there are still many open questions. Questions that are natural
from a numerical analysis point of view come to mind; for instance, how is the speed
of convergence in the results described in section 3 tied to the speed of convergence in
(3.1) and to the speed of convergence of ınDπn to D? What about Lipschitz estimates
and relative error bounds? All these points are open problems, although an analysis
of our proofs may provide some answers.

Finally, delay systems defy application of the existing results. In order to be
able to deal with applications to delay systems we would need criteria for exponen-
tial dichotomy, where the linear operator is not a perturbation of a naturally given
exponentially dichotomous operator, and where a Banach space setting is adopted.
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Abstract. We establish that, under certain conditions, the set of occupational measures as
well as the set of mathematical expectations of occupational measures generated by the admissible
controls and the corresponding solutions of a controlled stochastic differential equation (CSDE)
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1. Introduction. In this paper we establish that, under certain conditions, the
set of occupational measures as well as the set of mathematical expectations of occupa-
tional measures generated by the admissible controls and the corresponding solutions
of a controlled stochastic differential equation (CSDE) converge (with the time hori-
zon tending to infinity) to a set called limit occupational measures set (LOMS) and
we show that this limit set coincides with the set of stationary marginal distributions
of the CSDE.

The motivation for our study is the applicability of results to averaging of singu-
larly perturbed CSDE. We show that, given a singularly perturbed CSDE, the slow
components of its state variables are approximated by the solutions of the averaged
system in which the controls take values in the LOMS of the system describing the
fast dynamics. In the deterministic control setting, a similar approach was used in
[4], [5], [6], [7], [8], [26], [27], [28] (see also [18], [19], [24], [25], [30], [46], [51] for
related results). The current paper is based on a combination of ideas developed in
the deterministic setting and also on results of [11], [13], and [49] which describe the
set of stationary marginal distributions of the CSDE.

Note that singularly perturbed problems of control and optimization have been
considered in both deterministic and stochastic literature (see [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [12], [17], [18], [19], [20], [21], [22], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [35], [36], [37], [38], [39], [41], [42], [43], [44], [45], [46], [48], [50], [51],
[53] and references therein). Singularly perturbed CSDE, in particular, have been
studied in [2], [3], [12], [32], [33], and [38], where earlier references can also be found.
In [2], [3], and [12] the Hamilton–Jacobi–Bellman (HJB) equations corresponding to
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singularly perturbed CSDE were analyzed. In [2], in particular, it was shown that the
optimal value function of the problem of optimal control of singularly perturbed CSDE
with a fairly general structure (the only structural constraint was the periodicity in
fast variables) converges to a viscosity solution of the HJB equation in which the
fast variables are averaged out. In [12], results concerning asymptotic behavior of
singularly perturbed CSDE with nongenerate diffusion were obtained. In [32] and
[33], singularly perturbed CSDE linear in fast variables were studied and the limit
behavior of the attainability sets was described. In [38], weak convergence methods
were used to establish a number of important results concerning mainly the case when
the fast dynamics are not controlled.

The results obtained in this paper can be used for an approximation of the slow
dynamics of singularly perturbed CSDE having a general structure (that is, in partic-
ular, nonlinear and nonperiodic in fast variables, and having a controlled fast dynam-
ics). It allows one to treat stochastic nondegenerate and degenerate diffusion cases
(as well as a purely deterministic case) in a similar manner and also to deal with the
situation when the classical approach, based on equating the singular perturbation
parameter to zero, may not lead to a correct approximation of the slow dynamics.

The paper is organized as follows: In section 2 we introduce some notations and
define the LOMS of the CSDE as the limit towards which converges the set of mathe-
matical expectations of occupational measures generated by the controls and solutions
of the CSDE. In section 3 we identify necessary and sufficient conditions for the LOMS
to exist (Theorems 3.2 and 3.3) and also sufficient conditions for every element of the
LOMS to be asymptotically approximated (in mean) by an occupational measure ob-
tained with some admissible control (Theorem 3.4). In section 4 we establish that if
the LOMS exists, it coincides with the set of marginal stationary distributions of the
CSDE (Theorem 4.1) and show that every occupational measure converges to this set
in mean (Theorem 4.2). The proofs for sections 3 and 4 are contained in sections 6
and 7.

In section 5 we demonstrate the applicability of above mentioned results to av-
eraging of singularly perturbed CSDE (Theorem 5.1). The proofs for section 5 are
contained in section 8.

2. Preliminaries. For a compact set U and m dimensional Euclidean space Rm,
P(U×Rm) and P(U×R̄m) will stand for the spaces of probability measures defined on
the σ- algebras of Borel subsets of U×Rm and U×R̄m, respectively, with R̄m being the
one point compactification of Rm (see, e.g., [23, p. 126]). Note that any probability
measure μ on U × Rm may be identified with the unique probability measure on
U × R̄m that restricts to μ on U × Rm and perforce assigns zero probability to its
complement. Conversely, any probability measure μ on U× R̄m, assigning probability
one to U ×Rm, defines a unique probability measure on U ×Rm. Thus, P(U ×Rm)
can be considered as a subset of P(U × R̄m) consisting of the probability measures μ
on U × R̄m with μ(U ×Rm) = 1.

The set P(U× R̄m) will be treated as a compact metric space with a metric ρ(·, ·)
consistent with its weak convergence topology which is metrizable and compact. There
are many ways of how ρ(·, ·) can be introduced. In this paper the following definition
will be used (in most of the cases): for any μ′, μ′′ ∈ P(U × R̄m),

ρ(μ′, μ′′)
def
=

∞∑
i=1

2−i

∣∣∣∣∫ fi(u, y)μ
′(du, dy) −

∫
fi(u, y)μ

′′(du, dy)

∣∣∣∣ ,(2.1)

where fi(u, y), i = 1, 2, . . . , is the sequence of Lipschitz continuous functions which is
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dense in the unit ball of C(U × R̄m) (the space of continuous functions defined on
U × R̄m). Using the metric ρ, one can define the Hausdorff metric ρH on the set of
subsets of P(R̄m × U) as follows: ∀Mi ⊂ P(U × R̄m), i = 1, 2,

ρH(M1,M2)
def
= max

{
sup

μ∈M1

ρ(μ,M2), sup
μ∈M2

ρ(μ,M1)

}
,(2.2)

where (here and in what follows)

ρ(μ,Mi)
def

= inf
μ′∈Mi

ρ(μ, μ′).(2.3)

Remark 1. Note that, if M1 and/or M2 are not closed, then from the fact that
ρH(M1,M2) = 0 it does not follow that M1 = M2. That is, ρH(·, ·) is, in fact,
a semimetric. By some abuse of terminology we still will refer to it as to a metric
keeping in mind that its equality to zero is equivalent to the equality of the closures
of the corresponding sets.

We will be dealing with a CSDE

dy(τ) = a(u(τ), y(τ))dτ + b(y(τ))dW (τ)(2.4)

with the initial conditions

y(0) = y0,(2.5)

where:
• the functions a(u, y) : U ×Rm → Rm and b(y) : Rm → Rm×m are continuous

and satisfy Lipschitz conditions in y, with a(u, y) satisfying it uniformly with
respect to u ∈ U ;

• U is a compact metric space;
• W (·) is an Rm-valued standard Brownian motion;
• y0 is an Rm-valued random variable independent of W (·);
• admissible controls u(·) are U−valued random processes progressively mea-

surable with respect to a right continuous and complete filtration {Fτ} ⊂ F
of σ-fields (with (Ω,F ,P) being a given probability space) such that:

• {y0 and W (θ); θ ≤ τ} is measurable with respect to Fτ for τ ≥ 0,
• For τ ′ ≥ τ ≥ 0, W (τ ′) −W (τ) is independent of Fτ .

Let S > 0, u(·) be an admissible control and y(·) be the corresponding solution

of the CSDE (2.4) on the interval [0, S]. Define the occupational measure μ
u(·),y(·)
S

generated by the pair (u(·), y(·)) on this interval by taking

μ
u(·),y(·)
S (Q)

def
=

1

S
meas{τ : (u(τ), y(τ)) ∈ Q}(2.6)

for any Borel subset Q of U × R̄m, with meas standing for the Lebesgue measure on

[0, S]. Note that μ
u(·),y(·)
S is uniquely defined by∫

fi(u, y)μ
u(·),y(·)
S (du, dy) =

1

S

∫ S

0

fi(u(τ), y(τ))dτ, i = 1, 2, . . . ,(2.7)

where fi(·) are as in (2.1). From (2.7) it follows that, for any fixed μ ∈ P(U×R̄m), the

value of the metric ρ(μ, μ
u(·),y(·)
S ) is a random variable, which allows one to easily verify
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that μ
u(·),y(·)
S is a P(U × R̄m)- valued random variable. Define also the mathematical

expectation E[μ
u(·),y(·)
S ] of μ

u(·),y(·)
S as the probability measure on R̄m × U such that

E[μ
u(·),y(·)
S ](Q)

def
=

1

S
E[meas{τ : (y(τ), u(τ)) ∈ Q}](2.8)

for any Borel subset Q of U × R̄m. By (2.7) and (2.8),∫
fi(u, y)E[μ

u(·),y(·)
S ](du, dy) = E

[∫ S

0

fi(u, y)μ
u(·),y(·)
S (du, dy)

]

= E

[
1

S

∫ S

0

fi(u(τ), y(τ))dτ

]
, i = 1, 2, . . . ,(2.9)

with E[μ
u(·),y(·)
S ] being uniquely defined by these equations.

Denote by M(S, y0) and E[M(S, y0)] the collections of the occupational measures
and their mathematical expectations:

M(S, y0)
def

=
⋃

(u(·), y(·))
{μu(·),y(·)

S }, E[M(S, y0)]
def

=
⋃

(u(·), y(·))
{E[μ

u(·),y(·)
S ]},(2.10)

where the unions are over all admissible controls and corresponding solutions of (2.4)
with the initial condition (2.5).

By analogy with the deterministic setting (see [26], [27], and [28]), we introduce
the following definition.

Definition. A convex and compact set M ⊂ P(U ×Rm) will be called LOMS of
the CSDE (2.4) with respect to the initial conditions having probability distributions
from a given class C if, for any initial conditions with the distribution from this class,

ρH(E[M(S, y0)],M) ≤ νC(S), lim
S→∞

νC(S) = 0.(2.11)

The following assumption about the solutions of (2.4) will be used throughout
the paper.

Assumption 1. There exists α > 0 such that any solution of (2.4) obtained with
an admissible control satisfies the inequality

sup
τ,u(·)

E[||y(τ)||α] ≤ c1(E[||y0||α] + 1), c1 = const.(2.12)

As an example let us consider the case when the CSDE (2.4) is linear. That is,

a(u, y)
def

= A1y + A2u, b(y)
def

= A3,(2.13)

where U is a compact subset of Rs (for some natural s) and Ai, i = 1, 2, 3, are matrices
of the corresponding dimensions. In this case the solution of (2.4) can be presented
in the form

y(τ) = eA1τy(0) +

∫ τ

0

eA1(τ−τ ′)A2u(τ ′)dτ ′ +

∫ τ

0

eA1(τ−τ ′)A3dW (τ ′)(2.14)

and it is easy to verify that Assumption 1 will be valid with α = 2 if the eigenvalues
of A1 have negative real parts. Note that, for general nonlinear systems, sufficient
conditions for Assumption 1 to be valid can be derived from the existence of the
corresponding Liapunov functions (see, e.g., [11], [16], and [34] for classical results on
the uncontrolled case).
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3. Strong and weak h-approximation conditions. Let h(u, y) : U × R̄m →
Rj be defined by

h(u, y)
def

= (f1(u, y), f2(u, y), . . . , fj(u, y)),(3.1)

where, as above, fi(·) are as in the definition of the metric ρ(·, ·) (see (2.1)). In some
instances (e.g., in the definitions below or in Lemma 3.1 and Theorems 3.2, 3.4(i)) we
will consider j, and hence h(·), as being fixed. In other cases (e.g., in Theorems 3.3
and 3.4(ii)), the reference “for every h(u, y) as in (3.1)” will be used in order to
indicate that j can be any positive integer: j = 1, 2, . . . .

Definition. We shall say that the CSDE (2.4) satisfies strong h-approximation
condition (S-h-AC) if, for any initial condition y′0 and admissible control u′(·), cor-
responding to any other initial condition y′′0 there exists an admissible control u′′(·)
such that the solutions y′(·) and y′′(·) of the CSDE (2.4) (obtained with y′0, u

′(·) and
y′′0 , u′′(·), respectively) satisfy the inequality

E

[∥∥∥∥∥ 1

S

∫ S

0

h(u′(τ), y′(τ))dτ − 1

S

∫ S

0

h(u′′(τ), y′′(τ))dτ

∥∥∥∥∥
]

≤ νh(S)(1 + E[||y′0||α] + E[||y′′0 ||α])(3.2)

for some monotone decreasing νh(·) : [0,∞) → [0,∞) such that limS→∞ νh(S) = 0 (α
is the same as in Assumption 1).

Definition. We shall say that the CSDE (2.4) satisfies weak h-approximation
condition (W-h-AC) if∥∥∥∥∥E

[
1

S

∫ S

0

h(u′(τ), y′(τ))dτ

]
− E

[
1

S

∫ S

0

h(u′′(τ), y′′(τ))dτ

]∥∥∥∥∥
≤ νh(S)(1 + E[||y′0||α] + E[||y′′0 ||α]),(3.3)

where y′0, y
′′
0 , u′(·), u′′(·), y′(·), y′′(·), νh(·) and α are as above.

Note that, in the linear case (2.13), one can take u′′(·) = u′(·) and obtain (see
(2.14)) that

E[||y′(τ) − y′′(τ)||] = E[||eA1τ (y′0 − y′′0 )||] ≤ ||eA1τ ||(E[||y′0||] + E[||y′′0 ||]).(3.4)

Since h(·) satisfies Lipschitz conditions, the validity of S-h-AC will follow from (3.4)
(with νh(S) = O( 1

S ) and α ≥ 1) if the eigenvalues of A1 have negative real parts,

in which case ||eA1τ || ≤ β1e
−β2τ , with β1, β2 being positive constants. Note that

A3 in (2.13) can be degenerate or, in fact, it can be zero (the deterministic case).
Note also that a Liapunov-type stability condition which leads to the validity of a
similar estimate (and, thus, leads to the fulfillment of S-h-AC with u′′(·) = u′(·)) for
a nonlinear CSDE can be found in [11].

Remark 2. Note that W-h-AC is an auxiliary condition which is introduced
in order to simplify our consideration. It is obvious that it is implied by S-h-AC,
but we were unable to construct an example in which W-h-AC is satisfied while S-
h-AC is not. We leave the question of whether it is possible to construct such an
example (or whether W-h-AC and S-h-AC are equivalent) open. Note that, in case
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of the uncontrolled dynamics (U consists only of one point; say, U = {ū}), S-h-AC
is implied by W-h-AC and, hence, W-h-AC and S-h-AC are equivalent. In fact, as is
noticed later (see Remark 4 on page 10), if W-h-AC is satisfied, then there exists a
nonrandom vector h̃ such that

E

[∥∥∥∥∥ 1

S

∫ S

0

h(ū, y(τ))dτ − h̃

∥∥∥∥∥
]
≤ ν̄(C,α)(S), lim

S→∞
ν̄(C,α)(S) = 0(3.5)

for any solution y(·) of (2.4) which has the initial condition satisfying the inequality
E[||y(0)||α] ≤ C = const. It follows that, for any two solutions y′(·) and y′′(·) of (2.4)
with the initial conditions satisfying a similar inequality,

E

[∥∥∥∥∥ 1

S

∫ S

0

h(ū, y′(τ))dτ − 1

S

∫ S

0

h(ū, y′′(τ))dτ

∥∥∥∥∥
]
≤ 2ν̄(C,α)(S).

Therefore, S-h-AC is satisfied.
For h(u, y) as in (3.1), let Vh(S, y0) stand for the collection of random variables

Vh(S, y0)
def

=
⋃

(u(·), y(·))

{
1

S

∫ S

0

h(u(τ), y(τ))dτ

}
=

⋃
μ∈M(S,y0)

{∫
h(u, y)μ(du, dy)

}
(3.6)
and E[Vh(S, y0)] stand for the set of the corresponding mathematical expectations

E[Vh(S, y0)]
def

=
⋃

(u(·), y(·))

{
E

[
1

S

∫ S

0

h(u(τ), y(τ))dτ

]}

=
⋃

μ∈E[M(S,y0)]

{∫
h(u, y)μ(du, dy)

}
,(3.7)

where, in both (3.6) and (3.7), the first unions are over the admissible controls and
corresponding solutions of (2.4) with the initial conditions (2.5).

Next, we introduce the Hausdorff metric dEH(·, ·) on collections of random variables
as follows.

Definition. Let V1 and V2 be two collections of integrable random variables
defined on the same probability space and taking values in Rj. Then

dEH(V1, V2)
def
= max

{
sup
ζ∈V1

dE(ζ, V2), sup
ζ∈V2

dE(ζ, V1)

}
,(3.8)

with

dE(ζ, V2)
def

= inf
ζ′∈V2

E[||ζ−ζ ′||] ∀ζ ∈ V1, dE(ζ, V1)
def

= inf
ζ′∈V1

E[||ζ−ζ ′||] ∀ζ ∈ V2,(3.9)

where (here and in what follows) || · || is the Euclidean norm in Rj.
It is easy to see that dEH is nonnegative, symmetric, and satisfies the triangle in-

equality. For the constant valued collections of random variables, which can be viewed
as just subsets of Rj , the definition above is reduced to the “standard” definition of
the Hausdorff metric (semimetric) in Rj :

dH(V1, V2) = max

{
sup
ζ∈V1

d(ζ, V2), sup
ζ∈V2

d(ζ, V1)

}
, d(ζ, Vi) = inf

ζ′∈Vi

||ζ−ζ ′||, i = 1, 2.

(3.10)
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Note that, as in the case with ρH(·, ·) (see Remark 1 on page 3), the equality dH(·, ·) =
0 is equivalent to the fact that the closures of the corresponding subsets of Rj are
equal.

Lemma 3.1. S-h-AC is equivalent to the fulfillment of the inequality

dEH(Vh(S, y′0), Vh(S, y′′0 )) ≤ νh(S)(1 + E[||y′0||α] + E[||y′′0 ||α]),(3.11)

and W-h-AC is equivalent to the fulfillment of the inequality

dH(E[Vh(S, y′0)], E[Vh(S, y′′0 )]) ≤ νh(S)(1 + E[||y′0||α] + E[||y′′0 ||α])(3.12)

for any initial conditions y′0 and y′′0 .
Proof. The proof is obvious.
Definition. We shall say that the initial condition (2.5) has a probability distri-

bution belonging to the class (C,α) if

E[||y0||α] ≤ C = const.(3.13)

Theorem 3.2. Let Assumption 1 be valid. If the CSDE (2.4) satisfies W-h-AC,
then there exists a convex and compact set Vh ⊂ Rj such that, for any initial condition
y0 with the probability distribution from the class (C,α),

dH(E[Vh(S, y0)], Vh) ≤ νC,α
h (S), lim

S→∞
νC,α
h (S) = 0.(3.14)

Conversely, if there exists Vh such that (3.14) is valid for any initial condition y0 with
the probability distribution from the class (C,α), then W-h-AC is satisfied for any
initial conditions y′0, y

′′
0 with the probability distributions from this class.

Proof. The fact that the validity of (3.14) implies W-h-AC is obvious since from
(3.14) it follows that

dH(E[Vh(S, y′0)], E[Vh(S, y′′0 )]) ≤ dH(E[Vh(S, y′0)], Vh) + dH(Vh, E[Vh(S, y′′0 )])

≤ 2νC,α
h (S),

which, by (3.12), leads to the fulfillment of W-h-AC. The proof of the fact that W-
h-AC implies the existence of a convex and compact set Vh which satisfies (3.14) for
any initial condition y0 with the probability distribution from the class (C,α) is given
in section 6.

Theorem 3.3. Let Assumption 1 be valid. If the CSDE (2.4) satisfies W-h-AC
for any vector function h(u, y) as in (3.1). Then the LOMS M of the CSDE (2.4)
with respect to the initial conditions having the probability distribution from the class
(C,α) exists. That is, for any initial condition y0 with the probability distribution
from this class, the estimate is valid:

ρH(E[M(S, y0)],M) ≤ νC,α(S), lim
S→∞

νC,α(S) = 0.(3.15)

Also, the LOMS M allows the representation

M def

= {μ ∈ P(U ×Rm) |
∫

h(u, y)μ(du, dy) ∈ Vh ∀h(u, y) as in (3.1)},(3.16)

where Vh are convex and compact sets the existence of which (for every h(u, y) as in
(3.1)) is established by Theorem 3.2.
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Conversely, if there exists a convex and compact set M ⊂ P(U × Rm) which
satisfies (3.15) with any initial condition y0 having the probability distribution from
the class (C,α), then W-h-AC is satisfied for any vector function h(·) as in (3.1) and
any initial conditions y′0, y

′′
0 with the probability distributions from this class. Also,

for any h(·) as in (3.1), the estimate (3.14) is valid with

Vh =
⋃

μ∈M

{∫
h(u, y)μ(du, dy)

}
.(3.17)

Proof of Theorem 3.3 is in the end of section 6.

Theorem 3.4. Let Assumption 1 be valid. (i) If the CSDE (2.4) satisfies S-h-
AC, then, for any initial condition y0 with the probability distribution from the class
(C,α),

sup
ζ∈Vh

dE(ζ, Vh(S, y0)) ≤ ν̃
(C,α)
h (S), lim

S→∞
ν̃

(C,α)
h (S) = 0,(3.18)

where Vh is as in (3.14) and dE(·, ·) is defined by (3.9).

(ii) If the CSDE (2.4) satisfies S-h-AC for any vector function h(·) as in (3.1),
then, for any initial condition y0 with the probability distribution from the class (C,α),

sup
μ∈M

ρE(μ,M(S, y0)) ≤ ν̃(C,α)(S), lim
S→∞

ν̃(C,α)(S) = 0,(3.19)

where

ρE(μ,M(S, y0))
def

= inf
μ′∈M(S,y0)

E[ρ(μ, μ′)].(3.20)

Proof of Theorem 3.4 is in section 6.

In conclusion of this section let us consider the following simple result which is
used in the proof of Theorem 3.4.

Proposition 3.5. Let Vi, i = 1, . . . , k be collections of random variables defined
on the same probability space such that any element ζi ∈ Vi is independent from any
element ζj ∈ Vj for i 	= j. Assume also that

E[||ζi||2] ≤ c̄ = const ∀ζi ∈ Vi, i = 1, 2 . . . k.

Then

dEH

(
1

k

k∑
1

Vi,
1

k

k∑
1

E[Vi]

)
≤
√

c̄

k
,(3.21)

where E[Vi] stands for the set of mathematical expectations of the elements of Vi and
dEH(·, ·) is defined in (3.8).

Proof. Take an arbitrary element ζ ∈ 1
k

∑k
1 Vi. By definition it is presented in

the form ζ = 1
k

∑k
1 ζi, where ζi ∈ Vi. Consider

ζ̄
def

= E[ζ] =
1

k

k∑
1

E[ζi] ∈
1

k

k∑
1

E[Vi].
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Due to the independence of ζi, i = 1, . . . , k,

E[||ζ − ζ̄||] ≤
√
E[||ζ − ζ̄||2] =

√√√√ 1

k2

k∑
1

E[||ζi − E[ζi]||2] ≤
√

c̄

k
.(3.22)

Now take an arbitrary ζ̄ ∈ 1
k

∑k
1 E[Vi]. By definition, there exist ζi ∈ Vi such that

ζ̄ = 1
k

∑k
1 E[ζi]. Define ζ

def

= 1
k

∑k
1 ζi ∈ 1

k

∑k
1 Vi. Similarly to (3.22), one can establish

that E[||ζ − ζ̄||] ≤
√

c̄
k . This completes the proof of the proposition.

4. Representation of the limit occupational measures set. Let C2
0 (Rm) be

the space of twice continuously differentiable functions f(y) : Rm → R1 which vanish
at infinity along with their first and second derivatives and let D be a countable dense
set in C2

0 (Rm). Let L : C2
0 (Rm) → Cb(U ×Rm) be the operator defined as follows:

(Lf)(y, u) =
1

2
tr(b(y)bT (y)∇2f(y)) + 〈∇f(y), a(u, y)〉 ∀f ∈ C2

0 (Rm).(4.1)

Define the set of probability measures D ⊂ P(Rs ×A) by

D = {μ ∈ P(U ×Rm) :

∫
(Lf)(u, y)μ(du, dy) = 0 ∀f ∈ D}.(4.2)

and introduce the following assumption.
Assumption 2. For some α > 0,∫

||y||αμ(du, dy) ≤ c2 = const ∀μ ∈ D.(4.3)

Note that the set D is convex and it is easy to verify that it is compact if As-
sumption 2 is satisfied. In fact, from this assumption it follows that D is tight and,
hence, by Prohorov’s theorem (see, e.g., Theorem 2.3.1, p. 25 in [15]), it is relatively
compact in P(U ×Rm). Also, D is closed. This implied the compactness.

In [13] and [49] it was shown that, under some mild conditions, the set D rep-
resents the set of marginal distributions of stationary relaxed solutions of (2.4). In
the following theorem it is established that, if W-h-AC is satisfied for any h(u, y) as
in (3.1)), then the LOMS of the CSDE (2.4) exists (the existence being implied by
Theorem 3.3) and coincides with D.

Theorem 4.1. Let Assumptions 1 and 2 be satisfied with α ≥ 2. Then,
(i) The estimate

ρH

⎛⎝ ⋃
{y0}∈(C,α)

{E[M(S, y0)]}, D

⎞⎠ ≤ ν̄(C,α)(S), lim
S→∞

ν̄(C,α)(S) = 0,(4.4)

is valid, where the union is over all initial conditions with the probability distribution
from the class (C,α).

(ii) If W-h-AC is satisfied for any h(u, y) as in (3.1), then the LOMS M of the
CSDE (2.4) with respect to the initial conditions having the probability distribution
from the class (C,α) exists and is equal to D:

M = D.(4.5)
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Proof. The statement (i) of the theorem is proved in section 7 on the basis of
Theorem 4.2 stated below. The validity of (ii) is proved on the basis of (i) as follows.
By (3.15),

ρH

⎛⎝ ⋃
{y0}∈(C,α)

{E[M(S, y0)]}, M

⎞⎠ ≤ νC,α(S).

If now one assumes that (4.4) is valid, it will follow that

ρH(M, D) ≤ νC,α(S) + ν̄(C,α)(S) ⇒ ρH(M, D) = 0.

The latter implies (4.5) since both M and D are compact.
Theorem 4.2. Let Assumption 1 be satisfied with α ≥ 2. Then, for any initial

condition y0 with the probability distribution from the class (C,α),

sup
μ∈M(S,y0)

E[ρ(μ,D)] ≤ ν̄(C,α)(S), lim
S→∞

ν̄(C,α)(S) = 0,(4.6)

where ρ(μ,D) is defined as in (2.3).
Proof of Theorem 4.2 is in section 7.
Corollary 4.3. Let Assumptions 1 and 2 be valid with α ≥ 2. If the CSDE

(2.4) satisfies W-h-AC for any vector function h(·) as in (3.1), then, for any initial
condition y0 with the probability distribution from the class (C,α),

ρH(E[M(S, y0)], D) ≤ νC,α(S), lim
S→∞

ν(C,α)(S) = 0.(4.7)

If the CSDE (2.4) satisfies S-h-AC for any vector function h(·) as in (3.1), then, for
any initial condition y0 with the probability distribution from the class (C,α),

sup
μ∈D

ρE(μ,M(S, y0)) ≤ ν̃(C,α)(S), lim
S→∞

ν̃(C,α)(S) = 0.(4.8)

Proof. The proof follows immediately from Theorems 3.3, 3.4, and 4.1(ii).
Remark 3. The estimate (4.8) is, in fact, equivalent to the validity of S-h-AC for

any vector function h(·). Let us show that if (4.8) is satisfied, then, for any y′0, u
′(·)

and any y′′0 , there exists u′′(·) such that (3.2) is valid (with y′0, y
′′
0 being assumed

to be from the class (C,α)). Let μ
u′(·)y′(·)
S be the occupational measure generated

by the pair (u′(·), y′(·)) on the interval [0, S]. By (4.6), there exists μ′
S ∈ D such

that E[ρ(μ
u′(·)y′(·)
S , μ′

S)] ≤ ν̄(C,α)(S). From (4.8) it follows, in turn, that the estimate
E[ρ(μ′

S , μ
′′
S)] ≤ ν̃(C,α)(S) is valid for some μ′′

S ∈ M(S, y′′0 ). By definition, μ′′
S is an

occupational measure generated on the interval [0, S] by some admissible control u′′(·)
and the corresponding solution y′′(·) of the CSDE (2.4) which satisfies the initial

condition y′′(0) = y′′0 . That is, μ′′
S = μ

u′′(·)y′′(·)
S and E[ρ(μ

u′(·)y′(·)
S , μ

u′′(·)y′′(·)
S )] ≤

ν̄(C,α)(S) + ν̃(C,α)(S). The latter estimate implies the validity of S-h-AC for any h(·)
as in (3.1).

Remark 4. Under Assumptions 1 and 2, one can show that, corresponding to any
extreme point μ of D, there exists an admissible control uμ(·) and the corresponding
solution yμ(·) of the CSDE (2.4) such that, for any h(·) as in (3.1), there almost surely
exists the limit

lim
S→∞

1

S

∫ S

0

h(uμ(τ), yμ(τ))dτ =

∫
h(u, y)μ(du, dy).(4.9)
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We do not give the proof of this statement in the paper (it is based on results of
[13], [49], and the ergodic theory). Let us note only that, for the uncontrolled case
mentioned in Remark 2 on page 5, it follows that, if W-h-AC is satisfied, then the
value of the integral on the right-hand side of (4.9) is the same for any extreme points
μ of D and, hence, it is the same for all elements of D. Denoting this value as h̃ and
using (4.6), one can easily verify the validity of (3.5).

Let g(u, y) : U × Rm → Rn be continuous and satisfy Lipschitz conditions in y.
Define the collection of Rn-valued random variables Vg(S, y0) similarly to (3.6) with
the replacement of h(·) by g(·). That is,

Vg(S, y0)
def

=
⋃

(u(·),y(·))

{
1

S

∫ S

0

g(u(τ), y(τ))dτ

}
=

⋃
μ∈M(S,y0)

{∫
g(u, y)μ(du, dy)

}
,

(4.10)
where, as in (3.6), the first union is over all admissible controls and corresponding
solutions of the CSDE (2.4). Define also the set Vg ⊂ Rn by

Vg
def

=
⋃
μ∈D

{∫
g(u, y)μ(du, dy)

}
,(4.11)

where the union is over elements of D. Note that from the convexity of D it follows
that Vg is convex. Also, the following two corollaries used in averaging of singularly
perturbed CSDE (see section 5 below) are valid.

Corollary 4.4. Let Assumptions 1 and 2 be satisfied with α ≥ 2. Then the

set Vg is compact and there exists a function ν̄
(C,α)
g (S), tending to zero as S tends

to infinity, such that for any initial condition y0 with the distribution from the class
(C,α),

sup
v∈Vg(S,y0)

E[d(v, Vg)] ≤ ν̄(C,α)
g (S).(4.12)

Corollary 4.5. Let Assumptions 1 and 2 be valid with α ≥ 2 and let the CSDE
(2.4) satisfies S-h-AC for any vector function h(u, y) as in (3.1). Then there exists

a function ν̃
(C,α)
g (S), tending to zero as S tends to infinity, such that for any initial

condition y0 with the probability distribution from the class (C,α),

sup
v∈Vg

dE(v, Vg(S, y0)) ≤ ν̃(C,α)
g (S).(4.13)

Proofs of Corollaries 4.4 and 4.5. The proofs follow from Theorems 4.1(ii), (4.2),
and Theorems 4.1(ii), (3.4), respectively, if g(·) = h(·) (with h(·) being as in (3.1)).
In the general case, the corollaries are proved in section 7.

5. Application in averaging of singularly perturbed controlled stochas-
tic differential equations. Consider the following singularly perturbed CSDE:

dyε(t) =
1

ε
a(u(t), yε(t))dt +

1√
ε
b(yε(t))dB1(t).(5.1)

dzε(t) = g(u(t), yε(t), zε(t))dt + σ(zε(t))dB2(t),(5.2)

with the initial conditions

yε(0) = y0, zε(0) = z0,(5.3)

where:
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• ε is a small positive parameter;
• the functions b(·) : Rm → Rm×m and σ(·) : Rn → Rn×n satisfy Lipschitz

conditions; the functions a(u, y) : U × Rm → Rm and g(u, y, z) : U × Rm ×
Rn → Rn are continuous and satisfy Lipschitz conditions, respectively, in y
and (y, z) uniformly with respect to u ∈ U ;

• U is a compact metric space;
• B1(·) and B2(·) are Rm- and Rn-valued independent standard Brownian mo-

tions;
• y0 and z0 are Rm- and Rn-valued random variables which have bounded

fourth moments and are independent of B1(·), B2(·);
• admissible controls u(·) are U -valued random processes progressively measur-

able with respect to a right continuous and complete filtration {F̂t} of σ-fields
such that

• {y0, z0 & B1(θ), B2(θ); θ ≤ t} is measurable with respect to F̂t for t ≥ 0,
• For t′ ≥ t ≥ 0, B1(t

′)−B1(t) and B2(t
′)−B2(t) are independent of F̂t.

Let us set τ = t
ε , y(τ) = yε(ετ), u′(τ) = uε(ετ),W (τ) = 1√

ε
B1(ετ) and {Fτ} =

{F̂ετ}. The subsystem (5.1) takes then the form of the CSDE (2.4) and is called
the associated system. Assuming that the associated system satisfies Assumptions 1
and 2, let us define the averaged CSDE by

dz(t) = g̃(μ(t), z(t))dt + σ(z(t))dB2(t),(5.4)

where:
• g̃(μ, z)

def

=
∫
Rm×U

g(u, y, z)μ(du, dy) : P(Rm × U) ×Rn → Rn;
• the Brownian motion B2(·) and the initial condition z(0) = z0 are the same

as in (5.2);
• admissible controls μ(·) are {F̂t}-progressive D-valued random processes (D

being defined in (4.2)).
Let G(·) : Rn → R be Lipschitz continuous and T > 0. Consider the problem of
optimal control

inf
u(·),yε(·),zε(·)

E[G(zε(T ))]
def

= G∗
ε ,(5.5)

where inf is over the admissible controls and the corresponding solutions of the
singularly perturbed CSDE (5.1) and (5.2). Consider also the problem

inf
μ(·),z(·)

E[G(z(T ))]
def

= G∗
av,(5.6)

where inf is over the admissible controls and the corresponding solutions of the
averaged CSDE (5.4). Note that, if σ(·) ≡ 0, then the averaged system (5.4) is purely
deterministic and the minimization in (5.6) can be restricted to open loop controls (a
similar phenomenon was dealt with in [1], where the fast dynamics were defined by a
Markov decision process).

Theorem 5.1. (i) Let the associated system satisfy Assumptions 1 and 2 with
α = 4. Then, corresponding to any admissible solution (yε(·), zε(·)) of the singularly
perturbed CSDE (5.1) and (5.2), there exists an admissible solution z(·) of the averaged
CSDE (5.4) such that

max
t∈[0,T ]

E[||zε(t) − z(t)||2] ≤ ν̃(ε), lim
ε→0

ν̃(ε) = 0(5.7)
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and the following inequality is valid:

lim inf
ε→0

G∗
ε ≥ G∗

av.(5.8)

(ii) If, in addition, the associated system satisfies S-h-AC for any vector function h(·)
as in (3.1), then, corresponding to an arbitrary admissible solution z(·) of the averaged
CSDE (5.4), there exists an admissible solution (yε(·), zε(·)) of the singularly perturbed
CSDE (5.1) and (5.2) such that (5.7) is valid and

lim
ε→0

G∗
ε = G∗

av.(5.9)

Proof. The proof’s details are outlined in section 8.
Remark 5. The approximation of the z-components of the state variables of

the CSDE (5.1) and (5.2) by the solutions of the averaged system (5.4) stated in
Theorem 5.1 has many similarities with the classical relaxed control setting (see [52]).
In contrast to the latter, however, the approximation established in Theorem 5.1
is asymptotic (that is valid when the small parameter tends to zero) and also the
controls used in (5.4) take values in the LOMS (and not in the space of all probability
measures defined on the control set).

Remark 6. Note that the conditions of Theorem 5.1 can be relaxed. Namely,
the theorem remains valid if Assumptions 1 and 2 are satisfied with α > 2 and also
if they are satisfied with α = 2 (to prove the result in the latter case, one needs
to impose some additional conditions; in particular, one needs to assume that there
exists an integrable random variable η such that the solution of the associated system
satisfy the inequality ||y(τ)||2 ≤ η ∀τ ≥ 0). Note also that a statement similar to
Theorem 5.1 is valid for singularly perturbed CSDE in which the fast subsystem may
depend on the slow state variables. The proof of such a statement is in many ways
similar to one outlined in section 8 but it is more technically involved and we do not
include it in the paper.

Let us consider a special case when b(y) = 0. That is, the associated system is
deterministic and it can be written in the form

dy(τ)

dτ
= a(u(τ), y(τ)).(5.10)

Assume that there exist positive definite matrices F1 and F2 such that, for any y′, y′′

and any u ∈ U ,

(a(u, y′) − a(u, y′′))TF1(y
′ − y′′) ≤ −(y′ − y′′)TF2(y

′ − y′′),(5.11)

Note that (5.11) is satisfied if a(u, y) = A1y+A2u (as in (2.13)), with the eigenvalues
of A1 having negative real parts. Taking yTF1y as a Liapunov function, one can easily
verify (see, e.g., [27]) that solutions y′(τ) and y′′(τ) of (5.10) obtained with the same
control and with initial conditions y′(0) = y′0, y′′(0) = y′′0 , satisfy the inequality

||y′(τ) − y′′(τ)|| ≤ β1e
−β2τ ||y′0 − y′′0 || ∀τ ≥ 0,(5.12)

where β1 and β2 are some positive constants. This implies the validity of S-h-AC.
From (5.12) it follows (see Theorem 3.1(ii) in [25]) that there exists a compact set
Y ⊂ Rm such that any solution y(·) of (5.10) satisfies the inequality

min
y∈Y

||y(τ) − y|| ≤ β1e
−β2τ min

y∈Y
||y(0) − y|| ∀τ ≥ 0,(5.13)
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where β1, β2 are as in (5.12) (that is, Y is forward invariant with respect to the
solutions of (5.10) and is a global attractor for these solutions). Using the inequality
(5.13), it is straightforward to verify that Assumption 1 is satisfied with an arbitrary
positive α. Also, using this inequality, one can establish that μ(U ×Y ) = 1 ∀μ ∈ M,
where, as above, M is the limit occupational measures set. Hence, this set allows the
representation (see (4.2) and Theorem 4.1(ii))

M = D = {μ ∈ P(U × Y ) :

∫
U×Y

〈∇f(y), a(u, y)〉μ(du, dy) = 0 ∀ f ∈ D},(5.14)

where P(U × Y ) is the space of probability measures defined on Borel subsets of
U × Y . Note that the representation of the LOMS in the form (5.14) is consistent
with one obtained for the deterministic case in [26] and that Assumption 2 is satisfied
automatically in this case.

As an example, let us consider the singularly perturbed CSDE (5.1) and (5.2), in
which: y = (y1, y2) (that is, y ∈ R2); U is a square in R2: U = {(u1, u2) : |ui| ≤
1, i = 1, 2};

b(y) = 0, a(u, y) = (−y1 + u1, −y2 + u2);(5.15)

and the slow dynamics are one dimensional (z ∈ R1) with z0 = 0 (zero initial condi-
tion) and with

σ(z) = σ = const, g(u, y, z) = g(u, y)
def

= y2u1 − y1u2.(5.16)

Consider the optimal control problem (5.5) with G(z) = z. Using (5.15) and (5.16),
it is easy to verify that, if the fast subsystem (5.1) is multiplied by ε and, then ε is
formally equated to zero, the resulting slow dynamics become uncontrolled and the
value of the objective function is equal to zero. The limit of the optimal value of (5.5)
is, however, strictly less than zero: limε→0 G

∗
ε < 0. This is evidenced by the fact that,

if the rapidly oscillating controls u1(t) = cos( t
ε ), u2(t) = sin( t

ε ) are used, then the
value of the objective function can be verified to be equal to −0.5T +O(ε) < 0. Thus,
the classical approach based on the equating of the singular perturbation parameter
to zero is not applicable in the given example. The averaged problem is equivalent in
this case to the infinite dimensional linear program

min
μ∈D

∫
U×Y

g(u, y)μ(du, dy)
def

= g∗,(5.17)

with G∗
av = g∗T , where D is as in (5.14) and g(u, y) is defined in (5.16). Note that

the solution of the problem (5.17) has been found numerically by approximating the
problem with finite dimensional linear programs (using the approach proposed in [29]).
The optimal value g∗ of (5.17), in particular, was found to be approximately equal to
−0.7679. One may conclude, therefore (by (5.9)), that limε→0 G

∗
ε ≈ −0.7679T .

In some cases the averaged system can be equivalent to the system obtained via
equating of the singular parameter to zero. To illustrate that, let us assume that
the associated system is linear (that is, (2.13) is true, with eigenvalues of A1 having
negative real parts). Let us assume also that the slow subsystem (5.2) is linear in y
and u. That is,

g(u, y, z)
def

= A4(z)y + A5(z)u,(5.18)
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with A4(z), A5(z) being matrices functions of the corresponding dimensions, then the
averaged system becomes equivalent to

dz(t) = A4(z(t))ȳ(t) + A5(z(t))ū(t) + σ(z(t))dB2(t),(5.19)

where

(ū(t), ȳ(t)) ∈ Ω
def

=

{
(ū, ȳ) | (ū, ȳ) =

∫
(u, y)μ(du, dy), μ ∈ D

}
.(5.20)

Under the assumption that U is convex, it can be shown (although, we do not do it
in this paper) that the set Ω defined above can be represented in the form

Ω = {(ū, ȳ) | ȳ = −A−1
1 A2ū, ū ∈ U}.(5.21)

and that (5.19) is equivalent to the system

dz(t) = (−A4(z(t))A
−1
1 A2 + A5(z(t)))ū(t) + σ(z(t))dB2(t), ū(t) ∈ U.(5.22)

Note that the system (5.22) can be obtained via multiplying (5.1) by ε, then formally
equating ε to zero and expressing y as a function of u, and then substituting the result
into (5.2).

6. Proofs for section 3. Proofs of Theorems 3.2 and 3.4 are based on a number
of lemmas stated below.

Lemma 6.1. Let a function ψ(S) : (0,∞) → R1 be such that, for some monotone
decreasing function ν(S), limS→∞ν(S) = 0, the following inequalities are valid:

|ψ(S) − ψ(kS)| ≤ ν(S), k = 1, 2, . . . .(6.1)

Let also

|ψ(S′) − ψ(S′′)| ≤ α|S′′ − S′|
max{S′, S′′} ∀S′, S′′ > 0, α = const.(6.2)

Then there exists a limit

limS→∞ψ(S)
def

= A(6.3)

and the estimate

|ψ(S) −A| ≤ ν(S) ∀S > 0(6.4)

is valid.
Proof. To establish the existence of the limit it is sufficient to show that, corre-

sponding to any δ > 0, there exists Sδ > 0 such that, for any S′′ ≥ S′ ≥ Sδ,

|ψ(S′′) − ψ(S′)| ≤ δ.(6.5)

Note that from (6.1) it follows that, for any k2 ≥ k1 ≥ 1,

|ψ(S)−ψ

(
k2

k1
S

)
| ≤ |ψ(S)−ψ(k2S)|+|ψ(k2S)−ψ

(
k2

k1
S

)
| ≤ ν(S)+ν

(
k2

k1
S

)
≤ 2ν(S).
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Choose integer k2 ≥ k1 ≥ 1 in such a way that

0 ≤ S′′

S′ − k2

k1
≤ δ

2α
⇒ 0 ≤ S′′ − k2

k1
S′ ≤ δ

2α
S′.

Then, by (6.2),

|ψ(S′′)−ψ(S′)| ≤ |ψ(S′′)−ψ

(
k2

k1
S′
)
|+ |ψ

(
k2

k1
S′
)
−ψ(S′)| ≤

α|S′′ − k2

k1
S′|

k2

k1
S′ +2ν(S′)

≤ δ

2
+ 2ν(S).

Choosing Sδ to be such that ν(Sδ) = δ
2 , one establishes (6.5). Thus the limit (6.3)

exists. Passing to the limit as k → ∞ in (6.1), one obtains the estimate (6.4).
In the following lemmas, it is always supposed that Assumption 1 is satisfied.
Lemma 6.2. Let h(·) be as in (3.1) and the constant ch be defined by

ch
def

= max
(u,y)∈U×R̄m

||h(u, y)||.(6.6)

Then the following estimates are valid:

sup
ζ∈Vh(S,y0)

E[||ζ||] ≤ ch ⇒ sup
ζ∈E[Vh(S,y0)]

||ζ|| ≤ ch;(6.7)

dEH(Vh(S′, y0), Vh(S′′, y0)) ≤
2ch|S′′ − S′|
max{S′, S′′} ;(6.8)

dH(E[Vh(S′, y0)], E[Vh(S′′, y0)]) ≤
2ch|S′′ − S′|
max{S′, S′′} .(6.9)

Proof. Note that (6.7) is obvious and that (6.9) follows from (6.8) since

dH(E[V1], E[V2]) ≤ dEH(V1, V2)

for any collections of random variables V1 and V2 such that E[||ζ||] < ∞ ∀ζ ∈ Vi, i =
1, 2. Let us prove (6.8). Assume that S′′ ≥ S′. Then, by (6.7), for any admissible
control u(·) and corresponding solution y(·) of the CSDE (2.4),

E

[∥∥∥∥∥ 1

S′

∫ S′

0

h(u(τ), y(τ))dτ − 1

S′′

∫ S′′

0

h(u(τ), y(τ))dτ

∥∥∥∥∥
]

≤ E

[∥∥∥∥∥
(

1

S′ −
1

S′′

)∫ S′

0

h(u(τ), y(τ))dτ

∥∥∥∥∥
]

+ E

[∥∥∥∥∥ 1

S′′

∫ S′′

S′
h(u(τ), y(τ))dτ

∥∥∥∥∥
]

≤ 2ch(S′′ − S′)

S′′ .

This implies (6.8).
Lemma 6.3. Let y0 be fixed (nonrandom) and Ψ(p, S, y0) be the support function

of the set E[Vh(S, y0)]:

Ψh(p, S, y0)
def

= sup
v∈E[Vh(S,y0)]

{pT v}.
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If the CSDE (2.4) satisfies W-h-AC, then there exists a convex, positively homogeneous
and Lipschitz continuous function Ψh(p) such that

|Ψh(p, S, y0) − Ψh(p)| ≤ cνh(S)||p||(1 + ||y0||α),(6.10)

where νh(S) is the function introduced in (3.2) and c = 1+c1(c1 is the constants from
(2.12)).

Proof. Note, first, that Ψh(p, S, y0) allows also the representation

Ψh(p, S, y0) =
1

S
sup

(u(·),y(·))

{
E

[∫ S

0

pTh(u(τ), y(τ))dτ |y(0) = y0

]}
,

where the sup is over all admissible controls and corresponding solutions of (2.4).
From (6.7) it follows that

|Ψh(p, S, y0)| ≤ ch||p||, |Ψh(p′, S, y0) − Ψh(p′′, S, y0)| ≤ ch||p′ − p′′||(6.11)

and from (6.9) it follows that

|Ψh(p, S′, y0) − Ψh(p, S′′, y0)| ≤
2ch||p|||S′′ − S′|

max{S′, S′′} .(6.12)

Also, by (3.12),

|Ψh(p, S, y′0) − Ψh(p, S, y′′0 )| ≤ νh(S)||p||(1 + ||y′0||α + ||y′′0 ||α).(6.13)

Note that if (6.10) is established, then the fact that Ψh(p) is convex, positively
homogeneous and Lipschitz continuous will follow from the fact that Ψh(p, S, y0) is
convex, positively homogeneous and Lipschitz continuous in p (see (6.11)).

By Lemma 6.1, to establish (6.10), it is sufficient to verify the validity of the
following estimates:

|Ψ(p, kS, y0) − Ψ(p, S, y0)| ≤ cνh(S)||p||(1 + ||y0||α), k = 1, 2, . . . .(6.14)

For k = 1 it is obvious. Assume that

|Ψ(p, (k − 1)S, y0) − Ψ(p, S, y0)| ≤ cνh(S)||p||(1 + ||y0||α)(6.15)

and show the validity of (6.14) using the induction. Define the collection of random
variables Wh(S, y0) as follows:

Wh(S, y0)
def

=
⋃

(u(·),y(·))

{(
1

S

∫ S

0

h(u(τ), y(τ))dτ, y(S)

)}
,(6.16)

where the union is over all admissible controls and corresponding solutions of the
CSDE (2.4). Using dynamic programming, one can obtain

Ψh(p, kS, y0) = sup
(ζ,η)∈Wh((k−1)S,y0)

{
k − 1

k
E[pT ζ] +

1

k
E[Ψh(p, S, η)]

}
.(6.17)

By (6.13) and (2.12), for any η such that (ζ, η) ∈ Wh((k − 1)S, y0),

|E[Ψh(p, S, η)] − Ψh(p, S, y0) | ≤ E[|Ψh(p, S, η) − Ψh(p, S, y0)|]
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≤ νh(S)||p||(1 + E[||η||α] + ||y0||α) ≤ νh(S)||p||(1 + c1(1 + ||y0||α) + ||y0||α)

= cνh(S)||p||(1 + ||y0||α),

with the constant c being as defined in the statement of the lemma. Hence, using
(6.17), one can obtain∣∣∣∣Ψh(p, kS, y0) −

(
k − 1

k
Ψh(p, (k − 1)S, y0) +

1

k
Ψh(p, S, y0)

)∣∣∣∣
=

∣∣∣∣∣Ψh(p, kS, y0) − sup
(ζ,η)∈Wh((k−1)S,y0)

{
k − 1

k
E[pT ζ] +

1

k
Ψh(p, S, y0)

}∣∣∣∣∣
≤ 1

k
sup

(ζ,η)∈Wh((k−1)S,y0)

{|E[Ψh(p, S, η)]−Ψh(p, S, y0)|} ≤
(

1

k

)
cνh(S)||p||(1 + ||y0||α).

From (6.15) it follows, on the other hand, that∣∣∣∣k − 1

k
Ψh(p, (k − 1)S, y0) −

k − 1

k
Ψh(p, S, y0))

∣∣∣∣ ≤ (
k − 1

k

)
cνh(S)||p||(1 + ||y0||α)

⇒ |Ψh(p, kS, y0) − Ψh(p, S, y0)|

≤
∣∣∣∣Ψh(p, kS, y0) −

(
k − 1

k
Ψh(p, (k − 1)S, y0

)
+

1

k
Ψh(p, S, y0))

∣∣∣∣
+

∣∣∣∣k − 1

k
Ψh(p, (k − 1)S, y0) −

k − 1

k
Ψh(p, S, y0)

∣∣∣∣ ≤ (
1

k
+

k − 1

k

)
cνh(S)||p||(1+||y0||α).

The latter implies (6.14).
Lemma 6.4. Let the CSDE (2.4) satisfy W-h-AC and let Vh be a convex and

compact subset of Rj defined by

Vh
def

= {v | pT v ≤ Ψh(p) ∀p ∈ Rj}.(6.18)

Then, for any y0 with the probability distribution from the class (C,α),

dH(coE[Vh(S, y0)], Vh) ≤ c(1 + C)νh(S),(6.19)

where co stands for the convex hull of the corresponding set.
Comment. The notation (6.18) anticipates the fact that this set will coincide with

the set Vh, the existence of which is claimed in Theorem 3.2.
Proof. Note that the fact that the set Vh is convex and compact follows from its

definition in the form (6.18) and from the continuity of Ψh(p).
Let y0 be random. The support functions of both E[Vh(S, y0)] and coE[Vh(S, y0)]

are equal to E[Ψh(p, S, y0)]:

sup
v∈coE[Vh(S,y0)]

{pT v} = sup
v∈E[Vh(S,y0)]

{pT v} = E[Ψh(p, S, y0)].
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The support function for Vh is Ψh(p) (see Corollary 13.2.1 in [47]). Hence (see, e.g.,
Lemma Π2.9, p. 207 in [24]),

dH(coE[Vh(S, y0)], Vh) ≤ sup
||p||≤1

|E[Ψh(p, S, y0)] − Ψh(p)|.(6.20)

By (6.10),

| E[Ψh(p, S, y0)]−Ψh(p) | ≤ cνh(S)||p||(1+E[||y0||α]) ≤ cνh(S)||p||(1+C)(6.21)

for any y0 with the probability distribution from the class (C,α). This and (6.20)
imply (6.19).

Lemma 6.5. For any S > 0 and k = 1, 2, . . ., there exists a collection of random
variables V ′

h(kS, y0) such that

V ′
h(kS, y0) ⊂ Vh(kS, y0) ⇒ E[V ′

h(kS, y0)] ⊂ E[Vh(kS, y0)](6.22)

and such that: (i) The estimate

dH(E[V ′
h(kS, y0)], coE[Vh(S, y0)]) ≤

c̄h
k

+ cνh(S)(1 + E[||y0||α]),(6.23)

is valid if W-h-AC is satisfied; and (ii) The estimate

dEH(V ′
h(kS, y0), coE[Vh(S, y0)] ≤

ch√
k

+
c̄h
k

+ cνh(S)(1 + E[||y0||α]),(6.24)

is valid if S-h-AC is satisfied (ch, c̄h and c being constants).
Proof. The following three parts detail the proof.
Part I: Construction of V ′

h(kS, y0). Consider the CSDE (2.4) on the interval
[0, kS] (k = 1, 2, . . .). Denote by {u(·)}0,kS the family of admissible controls on the
interval [0, kS] such that the restriction of any control from this family to the interval
((i − 1)S, iS] (k ≥ i ≥ 1) is conditionally independent on F(i−1)S conditioned on
y((i− 1)S).

Define V ′(kS, y0) as the collection of random variables

V ′
h(kS, y0)

def

=
⋃

{u(·),y(·)}0,kS

{
1

kS

∫ kS

0

h(u(τ), y(τ))dτ

}
(6.25)

and E[V ′(kS, y0)] as the set of corresponding mathematical expectations

E[V ′
h(kS, y0)]

def

=
⋃

{u(·),y(·)}0,kS

{
E

[
1

kS

∫ kS

0

h(u(τ), y(τ))dτ

]}
,(6.26)

where, in both cases, the union is over the controls from {u(·)}0,kS and the corre-
sponding solutions of the CSDE (2.4) on the interval [0, kS]. Note that, by definition,

V ′
h(S, y0) = Vh(S, y0), E[V ′

h(S, y0)] = E[Vh(S, y0)](6.27)

and that the inclusions (6.22) are valid for k = 2, 3, . . . .

Let {u(·), y(·)}(i−1)S,iS
η be the family of restrictions to the interval ((i−1)S, iS] of

the controls {u(·)}0,kS and the solutions of the CSDE (2.4) which are obtained with
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these controls and satisfy the initial conditions y((i− 1)S)
def

= η. Define the collection
of random variables V ′

h((i− 1)S, iS, η) (i = 1, . . . , k):

Vh((i− 1)S, iS, η)
def

=
⋃

{u(·),y(·)}(i−1)S,iS
η

{
1

S

∫ iS

(i−1)S

h(u(τ), y(τ))dτ

}
(6.28)

and the set of corresponding mathematical expectations E[Vh((i− 1)S, iS, η)]:

E[Vh((i− 1)S, iS, η)]
def

=
⋃

{u(·),y(·)}(i−1)S,iS
η

{
E

[
1

S

∫ iS

(i−1)S

h(u(τ), y(τ))dτ

]}
.(6.29)

It is easy to verify that

V ′
h(kS, y0) =

⋃
(ζ,η)∈W ′

h
((k−1)S,y0)

{
k − 1

k
ζ +

1

k
Vh((k − 1)S, kS, η)

}
(6.30)

⇒ E[V ′
h(kS, y0)] =

⋃
(ζ,η)∈W ′

h
((k−1)S,y0)

{
k − 1

k
E[ζ] +

1

k
E[Vh((k − 1)S, kS, η)]

}
,

(6.31)
where

W ′
h((k − 1)S, y0)(6.32)

def

=
⋃

{u(·),y(·)}0,(k−1)S

{(
1

(k − 1)S

∫ (k−1)S

0

h(u(τ), y(τ))dτ, y((k − 1)S)

)}
,

the union being over the controls from the family of restrictions of the elements of
{u(·)}0,kS to the interval [0, (k− 1)S] and corresponding solutions of the CSDE (2.4).

Part II: Proof of Lemma 6.5(i). Using induction, let us show that

dH(E[V ′
h(kS, y0)],

1

k

k∑
1

E[Vh((i−1)S, iS, y0)] ≤ cνh(S)(1+E[||y0||α]), k = 1, 2, . . . .

(6.33)
For k = 1 it is immediate since, by definition, E[Vh(S, y0)] = E[Vh(0, S, y0)]. Assume
that the estimate

dH(E[V ′
h((k−1)S, y0)],

1

k − 1

k−1∑
1

E[Vh((i−1)S, iS, y0)]) ≤ cνh(S)(1+E[||y0||α])

(6.34)
is valid. From Assumption 1 and W-h-AC (see (3.12)) it follows that, for any η such
that (ζ, η) ∈ W ′

h((k − 1)S, y0),

dH(E[Vh((k−1)S, kS, η)], E[Vh((k−1)S, kS, y0)]) ≤ νh(S)(1+E[||η||α]+E[||y0||α])

≤ νh(S)(1 + c1(1 + E[||y0||α]) + E[||y0||α]) = cνh(S)(1 + E[||y0||α]).

This and (6.31) lead to the estimate

dH(E[V ′(kS, y0)],
k − 1

k
E[V ′((k − 1)S, y0)] +

1

k
E[Vh((k − 1)S, kS, y0)])
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= dH

⎛⎝E[V ′(kS, y0)],
⋃

(ζ,η)∈W ′
h
((k−1)S,y0)

{
k − 1

k
E[ζ] +

1

k
E[Vh((k − 1)S, kS, y0)]

}⎞⎠
≤
(

1

k

)
cνh(S)(1 + E[||y0||α]).

Using the estimate above and (6.34), one can further obtain that

dH(E[V ′(kS, y0)],
1

k

k∑
1

E[Vh((i− 1)S, iS, y0)])

≤ dH

(
k − 1

k
E[V ′((k − 1)S, y0)] +

1

k
E[Vh((k − 1)S, kS, y0)]

)
,

1

k

k∑
1

E[Vh((i− 1)S, iS, y0)]) +

(
1

k

)
cνh(S)(1 + E[||y0||α])

≤ dH

(
k − 1

k
E[V ′((k − 1)S, y0)],

k − 1

k

1

k − 1

k−1∑
1

E[Vh((i− 1)S, iS, y0)]

)

+

(
1

k

)
cνh(S)(1+E[||y0||α]) ≤

(
k − 1

k

)
cνh(S)(1+E[||y0||α])+

(
1

k

)
cνh(S)(1+E[||y0||α])

= cνh(S)(1 + E[||y0||α]).

Thus, (6.33) is established.
Since

E[Vh((i− 1)S, iS, y0)] = E[Vh(S, y0)] ∀i = 1, . . . , k,

(6.33) is equivalent to

dH(E[V ′
h(kS, y0)],

1

k

k∑
1

E[Vh((S, y0)]) ≤ cνh(S)(1 + E[||y0||α]).

By Shapley–Folkman’s theorem (see, e.g., [24, p. 204])

dH

(
1

k

k∑
1

E[Vh(S, y0)], coE[Vh(S, y0)]

)
≤ 2(j + 1)ch

k
,(6.35)

where ch is as in (6.6) and j is the dimension of the Euclidean space containing the

subsets above. These imply (6.23) with c̄h
def

= 2(j + 1)ch.

Part III: Proof of Lemma 6.5(ii). Let y0
0

def

= y0 and let yi0 i = 1, . . . , k− 1 have the
same probability distribution as y0 and be independent of y0 and among themselves
(and also independent of W (·)). Using induction, let us show that

dEH

(
V ′
h(kS, y0),

1

k

k∑
1

Vh((i− 1)S, iS, yi−1
0 )

)
≤ cνh(S)(1+E[||y0||α]), k = 1, 2, . . . .

(6.36)
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For k = 1, the above expression is obviously true. Assume that

dEH

(
V ′
h((k − 1)S, y0),

1

k − 1

k−1∑
1

Vh((i− 1)S, iS, yi−1
0 )

)
≤ cνh(S)(1+E[||y0||α]).

(6.37)
From Assumption 1 and S-h-AC (see (3.11)) it follows that, for any η such that
(ζ, η) ∈ W ′

h((k − 1)S, y0),

dEH
(
Vh((k − 1)S, kS, η), Vh((k − 1)S, kS, yk−1

0 )
)
≤ νh(S)(1+E[||η||α]+E[||y0||α])

≤ νh(S)(1 + c1(1 + E[||y0||α]) + E[||y0||α]) = cνh(S)(1 + E[||y0||α]).

Hence, by (6.30),

dEH

(
V ′(kS, y0),

k − 1

k
V ′((k − 1)S, y0) +

1

k
Vh((k − 1)S, kS, yk−1

0 )

)

= dEH

⎛⎝V ′(kS, y0),
⋃

(ζ,η)∈W ′
h
((k−1)S,y0)

{
k − 1

k
ζ +

1

k
Vh((k − 1)S, kS, yk−1

0 )

}⎞⎠
≤
(

1

k

)
sup

(ζ,η)∈W ′
h
((k−1)S,y0)

dEH(Vh((k − 1)S, kS, η), Vh((k − 1)S, kS, yk−1
0 ))

≤
(

1

k

)
cνh(S)(1 + E[||y0||α]).

Using this estimate and (6.37), one obtains

dEH

(
V ′(kS, y0),

1

k

k∑
1

Vh((i− 1)S, iS, yi−1
0 )

)

≤ dEH

(
k − 1

k
V ′((k − 1)S, y0) +

1

k
Vh((k − 1)S, kS, yk−1

0 ),
1

k

k∑
1

Vh((i− 1)S, iS, yi−1
0 )

)

+

(
1

k

)
cνh(S)(1 + E[||y0||α])

≤ dEH

(
k − 1

k
V ′((k − 1)S, y0),

k − 1

k

1

k − 1

k−1∑
1

Vh((i− 1)S, iS, yi−1
0 )

)

+

(
1

k

)
cνh(S)(1+E[||y0||α]) ≤

(
k − 1

k

)
cνh(S)(1+E[||y0||α])+

(
1

k

)
cνh(S)(1+E[||y0||α])

= cνh(S)(1 + E[||y0||α]).

This proves the validity of the estimate (6.36).
The elements of Vh((i− 1)S, iS, yi−1

0 ), i = 1, 2, . . . , k, are mutually independent
and, by (6.6),

E[||ζ||2] ≤ c2h ∀ζ ∈ Vh((i− 1)S, iS, yi−1
0 ), i = 1, 2, . . . , k.
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Hence, one can use Proposition 3.5 and the fact that E[Vh((i − 1)S, iS, yi−1
0 )] =

E[Vh(S, y0)] to obtain

dEH

(
1

k

k∑
1

Vh((i− 1)S, iS, yi−1
0 ),

1

k

k∑
1

E[Vh((i− 1)S, iS, yi−1
0 )]

)

= dEH

(
1

k

k∑
1

Vh((i− 1)S, iS, yi−1
0 ),

1

k

k∑
1

E[Vh(S, y0)]

)
≤ ch√

k
.

The last estimate along with (6.35) and (6.33) imply (6.24).
Corollary 6.6. For any y0 with the probability distribution from the class

(C,α),

dH(E[V ′
h(kS, y0)], Vh) ≤ c̄h

k
+ 2c(1 + C)νh(S)(6.38)

if W-h-AC is satisfied and

dEH(V ′
h(kS, y0), Vh) ≤ ch√

k
+

c̄h
k

+ 2c(1 + C)νh(S)(6.39)

if S-h-AC is satisfied.
Proof. The estimates follow from (6.19), (6.23) and (6.19), (6.24), respec-

tively.
Lemma 6.7. For any y0 with the probability distribution from the class (C,α),

sup
ζ∈Vh

d(ζ, E[Vh(S, y0)]) ≤ ν1
h(S), lim

S→∞
ν1
h(S) = 0(6.40)

if W-h-AC is satisfied, and

sup
ζ∈Vh

dE(ζ, Vh(S, y0)) ≤ ν2
h(S), lim

S→∞
ν2
h(S) = 0(6.41)

if S-h-AC is satisfied.
Proof. Using (6.9) with S′′ = S and S′ = �S 1

2 �S 1
2 , one can obtain

dH(E[Vh(�S 1
2 �S 1

2 , y0)], E[Vh(S, y0)]) ≤
2ch

S
1
2

,(6.42)

where �S 1
2 � stands for the integer part of S

1
2 . Hence,

sup
ζ∈Vh

d(ζ, E[Vh(S, y0)]) ≤ sup
ζ∈Vh

d(ζ, E[Vh(�S 1
2 �S 1

2 , y0)]) +
2ch

S
1
2

.(6.43)

From (6.22) and (6.38) (with the replacement of S by S
1
2 and the replacement of k

by �S 1
2 �) it follows, on the other hand, that

sup
ζ∈Vh

d(ζ, E[Vh(�S 1
2 �S 1

2 , y0)]) ≤ sup
ζ∈Vh

d(ζ, E[V ′
h(�S 1

2 �S 1
2 , y0)])

≤ dH(E[V ′
h(�S 1

2 �S 1
2 , y0)], Vh) ≤ c̄h

�S 1
2 �

+ 2c(1 + C)νh(S
1
2 )

This and (6.43) imply (6.40) with ν1
h(S)

def

= 2ch

S
1
2

+ c̄h


S
1
2 �

+ 2c(1 + C)νh(S
1
2 ).
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To establish (6.41), one can use (6.8) and obtain, similarly to (6.42), that

dEH(Vh(�S 1
2 �S 1

2 , y0), Vh(S, y0)) ≤
2ch

S
1
2

,

⇒ sup
ζ∈Vh

dE(ζ, Vh(S, y0)) ≤ sup
ζ∈Vh

dE(ζ, Vh(�S 1
2 �S 1

2 , y0)]) +
2ch

S
1
2

.(6.44)

By (6.22) and (6.39) (with S being replaced by S
1
2 and k by �S 1

2 � as above),

sup
ζ∈Vh

dE(ζ, Vh(�S 1
2 �S 1

2 , y0)) ≤ sup
ζ∈Vh

dE(ζ, V ′
h(�S 1

2 �S 1
2 , y0))

≤ dEH(V ′
h(�S 1

2 �S 1
2 , y0), Vh) ≤ ch√

�S 1
2 �

+
c̄h

�S 1
2 �

+ 2c(1 + C)νh(S
1
2 ).

This and (6.44) imply (6.41) with ν2
h(S) being equal to the sum of 2ch

S
1
2

and the right-

hand side of the last inequality.
Proof of Theorem 3.2. By (6.19),

supζ∈E[Vh(S,y0)]d(ζ, Vh) ≤ supζ∈coE[Vh(S,y0)]d(ζ, Vh) ≤ dH(coE[Vh(S, y0)], Vh)

≤ c(1 + C)νh(S).

Comparing this estimate and (6.40), one obtains (3.14) with νC,α
h (S)

def

= max{c(1 +
C)νh(S), ν1

h(S)}.
Proof of Theorem 3.4. The statement (i) of the theorem is established by (6.41),

with ν̃C,α
h (S)

def

= ν2
h(S). Let us prove the statement (ii). Assume it is not true. Then

there exists a number δ > 0, and sequences μl ∈ M and Sl, l = 1, 2, . . . , (Sl → ∞ as
l → ∞) such that, for any μ′ ∈ M(Sl, y0),

E[ρ(μl, μ
′)] =

∞∑
i=1

2−iE

[∣∣∣∣∫ fi(u, y)μl(du, dy) −
∫

fi(u, y)μ
′(du, dy)

∣∣∣∣] ≥ δ(6.45)

⇒
N∑
i=1

2−iE[|
∫

fi(u, y)μl(du, dy) −
∫

fi(u, y)μ
′(du, dy)|] ≥ δ

2
∀μ′ ∈ M(Sl, y0)

for N large enough. Hence, for any μ′ ∈ M(Sl, y0),

E

⎡⎣
√√√√ N∑

i=1

∣∣∣∣∫ fi(u, y)μl(du, dy) −
∫

fi(u, y)μ′(du, dy)

∣∣∣∣2
⎤⎦ ≥ cNδ

2
, cN = const.

(6.46)

Let h(u, y) be defined by (3.1) with j = N and let ζl
def

=
∫
h(u, y)μl(du, dy); by (3.17),

ζl ∈ Vh. Also, by (3.6), Vh(Sl, y0) is the union of all ζ ′
def

=
∫
h(u, y)μ′(du, dy) over

μ′ ∈ M(Sl, y0). The estimate (6.46) is equivalent, thus, to

E[||ζl − ζ ′||] ≥ cNδ

2
∀ζ ′ ∈ Vh(Sl, y0) ⇔ dE(ζl, Vh(Sl, y0)) ≥

cNδ

2
.

The latter contradicts (6.41).
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Proof of Theorem 3.3. Let Assumption 1 and W-h-AC be satisfied for any h(·) as
in (3.1). Then, by Theorem 3.2, for any such h(·) and any initial condition y0 with
the probability distribution from the class (C,α), there exists a convex and compact
set Vh such that (3.14) is satisfied. From Corollary 3.7 in [28] (see also Theorem 3.1(i)
in [27] and more general results in [7]) it follows that

ρH(E[M(S, y0)],M̄) ≤ νC,α(S)(6.47)

for some νC,α(S) tending to zero as S tends to infinity, where

M̄ def

= {μ ∈ P(U × R̄m) |
∫

h(u, y)μ(du, dy) ∈ Vh ∀h(u, y) as in (3.1)}.

It is easy to verify that the set M̄ is convex and compact. Hence, the estimate (3.15)
will be established if one shows that M = M̄. Since, by definition, M ⊂ M̄, it is
enough to show that M̄ ⊂ M.

For N = 1, 2, . . . , let YN
def

= {y ∈ Rm | ||y|| ≤ N} and Y c
N

def

= {y ∈ Rm | ||y|| > N}.
By (2.8) and (2.10), for any μ ∈ E[M(S, y0)], there exists an admissible control u(·)
and the corresponding solution y(·) of the CSDE (2.4) such that

μ(U × Y c
N ) =

1

S

∫ S

0

E[χY c
N

(y(τ))]dτ ≤ 1

Nα

1

S

∫ S

0

E[χY c
N

(y(τ)) ||y(τ)||α]dτ,

where χY c
N

(y(τ)) is the indicator function of Y c
N . Hence, using Assumption I and the

fact that y0 has the probability distribution from the class (C,α), one obtains that,
for any μ ∈ E[M(S, y0)],

μ(U × Y c
N ) ≤ 1

Nα

1

S

∫ S

0

E[||y(τ)||α]dτ ≤ 1

Nα
c1(C + 1)

⇒ μ(U × YN ) ≥ 1 − 1

Nα
c1(C + 1).

Take an arbitrary μ ∈ M̄. By (6.47), there exists a sequence μi ∈ E[M(Si, y0)] (Si

tends to infinity as i tends to infinity) such that

lim
i→∞

ρ(μi, μ) = 0 ⇒ μ(U × YN ) ≥ lim sup
i→∞

μi(U × YN ) ≥ 1 − 1

Nα
c1(C + 1)

⇒ μ(U ×Rm) = 1.

The latter implies that μ ∈ M and, hence, M̄ ⊂ M.
Using the second representation for E[Vh(S, y0)] in (3.7), it is straightforward to

verify that the validity of (3.15) implies the validity of (3.14) with Vh as in (3.17) for
any h(·) as in (3.1). The fact that W-h-AC is satisfied for any such h(·) follows now
from Theorem 3.2.

7. Proofs for sections 4. Proof of Theorem 4.2. Assume that (4.6) is not
valid. Then there exist a number δ > 0 and initial conditions y0 with the probability
distribution from the class (C,α) such that, for some Si, limi→∞ Si = ∞, and some
μi ∈ M(Si, y0),

E[ inf
μ′∈D

ρ(μi, μ
′)] ≥ δ i = 1, 2, . . . , ⇒ E[ inf

μ′∈D
ρ(μ∗, μ′)] ≥ δ,(7.1)
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where it is assumed (without loss of generality) that μi → μ∗ in law as i → ∞. From
the fact that μi ∈ M(Si, y0) it follows that there exist an admissible control ui(·)
and the corresponding solution yi(·) of the CSDE (2.4) (with the initial conditions
yi(0) = y0) such that μi is the occupational measure of the pair (ui(·), yi(·)) on the
interval [0, Si] (see (2.6)). Hence, for any f ∈ D

1

Si
(f(yi(S) − f(y(0))) =

∫
U×R̄m

(Lf)(u, y)μi(du, dy)

+
1

Si

∫ Si

0

〈∇f(yi(τ)), b(yi(τ))dW (τ)〉,

where, in order for the integration in the first term of the right-hand side to be
legitimate, the definition of (Lf) : U×Rm → R1 (see (4.1) above) is formally extended

to (Lf) : U × R̄m → R1 by setting (Lf)(·,∞)
def

= 0.
The left-hand side and the variance of the second term on the right-hand side of

the above expression tend to zero as Si → ∞ (this can be easily derived from the
fact that the probability distribution of y0 belongs to the class (C,α) and from that
Assumption 1 is satisfied with α ≥ 2). Hence, the first term on the right-hand side
tends to zero in law.

By Skorohod’s theorem (see, e.g., [15, p. 23]), there exist P(U × R̄m)-valued
random variables μ̃i and μ̃∗ defined on a common probability space such that they
agree in law with μi and μ∗, respectively, and such that

lim
i→∞

ρ(μ̃i, μ̃
∗) = 0 a.s.(7.2)

⇒ lim
i→∞

∫
U×R̄m

(Lf)(u, y)μ̃i(dxdu) =

∫
U×R̄m

(Lf)(u, y)μ̃∗(du, dy) a.s.

⇒
∫
U×R̄m

(Lf)(u, y)μ̃∗(du, dy) = 0 a.s. ⇒
∫
U×R̄m

(Lf)(u, y)μ∗(du, dy) = 0 a.s.

Since D is countable, the last expression is valid for all f ∈ D outside a common zero
probability set. Hence, if one establishes that μ∗ ∈ P(U ×Rm) a.s., it will follow that
μ∗ ∈ D a.s. and, thus, it will contradict (7.1).

To complete the proof of the theorem, one needs to show now that μ∗ ∈ P(U×Rm)
a.s. That is, one needs to show that

μ∗(U ×Rm) = 1 a.s.(7.3)

From Assumption 1 it follows that, for any δ > 0, there exists a compact set Yδ ⊂ Rm

such that

E[μ̃i(U × Yδ)] = E[μi(U × Yδ)] ≥ 1 − δ,

where it is also taken into account that μ̃i and μi agree in law. By (7.2),

μ̃∗(U × Yδ) ≥ lim sup
i→∞

μ̃i(U × Yδ) a.s.

⇒ E [μ̃∗(U × Yδ)] ≥ E[lim sup
i→∞

μ̃i(U × Yδ)] ≥ lim sup
i→∞

E[μ̃i(U × Yδ)] ≥ 1 − δ.
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Since μ∗ and μ̃∗ agree in law,

E[μ̃∗(U × Yδ)] = E[μ∗(U × Yδ)] ⇒ E[μ∗(U × Yδ)] ≥ 1 − δ.

Since δ can be arbitrary small, the latter implies that E[μ∗(U × Rm)] = 1 which, in
turn, implies the validity of (7.3). This completes the proof of the theorem.

Proof of Theorem 4.1(i). It can be easily verified that ρ(μ,D) is a convex function
of μ. Hence, by (4.6),

ρ(E[μ], D) ≤ E[ρ(μ,D)] ≤ ν̄(C,α)(S) ∀μ ∈ M(S, y0)

⇒ sup
μ∈E[M(S,y0)]

ρ(μ,D) ≤ ν̄(C,α)(S).

Since the above estimate is uniform with respect to the initial conditions y0 which
have the probability distribution from the class (C,α), it follows that

sup
{y0}∈(C,α)

{
sup

μ∈E[M(S,y0)]

ρ(μ,D)

}
≤ ν̄(C,α)(S).

In Lemma 7.1 below it is shown that

sup
μ∈D

ρ

⎛⎝μ,
⋃

{y0}∈(C,α)

E[M(S, y0)]

⎞⎠ = 0.(7.4)

These imply (4.4).
Lemma 7.1. The equation (7.4) is valid if the conditions of Theorem 4.1 are

satisfied.
Proof. For any h(·) as in (3.1), define the set Dh by

Dh
def

=
⋃
μ∈D

{∫
h(u, y)μ(du, dy)

}
.(7.5)

As follows from Lemma 3.5 in [28], the validity of (7.4) will be established if one shows
that

sup
v∈Dh

d

⎛⎝v,
⋃

{y0}∈(C,α)

{E[Vh(S, y0)]}

⎞⎠ = 0.(7.6)

Take an arbitrary element v ∈ Dh. By definition, there exists μ ∈ D such that
v =

∫
h(u, y)μ(du, dy). From results in [13] and [49] it follows that there exists m-

dimensional standard Brownian motion W ′(·) and a stationary P(U) × Rm - valued
random process (λ′(τ), y′(τ)) such that

dy′(τ) = ã(λ′(τ), y′(τ))dt + b(y′(τ))dW ′(τ), ã(λ, y)
def

=

∫
a(u, y)λ(du),(7.7)

and

E

[∫
h(u, y′(τ))λ′(τ)(du)

]
=

∫
h(u, y)μ(du, dy) = v ∀τ ≥ 0,(7.8)
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E[||y′(τ)||α] =

∫
||y||αμ(du, dy) ≤ c2 ∀τ ≥ 0,(7.9)

with W ′(·) being independent of y′(0) and λ′(·) being nonanticipative (i.e., for τ̄ >
τ,W ′(τ̄)−W ′(τ) is independent of {y′(0) and W ′(θ), λ′(θ), θ ≤ τ}); (c2 is the constant
from Assumption 2). Using Filippov type chattering lemma for CSDE (see, e.g., [14,
p. 15]), one can establish that there exists a sequence of admissible controls ui(·)
and the corresponding sequence of solutions yi(·) of the CSDE (2.4) (considered with
W ′(·) instead of W (·)) such that yi(0) = y′(0) and such that

lim
i→∞

E

[∥∥∥∥∥ 1

S

∫ S

0

h(ui(τ), yi(τ))dτ − 1

S

∫ S

0

∫
h(u, y′(τ))λ′(τ)(du)dτ

∥∥∥∥∥
]

= 0.(7.10)

From (7.8) and (7.10) it follows that

lim
i→∞

∥∥∥∥∥E
[

1

S

∫ S

0

h(ui(τ), yi(τ))dτ

]
− v

∥∥∥∥∥ = 0.(7.11)

Since

E

[
1

S

∫ S

0

h(ui(τ), yi(τ))dτ

]
∈ E[Vh(S, y′(0))] ⊂

⋃
{y0}∈(C,α)

{E[Vh(S, y0)]}

(the last inclusion being due to the fact that, by (7.9), y′(0) has the probability
distribution from the class (C,α) with C ≥ c2), one can use (7.11) to obtain that

dist

⎛⎝v,
⋃

{y0}∈(C,α)

{E[Vh(S, y0)]}

⎞⎠ = 0.

As v is an arbitrary element of Dh, this implies (7.6).
The proofs of Corollaries 4.4 and 4.5 are based on the following result.
Lemma 7.2. A sequence μk ∈ P(U ×Rm), k = 1, 2, . . . , converges to μ ∈ P(U ×

Rm) in the metric ρ defined in (2.1) (that is, limk→∞ ρ(μk, μ) = 0) if and only if

lim
k→∞

∫
f(u, y)μk(du, dy) =

∫
f(u, y)μ(du, dy)

for any bounded continuous function f(u, y) : U ×Rm → R1.
Proof. follows from Theorem 2.1.1 in [15].
Proof of Corollary 4.4. By Assumption 2 (see (4.3)), for any μ ∈ D and N ≥ 1,

Nα−1

∫
||y||≥N

||y||μ(du, dy) ≤
∫
||y||≥N

||y||αμ(du, dy) ≤
∫

||y||αμ(du, dy) ≤ c2∫
||y||≥N

||y||μ(du, dy) ≤ c2
Nα−1

∀μ ∈ D.(7.12)

Let ξN (θ) : [0,∞) → [0, 1] be a continuous function such that ξN (θ) = 1 for θ ∈ [0, N ]

and such that ξN (θ) = 0 for θ ∈ [N+1,∞). Let gN (u, y)
def

= g(u, y)ξN (||y||). According
to these definitions, gN (u, y) = g(u, y) for ||y|| ≤ N and also

||gN (u, y)|| ≤ ||g(u, y)||, ||gN (u, y)|| ≤ max
u∈U,||y||≤N

||g(u, y)|| ∀(u, y) ∈ U × Y.
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Due to the Lipschitz continuity of g(u, y),

||g(u, y)|| ≤ a1 + a2||y|| ⇒ ||gN (u, y)|| ≤ a1 + a2||y|| ∀y ∈ Rm,(7.13)

where ai = const, i = 1, 2. By (7.12), it is implied that∥∥∥∥∫ g(u, y)μ(du, dy) −
∫

gN (u, y)μ(du, dy)

∥∥∥∥ ≤ a3

Nα−1
∀μ ∈ D, a3 = const.(7.14)

From (7.12) and (7.13) it follows that the set Vg is bounded. Let us prove that it is
closed by showing that, if μk ∈ D and the limit limk→∞

∫
g(u, y)μk(du, dy) exists, then

this limit belongs to Vg. Assume the above limit does exist. Due to the fact that D is
compact, one may also assume (without loss of generality) that limk→∞ ρ(μk, μ) = 0
for some μ ∈ D. By virtue of Lemma 7.2 and since gN (u, y) is bounded, the latter
leads to the equality limk→∞

∫
gN (u, y)μk(du, dy) =

∫
gN (u, y)μ(du, dy), which, in

turn, implies that

lim
k→∞

∥∥∥∥∫ g(u, y)μk(du, dy) −
∫

g(u, y)μ(du, dy)

∥∥∥∥
≤ lim sup

k→∞

∥∥∥∥∫ g(u, y)μk(du, dy) −
∫

gN (u, y)μk(du, dy)

∥∥∥∥
+ lim

k→∞

∥∥∥∥∫ gN (u, y)μk(du, dy) −
∫

gN (u, y)μ(du, dy)

∥∥∥∥
+

∥∥∥∥∫ gN (u, y)μ(du, dy) −
∫

g(u, y)μ(du, dy)

∥∥∥∥
≤ 2a3

Nα−1
⇒ lim

k→∞

∫
g(u, y)μk(du, dy) =

∫
g(u, y)μ(du, dy) ∈ Vg.

This proves that Vg is compact.
Let VgN (S, y0) and VgN be defined by (4.10) and (4.11) with the replacement of

g(·) by gN (·). By (7.14),

dH(VgN , Vg) ≤
a3

Nα−1
.(7.15)

Similarly to (7.12), from Assumption 1 it follows that, for any y0 having a probability
distribution from the class (C,α),

E

[ ∫
||y||≥N

||y||μ(du, dy)

]
≤ a4

Nα−1
∀μ ∈ M(S, y0)(7.16)

⇒ E

[∥∥∥∥∫ g(u, y)μ(du, dy) −
∫

gN (u, y)μ(du, dy)

∥∥∥∥] ≤ a5

Nα−1
∀μ ∈ M(S, y0)(7.17)

⇒ dEH(VgN (S, y0), Vg(S, y0)) ≤
a5

Nα−1
,(7.18)

where a4, a5 are positive constants. From (7.15) and (7.18) it follows that, to prove
(4.12), it is enough to prove that

sup
v∈VgN

(S,y0)

E[d(v, VgN )] ≤ νgN (S), lim
S→∞

νgN (S) = 0.(7.19)
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Assume it is not true. Then there exists δ > 0 and sequences Si, limi→∞ Si = 0, and
μi ∈ M(Si, y0 such that

E

[
d

(∫
gN (u, y)μi(du, dy), VgN

)]
≥ δ,(7.20)

with μi → μ∗ in law as i → ∞. Like in the proof of Theorem 4.2, let μ̃i and μ̃∗ be
P(U×Rm)-valued random variables defined on a common probability space such that
they agree in law with μi and μ∗, respectively, and such that (7.2) is satisfied. From
(7.2) and Lemma 7.2 it follows that

lim
i→∞

∫
gN (u, y)μ̃i(du, dy) =

∫
gN (u, y)μ̃∗(du, dy) ∈ VgN a.s.,

the last inclusion being implied by the fact that μ̃∗ ∈ D (which is established similarly
to the proof of Theorem 4.2). Hence, E[d(

∫
gN (u, y)μ̃∗(du, dy), VgN )] = 0. This

contradicts the following inequalities resulting from (7.20) and the fact that μ̃i and
μi agree in law:

E

[
d

(∫
gN (u, y)μ̃∗(du, dy), VgN

)]
= lim

i→∞
E

[
d

(∫
gN (u, y)μ̃i(du, dy), VgN

)]
≥ δ

Thus Corollary 4.4 is proved.
Proof of Corollary 4.5. By (7.15) and (7.18), to prove (4.12), it is sufficient to

prove that

sup
v∈VgN

dE(v, VgN (S, y0)) ≤ νgN (S), lim
S→∞

νgN (S) = 0.(7.21)

Assume it is not true. Then there exist a number δ > 0 and sequences μi ∈ D and
Si, i = 1, 2, . . . , (Si → ∞ as i → ∞) such that

E

[∥∥∥∥∫ gN (u, y)μi(du, dy) −
∫

gN (u, y)μ(du, dy)

∥∥∥∥] ≥ δ ∀μ ∈ M(Si, y0).(7.22)

From Theorem 3.4(ii) (see (3.19)) it follows that there exists μSi ∈ M(Si, y0), such
that

E[ρ(μi, μ
Si)] ≤ 2ν̃(C,α)(Si), lim

i→∞
ν̃(C,α)(Si) = 0.(7.23)

Without loss of generality, one may assume that μi → μ∗ and μSi → μ∗∗ in law.
Also, using Skorohod’s theorem, one can verify (similar to the way it is done in the
proof of Theorem 4.2) that there exist P(U ×Rm)-valued random variables μ̃i, ˜̃μi, μ̃

∗

and ˜̃μ
∗∗

defined on a common probability space such that they agree in law with
μi, μSi , μ∗ and μ∗∗ and such that, almost sure, μ̃i → μ̃∗, ˜̃μi → ˜̃μ

∗∗
. Note that

E[ρ(μ̃i, ˜̃μi)] = E[ρ(μi, μ
Si)] and, hence, by (7.23),

E[ρ(μ̃∗, ˜̃μ
∗∗

)] ≤ lim
i→∞

E[ρ(μ̃∗, μ̃i)] + lim sup
i→∞

E[ρ(μ̃i, ˜̃μi)] + lim
i→∞

E[ρ(˜̃μi, ˜̃μ
∗∗

)]

≤ lim
i→∞

2ν̃(C,α)(Si) = 0 ⇒ E[ρ(μ̃∗, ˜̃μ
∗∗

)] = 0 ⇒ μ̃∗ = ˜̃μ
∗∗

a.s.
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The latter implies (by virtue of Lemma 7.2) that

lim
i→∞

∫
gN (u, y)μ̃i(du, dy) = lim

i→∞

∫
gN (u, y)˜̃μi(du, dy) =

∫
gN (u, y)μ̃∗(du, dy) a.s.

⇒ 0 = lim
i→∞

E

[∥∥∥∥∫ gN (u, y)μ̃i(du, dy) −
∫

gN (u, y)˜̃μi(du, dy)

∥∥∥∥]
= lim

i→∞
E

[∥∥∥∥∫ gN (u, y)μi(du, dy) −
∫

gN (u, y)μSi(du, dy)

∥∥∥∥] .
These equalities contradict (7.22) and, thus, prove the corollary.

8. Proofs for section 5.
Lemma 8.1. Let the assumptions of Theorem 5.1 be satisfied. Then any admis-

sible solution (yε(·), zε(·)) of the singularly perturbed CSDE (5.1) and (5.2) and any
admissible solution z(·) of the averaged CSDE (5.4) satisfy the inequalities

E[||yε(t)||4] ≤ L E[||zε(t)||4] ≤ L E[||z(t)||4] ≤ L ∀t ∈ [0, T ];(8.1)

E[||zε(t)−zε(θ)||2] ≤ L|t−θ| E[||z(t)−z(θ)||2] ≤ L|t−θ| ∀t, θ ∈ [0, T ],(8.2)

where L is a positive constant.
Proof. The proof follows a standard argument based on Lemma 4.12 in [40, p. 125]

and an application of the Gronwall–Bellman lemma.
Proof of Theorem 5.1(i). Let uε(t) be an admissible control and (yε(t), zε(t)) be

the solution of the singularly perturbed CSDE (5.1) and (5.2) obtained with this

control. Divide the interval [0, T ] by the points tl
def
= lΔ(ε), l = 0, 1, . . . , Nε, where

Δ(ε) is a function of ε such that

lim
ε→0

Δ(ε) = 0, lim
ε→0

Δ(ε)

ε
= ∞(8.3)

and Nε is the integer part of T
Δ(ε) . For l = 1, . . . , Nε, define a P(U × R̄m)-valued

random variable μ̄l by∫
fi(u, y)μ̄l(du, dy) =

1

Δ(ε)

∫ tl

tl−1

fi(u
ε(t), yε(t))dt =

1

Sε

∫ Sε

0

fi(ū(τ), ȳ(τ))dτ,(8.4)

where fi(u, y), i = 1, 2, . . . , are as in (2.7) and

(ū(τ), ȳ(τ))
def

= (u(tl−1 + ετ), y(tl−1 + ετ)), Sε
def

=
Δ(ε)

ε
.

The equations in (8.4) imply that μ̄l is the occupational measure generated on the in-
terval [0, Sε] by the control ū(τ) and the corresponding solution ȳ(τ) of the associated
system (2.4). Hence, by Theorem 4.2,

E[ρ(μ̄l, D)] ≤ ν̄(C,α)(Sε)
def

= ν(ε), lim
ε→0

ν(ε) = 0.(8.5)

For any μ′, μ′′ ∈ P(U × R̄m), let

ρ̂(μ′, μ′′)
def

= ρ(μ′, μ′′)+

( ∞∑
i=1

2−2i

∣∣∣∣∫ fi(u, y)μ
′(du, dy) −

∫
fi(u, y)μ

′′(du, dy)

∣∣∣∣2
) 1

2

(8.6)
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It is easy to see that ρ̂(·, ·) is a metric on P(U × R̄m) and that

ρ(μ′, μ′′) ≤ ρ̂(μ′, μ′′) ≤ 2ρ(μ′, μ′′) ∀μ′, μ′′ ∈ P(U × R̄m).(8.7)

The advantage of using ρ̂(·, ·) instead of ρ(·, ·) is that, for any μ, the solution of the
problem minμ′∈D ρ̂(μ, μ′), called the projection of μ onto D, is unique (this being
easily verifiable on the basis of the inequality ρ̂(μ, (1−λ)μ′ +λμ′′) < (1−λ)ρ̂(μ, μ′)+
λρ̂(μ, μ′′) ∀λ ∈ (0, 1)).

Let μl stand for the projection of μ̄l onto D. By (8.5) and (8.7),

E[ρ̂(μ̄l, μl)] = E[ρ̂(μ̄l, D)] ≤ 2ν(ε)(8.8)

Using (8.8) and slightly extending arguments in the proof of Corollary 4.5 (to take
into account the dependence on z), one can verify that, for any N > 0,

E[||g̃(μ̄l, z) − g̃(μl, z)||] ≤ νN (ε) ∀ z : ||z|| ≤ N, lim
ε→0

νN (ε) = 0.(8.9)

Also, it can be verified that the estimates (8.1) and Assumption 2 (with α = 4) imply
that

E[||g̃(μ̄l, z
ε(tl))||4] ≤ L1, E[||g̃(μl, z

ε(tl))||4] ≤ L1, L1 = const.(8.10)

as well as that

E[||g̃(μ̄l, z
ε(tl))||χN ] ≤ κ(N), E[||g̃(μl, z

ε(tl))||χN ] ≤ κ(N), lim
N→∞

κ(N) = 0,(8.11)

where χN is the indicator function of the event: ||zε(tl)|| > N (χ̄N below will stand
for the indicator function of ||zε(tl)|| ≤ N). From (8.9) and (8.11) it follows that

E[||g̃(μ̄l, z
ε(tl)) − g̃(μl, z

ε(tl))||] ≤ E[||g̃(μ̄l, z
ε(tl)) − g̃(μl, z

ε(tl))||χ̄N ]

+E[||g̃(μ̄l, z
ε(tl))||χN ] + E[||g̃(μl, z

ε(tl))||χN ] ≤ νN (ε) + 2κ(N),

which implies that there exists ν̂(ε), limε→0 ν̂(ε) = 0, such that

E[||g̃(μ̄l, z
ε(tl)) − g̃(μl, z

ε(tl))||] ≤ ν̂(ε).(8.12)

This estimate and (8.10) imply, in turn, that

E[||g̃(μl, z
ε(tl)) − g̃(μ̄l, z

ε(tl))||2]

≤
√
E[||g̃(μl, zε(tl)) − g̃(μ̄l, zε(tl))||]

√
E[||g̃(μl, zε(tl)) − g̃(μ̄l, zε(tl))||3]

≤ L2

√
ν̂(ε), L2 = const.

Thus, denoting ν̄(ε)
def

= L2

√
ν̂(ε), one obtains

E[||g̃(μl, z
ε(tl)) − g̃(μ̄l, z

ε(tl))||2] ≤ ν̄(ε), lim
ε→0

ν̄(ε) = 0.(8.13)

Now define the admissible control μ(t) of the averaged system as follows. On the
intervals [t0, t1) and [tNε

, T ], take μ(t) = μ (an arbitrary element of D). On any other



1468 VIVEK BORKAR AND VLADIMIR GAITSGORY

interval [tl, tl+1), l = 1, 2, . . . , Nε − 1, take μ(t) = μl. Let z(t) be the solution of the
averaged system (5.4) obtained with the control μ(t). By definition, it satisfies

z(t) = z0 +

∫ t

0

g̃(μ(t′), z(t′))dt′ +

∫ t

0

σ(z(t′))dB2(t
′).

Subtracting this from

zε(t) = z0 +

∫ t

0

g(uε(t′), yε(t′), zε(t′))dt′ +

∫ t

0

σ(zε(t′))dB2(t
′),

one can obtain that

(8.14)

E[||zε(t) − z(t)||2] ≤ K

{
E

[∥∥∥∥∫ t

0

g(uε(t′), yε(t′), zε(t′))dt′ −
∫ t

0

g̃(μ(t′), z(t′))dt′
∥∥∥∥2
]

+

∫ t

0

E[||zε(t′) − z(t′)||]2dt′
}
,

where K is a positive constant. Let us evaluate the first term on the right-hand side
of (8.14). Let kt stand for the integer part of t

Δ(ε) (ktΔ(ε) ≤ t ≤ T ). Then

E

[∥∥∥∥∫ t

0

g(uε(t′), yε(t′), zε(t′))dt′ −
∫ t

0

g̃(μ(t′), z(t′))dt′
∥∥∥∥2
]

≤ K1

{
E

[∥∥∥∥∥
kt∑
l=1

∫ tl

tl−1

(g(uε(t′), yε(t′), zε(t′)) − g(uε(t′), yε(t′), zε(tl)))dt
′

+

kt∑
l=1

(g̃(μ̄l, z
ε(tl)) − g̃(μl, z

ε(tl)))Δ(ε) +

kt−1∑
l=1

(g̃(μl, z
ε(tl)) − g̃(μl, z(tl)))Δ(ε)

+

kt−1∑
l=1

∫ tl+1

tl

(g̃(μ(t′), z(tl)) − g̃(μ(t′), z(t′)))dt′

∥∥∥∥∥
2
⎤⎦+ Δ(ε)

⎫⎬⎭
≤ K2

⎧⎨⎩E

⎡⎣∥∥∥∥∥
kt∑
l=1

∫ tl

tl−1

(g(uε(t′), yε(t′), zε(t′)) − g(uε(t′), yε(t′), zε(tl)))dt
′

∥∥∥∥∥
2
⎤⎦

+E

⎡⎣∥∥∥∥∥
kt∑
l=1

(g̃(μ̄l, z
ε(tl)) − g̃(μl, z

ε(tl)))||2 + ||
kt−1∑
l=1

(g̃(μl, z
ε(tl)) − g̃(μl, z(tl)))

∥∥∥∥∥
2
⎤⎦Δ2(ε)

+E

⎡⎣∥∥∥∥∥
kt−1∑
l=1

∫ tl+1

tl

(g̃(μ(t′), z(tl)) − g̃(μ(t′), z(t′)))dt′

∥∥∥∥∥
2
⎤⎦+ Δ(ε)

⎫⎬⎭ , K1,K2 = const.

(8.15)
Using Cauchy–Schwarz inequality (two times), one can obtain that

E

⎡⎣∥∥∥∥∥
kt∑
l=1

∫ tl

tl−1

(g(uε(t′), yε(t′), zε(t′)) − g(uε(t′), yε(t′), zε(tl)))dt
′

∥∥∥∥∥
2
⎤⎦
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≤ kt

kt∑
l=1

E

⎡⎣∥∥∥∥∥
∫ tl

tl−1

(g(uε(t′), yε(t′), zε(t′)) − g(uε(t′), yε(t′), zε(tl)))dt
′

∥∥∥∥∥
2
⎤⎦

≤ ktΔ(ε)

kt∑
l=1

∫ tl

tl−1

E
[
‖ g(uε(t′), yε(t′), zε(t′)) − g(uε(t′), yε(t′), zε(tl))‖2

]
dt′

≤ K3Δ(ε), K3 = const,(8.16)

where, to obtain the last inequality, it has been taken into account that g(u, y, z) satis-
fies Lipschitz conditions in z and also that, by (8.2), E[||zε(t′)−zε(tl)||2] ≤ LΔ(ε) ∀t′ ∈
[tl−1, tl]. Similarly, using Cauchy–Schwarz inequality and the fact that g̃(μ, z) satisfies
Lipschitz conditions in z as well as that E[||z(t′) − z(tl)||2] ≤ LΔ(ε) ∀t′ ∈ [tl, tl+1],
one can obtain that

E

⎡⎣∥∥∥∥∥
kt−1∑
l=1

∫ tl+1

tl

(g̃(μ(t′), z(tl)) − g̃(μ(t′), z(t′)))dt′

∥∥∥∥∥
2
⎤⎦ ≤ K4Δ(ε), K4 = const.

(8.17)
Also, by (8.13),

E

⎡⎣∥∥∥∥∥
kt∑
l=1

(g̃(μ̄l, z
ε(tl)) − g̃(μl, z

ε(tl)))

∥∥∥∥∥
2
⎤⎦Δ2(ε)

≤ kt

kt∑
l=1

E[||g̃(μ̄l, z
ε(tl)) − g̃(μl, z

ε(tl))||2]Δ2(ε) ≤ K5ν̄(ε), K5 = const,(8.18)

and, by (8.1) and (8.2),

E

⎡⎣∥∥∥∥∥
kt−1∑
l=1

(g̃(μl, z
ε(tl)) − g̃(μl, z(tl)))

∥∥∥∥∥
2
⎤⎦Δ2(ε)

≤ kt

kt−1∑
l=1

E
[
‖g̃(μl, z

ε(tl)) − g̃(μl, z(tl))‖2
]
Δ2(ε) ≤ K6

kt−1∑
l=1

E[||zε(tl) − z(tl)||2]Δ(ε)

≤ K7

(∫ t

0

E[||zε(t′) − z(t′)||2]dt′ + Δ
1
2 (ε)

)
, K6,K7 = const.(8.19)

Substitution of (8.16)–(8.19) into (8.15) leads to

E

[∥∥∥∥∫ t

0

g(uε(t′), yε(t′), zε(t′))dt′ −
∫ t

0

g̃(μ(t′), z(t′))dt′
∥∥∥∥2
]

≤ K8

(∫ t

0

E[||zε(t′) − z(t′)||2]dt′ + ν̄(ε) + Δ
1
2 (ε)

)
, K8 = const.(8.20)

The latter, in turn, being substituted into (8.14) implies (with the help of a Gronwall–

Bellman lemma) the validity of (5.7) with ν̃(ε) = K9(ν̄(ε) + Δ
1
2 (ε)),K9 = const. The

validity of (5.8) follows from the Lipschitz continuity of G(z).
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Proof of Theorem 5.1(ii) (Outline). Let Sε = Δ(ε)
ε (as in the proof of Theo-

rem 5.1(i)) and let

ν(ε)
def

= ν̃(C,α)(Sε),(8.21)

where ν̃(C,α)(·) is the function from the estimate (4.8). Note that limε→0 ν(ε) = 0.

Let Jε be the integer part of ν−
1
2 (ε), which implies, in particular, that

lim
ε→0

Jε = ∞, lim
ε→0

(ν(ε)Jε) = 0.(8.22)

Using the fact that D is compact, one can show that, for any ε > 0, there exists a

finite subset Dε def

= {Υε
1, . . . ,Υ

ε
Jε} of D such that ρH(Dε, D) ≤ δ(ε), where δ(ε) is some

function tending to zero as ε tends to zero.
It can be verified (by standard applications of a Gronwall–Bellman lemma) that,

given a solution z′(t) of the averaged system (5.4) obtained with an arbitrary admis-
sible control μ′(t), there exists a piecewise constant admissible control μ(t):

μ(t) = μl ∈ Dε ∀t ∈ [tl−1, tl), l = 1, . . . , Nε(8.23)

such that the solution z(t) of the averaged system (5.4), obtained with the use of this
control, satisfies the inequality

max
t∈[0,T ]

E[||z′(t) − z(t)||2] ≤ κ(ε), lim
ε→0

κ(ε) = 0.

Let us show that corresponding to any solution z(t) of the averaged system (5.4)
obtained with a control (8.23), there exists an admissible control uε(t) the use of which
in the singularly perturbed CSDE (5.1) and (5.2) leads to the solution (yε(t), zε(t))
satisfying (5.7).

Take uε(t) = u (an arbitrary element of U) on the intervals [0, t1) and [tNε
, T ] and

denote by (yε(t), zε(t)) the solution of (5.1) and (5.2) on the interval [0, t1] obtained
with this control.

From Corollary 4.3 (see (4.8) and the notation (8.21)) it follows that there exist
random variables Ῡε

j ∈ M(Sε, y
ε(t1)) such that

E[ρ2(Ῡε
j ,Υ

ε
j)]

2
≤ E[ρ(Ῡε

j ,Υ
ε
j)] ≤ ν(ε), j = 1, . . . , Jε,(8.24)

where the left inequality is obtained by taking into account that ρ(·,·)
2 ≤ 1 (see (2.1))

and, hence, ρ2(·,·)
2 ≤ ρ(·, ·). Define μ̄1 by

μ̄1
def

=

Jε∑
j=1

Ῡε
jχ(μ1 = Υε

j),(8.25)

where χ(A) is the indicator function of the “event A.” By (8.24),

E[ρ(μ̄1, μ1)] =

Jε∑
j=1

E[ρ(Ῡε
j ,Υ

ε
j)χ(μ1 = Υε

j)]

≤
Jε∑
j=1

√
E[ρ2(Ῡε

j ,Υ
ε
j)]
√

E[χ(μ1 = Υε
j)] ≤

√
2ν(ε)

Jε∑
j=1

√
E[χ(μ1 = Υε

j)]
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≤
√

2ν(ε)
√
Jε

√√√√ Jε∑
j=1

E[χ(μ1 = Υε
j)] =

√
2ν(ε)

√
Jε

def

= ν∗(ε).(8.26)

Note that, as follows from (8.22), limε→0 ν
∗(ε) = 0.

The fact that Ῡε
j is an element of M(Sε, y

ε(t1)) implies that there exists an
admissible control ūε

j(τ) and the corresponding solution ȳεj(τ) of the associated system
with ȳεj(0) = yε(t1) such that the occupational measure generated by this pair on the

interval [0, Sε] coincides with Ῡj . That is,

1

Sε

∫ Sε

0

fi(ū
ε
j(τ), ȳεj(τ))dτ =

∫
fi(u, y)Ῡj(du, dy) ∀i = 1, 2, . . . .(8.27)

Now take

uε(t)
def

=

Jε∑
j=1

ūε
j

(
t− t1
ε

)
χ(μ1 = Υε

j) ∀t ∈ [t1, t2)

and, using this control, extend the solution (yε(t), zε(t)) of the CSDE (5.1) and (5.2)

to the interval [t1, t2]. By construction, yε(t) =
∑Jε

j=1 ȳ
ε
j(

t−t1
ε )χ(μ1 = Υε

j) and also
(see (8.25) and (8.27))

1

Δ(ε)

∫ t2

t1

fi(u
ε(t), yε(t))dt =

Jε∑
j=1

(
1

Sε

∫ Sε

0

fi(ū
ε
j(τ), ȳεj(τ))dτ

)
χ(μ1 = Υε

j)

=

Jε∑
j=1

(∫
fi(u, y)Ῡ

ε
j(du, dy)

)
χ(μ1 = Υε

j) =

∫
fi(u, y)μ̄1(du, dy) ∀i = 1, 2, . . . .

Continuing in a similar fashion, one can define an admissible control uε(t) and the
corresponding solution (yε(t), zε(t)) of the CSDE (5.1) and (5.2) such that, on any
interval [tl, tl+1), l = 1, . . . , Nε − 1,

1

Δ(ε)

∫ tl+1

tl

fi(u
ε(t), yε(t))dt =

∫
fi(u, y)μ̄l(du, dy) ∀i = 1, 2, . . . ,(8.28)

where μ̄l satisfy the inequalities

E[ρ(μ̄l, μl)] ≤ ν∗(ε) ∀l = 1, . . . , Nε − 1,(8.29)

with ν∗(ε) being as in (8.26).

Using arguments similar to the proof of Corollary 4.5, one can verify that (8.29)
implies the validity of (8.9) which, in turn, implies the validity of (8.12) and (8.13).
The latter leads to the estimate similar to (8.20), which, being substituted into (8.14),
leads to (5.7). Due to the Lipschitz continuity of G(z), one can easily derive now that
lim supε→0 G

∗
ε ≤ G∗

av, which, along with (5.8), implies (5.9).
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1. Introduction. This paper considers extensions of standard system-theoretic
ideas for classical, discrete-time, input/state/output linear systems to the case of
certain types of generalized i/s/o systems having evolution along a free semigroup (in
place of evolution along the nonnegative integers, as in the classical case). One can
introduce formal frequency-domain techniques and arrive at a transfer function for
such a system which is a formal power series in noncommuting variables; such objects
have occurred in the context of the theory of formal languages and automata theory
as well as in connection with realization theory for bilinear systems in the work of
Schützenberger and Fliess (see [37, 38, 39, 20, 21, 22, 23] and the book [15] for a good
survey).

We first review those aspects of the classical theory which we here generalize to
the setting of systems evolving on a free semigroup; this material can be found in
many books on linear system and control theory (see, e.g., [32, 16]). By a classical,
discrete-time, i/s/o linear system (referred to here simply as a linear system for short)
we mean a system Σ of linear equations of the form

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n)(1.1)
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(where n takes values in the integers Z), with x(n) taking values in the state-space H,
u(n) taking values in the input-space U , and y(n) taking values in the output-space
Y, where here we assume that H, U , and Y are finite-dimensional linear spaces over
the field of complex numbers C. It is convenient to identify the operator

U =

[
A B
C D

]
:

[
H
U

]
→

[
H
Y

]
as the connection matrix or colligation of the system Σ. Given such a system Σ, if
one initializes the state x(0) at time 0 and feeds in an input string {u(n)}n∈Z+

, one
can use the system equations (1.1) to uniquely determine the state x(n) for all future
times n > 0 and the output y(n) for the present and all future times n ≥ 0; the result
is

x(n) = Anx(0) +

n−1∑
k=0

An−1−kBu(k),

y(n) = CAnx(0) +

n−1∑
k=0

CAn−1−kBu(k) + Du(n).(1.2)

Application of the Z-transform

{x(n)}n∈Z+
�→

∞∑
n=0

x(n)zn

to the system equations (1.1) converts the expressions (1.2) to the so-called frequency-
domain formulas

x̂(z) = (I − zA)−1x(0) + z(I − zA)−1Bû(z),

ŷ(z) = C(I − zA)−1x(0) + TΣ(z)û(z),(1.3)

where

TΣ(z) = D + zC(I − zA)−1B(1.4)

is a rational L(U ,Y)-valued function analytic at the origin called the transfer function
of the system Σ. Standard system-theoretic ideas in this context are controllability
and observability. The system is said to be controllable if for every h in the state-
space H there is an N < 0 and an input string {u(n)}n=N,N+1,...,−1 so that h is
achievable as h = x(0) if the system is run with initialization x(N) = 0 and input
string {u(n)}n=N,N+1,...,−1. It works out that the system Σ is controllable if and only
if the controllability operator

C =
[
B AB A2B · · ·

]
: �fin(Z−,U) → H

has full rank (equal to dimH).1 Here �fin(Z−,U) denotes the linear space of all U-
valued summable sequences on Z− with finite support. Similarly, the system is said
to be observable if the state-vector h ∈ H can be uniquely recovered from the output
string {y(n)}n≥0 generated by running the system with initial condition x(0) = h and

1By the Cayley–Hamilton theorem, it suffices to consider only the finite matrix Cn =[
B AB · · · An−1B

]
, where n = dimH in place of C.
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zero input string u(n) = 0 for n ≥ 0; this in turn is equivalent to the observability
operator

O = coln≥0[CAn] : H → �(Z+,Y)

being injective.2 Here and in what follows, we often use the following notation. If Hi,
H̃j , U , and Y are finite-dimensional linear spaces (for each index i in an index set S

and index j in an index set S̃), and if we are given linear operators Bj : U → H̃j and
Ci : Hi → Y, then colj∈S̃ Bj denotes the block-operator column matrix representing

a linear operator from U into ⊕j∈S̃H̃j given by

colj∈S̃ Bj : u → ⊕j∈S̃Bju,(1.5)

while rowi∈S Ci denotes the block-operator row matrix representing a linear operator
from ⊕i∈SHi into Y given by

rowi∈S Ci : ⊕i∈S hi �→
∑
i∈S

Cihi.(1.6)

We say that the system Σ = (U : (H⊕U) → (H⊕Y)) is a realization of the L(U ,Y)-
valued function T (z) if T (z) = TΣ(z). There is a theory of minimality of a realization Σ
of a given matrix-valued function T (z): we say that the realization Σ = (U : (H⊕U) →
(H⊕Y)) of T (z) is a minimal realization if, whenever Σ′ = (U ′ : (H′⊕U) → (H′⊕Y))
is another realization of T (z), it is the case that dimH ≤ dimH′. It is well known that
Σ is a minimal realization of TΣ(z) if and only if Σ is both controllable and observable;
moreover, given a realization Σ′ = (U ′ : (H′ ⊕ U) → (H′ ⊕ Y)) of T (z) which is not
controllable and/or not observable, the Kalman decomposition of the system leads to a
procedure for cutting down the system to a controllable and observable (and therefore
minimal) realization Σ′

c/o = (Uc/o : H′
c/o ⊕ U → H′

c/o ⊕ Y) for T (z) (TΣ′
c/o

(z) =

TΣ(z) = T (z)). Moreover, the Hankel operator H = O·C : �fin(Z−,U) → �(Z+,Y), the
map of a past input signal to the future output signal generated by the system (under
the assumption that the state is initialized to be zero sufficiently far in the past and
if the input string is taken to be zero on the present and future), plays a prominent
role in realization theory, since H = HT is also completely determined by the Taylor
coefficients of the transfer function T (z) of Σ. Indeed, a given L(U ,Y)-valued function
T (z) analytic at the origin can be realized as the transfer function T (z) = TΣ(z)
for some finite-dimensional system Σ (1.1) if and only if the Hankel operator HT

constructed from T (z) has finite rank; in this case there is a canonical construction
(the shift realization) of a minimal realization ΣHT = (UHT : HHT ⊕ U → HHT ⊕ Y)
for T (z) with dimHHT = rank HT .

The purpose of this paper is to extend these ideas to various classes of systems
with evolution along a free semigroup rather than along Z+ or Z. We consider three
main classes of such systems, which we refer to as (1) noncommutative Fornasini–
Marchesini systems, (2) noncommutative Givone–Roesser systems, and (3) noncom-
mutative full-structured systems. In all these examples, application of a formal Z-
transform to the system equations, under the assumption that the state-vector is ini-
tialized to be zero, gives rise to the input-output map for the system being given by

2Again by the Cayley–Hamilton theorem, for the present classical case one can replace O by the
finite matrix On = colj=0,1,...,n−1[CAj ], where n is the dimension of the state-space H.
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multiplication by a formal power series in noncommuting indeterminates (the transfer
function of the system) of the form

TΣ(z) = D + C(I − Z(z)A)−1Z(z)B,(1.7)

where Z(z) is a linear pencil in noncommuting indeterminates z = (z1, . . . , zd). The
particular form of the linear pencil Z(z) is determined by the particular form of the
state equations. For the reader’s convenience, section 2 states the main results in
explicit, concrete form for these particular classes of examples. In section 3 the added
formalism is introduced to describe a general structured noncommutative multidimen-
sional linear system (SNMLS; see Definition 3.7 below). In section 4 we show that
such standard system-theoretic operations as cascade connection, parallel connection,
and system inversion can be carried out in this context. With the formalism from
section 3 in hand, unified proofs are given of the results on controllability, observabil-
ity, Kalman decomposition, state-space similarity, minimality of realizations, Hankel
operators, and construction of minimal realizations in sections 5, 6, 7, 8, 9, 10, and
11, respectively. The final section 12 makes connections of our framework with the
theory of recognizable formal power series presented in [15], developed in the work of
Schützenberger [37, 38, 39] and Fliess [20, 21].

In applications it is sometimes convenient to view the indeterminates as noncom-
muting variables, and a formal power series T (z) =

∑
w∈Fd

Twz
w (where Fd is the

set of all words in the d letters 1, 2, . . . , d and where zw = ziN · · · zi1 if w = iN · · · i1)
as a function δ �→ T (δ) =

∑
w∈Fd

Tw ⊗ δw defined on some domain of noncommuting
operator-tuples δ = (δ1, . . . , δd) (where δw = δiN · · · δi1 , multiplication here given by
operator composition); this calculus of operator-substitution is important for several
of the applications listed below.

Now we mention several areas for applications of the results of this paper.
1. Robust control theory. Formal power series and their realizations appear

prominently in the theory of robust control of classical 1-D (one-dimensional) sys-
tems subject to structured possibly time-varying uncertainty (see [33, 13, 12, 10,
11]). A commonly used model for structured uncertainty in a classical linear, finite-
dimensional, feedback-control system is a so-called linear-fractional model, whereby
the uncertainty is assumed to have a certain block structure which then enters the
nominal plant through a feedback loop. In the case where one considers time-varying
uncertainty, the time-varying input-output operator for the disturbed plant can be
identified with the evaluation of the transfer function TΣ(z) at z = δ, where δ =
(δ1, . . . , δd) is a d-tuple of time-varying operators on �2 parametrizing the time-varying
structured uncertainty. Questions concerning minimality, realizability, and reduction
which we explore here have direct relevance for this application. In a companion paper
[5], we impose an energy balance law on an SNMLS to define the notion of a con-
servative SNMLS and obtain a realization theorem for this class of noncommutative
systems; such conservative (or more generally dissipative) SNMLSs are directly rele-
vant to the robust H∞-control problems discussed in [33]. In the followup paper [6], we
make more explicit the connections of this paper and [5] with linear-fractional models
for structured uncertainty and μ-analysis in the presence of structured time-varying
uncertainty. Conservative SNMLSs of noncommutative Fornasini–Marchesini type ap-
pear also in [7] and [8] in connection with other kinds of problems from multivariable
operator theory. Recent closely related work of Alpay and Kalyuzhny̆ı-Verbovetzkĭı
[1] uses the state-space similarity theorem for noncommutative Givone–Roesser sys-
tems to develop a realization theory for noncommutative rational J-unitary formal



1478 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

power series, including connections with noncommutative formal reproducing kernel
Pontryagin spaces.

2. Dimensionless linear matrix inequalities. As pointed out in [28, 30], many
formulas occurring in engineering involving matrix quantities have the same form in-
dependent of the size of the matrices. This motivates the study of rational functions
in noncommuting variables and the study of noncommutative positivity domains as-
sociated with such rational expressions. Realizations such as (1.7) are exactly what
is needed to convert (numerically unmanageable) rational matrix inequalities into
(highly manageable) linear matrix inequalities (see [30]). Here one substitutes d-
tuples of symmetric matrices of variable common size for the indeterminates in the
noncommutative rational expression.

3. Wavelet analysis/multiscale systems. There have been some attempts in the
literature (see [14, 2]) to attach a system evolution to multiresolution structure and
multiscale modeling. We expect the setting and results of this paper to have some
connections with the work in [14, 2], but details remain to be worked out.

4. Automata and the theory of formal languages. It has been known for some
time (see [15] and the references there) that formal power series in noncommuting
variables, particularly, recognizable and rational formal power series (see section 12
below), arise naturally in connection with the theory of automata and formal lan-
guages. In this context, the coefficients of the formal power series may come from a
semiring (a ring without subtraction such as the nonnegative integers or the nonneg-
ative rational numbers) rather than operators between two Hilbert spaces, and the
free semigroup may be only a monoid. Roughly, a formal power series is said to be
recognizable if the support set of its coefficients is recognizable. A subset of a free
semigroup (or, more generally, of a monoid) is said to be recognizable, in turn, if it
can be identified with the set of successful paths (from an initial state to a final state)
generated by a finite automaton. Recognizability of a formal power series turns out
to be equivalent to existence of a certain type of realization (see section 12 below).
Many of the familiar results (e.g., realization through a Hankel-matrix construction,
equivalence of minimality of realization with simultaneous controllability and observ-
ability, and a state-space similarity theorem) have been worked out in this automaton
context. Further details can be found in [15, 19, 32]. Our results give a broader
perspective in which to view recognizable formal power series.

5. Commutative multidimensional system theory. We view the “noncommuta-
tive Fornasini–Marchesini systems” introduced here as noncommutative analogues of
the (commutative) Fornasini–Marchesini systems introduced by Fornasini and March-
esini [24] in the multidimensional system theory literature, while the “noncommutative
Givone–Roesser systems” are noncommutative analogues of the (commutative) mul-
tidimensional Givone–Roesser systems appearing in [26, 27, 36]. In what we call the
commutative case (evolution along an integer lattice rather than along a free semi-
group), the theory of controllability, observability, state-space similarity, and reduc-
tion to and construction of a minimal realization of a transfer function is problematic
(see, e.g., [31, 25]). By the results here, however, the situation in the noncommutative
case is much more like the classical 1-D case. A possible direction for future work
is the application of the noncommutative theory as a vehicle for deeper understand-
ing of the commutative case; indeed, the realization theorem in [24] for commutative
Fornasini–Marchesini systems is based on the noncommutative realization theorem
from [20].

In other directions the commutative theory is ahead of the noncommutative the-
ory. We mention the recent work of Ambrozie and Timotin [3] and of the first author
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and Bolotnikov [4], which studies classes of functions with a realization similar to the
type of realizations discussed here (see (3.19)) in a commutative (and conservative)
setting but with resolvent containing a certain polynomial in the frequency variables
rather than just a linear term. In particular, [4] contains a realization result which
generalizes the commutative analogue of the main result of [5]. A nonlinear analogue
of the realization results of [4] would probably demand a nonlinear version of the
Taylor functional calculus (see [41] for a start in this direction). Results on minimal-
ity, controllability, and observability obtained in the present paper for this case of
higher-degree polynomial in the resolvent of the realization could be obtained by first
finding an equivalent system representation having a linear resolvent (or first-order
system equations), or, more directly, by developing a more coordinate-free behavioral
framework for noncommutative system theory (see [35] for the commutative case).

2. Three classes of examples of structured noncommutative multidi-
mensional linear systems. In this section we introduce and state the main results
for the three main examples of SNMLSs. Here the reader can understand the ex-
amples and statements of all the main results without having to confront the added
formalism of the general definition involving an “admissible graph” (see Definition 3.7
below).

2.1. Noncommutative Fornasini–Marchesini systems. For d a positive in-
teger, let Fd be the free semigroup generated by the set of d letters {1, 2, . . . , d}. El-
ements of Fd are words w of the form w = iN iN−1 · · · i1, where ik ∈ {1, 2, . . . , d} for
each k = 1, . . . , N . We include the empty word ∅ as an element of Fd. The semigroup
operation is concatenation: w · w′ = iN iN−1 · · · i1i′N ′i′N ′−1 · · · i′1 if w = iN iN−1 · · · i1
and w′ = i′N ′i′N ′−1 · · · i′1; the empty word ∅ serves as the identity element of the
semigroup Fd. A Fornasini–Marchesini connection matrix UFM is a matrix of the
form

UFM =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ :

[
H
U

]
→

[
⊕d

i=1H
Y

]
.

The associated system equations are

ΣFM :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(1w) = A1x(w) + B1u(w),

...

x(dw) = Adx(w) + Bdu(w),

y(w) = Cx(w) + Du(w) for w ∈ Fd,

(2.1)

where the state x(w) takes values in the state-space H and consists of only one compo-
nent, u(w) takes values in the input-space U , and y(w) takes values in the output-space
Y. We consider this type of system as a noncommutative analogue of the (commuta-
tive) multidimensional linear systems studied by Fornasini and Marchesini (see, e.g.,
[24]). We let z = (z1, . . . , zd) be a collection of d formal noncommuting variables and
consider the formal noncommutative multivariable Z-transform

{x(w)}w∈Fd
�→ x̂(z) :=

∑
w∈Fd

x(w)zw,(2.2)



1480 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

where zw = ziN ziN−1
· · · zi1 if w = iN iN−1 · · · i1. Then, as will be seen in more

generality in section 3 (see Example 3.8 and formula (3.20) below), application of the
formal Z-transform to the system (2.1) on Tfuture leads to the representation

x̂(z) = (I − (Zrow(z) ⊗ IH)A)−1x(∅) + (I − (Zrow(z) ⊗ IH)A)−1(Zrow(z) ⊗ IH) ·Bû(z),

ŷ(z) = C(I − (Zrow(z) ⊗ IH)A)−1x(∅) + TΣFM (z)û(z),

(2.3)

where the formal power series TFM
Σ (z) (the transfer function of the noncommutative

Fornasini–Marchesini system ΣFM ) is given by

TΣFM (z) = D + C(I − (Zrow(z) ⊗ IH)A)−1(Zrow(z) ⊗ IH)B

= D + C(I − z1A1 − · · · − zdAd)
−1(z1B1 + · · · + zdBd)

= D +
∑
v∈Fd

d∑
j=1

CAvBjz
vzj ,(2.4)

where we have used the conventions

Zrow(z) ⊗ IH =
[
z1IH · · · zdIH

]
,

Av = AiNAiN−1
· · ·Ai1 if v = iN iN−1 · · · i1.

We now also consider the associated backward system equations

ΣFM
past :

{
x(w) =

∑d
i=1 Aix(wi) +

∑d
i=1 Biu(wi),

y(w) = Cx(w) + Du(w) for w ∈ Fd.
(2.5)

We view the system as running on both the present and future Tfuture := Fd and
on the past Tpast := Fd \ ∅ (where we think of the two appearances of Fd here as
two distinct copies of Fd). The forward equations (2.1) apply for w ∈ Tfuture, while
the backward equations (2.5) apply for wi ∈ Tpast. The noncommutative Fornasini–
Marchesini system ΣFM is said to be FM-controllable if any state-vector h ∈ H can be
achieved as h = x(∅) by running the system on the past Tpast with state-initialization
equal to zero on all locations w ∈ Tpast of sufficiently long length with some input
string {u(w)}w∈Tpast having finite support on the past; this condition turns out to be
equivalent to the Fornasini–Marchesini controllability matrix CFM given by

CFM = rowN=1,2,... rowi1,i2,...,iN∈{1,...,d}[AiNAiN−1
· · ·Ai2Bi1 ](2.6)

having full rank, i.e., having im CFM = H. This fact amounts to the specialization of
the analysis in section 5 to Example 3.8; a direct analysis can be found in [34].

Dually, we say that the noncommutative Fornasini–Marchesini system ΣFM is
FM-observable if the state-vector h ∈ H can be uniquely recovered from the present
and future output string {yi(w)}w∈Tfuture

generated by running the forward system
equations (2.1) of ΣFM with the state initialized by x(∅) = h and with zero input
string on the future (u(w) = 0 for w ∈ Tfuture = Fd). In terms of the system opera-
tors, FM-observability of ΣFM is equivalent to the Fornasini–Marchesini observability
operator OFM being injective, where

OFM = colN=0,1,2,... coli1,i2,...,iN∈{1,...,d}[CAiNAiN−1
· · ·Ai1 ].(2.7)
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(Here and elsewhere we interpret AiNAiN−1
· · ·Ai1 to be equal to the identity operator

IH in case N = 0.) This fact follows from specializing the results of section 6 to
Example 3.8 below; again a direct discussion can be found in [34].

The Hankel operator HFM of the noncommutative Fornasini–Marchesini system
ΣFM is the composition HFM = OFMCFM : �fin(Tpast,U) → �(Tfuture,Y); the Hankel
operator has the same physical interpretation as in the classical case; HFM maps a
past input to the corresponding future output of a given system trajectory, under the
assumption that the state has been initialized to zero in the distant past. Matrix
entries of HFM are given by

HFM
iN iN−1···i1; i′N′ i

′
N′−1

···i′1 = CAiNAiN−1
· · ·Ai1Ai′

N′Ai′
N′−1

· · ·Ai′2
Bi′1

,(2.8)

where N = 0, 1, 2, . . . , N ′ = 1, 2, . . . , and ik, i
′
k′ ∈ {1, . . . , d} for all k, k′. From the

factorization HFM = OFMCFM we see that HFM has finite rank for any (finite-
dimensional) noncommutative Fornasini–Marchesini system. The matrix entries of
HFM can also be expressed directly in terms of the Taylor coefficients (sometimes
also called Markov parameters) of the transfer function TΣFM (z) =

∑
w∈Fd

Twz
w:

HFM
v,w = Tvw.(2.9)

This type of Hankel operator is obtained by specializing the Hankel operator dis-
cussed in section 10 to Example 3.8 below; an explicit discussion of this (Fornasini–
Marchesini) case is given in [34].

Given a formal power series T (z) =
∑

w∈Fd
Twz

w in d noncommuting variables

z = (z1, . . . , zd) (where zw = ziN · · · zi1 if w = iN · · · i1 and where z∅ = 1) with
operator-valued coefficients Tw ∈ L(U ,Y), we say that the noncommutative Fornasini–
Marchesini system ΣFM is a (noncommutative Fornasini–Marchesini) realization of
T (z) if T (z) = TΣFM (z). A given (noncommutative Fornasini–Marchesini) realization
ΣFM of T (z) with state-space H is said to be FM-minimal if, whenever ΣFM ′ is
another noncommutative Fornasini–Marchesini realization of T (z) with state-space
H′, then dimH ≤ dimH′. Two noncommutative Fornasini–Marchesini systems ΣFM

and ΣFM ′ with the same input- and output-spaces and connection matrices

UFM =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ :

[
H
U

]
→

[
⊕d

i=1H
Y

]
,

UFM ′ =

[
A′ B′

C ′ D′

]
=

⎡⎢⎢⎢⎣
A′

1 B′
1

...
...

A′
d B′

d

C ′ D′

⎤⎥⎥⎥⎦ :

[
H′

U

]
→

[
⊕d

i=1H′

Y

]

are said to be FM-similar if there is a bijective linear operator Γ: H → H′ such that⎡⎢⎢⎢⎣
Γ

. . .

Γ
IY

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
A′

1 B′
1

...
...

A′
d B′

d

C ′ D′

⎤⎥⎥⎥⎦
[
Γ 0
0 IU

]
.
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The following theorem summarizes the results of Theorems 8.2, 9.1, and 11.1 when
specialized to the case of noncommutative Fornasini–Marchesini systems (Example
3.8).

Theorem 2.1.

(1) Suppose that ΣFM and ΣFM ′ are two noncommutative Fornasini–Marchesini
systems which are both FM-controllable and FM-observable. Then ΣFM and
ΣFM ′ are FM-similar if and only if they realize the same transfer function:

TΣFM (z) = TΣFM′(z).

(2) The noncommutative Fornasini–Marchesini system ΣFM is an FM-minimal
realization of its transfer function TΣFM (z) if and only if ΣFM is both FM-
controllable and FM-observable.

(3) Suppose that T (z) =
∑

w∈Fd
Twz

w is a formal power series in d noncommut-
ing variables z = (z1, . . . , zd) with matrix coefficients Tw ∈ L(U ,Y). Then
T (z) can be realized as the transfer function T (z) = TΣFM (z) of a finite-
dimensional noncommutative Fornasini–Marchesini system ΣFM if and only
if the associated Hankel matrix

HT = [Tvw]v∈Fd,w∈Fd\{∅}

has finite rank. In this case there is a canonical construction (shift realization)
of a minimal realization with state-space H having dimH = rank HT .

2.2. Noncommutative Givone–Roesser systems. Just as was done above
for the case of noncommutative Fornasini–Marchesini systems, the domain evolution
for a noncommutative Givone–Roesser system which we discuss now is the free semi-
group Fd on the set of d letters {1, 2, . . . , d} (for d a positive integer). We take the
associated Givone–Roesser connection matrix UGR, however, to have the form

UGR =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 . . . A1d B1

...
...

...
Ad1 . . . Add Bd

C1 . . . Cd D

⎤⎥⎥⎥⎦ :

⎡⎢⎢⎢⎣
H1

...
Hd

U

⎤⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
H1

...
Hd

Y

⎤⎥⎥⎥⎦
for auxiliary state-spaces H1, . . . ,Hd, an input-space U , and an output-space Y (all
finite-dimensional linear spaces for our discussion here). The associated system equa-
tions then are

ΣGR :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(1w) = A11x1(w) + · · · + A1dxd(w) + B1u(w),

...

xd(dw) = Ad1x1(w) + · · · + Addxd(w) + Bdu(w),

y(w) = C1x1(w) + · · · + Cdxd(w) + Du(w),

for w ∈ Fd,(2.10)

where the state x(w) = colj=1,...,d xj(w) at position w ∈ Fd consists of d components
x1(w), . . . , xd(w) with xj(w) taking values in the auxiliary state-space Hj for j =
1, . . . , d; u(w) takes values in the input-space U ; and y(w) takes values in the output-
space Y. In case i, j ∈ {1, . . . , d} with i 
= j we set xi(jw) = 0. We consider this
type of system as a noncommutative analogue of the (commutative) multidimensional
linear systems introduced by Givone and Roesser (see, e.g., [26, 27, 36]). If we apply
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the noncommutative formal Z-transform (2.2) to the system equations (2.10) and
solve, we get

x̂(z) = (I − (Zdiag(z) ⊗ IH)A)−1x(∅) + (I − (Zdiag(z) ⊗ IH)A)−1(Zdiag(z) ⊗ IH)

·Bû(z),

ŷ(z) = C(I − (Zdiag(z) ⊗ IH)A)−1x(∅) + TΣGR(z)û(z),

(2.11)

where the formal power series TΣGR(z) (the transfer function of the noncommutative
Givone–Roesser system ΣGR) is given by

TΣGR(z) = D + C(I − (Zdiag(z) ⊗ IH)A)−1(Zdiag(z) ⊗ IH)B

= D +
[
C1 · · · Cd

]⎛⎜⎝
⎡⎢⎣IH1

. . .

IHd

⎤⎥⎦−

⎡⎢⎣z1A11 · · · z1A1d

...
...

zdAd1 · · · zdAdd

⎤⎥⎦
⎞⎟⎠

−1 ⎡⎢⎣z1B1

...
zdBd

⎤⎥⎦

= D +
∞∑

N=1

∑
i1,...,iN∈{1,...,d}

CiNAiN ,iN−1
AiN−1,iN−2

· · ·Ai2,i1Bi1ziN ziN−1
· · · zi2zi1 ,

(2.12)

where we have used the convention

Zdiag(z) ⊗ IH =

⎡⎢⎣z1IH1

. . .

zdIHd

⎤⎥⎦ .

We now also consider the associated backward system equations

ΣGR
past :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(w) =

∑d
i=1 A1ixi(w1) + B1u(w1),

...

xd(w) =
∑d

i=1 Adixi(wd) + Bdu(wd),

y(w) =
∑d

i=1 Cix(w) + Du(w) for w ∈ Fd.

(2.13)

We follow the same convention as explained above for noncommutative Fornasini–
Marchesini systems and view the system ΣGR as running on both the present and
future Tfuture := Fd and on the past Tpast := Fd \∅, with the forward equations (2.10)
applying for w ∈ Tfuture and the backward equations (2.13) applying for wi ∈ Tpast.
The noncommutative Givone–Roesser system ΣGR is said to be GR-controllable if, for
each i ∈ {1, . . . , d}, any state-vector hi ∈ Hi can be achieved as the ith component
hi = xi(∅) of the state-vector x(∅) at the empty-set location by running the system
on the past Tpast with state-initialization equal to zero on all locations w ∈ Tpast of
sufficiently long length with some input string {u(w)}w∈Tpast having finite support
on the past; this condition turns out to be equivalent to the ith Givone–Roesser
controllability matrix CGR

i given by

CGR
i = rowN=0,1,... rowi1,i2,...,iN∈{1,...,d}[Ai,iNAiN ,iN−1

· · ·Ai2,i1Bi1 ](2.14)

(where the N = 0 term is to be interpreted as simply Bi) having full rank, i.e., having
im CGR

i = Hi for each i = 1, . . . , d. This fact follows by specializing the analysis in
section 5 to Example 3.9 below; a direct discussion is in [34].
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Dually, we say that the noncommutative Givone–Roesser system ΣGR is GR-
observable if, for each i = 1, . . . , d, the state-vector hi ∈ Hi can be uniquely recovered
from the present and future output string {y(w)}w∈Tfuture

generated by running the
forward system equations (2.10) of ΣGR with the state initialized by xi(∅) = hi

and xi′(∅) = 0 for i′ 
= i, and with zero input string on the future (u(w) = 0 for
w ∈ Tfuture = Fd). In terms of the system operators, GR-observability of ΣGR is
equivalent to the ith Givone–Roesser observability operator OGR

i being injective for
each i = 1, . . . , d, where

OGR
i = colN=0,1,2,... coli1,i2,...,iN∈{1,...,d}[CiNAiN ,iN−1

AiN−1,iN−2
· · ·Ai1,i].(2.15)

Here the N = 0 term is to be interpreted as simply Ci. All these matters follow
upon specialization of the analysis in section 6 to Example 3.9 below; again, a direct
discussion is in [34].

There are d Hankel operators HGR,1, . . . ,HGR,d for a noncommutative Givone–
Roesser system ΣGR; namely, for each i = 1, . . . , d,

HGR,i = OGR
i CGR

i : �fin(Tpast,U) → �(Tfuture,Y).

Each Hankel operator HGR,i again has a physical interpretation as mapping a past
input to the corresponding future output of a given system trajectory under the
assumption that the state has been initialized to zero in the distant past, but where
the observations are taken only with respect to the ith component xi(∅) of the state
at position ∅. Matrix entries of HGR,i are given by

H
GR,i
iN iN−1···i1; i′N′ i

′
N′−1

···i′1

= CiNAiN ,iN−1
AiN−1,iN−2

· · ·Ai1,iAi,i′
N′Ai′

N′ ,i
′
N′−1

· · ·Ai′2,i
′
1
Bi′1

,(2.16)

where N ′ = 0, 1, 2, . . . , N = 0, 1, 2, . . . , and ik, i
′
k′ ∈ {1, . . . , d} for all k, k′. Some small

values of N and N ′ in formula (2.16) require special interpretation; for example, for
case N = 0 and N ′ = 0 we interpret (2.16) as giving

H
GR,i
∅;∅ = CiBi.

From the factorization HGR,i = OGR
i CGR

i we see that HGR,i has finite rank for each
i = 1, . . . , d for any (finite-dimensional) noncommutative Givone–Roesser system.
The matrix entries of HGR,i can also be expressed directly in terms of the Tay-
lor coefficients (sometimes also called Markov parameters) of the transfer function
TΣGR(z) =

∑
w∈Fd

Twz
w: indeed,

HGR,i
v,w = Tviw for v, w ∈ Fd, i ∈ {1, . . . , d}.(2.17)

These details amount to the specialization of section 10 to Example 3.9 below, and
also can be found (in explicit form) in [34].

Given a formal power series T (z) =
∑

w∈Fd
Twz

w in d noncommuting variables

z = (z1, . . . , zd) (where zw = ziN · · · zi1 if w = iN · · · i1 and where z∅ = 1) with
operator-valued coefficients Tw ∈ L(U ,Y), we say that the noncommutative Givone–
Roesser system ΣGR is a (noncommutative Givone–Roesser) realization of T (z) if
T (z) = TΣGR(z). A given (noncommutative Givone–Roesser) realization ΣGR of T (z)
with auxiliary state-spaces H1, . . . ,Hd is said to be GR-minimal if, whenever ΣGR′
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is another noncommutative Givone–Roesser realization of T (z) with auxiliary state-
spaces H′

1, . . . ,H′
d, then dimHi ≤ dimH′

i for each i = 1, . . . , d. Two noncommutative
Givone–Roesser systems ΣGR and ΣGR′ with the same input- and output-spaces and
connection matrices

UGR =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 . . . A1d B1

...
...

...
Ad1 . . . Add Bd

C1 . . . Cd D

⎤⎥⎥⎥⎦ :

⎡⎢⎢⎢⎣
H1

...
Hd

U

⎤⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
H1

...
Hd

Y

⎤⎥⎥⎥⎦ ,

UGR′ =

[
A′ B′

C ′ D′

]
=

⎡⎢⎢⎢⎣
A′

11 . . . A′
1d B′

1
...

...
...

A′
d1 . . . A′

dd B′
d

C ′
1 . . . C ′

d D′

⎤⎥⎥⎥⎦ :

⎡⎢⎢⎢⎣
H′

1
...

H′
d

U

⎤⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣
H′

1
...

H′
d

Y

⎤⎥⎥⎥⎦
are said to be GR-similar if, for each i = 1, . . . , d, there is a bijective linear operator
Γi : Hi → H′

i such that⎡⎢⎢⎢⎣
Γ1

. . .

Γd

IY

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
A11 · · ·A1d B1

...
...

...
Ad1 · · ·Add Bd

C1 · · ·Cd D

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
A′

11 · · · A′
1d B′

1
...

...
...

A′
d1 · · · A′

dd B′
d

C ′
1 · · · C ′

d D′

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Γ1

. . .

Γd

IU

⎤⎥⎥⎥⎦ .

The following theorem summarizes the results of Theorems 8.2, 9.1, and 11.1 when
specialized to the case of noncommutative Givone–Roesser systems (Example 3.9).

Theorem 2.2.

(1) Suppose that ΣGR and ΣGR′ are two noncommutative Givone–Roesser sys-
tems which are both GR-controllable and GR-observable. Then ΣGR and ΣGR′

are GR-similar if and only if they realize the same transfer function:

TΣGR(z) = TΣGR′(z).

(2) The noncommutative Givone–Roesser system ΣGR is a GR-minimal realiza-
tion of its transfer function TΣGR(z) if and only if ΣGR is both GR-controllable
and GR-observable.

(3) Suppose that T (z) =
∑

w∈Fd
Twz

w is a formal power series in d noncommut-
ing variables z = (z1, . . . , zd) with matrix coefficients Tw ∈ L(U ,Y). Then
T (z) can be realized as the transfer function T (z) = TΣGR(z) of a finite-
dimensional noncommutative Givone–Roesser system ΣGR if and only if the
associated Hankel matrices

HT,i = [Tviw]v∈Fd,w∈Fd

have finite rank for i = 1, . . . , d. In this case there is a canonical construction
(shift realization) of a minimal realization with auxiliary state-space Hi having
dimHi = rank HT,i for i = 1, . . . , d.
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In fact, it can be shown that a formal power series T (z) =
∑

w∈Fd
Twz

w in
d noncommuting variables z = (z1, . . . , zd) has an FM-realization if and only if it
has a GR-realization if and only if it is rational in the sense of Schützenberger (see
[15]). One of the points of part (3) in Theorems 2.1 and 2.2 is that they identify
the precise Hankel matrices with rank(s) equal to the state-space dimension(s) in
a minimal realization of Fornasini–Marchesini or Givone–Roesser type. We discuss
these connections between various types of noncommutative realizations in section 12.

2.3. Noncommutative full-structured systems. Our last concrete example
of a structured noncommutative system is what we call a “full-structured” system.
For this case it is convenient to assume that the evolution of the system takes place on
the free semigroup generated by a certain Cartesian product set. Denote by Fn,m the
free semigroup generated by the set E = {1, . . . , n} × {1, . . . ,m}. Thus elements of
Fn,m are words w of the form (iN , jN )(iN−1, jN−1) · · · (i1, j1), where ik ∈ {1, . . . , n}
and jk ∈ {1, . . . ,m} for all k = 1, . . . , N . Again we let ∅ denote the empty word which
serves as the identity for the semigroup Fn,m. By a full-structured connection matrix
U full we mean a block-operator matrix of the form

U full =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 · · · A1n B1

...
...

...
Am1 · · · Amn Bm

C1 · · · Cn D

⎤⎥⎥⎥⎦ :

[
⊕n

i=1H
U

]
→

[
⊕m

j=1H
Y

]
,

where H (the state-space), U (the input-space), and Y (the output-space) are finite-
dimensional linear spaces. The associated system equations are

Σfull :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1((1, j) · w) = Aj1x1(w) + · · · + Ajnxn(w) + Bju(w) for j = 1, . . . ,m,
...

xn((n, j) · w) = Aj1x1(w) + · · · + Ajnxn(w) + Bju(w) for j = 1, . . . ,m,

xi((i
′, j) · w) = 0 if i 
= i′,

y(w) = C1x1(w) + · · · + Cnxn(w) + Du(w).

(2.18)

Here the state-vector x(w) = coli=1,...,n xi(w) ∈ ⊕n
i=1H consists of n components

xi(w) for i = 1, . . . , n with each xi(w) in the auxiliary state-space H, while u(w)
assumes values in the input-space U and y(w) assumes values in the output-space Y.
Note that the state trajectory {x(w)}w∈Fn,m

incorporates some redundancy; namely,
if {x(w)}w∈Fn,m = {coli=1,...,n[xi(w)]}w∈Fn,m is the state trajectory satisfying the
state-update equation in (2.18) for some choice of input signal {u(w)}w∈Fn,m , then,
for each fixed j ∈ {1, . . . ,m} and w ∈ Fn,m,

xi((i, j) · w) is independent of i ∈ {1, . . . , n}.(2.19)

We shall work with the redundant form (2.18) of the system equations rather than
rewriting them in a more economical form.

We let z = (z11, . . . , z1m; z21, . . . , z2m; . . . ; zn1, . . . , znm) be a collection of nm
noncommuting variables indexed by {1, . . . , n} × {1, . . . ,m}. Application of the non-
commutative Z-transform (2.2) (with respect to Fn,m rather than with respect to Fd)
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converts the system equations to

x̂(z) = (I − (Zfull(z) ⊗ IH)A)−1x(∅) + (I − (Zfull(z) ⊗ IH)A)−1(Zfull(z) ⊗ IH) ·Bû(z),

ŷ(z) = C(I − (Zfull(z) ⊗ IH)A)−1x(∅) + TΣfull(z)û(z),

(2.20)

where TΣfull(z) (the transfer function of the noncommutative full-structured system
Σfull) is given by

TΣfull(z) = D + C(I − (Zfull(z) ⊗ IH)A)−1(Zfull(z) ⊗ IH)B

= D +
[
C1 · · · Cn

]
·

⎛⎜⎝
⎡⎢⎣IH . . .

IH

⎤⎥⎦−

⎡⎢⎣
∑m

j=1 z1jAj1 · · ·
∑m

j=1 z1jAjn

...
...∑m

j=1 znjAj1 · · ·
∑m

j=1 znjAjn

⎤⎥⎦
⎞⎟⎠

−1 ⎡⎢⎣
∑m

j=1 z1jBj

...∑m
j=1 znjBj

⎤⎥⎦
= D +

∞∑
N=1

∑
i1,...,iN∈{1,...,n}

∑
j1,...,jN∈{1,...,m}

CiNAjN ,iN−1
AjN−1,iN−2

· · ·Aj2,i1Bj1

· ziN ,jN ziN−1,jN−1
· · · zi2,j2zi1,j1 ,(2.21)

and where Zfull(z) ⊗ IH is given by

Zfull(z) ⊗ IH =

⎡⎢⎣z1,1IH · · · z1,mIH
...

...
zn,1IH · · · zn,mIH

⎤⎥⎦ .

The backward full-structured system equations have the form

Σfull
past :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(w) =

∑m
j=1

∑n
i′=1 Aj,i′xi′(w · (1, j)) +

∑m
j=1 Bju(w · (1, j)),

...

xn(w) =
∑m

j=1

∑n
i′=1 Aj,i′xi′(w · (n, j)) +

∑m
j=1 Bju(w · (n, j)),

y(w) =
∑n

i=1 Cixi(w) + Du(w),

(2.22)

and are to be interpreted as the evolution of the system on the past Tpast = Fn,m\{∅}.
The noncommutative full-structured system Σfull is said to be full-controllable if, for
each i ∈ {1, . . . , n}, any state-vector h ∈ H can be achieved as the ith component
hi = xi(∅) (for some, or equivalently for any i ∈ {1, . . . , n}) of the state-vector x(∅) at
the empty-set location by running the system on the past Tpast with state-initialization
equal to zero on all locations w ∈ Tpast of sufficiently long length with some input
string {u(w)}w∈Tpast having finite support on the past; this condition turns out to be
equivalent to the full-structured controllability matrix Cfull

1 given by

Cfull
1 = rowN=1,2,... row(1,jN )(iN−1,jN−1)···(i1,j1) : i1,i2,...,iN−1∈{1,...,n};j1, ...,jN∈{1,...,m}

[AjN ,iN−1
AjN−1,iN−2

· · ·Aj2,i1Bj1 ]
(2.23)

having full rank, i.e., having im Cfull
1 = H. These facts amount to the specialization

of the results of section 5 to Example 3.10 below.
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Dually, we say that the noncommutative full-structured system Σfull is full-observ-
able if the state-vector h ∈ H can be uniquely recovered from the n-tuple of present and
future output strings {yi(w)}i=1,...,n;w∈Tfuture

(with Tfuture = Fn,m). Here, for each
i = 1, . . . , n, the ith output string {yi(w)}w∈Fn,m is generated by running the forward
system equations (2.18) of Σfull with the state initialized by xi(∅) = hi and xi′(∅) = 0
for i′ 
= i and with zero input string on the future (u(w) = 0 for w ∈ Tfuture = Fn,m).
In terms of the system operators, full-observability of Σfull is equivalent to the full
observability operator Ofull : H → ⊕n

i=1�(Fn,m,Y) being injective, where

Ofull = coli=1,...,n colN=0,1,2,... col(iN ,jN )···(i1,j1) : i1,...,iN∈{1,...,n};j1,...,jN∈{1,...,m}

[CiNAjN ,iN−1
AjN−1,iN−2

· · ·Aj1,i].(2.24)

Here the N = 0 term is to be interpreted as simply Ci. These matters amount to
specialization of the results of section 6 to Example 3.10 below.

We define the Hankel operator Hfull for a noncommutative full-structured system
Σfull as the composition Hfull = OfullCfull

1 : �fin(T 1
past,U) → ⊕n

i=1�(Tfuture,Y); here
T 1

past denotes a certain subset of the past Tpast, namely, the set of all nonempty words
(i1, j1) · (i2, j2) · · · (iN , jN ) for which the leading letter (i1, j1) has first component i1
equal to 1. Again the Hankel operator Hfull has a physical interpretation as mapping
a past input to the corresponding future output of a given system trajectory (in this
case an n-tuple of future outputs) under the assumption that the state has been
initialized to zero in the distant past. Matrix entries of Hfull are given by

Hfull
i,(iN ,jN )···(i1,j1);(i′N′ ,j

′
N′ ),(i

′
N′−1

,j′
N′−1

)···(i′1,j′1)

= CiNAjN ,iN−1
AjN−1,iN−2

· · ·Aj1,iAj′
N′ ,i

′
N′−1

· · ·Aj′2,i
′
1
Bj′1

,(2.25)

where N = 0, 1, 2, . . . , N ′ = 1, 2, . . . , and ik, i
′
k′ ∈ {1, . . . , n} and jk, j

′
k′ ∈ {1, . . . ,m}

for all k and k′; some small values of N and N ′ in formula (2.25) require special
interpretation; for example, for case N = 0 and N ′ = 1 we interpret (2.25) as giving

Hfull
i,∅;(1,j) = CiBj .

From the factorization Hfull = OfullCfull
1 we see that Hfull has finite rank equal to

the dimension of the state-space in a minimal realization for any (finite-dimensional)
noncommutative full-structured system. The matrix entries of Hfull can also be ex-
pressed directly in terms of the Taylor coefficients of the transfer function TΣfull(z) =∑

w∈Fn,m
Twz

w: indeed

Hfull
i,v;(1,jN )w′ = Tv·(i,jN )·w′ for v, w′ ∈ Fn,m, i ∈ {1, . . . , n}.(2.26)

These results all fall out of specializing the results of section 10 to Example 3.10
below.

Given a formal power series T (z) =
∑

w∈Fn,m
Twz

w in n · m noncommuting

variables z = (z11, . . . , z1m; · · · ; zn1, · · · , znm) (where zw = ziN ,jN · · · zi1,j1 if w =
(iN , jN ) · · · (i1, j1) and where z∅ = 1) with L(U ,Y)-valued coefficients Tw, we say
that the noncommutative full-structured system Σfull is a (noncommutative full) re-
alization of T (z) if T (z) = TΣfull(z). A given (noncommutative full) realization Σfull

of T (z) with auxiliary state-space H is said to be full-minimal if, whenever Σfull ′ is
another noncommutative full realization of T (z) with auxiliary state-space H, then
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dimH ≤ dimH′. Two noncommutative full-structured systems Σfull and Σfull′ with
the same input- and output-spaces and connection matrices

U full =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A11 · · · A1n B1

...
...

...
Am1 · · · Amn Bm

C1 · · · Cn D

⎤⎥⎥⎥⎦ :

[
⊕n

i=1H
U

]
→

[
⊕m

j=1H
Y

]
,

U full′ =

[
A′ B′

C ′ D′

]
=

⎡⎢⎢⎢⎣
A′

11 · · · A′
1n B′

1
...

...
...

A′
m1 · · · A′

mn B′
m

C ′
1 · · · C ′

n D′

⎤⎥⎥⎥⎦ :

[
⊕n

i=1H′

U

]
→

[
⊕m

j=1H′

Y

]

are said to be full-similar if there is a bijective linear operator Γ: H → H′ such that⎡⎢⎢⎢⎣
Γ

. . .

Γ
IY

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
A11 · · ·A1n B1

...
...

...
Am1 · · ·Amn Bm

C1 · · ·Cn D

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
A′

11 · · · A′
1n B′

1
...

...
...

A′
m1 · · · A′

mn B′
m

C ′
1 · · · C ′

n D′

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Γ
. . .

Γ
IU

⎤⎥⎥⎥⎦ .

The following theorem summarizes the results of Theorems 8.2, 9.1, and 11.1 when
specialized to the case of noncommutative full-structured systems (Example 3.10).

Theorem 2.3.

(1) Suppose that Σfull and Σfull′ are two noncommutative full-structured systems
which are both full-controllable and full-observable. Then Σfull and Σfull′ are
full-similar if and only if they realize the same transfer function:

TΣfull(z) = TΣfull′(z).

(2) The noncommutative full-structured system Σfull is a full-minimal realization
of its transfer function TΣfull(z) if and only if Σfull is both full-controllable and
full-observable.

(3) Suppose that T (z) =
∑

w∈Fn,m
Twz

w is a formal power series in n ·m non-

commuting variables z = (z11, . . . , z1m; . . . ; zn1, . . . , znm) with matrix coef-
ficients Tw ∈ L(U ,Y). Then T (z) can be realized as the transfer function
T (z) = TΣfull(z) of a finite-dimensional noncommutative full-structured sys-
tem Σfull if and only if the associated Hankel matrix

HT = [Tv·(i,iN )·w]i∈{1,...,n},v∈Fn,m;(1,jN )·w∈Fn,m\{∅}

has finite rank for i = 1, . . . , n. In this case there is a canonical construction
(shift realization) of a minimal realization with state-space H having dimH =
rank HT .

3. Structured noncommutative multidimensional linear systems: Def-
inition and basic properties. Our general notion of structured noncommutative
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multidimensional linear system (SNMLS) will be associated with a graph G. As is
standard, a graph G consists of a set of vertices V together with a set of edges E.
Each edge e ∈ E connects a source vertex s(e) (where s : E → V is the source map) to
a range vertex r(e) (where r : E → V is the range map). We assume throughout that
V and E are finite sets. For our application to SNMLSs, we require a few additional
properties, encoded in the following definition of an admissible graph.

Definition 3.1. We say that the graph G = (V , E, s : E → V , r : E → V ) is
an admissible graph if

(1) the set of vertices V of G has a disjoint partitioning V = S ∪̇R into two
subsets S and R such that each edge e of G has source vertex s(e) ∈ S and
range vertex r(e) ∈ R;

(2) for a given s ∈ S and r ∈ R there is at most one edge e ∈ E connecting s to
r (i.e., at most one edge e with s(e) = s and r(e) = r);

(3) each pathwise-connected component Gk of G is a nondegenerate complete bi-
partite graph; i.e., the vertices of Gk have a partitioning V (Gk) = Sk ∪̇Rk

(with Sk ⊂ S, Rk ⊂ R and both Sk 
= ∅ and Rk 
= ∅) such that for each pair
(s, r) with s ∈ Sk and r ∈ Rk there is exactly one edge e ∈ E with s(e) = s
and r(e) = r.

In other words, conditions (1) and (2) say that G is a bipartite graph. Thus
admissible graphs amount to bipartite graphs having connected path components
which are complete bipartite subgraphs. Thus the set of edges E can be identified
with a subset of the Cartesian product S × R, where S and R are called the source
vertices and range vertices, respectively.

Admissible graphs G have the following intrinsic characterization.
Theorem 3.2. Suppose that we are given finite disjoint sets S, R, and E together

with mappings s : E → S and r : E → R. Associated with these data is a graph G
defined as follows: the vertex set of G is V := S ∪ R, and there exists an edge
connecting v to v′ if and only if there is an e ∈ E either with v = s(e), v′ = r(e) or
with v′ = s(e), v = r(e). Then G is admissible in the sense of Definition 3.1 if and
only if the following conditions hold:

(1) s : E → S is surjective.
(2) r : E → R is surjective.
(3) The map s × r : E → S ×R given by

s × r : e �→ (s(e), r(e))

is injective.
(4) Whenever e1, e2, and e3 are elements of E with r(e1) = r(e2) and s(e1) =

s(e3), then there is an edge e4 in E, with s(e4) = s(e2), and r(e4) = r(e3).
Proof. Let G be an admissible graph with pathwise-connected components equal

to the subgraphs G1, . . . , GK . Since each Gk is a complete bipartite graph by assump-
tion, we have that the vertex set V (Gk) has a disjoint partitioning V (Gk) = Sk ∪̇Rk

for nonempty subsets Sk ⊂ S and Rk ⊂ R, and the edge set E(Gk) of Gk can be
identified with the Cartesian product Sk × Rk (with s(s, r) = s and r(s, r) = r for
s ∈ Sk and r ∈ Rk). As s maps E(Gk) onto Sk and r maps E(Gk) onto Rk for each
k = 1, . . . ,K, we see that s maps E onto S and r maps E onto R. Condition (2) in
Definition 3.1 says that s× r is injective on E. Finally, suppose that e1, e2, e3 ∈ E as
in condition (4). Then r(e1) = r(e2) = r implies that s(e1) and s(e2) are in the same
pathwise-connected component Si of G. On the other hand, s(e1) = s(e3) implies
that s(e3) is also in Si and r(e3) ∈ Ri. The assumption that the pathwise-connected
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component Gi is a complete bipartite graph implies that there is an edge e4 connecting
s(e2) to r(e3).

Conversely, suppose that G arises from source vertex function s : E → S and
range vertex function r : E → R satisfying conditions (1)–(4) as in the statement of
the theorem. By definition, the vertex set V is partitioned into two disjoint subsets
S and R such that each edge of G connects an element of S with an element of R or
vice versa; i.e., Definition 3.1(1) holds. Condition (3) in Theorem 3.2 gives Definition
3.1(2). Suppose that s ∈ S and r ∈ R are in the same pathwise-connected component
of the graph G. By the bipartite structure of G, this means that there is a path
e1e2 · · · e2N−1 (necessarily of odd length) connecting s to r:

s(e1) = s, r(e1) = s(e2), r(e2) = s(e3), . . . , r(e2N−2) = s(e2N−1), r(e2N−1) = r.

Without loss of generality we may suppose that we have chosen the shortest such
path. If N > 1, we may use condition (4) to produce a shorter path connecting s
to r. Hence it must be the case that N = 1 and the path consists of a single edge
e ∈ E connecting s to r and hence (s, r). Thus if s ∈ S and r ∈ R are connected
by a path of G, then they are connected by a path of length 1. Condition (1) in the
theorem implies that every s ∈ S is connected to some r ∈ R. We conclude that each
pathwise-connected component of G is a complete bipartite graph; i.e., Definition
3.1(3) is satisfied, and the theorem follows.

If e is an edge in the admissible graph G, then we have the notation s(e) for the
source vertex of e, and r(e) for the range vertex of e. Conversely, given an s ∈ S and
a r ∈ R, there is an edge e connecting s to r (i.e., e ∈ E with s(e) = s and r(e) = r);
exactly one s and r are in the same path-connected component p of G. For v any
vertex of G (either a source vertex or a range vertex) we shall let [v] denote the path-
connected component containing v. Thus s and r are in the same path-connected
component exactly when [s] = [r]. When this is the case, by the admissibility axioms
the edge e connecting s to r is unique. We shall denote this edge by es,r:

es,r determined by s(es,r) = s and r(es,r) = r.(3.1)

Note that es,r is defined for s ∈ S and r ∈ R exactly when [s] = [r].
We associate with each admissible graph G a linear form in noncommuting in-

determinates z = (ze : e ∈ E) indexed by the edge set E of G, as follows. For each
e ∈ E, define a matrix IG,e = [IG,e;s,r]s∈S,r∈R (with rows indexed by S and columns
indexed by R) with matrix entries given by

IG,e;s,r =

{
1 if (s, r) = (s(e), r(e)),

0 otherwise.
(3.2)

We then define the structure matrix ZG(z) associated with each admissible graph G
to be the linear form in the noncommuting indeterminates z = (ze : e ∈ E) given by

ZG(z) =
∑
e∈E

IG,eze.

We are now ready to give examples of admissible graphs with their associated
structure matrices in connection with certain well-known noncommutative multidi-
mensional linear models. We refer to [34] for further details on the motivation and
construction of these models.
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Example 3.3 (noncommutative Fornasini–Marchesini structure matrix). In this
case, we take the admissible graph GFM to be a complete bipartite graph having only
one source vertex. Thus we take SFM = {1}, and RFM = EFM = {1, . . . , d} with
sFM (i) = 1, rFM (i) = i, i.e., n = 1,m = d. Thus we have

IGFM ,i =
[
0 · · · 0 1 0 · · · 0

]
,

where 1 is located in the ith slot. Thus, the structure matrix for the noncommutative
Fornasini–Marchesini case is simply given by

ZGFM (z) =

d∑
i=1

IGFM ,izi =
[
z1 · · · zd

]
=: Zrow(z).

Example 3.4 (noncommutative Givone–Roesser structure matrix). In this case,
we take the admissible graph GGR to have d path-connected components, with each
path-connected component containing only one source and one range vertex. Thus,
we take SGR = RGR = EGR = {1, . . . , d} with sGR(i) = i, rGR(i) = i, and thus
n = d = m. We then have

IGGR,i =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where 1 is located at the (i, i)th entry. Therefore, the structure matrix for the non-
commutative Givone–Roesser case has the diagonal form

ZGGR(z) =

d∑
i=1

ziIGGR,i =

⎡⎢⎣z1

. . .

zd

⎤⎥⎦ := Zdiag(z).

Example 3.5 (full matrix block structure matrix). In this case, we take Gfull

to be a general finite, complete bipartite graph. Thus we take S = {1, . . . , n}, R =
{1, . . . ,m}, and E = {(i, j) : i ∈ S, j ∈ R} with sfull(i, j) = i, rfull(i, j) = j, where
d = nm. Then we have

IGfull,(i,j) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where 1 is located at the (i, j)th entry. Thus the structure matrix for this case has
the full-block structure

ZGfull(z) =

⎡⎢⎣z1,1 · · · z1,m

...
...

zn,1 · · · zn,m

⎤⎥⎦ =: Zfull(z).
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Note that Example 3.3 amounts to the special case of this example where n = 1.
Example 3.6 (the general structure matrix). Suppose that the admissible graph

G has path-connected components Gk with source vertices Sk = {(k, 1), . . . , (k, nk)},
range vertices Rk = {(k, 1), . . . , (k,mk)}, and edge sets Ek = {(k, i, j) : 1 ≤ i ≤
nk, 1 ≤ j ≤ mk} for k = 1, . . . ,K. Define a graph G to have source vertex set

S = ∪K
k=1Sk = {(k, i) : 1 ≤ k ≤ K, 1 ≤ i ≤ nk},

range vertex set

R = ∪K
k=1Rk = {(k, j) : 1 ≤ k ≤ K, 1 ≤ j ≤ mk},

and edge set

E = ∪K
k=1Ek = {(k, i, j) : 1 ≤ k ≤ K, 1 ≤ i ≤ nk, 1 ≤ j ≤ mk},

with s(k, i, j) = (k, i), r(k, i, j) = (k, j) for (k, i, j) ∈ E. Then the associated structure
matrix ZG(z) is given by

ZG(z) =

⎡⎢⎣Zfull,1(z
1)

. . .

Zfull,K(zK)

⎤⎥⎦ ,

where we let zk denote the (nk ·mk)-tuple of variables zk = (zk,i,j : 1 ≤ i ≤ nk; 1 ≤
j ≤ mk) and where

Zfull,k(z
k) =

⎡⎢⎣ zk,1,1 · · · zk,1,mk

...
...

zk,nk,1 · · · zk,nk,mk

⎤⎥⎦
is as in Example 3.5 for k = 1, . . . ,K. By the definition of an admissible graph as
a graph with path-connected components equal to complete bipartite graphs, we see
that this example amounts to the general case.

To define an SNMLS, in addition to an admissible graph we require a collection
of finite-dimensional linear spaces Hp indexed by each path-connected component p
of G. We often abbreviate the whole collection simply by

H = {Hp : p ∈ P (G)},

where P (G) denotes the set of path-connected components of G. In general, for v ∈ V
we use the notation [v] to denote the path-connected component of G containing v
(whether v be in S or in R). Thus, for each s ∈ S and r ∈ R we have associated
finite-dimensional linear spaces H[s] and H[r], which are distinct only for s and r in
distinct path-connected components of G. In addition, we need a connection matrix
or colligation

U =

[
A B
C D

]
=

[
[Ar,s]r∈R,s∈S colr∈R[Br]
rows∈S [Cs] D

]
:

[
cols∈S H[s]

U

]
→

[
colr∈R H[r]

Y

]
,

(3.3)

where U and Y are linear spaces, here taken also to be finite-dimensional, called the
input-space and output-space, respectively.
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We now introduce our notion SNMLS.

Definition 3.7. By an SNMLS, we mean a collection of objects

Σ = (G, H, U),(3.4)

where

(1) G is an admissible graph (called the structure graph of Σ),
(2) H = {Hp : p ∈ P (G)} is a collection of finite-dimensional spaces Hp (called

the auxiliary state-spaces of Σ), and
(3) U is a matrix of the form (3.3) (called the connection matrix or colligation

of Σ).

With any SNMLS we associate an i/s/o linear system with evolution along a free
semigroup as follows. We denote by FE the free semigroup generated by the edge set
E. An element of FE is then a word w of the form w = eN · · · e1, where each er is
an edge of G for r = 1, . . . , N . We denote the empty word (consisting of no letters)
by ∅. The semigroup operation is concatenation: if w = eN · · · e1 and w′ = e′N ′ · · · e′1,
then ww′ is defined to be

ww′ = eN · · · e1e
′
N ′ · · · e′1.

Note that the empty word ∅ acts as the identity element for this semigroup. Equiv-
alently, we may view FE as a homogeneous tree of degree #E + 1 (where #E is
the number of edges of G) with root ∅; this point of view appears in the “multiscale
system theory” in [14].

If Σ = (G, H, U) is an SNMLS, we associate the system equations (with evolution
along FE)

Σ:

⎧⎨⎩
xs(e)(ew) = Σs∈SAr(e),sxs(w) + Br(e)u(w),
xs′(ew) = 0 if s′ 
= s(e),

y(w) = Σs∈SCsxs(w) + Du(w).
(3.5)

Here the state-vector x(w) at position w (for w ∈ FE) has the form of a column vector

x(w) = cols∈S xs(w),

with column entries indexed by the source vertices s ∈ S and with column entry
xs(w) ∈ H[s] (thus x(w) ∈ ⊕s∈SH[s]), while u(w) ∈ U denotes the input at position
w and y(w) ∈ Y denotes the output at position w. Just as in the classical case, if we
specify an initial condition x(∅) ∈ ⊕s∈SH[s] and feed in an input string {u(w)}w∈FE

,
then (3.5) enables us to recursively compute x(w) for all w ∈ FE \ {∅} and y(w) for
all w ∈ FE .

As these systems include the full-structured case discussed in section 2.3 as a spe-
cial case (see Example 3.10 below) where some redundancy occurs in the state-vector
of a system trajectory (see (2.18)), in general some redundancy in the state-vector
occurs for trajectories of a general SNMLS Σ as well. Indeed, the analogue of (2.19)
for this more general setting is the following: if {x(w)}w∈FE

= {cols∈S [xs(w)]}w∈FE

is the state trajectory solving the state-update equation in (3.5) for some choice of
input signal {u(w)}w∈FE

, then necessarily, for each fixed r ∈ R and w ∈ FE ,

xs(es,rw) is independent of s for all s with [s] = [r].(3.6)
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It will be convenient for purposes of the matrix manipulations to come that we main-
tain the form (3.5) of the system equations rather than rewriting them in a more
economical form.

The solution of these recursions can be made more explicit as follows. Note first
of all that a consequence of the system equations is that

x(ew) ∈ Hs(e) := cols∈S [δs,s(e)H[s(e)]] for all e ∈ E and w ∈ FE

(where δs,s′ is the Kronecker delta function). Given x(∅) and {u(w)}w∈FE
, we

can solve the system equations (3.5) or (3.10) uniquely for {x(w)}w∈FE\{∅} and
{y(w)}w∈FE

as follows:

xs(eN )(eN · · · e1) =
∑
s∈S

Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e1),sxs(∅)

+

N∑
r=1

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1),(3.7)

where we interpret u(er−1 · · · e1) to be u(∅) when r = 1, and where we set

xs(eNeN−1 · · · e1) = 0 if s 
= s(eN ).

Also,

y(eN · · · e1) =
∑
s∈S

Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e1),sxs(∅)

+
N∑
r=1

Cs(eN )Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1) + Du(eN · · · e1).

(3.8)

This formula must be interpreted appropriately for special cases. As examples, for
the particular cases r = 1 and r = N we have the interpretations

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1)|r=1

= Ar(eN ),s(eN−1) · · ·Ar(e2),s(e1)Br(e1)u(∅),
Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(er−1 · · · e1)|r=N = Br(eN )u(eN−1 · · · e1).

If we set

Δe = is(e)Ar(e),· : ⊕s∈S H[s] → ⊕s∈SH[s],

where is denotes the natural injection h �→ cols′∈S [δs′,sh] of H[s] into ⊕s′∈SH[s′], and
if we use our assumption that xs′(ew) = 0 if s′ 
= s(e), then (3.7) and (3.8) can be
rewritten as

x(w) = Δwx(∅) +
∑

w′,w′′∈FE ,e∈E : w′ew′′=w

Δw′
is(e)Br(e)u(w′′),

y(w) = CΔwx(∅) +
∑

w′,w′′∈FE ,e∈E : w′ew′′=w

CΔw′
is(e)Br(e)u(w′′) + Du(w),(3.9)
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where we use the noncommutative functional calculus

Δv = ΔeN ΔeN−1
· · ·Δe1 if v = eNeN−1 · · · e1 ∈ FE , Δ∅ = IH.

The system equations (3.5) can also be written more compactly in operator-
theoretic form as

Σ:

{
x(ew) = IΣ,eAx(w) + IΣ,eBu(w),
y(w) = Cx(w) + Du(w),

(3.10)

where IΣ;e is a higher-multiplicity version of the coefficient matrices IG,e appearing
in (3.2):

IΣ;e : ⊕r∈R H[r] → ⊕s∈SH[s]

with matrix entries [IΣ;e]s∈S,r∈R given by

[IΣ;e]s,r =

{
IH[s(e)]

= IH[r(e)]
if s = s(e)and r = r(e),

0 otherwise.
(3.11)

Also, just as in the classical case, it is convenient to introduce “frequency-domain”
notation for explicit representation of system trajectories. For any linear space H, we
define the formal noncommutative Z-transform of a sequence of H-valued functions
as a formal power series in several noncommuting indeterminates z = (ze : e ∈ E) as
follows:

{h(w)}w∈FE
�→ ĥ(z) =

∑
w∈FE

h(w)zw,(3.12)

where z∅ = 1, zw = zeN zeN−1
· · · ze1 if w = eNeN−1 · · · e1. Then, applying the Z-

transform to (3.10) gives∑
w∈FE

x(ew)zw = IΣ,eAx̂(z) + IΣ,eBû(z).(3.13)

Multiply (3.13) on the left by ze to get∑
w∈FE

x(ew)zew = zeIΣ,eAx̂(z) + zeIΣ,eBû(z).(3.14)

Summing (3.14) over all edges e ∈ E, we get∑
e∈E

∑
w∈FE

x(ew)zew = ZΣ(z)Ax̂(z) + ZΣ(z)Bû(z),(3.15)

where we have set

ZΣ(z) =
∑
e∈E

zeIΣ,e.(3.16)

Note that the definition of the formal Z-transform yields∑
e∈E

∑
w∈FE

x(ew)zew = x̂(z) − x(∅).
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Thus (3.15) becomes

x̂(z) = x(∅) + ZΣ(z)Ax̂(z) + ZΣ(z)Bû(z).(3.17)

Solving (3.17) for x̂(z), we obtain

x̂(z) = (I − ZΣ(z)A)
−1

x(∅) + (I − ZΣ(z)A)
−1

ZΣ(z)Bû(z).(3.18)

Substitution of (3.17) into the formal Z-transform of the output equation of (3.10)
then gives

ŷ(z) = Cx̂(z) + Dû(z)

= C (I − ZΣ(z)A)
−1

x(∅) + TΣ(z)û(z),(3.19)

where we have set

TΣ(z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B(3.20)

equal to the transfer function of the SNMLS Σ, where the inverse is taken in the
algebra L(⊕s∈SH[s])〈〈z〉〉 of formal power series with operator coefficients in the non-
commuting variables z = (ze : e ∈ E). We can write TΣ(z) explicitly as a formal
power series in the form

TΣ(z) = T∅ +

∞∑
N=1

∑
e1,...,eN∈E

Cs(eN )

·Ar(eN ),s(eN−1) · · ·Ar(e2),s(e1)Br(e1)zeN zeN−1
· · · ze2ze1 .(3.21)

Example 3.8 (noncommutative Fornasini–Marchesini system). Here we continue
Example 3.3. As the structure graph G is connected in this case, we assume that we
are given a single finite-dimensional linear space H together with an input-space U
and an output-space Y. Then the structure matrix (3.16) ZFM (z) is the row matrix

ZΣFM (z) =

d∑
j=1

zjIΣFM ,j =
[
z1IH . . . zdIH

]
=: Zrow(z) ⊗ IH,

where

IΣFM ,j =
[
0 · · · 0 IH 0 · · · 0

]
(with nonzero entry in the jth column), and the connection matrix UFM has the form

UFM =

[
A B
C D

]
=

[
colj=1,...,d[Aj ] colj=1,...,d[Bj ]

C D

]
:

[
H
U

]
→

[
⊕d

j=1H
Y

]
.(3.22)

Thus, IΣFM ,jA = Aj , IΣFM ,jB = Bj , and therefore the associated noncommutative
Fornasini–Marchesini system is given by

ΣFM :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(1w) = A1x(w) + B1u(w),

...

x(dw) = Adx(w) + Bdu(w),

y(w) = Cx(w) + Du(w),

(3.23)
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i.e., we are in the setting of the noncommutative Fornasini–Marchesini systems dis-
cussed in section 2.1. Since in this case ZΣFM (z)A =

∑d
i=1 ziAi and similarly

ZΣFM (z)B =
∑d

i=1 ziBi, the transfer function TΣFM (z) in (3.20) for the noncom-
mutative Fornasini–Marchesini system has the form given in (2.4).

We remark that any SNMLS can be embedded into a noncommutative Fornasini–
Marchesini system having a certain special form as follows. Given a general SNMLS
Σ = (G,H, U), we associate a Fornasini–Marchesini system

ΣFM = (GFM ,HFM , UFM )

as follows. We let GFM be the unique Fornasini–Marchesini graph having the same
edge set as G: EFM = E. Thus we take the source-vertex set SFM to be SFM = {1},
and the range-vertex set RFM to be RFM = E, with associated source and range
vertex maps sFM and rFM given by sFM (e) = 1 and rFM (e) = e for e ∈ E. We let

HFM = ⊕s∈SH, and we define the connection matrix UFM =
[
AFM BFM

CFM DFM

]
by[

AFM BFM

CFM DFM

]
=

[
cole∈E [AFM

e ] cole∈E [BFM
e ]

C D

]
:

[
HFM

U

]
→

[
⊕e∈EHFM

Y

]
and by

AFM
e = is(e)Ar(e),· : HFM → HFM ,

BFM
e = is(e)Br(e) : U → HFM ,

CFM = C : HFM → Y,

DFM = D : U → Y,

where is(e) : H[s] → cols′∈S H[s′] is the natural injection h �→ cols′∈S δs′,sh. A con-
sequence of formula (3.9) is that Σ and ΣFM associated in this way have the same
system trajectories.

Example 3.9 (noncommutative Givone–Roesser system). Here we continue Ex-
ample 3.4. In this case the structure graph G has d connected components, so we
assume that we give d auxiliary state-spaces H1, . . . ,Hd. The structure matrix (3.16)
then has the diagonal form

ZΣGR(z) =

d∑
j=1

IΣGR,jzj =

⎡⎢⎣z1IH1

. . .

zdIHd

⎤⎥⎦ =: Zdiag(z) ⊗ IH,

where IΣGR,j is a d × d matrix with zero entries except at the (j, j)th entry, where
[IΣGR,j ]j,j = IHj , and the connecting matrix UGR is of the form

UGR =

[
A B
C D

]
=

[
[Aj,i]j,i=1,...,d colj=1,...,d[Bj ]
rowi=1,...,d[Ci] D

]
:

[
⊕d

i=1Hi

U

]
→

[
⊕d

j=1Hj

Y

]
.

(3.24)

Thus,

IΣGR,iA =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...

...
Ai,1 · · · Ai,d

...
...

0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ and IΣGR,iB =

⎡⎢⎢⎢⎢⎢⎢⎣

0
...
Bi

...
0

⎤⎥⎥⎥⎥⎥⎥⎦(3.25)
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(where the nonzero row is row i in both expressions), and therefore the noncommu-
tative Givone–Roesser system is given by

ΣGR :

⎧⎪⎨⎪⎩
xi(iw) =

∑
i′∈S Ai,i′xi′(w) + Biu(w) for e ∈ E,

xi′′(iw) = 0 if i′′ 
= i,

y(w) =
∑d

i′=1 Ci′xi′(w) + Du(w),

(3.26)

as stated in section 2.2. Here xi(iw) ∈ Hi for i = 1, . . . , d. The transfer function
TΣGR(z) for the noncommutative Givone–Roesser system then has the form as given
in (2.12).

Example 3.10 (noncommutative full-structured system). Here we continue Ex-
ample 3.5. We assume that the structure matrix G has the form Gfull, as in Example
3.5. As the structure graph Gfull has only one connected component, we need specify
only one auxiliary state-space H for an SNMLS Σ = (Gfull,H, U) with structure graph
Gfull. The structure matrix (3.16) is the full-block operator matrix with each matrix
entry containing one of the variables

ZΣfull(z) =

n∑
i=1

m∑
j=1

IΣfull,(i,j)zi,j =

⎡⎢⎣z1,1IH . . . z1,mIH
...

...
zn,1IH . . . zn,mIH

⎤⎥⎦ =: Zfull(z) ⊗ IH,

where IΣfull,(i,j) is an n×m matrix with zero entries except at the (i, j)th entry, where

[IΣfull,(i,j)]i,j = IH. The connecting operator U full in this case is given by

U full =

[
A B
C D

]
:

[
⊕n

1H
U

]
→

[
⊕m

1 H
Y

]
,

where

A =

⎡⎢⎣A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

⎤⎥⎦ , B =

⎡⎢⎣B1

...
Bm

⎤⎥⎦ , C =
[
C1 · · · Cn

]
,

and the system equations (3.5) assume the form

Σfull :

⎧⎪⎨⎪⎩
xi((i, j) · w) =

∑n
i′=1 Aj,i′xi′(w) + Bju(w),

xi′′((i, j) · w) = 0 if i′′ 
= i,

y(w) =
∑n

i′=1 Ci′xi′(w) + Du(w),

(3.27)

and we are in the setting of the noncommutative full-structured systems discussed
in section 2.3. The transfer function TΣfull(z) for the full-block operator matrix case
then has the form as in (2.21).

Example 3.11 (the general SNMLS system). Here we continue Example 3.6.
Suppose that the admissible graph G is the union of complete bipartite graphs Gk

with source-vertex set Sk = {(k, i) : 1 ≤ i ≤ nk}, range-vertex set Rk = {(k, j) : 1 ≤
j ≤ mk}, and edge set Ek = {(k, i, j) : 1 ≤ i ≤ nk; 1 ≤ j ≤ mk} for k = 1, . . . ,K.
Note that k = 1, . . . ,K labels the set P of path-connected components of G. Let
H = {Hk : k = 1, . . . ,K} denote a specification of a finite-dimensional linear space
for each path-connected component k = 1, . . . ,K, and suppose that Σ = (G,H, U) is
an SNMLS with structure graph G. Then the connection matrix U has the form

U =

[
[Ak′,k] [Bk′ ]
[Ck] D

]
:

[
⊕K

k=1 [⊕nk
i=1Hk]

U

]
→

[
⊕K

k′=1

[
⊕mk′

j=1Hk′
]

Y

]
,
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where each Ak′,k, Bk′ , and Ck in turn has the form

Ak′,k = [Ak′,k;j,i]j=1,...,mk′ ;i=1,...,nk
, where Ak′,k;j,i : Hk → Hk′ ,

Bk′ = colj=1,...,mk′ [Bk′,j ], where Bk′,j : U → Hk′ ,

Ck = rowi=1,...,nk
[Ck,i], where Ck,i : Hk → Y.

The structure matrix ZΣ(z) has the block-diagonal form

ZΣ(z) =

⎡⎢⎣Zfull,1(z
1) ⊗ IH1

. . .

Zfull,K(zK) ⊗ IHK

⎤⎥⎦ ,

where zk is the collection of variables zk = {zk,i,j : i = 1, . . . , nk; j = 1, . . . ,mk}
and each Zfull,k(z

k) ⊗ IHk
is a full-block structure matrix (of block size nk × mk),

as in Example 3.10. While the structure matrix splits as the direct sum, the system
trajectories for the whole system Σ in general can be quite complicated since there is
no corresponding splitting for the A matrix generating the system dynamics.

If one substitutes general noncommuting operators δ = (δk,i,j : k = 1, . . . ,K; i =
1, . . . , nk; j = 1, . . . ,mk) for the noncommuting formal variables zk,i,j , then ZΣ(δ) is
the most general structure matrix coming up in μ-synthesis analysis (see [33]). Part
of the advantage of the notion of SNMLS introduced here is the setting thereby given
for proving results in the theory of μ-synthesis in a unified way for a general structure.
We refer to [6] for further details.

4. System operations: Cascade/parallel connection and inversion. Sup-
pose that we are given two SNMLSs

Σ′′ = (G,H′′, U ′′), Σ′ = (G,H′, U ′)

with the same structure graph G and with connection matrices

U ′′ =

[
A′′ B′′

C ′′ D′′

]
:

[
cols∈S H′′

[s]

U ′′

]
→

[
colr∈R H′′

[r]

Y ′′

]
,

U ′ =

[
A′ B′

C ′ D′

]
:

[
cols∈S H′

[s]

U ′

]
→

[
colr∈R H′

[r]

Y ′

]
,

with the property that the output-space for U ′ coincides with the input-space for U ′′:

Y ′ = U ′′.

We then define the cascade connection Σ = Σ′′◦Σ′ of Σ′′ with Σ′ to be the SNMLS Σ =

(G,H, U) with auxiliary state-spaces Hp given by Hp =
[H′′

p

H′
p

]
and with colligation U

given by

U =

[
A B
C D

]
:=

⎡⎣A′′ B′′C ′ B′′D′

0 A′ B′

C ′′ D′′C ′ D′′D′

⎤⎦ :

⎡⎣cols∈S H′′
[s]

cols∈S H′
[s]

U ′

⎤⎦ →

⎡⎣colr∈R H′′
[r]

colr∈R H′
[r]

Y ′′

⎤⎦ .

Here we have identified the space cols∈S

[H′′
[s]

H′
[s]

]
with

[
cols∈S H′′

[s]

cols∈S H′
[s]

]
as well as colr∈R

[H′′
[r]

H′
[r]

]
with

[
colr∈R H′′

[r]

colr∈R H′
[r]

]
in the natural way. In more detail, the colligation coefficients A, B,
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C, D are given by

Ar,s =

[
A′′

r,s B′′
rC

′
s

0 A′
r,s

]
:

[
H′′

[s]

H′
[s]

]
→

[
H′′

[r]

H′
[r]

]
, Br =

[
B′′

rD
′

B′
r

]
: U ′ →

[
H′′

[r]

H′
[r]

]
,

Cs =
[
C ′′

s D′′C ′
s

]
:

[
H′′

[s]

H′
[s]

]
→ Y ′′, D = D′′D′ : U ′ → Y ′′.

We note that the cascade connection Σ = Σ′′ ◦ Σ′ has the following interpreta-
tion. Suppose that we are given an initial condition x′(∅) = x′

0 and an input string
{u′(w)}w∈FE

to generate a trajectory {u′(w), x′(w), y′(w)}w∈FE
of Σ′ via the system

equations

Σ′ :

⎧⎨⎩
x′
s(e)(ew) = Σs∈SA

′
r(e),sx

′
s(w) + B′

r(e)u
′(w),

x′
s′(ew) = 0 if s′ 
= s(e),
y′(w) = Σs∈SC

′
sx

′
s(w) + D′u′(w).

(4.1)

We then let x′′(∅) = x′′
0 ∈ H′′ be arbitrary and set u′′(w) = y′(w) to generate a system

trajectory {u′′(w), x′′(w), y′′(w)}w∈FE
of Σ′′, via the system equations

Σ′′ :

⎧⎨⎩
x′′
s(e)(ew) = Σs∈SA

′′
r(e),sx

′′
s (w) + B′′

r(e)u
′′(w),

x′′
s′(ew) = 0 if s′ 
= s(e),
y′′(w) = Σs∈SC

′′
s x

′′
s (w) + D′′u′′(w).

(4.2)

The resulting triple
{
u′(w),

[ x′′(w)

x′(w)

]
, y′′(w)

}
w∈FE

then is a system trajectory of Σ =

Σ′′ ◦ Σ′, and every system trajectory of Σ′′ ◦ Σ′ arises in this way.
The main result concerning cascade connection is that this is the state-space

operation corresponding to multiplication of the corresponding transfer functions.
Theorem 4.1. Let Σ′′ and Σ′ be SNMLSs for which the cascade connection

Σ := Σ′′ ◦ Σ′ is defined as above. Then the transfer function TΣ(z) for Σ is the
product of the transfer functions TΣ′′(z) and TΣ′(z) for Σ′′ and Σ′:

TΣ′′◦Σ′(z) = TΣ′′(z) · TΣ′(z).(4.3)

Proof. We have seen (see (3.19)) that the transfer function TΣ(z) is characterized
by the property that

ŷ(z) = TΣ(z)û(z)

whenever {u(w), x(w), y(w)}w∈FE
is a trajectory of Σ with x(∅) = 0. By the interpre-

tation for the cascade connection Σ′′ ◦ Σ′ given in the preceding paragraph, we know

that {u(w), x(w), y(w)}w∈FE
has the form

{
u′(w),

[ x′′(w)

x′(w)

]
, y′′(w)

}
w∈FE

, where

{u′(w), x′(w), y′(w)}w∈FE

is a trajectory of Σ′ with x′(∅) = 0, where {u′′(w), x′′(w), y′′(w)}w∈FE
is a trajectory

of Σ′′ with x′′(∅) = 0, and where we impose the interconnection law y′(w) = u′′(w).
It therefore follows that

ŷ(z) = ŷ′′(z) = TΣ′′(z)ŷ′(z)

= TΣ′′(z)
(
TΣ′(z)û′(z)

)
= (TΣ′′(z)TΣ′(z)) û(z),
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and we conclude that it must be the case that TΣ(z) = TΣ′′(z)TΣ′(z), as asserted. Of
course the result can also be verified by direct computation using the formula (3.20)
for the transfer function in terms of A,B,C,D.

We next define the parallel connection of two SNMLSs as follows. We suppose
that we are given two SNMLSs

Σ′′ = (G,H′′, U ′′), Σ′ = (G,H′, U ′)

with the same structure graph G and with the same input-space U and the same
output-space Y:

U ′′ =

[
A′′ B′′

C ′′ D′′

]
:

[
cols∈S H′′

[s]

U

]
→

[
colr∈R H′′

[r]

Y

]
,

U ′ =

[
A′ B′

C ′ D′

]
:

[
cols∈S H′

[s]

U

]
→

[
colr∈R H′

[r]

Y

]
.

We then define the parallel sum Σ = Σ′′[+]Σ′ of Σ′′ and Σ′ to be Σ = (G,H, U)

with auxiliary state-spaces Hp again equal to the direct sums Hp =
[H′′

p

H′
p

]
and with

connection matrix U given by

U =

⎡⎣A′′ 0 B′′

0 A′ B′

C ′′ C ′ D′′ + D′

⎤⎦ :

⎡⎣cols∈S H′′
[s]

cols∈S H′
[s]

U

⎤⎦ →

⎡⎣colr∈R H′′
[r]

colr∈R H′
[r]

Y

⎤⎦ .

Here again we identify cols∈S

[H′′
[s]

H′
[s]

]
with

[
cols∈S H′′

[s]

cols∈S H′
[s]

]
and colr∈R

[H′′
[r]

H′
[r]

]
with[

colr∈R H′′
[r]

colr∈R H′
[r]

]
in the natural way. In this case the physical interpretation is that

we feed an initial state x′(∅) = x′
0 ∈ cols∈S H′

[s] and an input string {u(w)}w∈FE

into Σ′ to generate a trajectory {u(w), x′(w), y′(w)}w∈FE
of Σ′ along with an initial

state x′′(∅) = x′′
0 ∈ cols∈S H′′

[s] and the same input string (u(w))w∈FE
to generate

a trajectory {u(w), x′′(w), y′′(w)} of Σ′′. We then set y(w) = y′(w) + y′′(w). Then{
u(w),

[ x′′(w)

x′(w)

]
, y(w)

}
w∈FE

is a system trajectory of Σ = Σ′′[+]Σ′, and every trajec-

tory of Σ′′[+]Σ′ is of this form. With this system interpretation, the following result
follows easily along the same lines as the proof of Theorem 4.1.

Theorem 4.2. Suppose that Σ′′ and Σ′ are two SNMLSs for which the parallel
sum Σ := Σ′′[+]Σ′ is defined as above. Then the transfer function TΣ(z) for Σ is the
sum of the transfer functions TΣ′′(z) and TΣ′(z) for Σ′′ and Σ′:

TΣ′′[+]Σ′(z) = TΣ′′(z) + TΣ′(z).(4.4)

Our final system operation is inversion. We suppose that we are given an SNMLS
Σ = (G,H, U) for which the colligation

U =

[
A B
C D

]
:

[
cols∈S H[s]

U

]
→

[
colr∈R H[r]

Y

]
is such that the feedthrough operator D : U → Y is invertible. We then define the
inverse colligation

Σ× = (G,H, U×)
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with the same structure graph G and auxiliary state-spaces H = {Hp : p ∈ P (G)} but
with colligation U× given by

U× =

[
A× B×

C× D×

]
=

[
A−BD−1C BD−1

−D−1C D−1

]
:

[
cols∈S H[s]

Y

]
→

[
colr∈R H[r]

U

]
.

The point here is that {y(w), x(w), u(w)}w∈FE
is a system trajectory of U× if and only

if {u(w), x(w), y(w)}w∈FE
is a system trajectory of U ; i.e., system-inversion amounts

to interchange of inputs and outputs. If we then work with system trajectories having
x(∅) = 0, we see that ŷ(z) = TΣ(z)û(z) is equivalent to û(z) = TΣ×(z)ŷ(z). Of course
it is also possible to verify the formal power series identities

TΣ×(z) · TΣ(z) = IU , TΣ(z) · TΣ×(z) = IY

directly by use of the explicit formula (3.20) for the transfer function. In any case,
we record this observation in the following theorem.

Theorem 4.3. Suppose that Σ = (G,H, U) is an SNMLS with colligation

U =

[
A B
C D

]
:

[
cols∈S H[s]

U

]
→

[
colr∈R H[r]

Y

]
having invertible feedthrough operator D : U → Y. Then

TΣ(z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B

is invertible in the space L(U ,Y)〈〈z〉〉 (formal power series in the noncommuting vari-
ables z = (ze)e∈E with coefficients in the space L(U ,Y) of operators from U to Y),
with inverse T−1

Σ (z) ∈ L(Y,U)〈〈z〉〉 given by

T−1
Σ (z) = TΣ×(z) := D−1 −D−1C(I − ZΣ(z)[A−BD−1C])−1ZΣ(z)BD−1.(4.5)

Remark 4.4. For the classical case, there exists a converse to Theorem 4.1; i.e.,
given Σ, it is possible to describe geometrically all possible nontrivial decompositions
of Σ as Σ = Σ′′ ◦Σ′ (see, e.g., [9]). These results can also be extended to more general
linear-fractional decompositions (see [29] and [18]). Presumably such results can also
be worked out for SNMLSs, but we leave this project to another occasion.

5. Reachability and controllability. The building blocks for reachability and
controllability operators are certain operators Ψw : U → Hs associated with any word
w,

Ψw = Ar(eN ),s(eN−1) · · ·Ar(e2),s(e1)Br(e1) if w = eN · · · e1.(5.1)

Note that the word w = eNeN−1 · · · e2e1 can be written, for each r = 1, 2, . . . , N , as
the concatenation

w = w′
rw

′′
r−1,

where we have set

w′
r = eNeN−1 · · · er for r = 1, . . . , N, w′′

r−1 = er−1 · · · e1 for r = 2, . . . , N, w′′
0 = ∅.
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From formula (3.7), we see that the s(eN )th component of the state trajectory at
location w = eN · · · e1 for Σ generated by input string {u(v)}v∈FE

with zero initial
condition x(∅) = 0 is given by

xs(eN )(w) =

N∑
r=1

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(w′′
r−1)

=

N∑
r=1

Ψw′
r
u(w′′

r−1).

Just as in the classical case, the indexing is a little more natural if we consider
controllability operators instead. Up to this point we have been considering the system
evolution only on the “future time” Tfuture := FE . We now define the “past time” Tpast

to be a second copy of FE but with the empty word deleted: Tpast := FE \ {∅}. We
emphasize that Tfuture and Tpast are considered to be disjoint sets; given a nonempty
word w in FE , we will specify in the particular context whether it is to be considered
as an element of Tfuture or of Tpast.

Let us now introduce the system evolution on the past, which is given by

Σpast :

{
xs(w) =

∑
e : s(e)=s

∑
s′∈S Ar(e),s′xs′(we) +

∑
e : s(e)=s Br(e)u(we),

y(w) =
∑

s∈S Csxs(w) + Du(w),
(5.2)

or, in aggregate form,

Σpast :

{
x(w) =

∑
e∈E IΣ,eAx(we) +

∑
e∈E IΣ,eBu(we),

y(w) = Cx(w) + Du(w).
(5.3)

This evolution can actually be derived from the forward evolution by doing the change
of “time” variable w′′

r−1 �→ w′
r along each finite path w (where the initial segment w′′

r−1

is viewed as a point in the future Tfuture, while the corresponding final segment w′
r is

viewed as a position in the past Tpast), and then taking a span over paths as was done
above. In this way, the span of all vectors generated at some finite position in the
future from zero initial condition on the state at ∅ over all possible input strings on
Tfuture is transformed into the set of all possible states achieved at time ∅ (the final
point for the past) over all possible finitely supported input strings on the past with
zero state initialization in the distant past.

More precisely, fix a finite word w = eN · · · e1, and assume that we run the system
in the past Tpast using the system equations (5.2) or (5.3) under the assumption that
x(v) = 0 for all v ∈ Tpast with |v| ≥ N , where N is an arbitrary length, and that
u(v) = 0 for all v ∈ Tpast except for those of the form v = w′

r = eN · · · er for some r
with 1 ≤ r ≤ N . Then the s(eN )th component of the resulting state trajectory x(·)
at the location ∅ is

xs(eN )(∅) =

N∑
r=1

Ar(eN ),s(eN−1) · · ·Ar(er+1),s(er)Br(er)u(w′
r)

=

N∑
r=1

Ψw′
r
u(w′

r).
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Then the linear space Cw consisting of all vectors xs ∈ Hs achievable as xs(∅) when
the system is run with state set equal to zero in the distant past and with input taken
to be equal to zero except along some left segment of the word w is characterized as

Cw = im Cw,

where the controllability operator associated with the word w is given by

Cw = row
r=1,...,N

Ψw′
r
: �fin(T w

past,U) → H[s],(5.4)

where T w
past = {w′

r : r = 1, . . . , N} ⊂ Tpast.
More generally, we denote by F∞R

E the set of all nonempty words which have a
beginning on the left but are infinite to the right:

F∞R

E = {e1e2 · · · eN · · · : ej ∈ E for j = 1, 2, 3, . . . }.

Fix an infinite word w = e1e2 · · · eN · · · ∈ F∞R

E . Set wN = e1e2 · · · eN equal to the
finite word obtained as the truncation of w after N letters, and define

Cw = rowN=1,2,3,... ΨwN : �fin(T w
past,U) → H[s(LL[w])],

where LL[w] (for w a finite or infinite word) denotes the leading letter of w,

LL[e1e2 · · · eN · · · ] = e1,

and where T w
past = ∪{wN : N = 1, 2, 3, . . . }. Then the image of Cw (as an operator on

�fin(T w
past,U)) is the linear space of all possible states xs(e1) ∈ H[s(e1)] (e1 = LL[w])

arising in the form xs(e1)(∅) from a system trajectory (5.2) under the assumptions
that x(w) = 0 for all words w ∈ Tpast of sufficiently large length and that the input
string {u(w)}w∈Tpast is supported on w1, . . . , wN for some finite N .

It is natural to initialize the state to be zero in the far past but to allow input
strings of arbitrary finite support. Given s ∈ S, we define the controllability operator
Cs as the block row matrix

Cs = row
w∈Tpast with s(LL[w])=s

Ψw : �fin(T s
past,U) → H[s].(5.5)

Here we set

T s
past =

⋃
w∈Tpast with s=s(LL[w])

T w
past.(5.6)

If we define Cs to be the linear space of all vectors xs ∈ Hs achievable as xs = xs(∅)
when we run the system on Tpast with an input string of finite support and with state
initialization set equal to zero at all positions v ∈ Tpast with |v| sufficiently large, then
we have

Cs = im Cs.

Remark 5.1. More generally, we may define an apparently more general con-
trollability operator as follows. For p ∈ P (the set of path-connected components
of the structure graph G associated with the SNMLS Σ (see Definition 3.7)), set
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T p
past =

⋃
s:[s]=p T s

past. We define the controllability operator Cp as the block row
matrix

Cp = row
s:[s]=p

Cs : �fin(T p
past,U) → Hp.(5.7)

Then the image of Cp consists of the linear span of all vectors xp ∈ Hp expressible
as xs(∅) (for some s with [s] = p) when the system Σ is run over the past T p

past with
some input string on T p

past of finite support and with state-vector initialized to be zero
at all positions v sufficiently far in the past.

Note, however, from the formula (5.1) for Ψw that Ψw is independent of the value
of s(LL[w]); i.e., if w = eNeN−1 · · · e2e1 and w′ = e′NeN−1 · · · e2e1, then Ψw′ = Ψw,
as long as r(e′N ) = r(eN ). Thus im Cs = im Cp for any s ∈ S with [s] = p.

It will be convenient to make this invariance property more explicit. We define a
bijection w �→ w∧s from T s′

past to T s
past by

w∧s = es,r(eN )eN−1 · · · e1 if w = eNeN−1 · · · e1.(5.8)

Note that es,r(eN ) is well defined as (3.1) whenever it is the case that [s] = [s(eN )](=
[r(eN )]). As observed in the previous paragraph, the controllability-operator building
blocks Ψw given by (5.1) are invariant under this transformation:

for s, s′ ∈ S with [s] = [s′], Ψw = Ψw∧s′ for w ∈ T s
past.(5.9)

For each of the three choices of controllability operator Cw, Cs, and Cp (where
Cp is as in Remark 5.1), we have a corresponding notion of controllability, namely,
the system Σ is X-controllable (where X = F∞R

E (the set of words which are infinite
to the right), X = S or X = P ) if the operator Cx is surjective for all x ∈ X. A
consequence of Remark 5.1, however, is that S-controllability and P -controllability
are equivalent. The notion of controllability most convenient for our purposes here is
the weakest of these, namely P -controllability (or equivalently, S-controllability). We
therefore make the following definition.

Definition 5.2. We say that the SNMLS Σ is structured-controllable or simply
controllable if the operator

Cp : �fin(T p
past,U) → Hp

given by (5.7) is surjective for each path-connected component p of the admissible
graph G associated with Σ, or equivalently (by Remark 5.1), if the operator

Cs : �fin(T s
past,U) → H[s]

given by (5.5) is surjective for each s ∈ S (or equivalently, for some s with [s] = p for
each p ∈ P ).

6. Observability. Analogously, we have a dual array of observability operators,
but with one additional parameter (roughly due to the fact that Tfuture includes the
empty word ∅, while Tpast does not), namely Os,w for each s ∈ S and infinite word
w = e1e2 · · · eN · · · ∈ F∞R

E , Os for each s ∈ S, and Op for each p ∈ P . For w =
e1e2 · · · eN · · · ∈ F∞R

E and s ∈ S, we define Os,w as the block-operator column matrix

Os,w = col
N=0,1,2,...

[Cs(eN )Ar(eN ),s(eN−1) · · ·Ar(e1),s] : H[s] → �(T w
future,Y),(6.1)
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where we interpret the formula for the case N = 0 to mean

[Os,w]0 = Cs(6.2)

and where we put T w
future = {(wN )� = eNeN−1 · · · e1 : N = 0, 1, 2, . . . } ⊂ Tfuture. For

any s ∈ S, we define an associated observability operator Os as the column matrix

Os = col
v=eNeN−1···e1∈Tfuture

[Cs(eN )Ar(eN ),s(eN−1) · · ·Ar(e1),s] : H[s] → �(Tfuture,Y),(6.3)

with again the interpretation (6.2) for the case v = ∅ column entry. Finally, for
path-connected component p ∈ P we define an associated observability operator Op

by

Op = col
s∈S : [s]=p

Os : Hp → col
s∈S : [s]=p

�(Tfuture,Y).(6.4)

Clearly, for each infinite word w ∈ F∞R

E , index s ∈ S, and path-connected component
p ∈ P with [s] = p, we have the subspace inclusions

kerOp ⊂ kerOs ⊂ kerOs,w.(6.5)

For each of the cases X = S × F∞R

E , X = S, and X = P , we have a notion of
X-observability: Σ is X-observable if the operator Ox is injective for all x ∈ X. By
the set of inclusions (6.5) we see that we have the chain of implications: S × F∞R

E -
observability implies S-observability, which in turn implies P -observability. Note that
each of these observability notions has a system-theoretic interpretation, as follows:

1. S × F∞R

E -observability means that, for each fixed infinite word w ∈ F∞R

E ,
an initial state xs ∈ H[s] is uniquely determined from the observations y((wN )�) (for
N = 0, 1, 2, . . . ) obtained by letting the system drift with initial condition xs(∅) = xs

and xs′(∅) = 0 for s′ 
= s and with zero input string u(w) = 0 for all w ∈ FE .
2. S-observability means again that, for each s ∈ S, one can detect an initial

state xs ∈ H[s] by the same experiment, but with additional observations, namely
y(v) for all v ∈ FE .

3. P -observability means again that one can detect an initial state xp ∈ Hp but
one must do the experiment described above for S-observability with initial condition
xs(∅) = xp and xs′(∅) = 0 for s′ 
= s for each s ∈ S with [s] = p.

For our notion of observability here, we take the weakest of these notions and
make the following definition.

Definition 6.1. We say that the SNMLS Σ = (G, H, U) is structured-
observable (or simply observable) if the operator Op : Hp → cols∈S : [s]=p �(Tfuture,Y)
given by (6.4) is injective for each p ∈ P .

7. Kalman decomposition. In this section we obtain a Kalman-type decom-
position for SNMLSs; for a good summary of these results for the classical case, we
refer to [16].

Let Σ = (G, H, U) be an SNMLS as in Definition 3.7. For each p ∈ P (the set of
path-connected components of the admissible graph G), we let Cp be the controllability
operator defined by (5.7) and Op be the observability operator defined by (6.4).3 From

3As it is only the images im Cp of the controllability operators Cp which enter in here, by Remark
5.1 without loss of generality one can in all the discussion below replace Cp with Csp for any fixed
choice of sp ∈ S with [sp] = p.
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the definitions we see that

Ar,s : im C[s] → im C[r],(7.1)

Ar,s : kerO[s] → kerO[r],(7.2)

kerO[s] ⊂ kerCs,(7.3)

imBr ⊂ im C[r](7.4)

for all r ∈ R and s ∈ S. We introduce a direct-sum decomposition

Hp = Hp,c/o ⊕Hp,c/no ⊕Hp,nc/o ⊕Hp,nc/no(7.5)

according to the following recipe:

1. Set Hp,c/no = im Cp ∩ kerOp.
2. Choose Hp,c/o so that Hp,c/no ⊕Hp,c/o = im Cp.
3. Choose Hp,nc/no such that Hp,c/no ⊕Hp,nc/no = kerOp.
4. Choose Hp,nc/o such that Hp = Hp,c/o ⊕Hp,c/no ⊕Hp,nc/o ⊕Hp,nc/no.

Fix an r ∈ R and an s ∈ S. Note that Ar,s : H[s] → H[r], Br : U → H[r], and
Cs : H[s] → Y, while H[s], and H[r] have the direct-sum decompositions

H[s] = H[s],c/o ⊕H[s],c/no ⊕H[s],nc/o ⊕H[s],nc/no,

H[r] = H[r],c/o ⊕H[r],c/no ⊕H[r],nc/o ⊕H[r],nc/no.

We may therefore represent Ar,s, Br, and Cs as matrices with respect to these direct-
sum decompositions of H[s] and H[r]:

Ar,s =

⎡⎢⎢⎣
Ar,s;c/o,c/o Ar,s;c/o,c/no Ar,s;c/o,nc/o Ar,s;c/o,nc/no

Ar,s;c/no,c/o Ar,s;c/no,c/no Ar,s;c/no,nc/o Ar,s;c/no,nc/no

Ar,s;nc/o,c/o Ar,s;nc/o,c/no Ar,s;nc/o,nc/o Ar,s;nc/o,nc/no

Ar,s;nc/no,c/o Ar,s;nc/no,c/no Ar,s;nc/no,nc/o Ar,s;nc/no,nc/no

⎤⎥⎥⎦ ,

Br =

⎡⎢⎢⎣
Br,c/o

Br,c/no

Br,nc/o

Br,nc/no

⎤⎥⎥⎦ , Cs =
[
Cs,c/o Cs,c/no Cs,nc/o Cs,nc/no

]
.

From (7.1) we see that

Ar,s;nc/o,c/o = 0, Ar,s;nc/o,c/no = 0, Ar,s;nc/no,c/o = 0, Ar,s;nc/no,c/no = 0.

From (7.2) we see that

Ar,s;c/o,c/no = 0, Ar,s;c/o,nc/no = 0, Ar,s;nc/o,c/no = 0, Ar,s;nc/o,nc/no = 0.

From (7.4) we see that

Br,nc/o = 0, Br,nc/no = 0.

From (7.3) we see that

Cs,c/no = 0, Cs,nc/no = 0.
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We are therefore left with

Ar,s =

⎡⎢⎢⎣
Ar,s;c/o,c/o 0 Ar,s;c/o,nc/o 0
Ar,s;c/no,c/o Ar,s;c/no,c/no Ar,s;c/no,nc/o Ar,s;c/no,nc/no

0 0 Ar,s;nc/o,nc/o 0
0 0 Ar,s;nc/no,nc/o Ar,s;nc/no,nc/no

⎤⎥⎥⎦ ,

Br =

⎡⎢⎢⎣
Br,c/o

Br,c/no

0
0

⎤⎥⎥⎦ , Cs =
[
Cs,c/o 0 Cs,nc/o 0

]
.(7.6)

This analysis leads us to the following result.
Theorem 7.1. Let Σ = (G,H, U) be an SNMLS. Decompose each Hp as in (7.5)

with resulting decompositions (7.6) for the system matrices Ar,s, Br, and Cs.
(1) Define a reduced SNMLS Σc/o = (G,Hc/o, Uc/o) with auxiliary state-spaces

(Hc/o)p = Hp,c/o as in (7.5) and with connection matrix

Uc/o =

[
Ac/o Bc/o

Cc/o Dc/o

]
:

[
⊕s∈SH[s],c/o

U

]
→

[
⊕r∈RH[r],c/o

Y

]
given by

[Ac/o]r,s = Ar,s;c/o,c/o, [Bc/o]r = Br,c/o, [Cc/o]s = Cs,c/o, Dc/o = D

determined as in (7.6). Then the SNMLS Σc/o is structured-controllable and
structured-observable and has the same transfer function as Σ:

D+C(I−ZΣ(z)A)−1ZΣ(z)B = Dc/o+Cc/o(I−ZΣc/o
(z)Ac/o)

−1ZΣc/o
(z)Bc/o.

(2) Define a reduced system Σc = (G,Hc, Uc) with auxiliary state-spaces

(Hc)p = Hp,c/o ⊕Hp,c/no

with components determined as in (7.5) and with connection matrix

Uc =

[
Ac Bc

Cc Dc

]
:

[
⊕s∈SH[s],c

U

]
→

[
⊕r∈RH[r],c

Y

]
given by

[Ac]r,s =

[
Ar,s;c/o,c/o 0
Ar,s;c/no,c/o Ar,s;c/no,c/no

]
, [Bc]r =

[
Br,c/o

Br,c/no

]
,

[Cc]s =
[
Cs,c/o 0

]
, Dc = D,

with matrix entries determined as in (7.6). Then the SNMLS Σc is struc-
tured-controllable and has the same transfer function as Σ:

D + C(I − ZΣ(z)A)−1ZΣ(z)B = Dc + Cc(I − ZΣc
(z)Ac)

−1ZΣc
(z)Bc.

(3) Define a reduced system Σo = (G,Ho, Uo) with auxiliary state-spaces (Ho)p =
Hp,c/o⊕Hp,nc/o with components determined as in (7.5) and with connection
matrix

Uo =

[
Ao Bo

Co Do

]
:

[
⊕s∈SH[s],o

U

]
→

[
⊕r∈RH[r],o

Y

]
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given by

[Ao]r,s =

[
Ar,s;c/o,c/o Ar,s;c/o,nc/o

0 Ar,s;nc/o,nc/o

]
, [Bo]r =

[
Br,c/o

0

]
,

[Co]s =
[
Cs,c/o Cs,nc/o

]
, Do = D,

with matrix entries determined as in (7.6). Then the SNMLS Σo is struc-
tured-observable and has the same transfer function as Σ:

D + C(I − ZΣ(z)A)−1ZΣ(z)B = Do + Co(I − ZΣo(z)Ao)
−1ZΣo

(z)Bo.

8. State-space similarity theorem. We begin with a definition.
Definition 8.1. Given two SNMLSs Σ = (G,H, U) and Σ′ = (G,H′, U ′) with a

common structure graph G and with common input- and output-spaces, so that

U =

[
A B
C D

]
:

[
⊕s∈SH[s]

U

]
→

[
⊕r∈RH[r]

Y

]
,

U ′ =

[
A′ B′

C ′ D′

]
:

[
⊕s∈SH′

[s]

U

]
→

[
⊕r∈RH′

[r]

Y

]
,

we say that Σ and Σ′ are similar (via a state-space similarity) if there is a collection
Γ = {Γp : p ∈ P} of bijective linear operators Γp : Hp → H′

p (for each path-connected
component p of G) such that[(

⊕r∈RΓ[r]

)
0

0 IY

] [
A B
C D

]
=

[
A′ B′

C ′ D′

] [(
⊕s∈SΓ[s]

)
0

0 IU

]
.(8.1)

It is an easy computation to see that two systems Σ and Σ′ have the same transfer
functions if they are similar. On the other hand, Theorem 7.1 is not true in gen-
eral, since an SNMLS Σ which is not already structured-controllable and structured-
observable cannot be similar to its structured-controllable/structured-observable part,
as in this case necessarily dimHp,c/o < dimHp for some p. The next theorem gives
the converse under a controllability/observability hypothesis.

Theorem 8.2. Suppose that Σ = (G,H, U) and Σ′ = (G,H′, U ′) are two
SNMLSs with a common structure graph G and common input- and output-spaces
U and Y. Assume that both Σ and Σ′ are structured-controllable and structured-
observable. Then Σ and Σ′ are similar; i.e., there are bijective linear maps Γp : Hp →
H′

p for each path-connected component p of G such that (8.1) holds if and only if Σ
and Σ′ have the same transfer function

TΣ(z) = TΣ′(z).

Moreover, in this situation the collection of state-space similarity operators

Γp : H[p] → H′
[p]

implementing the similarity between Σ and Σ′ is unique.
Proof. We have already observed that in general two systems which are simi-

lar have the same transfer function. It remains to show the following: under the
assumption that Σ and Σ′ are structured-controllable and structured-observable, if
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TΣ(z) = TΣ′(z), then Σ and Σ′ are similar. From the expression (3.21) for the trans-
fer function, we see that the hypothesis that TΣ(z) = TΣ′(z) amounts to the assertion
that

Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)

= C ′
s(eN )A

′
r(eN ),s(eN−1)

A′
r(eN−1),s(eN−2)

· · ·A′
r(e2),s(e1)

B′
r(e1)

(8.2)

for all nonempty words w = eNeN−1 · · · e1 ∈ FE , with the interpretation

Cs(e1)Br(e1) = C ′
s(e1)

B′
r(e1)

(8.3)

in case w = e1 has length 1 together with

D = D′(8.4)

corresponding to the case w = ∅. Recalling the definitions (6.3) and (5.1), we see
immediately from (8.2) and (8.3) that

[Os]vCw = [O′
s]vC′

w(8.5)

whenever s ∈ S, v ∈ Tfuture, and w ∈ T s
past. By the same type of argument as that

appearing in Remark 5.1, in fact (8.5) holds for each s ∈ S, v ∈ Tfuture, and w ∈ T s′

past

for any s′ ∈ S in the same path-connected component as s (i.e., with [s′] = [s]); indeed,
if w = ew′ ∈ T s

past, there is a unique adjustment e′ ∈ E of e so that w′ = e′w′ ∈ T s′

past,
Cw′ = Cw, and also C′

w′ = C′
w. Hence the equality (8.5) with w ∈ T s

past implies the

equality (8.5) with w ∈ T s′

past for any s′ with [s′] = [s] as well.
We attempt to define Γp : Hp → H′

p by

Γp : Ψwu �→ Ψ′
wu for u ∈ U and w ∈ FE with [r(LL[w])] = sp,(8.6)

where Ψw and Ψ′
w are given by (5.1) and where sp ∈ S is any choice of source vertex

with [sp] = p. Note that a consequence of Remark 5.1 is that we can always adjust
LL[w] to achieve s(LL[w]) = sp (for any fixed choice of sp ∈ S with [sp] = p) without
affecting im Ψw and im Ψ′

w. Explicitly, we have

Γp : Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)u

�→ A′
r(eN ),s(eN−1)

A′
r(eN−1),s(eN−2)

· · ·A′
r(e2),s(e1)

B′
r(e1)

u,(8.7)

where w = eNeN−1 · · · e1 ∈ FE and where eN is normalized so that s(eN ) = sp with
the interpretation

Γp : Br(e1)u �→ B′
r(e1)

u(8.8)

in case w = e1 (with s(e1) = sp) has length 1. We then extend Γp to

Dsp = span{Ψwu : w ∈ T sp
future with s(LL[w]) = sp, u ∈ U}(8.9)

by linearity, where we set

T sp
future = {w ∈ FE \ {∅} : s(LL[w]) = sp}.

We first wish to check that Γp is well defined. We must therefore show the
following: given a map w �→ uw from T sp

future to U with finite support (so uw = 0 for
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all but finitely many words w ∈ T sp
future) such that

∑
w∈T sp

future
Ψwuw = 0, it follows

that
∑

w∈T sp
future

Ψ′
wuw = 0. Since

∑
w∈T sp

future
Ψwuw = 0, we then also have

Op ·
∑

w∈T sp
future

Ψwuw = 0.(8.10)

From the definition of Op, equation (8.10) in turn means that

Os ·
∑

w∈T sp
future

Ψwuw = 0 for each s ∈ S with [s] = p.(8.11)

From the extended domain of validity of (8.5) explained above, (8.11) immediately
implies

O′
s ·

∑
w∈T sp

future

Ψ′
wuw = for each s ∈ S with [s] = p.(8.12)

By the assumption that Σ′ is structured-observable, we know that O′
p is injective.

Hence we see from (8.12) that ∑
w∈T sp

future

Ψ′
wuw = 0.

We conclude that Γp is well-defined on its domain Dsp (see (8.9)), as wanted.
Since Σ by hypothesis is structured-controllable, we see that in fact Dsp = Hp,

and hence Γp is defined on all of Hp. Similarly, since Σ′ is structured-controllable, we
see that Γp(Hp) is equal to all of H′

p, i.e., that Γp is surjective.

It remains to see that Γp is injective; i.e., given a map w �→ uw from T sp
future to U

with finite support such that
∑

w∈T sp
future

Ψ′
wuw = 0, it follows that

∑
w∈T sp

future
Ψwuw = 0.

This follows by the same argument as in the proof that Γp is well defined, with the
roles of Σ and Σ′ interchanged. We conclude that (8.6) extends by linearity to define
a bijective linear transformation from Hp onto H′

p.
It remains now only to check that Γ = {Γp : p ∈ P} satisfies (8.1). This amounts

to verifying

Γ[r]Ar,s = A′
r,sΓ[s],(8.13)

Γ[r]Br = B′
r,(8.14)

Cs = C ′
sΓ[s],(8.15)

D = D′.(8.16)

Note that (8.16) follows immediately from (8.4), while (8.14) follows from (8.8). By
the structured-controllability hypothesis on Σ, to show (8.13) and (8.15) it suffices to
show

Γ[r]Ar,sAr(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)

= A′
r,sΓ[s]Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1),

(8.17)

CsAr(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)

= C ′
sΓ[s]Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1) if [s] = [r(eN )]

(8.18)
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for all words w = eNeN−1 · · · e1 ∈ T sp
future (with proper interpretation for N = 1) for

each p ∈ P . Note that (8.17) is an immediate consequence of the definition (8.6)
of Γp together with the completeness of the path-connected components of G, while
(8.18) follows from the definition (8.6) combined with the completeness of the path-
connected components of G and the equality of moments (8.2) and (8.3).

As for the last statement in Theorem 8.2, suppose that Γ′
p : Hp → H′

p is any other
linear isomorphism between Hp and H′

p so that (8.1) is satisfied. Then a consequence
of (8.1) is that necessarily Γ′

p must also satisfy (8.6) (with Γ′
p in place of Γp). By the

first part of the proof, Γ′
p = Γp for all p ∈ P , and the uniqueness assertion in Theorem

8.2 follows as well. This completes the proof of Theorem 8.2.

9. Minimal state-space realizations. Suppose that we are given an admissi-
ble graph G together with a formal power series

T (z) =
∑

w∈FE

Twz
w

in the noncommuting variables z = {ze : e ∈ E} (where E is the edge set of G)
with coefficients Tw in the space L(U ,Y) of linear operators between the (finite-
dimensional) linear spaces U and Y. We say that the SNMLS Σ = (G,H, U) (with
structure graph equal to G) is a G-structured realization for T (z) if T (z) is equal to
the transfer function of Σ, i.e., if

T∅ = D, TeNeN−1···e1 = Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1),

where the connection matrix U for Σ has the form

U =

[
A B
C D

]
=

[
[Ar,s] [Br]
[Cs] D

]
:

[
⊕s∈SH[s]

U

]
→

[
⊕r∈RH[r]

Y

]
.

We say that the SNMLS Σ is a structured-minimal realization for T (z) if dimH′
p ≥

dimHp for each path-connected component p of G whenever Σ′ = (G,H′, U ′) is
another G-structured realization for T (z). The following theorem establishes the
equivalence of structured-minimality with simultaneous structured-controllability and
structured-observability for G-structured realizations of a given formal power series
T (z).

Theorem 9.1. Suppose that Σ = (G,H, U) is a G-structured realization for
the formal power series T (z) =

∑
w∈FE

Twz
w. Then Σ is a G-structured minimal

realization for T (z) if and only if Σ is both structured-controllable and structured-
observable (with structure graph G).

Proof. Suppose first that Σ = (G,H, U) is a structured-controllable and structured-
observable realization of T (z) and that Σ′ = (G,H′, U ′) is another structured real-
ization of T (z) (with the same structure graph G). By part (1) of Theorem 7.1,
we may cut the realization Σ′ down to a structured-controllable and structured-
observable realization Σ′

c/o = (G,H′
c/o, U

′
c/o) for T (z); as part of the construction

we have dimH′
p ≥ dimH′

p,c/o for each p ∈ P . We now have that Σ = (G,H, U) and

Σ′
c/o = (G,H′

c/o, U
′
c/o) are both structured-controllable and structured-observable re-

alizations of the same formal power series T (z). By the state-space-similarity theo-
rem (Theorem 8.2), it follows that Σ and Σ′

c/o are similarvia a state-space similarity
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Γ = {Γp : Hp → H′
p,c/o : p ∈ P}. In particular,

dimHp = dimH′
p,c/o ≤ dimH′

p.

As Σ′ was any other G-structured realization of T (z), it follows that Σ is a G-
structured minimal realization, as wanted.

Conversely, suppose that Σ is G-structured minimal. By part (1) of Theorem 7.1,
we may cut Σ down to a structured-controllable and structured-observable realization
Σc/o = (G,Hc/o, Uc/o) of the same formal power series T (z). By the construction
in Theorem 7.1, Hp,c/o ⊂ Hp. On the other hand, by the assumption that Σ is
G-structured minimal, we must also have dimHp ≤ dimHp,c/o, and hence we must
have the equality Hp = Hp,c/o for each p ∈ P . From the construction in Theorem
7.1, this means that the realization Σ is itself structured-controllable and structured-
observable. This completes the proof of Theorem 9.1.

10. Hankel operators. The notion of a Hankel operator H for a classical
(1-D) linear system is the map which maps a past input sequence to the future out-
put sequence, under the assumptions that the state has been initialized to be zero at
−∞ (roughly speaking) and that the future input string is set equal to zero. Since
the controllability operator C maps the past history to the state at time zero, also
under the assumption that the state has been initialized to be zero at −∞, while
the observability operator O maps a given state at time 0 into the future output
sequence (under the assumption that the future input string is set equal to zero), we
see immediately from the definitions that the Hankel operator H has the factorization
H = O · C. For the case of SNMLSs, we have three notions (Cw for w ∈ F∞R

E , Cs for
s ∈ S, and Cp for p ∈ P ) of controllability operators which map some version of the
past (T w

past, T s
past, or T p

past) to a state at the “present” position ∅, and three notions
of observability operator (Os,w, Os, and Op for (s, w) ∈ S ×F∞R

E , s ∈ S, and p ∈ P )
mapping some state at the present position ∅ to outputs supported on some version
of the future (T w

future, Tfuture, or ∪s : [s]=pTfuture. Thus a priori we have nine distinct
possible notions of a Hankel operator. However, for purposes of the realization theory
to be presented in section 11 below, only some of these are of interest for our purposes
here, so we focus on them.

Let Σ = (G,H, U) be an SNMLS as in Definition 3.7. In this section we shall
fix a cross section p �→ sp ∈ S of the map [·] : S → P mapping a source vertex s
to its associated path-connected component [s] ∈ P ; i.e., for each p ∈ P , we let sp
be a fixed choice of element of S such that [sp] = p. Consider any past input string
{u(v)}v∈T sp

past
. Run the system with this input string u(w) for w ∈ T sp

past and with

the state initialized to be zero in the distant past to generate a state x(∅) with spth
component xsp equal to, say, xp ∈ Hp. For each s ∈ S with [s] = p, we next run the
system with zero inputs u(w) for w ∈ Tfuture and with initial condition xs(∅) = xp,
xs′(∅) = 0 for s′ 
= s. The result is an output sequence {ys(w)}w∈Tfuture

. The resulting
composite map defined as taking the input string {u(v)}v∈T sp

past
to the output string

{ys(w)}s : [s]=p;w∈Tfuture
we define to be the Hankel operator Hp:

Hp = OpCsp : �fin(T sp
past,U) → ⊕s : [s]=p�(Tfuture,Y).(10.1)

Explicitly, Hp is given as a bi-infinite matrix [Hp
(s,w),v] with rows indexed by pairs

(s, w) with s ∈ S with [s] = p and with w ∈ Tfuture, and with columns indexed by
words v ∈ T sp

past. In terms of the connecting operator U for Σ, the matrix entries are
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given explicitly as

H
p
(s,w),w′ = Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)

·Ar(e1),sAr(e′
N′ ),s(e

′
N′−1

)Ar(e′
N′−1

),s(e′
N′−2

) · · ·Ar(e′2),s(e
′
1)
Bs(e′1)

= Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Ar(e1),sΨw′(10.2)

if w = eNeN−1 · · · e2e1 and w′ = e′N ′e′N ′−1 · · · e′2e′1, where e′N ′ is constrained to satisfy
s(e′N ′) = sp and where we use (5.1) to define Ψw′ . (We leave it to the reader to give
the appropriate interpretations for these formulas in case N = 1 and/or N ′ = 0.) As
explained in the context of Remark 5.1, if we replace w′ by w′′ of the form

w′′ = es,r(e′
N′ )e

′
N ′−1 · · · e′2e′1

for any s with [s] = [s(e′N ′)] = [r(e′N ′)], then Ψw′′ = Ψw′ . Since v ∈ T sp
past, where

[sp] = p, we may therefore rewrite the Hankel matrix entry as a moment of the
transfer function TΣ(z) =

∑
w∈FE

Twz
w, namely,

H
p
(s,w),v = Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)

·Ar(e1),s(es,r(e′
N′ )

)Ar(es,r(e′
N′ )

),s(e′
N′−1

)Ar(e′
N′−1

),s(e′
N′−2

) · · ·Ar(e′2),s(e
′
1)
Bs(e′1)

= TeNeN−1···e1es,r(e′
N′ )

e′
N′−1

···e′2e′1 ,(10.3)

or, more compactly,

H
p
(s,w),ev′ = Twes,r(e)v′(10.4)

for s ∈ S, w ∈ Tfuture, and ev′ (with e ∈ E with s(e) = sp and v′ ∈ FE) the generic
form of an element in T sp

past.
From the factorization (10.1) and the definitions, it is easy to see the following

result; we shall obtain a converse in section 11 below.
Theorem 10.1. Suppose that the SNMLS Σ (see Definition 3.7) is structured-

controllable and structured-observable. Then the dimension of the auxiliary state-space
Hp (for a given path-connected component p ∈ P of the structure graph) is given by

dimHp = rank Hp.

Proof. By definition, Csp is a surjective map to Hp if Σ is structured-controllable,
and Op is an injective map if Σ is structured-observable. Hence the result is immediate
from the factorization (10.1).

Corollary 10.2. If T (z) is the transfer function of an SNMLS Σ having struc-
ture graph G, then, for each path-connected component p ∈ P , the Hankel operator
Hp formed from G and T (z) according to the formula (10.4) has finite rank.

We shall obtain a converse of Corollary 10.2 in section 11 below.

11. Realization theory for structured noncommutative linear systems.
Suppose that we are given an admissible graph G together with a formal power series
T (z) =

∑
v∈FE

Tvz
v in noncommuting variables z = (ze : e ∈ E) indexed by the

edge set E of G and with coefficients Tv equal to linear operators between the finite-
dimensional linear spaces U and Y. The realization problem associated with the
data set D := (G,T (z)) then is the following: construct a finite-dimensional SNMLS
Σ = (G,H, U) having G as its structure graph and T (z) as its transfer function.
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A necessary condition for the problem to have a solution was formulated in Corol-
lary 10.2. The content of the following theorem is the converse. We shall need the
following conventions. Let G be an admissible graph. As in section 10, we assume
that we have specified a cross section p �→ sp of the map [·] : S → P , so sp ∈ S with
[sp] = p for each p ∈ P . For v ∈ T s

past (where T s
past is defined as in (5.6)), we let δv be

the Kronecker delta function on T s
past:

δv(v
′) =

{
1 if v′ = v,

0 if v′ 
= v,
for v′ ∈ T s

past.

Then {δvu : v ∈ T s
past, u ∈ U} is a spanning set for the linear space �fin(T s

past,U).
Recall the notation es,r as in (3.1) for the unique edge connecting s ∈ S to r ∈ R,
defined whenever [s] = [r], and the notation w∧s introduced in (5.8).

Theorem 11.1. Suppose that we are given the data set D = (G,T (z)) for a real-
ization problem as above. For each path-connected component p ∈ P of G, associate
the Hankel matrix Hp as in (10.4). Then the realization problem for the data set D is
solvable if and only if

rank Hp < ∞ for each p ∈ P.(11.1)

When the condition (11.1) holds, a structured-minimal realization of T (z) can be
constructed as follows.

For each p ∈ P , let Hp be the linear space

Hp = �fin(T sp
past,U)/ ker Hp,(11.2)

and set H equal to the collection

H = {Hp : p ∈ P}.

For each source vertex s ∈ S and range vertex r ∈ R of G, define linear operators
Ar,s : H[s] → H[r], B : U → H[r], Cs : H[s] → Y, and D : U → Y by

Ar,s :
[
{u(v)}

v∈T
s[s]
past

]
H[s]

�→
[
{u′(v)}

v∈T
s[r]
past

]
H[r]

, where

u′(v) =

{
u((v′)∧s[s]) if v has the form v = es[r],rv

′ with v′ ∈ T s
past,

0 otherwise,

Br : u �→ [δes[r],ru]H[r]
,

Cs :
[
{u(v)}

v∈T
s[s]
past

]
H[s]

�→ H
[s]
(s,∅),·

(
{u(v)}

v∈T
s[s]
past

)
=

∑
v∈T

s[s]
past

Tv∧su(v),

D = T∅.

(11.3)

Use (11.3) to define a connection matrix U by

U =

[
A B
C D

]
=

[
[Ar,s] [Br]
[Cs] D

]
:

[
⊕s∈SH[s]

U

]
→

[
⊕r∈RH[r]

Y

]
.
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Then the collection Σ = (G,H, U) is a structured-minimal SNMLS with structure
graph G having T (z) as its transfer function.

Proof. We have already observed in Corollary 10.2 the necessity of the condition
(11.1) for the realization problem to have a solution. It remains to prove the suffi-
ciency. This follows if we can verify that the formulas (11.2) and (11.3) provide a
structured-minimal realization of T (z) (with structure matrix G).

As a preliminary step, we note that the formula for Ar,s in (11.3) when specialized
to elements of H[s] of the form [δvu]H[s]

(where v ∈ T s[s]
past) assumes the form

Ar,s : [δvu]H[s]
�→ [δes[r],r(v∧s)]H[r]

.(11.4)

Note also that the set {[δvu]H[s]
: v ∈ T s[s]

past, u ∈ U} is a spanning set for Hs[s] since

{δvu : v ∈ T s[s]
past, u ∈ U} is a spanning set for �fin(T s[s]

past,U). Similarly, the action of Cs

in (11.3) on delta functions can be written as

Cs : [δvu]H[s]
�→ Tv∧su for v ∈ T s[s]

past.(11.5)

The verification proceeds via a number of steps.
Step 1: Verification that Ar,s is well defined. Suppose that {u(v)}

v∈T
s[s]
past

repre-

sents the zero element of H[s]; thus H[s]({u(v)}
v∈T

s[s]
past

) = 0. Explicitly, this means

∑
v∈T

s[s]
past

Twv∧s′u(v) = 0 for all w ∈ FE and s′ ∈ S with [s′] = [s].(11.6)

View {u(v)}
v∈T

s[s]
past

as equal to
∑

v∈T
s[s]
past

δvu(v), and use the formula (11.4) combined

with linearity: the result is

Ar,s :
∑

v∈T
s[s]
past

δvu(v) �→
∑

v∈T
s[s]
past

δes[r],rv
∧su(v) ∈ �(T s[r]

past,U).

For the right-hand side of this formula to represent the zero element of H[r] we need

to have H[r](
∑

v∈T
s[s]
past

δes[r],rv
∧su(v)) = 0, which is to say

∑
v∈T

s[s]
past

Tw′(es[r],rv
∧s)∧s′′u(v) = 0 for all w′ ∈ FE , s

′′ ∈ S with [s′′] = [r].(11.7)

However, it is easily verified that

(es[r],rv
∧s)∧s′′ = es′′,rv

∧s.

Hence the condition (11.7) amounts to the known condition (11.6) for the special
case w = w′es′′,r and s′ = s. We conclude that the formula for Ar,s in (11.3), or
equivalently the formula (11.4) for Ar,s on a spanning subset of H[r], is well defined.

Step 2: Verification that Cs is well defined. We again suppose that {u(v)}
v∈T

s[s]

past

represents the zero element of H[s], i.e., that (11.6) holds. Then Cs({u(v)}
v∈T [s]

past
) by

definition is the left-hand side of (11.6) for the special case w = ∅ and s′ = s. Hence
Cs is well defined, as wanted.
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Step 3: Verification that TΣ(z) = T (z). Let e ∈ E be an edge of G. Use the
formula for Br in (11.3) and the formula (11.5) for the action of Cs on delta functions
to compute

Cs(e)Br(e)u = Cs(e)

([
δes[r(e)],r(e)u

]
H[r(e)]

)
= T(es[r(e)],r(e))

∧s(e)u

= Teu,(11.8)

where the equality (es[r(e)],r(e))
∧s(e) = es(e),r(e) = e follows from the uniqueness condi-

tion (3) in the admissibility conditions (see Definition 3.1) for the graph G. Similarly,
by using the formula for Br in (11.3) combined with (11.4), a straightforward in-
duction argument gives that, for any word w = eNeN−1 · · · e2e1 of length at least
2,

Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)u =
[
δ
w

∧s[r(eN )]u
]
H[r(eN )]

.(11.9)

From the uniqueness axiom in Definition 3.1 we have

(w∧[r(eN )])∧s(eN ) = w if eN = LL[w].(11.10)

Applying the formula (11.5) to (11.9) and using (11.10), we get

Cs(eN )Ar(eN ),s(eN−1)Ar(eN−1),s(eN−2) · · ·Ar(e2),s(e1)Br(e1)u = T(w∧[r(eN )])∧s(eN )u

= Twu for w = eNeN−1 · · · e2e1.(11.11)

Combining (11.8) and (11) with the definition D = T∅ in (11.3), we see that TΣ(z) =
T (z), as wanted.

Step 4: Verification that Σ is structured-controllable. By formula (11.9) we have

Ψwu = [δwu]Hp for w ∈ T sp
past and u ∈ U .

As the set {[δwu]Hp : w ∈ T sp
past and u ∈ U} is spanning for the space

Hp = �fin(T sp
past,U)/ ker Hp,

we conclude that Σ is structured-controllable, as wanted.
Step 5: Verification that Σ is structured-observable. From the various definitions

it is easy to verify that

Os

([
{u(v)}

v∈T
s[s]
past

]
H[s]

)
= H

[s]
(s,·),·

(
{u(v)}

v∈T
s[s]
past

)
∈ �(Tfuture,Y)

for each source vertex s ∈ S. Since, by definition, Op = cols : [s]=p Os for each p ∈ P ,
we can then make the identification

Op

([
{u(v)}v∈T sp

past

]
Hp

)
= Hp

(
{u(v)}v∈T sp

past

)
∈ ⊕s : [s]=p�(Tfuture,Y).

In this way we see that [{u(v)}v∈T sp
past

]Hp ∈ kerOp if and only if {u(v)}v∈T sp
past

∈ ker Hp,

i.e., if and only if [{u(v)}v∈T sp
past

]Hp
is the zero equivalence class in Hp. We conclude

that Σ is structured-observable as wanted, and the proof of Theorem 11.1 is now
complete.
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We now consider the situation where the formal power series T (z) =
∑

v∈Fd
Tvz

v

is given but the admissible graph G is not specified. By comparing the various Hankel
operators involved, we have the following result.

Theorem 11.2. Suppose that we are given the formal power series in the d
noncommuting variables z = (z1, . . . , zd), and let G and G′ be two admissible graphs
with edge sets E and E′ of the same cardinality. Then T (z) has a G-structured
realization Σ = {G,H, U} if and only if T (z) has a G′-structured realization Σ′ =
{G′,H′, U ′}.

Proof. Let G be any admissible graph with edge set E labeled as E = {1, . . . , d},
and let GFM be the Fornasini–Marchesini admissible graph with source-vertex set
S = {1}, range-vertex set R = {1, . . . , d}, and edge set E = {1, . . . , d}, with s(j) = 1
and r(j) = j for j = 1, . . . , d. We show that T (z) has a G-structured realiza-
tion Σ = (G,H, U) if and only if T (z) has a GFM -structured realization ΣFM =
(GFM ,HFM , UFM ). For s in S define the Hankel operator Hs : �fin(T s

past,U) →
�(Tfuture,Y) by

Hs : {u(v)}v∈T s
past

�→ H
[s]
(s,·),·

(
{u(v∧s)}

v∈T
s[s]
past

)
.

As the map v �→ vs[s] is a bijection between T s
past and T s[s]

past, we see that Hs is similar

to H
[s]
(s,·),·. By definition,

Hp = cols : [s]=p

[
H

p
(s,·),·

]
from which we get the estimates

maxs : [s]=p rank H
p
(s,·),· ≤ rank Hp ≤

∑
s : [s]=p

rank H
p
(s,·),·.(11.12)

As we observed above that Hs and H
[s]
(s,·),· have the same rank, we can rewrite (11.12)

as

maxs : [s]=p rank Hs ≤ rank Hp ≤
∑

s : [s]=p

rank Hs.(11.13)

From the characterization (10.4) of Hp we see that

HFM = colp∈P cols : [s]=p[H
s] = cols∈S [Hs].(11.14)

By combining (10.4) with the estimates (11.13), we see that HFM has finite rank if
and only if Hp has finite rank for each p ∈ P .

Now suppose that G and G′ are two admissible graphs with the same edge set
E and that T (z) is a given formal power series in the noncommuting variables z =
(ze : e ∈ E). By the first part of the proof, realizability of T (z) as the transfer
function of an SNMLS with structure graph G and realizability of T (z) as the transfer
function of an SNMLS with structure graph G′ are each equivalent to realizability of
T (z) as the transfer function of a noncommutative Fornasini–Marchesini system with
structure graph GFM having edge set E. Hence G-realizability and G′-realizability
are equivalent to each other. This completes the proof of Theorem 11.2.



1520 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

12. Recognizable and rational formal power series. Formal power series
in noncommuting variables of the form arising here have come up in the theory of
formal languages as studied in computer science [15]. For the sake of concreteness we
index the noncommuting variables simply by {1, . . . , d} and work with the semigroup
Fd generated by the concrete set of letters {1, . . . , d}, as was done in sections 2.1
and 2.2 in the setting of noncommutative Fornasini–Marchesini and Givone–Roesser
systems. We specialize the discussion in [15] to the setting here, where we take the
scalars to be the field C of complex numbers rather than a general semiring, i.e., a
“ring without subtraction.” A formal power series

∑
v∈Fd

Tvz
v (with coefficients Tv

equal to linear operators acting between the finite-dimensional linear spaces U and Y)
is said to be recognizable if there are finite-dimensional linear space H and operators
A1, . . . , Ad : H → H, B : U → H, and C : H → Y such that

Tv = CAvB for v ∈ Fd.

In terms of the linear systems discussed here, one can view a recognizable series
T (z) =

∑
v∈Fd

(CAvB)zv as the transfer function of a noncommutative Fornasini–
Marchesini system

ΣFM :

{
x(jw) = Ajx(w) + Bju(w) for j = 1, . . . , d,
y(w) = Cx(w) + Du(w),

with the special structure that

Bj =: B is independent of j and D = CB.

More economical is to consider the recognizable series as the transfer function of a
system of the form

Σrec :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(1w) = A1x(w) + Bu(1w),

...
x(dw) = Adx(w) + Bu(dw),
y(w) = Cx(w).

(12.1)

One can check that application of the formal noncommutative Z-transform (2.2) to
the system equations Σrec yields the frequency-domain formulas

x̂(z) = (I − Zrow(z)A)−1(x(∅) −Bu(∅)) + (I − Zrow(z)A)−1Bû(z),

ŷ(z) = C(I − Zrow(z)A)−1(x(∅) −Bu(∅)) + TΣrec(z) · û(z),(12.2)

where the transfer function TΣrec(z) for the recognizable system Σrec given by

TΣrec(z) =
∑
v∈Fd

CAvBzv(12.3)

has the form of a recognizable formal series. In particular, if the initial condition is
given by the input-injection x(∅) = Bu(∅), then multiplication by the transfer function
TΣrec(z) provides the input-output map in the frequency domain ŷ(z) = TΣrec(z)û(z).

All the results in sections 5, 6, 8, and 11 (notions of controllability and observ-
ability, equivalence of controllability and observability with minimality, state-space
similarity theorem, realization theorem) have parallels for the case of recognizable
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systems in place of general SNMLSs; in fact, as surveyed nicely in Chapters 1 and
2 of [15], all these results, with the exception of the identification of a recognizable
series T (z) =

∑
v∈Fd

(CAvB)zv as the transfer function of a noncommutative linear
system of the form (12.1), already appear in the literature—even in the more general
setting where the scalars are taken to be a general semiring rather than the field C of
complex numbers as is done here (see [37, 38, 17, 39, 20, 21, 22, 23]). We now survey
these results from our system-theoretic perspective.

To obtain a physical interpretation for the recognizable controllability operator
Crec introduced below, it is natural to define the backward system equations giving
the evolution on the past T rec

past = Fd to be

Σrec
backward :

{
x(w) =

∑d
i=1 Aix(wi) + Bu(w),

y(w) = Cx(w).
(12.4)

If we run the backward system equations on the past and present T rec
past := Fd with

the state initialized to be zero sufficiently far in the past and with an input string
{u(w)}w∈T rec

past
with finite support on T rec

past to compute the state x(∅) at location ∅,
the result is

x(∅) = Crec({u(w)}w∈T rec
past

),

where the recognizable controllability operator Crec is given by

Crec = roww∈T rec
past

AwB,(12.5)

where we set Aw = AiNAiN−1
· · ·Ai1 if w = iN iN−1 · · · i1 ∈ T rec

past (with A∅ = IH).
Note that this controllability operator has close to the same form as the Fornasini–
Marchesini controllability operator CFM (2.6); the difference is that a recognizable
system has only one input operator B and that the columns of Crec are indexed by
T rec

past which includes the empty word, with [Crec]∅ = B.

We say that the system Σrec is recognizable-controllable if the image im Crec of the
recognizable-controllability operator Crec is the whole state-space H.

The observability operator Orec : H → �(T rec
future,Y) produces the future output

{y(v)}v∈T rec
future

generated by the system for a given prescribed initial condition x(∅) ∈
H under the assumption that the zero input string {u(v)}v∈T rec

future
is fed into the

system; explicitly, we have4

Orec = row
v∈Fd

CAv.(12.6)

Note that Orec has exactly the same form as the Fornasini–Marchesini observability
operator OFM from (2.7). We say that the system Σrec is recognizable-observable if
the recognizable-observability operator Orec is injective on H.

We can now obtain a recognizable Kalman decomposition of the state-space H,

H = Hc/o ⊕Hc/no ⊕Hnc/o ⊕Hnc/no,

4Here T rec
future is taken to be Fd; the location ∅ in T rec

future is identified with the location ∅ in T rec
past

(i.e., both T rec
future and T rec

past contain the “present”), but a given nonempty word w as an element of
the future T rec

future is to be considered distinct from the same word w considered as an element of the
past T rec

past.



1522 J. A. BALL, G. GROENEWALD, AND T. MALAKORN

by the same recipe used in section 7 (by using Crec in place of Csp and Orec in place
of Op). We then obtain the decompositions

Aj =

⎡⎢⎢⎣
Aj;c/o,c/o 0 Aj;c/o,nc/o 0
Aj;c/no,c/o Aj;c/no,c/no Aj;c/no,nc/o Aj;c/no,nc/no

0 0 Aj;nc/o,nc/o 0
0 0 Aj;nc/no,nc/o Aj;nc/no,nc/no

⎤⎥⎥⎦ ,

B =

⎡⎢⎢⎣
Bc/o

Bc/no

0
0

⎤⎥⎥⎦ , C =
[
Cc/o 0 Cnc/o 0

]
(12.7)

for the system matrices A1, . . . , Ad, B,C of Σrec. It is then easily verified that the
reduced recognizable system Σrec

c/o with system matrices

A1;c/o,c/o, . . . , Ad;c/o,c/o, Bc/o, Cc/o

is both recognizable-controllable and recognizable-observable and produces the same
transfer function: TΣrec(z) = TΣrec

c/o
(z). Given two recognizable systems Σrec with

system matrices A1, . . . , Ad, B,C and Σrec′ with system matrices A′
1, . . . , A

′
d, B

′, C ′,
let us say that Σrec and Σrec′ are recognizable-similar if there is a bijective linear map
Γ: H → H′ so that ΓAj = A′

jΓ for j = 1, . . . , d, ΓB = B′, and C ′ = CΓ. Following
the same argument as in section 8, we have the state-space similarity theorem for
recognizable systems: given two recognizable systems Σrec = (A1 . . . , Ad, B,C) and
Σrec′ = (A′

1, . . . , A
′
d, B

′, C ′) with the same input-space U and output-space Y, which
are both recognizable-controllable and recognizable-observable, then Σrec and Σrec′ have
the same transfer function

TΣrec(z) = TΣrec′(z)

if and only if Σrec and Σrec′ are recognizable-similar. Furthermore, one can say that
the recognizable system Σrec with state-space H is a recognizable-minimal realization
for its transfer function T (z) = TΣrec(z) if, whenever Σrec′ with state-space H′ is any
other recognizable realization for the same T (z), then dimH ≤ dimH′. Following the
same line of argument as in section 9, one can show the following: the recognizable
system Σrec is a recognizable-minimal realization of its transfer function TΣrec(z) if
and only if Σrec is recognizable-controllable and recognizable-observable.

We next define the recognizable Hankel operator by

Hrec = Orec · Crec : �fin(T rec
past,U) → �(T rec

future,Y).(12.8)

The matrix entries of Hrec are then given by

Hrec
w,v = CAwvB for w, v ∈ Fd(12.9)

or directly in terms of the Taylor coefficients of the transfer function TΣrec(z) =∑
v∈Fd

Tvz
v as

Hrec
w,v = Twv for w, v ∈ Fd.(12.10)

In the case that Σrec is both recognizable-controllable and recognizable-observable,
we see from the factorization (12.8) that

rank Hrec = dimH.
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In particular, rank Hrec < ∞, where we now use (12.10) to define Hrec directly in
terms of the formal power series T (z) =

∑
v∈Fd

Tvz
v, which is a necessary condition

for T (z) to have a recognizable realization T (z) =
∑

v∈Fd
(CAvB)zv. For the converse,

we have the following realization theorem.
Theorem 12.1. Let the formal power series T (z) =

∑
v∈Fd

Tvz
v in d noncom-

muting indeterminates z = (z1, . . . , zd), with coefficients Tv equal to linear operators
between the linear spaces U and Y, be given. Then a necessary and sufficient condition
for T (z) to be recognizable, i.e., for the existence of a linear space H and operators
A1, . . . , Ad on H, B : U → H, and C : H → Y with Tv = CAvB for v ∈ Fd, is that

rank Hrec < ∞.(12.11)

When this holds, a recognizable-minimal realization (A1, . . . , Ad, B,C) can be con-
structed as follows: set

H = �fin(T rec
past,U)/ ker Hrec(12.12)

and define operators Aj : H → H (for j = 1, . . . , d), B : U → H, and C : H → Y :

Aj : [δv]H �→ [δjv]H for v ∈ T rec
past,

B : u �→ [δ∅]H,(12.13)

C : [{u(v)}v∈T rec
past

]H �→
∑

v∈T rec
past

Tvu(v).(12.14)

Proof. The proof parallels the ideas in the proof of Theorem 11.1, so we omit the
details. The result is also essentially contained in Theorem 1.5 of [15] (without any
system-theoretic interpretation using the system equations (12.1) and (12.4)), where
it is attributed to [17] and [20].

Note that the recognizable Hankel Hrec is almost the same as the Fornasini–
Marchesini Hankel HFM; namely, we have

Hrec =
[
colv∈Fd

[Tv] HFM
]
.(12.15)

In particular, we see that

rank HFM ≤ rank Hrec ≤ dimU + rank HFM ,

and hence HFM has finite rank if and only if Hrec has finite rank. Combining this
observation with Theorems 12.1, 11.1, and 11.2, we arrive at the following result.

Corollary 12.2. Let a formal power series T (z) =
∑

v∈Fd
Tvz

v in d non-
commuting variables z = (z1, . . . , zd) and an admissible graph G with edge set E
labeled as E = {1, . . . , d} be given. Then T has a realization of the form T (z) =
D + C(I − ZΣ(z)A)−1ZΣ(z)B for an SNMLS Σ = (G,H, U) if and only if T (z) =
C(I − z1A1 − · · · − zdAd)

−1B is recognizable.
A related notion arising in the theory of formal languages, particularly in the

work of Schützenberger, is that of rationality. We say that a formal power series
T (z) =

∑
v∈Fd

Tvz
v ∈ C〈〈z〉〉 in noncommuting variables z = (z1, . . . , zd) with scalar

coefficients Tv ∈ C is rational if it is in the smallest subalgebra of C〈〈z〉〉 which contains
the polynomials and is invariant under the operator R(z) �→ R∗(z) =

∑∞
n=0 (R(z))

n

defined on proper formal power series R(z) =
∑

v∈Fd\{∅} Rvz
v. The demand here

that the constant term R∅ vanish guarantees that, for each word w, the w-coefficient
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of R(z)n vanishes for all n ≥ Nw for some Nw < ∞, and hence that the infinite series
expression for R∗(z) is convergent in the topology of coefficientwise convergence. The
∗-operation also makes sense in the setting where the scalars are taken from a general
semiring K; in case K is a field (as we assume), the ∗-operation R(z) �→ R∗(z) can be
identified as R∗(z) = (I − R(z))−1. In case that T (z) =

∑
v∈Fd

Tvz
v ∈ L(U ,Y)〈〈z〉〉

has coefficients Tv equal to operators between finite-dimensional linear spaces U and
Y, we say that T (z) is rational if each of its matrix entries (with respect to some bases
for U and Y) is rational. In case U = Y and T∅ = 0, we can define

T ∗(z) :=

∞∑
n=0

(T (z))
n

= (I − T (z))−1(12.16)

just as in the scalar case. The following lemma assures us that T ∗(z) is again rational
if T (z) is rational. This result is actually a special case of Lemma I.6.3 in [15], but
we include a proof for the sake of completeness.

Lemma 12.3. Suppose that T (z) = [Tij(z)]
N
i,j=1 ∈ L(CN )〈〈z〉〉 is a formal power

series in the noncommuting variables z = (z1, . . . , zd) with matrix entries Tij(z) ∈
C〈〈z〉〉 all rational such that T∅ = [T∅,ij ]

N
i,j=1 = 0. Then all matrix entries of the

formal power series T ∗(z) given by (12.16) are also rational.
Proof. If N = 1, the result is clear. By induction we assume that the result is true

for all N < N0 and seek to prove the result for N = N0. Given T (z) ∈ L(CN0)〈〈z〉〉
with T∅ = 0, consider a block decomposition of T (z),

T (z) =

[
a(z) b(z)
c(z) d(z)

]
,

and a corresponding block decomposition of T ∗(z) = (IN0 − T (z))−1,

(IN0 − T (z))−1 =

[
α(z) β(z)
γ(z) δ(z)

]
,

where a(z) and α(z) are both of size K ×K for some K with 1 ≤ K < N0. From the
identity

(IN0
− T (z))−1 = IN0

+ T (z)(IN0
− T (z))−1

we get the collection of identities

α(z) = IK + a(z)α(z) + b(z)γ(z),

β(z) = a(z)β(z) + b(z)δ(z),

γ(z) = c(z)α(z) + d(z)γ(z),

δ(z) = IN0−K + c(z)β(z) + d(z)δ(z).(12.17)

We may then solve the second and third equations in (12.17) for β(z) and γ(z),
respectively, to get

β(z) = (IK − a(z))−1b(z)δ(z),(12.18)

γ(z) = (IN0−K − d(z))−1c(z)α(z).(12.19)

By the induction assumption we see immediately from (12.18) and (12.19) that β(z)
and γ(z) are rational. Plugging back into the first and fourth identities in (12.17)
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then gives

α(z) = IK + a(z)α(z) + b(z)(IN0−K − d(z))−1c(z)α(z),

δ(z) = IN0−K + c(z)(IK − a(z))−1b(z)δ(z) + d(z)δ(z).

We may then solve these equations for α(z) and δ(z) to get

α(z) =
(
IK − [a(z) + b(z)(IN0−K − d(z))−1c(z)]

)−1
,(12.20)

δ(z) =
(
IN0−K − [c(z)(IK − a(z))−1b(z) + d(z)]

)−1
.(12.21)

Again as a consequence of the induction assumption, (12.20) and (12.21) imply that
α(z) and δ(z) are rational as well, and the lemma follows.

The following characterization of rational formal power series can be seen as a
corollary of the results of this paper.

Corollary 12.4. Let a formal power series T (z) =
∑

v∈Fd
Tvz

v in d non-
commuting variables z = (z1, . . . , zd) and an admissible graph G with edge set E =
{1, . . . , d} be given. Then the following are equivalent:

(1) T (z) is rational.
(2) For each path-connected component p of G, the Hankel operator Hp given by

(10.4) has finite rank.
(3) T (z) has a realization T (z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B for an SNMLS

Σ = (G,H, U) having structure graph G.
Proof. We first show that (1) =⇒ (3). Note first that any scalar constant D

(considered as a formal power series in noncommuting variables z = (z1, . . . , zd)) is
realizable (with zero auxiliary state-spaces Hp).

We next note that any monomial ze is realizable for each edge e = 1, . . . , d.
Indeed, set H[s(e)] = C and Hp = {0} for p 
= [s(e)] and set

A = [Ar,s]r∈R,s∈S with Ar,s = 0,

B = colr∈R[Br] with Br =

{
1 if r = r(e),

0 otherwise,

C = rows∈S [Cs] with Cs =

{
1 if s = s(e),

0 otherwise,

D = 0.

Then the associated transfer function is given by

TΣ(z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B

= 0 + CZΣ(z)B

=
∑
s∈S

∑
r∈R

Cs[ZΣ(z)]s,rBr

=
∑
s∈S

∑
r∈R

∑
e′∈E

CsIΣ,e′;s,rBrze′

=
∑
e′∈E

Cs(e′)Br(e′)ze′

= ze.
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We conclude that each monomial ze has a realization as asserted.
By Theorems 4.1, 4.2, and 4.3, products, sums, and inverses of invertible for-

mal power series which are realizable (as the transfer function of an SNMLS Σ with
structure graph G) are again realizable. By the inductive definition of rational formal
power series given above, we may now conclude that any scalar rational formal power
series T (z) has the form of a transfer function T (z) = TΣ(z) for an SNMLS Σ with
given admissible graph G as structure graph.

If each scalar entry [T (z)]i,j of a matrix of formal power series is realizable, it is
easy to construct a realization (not necessarily minimal) for the formal power series
T (z) with matrix coefficients. This concludes the proof of (1) =⇒ (3).

We next verify (3) =⇒ (1). Assume that the formal power series T (z) has a
realization of the form T (z) = D + C(I − ZΣ(z)A)−1ZΣ(z)B for a finite-dimensional
SNMLS Σ = (G,H, [ A B

C D ]). By Lemma 12.3 it follows that (I−ZΣ(z)A)−1 is rational.
As products and sums of rational matrix functions are rational, it then follows that
T (z) is rational, as wanted.

The equivalence of (2) and (3) is just a restatement of Theorem 11.1.
Remark 12.5. We note that the equivalence (1) ⇐⇒ (2) between rationality

and finiteness of the rank of an associated Hankel operator is known as Kronecker’s
theorem in the classical case.

Remark 12.6. Combining (1) ⇐⇒ (3) in Corollary 12.4 with Corollary 12.2, we
see that a formal power series is recognizable if and only if it is rational; this result
goes back to Schützenberger (see Theorem I.6.1 in [15]).

Remark 12.7. In [22] Fliess gives an alternative system interpretation of a recog-
nizable formal power series in terms of a homogeneous bilinear system with evolution
along the nonnegative integers Z+ but with state-update equation of the form

x(n + 1) =

⎡⎣ d∑
j=0

uj(n)Aj

⎤⎦x(n),

with A0, . . . , Ad linear operators on the state-space H and with u0(n), . . . , ud(n) equal
to d+ 1 scalar-valued controls. The input-output operator for the system is obtained
as

(x0, (u0(n), . . . , ud(n))n∈Z+) �→ TΣ(u)x0,

where TΣ(z) is the recognizable formal power series TΣ(z) = C(I − z0A0 − z1A1 −
· · · − zdAd)

−1 and where TΣ(u) is defined via the substitution

ziN ziN−1
. . . zi0 �→ uiN (N)uiN−1

(N − 1) · · ·ui0(0).

Multidimensional versions of such bilinear systems, including connections with formal
power series in this more general setting, are given in [23]. Sontag [40] used a vari-
ation of Fliess’s Hankel-matrix construction to solve the following related moment
problem connected with an alternative formulation of a bilinear system realization
problem: given operators Tw ∈ L(U ,Y) for w ∈ FE (E = {1, . . . , d}), find oper-
ators C1, . . . , Cd : H → Y, A1, . . . , Ad : H → H, and B1, . . . , Bd : U → H so that
TiN iN−1···i2i1 = CiNAiN−1

· · ·Ai1Bi1 .
Our discussion here gives a linear (rather than bilinear) system interpretation for

a formal power series, but with evolution along a free semigroup rather than along
Z+ and with a somewhat contrived input-injection for the initial condition on the
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state required to recover the precise form of a recognizable series. The awkwardness
of these various system interpretations for a recognizable formal power series gives
some explanation as to why system operations work out well for transfer functions of
SNMLSs (see section 4) but not so well for recognizable series—a point discussed in
[30].

Acknowledgments. We thank the referees for useful suggestions which led to
improvements in the paper; in particular, the material of section 4 appears as a result
of a suggestion of one of the referees.
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Abstract. We present a new approach to solve optimal control problems of the monotone
follower type. The key feature of our approach is that it allows us to include an arbitrary dynamic
fuel constraint. Instead of dynamic programming, we use the convexity of our cost functional to
derive a first order characterization of optimal policies based on the Snell envelope of the objective
functional’s gradient at the optimum. The optimal control policy is constructed explicitly in terms
of the solution to a representation theorem for stochastic processes obtained in Bank and El Karoui
(2004), Ann. Probab., 32, pp. 1030–1067. As an illustration, we show how our methodology allows
us to extend the scope of the explicit solutions obtained for the classical monotone follower problem
and for an irreversible investment problem arising in economics.
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Introduction. Many optimization problems involve so-called finite fuel con-
straints on the allowable control policies, i.e., upper bounds on the resources a control
policy can use. The usual methodology to address these optimization problems is to
specify a Markovian framework and to compute the problem’s value function either
by PDE methods based on the problem’s Hamilton–Jacobi–Bellman equation or by
probabilistic methods and the variational method of switching paths. In some special
cases this leads to a more or less explicit solution to the optimization problem.

In any case, the constraint has so far only been specified by a constant upper
bound for the overall amount of “fuel” a control policy is allowed to use. Dynamic
upper bounds, by contrast, are difficult to take into account as their introduction
increases the dimensionality of the problem, making it typically impossible to solve
the Hamilton–Jacobi–Bellman equation explicitly. On the other hand, it is well known
that in some problems the optimal policy for a (constant) finite fuel constraint can
be derived from the optimal policy obtained when disregarding the fuel constraint
completely: one just has to follow the unconstraint policy up to the moment when
all fuel has been spent; see, e.g., Chow, Menaldi, and Robin (1985), Karatzas (1985),
and Fleming and Soner (1993). It is thus natural to conjecture that a suitable variant
of this principle should hold true for situations where a dynamic finite fuel constraint
is specified by an increasing adapted process. The corroboration of this conjecture
and the description of a general framework where it holds true constitute the main
results of the present paper.

We consider a convex minimization problem in which a policy θ incurs the costs

C(θ) = E

∫ ∞

0

c(t, θt)μ(dt) + E

∫ ∞

0

kt dθt (θ ∈ A ) ,

∗Received by the editors October 13, 2004; accepted for publication (in revised form) April 24,
2005; published electronically November 14, 2005. This work was supported by Deutsche Forschungs-
gemeinschaft through DFG-Research Center “Mathematics for Key Technologies” (FZT 86) and
grant BA 2276/1-1.

http://www.siam.org/journals/sicon/44-4/61696.html
†Department of Mathematics, Columbia University in the City of New York, 2990 Broadway, Mail

Code 4433, New York, NY 10027 (pbank@math.columbia.edu, www.math.columbia.edu/∼pbank).

1529



1530 PETER BANK

where c(t, .) describes the (convex) running costs and kt the control costs at time
t ≥ 0. Our approach is based on a characterization of optimal policies in terms of
first order conditions. More specifically, Theorem 2.2 shows that an optimal control
policy will exercise control whenever its impact is maximal as measured by the Snell
envelope of the cost functional’s subgradient at the optimum; it also shows that,
actually, all available fuel should be spent whenever this Snell envelope tends to
decrease. The occurrence of Snell envelopes in this characterization highlights the
intimate relationship between singular control and optimal stopping problems which
has already been observed in Karatzas and Shreve (1984, 1985) and El Karoui and
Karatzas (1988, 1991).

The construction of an optimal policy is achieved in Theorem 3.1, which relates
the dynamic finite fuel problem with a stochastic representation theorem obtained
in Bank and El Karoui (2004). This representation theorem has found a number of
other applications ranging from utility maximization to optimal stopping; we refer
the reader to Bank and Föllmer (2003) for an overview. Here it provides us with a
lower bound which the optimal control policy has to respect if enough fuel is available
to do so. This lower bound turns out to be independent of the fuel constraint, thus
providing a universal signal process which allows one to construct optimal policies for
a whole class of finite fuel problem at the same time.

As an application we provide an explicit solution to the monotone follower prob-
lem for Lévy processes with quadratic cost functional in the spirit of Beneš, Shepp,
and Witsenhausen (1980/81). We also illustrate how explicit solutions obtained for
singular control problems without any fuel constraint, as obtained, e.g., in Kobila
(1993), can actually be used to describe optimal policies for problems with a dynamic
fuel constraint.

Notation and conventions. All (in)equalities between random variables are
meant to hold true in the P–a.s. sense. We shall let T denote the set of all stopping
times, and we use T (I) to denote the class of stopping times almost surely taking
values in a given random set I, such as, e.g., I = [S,+∞] with S ∈ T . A supremum

over an empty set is defined to be sup ∅
Δ
= − ∞. Intervals [a, b] with b < a are

interpreted as the empty set. We also put x+ Δ
=x ∨ 0 = max{x, 0} and x− Δ

= (−x)+.

1. The general control problem. A well-known problem in stochastic opti-
mization is the problem of controlling the motion of a particle so as to keep it as close
to the origin as possible over some period of time. In the formulation as a monotone
follower problem suggested and analyzed by Karatzas and Shreve (1984), one consid-
ers a model where the dynamics of the uncontrolled particle is given by a standard
Brownian motion W on the real line and where the control θ is an increasing adapted
process θ which specifies the downward displacement of the particle caused by the
control. Hence, in this case, the controlled particle would follow the dynamics Wt−θt
(t ≥ 0). The cost incurred by a control policy θ can, for instance, be described as

C(θ) = E

∫ ∞

0

δe−δt 1

2
(Wt − θt)

2
dt,

and one could start studying the optimization problem to minimize C subject to, e.g.,
a finite fuel constraint on the control θ.

More generally, let (Ω,F∞, (Ft)t≥0,P) be a filtered probability space satisfying
the usual conditions of right-continuity and completeness. Controls θ are given by
increasing, left-continuous adapted processes starting at θ0 = ϑ ∈ R. We shall impose
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a dynamic finite fuel constraint, specified by an increasing adapted process ϑ with left-
continuous paths and values in [ϑ,+∞]. The class of admissible controls is therefore

A
Δ
= {θ incr., left-cont., adapted with ϑ = θ0 ≤ θt ≤ ϑt for all t ≥ 0 P–a.s.} .

Remark 1.1. Note that the lower bound ϑ is assumed to be a real constant, not
a process. Assuming a dynamic lower bound would mean that a minimum amount of
control must have been exercised up to each point in time, a natural, yet much more
demanding, extension which is beyond the scope of the present paper.

The costs incurred by a control policy will be composed of running costs and
control costs. The running costs are described by a measurable random field

c : Ω × [0,∞) × R → R

and a positive optional random measure μ = μ(ω, dt) on the time axis satisfying the
following convexity and regularity assumption.

Assumption 1.

(i) The measure μ is atomless and has full support suppμ = [0,+∞) almost
surely.

(ii) For any (ω, t) ∈ Ω×[0,+∞), the mapping ϑ �→ c(ω, t, ϑ) is strictly convex with
continuous derivative c′(ω, t, ϑ) = ∂

∂ϑc(ω, t, ϑ) increasing from c′(ω, t,−∞) =
−∞ to c′(ω, t,+∞) = +∞.

(iii) For ϑ ∈ R fixed, (ω, t) �→ c(ω, t, ϑ) is progressively measurable and P ⊗ μ-
integrable.

(iv) The process (ω, t) �→ infϑ∈[ϑ,ϑt(ω)] c(ω, t, ϑ) is P ⊗ μ-integrable.

The control costs are described by a stochastic process k with the following prop-
erties.

Assumption 2. The process k is optional, of class (D), and continuous in expec-
tation with k∞ = 0. Moreover, the family of random variables (

∫∞
0

k−t dθt, θ ∈ A ) is
bounded in L1(P).

Remark 1.2. Recall that an optional process k = (kt)t≥0 is of class (D) if the
family of random variables (kT , T ∈ T ) is uniformly integrable. Such a process is
continuous in expectation provided limn E[kTn ] = E[kT ] for any monotone sequence of
stopping times (Tn) with limit T = limn Tn.

These assumptions allow us to consider the cost functional

C(θ) = E

∫ ∞

0

c(t, θt)μ(dt) + E

∫ ∞

0

kt dθt (θ ∈ A ) .

The general optimization problem we shall be concerned with in this paper can now
be stated as follows:

Minimize C(θ) over θ ∈ A .(1)

Remark 1.3.

(i) Full support of μ ensures that strict convexity transfers from the random
field c to our cost functional C. Our assumptions on the derivative of c
will be used when applying a representation theorem obtained in Bank and
El Karoui (2004); see section 3. Integrability of c(., ϑ) for ϑ ∈ R means
that the decision not to intervene at all will not cause infinite costs. Integra-
bility of infϑ∈[ϑ,ϑ.]

c(., ϑ) is assumed to ensure that our minimization prob-

lem (1) has a finite value. For the same reason we assume L1-boundedness of
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(
∫∞
0

k−t dθt, θ ∈ A ), which amounts to requiring that the negative (!) “costs”
of exercising control must not be “too large.”

(ii) Observe that our introductory example would be accommodated in this setting
by choosing

c(ω, t, ϑ)
Δ
=

1

2
(Wt(ω) − ϑ)

2
, μ(dt) = δe−δt dt and k ≡ 0 .

Observe furthermore that this setting can also accommodate the monotone
follower problems studied in Chow, Menaldi, and Robin (1985), Karatzas
(1985), Karatzas and Shreve (1984), as well as the irreversible investment
problems solved in Kobila (1993) (see Criterion (3.2) and Condition (5.1)),
Scheinkman and Zariphopoulou (2001) (see section 4.2), and Baldursson and
Karatzas (1997). Settings not covered by our framework include Chiarolla
(1997) and Jacka (1999, 2002) since their cost functional is specified in terms
of the controlled system instead of the cumulatively exercised control. We also
do not cover the “cheap monotone follower” of Chiarolla and Haussmann
(1994) as they allow for two-dimensional controls. Also uncovered remains
the finite fuel problem of Beneš, Shepp, and Witsenhausen (1980/81) and
Karatzas and Shreve (1985), where two-sided controls are considered.

2. First order conditions for optimality. In this section, we are going to
provide a first order characterization of optimal control policies for problem (1). While
the main avenue of approach to achieve this characterization is classical, we need to
be a little bit careful to ensure that our Assumptions 1 and 2 suffice to deduce all the
integrability requirements we need along the way.

Our first step is to note that the convex functional C is supported by the subgra-
dients

∇C(θ)S
Δ
= E

[∫ ∞

S

c′(t, θt)μ(dt)

∣∣∣∣FS

]
+ kS (S ∈ T )(2)

in the following sense.
Lemma 2.1. For any θ ∈ A , the optional process ∇C(θ) of (2) is well defined

and ∇C(θ)− is P⊗dθ-integrable. If also ∇C(θ)+ is P⊗dθ-integrable, then C(θ) < ∞
and ∇C(θ) satisfies the subgradient property

C(θ′) − C(θ) ≥ E

∫ ∞

0

∇C(θ)s d(θ
′
s − θs) for any θ′ ∈ A with C(θ′) < +∞ .

Proof.
(i) As c′(t, θt) ≥ c′(t, ϑ) ∈ L1(P ⊗ μ) by convexity and P ⊗ μ-integrability of

c(t, ϑ) for ϑ ∈ R, the conditional expectation appearing in (2) is well defined
as a random variable taking values in (−∞,+∞]. As for P⊗ dθ-integrability
of ∇C(θ)−, we note that

c′(t, θt)
−(θt − ϑ) ≤ c(t, ϑ) − inf

ϑ∈[ϑ,ϑt]
c(t, ϑ) ∈ L1(P ⊗ μ)

by Assumption 1(iii) and (iv), and this yields

E

∫ ∞

0

∫ ∞

s

c′(t, θt)
− μ(dt) dθs = E

∫ ∞

0

c′(t, θt)
−(θt − ϑ)μ(dt) < +∞
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by Fubini’s theorem. By Assumption 2,

E

∫ ∞

0

k−s dθs < +∞ ,

and it follows that

∇C(θ)−s ≤ E

[∫ ∞

s

c′(t, θt)
− μ(dt)

∣∣∣∣Fs

]
+ k−s

is P ⊗ dθs-integrable.
(ii) Let us now assume P ⊗ dθ-integrability of ∇C(θ)+ and show that both∫∞

.
c′(t, θt)

+ μ(dt) and k+ inherit this integrability property. In addition,
we shall see that C(θ) < ∞.
To wit, note that in (i) we actually obtained

∫∞
.

c′(t, θ)− μ(dt) ∈ L1(P ⊗ dθ)
and that k− ∈ L1(P ⊗ dθ) by Assumption 2. So we can write

E

[∫ ∞

s

c′(t, θt)
+ μ(dt)

∣∣∣∣Fs

]
+ k+

s

= ∇C(θ)s + E

[∫ ∞

s

c′(t, θt)
− μ(dt)

∣∣∣∣Fs

]
+ k−s

to deduce that also both summands on the left side are P ⊗ dθ-integrable if,
as we assume, ∇C(θ) is.
To obtain C(θ) < ∞, note that by convexity of c(t, .) we have

c(t, θt) ≤ c(t, ϑ) + c′(t, θt)(θt − ϑ) .

By Assumption 1 the c(t, ϑ)-term on the right side of the above estimate
is P ⊗ μ-integrable. Moreover, the P ⊗ dθ-integrability of

∫∞
.

c′(t, θt)
± μ(dt)

established before entails that also c′(t, θt)(θt − ϑ) is P ⊗ μ-integrable by
Fubini’s theorem. Hence c(t, θt)

+ ∈ L1(P ⊗ μ), which in conjunction with
k ∈ L1(P ⊗ dθ) yields C(θ) < R.

(iii) We finally can prove our subgradient estimate for θ′ with C(θ′) < +∞, as-
suming as in (ii) that ∇C(θ)+ (and thus ∇C(θ)) is P ⊗ dθ-integrable.
We start from the convexity estimate

c(t, θ′t) − c(t, θt) ≥ c′(t, θt)(θ
′
t − θt) = c′(t, θt)(θ

′
t − ϑ) − c′(t, θt)(θt − ϑ) .(3)

Since C(θ′), C(θ) < ∞, the cost process k is both P⊗dθ′- and P⊗dθ-integrable
and the left side of (3) is P⊗μ-integrable. In (ii) we have shown that also the
last term in (3), c′(t, θt)(θt − ϑ), is P ⊗ μ-integrable. It thus follows that the
positive part of the remaining c′(t, θt)(θ

′
t − ϑ)-term on the right side of (3) is

P⊗μ-integrable or, equivalently by Fubini’s theorem, that
∫∞
.

c′(t, θt)
+ μ(dt)

is P ⊗ dθ′-integrable. As a consequence, the expectation

E

∫ ∞

0

{∫ ∞

s

c′(t, θt)μ(dt) + ks

}
d(θ′s − θs)

= E

∫ ∞

0

∇C(θ)s d(θ
′
s − θs) ∈ [−∞,+∞)

is well defined and indeed not larger than C(θ′) − C(θ).
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Let us denote by S(θ) the lower Snell envelope of ∇C(θ) as follows:

S(θ)S = ess inf
T∈T ([S,∞])

E [∇C(θ)T |FS ] (S ∈ T ).

We refer the reader to El Karoui (1981) for a comprehensive account on Snell en-
velopes. Let us just note here that S(θ) is a submartingale taking values in (−∞, 0].
Indeed, we can choose T = ∞ to see that S(θ)S ≤ E [∇C(θ)∞ |FS ] = 0 by defi-
nition of ∇C(θ) and our assumption that k∞ = 0. Moreover, using that c′(t, ϑ) ≥
c(t, ϑ − 1) − c(t, ϑ) ∈ L1(P ⊗ μ) by Assumption 1 and that k is of class (D) by
Assumption 2, we obtain

inf
T∈T

E∇C(θ)T ≥ E

∫ ∞

0

c′(t, ϑ) ∧ 0μ(dt) + inf
T∈T

EkT > −∞ .

This entails that almost surely S(θ) does not take the value −∞.
We shall use M(θ) and A(θ) to denote the martingale and predictable increasing

part in the Doob–Meyer decomposition

S(θ) = M(θ) + A(θ)

of the submartingale S(θ).
After these preliminaries, we can now give the following characterization of opti-

mal policies in terms of first order conditions.
Theorem 2.2. Under Assumptions 1 and 2, a control policy θ∗ ∈ A is optimal

for problem (1) if
(i) θ∗ is flat off {∇C(θ∗) = S(θ∗)} and
(ii) A(θ∗) is flat off {θ∗ = ϑ}.
Remark 2.3.

(i) An increasing process θ is said to be flat off a set A ∈ F∞ ⊗B([0,∞)) if the
induced measure dθ almost surely does not charge the set A: E

∫∞
0

1A dθ = 0.
(ii) Condition (i) requires that control should be exercised only when its marginal

impact on future costs is maximal. Condition (ii) reveals that all fuel should
be spent at moments when the maximal expected marginal impact tends to
decrease.

(iii) In fact, conditions (i) and (ii) are also necessary for optimality of θ∗ ∈ A .
This result could be derived using arguments from the calculus of variations.
It is much easier, however, to deduce this observation directly from our con-
struction of the unique optimal policy in section 3.

The proof of this theorem uses the following two lemmata and will be given at
the end of this section.

Lemma 2.4. A plan θ∗ ∈ A is optimal for problem (1) if for any θ ∈ A the
process ∇C(θ∗)− is P ⊗ dθ-integrable and we have

E

∫ ∞

0

∇C(θ∗)s dθ
∗
s ≤ E

∫ ∞

0

∇C(θ∗)s dθs .(4)

Proof. For θ ≡ ϑ the right side in (4) vanishes and therefore ∇C(θ∗)+ must be
P ⊗ dθ∗-integrable. This allows us to use the subgradient estimate of Lemma 2.1 to
obtain

C(θ) − C(θ∗) ≥ E

∫ ∞

0

∇C(θ∗)s d(θ − θ∗)s
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for any θ ∈ A with C(θ) < ∞. By (4), the right side in this estimate is nonnegative
and therefore θ∗ attains the minimum of C(.) over A as claimed.

The preceding lemma suggests that an optimal policy for our convex optimization
problem (1) should also be a solution to some linear minimization problem. Solutions
to this kind of linear minimization problem are characterized by the following result.

Lemma 2.5. Let φ ≤ 0 be an optional process of class (D) which is continuous
in expectation with φ∞ = 0. Let ψ denote its lower Snell envelope

ψS = ess inf
T∈T ([S,∞])

E [φT |FS ] (S ∈ T ),

and consider the corresponding Doob–Meyer decomposition ψ = M + A into a uni-
formly integrable martingale M and an increasing, predictable process A with A0 = 0.

Then θ∗ solves the linear optimization problem

Minimize E

∫ ∞

0

φs dθs subject to θ ∈ A

if it satisfies
(i) θ∗ is flat off {φ = ψ} and
(ii) A is flat off {θ∗ = ϑ}.

If the value of the above minimization problem is finite, these two conditions are also
necessary for optimality of θ∗ ∈ A .

Proof. As φ is of class (D) and continuous in expectation, so is its Snell envelope
ψ. In particular, ψ is a right-continuous process with left limits and its predictable
compensator A has continuous paths almost surely increasing to A∞ ∈ L1(P). More-
over, 0 = ψ∞ = M∞ + A∞ implies that ψS = E [AT −A∞ |FT ] for T ∈ T . For any
control policy θ ∈ A , this allows us to derive the following estimate:

E

∫ ∞

0

φt dθt ≥ E

∫ ∞

0

ψt dθt = E

∫ ∞

0

(At −A∞) dθt = −E

∫ ∞

0

(θt − ϑ) dAt(5)

≥ −E

∫ ∞

0

(ϑt − ϑ) dAt .

Indeed, the first estimate is due to φ ≥ ψ, the second equality follows by partial inte-
gration, and the last estimate holds true because dA ≥ 0 and θ ≤ ϑ by admissibility
of θ.

It is now easy to see that any θ∗ satisfying (i) and (ii) will yield equality everywhere
in (5). On the other hand, these two conditions are also necessary for a plan θ∗ to
minimize E

∫∞
0

φs dθs over θ ∈ A , provided the value of our linear minimization
problem is finite. This follows readily from (5) in conjunction with the identity

inf
θ∈A

E

∫ ∞

0

φs dθs = −E

∫ ∞

0

(ϑt − ϑ) dAt .(6)

To prove this identity, we introduce for n = 1, 2, . . . the sequence of stopping times

Tn
0

Δ
= inf{t ≥ 0 | φt = ψt},

Tn
j

Δ
= inf{t ≥ Tn

j−1 | φt = ψt, ϑt > ϑTn
j−1

+ 1/n} (j = 1, 2, . . .)

and consider the admissible control policy

θnt
Δ
=

∞∑
j=0

ϑTn
j +1(Tn

j ,Tn
j+1]

(t) (t ≥ 0) .
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For θ = θn we have equality in the first part of estimate (5), and so we obtain

E

∫ ∞

0

φs dθ
n
s = −E

∫ ∞

0

(θnt − ϑ) dAt .

It follows from general results on optimal stopping that dA is supported by the set
{t ≥ 0 | φt = ψt} almost surely. By definition of the stopping times Tn

j (j = 0, 1, . . .)

this entails that almost surely ϑt ≤ θnt +1/n for dA-a.e. t. We can thus conclude that

E

∫ ∞

0

φs dθ
n
s = −E

∫ ∞

0

(θnt − ϑ) dAt ≤ −E

∫ ∞

0

(ϑt − ϑ) dAt +
1

n
EA∞ .

For n ↑ ∞ this establishes the desired identity (6), accomplishing our proof.
It is now easy to give the following proof.
Proof of Theorem 2.2. Let θ∗ ∈ A be a policy such that θ∗ is flat off {∇C(θ∗) =

ψ(θ∗)} and A(θ∗) is flat off {θ∗ = ϑ}. Since k∞ = 0 entails ∇C(θ∗)∞ = 0, the process

ψ
Δ
=ψ(θ∗) ≤ 0 is actually the Snell envelope of both ∇C(θ∗) and φ

Δ
=∇C(θ∗) ∧ 0, an

optional process of class (D) which is continuous in expectation due to our assumptions
on c, k, and μ. As a consequence, the above flat off conditions entail that θ∗ actually
satisfies both optimality conditions of Lemma 2.5 for this choice of φ ≤ 0. It follows
that

E

∫ ∞

0

∇C(θ∗) dθ∗ = E

∫ ∞

0

φdθ∗ ≤ E

∫ ∞

0

φdθ = E

∫ ∞

0

∇C(θ∗) ∧ 0 dθ

for all θ ∈ A . Lemma 2.1 yields in particular that the left side of this estimate is
finite and it thus follows that ∇C(θ∗)− is P⊗dθ-integrable for all θ ∈ A . In addition,
the above estimate entails that θ∗ satisfies the first order condition (4), and so we can
use Lemma 2.4 to conclude that θ∗ is an optimal policy for problem (1).

Remark 2.6. For problems without fuel constraint (ϑ ≡ +∞), the integrability
assertion in Lemma 2.4 implies in particular that for an optimal policy θ∗ ∈ A the
gradient ∇C(θ∗) has to be nonnegative, i.e.,

kS ≥ −E

[∫ +∞

S

c′(t, θt)μ(dt)

∣∣∣∣FS

]
.

Moreover, condition (i) in Theorem 2.2 implies that equality must hold true in the
above relation whenever S is a time of intervention. This is in accordance with the
first order characterizations obtained for such problems in Bertola (1998) and Bank
and Riedel (2001).

3. Construction of an optimal policy. In this section, we shall show how to
use the first order characterization of the optimal policy provided by Theorem 2.2 in
order to construct the solution to the finite fuel problem (1). The construction will
be given in terms of a progressively measurable random process κ specifying a lower
bound which the optimal control should respect granted enough fuel is left to do so.
This lower bound is characterized as the optional solution κ to the representation
problem

kS = −E

[∫ ∞

S

c′(t, sup
s∈[S,t)

κs)μ(dt)

∣∣∣∣∣FS

]
for any S ∈ T .(7)
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Assumptions 1 and 2 ensure existence of a solution to this problem; see Theorem 3
in Bank and El Karoui (2004).

Theorem 3.1. Under Assumptions 1 and 2, the unique minimizer for prob-
lem (1) is given by

θ∗t
Δ
= sup

s∈[0,t)

{κs ∧ ϑs} ∨ ϑ (t ≥ 0) ,

where κ is the optional process solving the representation problem (7).
Remark 3.2. Note that the process κ does not depend on the bounds ϑ, ϑ describ-

ing the set of admissible policies. It thus can be viewed as a universal signal process
which yields optimal policies for a whole class of finite fuel problems.

Proof. Let us verify that the policy θ∗ ∈ A satisfies the first order conditions
derived in Theorem 2.2.

We first compute the lower Snell envelope S(θ∗) of ∇C(θ∗). To this end, consider
S, T ∈ T with S ≤ T and note that by definition of θ∗ and (7) we have

E [∇C(θ∗)T |FS ]

= E

[∫ ∞

T

{
c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs} ∨ ϑ

)
− c′

(
t, sup

s∈[T,t)

κs

)}
μ(dt)

∣∣∣∣∣FS

]

≥ E

[∫ ∞

T

{
c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs}
)
− c′

(
t, sup

s∈[T,t)

κs

)}
μ(dt)

∣∣∣∣∣FS

]

≥ E

[∫ ∞

T

{
c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs}
)
− c′

(
t, sup

s∈[S,t)

κs

)}
μ(dt)

∣∣∣∣∣FS

]

≥ E

[∫ ∞

S

{
c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs}
)
− c′

(
t, sup

s∈[S,t)

κs

)}
∧ 0μ(dt)

∣∣∣∣∣FS

]
.

Note that the last expression no longer depends on T ≥ S, thus providing a lower
bound for the Snell envelope S(θ∗). In fact, it coincides with this envelope since

we have equality in any of the above estimates for T = TS
Δ
= inf{t ≥ S | κt >

ϑt+}. This is easy to see for the first of these estimates since, by definition of TS ,
sups∈[0,TS ]{κs ∧ϑs} ≥ ϑTS+ ≥ ϑ, whence sups∈[0,t){κs ∧ϑs} ≥ ϑ for t > TS . Equality
for the second estimate can be deduced from the observation that TS is a point of
increase for sups∈[S,t) κs which yields sups∈[S,t) κs = sups∈[TS ,t) κs for t ∈ (TS ,∞].
Finally, equality for the third estimate holds true since

c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs}
)
− c′

(
t, sup

s∈[S,t)

κs

)
is

{
≥ 0 for t ∈ (S, TS ] ,

≤ 0 for t ∈ (TS ,+∞] ,

again by definition of TS . For later use, let us also note here that the stopping time
TS is actually the largest stopping time which attains

S(θ∗)S = ess inf
T∈T ([S,∞])

E [∇C(θ∗)T |FS ] ,

since the above difference is always nonpositive and actually strictly negative on some
nontrivial time interval starting at TS whenever TS < +∞.

Let us now verify the flat off conditions characterizing optimal plans as described
in Theorem 2.2. If S is a point of increase for θ∗, we have κS ≥ θ∗S+ = sups∈[0,TS ]{κs∧
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ϑs} ≥ ϑ, and so sups∈[S,t) κs ≥ sups∈[0,t){κs ∧ ϑs} ≥ ϑ for t ∈ (S,∞]. This allows us
to conclude that

S(θ∗)S = E

[∫ ∞

S

{
c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs}
)
− c′

(
t, sup

s∈[S,t)

κs

)}
∧ 0μ(dt)

∣∣∣∣∣FS

]

= E

[∫ ∞

S

{
c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs}
)
− c′

(
t, sup

s∈[S,t)

κs

)}
μ(dt)

∣∣∣∣∣FS

]

= E

[∫ ∞

S

c′
(
t, sup

s∈[0,t)

{κs ∧ ϑs} ∨ ϑ

)
μ(dt)

∣∣∣∣∣FS

]
+ kS = ∇C(θ∗)S .

So, θ∗ is indeed flat off {S(θ∗) = ∇C(θ∗)}.
If, on the other hand, S is a point of increase for the predictable compensator

A(θ∗) of S(θ∗), then, by classical results on optimal stopping, the only stopping time
in T ([S,+∞]) attaining S(θ∗)S is S itself. In particular, the maximal stopping time
TS determined above coincides with S: TS = S, i.e., S = inf{t ≥ S | κt > ϑt+} almost
surely. This implies κS ≥ ϑS+ and so θ∗S+ ≥ ϑS+ P-a.s. We deduce that almost surely

θ∗t = ϑt for any joint point of continuity t for both θ∗ and ϑ, i.e., for all but at most
countably many points t.

Hence, in order to deduce the desired flat off condition θ∗t = ϑt for dA(θ∗)-a.e. t,
it now suffices to note that A(θ∗) has continuous sample paths. This, however, holds
true because ∇C(θ∗)− and thus also S(θ∗) are continuous in expectation.

4. Applications. As an immediate consequence of Theorem 3.1 we obtain an
extension of a result in Karatzas (1985) from the Brownian case to our larger class of
finite fuel problems.

Corollary 4.1. The optimal control policy in problem (1) with finite fuel (ϑ ≡
const) is just the optimal control policy with infinite fuel (ϑ ≡ +∞) until all fuel has
been exhausted.

To obtain a more general result, let us note the following version of the dynamic
programming principle.

Corollary 4.2. For each stopping time S ∈ T , the process

θSt
Δ
= sup

s∈[S,t)

{κs ∧ ϑs} ∨ ϑ

attains

ess inf
θ∈A , θS=ϑ

E

[∫ ∞

S

c(t, θt)μ(dt) +

∫ ∞

S

kt dθt

∣∣∣∣FS

]
.(8)

In particular, θSS+ = ϑ ∨ lim supt↘S κt ∧ ϑS+ describes the initial policy decision one
has to take when starting to minimize costs at time S.

Proof. Define ϑ
S

t
Δ
=ϑ for t ≤ S and ϑ

S

t
Δ
=ϑt for t > S, and note that by Theo-

rem 3.1 θS is the optimal policy in the set of admissible policies A S corresponding

to ϑ
S

instead of ϑ. It thus attains infθ∈A S C(θ) and also

inf
θ∈A , θS=ϑ

E

[∫ ∞

S

c(t, θt)μ(dt) +

∫ ∞

S

kt dθt

]
= E

[∫ ∞

S

c(t, θSt )μ(dt) +

∫ ∞

S

kt dθ
S
t

]
.

It is easy to see that this infimum is actually the expectation of ess inf in (8). This,
however, allows us to conclude our assertion, since this essential infimum is always
less than E

[∫∞
S

c(t, θSt )μ(dt) +
∫∞
S

kt dθ
S
t

∣∣FS

]
almost surely.
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The preceding corollary can be used in two ways. On the one hand, it shows
that the process κ of (7) can be used to describe optimal solutions not only when
starting at time 0, but actually for any arbitrary initial time S ∈ T . On the other
hand, it allows us to deduce κ (at least partially) from the policies attaining (8). This
observation yields the following corollary.

Corollary 4.3. Let K be an optional process such that, for S ∈ T , KS = θSS+

is the initial value of the optimal policy for problem (8) when working under the fuel
constraint θSt ∈ [ϑ, ϑt] (t ≥ S). Then the optimal policy for problem (1) with fuel

constraint ϑ
′ ≤ ϑ is given by

θ′t
Δ
= sup

s∈[0,t)

{Ks ∧ ϑ
′
s} ∨ ϑ .

In particular, the solutions to the problem without fuel constraint (ϑ ≡ +∞) suf-
fice to determine the optimal policies for the problem with an arbitrary dynamic fuel
constraint.

4.1. Monotone follower problems. Let us now come back to the special case
of a monotone follower problem studied by Karatzas and Shreve (1984) which we used
to motivate the formulation of our general finite fuel problem (1) in section 1. We
wish to determine a control policy θ ∈ A which minimizes

C(θ)
Δ
= E

∫ ∞

0

δe−δt 1

2
(Wt − θt)

2 dt ,

where W is a standard Brownian motion. It follows from Theorem 3.1 that we can
solve this problem explicitly for an arbitrary ϑ by providing a solution to the repre-
sentation problem (7). In our present setting, this amounts to finding a progressively
measurable κ such that

E

[∫ ∞

S

δe−δt sup
s∈[S,t)

κs dt

∣∣∣∣∣FS

]
= e−δSWS for all S ∈ T .(9)

It is intuitively clear (and has been established formally in Karatzas (1985)) that
the optimal policy consists in reflecting the controlled Brownian motion at a certain

threshold c. This suggests that we consider the ansatz κs
Δ
=Ws − c for some constant

c ∈ R. Plugging this into (9) and using the independence and time-homogeneity of
the increments of W , it is easy to see that (9) will be satisfied if we choose

c
Δ
= E

∫ ∞

0

δe−δt sup
s∈[0,t)

Ws dt .

In fact, looking back, we see that the above reasoning will apply not only to Brownian
motion but actually to any Lévy process satisfying suitable integrability properties.

Corollary 4.4. Let X be a Lévy process such that E
∫∞
0

δe−δtX2
t dt < +∞.

Then the optimal policy for the monotone follower problem

Minimize C(θ)
Δ
= E

∫ ∞

0

δe−δt 1

2
(Xt − θt)

2 dt over θ ∈ A

is given by

θ∗t = sup
s∈[0,t)

{(Xs − c) ∧ ϑs} ∨ ϑ,
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where c
Δ
= E

∫∞
0

δe−δt sups∈[0,t) Xs dt < +∞.
Proof. We merely have to note that c < +∞ follows from the square-integrability

condition on X and Doob’s maximal inequality for the martingale (Xt −
tEX1)t≥0.

Remark 4.5. While Beneš, Shepp, and Witsenhausen (1980/81) study a practi-
cally identical cost functional, they allow for downward and upward displacement of
the particle: controls merely have to be of bounded variation. As they show, in this
situation the amount of fuel left becomes crucial for the optimal control decision so
that there is no longer a universal process like κ describing the optimal policy. Indeed,
one will accept larger distances of the controlled processes from the origin with little
fuel left than with a lot.

More generally, the above approach will allow us to explicitly describe optimal
control policies whenever the representation problem (9) can be solved explicitly for
a given process W , not necessarily Brownian motion. This is indeed possible for a
large class of diffusions, as shown in Bank and Föllmer (2003).

If, on the other hand, one wishes to consider a nonquadratic cost functional under
a dynamic finite fuel constraint, we can use Corollary 4.2 to reduce the construction
of an optimal policy to the unconstraint case with infinite fuel and make use of the
results of Chow, Menaldi, and Robin (1985) or Karatzas (1985).

4.2. Irreversible investments. Let us finally illustrate how Corollary 4.4 can
be used to extend the closed form solutions obtained for certain irreversible investment
problems in Kobila (1993) and Scheinkman and Zariphopoulou (2001) to incorporate
a dynamic finite fuel constraint.

Kobila (1993) studies the problem of maximizing a reward functional of (essen-
tially) the type

R(θ)
Δ
= E

∫ ∞

0

e−δtΠ(Xt, θt) dt,

where X is a geometric Brownian motion and Π = Π(x, ϑ) : (0,+∞)×R → R describes
the reward function. Apart from a number of technical conditions, Π is assumed to
be strictly concave in ϑ; see Condition (5.1) in Kobila (1993). All increasing, left-
continuous processes θ with θ ≥ ϑ = θ0 are considered admissible controls, i.e.,
ϑ ≡ +∞.

Taking a dynamic programming approach, the authors set up and explicitly solve
the Hamilton–Jacobi–Bellman equation for this problem. It turns out that the optimal
policy consists in keeping the problem’s state process (X, θ) away from a “forbidden”
region R of the form

R = {(x, ϑ) ∈ (0,+∞) × R | φ(x) > ϑ}

for an explicitly given continuous function φ. In particular, when starting at time
S ∈ T in θSS = ϑ ∈ R the optimal policy requires an initial jump to KS = ϑ∨φ(XS),
i.e., to the minimal ϑ ≥ ϑ such that (XS , ϑ) �∈ R.

It now follows from Corollary 4.4 that the region R computed in Kobila (1993) can
actually be used to solve the same problem with an arbitrary dynamic fuel constraint
ϑ �≡ +∞: the optimal policy still consists in keeping the state process away from the
region R, at least as long as enough fuel is left to do so. If this is not the case, one
has to wait until further supply of fuel becomes available (i.e., until ϑ increases) and
then use this fuel to move the state process as close as possible to the complement
of R.
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The problem studied in Scheinkman and Zariphopoulou (2001) can be viewed as
the problem in Kobila (1993) with an additional finite fuel constraint: ϑ = 0 and
ϑ = 1. Given our previous observation, this gives a probabilistic explanation for the
similarity of the explicit solution computed in Scheinkman and Zariphopoulou (2001)
to the results of Kobila (1993).
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Abstract. This paper discusses dynamical systems for disk-covering and sphere-packing prob-
lems. We present facility location functions from geometric optimization and characterize their
differentiable properties. We design and analyze a collection of distributed control laws that are
related to nonsmooth gradient systems. The resulting dynamical systems promise to be of use in
coordination problems for networked robots; in this setting the distributed control laws correspond to
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1. Introduction. Consider n sites (p1, . . . , pn) evolving within a convex polygon
Q according to one of the following interaction laws: (i) each site moves away from
the closest other site or polygon boundary, (ii) each site moves toward the furthest
vertex of its own Voronoi polygon, or (iii) each site moves toward a geometric center
(circumcenter, incenter, centroid, etc.) of its own Voronoi polygon. Recall that the
Voronoi polygon of the ith site is the closed set of points q ∈ Q closer to pi than to
any other pj .

These and related interaction laws give rise to strikingly simple dynamical systems
whose behavior remains largely unknown. What are the critical points of such dynam-
ical systems? What is their asymptotic behavior? Are these systems optimizing any
aggregate function? In what way do these local interactions give rise to distributed
systems? Does any biological ensemble evolve according to these behaviors and are
they of any engineering use in coordination problems? These are the questions that
motivate this paper.

Coordination in robotics, control, and biology. Coordination problems are
becoming increasingly important in numerous engineering disciplines. The deploy-
ment of large groups of autonomous vehicles is rapidly becoming possible because
of technological advances in computing, networking, and miniaturization of electro-
mechanical systems. These future multiple-vehicle networks will coordinate their
actions to perform challenging spatially distributed tasks (e.g., search and recovery
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operations, exploration, surveillance, and environmental monitoring for pollution de-
tection and estimation). This future scenario motivates the study of algorithms for
autonomy, adaptation, and coordination of multiple-vehicle networks. It is also impor-
tant to take into careful consideration all constraints on the behavior of the multiple-
vehicle network. Coordination algorithms need to be adaptive and distributed in order
for the resulting closed-loop network to be scalable, to comply with bandwidth limi-
tations, to tolerate failures, and to adapt to changing environments, topologies, and
sensing tasks. The interaction laws introduced above have these properties and, re-
markably, they optimize network-wide performance measures for meaningful spatially
distributed tasks.

Coordinated group motions are also a widespread phenomenon in biological sys-
tems. Some species of fish spend their lives in schools as a defense mechanism against
predators. Others travel as swarms in order to protect an area that they have claimed
as their own. Flocks of birds are able to travel in large groups and act as one unit.
Other animals exhibit remarkable collective behaviors when foraging and selecting
food. Certain foraging behaviors include individual animals partitioning their envi-
ronment in nonoverlapping individual zones whereas other species develop overlapping
team areas. These biological network systems possess extraordinary dynamic capa-
bilities without apparently following a group leader. Yet these complex coordinated
behaviors emerge while each individual has no global knowledge of the network state
and can only plan its motion according to the observation of its closest neighbors.

Facility location, nonsmooth stability analysis, and cooperative control.
To analyze the interaction laws introduced above we rely on concepts and methods
from various disciplines. Facility location problems play a prominent role in the field
of geometric optimization [1, 5]. Facility location pervades a broad spectrum of scien-
tific and technological areas, including resource allocation (where to place mailboxes
in a city or cache servers on the internet), quantization and information theory, mesh
and grid optimization methods, clustering analysis, data compression, and statistical
pattern recognition. Smooth multicenter functions for so-called centroidal Voronoi
configurations and smooth distributed dynamical systems are presented in [11, 14].
Multicenter functions are studied in resource allocation problems [13, 29] and in quan-
tization theory [16, 20]. The role of Voronoi tessellations and computational geometry
in facility location is discussed in [23, 26].

The notion and computational properties of the generalized gradient are thor-
oughly studied in nonsmooth analysis [9]. In particular, tools for establishing sta-
bility and convergence properties of nonsmooth dynamical systems are presented
in [3, 15, 27]. Finally, we refer to [17] for guidelines on how to design dynamical
systems for optimization purposes, and to [4] for gradient descent flows in distributed
computation in settings with fixed-communication topologies.

Recent years have witnessed a large research effort focused on motion planning
and formation control problems for multiple-vehicle systems [18, 22, 19, 24, 30, 31].
Within the literature on behavior-based robotics, heuristic approaches to the design
of interaction rules and emerging behaviors have been investigated (see [2] and refer-
ences therein). Along this specific line of research, no formal results guaranteeing the
correctness of the proposed algorithms or their optimality with respect to an aggre-
gate objective are currently available. The aim of this work is to design distributed
coordination algorithms for dynamic networks as well as to provide formal verifica-
tions of their asymptotic correctness. A key aspect of our treatment is the inherent
complexity of studying networks whose communication topology changes along the
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system evolution, as opposed to networks with fixed communication topologies. This
key aspect is present in the analysis of distributed control laws in [18, 30, 31] and of
agreement protocols in [24].

Statement of contributions. We consider two facility location functions from
geometric optimization that characterize coverage performance criteria. A collection
of sites provides optimal service to a domain of interest if (i) it minimizes the largest
distance from any point in the domain to one of the sites, or (ii) it maximizes the
minimum distance between any two sites. In other words, if P = (p1, . . . , pn) are n
sites evolving within a convex polygon Q, we extremize the multicenter functions

max
q∈Q

{
min

i∈{1,... ,n}
d(q, pi)

}
, min

i �=j∈{1,...,n}

{
1
2d(pi, pj), d(pi, ∂Q)

}
,

where d(p, q) and d(p, ∂Q) are the distances between p and q, and between p and
the boundary of Q, respectively. (The role of the 1

2 factor will become clear later.)
We study the differentiable properties of these functions via nonsmooth analysis. We
show the functions are globally Lipschitz and regular, we compute their generalized
gradients, and we characterize their critical points. Under certain technical condi-
tions, we show that the local minima of the first multicenter function are so-called
circumcenter Voronoi configurations, and that these critical points correspond to the
solutions of disk-covering problems. Similarly, under analogous technical conditions,
we show that the local maxima of the second multicenter function are so-called incen-
ter Voronoi configurations, and that these critical points correspond to the solutions
of sphere-packing problems.

Next, we aim to design distributed algorithms that extremize the multicenter
functions. Roughly speaking, by distributed we mean that the evolution of each site
depends at most on the location of its own Voronoi neighbors. We study the gener-
alized gradient flows induced by the multicenter functions using nonsmooth stability
analysis. Although these dynamical systems possess some convergence properties,
they are not amenable to distributed implementations. Next, drawing connections
with quantization theory, we consider two dynamical systems associated to each mul-
ticenter function. First, we consider a novel strategy based on the generalized gradient
of the 1-center functions of each site, and second, we consider a geometric centering
strategy similar to the well-known Lloyd algorithm [16, 20].

Remarkably, these strategies arising from the nonsmooth gradient information
have natural geometric interpretations and are indeed the local interaction rule de-
scribed earlier. For the first (respectively, second) multicenter function, the first
strategy corresponds to the interaction law “move toward the furthest vertex of own
Voronoi polygon” (respectively, “move away from the closest other site or polygon
boundary”), and the second strategy corresponds to the interaction law “move to-
ward circumcenter of own Voronoi polygon” (respectively, “move toward incenter of
own Voronoi polygon”). We prove the uniqueness of the solutions of the resulting
distributed dynamical systems and we analyze their asymptotic behavior using non-
smooth stability analysis, showing that the active sites will approach the correspond-
ing centers of their own Voronoi cells.

Two of our results are related to well-known conjectures in the locational opti-
mization literature [13, 29]: (i) that the first multicenter problem is equivalent to
a disk-covering problem (how to cover a region with possibly overlapping disks of
equal minimum radius), and (ii) that the generalized Lloyd strategy “move toward
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circumcenter of own Voronoi polygon” converges to the set of circumcenter Voronoi
configurations.

Organization. The paper is organized as follows. Section 2 provides the pre-
liminary concepts on Voronoi partitions, nonsmooth analysis, stability analysis, and
gradient flows, and introduces the multicenter problems. Section 3 presents a complete
treatment on the functions analysis and algorithm design for the 1-center problems.
Section 4 discusses the differentiable properties and the critical points of the multi-
center functions. Section 5 introduces a number of dynamical systems (smooth and
nonsmooth, distributed and nondistributed) and analyzes their asymptotic correct-
ness.

2. Preliminaries and problem setup. Let N ∈ N. We denote by ‖ · ‖ the
Euclidean distance function on RN and by v · w the scalar product of the vectors
v, w ∈ RN . Let vrs(v) denote the unit vector in the direction of 0 �= v ∈ RN , i.e.,
vrs(v) = v/‖v‖. Given a set S in RN , we denote its convex hull by co(S) and its
interior set by int(S). If S is a convex set in RN , let projS : RN → S denote the
orthogonal projection onto S and let DS : RN → R denote the distance function to S.
For R > 0, let BN (p,R) = {q ∈ RN | ‖p− q‖ ≤ R} and BN (p,R) = int(BN (p,R)). A
set {v1, . . . , vM} of vectors in RN positively spans RN if any w ∈ RN can be written

as w =
∑M

l=1 alvl, with al ≥ 0, l ∈ {1, . . . ,M}. The following simple lemma, e.g.,
see [8], characterizes this situation.

Lemma 2.1. Given a set {v1, . . . , vM} of M > N arbitrary vectors in RN , the
following statements are equivalent:

(i) {v1, . . . , vM} positively spans RN ;
(ii) 0 ∈ int(co{v1, . . . , vM});
(iii) for each w ∈ RN , there exists vi such that w · vi > 0.
Let Q be a convex simple polygon in R2. We denote by Ed(Q) = {e1, . . . , eL}

and Ve(Q) = {v1, . . . , vL} the set of edges and vertexes of Q, respectively. Let
P = (p1, . . . , pn) ∈ Qn ⊂ (R2)n denote the location of n points (which we will call
generators) in the space Q. Let πi : Qn → Q be the canonical projection onto the
ith factor, πi(p1, . . . , pn) = pi. Note that this mapping is surjective, continuous, and
open (the latter meaning that open sets of Qn are mapped onto open sets of Q).

2.1. Voronoi partitions. We present here some relevant concepts on Voronoi
diagrams and refer the reader to [12, 23] for comprehensive treatments. A partition
of Q is a collection of n polygons W = {W1, . . . ,Wn} with disjoint interiors whose
union is Q. Of course, more general types of partitions could be considered (as, for
instance, continuous deformations of the previous ones), but these will be sufficient
for our purposes. The Voronoi partition V(P ) = (V1(P ), . . . , Vn(P )) of Q generated
by the points (p1, . . . , pn) is defined by

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ ∀j �= i}.

For simplicity, we shall refer to Vi(P ) as Vi. Since Q is a convex polygon, the
boundary of each Vi is the union of a finite number of segments. If Vi and Vj share
an edge, i.e., Vi ∩ Vj is neither empty nor a singleton, then pi is called a (Voronoi)
neighbor of pj (and vice versa). All Voronoi neighboring relations are encoded in the
mapping N : Qn × {1, . . . , n} → 2{1,...,n}, where N (P, i) is the set of indexes of the
Voronoi neighbors of pi. Of course, j ∈ N (P, i) if and only if i ∈ N (P, j). We will
often omit P and instead write N (i).
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For P ∈ Qn, the vertexes of the Voronoi partition V(P ) are classified as follows:
the vertex v is

• of type (a) if it is the center of the circle passing through three generators
(say, pi, pj , and pk),

• of type (b) if it is the intersection between an edge of Q and the bisector
determined by two generators (say, e, pi, and pj), and

• of type (c) if it is a vertex of Q, i.e., it is determined by two edges of Q and
by the generator of a cell containing it (say, e, f , and pi).

Correspondingly, we shall write v(i, j, k), v(e, i, j), and v(e, f, i), respectively, when-
ever we are interested in making explicit the elements defining the vertex v. The
vertex v ∈ Ve(Vi(P )) is said to be nondegenerate if it is determined by exactly three
elements (e.g., as described above, three generators, or an edge and two generators, or
two edges and one generator), otherwise it is said to be degenerate. Further, the config-
uration P is said to be nondegenerate at the ith generator if all vertexes v ∈ Ve(Vi(P ))
are nondegenerate, otherwise P is degenerate at the ith generator. Finally, a configu-
ration P is said to be nondegenerate if all its vertexes are nondegenerate, otherwise
it is said to be degenerate. These concepts are illustrated in Figure 2.1.

va

vb

vd vcve

Fig. 2.1. A Voronoi partition with degenerate and nondegenerate vertexes. Vertexes va, vb,
and vc are nondegenerate vertexes of type (a), (b), and (c), respectively. Vertexes vd and ve are
degenerate.

For P ∈ Qn, the edges of the Voronoi partition V(P ) are classified as follows: the
edge e is

• of type (a) if it is a segment of the bisector determined by two generators
(say, pi, pj), and

• of type (b) if it is contained in the boundary of Q, i.e., it is a subset of an
edge of Q and it belongs to a single cell (say, the cell of the generator pi).

Correspondingly, we shall write e(i, j) and e(i), respectively, whenever we are inter-
ested in making explicit the elements defining the edge e. Further, when considering
an edge of type (a), we let ne(i,j) denote the unit normal to e(i, j) pointing toward
int(Vi(P )). When considering an edge of type (b), we let ne(i) denote the unit normal
to e(i) pointing toward int(Q).

2.2. The disk-covering and the sphere-packing problems. We are inter-
ested in the following locational optimization problems:

min
p1,... ,pn

{
max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}}
,(2.1)

max
p1,... ,pn

⎧⎪⎨⎪⎩ min
i,j∈{1,...,n}
i �=j, e∈Ed(Q)

{
1
2‖pi − pj‖,De(pi)

}⎫⎪⎬⎪⎭ .(2.2)
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The optimization problem (2.1) is referred to as the p-center problem in [13, 29].
Throughout the paper, we will refer to it as the multicircumcenter problem. In the
context of coverage control of mobile sensor networks [11], the multicircumcenter
problem corresponds to considering the worst case scenario, in which no information
is available on the distribution of the events taking place in the environment Q. The
network therefore tries to minimize the largest possible distance of any point in Q to
one of the generators’ locations given by p1, . . . , pn, i.e., to minimize the function

HDC(P ) = max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}
= max

i∈{1,...,n}

{
max
q∈Vi

‖q − pi‖
}

.

It is conjectured in [29] that this problem can be restated as a disk-covering problem:
how to cover a region with (possibly overlapping) disks of minimum radius. The
disk-covering problem then reads

min{R | ∪i∈{1,...,n} B2(pi, R) ⊇ Q} .

We shall present a proof of this statement in Theorem 4.7 below. Given a polytope
W in RN , its circumcenter, denoted by CC(W ), is the center of the minimum-radius
sphere that contains W . The circumradius of W , denoted by CR(W ), is the radius
of this sphere. We will say that P is a circumcenter Voronoi configuration if pi =
CC(Vi(P )), for all i ∈ {1, . . . , n}. We denote by VeDC(V(P )) the set of vertexes of the
Voronoi partition where the value HDC(P ) is attained, i.e., v ∈ VeDC(V(P )) if there
exists i such that v ∈ Vi(P ) and ‖v−pi‖ = HDC(P ). In such cases, we will often refer
to both the vertex v and the generator pi as active.

We will refer to the optimization problem (2.2) as the multi-incenter problem. In
the context of applications, this problem corresponds to the situation where we are
interested in maximizing the coverage of the area Q in such a way that the sensing
radius of the generators do not overlap (in order not to interfere with each other) or
leave the environment. We therefore consider the maximization of the function

HSP(P ) = min
i,j∈{1,...,n}
i �=j, e∈Ed(Q)

{
1
2‖pi − pj‖,De(pi)

}
= min

i∈{1,...,n}

{
min

q �∈int(Vi)
‖q − pi‖

}
.

A similar conjecture to the one presented above is that the multi-incenter problem
can be restated as a sphere-packing problem: how to maximize the coverage of a
region with nonoverlapping disks (contained in the region) of maximum radius. The
problem reads

max{R | ∪i∈{1,...,n} B2(pi, R) ⊆ Q , B2(pi, R) ∩B2(pj , R) = ∅} .

In Theorem 4.8 we provide a positive answer to this question. Given a polytope W
in RN , its incenter set (or Chebyshev center set; see [6]), denoted by IC(W ), is the
set of the centers of maximum-radius spheres contained in W . The inradius of W ,
denoted by IR(W ), is the common radius of these spheres. We will say that P ∈ Qn

is an incenter Voronoi configuration if pi ∈ IC(Vi(P )), for all i ∈ {1, . . . , n}. If P is an
incenter Voronoi configuration and each Voronoi region Vi(P ) has a unique incenter,
IC(Vi(P )) = {pi}, then we will say that P is a generic incenter Voronoi configuration.
We denote by EdSP(V(P )) the set of edges of the Voronoi partition where the value
HSP(P ) is attained; i.e., e ∈ EdSP(V(P )) if there exists i such that e ∈ Ed(Vi(P ))
and De(pi) = HSP(P ). In such cases, we will often refer to both the edge e and the
generator pi as active.
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2.3. Nonsmooth analysis. The following facts on nonsmooth analysis [9] will
be most helpful in analyzing the properties of the locational optimization functions
for the disk-covering and the sphere-packing problems, as well as the convergence of
the distributed algorithms we will propose to extremize them.

We begin by recalling some basic notions. A function f : RN → R is said to
be locally Lipschitz at x ∈ RN if there exist positive constants Lx and ε such that
|f(y) − f(y′)| ≤ Lx‖y − y′‖ for all y, y′ ∈ BN (x, ε). The function f is said to be
locally Lipschitz on S ⊂ RN if it is locally Lipschitz at x, for all x ∈ S. Note that
continuously differentiable functions at x are locally Lipschitz at x. On the other
hand, a function f : RN → R is said to be regular at x ∈ RN if for all v ∈ RN the
right directional derivative of f at x in the direction of v, denoted by f ′(x; v), exists
and coincides with the generalized directional derivative of f at x in the direction of v,
denoted by fo(x; v). The interested reader is referred to [9] for the precise definition
of these directional derivatives. Again, a continuously differentiable function at x is
regular at x. Also, a locally Lipschitz function at x which is convex is regular (cf.
Proposition 2.3.6 in [9]).

From Rademacher’s theorem [9], we know that locally Lipschitz functions are
differentiable almost everywhere (in the sense of Lebesgue measure). If Ωf denotes
the set of points in RN at which f fails to be differentiable and S denotes any other
set of measure zero, the generalized gradient of f is defined by

∂f(x) = co

{
lim

i→+∞
df(xi) | xi → x , xi �∈ S ∪ Ωf

}
.

Note that this definition coincides with df(x) if f is continuously differentiable at x.
A point x ∈ RN which verifies that 0 ∈ ∂f(x) is called a critical point of f . The
following result corresponds to Proposition 2.3.12 in [9].

Proposition 2.2. Let fk : RN → R, k ∈ {1, . . . ,m} be locally Lipschitz functions
at x ∈ RN and let f(x′) = max{fk(x′) | k ∈ {1, . . . ,m}}. Then,

(i) f is locally Lipschitz at x,
(ii) if I(x′) denotes the set of indexes k for which fk(x

′) = f(x′), we have

∂f(x) ⊂ co{∂fi(x) | i ∈ I(x)} ,(2.3)

and if fi, i ∈ I(x), is regular at x, then equality holds and f is regular at x.
The extrema of Lipschitz functions are characterized by the following result.
Proposition 2.3. Let f be a locally Lipschitz function at x ∈ RN . If f attains

a local minimum or maximum at x, then 0 ∈ ∂f(x), i.e., x is a critical point.

Let Ln : 2R
N → 2R

N

be the set-valued mapping that associates to each subset
S of RN the set of its least-norm elements Ln(S). If the set S is convex, then the
set Ln(S) reduces to a singleton and we note the equivalence Ln(S) = projS(0). In
this paper, we shall only apply this function to convex sets. For a locally Lipschitz
function f , we consider the generalized gradient vector field Ln(∂f) : RN → RN

given by x �→ Ln(∂f)(x) = Ln(∂f(x)). The following theorem (cf. [9]) establishes an
important feature of this vector field.

Theorem 2.4. Let f be a locally Lipschitz function at x. Assume 0 �∈ ∂f(x).
Then, there exists T > 0 such that

f(x− t Ln(∂f)(x)) ≤ f(x) − t

2
‖Ln(∂f)(x)‖2 , 0 < t < T .

The vector −Ln(∂f)(x) is called a direction of descent.
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2.4. Stability analysis via nonsmooth Lyapunov functions. Throughout
the paper, we will define the solutions of differential equations with discontinuous

right-hand sides in terms of differential inclusions [15]. Let F : RN → 2R
N

be a
set-valued map. Consider the differential inclusion

ẋ ∈ F (x) .(2.4)

A solution to this equation on an interval [t0, t1] ⊂ R is defined as an absolutely
continuous function x : [t0, t1] → RN such that ẋ(t) ∈ F (x(t)) for almost all t ∈
[t0, t1]. Given x0 ∈ RN , the existence of at least a solution with initial condition x0

is guaranteed by the following lemma.
Lemma 2.5. Let the mapping F be upper semicontinuous with nonempty, com-

pact, and convex values. Then, given x0 ∈ RN , there exists a local solution of (2.4)
with initial condition x0.

Now, consider the differential equation

ẋ(t) = X(x(t)) ,(2.5)

where X : RN → RN is measurable and essentially locally bounded. There are various
notions of solutions to discontinuous differential equations (see [7, Chapter 1] for a
comparative discussion between them). Here, we will understand the solution of this
equation in the Filippov sense, which we define in the following. For each x ∈ RN ,
consider the set

K[X](x) =
⋂
δ>0

⋂
μ(S)=0

co{X(BN (x, δ) \ S)} ,

where μ denotes the usual Lebesgue measure in RN . Alternatively, one can show [25]
that there exists a set SX of measure zero such that

K[X](x) = co

{
lim

i→+∞
X(xi) | xi → x , xi �∈ S ∪ SX

}
,

where S is any set of measure zero. A Filippov solution of (2.5) on an interval
[t0, t1] ⊂ R is defined as a solution of the differential inclusion ẋ ∈ K[X](x). Since

the multivalued mapping K[X] : RN → 2R
N

is upper semicontinuous with nonempty,
compact, convex values and locally bounded (cf. [15]), the existence of Filippov solu-
tions of (2.5) is guaranteed by Lemma 2.5.

A set M is weakly invariant (respectively, strongly invariant) for (2.5) if for each
x0 ∈ M , M contains a maximal solution (respectively, all maximal solutions) of (2.5).
Given a locally Lipschitz function f : RN → R, the set-valued Lie derivative of f with
respect to X at x is defined as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a ∀ζ ∈ ∂f(x)} .

For each x ∈ RN , L̃Xf(x) is a closed and bounded interval in R, possibly empty. If f is

continuously differentiable at x, then L̃Xf(x) = {df ·v | v ∈ K[X](x)}. If, in addition,

X is continuous at x, then L̃Xf(x) corresponds to the singleton {LXf(x)}, the usual
Lie derivative of f in the direction of X at x. The importance of the set-valued Lie
derivative stems from the next result [3].
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Theorem 2.6. Let x : [t0, t1] → RN be a Filippov solution of (2.5). Let f be a
locally Lipschitz and regular function. Then d

dt (f(x(t))) exists a.e. and d
dt (f(x(t))) ∈

L̃Xf(x(t)) a.e.
The following result is a generalization of the LaSalle principle for differential

equations of the form (2.5) with nonsmooth Lyapunov functions. The formulation is
taken from [3] and slightly generalizes the one presented in [27].

Theorem 2.7 (LaSalle principle). Let f : RN → R be a locally Lipschitz and
regular function. Let x0 ∈ RN and let f−1(≤ f(x0), x0) be the connected component of
{x ∈ RN | f(x) ≤ f(x0)} containing x0. Assume the set f−1(≤ f(x0), x0) is bounded

and assume either max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅ for all x ∈ f−1(≤ f(x0), x0).
Then f−1(≤ f(x0), x0) is strongly invariant for (2.5). Let

ZX,f = {x ∈ RN | 0 ∈ L̃Xf(x)} .

Then, any solution x : [t0,+∞) → RN of (2.5) starting from x0 converges to the
largest weakly invariant set M contained in ZX,f ∩ f−1(≤ f(x0), x0). Furthermore,
if the set M is a finite collection of points, then the limit of all solutions starting at
x0 exists and equals one of those points.

The proof of the last fact in the theorem statement is the same as in the smooth
case, since it only relies on the continuity of the trajectory. The next statement is
based on Theorem 2 of [25].

Proposition 2.8. Under the same assumptions of Theorem 2.7, if max L̃Xf(x) <
−ε < 0 a.e. on RN \ ZX,f , then ZX,f is attained in finite time.

Proof. Let x : [t0,+∞) → RN be a Filippov solution starting from x0. We argue
that there must exist T such that x(T ) ∈ ZX,f . Otherwise, we have

f(x(t)) = f(x(t0)) +

∫ t

t0

d

ds
f(x(s))ds < f(x(t0)) − ε(t− t0)

t→+∞−→ −∞ ,

contradicting the fact that f−1(≤ f(x0), x0) is strongly invariant and bounded.

2.5. Nonsmooth gradient flows. Finally, we are in a position to present the
nonsmooth analogue of well-known results on gradient flows. Given a locally Lipschitz
and regular function f , consider the following generalized gradient flow:

ẋ(t) = −Ln(∂f)(x(t)) .(2.6)

Theorem 2.4 guarantees that unless the flow is at a critical point, −Ln(∂f)(x) is
always a direction of descent at x. In general, the vector field Ln(∂f) in (2.6) is
discontinuous. We understand its solution in the Filippov sense. Note that since
f is locally Lipschitz, Ln(∂f) = df almost everywhere. An important observation
in this setting is that K[df ](x) = ∂f(x) (cf. [25]). The following result, which is a
generalization of the discussion in [3], guarantees the convergence of this flow to the
set of critical points of f .

Proposition 2.9. Let x0 ∈ RN and assume f−1(≤ f(x0), x0) is bounded. Then,
any solution x : [t0,+∞) → RN of (2.6) starting from x0 converges asymptotically to
the set of critical points of f contained in f−1(≤ f(x0), x0).

Proof. Let a ∈ L̃−Ln(∂f)f(x). By definition, there exists w ∈ K[−Ln(∂f)](x) =
−∂f(x) such that a = w · ζ for all ζ ∈ ∂f(x). In particular, for ζ = −w ∈ ∂f(x),

we have a = −‖w‖2 ≤ 0. Therefore, max L̃−Ln(∂f)f(x) ≤ 0 or L̃−Ln(∂f)f(x) = ∅.
Now, resorting to the LaSalle principle (Theorem 2.7), we deduce that any solution
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x : [t0,+∞) → RN starting from x0 converges to the largest weakly invariant set
contained in Z−Ln(∂f),f ∩ f−1(≤ f(x0), x0). Let us see that Z−Ln(∂f),f is equal to
L0 = {x ∈ Qn | 0 ∈ ∂f(x)}. Obviously, L0 ⊂ Z−Ln(∂f),f . Conversely, assume x ∈
Z−Ln(∂f),f . Then, 0 ∈ L̃−Ln(∂f)f(x); i.e., there exists v ∈ −∂f(x) such that ζ · v = 0
for all ζ ∈ ∂f(x). In particular, for ζ = −v, we get ‖v‖2 = 0, that is, v = 0 ∈ ∂f(x),
as desired. Note that Z−Ln(∂f),f = L0 is the equilibrium set of (2.6) and therefore

is weakly invariant. Finally, we prove that it is also closed. Let x ∈ Z−Ln(∂f),f and
consider a sequence {xk ∈ RN | k ∈ N} ⊂ Z−Ln(∂f),f such that xk → x. Then,
using the fact that the multivalued mapping K[−v] is upper semicontinuous, for any
ε > 0 there exists k0 such that for k ≥ k0, ∂f(xk) ⊂ ∂f(x) + BN (0, ε). Since
xk ∈ Z−Ln(∂f),f , then 0 ∈ ∂f(x) + BN (0, ε) for all ε > 0, and this implies that
0 ∈ ∂f(x), i.e., x ∈ Z−Ln(∂f),f . Hence the largest weakly invariant set contained

in Z−Ln(∂f),f ∩ f−1(≤ f(x0), x0) is Z−Ln(∂f),f ∩ f−1(≤ f(x0), x0) = {x ∈ f−1(≤
f(x0), x0) | 0 ∈ ∂f(x)}.

3. The 1-center problems. In this section we consider the disk-covering and
the sphere-packing problems with a single generator, i.e., n = 1. This treatment will
give us the necessary insight to tackle later the more involved multicenter version of
both problems. When n = 1, the minimization of HDC simply consists of finding the
center of the minimum-radius sphere enclosing the polygon Q. On the other hand, the
maximization of HSP corresponds to determining the center of the maximum-radius
sphere contained in Q. Let us therefore define the functions

lgQ(p) = max{‖q − p‖ | q ∈ Q} = max{‖v − p‖ | v ∈ Ve(Q)} ,
smQ(p) = min{‖q − p‖ | q �∈ int(Q)} = min{De(p) | e ∈ Ed(Q)} .(3.1)

When n = 1, we then have that HDC = lgQ : Q → R and HSP = smQ : Q → R.

3.1. Smoothness and critical points. We here discuss the smoothness prop-
erties and the critical points of the 1-center functions. Since the function lgQ is the
maximum of a (finite) set of convex functions in p, it is also a convex function [6].
Therefore, any local minimum of lgQ is also global.

Lemma 3.1. The function lgQ has a unique global minimum, which is the cir-
cumcenter of the polygon Q.

Proof. Let F : R → R be any continuous nondecreasing function. Then

F (lgQ(p)) = max{F (‖v − p‖) | v ∈ Ve(Q)} .

If we take F (x) = x2, each function ‖v − p‖2 is strictly convex, and hence F (lgQ(p))
is also strictly convex. Therefore, this latter function has a single minimum on Q.
Since any global minimum of lgQ is also a global minimum of F (lgQ(p)), we conclude
the result.

The function smQ is the minimum of a (finite) set of affine (hence, concave)
functions defined on the half-planes determined by the edges of Q, and hence it is
also a concave function [6] on the intersection of their domains, which is precisely Q.
Therefore, any local maximum of smQ is also global. However, this maximum is not
unique in general.

Lemma 3.2. The incenter set of the polygon Q is the set of maxima of the
function smQ and it is a segment.

Proof. It is clear that the set of maxima of smQ is IC(Q). As a consequence of
the concavity of smQ over the convex domain Q, one deduces that IC(Q) is a convex
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set. Now, assume there are three points p1, p2, p3 in IC(Q) which are not aligned.
Since B2(q, IR(Q)) ⊂ Q for all q ∈ co(p1, p2, p3) ⊂ IC(Q), and co(p1, p2, p3) has a
nonempty interior, there exist q0 ∈ Q and r > IR(Q) such that B2(q0, r) ⊂ Q, which
is a contradiction.

Note that the circumcenter of a polygon can be computed via the finite-step
algorithm described in [28]. The incenter set of a polygon can be computed via the
following linear program in q and r: maximize the radius r of the sphere centered at q
subject to the constraints that the distance between q and each of the polygon edges
is greater than or equal to r. Formally, the problem can be expressed as follows. For
each e ∈ Ed(Q), select a point qe ∈ Q belonging to e. Then, we set

maximize r ,

subject to (q − qe) · ne ≥ r ∀ e ∈ Ed(Q) .

In what follows, let us examine dynamical systems that compute these geometric
centers.

Proposition 3.3. The functions lgQ(p), − smQ(p) are locally Lipschitz and
regular, and their generalized gradients are given by

∂ lgQ(p) = co{vrs(p− v) | v ∈ Ve(Q) , lgQ(p) = ‖p− v‖} ,(3.2)

∂ smQ(p) = co{ne | e ∈ Ed(Q) , smQ(p) = De(p)} .(3.3)

Moreover,

0 ∈ ∂ lgQ(p) ⇐⇒ p = CC(Q) , 0 ∈ ∂ smQ(p) ⇐⇒ p ∈ IC(Q) ,(3.4)

and, if 0 ∈ int(∂ smQ(p)), then IC(Q) = {p}.
Proof. Given the expressions in (3.1) and Proposition 2.2, we deduce that lgQ

and − smQ are locally Lipschitz and regular, and that their generalized gradients are
given by (3.2) and (3.3), respectively. Concerning (3.4), the implications from right to
left in (3.4) readily follow from Proposition 2.3. As for the other ones, note that it is
sufficient to prove that p is a local minimum (respectively, that p is a local maximum).
We prove the result for the function lgQ. The proof for smQ is analogous. Assume
that 0 ∈ ∂ lgQ(p). Then there exist vertexes vi1 , . . . , viK of Q with lgQ(p) = ‖vil − p‖,
l ∈ {1, . . . ,K} such that 0 =

∑
l∈{1,...,K} λl vrs(p − vil), where

∑
l∈{1,...,K} λl = 1,

λl ≥ 0, l ∈ {1, . . . ,K}. Let U be a neighborhood of p and take q ∈ U . One can
show that there must exist l∗ such that (p − vil∗ ) · (q − p) ≥ 0, since otherwise
0 = 0 · (q − p) = (

∑
l∈{1,...,K} λl vrs(p − vil)) · (q − p) < 0, which is a contradiction.

Then

‖q − vil∗ ‖2 = ‖q − p‖2 + ‖p− vil∗ ‖2 − 2(q − p) · (vil∗ − p) ≥ ‖p− vil∗ ‖2 .

Therefore, lgQ(q) ≥ ‖p − vil∗ ‖ = lgQ(p), which shows that p is a local minimum.
Finally, if 0 ∈ int(∂ smQ(p)), then one can see that p is a strict local maximum.
Furthermore, there cannot be any other local (hence global) maximum of smQ, as we
now show. Assume p̄ ∈ IC(Q). By hypothesis, the sphere B2(p̄, smQ(p)) centered at
p̄ of radius smQ(p) is contained in Q. Consider the vector p̄−p. By Lemma 2.1, there
exists e ∈ Ed(Q) with De(p) = smQ(p) such that (p̄−p) ·ne > 0. Therefore, there are
points of B2(p̄, smQ(p)) which necessarily belong to the half-plane defined by e where
Q is not contained, which is a contradiction.
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3.2. Convergence properties for nonsmooth gradient flows. Here we study
the generalized gradient flows arising from the two 1-center functions. An immediate
consequence of Propositions 2.9 and 3.3 is the following result.

Corollary 3.4. The gradient flows of the functions lgQ and smQ,

ẋ(t) = −Ln(∂ lgQ)(x(t)) ,(3.5)

ẋ(t) = Ln(∂ smQ)(x(t)) ,(3.6)

converge asymptotically to the circumcenter CC(Q) and the incenter set IC(Q), re-
spectively.

The following two propositions discuss the convergence properties of the gradient
descents.

Proposition 3.5. If 0 ∈ int(∂ lgQ(CC(Q))), then the flow (3.5) reaches CC(Q)
in finite time.

Proof. Let us prove that there exists ε > 0 such that max L̃−Ln[lgQ] lgQ < −ε a.e.

on Q \ {CC(Q)}. Take p �= CC(Q). We know that each element a ∈ L̃−Ln[lgQ] lgQ(p)

can be expressed as a = −‖w‖2, with −w ∈ ∂ lgQ(p). Therefore, we have

max L̃−Ln[lgQ] lgQ(p) = −‖Ln[lgQ](p)‖2 .

If there is a single vertex of Q involved in ∂ lgQ(p), then moving along the direction
−Ln[lgQ](p) obviously decreases the distance to that vertex while maintaining con-
stant the norm of the least-norm element, which is 1. If there are two or more vertexes
involved, then the generalized gradient at p (cf. (3.2)) can be alternatively described
as a polygonal region of the form

{x ∈ RN | g1(x) ≤ 0, . . . , gs(x) ≤ 0},

where each gr is a linear function whose annihilation corresponds to a set of the form
co{vrs(p−vr,1), vrs(p−vr,2)} for certain vertexes vr,1, vr,2 of Q. Now, the computation
of the least-norm element in ∂ lgQ(p) can be formulated as the convex problem

minimize ‖x‖2

subject to g1(x) ≤ 0, . . . , gs(x) ≤ 0 .

Let x∗ = Ln[lgQ](p). Let R denote the set of indexes r for which gr(x
∗) = 0. Then

x∗ is a regular point [21], meaning that dgr(x
∗), r ∈ R are linearly independent

vectors. This is because the cardinality of R is at most 2 (since the intersection
of two lines already determines a point), and the gradients of the functions gr are
independent when considered pairwise. We apply then the Kuhn–Tucker first-order
necessary conditions for optimality [21] to conclude that there must exist r∗ ∈ R such
that gr∗(x

∗) = 0. It is easy to see that r∗ must be unique, since otherwise x∗ does not
have minimum norm. Therefore, we have that Ln[lgQ](p) is determined as the least-
norm element in co{vrs(p−vr∗,1), vrs(p−vr∗,2)}. As a consequence, moving along the
direction −Ln[lgQ](p) decreases the distance to the vertexes vr∗,1, vr∗,2, and hence
the norm of the least-norm element decreases. If, along the flow (3.5), a new vertex
of Q enters in the computation of ∂ lgQ(p(t)), then there can be a jump in the norm
of Ln[lgQ](p(t)), which by definition will always be decreasing. Finally, note that if
vr∗,1, vr∗,2 are active at the circumcenter, then they cannot be opposite with respect
to CC(Q). If this was the case, then the assumption that 0 lies in int(∂ lgQ(CC(Q)))



COORDINATION AND GEOMETRIC OPTIMIZATION 1555

would imply that there exists another vertex v of Q, which is active at the circumcenter
and lies in the half-plane defined by the line from vr∗,1 to vr∗,2 which does not contain
the point p(t). Therefore, the vertex v would be further away from p(t) than vr∗,1
and vr∗,2, which is a contradiction. Consequently, we conclude

‖Ln[lgQ](p)‖ ≥ ε = min
{
1, {‖Ln(co{vrs(CC(Q) − v), vrs(CC(Q) − w)})‖ |

v, w ∈ I(CC(Q)),CC(Q) − v �= −(CC(Q) − w)}
}
> 0 ∀p �= CC(Q) .

Resorting now to Proposition 2.8, we deduce that the circumcenter CC(Q) is attained
in finite time.

Remark 3.6. Note that if 0 ∈ ∂ lgQ(CC(Q))\ int(∂ lgQ(CC(Q))), then generically
convergence is achieved over an infinite time horizon.

Proposition 3.7. The flow (3.6) reaches the set IC(Q) in finite time.

Proof. Let p �∈ IC(Q). We know min L̃Ln[smQ] smQ(p) = ‖Ln[smQ](p)‖2. More-
over, for all p �∈ IC(Q), we have

‖Ln[smQ](p)‖ ≥ ε = min
{
1, {‖Ln(co{ne, nf})‖ | e, f ∈ Ed(Q), ne �= −nf}

}
> 0.

Resorting to Proposition 2.8, we deduce the desired result.
Figure 3.1 shows an example of the implementation of the gradient descent (3.5)

and (3.6). Note that if the circumcenter CC(Q) (respectively, the incenter set IC(Q))
is first computed offline, then the strategy of directly going toward it would con-
verge in a less “erratic” way. Note also that the move-toward-the-center strategy is
exponentially fast.

{v1, v2}

{v1, v3}

{v1, v4}

v6

v7
v5

v2

v4

v1 v3

{v1, v4, v6}

{v2}

CC(Q)

e1 e2

e3

e4

e5
e6

e7

{e4, e7}

{e2, e4, e7}

{e5, e7}

{e5, e6}
{e5}

IC(Q)

Fig. 3.1. Illustration of the gradient descent of lgQ and smQ. The points where the curve
t �→ p(t) fails to be differentiable correspond to points where there is a new vertex v of Q such
that ‖p(t) − v‖ = lgQ(p(t)) (respectively, a new edge e of Q such that De(p(t)) = smQ(p(t))). The
circumcenter and the incenter are attained in finite time according to Propositions 3.5 and 3.7.

Finally, we conclude this section with four results useful for later developments.
Lemma 3.8. Let q ∈ Q, let v(q) be one of the vertexes of Q which is furthest

away from q, and let e(q) be one of the edges of Q which is nearest to q. Then
(i) Ln[lgQ](q) · (q − v(q)) ≥ 0, and the inequality is strict if q �= CC(Q),
(ii) (q − CC(Q)) · (q − v(q)) ≥ ‖q − CC(Q)‖2/2,
(iii) Ln[smQ](q) · ne ≥ 0, and the inequality is strict if q �∈ IC(Q), and
(iv) (x−q) ·ne ≥ IR(Q)−De(q) ≥ 0 for any x ∈ IC(Q), and the second inequality

is strict if q �∈ IC(Q).
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Proof. Let q be a point in Q. If q = CC(Q), claims (i) and (ii) are obviously
satisfied since Ln[lgQ](q) = 0. Assume then that q �= CC(Q).

Let us prove (i) first. By Proposition 3.3, 0 �∈ ∂ lgQ(q), and hence Ln[lgQ](q) �= 0.
Let us prove Ln[lgQ](q) · (q − v(q)) > 0 reasoning by contradiction. If Ln[lgQ](q) ·
(q− v(q)) ≤ 0, then d/dt

(
‖q − tLn[lgQ](q) − v‖

)
t=0

= vrs(q− v) · (−Ln[lgQ](q)) ≥ 0,
which implies that ‖q − tLn[lgQ](q) − v‖ ≥ ‖q − v‖ = lgQ(q) for t > 0 small enough.
On the other hand, invoking Theorem 2.4 we have that lgQ(q) − t‖Ln[lgQ](q)‖2/2 ≥
lgQ(q − tLn[lgQ](q)) ≥ ‖q − tLn[lgQ](q) − v‖. Gathering both facts, we conclude
−t‖Ln[lgQ](q)‖2/2 ≥ 0, which is a contradiction.

Let us now prove (ii). Since q �= CC(Q), we have ‖q − v(q)‖ > CR(Q). Consider
then a ball B2(v(q), ‖q − v(q)‖) centered at the vertex v(q) with radius ‖q − v(q)‖.
By definition of the circumcenter, CC(Q) must lie in the interior of B2(v(q), ‖q −
v(q)‖). Consequently, ‖CC(Q)− v(q)‖ < ‖q− v(q)‖. Then, from ‖CC(Q)− v(q)‖2 =
‖CC(Q) − q‖2 + ‖q − v(q)‖2 − 2(q − CC(Q)) · (q − v(q)), we deduce

2(q − CC(Q)) · (q − v(q)) − ‖CC(Q) − q‖2 = ‖q − v(q)‖2 − ‖CC(Q) − v(q)‖2 > 0 ,

which implies the desired result.
Let us now prove (iii). If q ∈ IC(Q), the claim is obviously satisfied since

Ln[smQ](q) = 0. Assume then that q �∈ IC(Q). By Proposition 3.3, 0 �∈ ∂ smQ(q), and
hence Ln[smQ](q) �= 0. Let us prove Ln[smQ](q) · ne > 0 reasoning by contradiction.
If Ln[smQ](q) · ne ≤ 0, then d/dt (De(q + tLn[smQ](q)))t=0 = ne · Ln[smQ](q) ≤ 0,
which implies that De(q + tLn[smQ](q)) ≤ De(q) = smQ(q) for t > 0 small enough.
On the other hand, invoking Theorem 2.4 for the function − smQ, we have that
smQ(q) + t‖Ln[smQ](q)‖2/2 ≤ smQ(q + tLn[smQ](q)) ≤ De(q + tLn[smQ](q)). Gath-
ering both facts, we conclude t‖Ln[smQ](q)‖2/2 ≤ 0, which is a contradiction.

Let us now prove (iv). By definition, De(q) ≤ IR(Q). This inequality is strict if
q �∈ IC(Q). Let x ∈ IC(Q). If we take a point O in the edge e, then the function De

can be expressed as De(p) = (p−O) · ne. Then, we have

De(x) = (x−O) · ne = (x− q) · ne + (q −O) · ne = (x− q) · ne + De(q) .

Since De(x) ≥ smQ(x) = IR(Q), we conclude that (x− q) · ne ≥ IR(Q) − De(q) ≥ 0,
and that the second inequality is strict if q �∈ IC(Q).

4. Analysis of the multicenter functions. Here we study the locational opti-
mization functions HDC and HSP for the disk-covering and sphere-packing problems.
We characterize their smoothness properties, generalized gradients, and critical points
for arbitrary numbers of generators.

4.1. Smoothness and generalized gradients. We start by providing some
alternative expressions and useful quantities. We write

HDC(P ) = max
i∈{1,...,n}

Gi(P ) , HSP(P ) = min
i∈{1,...,n}

Fi(P ) ,

where

Gi(P ) = max
q∈Vi(P )

‖q − pi‖ , Fi(P ) = min
q �∈int(Vi(P ))

‖q − pi‖ .

Note that Gi(P ) = lgVi(P )(pi) and Fi(P ) = smVi(P )(pi), where, for i ∈ {1, . . . , n},

lgVi
: Vi → R , smVi : Vi → R .
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Proposition 3.3 provides an explicit expression for the generalized gradients of lgVi

and smVi
when the Voronoi cell Vi is held fixed. Despite the slight abuse of notation, it

is convenient to let ∂ lgVi(P )(pi) denote ∂ lgV (pi)|V =Vi(P ) and let ∂ smVi(P )(pi) denote
∂ smV (pi)|V =Vi(P ).

In contrast to this analysis at fixed Voronoi partition, the properties of the func-
tions Gi and Fi are strongly affected by the dependence on the Voronoi partition
V(P ). We endeavor to characterize these properties in order to study HDC and HSP.

Proposition 4.1. The functions Gi,−Fi : Qn → R are locally Lipschitz and
regular. As a consequence, the locational optimization functions HDC,−HSP : Qn →
R are locally Lipschitz and regular.

Proof. (a) Gi is locally Lipschitz and regular. The definition of the function Gi

admits the following alternative expression:

Gi(P ) = max
v∈Ve(Vi)

‖pi − v‖ .(4.1)

Let P0 be nondegenerate at the ith generator. Then there exists a neighborhood
U of P0 where the set N (i) does not change. Let {v1, . . . , vM1

}, {w1, . . . , wM2
},

{z1, . . . , zM3} be the vertexes of Vi of types (a), (b), and (c), respectively. Then Gi

can be locally written as

Gi(P ) = max

{
max

�∈{1,...,M1}
‖v� − pi‖, max

�∈{1,...,M2}
‖w� − pi‖, max

�∈{1,...,M3}
‖z� − pi‖

}
for all P ∈ U . Therefore, Gi restricted to U coincides with the function GN (i) : Qn →
R defined by

GN (i)(P ) = max

{
max

�∈{1,...,M1}
‖v� − pi‖, max

�∈{1,...,M2}
‖w� − pi‖, max

�∈{1,...,M3}
‖z� − pi‖

}
.

(4.2)

The function GN (i) is the maximum of a fixed finite set of locally Lipschitz and regular
functions and, consequently, locally Lipschitz and regular by Proposition 2.2. We
conclude that Gi is both locally Lipschitz and regular at P0.

Let P0 be degenerate at the ith generator. Then in any neighborhood U of
P0 there are different sets of neighbors of the ith generator. Indeed, because the
number of generators, edges of the boundary Q, and vertexes of Q is finite, there is
only a finite number of different sets of neighbors of the ith generator over U , say
N 1(i), . . . ,NL(i). This implies that Gi admits the alternative expression Gi(P ) =
min

{
GN 1(i)(P ), . . . ,GNL(i)(P )

}
over U . From this expression, one can conclude that

Gi is both locally Lipschitz and regular at P0.
(b) −Fi is locally Lipschitz and regular. From the definition of Fi, it is clear that

its value at a configuration P is attained at the boundary of the Voronoi region Vi.
Therefore, one only minimizes among the edges associated with the Voronoi neighbors
N (i) and the edges of Q with nonempty intersection with Vi. Moreover, one can also
see that the minimum must be attained at a point of the form proje(pi), for some
edge e of Vi. Now, consider the function Fi : Qn → R defined by

Fi(P ) = min

{
min

j∈{1,...,n}
‖pi −

pi + pj
2

‖ , min
e∈Ed(Q)

De(pi)

}
.(4.3)

We shall prove that Fi coincides with Fi. Clearly, Fi(P ) ≤ Fi(P ). If k �∈ N (i), then
(pi + pk)/2 �∈ Vi. Since Q \Vi is open, there exists a neighborhood of (pi + pk)/2 such
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that U ⊂ Q/Vi. Therefore,

‖pi −
pi + pk

2
‖ > min

q∈U
‖pi − q‖ ≥ min

q �∈int(Vi)
‖pi − q‖ = Fi(P ) .

If an edge e of Q does not intersect Vi, then proje(pi) �∈ Vi. Using again the fact that
Q\Vi is open, there exists a neighborhood U of proje(pi) in R2 such that U∩Q ⊂ Q\Vi.
Then

De(pi) = ‖pi − proje(pi)‖ > min
q∈U∩Q

‖pi − q‖ ≥ Fi(P ) .

As a consequence of the previous inequalities, Fi equals FN (i). Resorting now to
Proposition 2.2, we conclude that −Fi is locally Lipschitz and regular.

Next, one can actually prove the following stronger result.
Proposition 4.2. The locational optimization functions HDC,HSP : Qn → R

are globally Lipschitz, with Lipschitz constant equal to 1.
Proof. (a) HDC is globally Lipschitz. Let P , P ′ be two configurations of the n

generators. Without loss of generality, assume that HDC(P ) ≤ HDC(P ′). Let i, j
and q0, q

′
0 ∈ Q be such that HDC(P ) = Gi(P ) = ‖q0 − pi‖ and HDC(P ′) = Gj(P

′) =
‖q′0 − p′j‖. Now consider the set B2(q

′
0, Gi(P )). Then there exists a k such that

pk ∈ B2(q
′
0, Gi(P )) (otherwise, ‖q′0 − pl‖ > Gi(P ), which contradicts the definition of

the function HDC). On the other hand, we necessarily have that p′k �∈ B2(q
′
0, Gj(P

′)),
since otherwise ‖q′0 − p′k‖ < ‖q′0 − p′j‖, which implies that q′0 �∈ V ′

j , a contradiction.
Finally, we apply the triangle inequality to obtain ‖q′0 − p′k‖ ≤ ‖q′0 − pk‖+ ‖pk − p′k‖.
Gathering the previous facts, we have

|HDC(P ′) −HDC(P )| = Gj(P
′) −Gi(P )

≤ ‖q′0 − p′k‖ − ‖q′0 − pk‖ ≤ ‖pk − p′k‖ ≤ ‖P − P ′‖ .

(b) HSP is globally Lipschitz. Let P , P ′ be two configurations of the n generators.
Without loss of generality, assume that HSP(P ) ≤ HSP(P ′). Let i, j and q0, q

′
0 ∈ Q

be such that HSP(P ) = Fi(P ) = ‖q0 − pi‖ and HSP(P ′) = Fj(P
′) = ‖q′0 − p′j‖. We

treat separately the following two cases: (i) q0 does not belong to the boundary of Q,
and (ii) q0 belongs to the boundary of Q. In case (i), it necessarily exists k ∈ N (i)
such that ‖q0 − pi‖ = ‖q0 − pk‖. If ‖q0 − p′i‖ ≥ Fj(P

′), then

|HSP(P ′) −HSP(P )| = Fj(P
′) − Fi(P ) ≤ ‖q0 − p′i‖ − ‖q0 − pi‖

≤ ‖pi − p′i‖ ≤ ‖P − P ′‖ .(4.4)

If, on the contrary, ‖q0 − p′i‖ < Fj(P
′), then q0 ∈ int(V ′

i ). Therefore, ‖q0 − p′k‖ ≥
Fk(P

′) ≥ Fj(P
′). Now we perform the same computation as in (4.4) to conclude

|HSP(P ′) −HSP(P )| ≤ ‖P − P ′‖.
In case (ii), we prove that ‖q0 − p′i‖ ≥ Fj(P

′). Suppose this is not true, i.e.,
‖q0 − p′i‖ < Fj(P

′). Let m = q0 + ε(q0 − p′i), with sufficiently small ε > 0 such that
‖m−p′i‖ < Fj(P

′). Clearly m �∈ Q. On the other hand, by definition B2(p
′
i, Fi(P

′)) ⊂
V ′
i . Now we have

B2(p
′
i, Fj(P

′)) ⊂ B2(p
′
i, Fi(P

′)) ⊂ V ′
i ⊂ Q .

But since ‖m− p′i‖ < Fj(P
′), then m ∈ B2(p

′
i, Fj(P

′)) ⊂ Q, which is a contradiction.
Therefore, ‖q0 − p′i‖ ≥ Fj(P

′), and now the same argument as in (4.4) guarantees
that |HSP(P ′) −HSP(P )| ≤ ‖P − P ′‖.
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Fig. 4.1. To illustrate (4.5) we draw the vectors proje(pj − v(e, i, j)) and proje(pj − pi) for
various locations of pi, pj , and e. The left, center, and right figures correspond to λ(e, i, j) > 0,
λ(e, i, j) = 0, λ(e, i, j) < 0, respectively.

We now introduce some quantities that are useful in characterizing the generalized
gradient of the functions Gi. Given a vertex of type (b), v = v(e, i, j), determined
by the edge e and two generators pi and pj , we consider the scalar function λ(e, i, j)
defined by

proje(pj − v(e, i, j)) = λ(e, i, j) proje(pj − pi) ,(4.5)

where recall that proje denotes the orthogonal projection onto the edge e; see Fig-
ure 4.1. One can see that λ(e, i, j) + λ(e, j, i) = 1. If e is a segment in the line
ax + by + c = 0, (Δxij ,Δyij) = pj − pi, (xm, ym) = (pi + pj)/2, then one can show

λ(e, i, j) =
1

2
− (aΔxij + bΔyij)(axm + bym + c)

(aΔyij − bΔxij)2
.(4.6)

Given a vertex of type (a), v = v(i, j, k), determined by the three generators pi, pj ,
and pk, we consider the scalar function μ(i, j, k) defined by

projejk(p� − v(i, j, k)) = μ(i, j, k) projejk(p� − pi) ,(4.7)

where ejk is the bisector of pj and pk and where p� = pj if pj belongs to the half-plane
defined by ejk containing pi, and p� = pk otherwise. One can see that μ(i, j, k) =
μ(i, k, j) and that μ(i, j, k) + μ(j, k, i) + μ(k, i, j) = 1. From the expression for λ, one
can obtain

μ(i, j, k) =
1

2
+

(ΔxijΔxjk + ΔyijΔyjk)(ΔxikΔxjk + ΔyikΔyjk)

2(xkΔyij − xjΔyik + xiΔyjk)2
.(4.8)

Note that, in general, λ and μ are not positive functions. Now we are ready to describe
in detail the structure of the generalized gradient of the functions Gi, Fi.

Proposition 4.3. The generalized gradient of Gi : Qn → R at P ∈ Qn is

∂Gi(P ) = co{∂vGi(P ) ∈ (R2)n | v ∈ Ve(Vi(P )) such that Gi(P ) = ‖pi − v‖},

where we consider separately the following cases. If v = v(i, j, k) is a nondegenerate
vertex of type (a), then

∂v(i,j,k)Gi(P ) = ∂v(k,i,j)Gk(P ) = ∂v(j,k,i)Gj(P )

= (0, . . . , μ(i, j, k) vrs(pi − v)︸ ︷︷ ︸
ith place

, . . . , μ(j, k, i) vrs(pj − v)︸ ︷︷ ︸
jth place

, . . . , μ(k, i, j) vrs(pk − v)︸ ︷︷ ︸
kth place

, . . . , 0),
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where, without loss of generality, we let i < j < k. If v = v(e, i, j) is a nondegenerate
vertex of type (b), then

∂v(e,i,j)Gi(P ) = ∂v(e,j,i)Gj(P )

= (0, . . . , λ(e, i, j) vrs(pi − v)︸ ︷︷ ︸
ith place

, . . . , λ(e, j, i) vrs(pj − v)︸ ︷︷ ︸
jth place

, . . . , 0),

where, without loss of generality, we let i < j. If v = v(e, f, i) is a nondegenerate
vertex of type (c), then

∂v(e,f,i)Gi(P ) = (0, . . . , 0, vrs(pi − v)︸ ︷︷ ︸
ith place

, 0, . . . , 0).

Finally, if the vertex v is degenerate, i.e., if v is determined by d > 3 elements
(generators or edges), then there are

(
d−1
2

)
pairs of elements which determine the

vertex v together with the generator pi. In this case, ∂vGi(P ) is the convex hull of
∂v(α,β,γ)Gi(P ) for all

(
d−1
2

)
such triplets (α, β, γ).

Note that, at all nondegenerate configurations P , the quantity ∂vGi(P ) is the
generalized gradient of the function (p1, . . . , pn) �→ ‖pi − v(i, j, k)‖; however, this
interpretation cannot be given when P is degenerate.

Proof. We present the proof for the expression for ∂Gi(P ). Let us consider first
the case when P is a nondegenerate configuration for the ith generator. According to
the proof of Proposition 4.1, Gi coincides with the function GN (i) over a neighborhood
U of P . Hence, ∂Gi(P ) = ∂GN (i)(P ) which, according to (4.2) and Proposition 2.2,
takes the form

co

{
∂

∂P
‖v − pi‖ | v ∈ Ve(Vi(P )) such that ‖v − pi‖ = Gi(P )

}
.

If v = v(i, j, k) is a nondegenerate vertex of type (a), then one can compute

∂

∂pi
‖pi − v(i, j, k)‖ = vrs(pi − v)

(
I2 −

∂v

∂pi

)
= μ(i, j, k) vrs(pi − v) ,

∂

∂pj
‖pi − v(i, j, k)‖ = − vrs(pi − v)

(
∂v

∂pj

)
= μ(j, k, i) vrs(pj − v) ,

∂

∂p�
‖pi − v(i, j, k)‖ = 0 , � �= i, j, k ,

where in the first and second chain of equalities we have used the expression of μ
given in (4.8). If v = v(e, i, j) is a nondegenerate vertex of type (b), then one can
compute

∂

∂pi
‖pi − v(e, i, j)‖ = vrs(pi − v)

(
I2 −

∂v

∂pi

)
= λ(e, i, j) vrs(pi − v) ,

∂

∂pj
‖pi − v(e, i, j)‖ = − vrs(pi − v)

(
∂v

∂pj

)
= λ(e, j, i) vrs(pj − v) ,

∂

∂p�
‖pi − v(e, i, j)‖ = 0 , � �= i, j ,
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where in the first and second chain of equalities we have used the expression of λ
given in (4.6). If v = v(e, f, i) is a nondegenerate vertex of type (c), then

∂

∂pi
‖pi − v(e, f, i)‖ = vrs(pi − v) ,

∂

∂p�
‖pi − v(e, f, i)‖ = 0 , � �= i .

If P is a degenerate configuration at the ith generator, then, following the proof of
Proposition 4.1, the generalized gradient of Gi can be expressed as the convex hull of
the generalized gradients of each of the functions GN 1(i), . . . ,GNL(i). The claim now
follows by reproducing the previous discussion for the generalized gradients of each of
the functions GN �(i), � ∈ {1, . . . , L}.

The expression for ∂Fi(P ) can be deduced in an analogous (and simpler) way,
since according to the proof of Proposition 4.1, it is not necessary to establish any dis-
tinction between the degenerate and the nondegenerate configurations. Accordingly,
we state the following result without proof.

Proposition 4.4. The generalized gradient of Fi : Qn → R at P ∈ Qn is

∂Fi(P ) = co{∂eFi(P ) ∈ (R2)n | e ∈ Ed(Vi(P )) such that Fi(P ) = De(pi)}

where, if e = e(i, j) is an edge of type (a), then

∂e(i,j)Fi(P ) = ∂e(j,i)Fj(P ) =
1

2
(0, . . . , ne(i,j)︸ ︷︷ ︸

ith place

, . . . ,−ne(i,j)︸ ︷︷ ︸
jth place

, . . . , 0),

and if e = e(i) is an edge of type (b), then

∂e(i)Fi(P ) = (0, . . . , ne(i)︸︷︷︸
ith place

, . . . , 0).

Next, we give conditions under which the functions λ and μ take positive values.
Lemma 4.5. Let P ∈ Qn and let v ∈ VeDC(V(P )). Then
(i) if v belongs to an edge e of Q, then there exist generators pi and pj such that

λ(e, i, j) and λ(e, j, i) are positive, and
(ii) if v belongs to int(Q), then there exist generators pi, pj, and pk such that

μ(i, j, k), μ(j, k, i), and μ(k, i, j) are positive.
Proof. Consider first the case when v is nondegenerate. If v is in the edge e of Q

(i.e., v is of type (b)), let pi and pj be the two generators determining it. From the
definition of λ, one sees that the values λ(e, i, j) = 0 and λ(e, j, i) = 0 correspond to,
respectively, pj and pi lying on the orthogonal line to e passing through v(e, i, j). If
λ(e, i, j) ≤ 0, then there exists w ∈ e ∩ Vj such that ‖pj − w‖ > ‖pj − v‖ = HDC(P ),
which is a contradiction. Therefore, λ(e, i, j) > 0. The same argument guarantees
λ(e, j, i) > 0. If v is of type (a) and pi, pj , and pk are the elements determining it,
a similar argument leads to the conclusion that μ(i, j, k), μ(j, k, i), and μ(k, i, j) are
positive.

Consider the case when v is degenerate. Let {i1, . . . , im} be such that v ∈ Vi� ,
� ∈ {1, . . . ,m}. Assume v is in an edge e of Q. Let l denote the orthogonal line
to the edge e passing through v. We claim that there must exist generators i, j
in {i1, . . . , im} on both sides of l (and, therefore, the values of the corresponding
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λ(e, i, j) and λ(e, j, i) are positive; cf. Figure 4.1). Assume this is not the case,
i.e., {pi1 , . . . , pim} are contained in one of the closed half-planes defined by l, say
l−. Take w ∈ l+ ∩ e arbitrarily close to v. Since {pi1 , . . . , pim} ⊂ l−, we have
‖pi� − w‖ > ‖pi� − v‖ for all � ∈ {1, . . . ,m}. On the other hand, since no generator
outside the set {pi1 , . . . , pim} is involved in the definition of v, there must exist �∗

such that w ∈ Vi�∗ . Therefore, Gi�∗ (P ) ≥ ‖pi�∗ −w‖ > ‖pi�∗ −v‖ = HDC(P ), which is
a contradiction. Assume now that v ∈ int(Q). Our claim is that for any line l passing
through v, there must exist generators on both sides of l (by (4.7), this would imply
(ii)). If this is not the case, i.e., {pi1 , . . . , pim} ⊂ l−, then take w ∈ B2(v, ε) ∩ l+ ∩ o,
where o denotes the orthogonal line to l passing through v. As before, w ∈ Vi�∗ for
some �∗ and ‖pi�∗ − w‖ > ‖pi�∗ − v‖, which yields a contradiction.

This completes our analysis of the generalized gradients of Gi and Fi and, with
these results, we return to studying the generalized gradients of HDC and HSP. An
immediate consequence of Propositions 2.2 and 4.1 is that

∂HDC(P ) = co{∂Gi(P ) | i ∈ I(P )} ,
∂HSP(P ) = co{∂Fi(P ) | i ∈ I(P )} .(4.9)

Furthermore, we can provide the following more detailed characterization.
Proposition 4.6. Let P ∈ Qn. For each i ∈ {1, . . . , n}, the image by πi of the

generalized gradients of HDC and HSP at P is given by

πi(∂HDC(P )) =

⎧⎪⎨⎪⎩
πi(∂Gi(P )) if i ∈ I(P ) , VeDC(V(P )) ⊂ Ve(Vi(P )),

co{πi(∂Gi(P )), 0} if i ∈ I(P ) , VeDC(V(P )) �⊂ Ve(Vi(P )),

0 if i �∈ I(P );

πi(∂HSP(P )) =

⎧⎪⎨⎪⎩
πi(∂Fi(P )) if i ∈ I(P ) , EdSP(V(P )) ⊂ Ed(Vi(P )),

co{πi(∂Fi(P )), 0} if i ∈ I(P ) , EdSP(V(P )) �⊂ Ed(Vi(P )),

0 if i �∈ I(P ).

Proof. From (4.9), if i �∈ I(P ), then πi(∂HDC(P )) = 0, πi(∂HSP(P )) = 0. If
i ∈ I(P ), then using Proposition 4.3 we deduce that the generators pj such that ∂Gj

has a nonzero entry in the ith place (and hence contributes to the projection by πi

of ∂HDC) must share a vertex with the ith generator. Analogously, if i ∈ I(P ), then
using Proposition 4.4 we deduce that the generators pj such that ∂Fj has a nonzero
entry in the ith place (and hence contributes to the projection by πi of ∂HSP) must
satisfy j ∈ N (i). For the disk-covering function, if v is a common vertex of Vi and
Vj , determined by i, j, and a third element α, then ∂v(α,j,i)Gj = ∂v(α,i,j)Gi, and
the expression for πi(∂HDC(P )) then follows. The argument for the expression of
πi(∂HSP(P )) is analogous.

4.2. Critical points. Having characterized the generalized gradients of HDC

and HSP, we now turn to studying their critical points.
Theorem 4.7 (Minima of HDC). Let P ∈ Qn be a nondegenerate configuration

and 0 ∈ int(∂HDC(P )). Then P is a strict local minimum of HDC, all generators are
active, and P is a circumcenter Voronoi configuration.

Proof. Since P is nondegenerate, note from Proposition 4.3 that ∂vGi is a sin-
gleton for each v ∈ Ve(Vi(P )), i ∈ {1, . . . , n}. Let w ∈ (R2)n. We claim that moving
the configuration of the generators from P in the direction w can only increase the
cost. The hypothesis 0 ∈ int(∂HDC(P )) implies by Lemma 2.1 that there exists i
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Fig. 4.2. Local extrema of the disk-covering and the sphere-packing functions in a convex
polygonal environment. The configuration on the left corresponds to a local minimum of HDC with
0 ∈ ∂HDC(P ) and int(∂HDC(P )) = ∅. The configuration on the right corresponds to a local maxi-
mum of HSP with 0 ∈ ∂HSP(P ) and int(∂HSP(P )) = ∅. In both configurations, the 4th generator is
inactive and noncentered.

and v ∈ Ve(Vi(P )) ∩ VeDC(V(P )) such that w · ∂vGi(P ) > 0. Since P is nondegen-
erate, v will still belong to Vi(P + εw) for sufficiently small ε > 0, and consequently
HDC(P + εw) ≥ Gi(P + εw) > Gi(P ) = HDC(P ). Therefore, P is a strict local
minimum.

Since πi is an open map, the set πi(int(∂HDC(P ))) is open for each i ∈ {1, . . . , n}.
Therefore, πi(int(∂HDC(P ))) �= 0, and hence all generators are active, i.e., I(P ) =
{1, . . . , n}. Let us see that all generators must also be centered. Assume P is non-
degenerate and consider the ith generator. Take w ∈ R2 and let w ∈ (R2)n be the
vector which has w in the ith place and 0 otherwise. By Lemma 2.1, there exist j and
v ∈ Ve(Vj(P ))∩VeDC(V(P )) such that w·∂vGj > 0. Since w·∂vGj = w·πi(∂vGj) > 0,
then necessarily πi(∂vGj) �= 0, and therefore v ∈ Vi(P ) and πi(∂vGj) = πi(∂vGi). The
vertex v is determined by pi, pj and a third element, say α. Depending on whether
α corresponds to an edge or to another generator, we have that πi(∂vGi) is equal to
λ(α, i, j) vrs(pi − v) or μ(α, i, j) vrs(pi − v). In any case, from Lemma 4.5, we de-
duce that λ(α, i, j) (respectively, μ(α, i, j)) belongs to the interval (0, 1). Therefore,
w · πi(∂vGi) > 0 implies w · vrs(pi − v) > 0. Since vrs(pi − v) ∈ ∂ lgVi(P )(pi) =
∂ lgV (pi)|V =Vi(P ) (cf. (3.2)), we conclude from Lemma 2.1 that 0 ∈ int(∂ lgVi(P )(pi)).
By Proposition 3.3, this implies that pi = CC(Vi). Hence, P is a circumcenter Voronoi
configuration.

Theorem 4.8 (Maxima of HSP). Let P ∈ Qn and 0 ∈ int(∂HSP(P )). Then P is
a strict local maximum of HSP, all generators are active, and P is a generic incenter
Voronoi configuration.

Proof. The proof of this result is analogous to the proof of Theorem 4.7. Note
that 0 ∈ int(∂ smVi(P )(pi)) implies, by Proposition 3.3, that IC(Vi(P )) = {pi}, and
hence P is a generic incenter Voronoi configuration.

Remark 4.9. Theorems 4.7 and 4.8 precisely provide the interpretation of the
multicenter problems that we gave in section 2.2: since all generators are active, they
share the same radius. If one drops the hypothesis that 0 belongs to the generalized
gradient of the locational optimization function, then one can think of simple examples
where P is a local minimum of HDC (respectively, local maximum of HSP), and there
are generators which are inactive and noncentered; see Figure 4.2.

5. Dynamical systems for the multicenter problems. In this section, we
describe three algorithms that (locally) extremize the multicenter functions for the
disk-covering and the sphere-packing problems. We first examine the gradient flow
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descent associated with the locational optimization functions HDC and HSP. This flow
is guaranteed to find a local critical point, but it has the drawback of being centralized,
as we describe later. Then we propose two decentralized flows for each problem. One
roughly consists of a distributed implementation of the gradient descent. As we show,
it is very much in the spirit of behavior-based robotics. The other one follows the
logical strategy given the results in Theorems 4.7 and 4.8: each generator moves
toward the circumcenter (alternatively, incenter set) of its own Voronoi polygon. We
call them Lloyd flows, since they resemble the original Lloyd algorithm for vector
quantization problems, where each quantizer moves toward the centroid or center of
mass of its own Voronoi region, see [14, 16, 20]. We present continuous-time versions of
the algorithms and discuss their convergence properties. In our setting, the generators’
location obeys a first-order dynamical behavior described by

ṗi = ui(p1, . . . , pn) , i ∈ {1, . . . , n} .(5.1)

The dynamical system (5.1) is said to be (strongly) centralized if there exists at
least an i ∈ {1, . . . , n} such that ui(p1, . . . , pn) cannot be written as a function of
the form ui(pi, pi1 , . . . , pim), with m < n − 1. The dynamical system (5.1) is said
to be Voronoi-distributed if each ui(p1, . . . , pn) can be written as a function of the
form ui(pi, pi1 , . . . , pim), with ik ∈ N (P, i), k ∈ {1, . . . ,m}. Finally, the dynamical
system (5.1) is said to be nearest-neighbor-distributed if each ui(p1, . . . , pn) can be
written as a function of the form ui(pi, pi1 , . . . , pim), with ‖pi−pik‖ ≤ ‖pi−pj‖ for all
j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}. A nearest-neighbor-distributed dynamical system
is also Voronoi-distributed.

It is well known that there are at most 3n − 6 neighborhood relationships in a
planar Voronoi diagram [23, section 2.3]. Therefore, the number of Voronoi neighbors
of each site is on average less than or equal to 6. (Recall that sites are Voronoi-
neighbors if they share an edge, not just a vertex.) We refer to [11] for more details
on the distributed character of Voronoi neighborhood relationships.

Note that the set of indexes {i1, . . . , im} for a specific generator pi of a Voronoi-
distributed or a nearest-neighbor-distributed dynamical system is not the same for all
possible configurations P . In other words, the identity of both the Voronoi neighbors
and the nearest neighbors might change along the evolution; i.e., the topology of the
dynamical system is dynamic.

5.1. Nonsmooth gradient dynamical systems. Consider the (signed) gen-
eralized gradient descent flow (2.6) for the locational optimization functions HDC

and HSP,

Ṗ = −Ln(∂HDC)(P ) , Ṗ = Ln(∂HSP)(P ) .

Alternatively, we may write the following for each i ∈ {1, . . . , n}:

ṗi = −πi(Ln(∂HDC)(p1, . . . , pn)) ,(5.2)

ṗi = πi(Ln(∂HSP)(p1, . . . , pn)) .(5.3)

As noted in section 2.4, these vector fields are discontinuous, and therefore we under-
stand their solution in the Filippov sense. Equation (4.9) and Propositions 4.3 and 4.4
provide an expression of the generalized gradients at P , ∂HDC(P ) and ∂HSP(P ).
One needs to first compute the generalized gradient, then compute the least-norm
element, and finally project it to each of the n components; therefore, the expressions
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in Proposition 4.6 are not helpful. Note that the least-norm element of convex sets
can be computed efficiently, see [6], however closed-form expressions are not available
in general.

One can see that the compact set Qn is strongly invariant for both vector fields
−Ln(∂HDC) and Ln(∂HSP). Indeed, the components for each generator of both
vector fields point always toward Q. Regarding −Ln(∂HDC), this is a consequence
of Proposition 4.3 and of Lemma 4.5. Regarding Ln(∂HSP), this is a consequence of
Proposition 4.4.

Proposition 5.1. For the dynamical system (5.2) (respectively, (5.3)), the gen-
erators’ location P = (p1, . . . , pn) converges asymptotically to the set of critical points
of HDC (respectively, of HSP).

Proof. From Propositions 4.1 and 4.2, HDC and −HSP are globally Lipschitz and
regular over Qn. The result follows from Proposition 2.9 considering the dynamical
system restricted to the strongly invariant and compact domain Qn.

Remark 5.2. The gradient dynamical systems enjoy convergence guarantees,
but their implementation is centralized for two reasons. First, all functions Gi(P )
(respectively, Fi(P )) need to be compared in order to determine which generator
is active. Second, the least-norm element of the generalized gradients depends on
the relative position of the active generators with respect to each other and to the
environment.

Remark 5.3. As illustrated in Figure 5.1 the evolution of the gradient dynamical
systems may not leave fixed the generators that are already centers (circumcenters or
incenters).

j

k

i

v2

v1

i

k

e1

e2

j

e3

Fig. 5.1. Illustration of the gradient descent. In the left figure, the only active vertexes at the
given configuration are v1 and v2. Although the jth generator is in the circumcenter of its own
Voronoi region, the control law (5.2) will drive it toward the vertex v. In the right figure, the only
active edges at the given configuration are e1, e2, and e3. Although the jth generator is in the
incenter of its own Voronoi region, the control law (5.3) will drive it away from the edge e1.

5.2. Nonsmooth dynamical systems based on distributed gradients. In
this section, we propose a distributed implementation of the previous gradient dy-
namical systems and explore its relation with behavior-based rules in multiple-vehicle
coordination. Consider the following modifications of the gradient dynamical sys-
tems (5.2)–(5.3):

ṗi = −Ln(∂ lgVi(P ))(P ) ,(5.4)

ṗi = Ln(∂ smVi(P ))(P ) ,(5.5)
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for i ∈ {1, . . . , n}. Note that the system (5.4) is Voronoi-distributed, since
Ln(∂ lgVi(P ))(P ) is determined only by the position of pi and of its Voronoi neighbors
N (P, i). On the other hand, the system (5.5) is nearest-neighbor-distributed, since
Ln(∂ smVi(P ))(P ) is determined only by the position of pi and its nearest neighbors.

For future reference, let Ln(∂ lgV)(P ) = (Ln(∂ lgV1(P ))(P ), . . . ,Ln(∂ lgVn(P ))(P )),
Ln(∂ smV)(P ) = (Ln(∂ smV1(P ))(P ), . . . ,Ln(∂ smVn(P ))(P )), and write

Ṗ = −Ln(∂ lgV)(P ) , Ṗ = Ln(∂ smV)(P ) .

As for the previous dynamical systems, note that these vector fields are discontinuous,
and therefore we understand their solutions in the Filippov sense. One can see that the
compact set Qn is strongly invariant for both vector fields −Ln(∂ lgV) and Ln(∂ smV).
This fact is a consequence of the expressions for the generalized gradients of lg and sm
in Proposition 3.3. Note that in the 1-center case, (5.2) (respectively, (5.3)) coincides
with (5.4) (respectively, with (5.5)).

Proposition 5.4. Let P ∈ Qn. Then the solutions of the dynamical sys-
tems (5.4) and (5.5) starting at P are unique.

Proof. (a) Uniqueness of solution for (5.4). Let Dlg be the set of P ∈ Qn such that
P is nondegenerate and lgVi(P )(pi) is attained at a single vertex for all i. Note that
Qn \Dlg has measure zero, and that the vector field −Ln(∂ lgV) is differentiable (and
hence locally Lipschitz) when restricted to any connected component of Dlg. Let P ,
P ′ belong to different connected components of Dlg, and let ‖P − P ′‖ ≤ ε. Consider
all the indexes i at which the values of lgVi(P )(pi) and lgVi(P ′)(p

′
i) are attained at

different vertexes. For these indexes,

−Ln(∂ lgVi(P ))(pi) + Ln(∂ lgVi(P ′))(p
′
i) = vrs(v − pi) − vrs(w′ − p′i)

for certain vertexes v and w′. Note that for ε small enough, the vertex w′ in the
Voronoi configuration P ′ corresponds to a vertex w in the Voronoi configuration P . By
construction, pi and p′i belong to an O(ε) neighborhood of the bisector bvw determined
by v and w, and nvw · (pi − p′i) < 0. In addition, the component of vrs(v − pi) −
vrs(w′ − p′i) along bvw is O(ε) whereas nvw · vrs(v − pi) > 0 and nvw · vrs(w′ − p′i) =
nvw · vrs(w − pi) + O(ε), with nvw · vrs(w − pi) < 0. Then

vrs(v − pi) − vrs(w′ − p′i)

= projnvw
(vrs(v − pi) − vrs(w′ − p′i)) + projbvw

(vrs(v − pi) − vrs(w′ − p′i))

= projnvw
(vrs(v − pi) − vrs(w′ − p′i)) + O(ε) ,

and, in turn, for sufficiently small ε,

(pi − p′i) · (vrs(v − pi) − vrs(w′ − p′i))

= (nvw · (pi − p′i))(nvw · (vrs(v − pi) − vrs(w′ − p′i))) + O(ε2) < 0 .

The result now follows from Theorem 1 on page 106 in [15].
(b) Uniqueness of solution for (5.5). Let Dsm be the set of P ∈ Qn such that

smVi(P )(pi) is attained at a single edge for all i. Note that Qn \ Dsm has measure
zero, and that the vector field Ln(∂ smV) is differentiable(and hence locally Lipschitz)
when restricted to any connected component of Dsm. Let P , P ′ belong to different
connected components of Dsm, and let ‖P − P ′‖ ≤ ε. Consider all the indexes i
at which the values of smVi(P )(pi) and smVi(P ′)(p

′
i) are attained at different edges.
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Assume these edges are of type (a) (the type (b) case can be treated analogously).
For these indexes,

Ln(∂ smVi(P ))(pi) − Ln(∂ smVi(P ′))(p
′
i) = vrs(pi − pj) − vrs(p′i − p′k) ,

for some uniquely determined pj and p′k, with j �= k. By construction, pi and p′i
belong to an O(ε) neighborhood of the bisector bjk determined by pj and pk, and
nkj · (pi − p′i) < 0. In addition, the component of vrs(pi − pj)− vrs(p′i − p′k) along bjk
is O(ε) whereas nkj · vrs(pi − pj) > 0 and nkj · vrs(p′i − p′k) = nkj · vrs(pi − pk) +O(ε),
with nkj · vrs(pi − pk) < 0. Then

vrs(pi − pj) − vrs(p′i − p′k)

= projnkj
(vrs(pi − pj) − vrs(p′i − p′k)) + projbjk(vrs(pi − pj) − vrs(p′i − p′k))

= projnkj
(vrs(pi − pj) − vrs(pi − pk)) + O(ε) ,

and, in turn, for sufficiently small ε,

(pi − p′i) · (vrs(pi − pj) − vrs(p′i − p′k))

= (nkj · (pi − p′i))(nkj · (vrs(pi − pj) − vrs(pi − pk))) + O(ε2) < 0 .

The result now follows from Theorem 1 on page 106 in [15].

Remark 5.5 (relation with behavior-based robotics: move toward the furthest-
away vertex). The distributed gradient control law in the disk-covering setting (5.4)
has an interesting interpretation in the context of behavior-based robotics. Consider
the ith generator. If the maximum of lgVi(P ) is attained at a single vertex v of its
Voronoi cell Vi, then lgVi(P ) is differentiable at that configuration and its derivative
corresponds to vrs(pi−v). Therefore, the control law (5.4) corresponds to the behavior
“move toward the furthest vertex in own Voronoi cell.” If there are two or more
vertexes of Vi where the value lgVi(P )(pi) is attained, then (5.4) provides an average
behavior by computing the least-norm element in the convex hull of all vrs(pi − v)
such that ‖pi − v‖ = lgVi(P )(pi).

Remark 5.6 (relation with behavior-based robotics: move away from the nearest
neighbor). The distributed gradient control law in the sphere-packing setting (5.5)
also has an interesting interpretation. For the ith generator, if the minimum of smVi(P )

is attained at a single edge e, then smVi(P ) is differentiable at that configuration,
and its derivative is ne. The control law (5.5) corresponds to the behavior “move
away from the nearest neighbor” (where a neighbor can also be the boundary of the
environment). If there are two or more edges where the value smVi(P )(pi) is attained,
then (5.5) provides an average behavior in an analogous manner as before.

Proposition 5.7. For the dynamical system (5.4), the generators’ location P =
(p1, . . . , pn) converges asymptotically to the largest weakly invariant set contained in
the closure of ADC(Q) = {P ∈ Qn | i ∈ I(P ) =⇒ pi = CC(Vi)}.

Proof. Let a ∈ L̃−Ln(∂ lgV)HDC(P ). By definition, a = −Ln(∂ lgV)(P ) · ζ, for
all ζ ∈ ∂HDC(P ). Let v ∈ VeDC(V(P )). From Proposition 4.3 and Lemma 4.5, we
know that, independently of the degenerate/nondegenerate character of the Voronoi
partition at v, there always exist either an edge e of Q and generators pi and pj ,
or generators pi, pj , and pk, such that λ(e, i, j), λ(e, j, i) > 0 (respectively, μ(i, j, k),
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μ(j, k, i), μ(k, i, j) > 0). If v is a vertex of type (b), then

a = −Ln(∂ lgV)(P ) · ∂vGi

(5.6)

= −Ln(∂ lgVi(P ))(P ) · λ(e, i, j) vrs(pi − v) − Ln(∂ lgVj(P ))(P ) · λ(e, j, i) vrs(pj − v).

From Lemma 3.8(i) we conclude that a ≤ 0, and the inequality is strict if either
pi �= CC(Vi) or pj �= CC(Vj). The same conclusion can be derived if v is a vertex

of type (a). Therefore, max L̃−Ln(∂ lgV)HDC(P ) ≤ 0 or L̃−Ln(∂ lgV)HDC(P ) = ∅.
Now, resorting to the LaSalle principle (Theorem 2.7), we deduce that the solution
P : [0,+∞) → Qn starting from P0 converges to the largest weakly invariant set
contained in Z−Ln(∂ lgV),HDC

∩H−1
DC(≤ HDC(P0), P0) ∩Qn.

Let us see that Z−Ln(∂ lgV),HDC
∩ Qn is equal to ADC(Q). Take a configuration

P ∈ ADC(Q). Then Ln(∂ lgVi(P ))(P ) = 0 if i ∈ I(P ), and πi(ζ) = 0 if i �∈ I(P ), for
any ζ ∈ ∂HDC(P ) (cf. Proposition 4.6). Consequently, 0 = −Ln(∂ lgV)(P ) · ζ, for all

ζ ∈ ∂HDC(P ), and so 0 ∈ L̃−Ln(∂ lgV)HDC(P ). Therefore, ADC(Q) ⊂ Z−Ln(∂ lgV),HDC
.

Now, consider P ∈ Z−Ln(∂ lgV),HDC
. Then 0 ∈ L̃−Ln(∂ lgV)HDC(P ), that is, 0 =

−Ln(∂ lgV)(P ) · ζ, for all ζ ∈ ∂HDC(P ). If P is nondegenerate, we deduce from (5.6)
and Lemma 3.8 that all the active generators are centered, i.e., P ∈ ADC(Q). If P
is degenerate, consider a degenerate vertex v where the value of HDC(P ) is attained.
For simplicity, we deal with the case where v is contained in an edge e of Q (the
case v ∈ int(Q) is treated analogously). From Lemma 4.5 we know that there exist
generators pi, pj determining v on opposite sides of l, the orthogonal line to the
edge e passing through v. From (5.6) and Lemma 3.8 we deduce that both pi and
pj are centered. Now, for each generator pk with v ∈ Vk in the same side of l as
pi (respectively, pj), we consider the triplet (e, j, k) (respectively, (e, i, k)). Again
resorting to (5.6) and Lemma 3.8, we conclude that pk is also centered. Finally,
if a generator pk with v ∈ Vk is such that pk ∈ l, any of the triplets (e, j, k) or
(e, i, k) can be invoked in a similar argument to ensure that pk is centered. Therefore,
P ∈ ADC(Q), and hence (Z−Ln(∂ lgV),HDC

∩Qn) ⊂ ADC(Q).
Proposition 5.8. For the dynamical system (5.5), the generators’ location P =

(p1, . . . , pn) converges asymptotically to the largest weakly invariant set contained in
the closure of ASP(Q) = {P ∈ Qn | i ∈ I(P ) =⇒ pi ∈ IC(Vi)}.

Proof. Let a ∈ L̃Ln(∂ smV)HSP(P ). By definition, a = Ln[smV ](P ) · ζ, for all
ζ ∈ ∂HSP(P ). Let e ∈ EdSP(V(P )). If e is an edge of type (a), i.e., a segment of the
bisector determined by pi and pj , we compute (cf. Proposition 4.4)

a = Ln(∂ smV)(P ) · ∂eFi

= Ln(∂ smVi(P ))(P ) · πi(∂eFi) + Ln(∂ smVj(P ))(P ) · πj(∂eFi) .(5.7)

From Lemma 3.8(iii) we conclude that a ≥ 0, and the inequality is strict if either
pi �∈ IC(Vi) or pj �∈ IC(Vj). The same conclusion can be derived if e is a vertex of type

(b). Therefore, min L̃Ln(∂ smV)HSP(P ) ≥ 0 or L̃Ln(∂ smV)HSP(P ) = ∅. Now, applying
the LaSalle principle (Theorem 2.7) with the function −HSP, we deduce that the
solution P : [0,+∞) → Qn starting from P0 converges to the largest weakly invariant
set contained in ZLn(∂ smV),HSP

∩H−1
SP(≤ HSP(P0), P0)∩Qn. From (5.7), and resorting

to Proposition 4.6 and Lemma 3.8, one can also show that ZLn(∂ smV),HSP
∩Qn is equal

to ASP(Q).
Remark 5.9. The sets ADC(Q) and ASP(Q) are not closed in general. If dimQ =

1, then it can be seen that they indeed are. In higher dimensions one can find sequences
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{Pk ∈ Qn | k ∈ N} in these sets which converge to configurations P where not all
active generators are centered.

5.3. Distributed dynamical systems based on geometric centering. Here,
we propose alternative distributed dynamical systems for the multicenter functions.
Our design is directly inspired by the results in Theorems 4.7 and 4.8 on the critical
points of the multicenter functions HDC and HSP. For i ∈ {1, . . . , n}, consider the
dynamical systems

ṗi = CC(Vi) − pi ,(5.8)

ṗi ∈ IC(Vi) − pi .(5.9)

Alternatively, we may write Ṗ = CC(V(P )) − P and Ṗ ∈ IC(V(P )) − P . Note
that both systems are Voronoi-distributed. Also, note that the vector field (5.8) is
continuous, since the circumcenter of a polygon depends continuously on the location
of its vertexes, and the location of the vertexes of the Voronoi partition depends
continuously on the location of the generators; see [23]. However, (5.9) is a differential
inclusion, since the incenter sets may not be singletons. By Lemma 2.5, the existence
of solutions to (5.9) is guaranteed by the following result.

Proposition 5.10. Consider the set-valued map IC(V)− Id : Qn → 2(R2)n given
by P �→ IC(V(P )) − P . Then IC(V) − Id is upper semicontinuous with nonempty,
compact, and convex values.

Proof. Clearly, the map IC(V) − Id takes nonempty and compact values. From
Lemma 3.2, we also know that it takes convex values. Furthermore, since the identity
map is continuous, it suffices to check that P �→ IC(V(P )) is upper semicontinuous.
We then have to verify that, given P0 ∈ Qn, for each ε > 0 there exists δ > 0 such
that

IC(V(P )) ⊂ IC(V(P0)) + B2n(0, ε) if ‖P − P0‖ ≤ δ .(5.10)

Now, for each i, if IC(Vi(P0)) is not a singleton, then it is a segment (cf. Lemma 3.2)
whose extremal points qi1(P0), qi2(P0) are the intersection points of some bisectors
of the edges of the Voronoi cell. It is clear that qiα(P ) → qiα(P0) when P → P0 for
α = 1, 2. Therefore, given ε > 0, one can choose δi > 0 such that if ‖P − P0‖ ≤
δi, then ‖qiα(P ) − qiα(P0)‖ ≤ ε/n. Since IC(Vi(P )) is contained in the segment
joining qi1(P ) and qi2(P ), we deduce IC(Vi(P )) ⊂ IC(Vi(P0)) + B2(0, ε/n). On the
other hand, if IC(Vi(P0)) is a singleton, then it coincides with the intersection points
qi1(P0), . . . , qim(P0) of some bisectors of the edges of the Voronoi cell. The above
reasoning also guarantees that there exits δi > 0 such that qiα(P ) ∈ IC(Vi(P0)) +
B2(0, ε/n), α = 1, . . . ,m, if ‖P − P0‖ ≤ δi. Since IC(Vi(P )) is contained in one
of the segments joining the points qi1(P ), . . . , qim(P ), we again deduce IC(Vi(P )) ⊂
IC(Vi(P0)) + B2(0, ε/n). The statement in (5.10) follows by taking the minimum of
δ1, . . . , δn.

Having established the existence of solutions, one can also see that the compact
set Qn is strongly invariant for the vector field CC(V)− Id and for the differential in-
clusion IC(V)−Id. Next, we characterize the asymptotic convergence of the dynamical
systems under study.

Proposition 5.11. For the dynamical system (5.8) (respectively, (5.9)), the gen-
erators’ location P = (p1, . . . , pn) converges asymptotically to the largest weakly invari-
ant set contained in the closure of ADC(Q) (respectively, in the closure of ASP(Q)).
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Proof. The proof of this result is parallel to the proofs of Propositions 5.7 and 5.8.
The sequence of steps is the same as before, though now one resorts to Lemma 3.8(ii)
and Lemma 3.8(iv). The only additional observation is that when computing the set-

valued Lie derivative for (5.9), one has that a ∈ L̃IC(V)−IdHSP(P ) if and only if there
exists x ∈ IC(V(P )) such that a = (x− P ) · ζ, for any ζ ∈ ∂HSP(P ). The application
of Lemma 3.8 guarantees that a ≥ 0 and that the inequality is strict if any of the
active generators is not in its corresponding incenter set.

5.4. Simulations. To illustrate the performance of the distributed coordination
algorithms, we include some simulation results. The algorithms are implemented in
Mathematica as a single centralized program. We compute the bounded Voronoi dia-
gram of a collection of points using the Mathematica package ComputationalGeometry.
We compute the circumcenter of a polygon via the algorithm in [28] and the incenter
set via the LinearProgramming solver in Mathematica. Measuring displacements in
meters, we consider the domain determined by the vertexes

{(0, 0), (2.5, 0), (3.45, 1.5), (3.5, 1.6), (3.45, 1.7), (2.7, 2.1), (1., 2.4), (.2, 1.2)}.

In Figures 5.2 and 5.3, we illustrate the performance of the dynamical systems (5.4)
and (5.8), respectively, minimizing the multicircumcenter function HDC. In Fig-
ures 5.4 and 5.5, we illustrate the performance of the dynamical systems (5.5) and (5.9),
respectively, maximizing the multi-incenter function HSP. Observing the final config-
urations in the four figures, one can verify, visually and numerically, that the active
generators are asymptotically centered as forecast by our analysis.

Fig. 5.2. “Toward the furthest” algorithm for 16 generators in a convex polygonal environment.
The left (respectively, right) figure illustrates the initial (respectively, final) locations and Voronoi
partition. The central figure illustrates the network evolution. After 2 seconds, the multicenter
function is approximately .39504 meters.

Fig. 5.3. “Move-toward-the-circumcenter” algorithm for 16 generators in a convex polygonal
environment. The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the network evolution. After 20 seconds, the
multicenter function is approximately 0.43273 meters.
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Fig. 5.4. “Away-from-closest” algorithm for 16 generators in a convex polygonal environment.
The left (respectively, right) figure illustrates the initial (respectively, final) locations and Voronoi
partition. The central figure illustrates the network evolution. After 2 seconds, the multicenter
function is approximately .26347 meters.

Fig. 5.5. “Move-toward-the-incenter” algorithm for 16 generators in a convex polygonal en-
vironment. The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the network evolution. After 20 seconds, the
multicenter function is approximately .2498 meters.

6. Conclusions. We have introduced two multicenter functions that provide
quality-of-service measures for mobile networks. We have shown that both func-
tions are globally Lipschitz, and we have computed their generalized gradients. Fur-
thermore, under certain technical conditions, we have characterized via nonsmooth
analysis their critical points as center Voronoi configurations and as solutions of disk-
covering and sphere-packing problems. We have also considered various algorithms
that extremize the multicenter functions. First, we considered the nonsmooth gra-
dient flows induced by their respective generalized gradients. Second, we devised a
novel strategy based on the generalized gradients of the 1-center functions of each
generator. Third, we introduced and characterized a geometric centering strategy
with resemblances to the classical Lloyd algorithm. We have unveiled the remarkable
geometric interpretations of these algorithms, discussed their distributed character
and analyzed their asymptotic behavior using nonsmooth stability analysis.

Future directions of research include the following: (i) sharpening the asymptotic
convergence results for the proposed dynamical systems (e.g., proving that all genera-
tors will asymptotically be centered), (ii) considering the setting of convex polytopes
in RN , for N > 2, (iii) understanding in what sense the proposed multicircumcenter
and the multi-incenter problems can be shown to be dual, and (iv) analyzing other
meaningful geometric optimization problems and their relations with cooperative be-
haviors.
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Symbol : Description and page(s) when applicable

ADC(Q) : Set of configurations P ∈ Qn where all active generators are in
the circumcenter of its own Voronoi region, 1567

ASP(Q) : Set of configurations P ∈ Qn where all active generators are in
the incenter set of its own Voronoi region, 1568

CC(Q) : Circumcenter of polytope Q, 1548

CR(Q) : Circumradius of polytope Q, 1548

DS : Distance function to the convex set S, 1546

Ed(Q) : Edges of polygon Q, 1546

EdSP(V(P )) : Edges where the value of HSP(P ) is attained, 1546

e(i) : Edge of V(P ) belonging to Vi and to the boundary of Q, 1547

e(i, j) : Edge of V(P ) determined by pi and pj , 1547

Fi(P ) : Smallest distance from pi to the boundary of Vi(P ), 1556

Gi(P ) : Largest distance from pi to the boundary of Vi(P ), 1556

∂f : Generalized gradient of the locally Lipschitz function f , 1549

HDC : Multicircumcenter function, 1548

HSP : Multi-incenter function, 1548

IC(Q) : Incenter set of polytope Q, 1548

IR(Q) : Inradius of polytope Q, 1548

K[X] : Filippov mapping associated with a measurable and essentially
locally bounded mapping X : RN → RN , 1550

λ(e, i, j) : Scalar function associated with the vertex v(e, i, j), 1559

Ln(S) : Least-norm element of the convex set S, 1549

lgQ(p) : Largest distance from p to the boundary of Q, 1552

μ(i, j, k) : Scalar function associated with the vertex v(i, j, k), 1559

N (P, i), N (i) : Set of neighbors of the ith generator at configuration P , 1546

ne(i,j) : Unit normal to e(i, j) pointing toward int(Vi(P )), 1547

ne(i) : Unit normal to e(i) pointing toward int(Q), 1547

projS : Orthogonal projection onto the convex set S, 1546

πi : Canonical projection from Qn onto the ith factor, 1546

L̃Xf : Set-valued Lie derivative of f with respect to X, 1550

smQ(p) : Smallest distance from p to the boundary of Q, 1552

v(i, j, k) : Vertex of V(P ) determined by pi, pj , and pk, 1547

v(e, i, j) : Vertex of V(P ) determined by e ∈ Ed(Q) and pi, pj , 1547

v(e, f, i) : Vertex of V(P ) determined by e, f ∈ Ed(Q), and pi, 1547

VeDC(V(P )) : Vertexes of V(P ) where the value of HDC(P ) is attained, 1548

vrs(v) : Unit vector in the direction of 0 �= v ∈ RN , 1546

Ve(Q) : Vertexes of polygon Q, 1546

V(P ) : Voronoi partition of Q generated by P = (p1, . . . , pn), 1546

ZX,f : Set formed by points x ∈ RN such that 0 belongs to L̃Xf(x),
1551
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CORRECTION TO “COORDINATION AND GEOMETRIC
OPTIMIZATION VIA DISTRIBUTED DYNAMICAL SYSTEMS”

Because of a production error, the page numbers in the list of symbols on page
1572 are incorrect. The list should read as follows.

Symbol : Description and page(s) when applicable

ADC(Q) : Set of configurations P ∈ Qn where all active generators are in
the circumcenter of its own Voronoi region, 1567

ASP(Q) : Set of configurations P ∈ Qn where all active generators are in
the incenter set of its own Voronoi region, 1568

CC(Q) : Circumcenter of polytope Q, 1548

CR(Q) : Circumradius of polytope Q, 1548

DS : Distance function to the convex set S, 1546

Ed(Q) : Edges of polygon Q, 1546

EdSP(V(P )) : Edges where the value of HSP(P ) is attained, 1548

e(i) : Edge of V(P ) belonging to Vi and to the boundary of Q, 1547

e(i, j) : Edge of V(P ) determined by pi and pj , 1547

Fi(P ) : Smallest distance from pi to the boundary of Vi(P ), 1556

Gi(P ) : Largest distance from pi to the boundary of Vi(P ), 1556

∂f : Generalized gradient of the locally Lipschitz function f , 1549

HDC : Multicircumcenter function, 1548

HSP : Multi-incenter function, 1548

IC(Q) : Incenter set of polytope Q, 1548

IR(Q) : Inradius of polytope Q, 1548

K[X] : Filippov mapping associated with a measurable and essentially
locally bounded mapping X : RN → RN , 1550

λ(e, i, j) : Scalar function associated with the vertex v(e, i, j), 1559

Ln(S) : Least-norm element of the convex set S, 1549

lgQ(p) : Largest distance from p to the boundary of Q, 1552

μ(i, j, k) : Scalar function associated with the vertex v(i, j, k), 1559

N (P, i), N (i) : Set of neighbors of the ith generator at configuration P , 1546

ne(i,j) : Unit normal to e(i, j) pointing toward int(Vi(P )), 1547

ne(i) : Unit normal to e(i) pointing toward int(Q), 1547

projS : Orthogonal projection onto the convex set S, 1546

πi : Canonical projection from Qn onto the ith factor, 1546

L̃Xf : Set-valued Lie derivative of f with respect to X, 1550

smQ(p) : Smallest distance from p to the boundary of Q, 1552

v(i, j, k) : Vertex of V(P ) determined by pi, pj , and pk, 1547

v(e, i, j) : Vertex of V(P ) determined by e ∈ Ed(Q) and pi, pj , 1547

v(e, f, i) : Vertex of V(P ) determined by e, f ∈ Ed(Q), and pi, 1547

VeDC(V(P )) : Vertexes of V(P ) where the value of HDC(P ) is attained, 1548

vrs(v) : Unit vector in the direction of 0 �= v ∈ RN , 1546

Ve(Q) : Vertexes of polygon Q, 1546

1



V(P ) : Voronoi partition of Q generated by P = (p1, . . . , pn), 1546

ZX,f : Set formed by points x ∈ RN such that 0 belongs to L̃Xf(x),
1551

2
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EXPONENTIAL STABILIZATION OF LAMINATED BEAMS WITH
STRUCTURAL DAMPING AND BOUNDARY FEEDBACK

CONTROLS∗

JUN-MIN WANG† , GEN-QI XU‡ , AND SIU-PANG YUNG§

Abstract. We study the boundary stabilization of laminated beams with structural damping
which describes the slip occurring at the interface of two-layered objects. By using an invertible
matrix function with an eigenvalue parameter and an asymptotic technique for the first order matrix
differential equation, we find out an explicit asymptotic formula for the matrix fundamental solutions
and then carry out the asymptotic analyses for the eigenpairs. Furthermore, we prove that there
is a sequence of generalized eigenfunctions that forms a Riesz basis in the state Hilbert space, and
hence the spectrum determined growth condition holds. Furthermore, exponential stability of the
closed-loop system can be deduced from the eigenvalue expressions. In particular, the semigroup
generated by the system operator is a C0-group due to the fact that the three asymptotes of the
spectrum are parallel to the imaginary axis.
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1. Introduction. The vibration suppression of the laminated beams due to the
demand for advanced performance has been one of the main research topics in smart
materials and structures. These composite laminates usually have superior structural
properties such as adaptability, and the design of their piezoelectric materials can be
used as both actuators and sensors. The detailed physical background can be found in
[10] and the references therein. In [4], Hansen and Spies derived three mathematical
models for two-layered beams with structural damping due to the interfacial slip. Our
interest in this paper is to study the first model in [4] which is closely related to the
Timoshenko beam theory. The equations for this beam model are⎧⎨⎩

mwtt + (G(ψ − wx))x = 0, 0 < x < 1, t ≥ 0,
Im(3stt − ψtt) −G(ψ − wx) − (D(3sx − ψx))x = 0, 0 < x < 1, t ≥ 0,
Imstt + G(ψ − wx) + 4

3γs + 4
3βImst − (Dsx)x = 0, 0 < x < 1, t ≥ 0,

(1.1)

where w(x, t) denotes the transverse displacement, ψ(x, t) represents the rotation
angle and s(x, t) is proportional to the amount of slip along the interface at time t and
longitudinal spatial variable x, respectively, and m > 0 is the density of the beams,
G, Im, D, γ > 0 are the shear stiffness, mass moment of inertia, flexural rigidity,
and adhesive stiffness of the beams together with β > 0 as the adhesive damping
parameter. Moreover,

√
G/m and

√
D/Im are two wave speeds and we always assume
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that they are different in the present paper (see [7]). We refer to [4] for the detailed
derivation of the mathematical model and its physical parameters. It is easy to find
that if the slip s is assumed to be identically zero, then the first two equations of
system (1.1) can be reduced exactly to the Timoshenko beam system. The third
equation in (1.1) describes the dynamics of the slip. For convenience, if we introduce
another variable ξ of the effective rotation angle by

ξ = 3s− ψ,(1.2)

then (1.1) changes to⎧⎨⎩
mwtt + (G(3s− ξ − wx))x = 0, 0 < x < 1, t ≥ 0,
Imξtt −G(3s− ξ − wx) − (Dξx)x = 0, 0 < x < 1, t ≥ 0,
Imstt + G(3s− ξ − wx) + 4

3γs + 4
3βImst − (Dsx)x = 0, 0 < x < 1, t ≥ 0.

(1.3)

For system (1.3), we impose the cantilever boundary conditions, which can be easily
obtained from the principle of virtual work (see [4]),{

w(0, t) = 0, ξ(0, t) = 0, s(0, t) = 0,
ξx(1, t) = u2(t), sx(1, t) = 0, 3s(1, t) − ξ(1, t) − wx(1, t) = u1(t),

(1.4)

where u1(t) and u2(t) are boundary control forces, and the initial conditions (for
0 < x < 1)

(w, ξ, s)
∣∣∣
t=0

= (w0, ξ0, s0) and (wt, ξt, st)
∣∣∣
t=0

= (w1, ξ1, s1).(1.5)

We point out that due to the action of the slip s, the uncontrolled system (1.3) with
boundary conditions (1.4) (u1 = u2 ≡ 0) in [4] can achieve the asymptotic stability
but it does not reach the exponential stability (see Corollary 2.3 and Note 2.1).

In this paper, the following boundary feedback controls are proposed to exponen-
tially stabilize systems (1.3) and (1.4):

u2(t) = −k2ξt(1, t), u1(t) = k1wt(1, t),(1.6)

where k1 and k2 are positive constant feedback gains. Then the boundary conditions
become{

w(0, t) = 0, ξ(0, t) = 0, s(0, t) = 0,

ξx(1, t) = −k2ξt(1, t), sx(1, t) = 0, 3s(1, t) − ξ(1, t) − wx(1, t) = k1wt(1, t),
(1.7)

and the closed-loop system has both internal damping and boundary controls.
Our goal is to show that the closed-loop system (1.3) with (1.7) is exponentially

stable in the state Hilbert space. This will follow from proving the following three
aspects: (i) the closed-loop system is dissipative in the state space and the system
operator has compact resolvents; (ii) there exist three asymptotes of frequencies for the
system which are parallel to the imaginary axis from the left side; (iii) the generalized
eigenfunctions of the system form a Riesz basis in the state space and hence the
spectrum determined growth condition, and the exponential stability holds for the
system. Among these, (i) is easy to verify while (ii) and (iii) are very difficult to
solve. Our interests in this paper are mainly concentrated on the asymptotically
spectral analysis and the proof of Riesz basis for the system.
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Now let us briefly outline the contents of this paper. In the next section, the well-
poseness of the system will be established. Asymptotic estimates of the eigenvalues
for the system will be given in section 3. This is the foundation that we shall use
to investigate the exponential stability and basis property for the system. Section 4
is devoted to the asymptotic expansion of the corresponding eigenfunctions. Finally,
in the last section, we obtain a more profound result, namely, the existence of a
sequence of the generalized eigenfunctions of the system that forms a Riesz basis in
the state Hilbert space. Consequently, the spectrum determined growth condition
and the exponential stability are concluded. Furthermore, the semigroup generated
by the system operator is actually a C0-group based on the spectrum distribution of
the system.

2. Well-posedness of the system. We start our investigation by formulating
the problem on the state Hilbert space. Let

H :=
(
H1

E(0, 1) × L2(0, 1)
)3

(2.1)

with

Hi
E(0, 1) := {f ∈ Hi(0, 1) | f(0) = 0} for i = 1, 2,(2.2)

where Hi(0, 1) (i = 1, 2) denote the usual Sobolev spaces. The inner product in H is
defined by

〈Y1, Y2〉H : = m〈z1, z2〉L2 + G〈3s1 − ξ1 − w′
1, 3s2 − ξ2 − w′

2〉L2 + Im〈ϕ1, ϕ2〉L2

(2.3)
+D〈ξ′1, ξ′2〉L2 + 3Im〈h1, h2〉L2 + 3D〈s′1, s′2〉L2 + 4γ〈s1, s2〉L2 ,

where Yi := [wi, zi, ξi, ϕi, si, hi]
� ∈ H with i = 1, 2, in which the superscript � denotes

the transpose of a vector or a matrix, 〈·, ·〉L2 is the inner product on L2(0, 1), and
the prime represents the differentiation with respect to x. In view of system (1.3) and
(1.7), we define a linear operator A : D(A) ⊂ H → H in Hilbert space H by

A

⎡⎢⎢⎢⎢⎢⎢⎣
w
z
ξ
ϕ
s
h

⎤⎥⎥⎥⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎢⎢⎢⎣

z
G
m (ξ′ + w′′ − 3s′)

ϕ
G
Im

(3s− ξ − w′) + D
Im

ξ′′

h
G
Im

(ξ + w′ − 3s) − 4
3

γ
Im

s− 4
3βh + D

Im
s′′

⎤⎥⎥⎥⎥⎥⎥⎦(2.4)

with

D(A) : =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[w, z, ξ, ϕ, s, h]� ∈ H

∣∣∣∣∣∣∣∣∣∣∣

w ∈ H2
E(0, 1), ξ ∈ H2

E(0, 1), s ∈ H2
E(0, 1),

z ∈ H1
E(0, 1), ϕ ∈ H1

E(0, 1), h ∈ H1
E(0, 1),

ξ′(1) = −k2ϕ(1), s′(1) = 0,

3s(1) − ξ(1) − w′(1) = k1z(1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(2.5)
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If we set Y := [w,wt, ξ, ξt, s, st]
�, then the closed-loop system (1.3), (1.5), and (1.7)

can be formulated into an abstract evolution equation in H:

⎧⎨⎩
d

dt
Y (t) = AY (t), t > 0,

Y (0) := [w0, w1, ξ0, ξ1, s0, s1]
�.

(2.6)

Theorem 2.1. Let A be defined by (2.4) and (2.5). Then A is dissipative in H.
In addition, A−1 exists and is compact on H. Therefore, A generates a C0-semigroup
eAt of contractions on H and the spectrum σ(A) consists of isolated eigenvalues only.

Proof. Since for any [w, z, ξ, ϕ, s, h]� ∈ D(A),

〈
A[w, z, ξ, ϕ, s, h]�, [w, z, ξ, ϕ, s, h]�

〉
H

=
〈[

z,
G

m
(ξ′ + w′′ − 3s′), ϕ,

G

Im
(3s− ξ − w′) +

D

Im
ξ′′, h,

G

Im
(ξ + w′ − 3s) − 4

3

γ

Im
s− 4

3
βh +

D

Im
s′′
]�

, [w, z, ξ, ϕ, s, h]�
〉
H

= G〈ξ′ + w′′ − 3s′, z〉L2 + G〈3h− ϕ− z′, 3s− ξ − w′〉L2

+ 〈G(3s− ξ − w′) + Dξ′′, ϕ〉L2 + D〈ϕ′, ξ′〉L2 + 3D〈h′, s′〉L2 + 4γ〈h, s〉L2

+ 〈G(ξ + w′ − 3s) − 4

3
γs− 4

3
Imβh + Ds′′, 3h〉L2

= G
[
ξ(x) + w′(x) − 3s(x)

]
z(x)

∣∣∣1
0

+ Dξ′(x)ϕ(x)
∣∣∣1
0

+ 3Ds′(x)h(x)
∣∣∣1
0

−G〈3s− ξ − w′, 3h− ϕ− z′〉L2 + G〈3h− ϕ− z′, 3s− ξ − w′〉L2

−D〈ξ′, ϕ′〉L2 + D〈ϕ′, ξ′〉L2 + 3D〈h′, s′〉L2 + 4γ〈h, s〉L2

− 3D〈s′, h′〉L2 − 4γ〈s, h〉L2 − 4βIm〈h, h〉L2

= −k1G|z(1)|2 − k2D|ϕ(1)|2 −G〈3s− ξ − w′, 3h− ϕ− z′〉L2

+G〈3h− ϕ− z′, 3s− ξ − w′〉L2 −D〈ξ′, ϕ′〉L2 + D〈ϕ′, ξ′〉L2 + 3D〈h′, s′〉L2

+ 4γ〈h, s〉L2 − 3D〈s′, h′〉L2 − 4γ〈s, h〉L2 − 4βIm〈h, h〉L2 ,

it follows that

Re
〈
A[w, z, ξ, ϕ, s, h]�, [w, z, ξ, ϕ, s, h]�

〉
H = −k1G|z(1)|2−k2D|ϕ(1)|2−4βIm‖h‖2

L2 ≤ 0.

Hence, A is dissipative in H. We accomplish the proof by showing that 0 ∈ ρ(A)
because from Theorem 4.6 of [6], if A−1 exists, A must be densely defined in H.
Therefore, the Lumer–Phillips theorem can be applied to conclude that A generates
a C0-semigroup eAt of contractions on H.

To do so, for each F := [u1, u2, η1, η2, v1, v2]
� ∈ H, we seek Y := [w, z, ξ, ϕ, s, h]� ∈

D(A) such that

AY = F
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which yields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z = u1, G(ξ′ + w′′ − 3s′) = mu2,
ϕ = η1, G(3s− ξ − w′) + Dξ′′ = Imη2,
h = v1, 3G(ξ + w′ − 3s) − 4γs− 4βImh + 3Ds′′ = 3Imv2,
ξ′(1) = −k2ϕ(1), s′(1) = 0,
3s(1) − ξ(1) − w′(1) = k1z(1), w(0) = ξ(0) = s(0) = 0.

(2.7)

From the first equation of (2.7), we have

G
(
ξ(x) + w′(x) − 3s(x)

)
= Gw′(0) + m

∫ x

0

u2(r)dr.(2.8)

By eliminating the term G
(
ξ(x) + w′(x) − 3s(x)

)
from the second and the third

equations of (2.7), it follows that

Dξ′′(x) = Imη2(x) + Gw′(0) + m

∫ x

0

u2(r)dr(2.9)

and

3Ds′′(x) − 4γs(x) = 3Imv2(x) + 4βImv1(x) − 3

[
Gw′(0) + m

∫ x

0

u2(r)dr

]
.(2.10)

A simple computation of (2.9), yields

ξ(x) = −k2η1(1)x− G

D
w′(0)

(
x− x2

2

)
− ξ̂(x),(2.11)

where

ξ̂(x) :=
Im
D

∫ 1

0

K1(x, r)η2(r)dr +
m

D

∫ 1

0

K2(x, r)u2(r)dr(2.12)

and

K1(x, r) :=

{
r, 0 ≤ r < x,

x, x ≤ r ≤ 1,
K2(x, r) :=

⎧⎨⎩x− x2

2
− r2

2
, 0 ≤ r ≤ x,

x(1 − r), x ≤ r ≤ 1.

Similarly, it follows from (2.10) that

s(x) = a sinh(bx) +
G

D
w′(0)

1 − cosh(bx)

b2
+

4βIm
3Db

∫ x

0

sinh(b(x− r))v1(r)dr + ŝ(x),

(2.13)

where a will be given later in (2.18), and

b :=

√
4γ

3D
, ŝ(x) :=

1

b

∫ x

0

sinh(b(x− r))

[
Im
D

v2(r) −
m

D

∫ r

0

u2(t)dt

]
dr.(2.14)

Substitute (2.11) and (2.13) into (2.8), and integrate from 0 to x respect to x, to
obtain

(2.15)

w(x) = 3a

∫ x

0

sinh(br)dr + w′(0)

[
3G

Db2

∫ x

0

(1 − cosh(br))dr +
G

D

(
x2

2
− x3

6

)
+ x

]
+

4βIm
bD

∫ x

0

(x− r) sinh(b(x− r))v1(r)dr −
1

2
ξ′(1)x2 + ŵ(x),
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where ŵ(x) is given by

ŵ(x) := 3

∫ x

0

ŝ(r)dr −
∫ x

0

ξ̂(r)dr +
m

G

∫ x

0

(x− r)u2(r)dr.(2.16)

Using the boundary conditions s′(1) = 0 in (2.13) and 3s(1)− ξ(1)−w′(1) = k1u1(1)
in (2.8), respectively, we obtain that⎧⎪⎪⎪⎨⎪⎪⎪⎩

ab cosh b− G

D
w′(0)

sinh b

b
+

4βIm
3D

∫ 1

0

cosh(b(1 − r))v1(r)dr + ŝ′(1) = 0,

Gw′(0) + m

∫ 1

0

u2(r)dr = −k1Gu1(1).

(2.17)

Thus, a and w′(0) in (2.13) and (2.15), respectively, can be obtained as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
a =

G

D
w′(0)

sinh b

b2 cosh b
− 4βIm

3Db cosh b

∫ 1

0

cosh(b(1 − r))v1(r)dr −
ŝ′(1)

b cosh b
,

w′(0) = −m

G

∫ 1

0

u2(r)dr − k1u1(1).

(2.18)

Hence, there is a solution Y = [w, z, ξ, ϕ, s, h]� ∈ D(A) so that AY = F , which in
turn implies that A−1 exists. Finally, by the Sobolev embedding theorem, we can
claim that A−1 is compact on H and thus the spectrum σ(A) consists of isolated
eigenvalues only (see [5]). The proof is complete.

As a consequence of Theorem 2.1, we have the following corollary.
Corollary 2.2. Let A be defined by (2.4) and (2.5), and let T (t) be a C0-

semigroup on H generated by A. Then T (t) is asymptotically stable in H, i.e.,

lim
t→∞

‖T (t)Y ‖ = 0 ∀ Y ∈ H.

Proof. Since T (t) is a C0-semigroup of contractions on H, the proof will be
accomplished by showing that there is no eigenvalue on the imaginary axis (see [3,
p. 130]). Assume that λ = iτ, τ ∈ R is an eigenvalue of A and Y := [w, z, ξ, ϕ, s, h]� ∈
D(A) is an eigenfunction associated with λ. Then we have

z = iτw, ϕ = iτξ, h = iτs,

and

Re〈AY, Y 〉H = −k1G|z(1)|2 − k2D|ϕ(1)|2 − 4βIm‖h‖L2 ≡ 0.

Thus, it follows that

h(x) = iτs(x) ≡ 0, z(1) = iτw(1) ≡ 0, ϕ(1) = iτξ(1) ≡ 0

and functions w and ξ satisfy the following equations:

⎧⎪⎪⎨⎪⎪⎩
mτ2w(x) + G

(
ξ′(x) + w′′(x)

)
= 0, 0 < x < 1,

Imτ2ξ(x) −G
(
ξ(x) + w′(x)

)
+ Dξ′′(x) = 0, 0 < x < 1,

ξ(x) + w′(x) = 0, 0 < x < 1,
w(0) = ξ(0) =w(1) = ξ(1) = 0, ξ′(1) = − k2ϕ(1) = 0, w′(1) = − ξ(1) − k1z(1) = 0.

(2.19)
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By a direct computation, we obtain that (2.19) has a unique trivial solution only.
Thus w(x) = ξ(x) ≡ 0 and hence Y ≡ 0, which contradicts that Y is an eigenfunction.
Therefore, no eigenvalue exists on the imaginary axis. The proof is complete.

Corollary 2.3. If k1 = k2 ≡ 0 in (1.6), that is, there is no control imposed on
system (1.3), then there is no eigenvalue on the imaginary axis. So the uncontrolled
system (1.3) with its boundary conditions (1.4) is also asymptotically stable.

Proof. Similar to the proof of Corollary 2.2, if k1 = k2 ≡ 0 and assume that
λ = iτ, τ ∈ R is an eigenvalue with Y := [w, z, ξ, ϕ, s, h]� being an eigenfunction,
then it follows that s ≡ 0 and the functions w and ξ satisfy the following equations:⎧⎨⎩

mτ2w(x) = 0, 0 < x < 1,
Imτ2ξ(x) + Dξ′′(x) = 0, 0 < x < 1,
w(0) = ξ(0) = ξ′(1) = 0, w′(1) = −ξ(1).

(2.20)

Therefore, one has w = ξ ≡ 0 and hence Y ≡ 0. The proof is complete.
Note 2.1. We should note here that if k1 = k2 ≡ 0 in (1.6), then system (1.3)

with its boundary conditions (1.4) cannot achieve the exponential stability. This is
because of the fact that from the asymptotes of the system given later in (3.28), if
k1 = k2 ≡ 0, then the eigenvalues of the first and second branches are very close to
the imaginary axis as their moduli go to the infinity.

Let us now formulate the eigenvalue problem for the operator A. If λ ∈ σ(A) and
Yλ := [w, z, ξ, ϕ, s, h]� ∈ D(A) is a corresponding eigenfunction, then it is routine to
verify that AYλ = λYλ implies that z = λw, ϕ = λξ, h = λs with w, ξ as well as s
satisfying the following characteristic equations, for 0 < x < 1 :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mλ2w(x) + G(3s′ − ξ′ − w′′)(x) = 0,

Imλ2ξ(x) −G(3s− ξ − w′)(x) −Dξ′′(x) = 0,

Imλ2s(x) + G(3s− ξ − w′)(x) + 4
3γs(x) + 4

3βλIms(x) −Ds′′(x) = 0,

w(0) = 0, ξ(0) = 0, s(0) = 0,

ξ′(1) = −λk2ξ(1), s′(1) = 0, 3s(1) − ξ(1) − w′(1) = λk1w(1).

(2.21)

For brevity in notation, from now on, we define

r1 :=

√
m

G
, r2 :=

√
Im
D

, d1 :=
G

D
, d2 :=

γ

D
, d3 := 3d1 +

4

3
d2.(2.22)

(2.21) then becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r2
1λ

2w(x) + 3s′(x) − ξ′(x) − w′′(x) = 0,

r2
2λ

2ξ(x) − 3d1s(x) + d1ξ(x) + d1w
′(x) − ξ′′(x) = 0,

r2
2λ

2s(x) + d3s(x) − d1ξ(x) − d1w
′(x) + 4

3βr
2
2λs(x) − s′′(x) = 0,

w(0) = 0, ξ(0) = 0, s(0) = 0,

ξ′(1) = −λk2ξ(1), s′(1) = 0, 3s(1) − ξ(1) − w′(1) = λk1w(1).

(2.23)

Clearly, (2.23) is a coupled system of ordinary differential equations. In order to solve
these equations, we shall use the matrix operator pencil method (see [8]). Let

w1 := w, w2 := w′, ξ1 := ξ, ξ2 := ξ′, s1 := s, s2 := s′(2.24)
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and

Φ := [w1, w2, ξ1, ξ2, s1, s2]
�.(2.25)

Then (2.23) becomes{
TD(x, λ)Φ(x) := Φ′(x) + M(λ)Φ(x) = 0,

TR(x, λ)Φ(x) := W 0(λ)Φ(0) + W 1(λ)Φ(1) = 0,
(2.26)

where

W 0(λ) :=

⎡⎢⎢⎣
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

O3×6

⎤⎥⎥⎦ , W 1(λ) :=

⎡⎢⎢⎣
O3×6

0 0 λk2 1 0 0
0 0 0 0 0 1

λk1 1 1 0 −3 0

⎤⎥⎥⎦ ,

(2.27)

and

M(λ) := D0 − λD1 − λ2D2(2.28)

with D0, D1, and D2 being three matrices defined by

D0 :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 −1 0 0 0 0
0 0 0 1 0 −3
0 0 0 −1 0 0
0 −d1 −d1 0 3d1 0
0 0 0 0 0 −1
0 d1 d1 0 −d3 0

⎤⎥⎥⎥⎥⎥⎥⎦ , D1 :=

[
O4×4 O4×2

O2×4 D11

]
,(2.29)

D2 :=

⎡⎢⎣r
2
1D21 O2×2 O2×2

O2×2 r2
2D21 O2×2

O2×2 O2×2 r2
2D21

⎤⎥⎦ , D11 :=

[
0 0

4
3βr

2
2 0

]
, D21 =

[
0 0
1 0

]
.(2.30)

Theorem 2.4. The characteristic equation (2.21) is equivalent to the first order
linear system (2.26). Also λ ∈ σ(A) if and only if (2.26) has a nontrivial solution.

3. Asymptotic behavior of eigenfrequencies. In this section, we are looking
for the asymptotic expressions for the eigenvalues of A. It will be accomplished by
expanding the characteristic determinant Δ(λ) of (2.26) via an asymptotic expression
of the fundamental matrix solution, which can be obtained by modifying a standard
technique of Birkhoff–Langer (see [1]) and later of Tretter (see [8] or [9]) for tackling
the matrix operator pencils. A key step is an invertible matrix transformation which
is very powerful and universal in the sense that it can be applied to a lot of other
coupled problems.

To begin, we shall diagonalize the leading term λ2D2 in (2.28). For each 0 = λ ∈
C, define an invertible matrix in λ by

P (λ) :=

⎡⎣P1(λ)
P2(λ)

P2(λ)

⎤⎦ , P1(λ) :=

[
r1λ r1λ
r2
1λ

2 −r2
1λ

2

]
,(3.1)

P2(λ) :=

[
r2λ r2λ

r2
2λ

2 −r2
2λ

2

]
.
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For any λ = 0, a simple computation shows that

P−1(λ) :=

⎡⎣P−1
1 (λ)

P−1
2 (λ)

P−1
2 (λ)

⎤⎦(3.2)

with

P−1
1 (λ) :=

[
1

2r1λ
1

2r2
1λ

2

1
2r1λ

−1
2r2

1λ
2

]
, P−1

2 (λ) :=

[
1

2r2λ
1

2r2
2λ

2

1
2r2λ

−1
2r2

2λ
2

]
.

So matrix P (λ) is a polynomial of degree 2 in λ. Define

Ψ(x) := P−1(λ)Φ(x), T̂D(x, λ) := P (λ)−1TD(x, λ)P (λ).(3.3)

Then we have

T̂D(x, λ)Ψ(x) = Ψ′(x) − M̂(λ)Ψ(x) = 0,(3.4)

where

M̂(λ) = −P (λ)−1M(λ)P (λ)

= −P (λ)−1

⎡⎢⎢⎢⎢⎢⎢⎣
0 −1 0 0 0 0

−r2
1λ

2 0 0 1 0 −3
0 0 0 −1 0 0
0 −d1 −d1 − r2

2λ
2 0 3d1 0

0 0 0 0 0 −1
0 d1 d1 0 −d3 − r2

2(
4
3βλ + λ2) 0

⎤⎥⎥⎥⎥⎥⎥⎦P (λ)

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2

−1
2r1λ

0 1
2r2

1λ
2 0 −3

2r2
1λ

2

1
2

−1
2r1λ

0 −1
2r2

1λ
2 0 3

2r2
1λ

2

0 −d1

2r2
2λ

2
−d1

2r2
2λ

2 − 1
2

−1
2r2λ

3d1

2r2
2λ

2 0

0 d1

2r2
2λ

2
d1

2r2
2λ

2 + 1
2

−1
2r2λ

−3d1

2r2
2λ

2
2

0

0 d1

2r2
2λ

2
d1

2r2
2λ

2 0 − 1
2 − 2

3
β
λ − d3

2r2
2λ

2
−1

2r2λ

0 −d1

2r2
2λ

2
−d1

2r2
2λ

2 0 1
2 + 2

3
β
λ + d3

2r2
2λ

2
−1

2r2λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P (λ)

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r1λ 0 1
2d4 − 1

2d4 − 3
2d4

3
2d4

0 r1λ − 1
2d4

1
2d4

3
2d4 − 3

2d4

− 1
2d6

1
2d6 −r2λ− d7

2λ − d7

2λ
3d7

2λ
3d7

2λ

1
2d6 − 1

2d6
d7

2λ r2λ + d7

2λ − 3d7

2λ − 3d7

2λ

1
2d6 − 1

2d6
d7

2λ
d7

2λ −r2λ− 2
3βr2 −

d8

2λ − 2
3βr2 −

d8

2λ

− 1
2d6

1
2d6 − d7

2λ − d7

2λ
2
3βr2 + d8

2λ r2λ + 2
3βr2 + d8

2λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

d4 :=
r2
2

r2
1

, d5 :=
r2
1

r2
2

, d6 := d1d5, d7 :=
d1

r2
, d8 :=

d3

r2
.(3.5)
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It is seen from the above that M̂(λ) can be written as

M̂(λ) := λM̂1 + M̂0 + λ−1M̂−1,(3.6)

where

M̂1 := diag [r1,−r1, r2,−r2, r2,−r2](3.7)

and

M̂0 :=

⎡⎢⎢⎣
O2×2

1
2d4M̂01 − 3

2d4M̂01

− 1
2d6M̂01 O2×2 O2×2

1
2d6M̂01 O2×2

2
3βr2M̂02

⎤⎥⎥⎦ , M̂−1 :=

[
O2×2 O2×4

O4×2 M̂−11

]
(3.8)

with

M̂01 :=

[
−1 1
1 −1

]
, M̂02 :=

[
1 1
−1 −1

]
, M̂−11 :=

[
1
2d7M̂02 − 3

2d7M̂02

− 1
2d7M̂02

1
2d8M̂02

]
.

On the basis of these transformations, we are now in a position to find an asymp-
totic expression for the fundamental matrix solution of system (3.4).

Theorem 3.1. Let 0 = λ ∈ C, and let M̂(λ) be given by (3.6) and assume that
r1 = r2. For x ∈ [0, 1], set

E(x, λ) := diag
[
er1λx, e−r1λx, er2λx, e−r2λx, er2λx, e−r2λx

]
.(3.9)

Then there exists a fundamental matrix solution Ψ̂(x, λ) for system (3.4), which sat-
isfies

Ψ′(x) = M̂(λ)Ψ(x)(3.10)

such that for large enough |λ|,

Ψ̂(x, λ) =

(
Ψ̂0(x) +

Θ̃(x, λ)

λ

)
E(x, λ),(3.11)

where

Ψ̂0(x) := diag [1, 1, 1, 1, e1(x), e2(x)](3.12)

and

Θ̃(x, λ) := Ψ̂1(x) + λ−1Ψ̂2(x) + · · ·(3.13)

with all entries uniformly bounded in [0, 1]. Here,

e1(x) := e
2
3βr2x and e2(x) := e−

2
3βr2x.(3.14)

Proof. Since M̂1 given by (3.7) is a diagonal matrix, it follows that E(x, λ) given
by (3.9) is a fundamental matrix solution to (3.10) which involves only the leading
order terms, that is, to say

E′(x, λ) = λM̂1E(x, λ).
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Now we look for a fundamental matrix solution of (3.10) in the form of

Ψ̂(x, λ) =
(
Ψ̂0(x) + λ−1Ψ̂1(x) + · · · + λ−nΨ̂n(x) + · · ·

)
E(x, λ).

The left-hand side of (3.10) is

Ψ̂′(x, λ) =
(
Ψ̂′

0(x) + λ−1Ψ̂′
1(x) + · · · + λ−nΨ̂′

n(x) + · · ·
)
E(x, λ)

+λ
(
Ψ̂0(x) + λ−1Ψ̂1(x) + · · · + λ−nΨ̂n(x) + · · ·

)
M̂1E(x, λ).

Compare it with the right-hand side of (3.10),(
λM̂1 + M̂0 + λ−1M̂−1

)(
Ψ̂0(x) + λ−1Ψ̂1(x) + · · · + λ−nΨ̂n(x) + · · ·

)
E(x, λ),

to give, according to the coefficients of λ1, λ0, λ−1, . . . , λ−n, . . . , that

Ψ̂0(x)M̂1 − M̂1Ψ̂0(x) = 0,

Ψ̂′
0(x) − M̂0Ψ̂0(x) + Ψ̂1(x)M̂1 − M̂1Ψ̂1(x) = 0,

Ψ̂′
1(x) − M̂0Ψ̂1(x) − M̂−1Ψ̂0(x) + Ψ̂2(x)M̂1 − M̂1Ψ̂2(x) = 0,

...

Ψ̂′
n(x) − M̂0Ψ̂n(x) − M̂−1Ψ̂n−1(x) + Ψ̂n+1(x)M̂1 − M̂1Ψ̂n+1(x) = 0,

...

Using the arguments in [8, p. 135] (or [1]), we conclude that there is an asymptotic

fundamental matrix solution Ψ̂(x, λ) for system (3.10). It remains to show that the

leading order term Ψ̂0(x) is given by (3.12). Indeed, since Ψ̂0(x) can be determined
by the matrix equations

Ψ̂0(x)M̂1 − M̂1Ψ̂0(x) = 0(3.15)

and

Ψ̂′
0(x) − M̂0Ψ̂0(x) + Ψ̂1(x)M̂1 − M̂1Ψ̂1(x) = 0,(3.16)

where M̂1 and M̂0 are given in (3.7), (3.8), respectively, it follows that if Ψ̂0 is known,

then one can deduce the leading order term Ψ̂1 of Θ̃(x, ρ) in (3.13) from (3.16) and

Ψ̂′
1(x) − M̂0Ψ̂1(x) − M̂−1Ψ̂0(x) + Ψ̂2(x)M̂1 − M̂1Ψ̂2(x) = 0

with M̂−1 being given in (3.8). Similarly, we obtain all the terms Ψ̂1, Ψ̂2, . . . ,

Ψ̂n, . . . of Θ̃(x, λ) in (3.13). So, the proof will be accomplished if we would find

the leading order term Ψ̂0 in (3.11).

Let us denote by cij(x) the (i, j)-entry of the matrix Ψ̂0(x) with i, j = 1, 2, . . . , 6.

Since M̂1 is diagonal, it follows from (3.15) and r1 = r2 that the entries cij(x) of Ψ̂0

satisfy ⎧⎨⎩
cij(x) = 0 if 1 ≤ i ≤ 2, 1 ≤ j ≤ 6, i = j,
cij(x) = 0 if 3 ≤ i ≤ 4, 1 ≤ j ≤ 6, i = j, j = i + 2,
cij(x) = 0 if 5 ≤ i ≤ 6, 1 ≤ j ≤ 6, i = j, j = i− 2,
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and the entries cii(x) (i = 1, 2, . . . , 6), c35(x), c53(x), c46(x), and c64(x) can be found
by substituting them into (3.16) to obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

c′ii(x) = 0 for i = 1, 2, 3, 4,

c′55(x) = 2
3βr2c55(x), c′66(x) = − 2

3βr2c66(x),

c′35(x) = 0, c′53(x) = 2
3βr2c53(x),

c′46(x) = 0, c′64(x) = − 2
3βr2c64(x).

(3.17)

(3.12) then follows from Ψ̂0(0) = I. The proof is complete.

By virtue of transformation for Ψ̂(x, λ) in (3.3), we have immediately the following
corollary, which shows the relationship between (2.26) and (3.4).

Corollary 3.2. Let 0 = λ ∈ C, let r1 = r2, and let Ψ̂(x, λ) given by (3.11) be a
fundamental matrix solution of system (3.4). Then

Φ̂(x, λ) := P (λ)Ψ̂(x, λ)(3.18)

is a fundamental matrix solution for the first order linear system (2.26).
We are now ready to estimate the asymptotic eigenfrequencies of the system.

Note that the eigenvalues of the first order linear system in (2.26) are given by the
zeros of the characteristic determinant

Δ(λ) := det
(
TRΦ̂(x, λ)

)
, λ ∈ C,(3.19)

where operator TR is given in (2.26) and Φ̂(x, λ) is any fundamental matrix of
TD(x, λ)Φ(x) = 0 (see [8]). We shall derive the asymptotic expansion of eigenfre-
quencies by substituting (3.11) and (3.18) into (3.19), together with the boundary
conditions in (2.26). In fact, since

TRΦ̂(x, λ) = W 0(λ)P (λ)Ψ̂(0, λ) + W 1(λ)P (λ)Ψ̂(1, λ),(3.20)

using (2.27) and (3.1), a simple computation gives

W 0(λ)P (λ) =

⎡⎢⎢⎣
r1λ r1λ 0 0 0 0
0 0 r2λ r2λ 0 0
0 0 0 0 r2λ r2λ

O3×6

⎤⎥⎥⎦
and

W 1(λ)P (λ) =

⎡⎢⎢⎣
O3×6

0 0 r2r3λ
2 r2r4λ

2 0 0
0 0 0 0 r2

2λ
2 −r2

2λ
2

r1r5λ
2 r1r6λ

2 r2λ r2λ −3r2λ −3r2λ

⎤⎥⎥⎦ ,

where

r3 := k2 + r2, r4 := k2 − r2, r5 := k1 + r1, r6 := k1 − r1.(3.21)

Once again for notational simplicity, set

[a]1 := a + O(λ−1).
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Since Ψ̂0(0) = I and E(0, λ) = I, a direct computation yields

W 0(λ)P (λ)Ψ̂(0, λ) =

⎡⎢⎢⎣
λ[r1]1 λ[r1]1 0 0 0 0

0 0 λ[r2]1 λ[r2]1 0 0
0 0 0 0 λ[r2]1 λ[r2]1

O3×6

⎤⎥⎥⎦
and

W 1(λ)P (λ)Ψ̂(1, λ) =⎡⎢⎢⎢⎣
O3×6

0 0 λ2E3[r2r3]1 λ2E4[r2r4]1 0 0

0 0 0 0 [r2
2]1λ

2E3E5 −[r2
2]1λ

2E4E6

λ2E1[r1r5]1 λ2E2[r1r6]1 λE3[r2]1 λE4[r2]1 −3λE3E5[r2]1 −3λE4E6[r2]1

⎤⎥⎥⎥⎦ ,

where {
E1 := er1λ, E2 := e−r1λ, E3 := er2λ, E4 := e−r2λ,

E5 := e1(1) = e
2
3βr2 , E6 := e2(1) = e−

2
3βr2 .

(3.22)

Hence,

TRΦ̂(x, λ) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ[r1]1 λ[r1]1 0 0 0 0

0 0 λ[r2]1 λ[r2]1 0 0

0 0 0 0 λ[r2]1 λ[r2]1

0 0 λ2E3[r2r3]1 λ2E4[r2r4]1 0 0

0 0 0 0 [r2
2]1λ

2E3E5 −[r2
2]1λ

2E4E6

λ2E1[r1r5]1 λ2E2[r1r6]1 λE3[r2]1 λE4[r2]1 −3λE3E5[r2]1 −3λE4E6[r2]1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore,

Δ(λ) = det(TRΦ̂(x, λ)) = λ9r2
1r

5
2 × det

[
[1]1 [1]1

[r5]1E1 [r6]1E2

]
× det

[
[1]1 [1]1

[r3]1E3 [r4]1E4

]
× det

[
[1]1 [1]1

−E3E5[1]1 E4E6[1]1

]
= r2

1r
5
2λ

9Δ1(λ)Δ2(λ)Δ3(λ),

where ⎧⎪⎪⎨⎪⎪⎩
Δ1(λ) := r6E2 − r5E1 + O(λ−1),

Δ2(λ) := r4E4 − r3E3 + O(λ−1),

Δ2(λ) := E4E6 + E3E5 + O(λ−1)

(3.23)

with ri (i = 3, 4, 5, 6) being given in (3.21) and Ei (i = 1, 2, . . . , 6) in (3.22), respec-
tively. With all these preparations, we come to the proof of the asymptotic behavior
of the eigenvalues.
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Theorem 3.3. Let r1 = r2 and let Δ(λ) be the characteristic determinant of
system (2.26). Then the following asymptotic expansion for Δ(λ) holds:

Δ(λ) = r2
1r

5
2λ

9Δ1(λ)Δ2(λ)Δ3(λ)(3.24)

with Δi(λ) being given in (3.23). If ki = ri (i = 1, 2), then there are three branches
of asymptotic eigenvalues given by (as |n| → ∞ and n ∈ Z){

λjn = μj + r−1
j nπi + O(n−1) for j = 1, 2,

λ3n = μ3 + r−1
2 (n + 1

2 )πi + O(n−1),
(3.25)

where

μj :=

⎧⎨⎩
1

2rj
ln

kj−rj
kj+rj

, kj > rj

1
2rj

(
ln

rj−kj

kj+rj
+ πi

)
, kj < rj

for j = 1, 2(3.26)

and

μ3 := −2

3
β.(3.27)

Moreover, we have, as |n| → ∞,

Reλjn → 1

2rj
ln

∣∣∣∣kj − rj
kj + rj

∣∣∣∣ < 0 for j = 1, 2 and Reλ3n → μ3 < 0.(3.28)

Furthermore, if k1 and k2 satisfy the conditions

k1 =

⎧⎪⎪⎨⎪⎪⎩
α1 + 1

1 − α1
r1 for k1 > r1,

1 − α1

α1 + 1
r1 for k1 < r1,

α1 :=

∣∣∣∣k2 − r2
k2 + r2

∣∣∣∣r1/r2 , 0 < α1 < 1,(3.29)

and

k1 =

⎧⎪⎪⎨⎪⎪⎩
α2 + 1

1 − α2
r1 for k1 > r1,

1 − α2

α2 + 1
r1 for k1 < r1,

α2 := e−
4
3βr1 , 0 < α2 < 1,(3.30)

then the zeros of Δ(λ) are simple when their moduli are sufficiently large.
Proof. By Δ(λ) = 0 and (3.24), it follows that

Δ1(λ)Δ2(λ)Δ3(λ) = 0(3.31)

and

Δi(λ) = 0 for i = 1, 2, 3.

Let Δ1(λ) = 0. Then we obtain

r6E2 − r5E1 + O(λ−1) = 0,(3.32)
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which is equivalent to (from (3.21) and (3.23))

(k1 − r1)e
−r1λ − (k1 + r1)e

r1λ + O(λ−1) = 0.(3.33)

Since the solutions of the equation

(k1 − r1)e
−r1λ − (k1 + r1)e

r1λ = 0

are given by

λ̃1n = μ1 + r−1
1 nπi, n ∈ Z,

it follows from Rouché’s theorem that the solutions to (3.33) are in the form

λ1n = λ̃1n + O(n−1) = μ1 + r−1
1 nπi + O(n−1), n ∈ Z and |n| → ∞.(3.34)

Similarly, let Δ2(λ) = 0. Then the equation

(k2 − r2)e
−r2λ − (k2 + r2)e

r2λ + O(λ−1) = 0(3.35)

has the solutions

λ2n = μ2 + r−1
2 nπi + O(n−1), n ∈ Z and |n| → ∞.(3.36)

Also, let Δ3(λ) = 0. The equation

e2(1)e−r2λ + e1(1)er2λ + O(λ−1) = 0(3.37)

has the solutions

λ3n = μ3 + r−1
2

(
n +

1

2

)
πi + O(n−1), n ∈ Z and |n| → ∞.(3.38)

Finally, by a direct computation, it follows from (3.29) and (3.30) that k1 and k2

satisfy the following conditions:

1

r1
ln

∣∣∣∣k1 − r1
k1 + r1

∣∣∣∣ = 1

r2
ln

∣∣∣∣k2 − r2
k2 + r2

∣∣∣∣ , 1

2r1
ln

∣∣∣∣k1 − r1
k1 + r1

∣∣∣∣ = −2

3
β.

Thus μ1 = μ2 and μ1 = μ3. The last assertion is then concluded. The proof is
complete.

Theorem 3.4. Suppose r1 = r2 and ki = ri (i = 1, 2). Let A be defined by (2.4)
and (2.5). Then all eigenvalues of A have the asymptotic expressions given by (3.25).
Moreover, if k1 and k2 satisfy conditions (3.29) and (3.30), then all eigenvalues of the
system with sufficiently large moduli are simple.

4. Asymptotic behavior of eigenfunctions. In this section, we shall consider
the asymptotic behavior for eigenfunctions of A. It will be used in the proof of the
Riesz basis in the last section.

Theorem 4.1. Suppose r1 = r2 and ki = ri (i = 1, 2). Let σ(A) := {λ1n, λ2n, λ3n,
n ∈ Z} be the eigenvalues of A with λjn (j = 1, 2, 3) being given in (3.25). Then the
corresponding eigenfunctions{

[wjn, λjnwjn, ξjn, λjnξjn, sjn, λjnsjn]�, j = 1, 2, 3, n ∈ Z
}
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have the following asymptotic expressions for |n| → ∞, n ∈ Z:

(4.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′
1n(x) = 1

2 (e−r1λ1nx + er1λ1nx) + O(n−1), w′
jn(x) =O(n−1) for j = 2, 3,

λ1nw1n(x) = 1
2r

−1
1 (er1λ1nx − e−r1λ1nx) + O(n−1), λjnwjn(x) = O(n−1) for j = 2, 3,

ξ′2n(x) = 1
2 (e−r2λ2nx + er2λ2nx) + O(n−1), ξ′jn(x) =O(n−1) for j = 1, 3,

λ2nξ2n(x) = 1
2r

−1
2 (er2λ2nx − e−r2λ2nx) + O(n−1), λjnξjn(x) =O(n−1) for j = 1, 3,

s′3n(x) = 1
2 (e2(x)e−r2λ3nx + e1(x)er2λ3nx) + O(n−1), s′jn(x) =O(n−1) for j = 1, 2,

λ3ns3n(x) = 1
2r

−1
2 (e1(x)er2λ3nx − e2(x)e−r2λ3nx) + O(n−1),

λjnsjn(x) = O(n−1) for j = 1, 2,

where r1, r2 are given in (2.22) and e1(x), e2(x) are given in (3.14), respectively. More-
over, {[wjn, λjnwjn, ξjn, λjnξjn, sjn, λjnsjn]�(j = 1, 2, 3, n ∈ Z)} are approximately
normalized in H in the sense that there exist positive constants c1 and c2 independent
of n such that (j = 1, 2, 3)

c1 ≤ ‖w′
jn‖L2 , ‖λjnwjn‖L2 , ‖ξ′jn‖L2 , ‖λjnξjn‖L2 , ‖s′jn‖L2 , ‖λjnsjn‖L2 ≤ c2(4.2)

for all integers n.

Proof. Note that the jth component of Φ(x) = [w1(x), w2(x), ξ1(x), ξ2(x), s1(x),
s2(x)]� in (2.25) with respect to the eigenvalue λ can be obtained by taking the
determinant of the matrices which are replaced one of the rows of TRΦ̂ in (3.20)
by e�j (Φ̂(x, λ)) so that their determinants are not zero, where ej is the jth column
of the identity matrix. Indeed, we have from (3.18) that Φ̂(x, λ) = P (λ)Ψ̂(x, λ) and
hence

Φ̂(x, λ) =

⎡⎢⎢⎣
Φ̂11(x, λ) O2×2 O2×2

O2×2 Φ̂22(x, λ) O2×2

O2×2 O2×2 Φ̂33(x, λ)

⎤⎥⎥⎦ ,(4.3)

where

Φ̂ii(x, λ) :=

[
riλe

riλx[1 + O(λ−1)] riλe
−riλx[1 + O(λ−1)]

r2
i λ

2eriλx[1 + O(λ−1)] −r2
i λ

2e−riλx[1 + O(λ−1)]

]
for i = 1, 2

(4.4)

and

Φ̂33(x, λ) :=

[
r2λe

r2λxe1(x)[1 + O(λ−1)] r2λe
−r2λxe2(x)[1 + O(λ−1)]

r2
2λ

2er2λxe1(x)[1 + O(λ−1)] −r2
2λ

2e−r2λxe2(x)[1 + O(λ−1)]

]
(4.5)

with ei(x) (i = 1, 2) being given in (3.14).
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Thus, the first component of Φ(x) is given by

w1(x, λ) = r−2
1 r−5

2 λ−8 det

[
λ[r1]1 λ[r1]1

λer1λx[r1]1 λe−r1λx[r1]1

]

×det

[
λ[r2]1 λ[r2]1

λ2E3[r2r3]1 λ2E4[r2r4]1

]
× det

[
λ[r2]1 λ[r2]1

−λ2E3E5[r
2
2]1 λ2E4E6[r

2
2]1

]
=
(
e−r1λx − er1λx + O(λ−1)

) (
r4e

−r2λ − r3e
r2λ + O(λ−1)

)
×
(
e2(1)e−r2λ + e1(1)er2λ + O(λ−1)

)
.

By (3.23), (3.25), and (3.31), we conclude that

w1(x, λ) =

{
r7(λ)

(
e−r1λx − er1λx + O(λ−1)

)
if λ = λ1n,

O(λ−1) if λ = λ2n or λ3n,
(4.6)

where r7(λ) is bounded in λ and has the form

r7(λ) :=
(
r4e

−r2λ − r3e
r2λ
) (

e2(1)e−r2λ + e1(1)er2λ
)
.(4.7)

Similarly, we have

w2(x, λ) = r−2
1 r−5

2 λ−8 det

[
λ[r1]1 λ[r1]1

λ2er1λx[r2
1]1 −λ2e−r1λx[r2

1]1

]

×det

[
λ[r2]1 λ[r2]1

λ2E3[r2r3]1 λ2E4[r2r4]1

]
× det

[
λ[r2]1 λ[r2]1

−λ2E3E5[r
2
2]1 λ2E4E6[r

2
2]1

]
= −r1λ

(
e−r1λx + er1λx + O(λ−1)

) (
r4e

−r2λ − r3e
r2λ + O(λ−1)

)
×
(
e2(1)e−r2λ + e1(1)er2λ + O(λ−1)

)
and

w2(x, λ) =

{
−λr1r7(λ)

(
e−r1λx + er1λx + O(λ−1)

)
if λ = λ1n,

r1λ[O(λ−1)] if λ = λ2n or λ3n.
(4.8)

Also, along the same line,

w3(x, λ) = r−2
1 r−5

2 λ−8 det

[
λ[r1]1 λ[r1]1

λ2E1[r1r5]1 λ2E2[r1r6]1

]

×det

[
λ[r2]1 λ[r2]1

λer2λx[r2]1 λe−r2λx[r2]1

]
× det

[
λ[r2]1 λ[r2]1

−λ2E3E5[r
2
2]1 λ2E4E6[r

2
2]1

]
=
(
r6e

−r1λ − r5e
r1λ + O(λ−1)

) (
e−r2λx − er2λx + O(λ−1)

)
×
(
e2(1)e−r2λ + e1(1)er2λ + O(λ−1)

)
and from (3.23), (3.25), and (3.31), we obtain that

w3(x, λ) =

{
r8(λ)

(
e−r2λx − er2λx + O(λ−1)

)
if λ = λ2n,

O(λ−1) if λ = λ1n or λ3n

(4.9)
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with

r8(λ) :=
(
r6e

−r1λ − r5e
r1λ
) (

e2(1)e−r2λ + e1(1)er2λ
)
.(4.10)

Furthermore,

w4(x, λ) = r−2
1 r−5

2 λ−8 det

[
λ[r1]1 λ[r1]1

λ2E1[r1r5]1 λ2E2[r1r6]1

]

×det

[
λ[r2]1 λ[r2]1

λ2er2λx[r2
2]1 −λ2e−r2λx[r2

2]1

]
× det

[
λ[r2]1 λ[r2]1

−λ2E3E5[r
2
2]1 λ2E4E6[r

2
2]1

]
= −r2λ

(
r6e

−r1λ − r5e
r1λ + O(λ−1)

) (
e−r2λx + er2λx + O(λ−1)

)
×
(
e2(1)e−r2λ+e1(1)er2λ + O(λ−1)

)
and

w4(x, λ) =

{
−λr2r8(λ)

(
e−r2λx + er2λx + O(λ−1)

)
if λ = λ2n,

r2λ[O(λ−1)] if λ = λ1n or λ3n.
(4.11)

Also, the fifth component of Φ(x) can be given by

w5(x, λ) = −r−2
1 r−4

2 λ−8 det

[
λ[r1]1 λ[r1]1

λ2E1[r1r5]1 λ2E2[r1r6]1

]

×det

[
λ[r2]1 λ[r2]1

λ2E3[r2r3]1 λ
2E4[r2r4]1

]
×det

[
λ[r2]1 λ[r2]1

λer2λxe1(x)[r2]1 λe−r2λxe2(x)[r2]1

]
= −

(
r6e

−r1λ − r5e
r1λ + O(λ−1)

) (
r4e

−r2λ − r3e
r2λ + O(λ−1)

)
×
(
e2(x)e−r2λx − e1(x)er2λx + O(λ−1)

)
,

and we conclude from (3.23), (3.25), and (3.31) that

w5(x, λ) =

{
r9(λ)

(
e2(x)e−r2λx − e1(x)er2λx + O(λ−1)

)
if λ = λ3n,

O(λ−1) if λ = λ1n or λ2n

(4.12)

with

r9(λ) := −
(
r6e

−r1λ − r5e
r1λ + O(λ−1)

) (
r4e

−r2λ − r3e
r2λ + O(λ−1)

)
.(4.13)

For the last component of Φ(x), one has

w6(x, λ) = r−2
1 r−4

2 λ−8 det

[
λ[r2]1 λ[r2]1

−λ2er2λxe1(x)[r2
2]1 λ2e−r2λxe2(x)[r2

2]1

]

×det

[
λ[r2]1 λ[r2]1

λ2E3[r2r3]1 λ2E4[r2r4]1

]
× det

[
λ[r1]1 λ[r1]1

λ2E1[r1r5]1 λ2E2[r1r6]1

]
= r2λ

(
r6e

−r1λ − r5e
r1λ + O(λ−1)

) (
r4e

−r2λ − r3e
r2λ + O(λ−1)

)
×
(
e2(x)e−r2λx + e1(x)er2λx + O(λ−1)

)



LAMINATED BEAMS 1593

and

w6(x, λ) =

{
−λr2r9(λ)

(
e2(x)e−r2λx + e1(x)er2λx + O(λ−1)

)
if λ = λ3n,

r2λ[O(λ−1)] if λ = λ1n or λ2n.

(4.14)

On the basis of above computations, (4.1) can then be deduced from (4.6)–(4.14) by
setting

wn(x) = − w1(x, λ)

2r1λr7(λ)
, ξn(x) = − w3(x, λ)

2r2λr8(λ)
, sn(x) = − w5(x, λ)

2r2λr9(λ)
(4.15)

in (4.6)–(4.14), respectively. Finally, it follows from (3.25) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖e−rjλjnx‖L2 =
1 − e−2rjμj

2rjμj
+ O(n−1) for j = 1, 2,

‖erjλjnx‖L2 =
e2rjμj − 1

2rjμj
+ O(n−1) for j = 1, 2,

‖e−r2λ3nx‖L2 =
1 − e−2r2μ3

2r2μ3
+ O(n−1),

‖er2λ3nx‖L2 =
e2r2μ3 − 1

2r2μ3
+ O(n−1),

(4.16)

where μj (j = 1, 2, 3) are given in (3.26) and (3.27). These together with (4.1) yield
(4.2). The proof is complete.

5. The Riesz basis property and exponential stability of the system.
In the previous sections, we have obtained the asymptotic expressions of eigenpairs
of A and concluded that there are three asymptotes for the spectrum σ(A) with
their asymptotic expressions in (3.25). In this section, we shall prove that there
exists a sequence of generalized eigenfunctions of A which forms a Riesz basis for
H. Furthermore, the exponential stability of the system can be determined by its
spectrum distribution.

For these purposes, we introduce another equivalent inner product on H. Let
Yj := [wj , zj , ξj , ϕj , sj , hj ]

� ∈ H (j = 1, 2) define a new inner product in H by

[Y1, Y2]H := 〈w′
1, w

′
2〉L2 + 〈z1, z2〉L2 + 〈ξ′1, ξ′2〉L2 + 〈ϕ1, ϕ2〉L2 + 〈s′1, s′2〉L2 + 〈h1, h2〉L2 ,

(5.1)

and write its induced norm of (5.1) by ‖ ·‖H . One can easily check that H is a Hilbert
space under this new inner product. From now on, we shall consider our problem in
H associated with this new inner product of (5.1). For convenience, define another
Hilbert space

L :=
(
L2(0, 1)

)6
(5.2)

with an inner product (for any Xj := [wj , zj , ξj , ϕj , sj , hj ]
� ∈ L, j = 1, 2)

〈X1, X2〉L := 〈w1, w2〉L2 + 〈z1, z2〉L2 + 〈ξ1, ξ2〉L2 + 〈ϕ1, ϕ2〉L2 + 〈s1, s2〉L2 + 〈h1, h2〉L2
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and define the subspaces of H and L, respectively, by

⎧⎨⎩
H1 := {Y ∈ H

∣∣ Y = [w, z, 0, 0, 0, 0]�},
H2 := {Y ∈ H

∣∣ Y = [0, 0, ξ, ϕ, 0, 0]�},
H3 := {Y ∈ H

∣∣ Y = [0, 0, 0, 0, s, h]�},

⎧⎨⎩
L1 := {X ∈ L

∣∣ X = [w, z, 0, 0, 0, 0]�},
L2 := {X ∈ L

∣∣ X = [0, 0, ξ, ϕ, 0, 0]�},
L3 := {X ∈ L

∣∣ X = [0, 0, 0, 0, s, h]�}.

(5.3)

Obviously, we have

H = H1 ⊕H2 ⊕H3 and L = L1 ⊕ L2 ⊕ L3,(5.4)

where the sign ⊕ denotes the direct sum in the sense of orthogonality with respect to
the inner products [·, ·]H and 〈·, ·〉L in H and L, respectively.

Before continuing, let us recall some forms of notation. For a closed operator A
in a Hilbert space H, a nonzero element φ ∈ H is called a generalized eigenvector
of A, corresponding to an eigenvalue λ of A, if there is an integer ν ≥ 1 such that
(λI − A)νφ = 0. If ν = 1, then φ is an eigenvector. A sequence {φn}∞n=1 in H is
called a Riesz basis for H if there exists an orthonormal basis {en}∞n=1 in H and a
linear bounded invertible operator T such that

Tφn = en, n = 1, 2, . . . .

Let {λn}∞n=1 = σ(A) be the spectrum of A. Suppose each λn has finite algebraic
multiplicity mn, and let {ψni}mn

1 be the set of generalized eigenvectors of A corre-
sponding to λn. If {ψni | 1 ≤ i ≤ mn, n = 1, 2, . . . } form a Riesz basis for H, then
the C0-semigroup generated by A can be represented as

eAtx =

∞∑
n=1

eλnt
mn∑
j=1

anjfnj(t)ψnj ∀ x =

∞∑
n=1

mn∑
j=1

anjψnj ∈ H,(5.5)

where fnj(t) are the polynomials of t with order not greater than mn. In particular,
if mn has a uniform upper bound and {ψni}mn

1 is the eigenvector (not generalized
eigenvector) set of A with respect to λn for all sufficiently large n, then the spectrum
determined growth condition holds, i.e., ω(A) = s(A), where ω(A) is the growth
bound of eAt, and s(A) is the spectral bound of A (see [2]).

To establish the Riesz basis property for the root space of the operator A, we
recall a result of Bari’s theorem in [11].

Theorem 5.1. Let H be a separable Hilbert space and let {en; n ∈ Z} be an or-
thonormal basis for H. If {fn; n ∈ Z} is an ω-independent sequence that is quadrat-
ically close to {en; n ∈ Z}, then {fn; n ∈ Z} is a Riesz basis for H.

Lemma 5.2. Let {φn(x); n ∈ N} and {1, ψn(x); n ∈ N} be two subsets in L2(0, 1)
defined by, respectively,

φn(x) := sinnπx and ψn(x) := cosnπx ∀ x ∈ (0, 1), n ∈ N.

Then {φn(x); n ∈ N} and {1, ψn(x); n ∈ N} are two orthogonal bases in L2(0, 1).
Moreover, for any scalars α, β = 0 ∈ C the vector family

{
Ψn := [cosh(α + inπ)x,

β sinh(α+inπ)x]�, n ∈ Z
}

forms a Riesz basis on the Hilbert space L2(0, 1)×L2(0, 1).
Proof. The first assertion is a direct result in [11] and it is easily verified that{[

0
sinnπx

]
,

[
1
0

]
,

[
cosnπx

0

]}
n∈N
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constitutes a Riesz basis on L2(0, 1) × L2(0, 1). So the sequence{[
cosnπx
sinnπx

]
,

[
1
0

]
,

[
cosnπx
− sinnπ

]}
n∈N

also forms a Riesz basis on L2(0, 1)×L2(0, 1). Let T be an invertible matrix function
in (0, 1) given by

T :=

[
coshαx i sinhαx
β sinhαx iβ coshαx

]
with |T | = iβ for each x ∈ (0, 1).

Then we obtain, for n ∈ N,[
cosh(α + inπ)x
β sinh(α + inπ)x

]
= T

[
cosnπx
sinnπx

]
,

[
cosh(α− inπ)x
β sinh(α− inπ)x

]
= T

[
cosnπx
− sinnπx

]
,

and [
coshαx
β sinhαx

]
= T

[
1
0

]
.

Thus, the sequence {Ψn := [cosh(α + inπ)x, β sinh(α + inπ)x]�, n ∈ Z} also forms
a Riesz basis on the Hilbert space L2(0, 1) × L2(0, 1). The second assertion is con-
cluded.

Theorem 5.3. Suppose r1 = r2 and ki = ri (i = 1, 2). Let A be defined by (2.4)
and (2.5), and let

Ψjn := [w′
jn, λjnwjn, ξ

′
jn, λjnξjn, s

′
jn, λjnsjn]�, (j = 1, 2, 3, n ∈ Z),(5.6)

where the entries are given as (4.1) corresponding to the eigenvalues λjn. Then
{Ψ1n,Ψ2n,Ψ3n; n ∈ Z} forms a Riesz basis in Hilbert space L provided that {Ψjn, j =
1, 2, 3, n ∈ Z} is ω-linearly independent in L.

Proof. Let three vector families be given by

Φ1n :=
[
cosh(r1μ1 + inπ)x, r−1

1 sinh(r1μ1 + inπ)x, 0, 0, 0, 0
]�

,

Φ2n :=
[
0, 0, cosh(r2μ2 + inπ)x, r−1

2 sinh(r2μ2 + inπ)x, 0, 0
]�

,

Φ3n :=
[
0, 0, 0, 0, cosh i

(
n +

1

2

)
πx, r−1

3 sinh i
(
n +

1

2

)
πx
]�

.

Then one concludes from Lemma 5.2 that the families {Φjn, n ∈ Z} (j = 1, 2, 3) are
the Riesz bases for Lj , respectively. Also, by using the asymptotic expressions of both
eigenvalues (3.25) and their eigenfunctions (4.1), it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖w′
1n − cosh(r1μ1 + inπ)x‖L2 = O(n−1),

‖r1λ1nw1n − sinh(r1μ1 + inπ)x‖L2 = O(n−1),

‖ξ′2n − cosh(r2μ2 + inπ)x‖L2 = O(n−1),

‖r2λ2nξ1n − sinh(r2μ2 + inπ)x‖L2 = O(n−1),

‖s′3n − cosh i(n + 1
2 )πx‖L2 = O(n−1),

‖r3λ3ns3n − sinh i(n + 1
2 )πx‖L2 = O(n−1).

(5.7)
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Hence, we obtain

‖Ψ1n − Φ1n‖L1 = O(n−1),
‖Ψ2n − Φ2n‖L2 = O(n−1),
‖Ψ3n − Φ3n‖L3

= O(n−1).
(5.8)

Therefore, by Theorem 5.1 (Bari’s theorem), {Ψ1n,Ψ2n,Ψ3n;n ∈ Z} forms a Riesz
basis for L provided that {Ψjn; j = 1, 2, 3, n ∈ Z} is ω-linearly independent in
L.

As a consequence of this theorem, we obtain the main results of the paper.
Theorem 5.4. Suppose r1 = r2 and ki = ri (i = 1, 2). Let A be defined by

(2.4) and (2.5). Then there exists a sequence of generalized eigenfunctions of A which
forms a Riesz basis for H.

Proof. In Theorem 4.1, we have obtained the asymptotic expressions of the
eigenfunctions of A corresponding to the eigenvalues with large moduli. Without
loss of generality, we may assume that

Yjn := [wjn, λjnwjn, ξjn, λjnξjn, sjn, λjnsjn]� for j = 1, 2, 3 and n ∈ Z

is an eigenfunction corresponding to the eigenvalue λjn in which the entries have the
asymptotic expansions given in (4.1). Then {Yjn; j = 1, 2, 3, n ∈ Z} is ω-linearly
independent in H. The proof will be completed via an isomorphic mapping between
two Hilbert spaces H and L that maps Yjn to Ψjn, where {Ψjn; j = 1, 2, 3, n ∈ Z} is
a sequence given by (5.6).

To do this, for any F := [f1, f2, g1, g2, u1, u2]
� ∈ H, we define a linear bounded

operator T : H → L by

T F := [f ′
1, f2, g

′
1, g2, u

′
1, u2]

� := F̂ .

Since [F, Yjn]H = 〈F̂ , Ψjn〉L, it is easy to prove that T is isomorphic and satisfies

‖T F‖L = ‖F̂‖L = ‖F‖H .(5.9)

In particular, for j = 1, 2, 3 and n ∈ Z,

T Yjn = Ψjn and ‖Yjn‖H = ‖Ψjn‖L .

Moreover, {Yjn; j = 1, 2, 3, n ∈ Z} is ω-linearly independent in H, so is {Ψjn; j =
1, 2, 3, n ∈ Z} in L. Therefore, by Theorem 5.3, {Ψjn; j = 1, 2, 3, n ∈ Z} forms a
Riesz basis in L. Hence, {Yjn; j = 1, 2, 3, n ∈ Z} forms a Riesz basis for H. The
proof is complete.

Theorem 5.5. Suppose r1 = r2 and ki = ri (i = 1, 2). Let A be defined by
(2.4) and (2.5), and let T (t) be a C0-semigroup generated by A in H. Then T (t) is
exponentially stable, and in fact it is a C0-group in H.

Proof. As a direct consequence of Theorems 3.4 and 5.4, the spectrum deter-
mined growth condition ω(A) = s(A) for T (t) holds. Furthermore, Corollary 2.2
implies that there is no eigenvalue on the imaginary axis. This, together with (3.25)
and the spectrum determined growth condition, shows that T (t) is an exponentially
stable semigroup on H. Moreover, T (t) is also a C0-group in H. This is because of
the fact that the spectrum of A distributes in a vertical strip due to Theorems 3.3
and 3.4.
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THE REGULARITY OF THE WAVE EQUATION WITH PARTIAL
DIRICHLET CONTROL AND COLOCATED OBSERVATION∗
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Abstract. In this paper we analyze a multidimensional controlled wave equation on a bounded
domain, subject to partial Dirichlet control and colocated observation. By means of a partial Fourier
transform, it is shown that the system is well-posed and regular in the sense of D. Salamon and G.
Weiss. The corresponding feedthrough operator is found to be the identity operator on the input
space.
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1. Introduction. A very general class of linear infinite-dimensional systems for
which there is a well established theory parallel to that for finite-dimensional systems
is the class of well-posed and regular linear systems (see [5]). This generic framework
covers many systems governed by partial differential equations with actuators and
sensors supported on isolated points, on a subdomain, or on a part of the boundary
of the spatial region. There are many papers in this field (e.g., [7], [13], [14], [15],
[16], [20], [21], [24], [25], [26], [27], [34], [35], [36], [38], and the references therein).
Recently, the regular linear system theory has been generalized to the time-varying
case in [22]. We refer to [5] for a nice earlier summary of well-posed system theory.

Well-posedness and regularity are two new crucial concepts introduced in linear
infinite-dimensional systems theory under the above-mentioned framework. It is no-
table that these two concepts are completely different from those one usually uses
in partial differential equations. For the reader’s convenience, we shall recall their
definitions and other related notions in section 2. As remarked in [4], very little
is known about the well-posedness or the regularity of controlled infinite-dimensional
systems. In [2], the well-posedness of the wave equation with Dirichlet input and colo-
cated output in a two-dimensional (2-D) disk was proved by a direct method. The
well-posedness of the same equation on a bounded open domain of Rn(n ≥ 2) with a
smooth boundary was proved in [1] using microlocal analysis. The well-posedness and
regularity of the multidimensional heat equation with both Dirichlet- and Neumann-
type boundary control has been established in [3]. To the best of our knowledge, [3]
is the first article dealing with the regularity of a multidimensional partial differential
equation system, although well-posedness and regularity have been well-established
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for many one-dimensional systems (see [11]). The regularity of the wave equation in
a 2-D disk with Dirichlet control and colocated observation was first obtained in [12].
However, the same problem for a general bounded domain in Rn has remained open.

The aim of this paper is to give a positive solution to the above-mentioned prob-
lem. More precisely, we consider the following multidimensional wave equation with
partial Dirichlet control and colocated observation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wtt(x, t) − Δw(x, t) = 0, x ∈ Ω, t > 0,
w(x, t) = 0, x ∈ Γ1, t > 0,
w(x, t) = u(x, t), x ∈ Γ0, t > 0,

y(x, t) = −∂(−Δ)−1wt(x, t)

∂ν
, x ∈ Γ0, t > 0.

(1.1)

Here, Ω ⊂ Rn (n ≥ 2) is a bounded domain with the smooth boundary ∂Ω = Γ0 ∪Γ1,
both Γ0 and Γ1 are disjoint parts of the boundary relatively open in ∂Ω with int(Γ0) �=
∅, and ν is the unit normal vector of Γ0 pointing towards the exterior of Ω. In system
(1.1), u is the input function (or control) and y is the output function (or output). Put
H = L2(Ω) ×H−1(Ω) and U = L2(Γ0). The following result comes from Proposition
2.2 of [1] and Theorem 4.2 of [19, p. 46] (see also [17]).

Theorem 1.1. Let T > 0, (w0, w1) ∈ H, and u ∈ L2(0, T ;U). Then there
exists a unique solution (w,wt) ∈ C([0, T ];H) to (1.1) satisfying w(·, 0) = w0 and
wt(·, 0) = w1. Moreover, there exists a constant C > 0, independent of (w0, w1, u),
such that

‖(w(·, T ), wt(·, T ))‖2
H + ‖y‖2

L2(0,T ;U) ≤ C
[
‖(w0, w1)‖2

H + ‖u‖2
L2(0,T ;U)

]
.

Theorem 1.1 implies that the system described by (1.1) is well-posed with state
space H, input space U , and output space U (the precise definition of these concepts
will be given in the next section). We mention that Proposition 2.2 of [1] says that
there exists a C∗ > 0 independent of u such that

‖y‖2
L2(0,T ;U) ≤ C∗‖u‖2

L2(0,T ;U) when (w0, w1) = 0.

However, as was indicated in [2] and [37], Theorem 1.1 can be derived from here with
relative ease.

The main goal of this paper is to show that the system described by (1.1) is
regular as well. Our result reads as follows.

Theorem 1.2. System (1.1) is regular. More precisely, if w(·, 0) = wt(·, 0) = 0
and u(x, t) ≡ u(x) is a step input with some u ∈ U , then the corresponding output y
satisfies

lim
σ→0

∫
Γ0

∣∣∣∣ 1σ
∫ σ

0

y(x, t)dt− u(x)

∣∣∣∣2 dx = 0.

This result allows us to study dynamic stabilization, optimal control, or other
problems for system (1.1) using a theory that is parallel in many ways to the finite-
dimensional theory; see, e.g., [6]. Also, as we shall explain in section 2, Theorem
1.2 states that system (1.1) has feedthrough operator D = I, where I is the identity
operator on U .

This paper is organized as follows: In the next section, we introduce the back-
ground and the necessary preliminaries about well-posed and regular systems. The
proof of Theorem 1.2 is given in section 3.
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2. Preliminaries. In this section, we shall briefly recall some background about
infinite-dimensional well-posed and regular systems (see [5], [27], [30], [31], [32], [33],
[34]).

Let X, U , and Y be three Hilbert spaces. Denote by ‖ · ‖ the norm of X (induced
by its inner product). In what follows, we choose X, U , and Y to be the state, input,
and output spaces, respectively, of an infinite-dimensional linear system. This system
is described by the equations{

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X,
y(t) = Cex(t) + Deu(t),

(2.1)

where the (usually unbounded) operator A generates a C0-semigroup T(·) on X, B is
a control operator from U to X, Ce is an observation operator from X to Y , and De

is a bounded operator from U to Y . In (2.1), u(t) ∈ U , x(t) ∈ X, and y(t) ∈ Y are
called the input, the state, and the output, respectively. The input function u(·) is
assumed to be in the space L2

loc(0,∞;U), but the representation (2.1) is valid only if
u ∈ H1

loc(0,∞;U) and Ax(0)+Bu(0) ∈ X (see [28] for details). For the case that both
B and Ce are bounded, a nice theory for system (2.1) has been summarized in the
book [9]. The framework of well-posed system theory is, however, mainly concerned
with the case where neither B nor Ce is bounded.

Let us recall some basic notation. The Hilbert space X−1 is defined as the com-
pletion of X with respect to the norm

‖x‖−1 = ‖(β − A)−1x‖ ∀ x ∈ X,

and the space X1 is the space D(A) with the norm

‖x‖1 = ‖(β − A)x‖ ∀ x ∈ D(A),

where β ∈ ρ(A), the resolvent set of A. It is easy to verify that both X−1 and X1

are independent of the choice of β. It was shown in [30] that X−1 = D(A∗)′, the dual
space of D(A∗) with respect to the pivot X. Identifying X with its dual space, we
have the following continuous, dense inclusions:

X1 ↪→ X ↪→ X−1.

Definition 2.1. System (2.1) is said to be well-posed if the following hold:

(a) A generates a C0-semigroup T(·) on X.
(b) B ∈ L(U,X−1) is an admissible control operator for T(·), i.e., for some (and

hence for any) t > 0 there exists Ct > 0 such that∥∥∥∥∫ t

0

T(t− τ)Bu(τ)dτ

∥∥∥∥2

≤ Ct

∫ t

0

‖u(t)‖2
Udt ∀ u ∈ L2(0, t;U).

(c) The domain D(Ce) ⊃ D(A). If we denote by C the restriction of Ce to D(A),
then C ∈ L(X1, Y ) is an admissible observation operator for T(·), which
means that for some (and hence for any) t > 0, there exists C ′

t > 0 such that∫ t

0

‖CT(·)x‖2
Y dt ≤ C ′

t‖x‖2 ∀ x ∈ D(A).
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(d) The input-output map is bounded; i.e., for some (and hence for any) t > 0,
there exists C ′′

t > 0 such that∫ t

0

‖y(t)‖2
Y dt ≤ C ′′

t

∫ t

0

‖u(t)‖2
Udt ∀ u ∈ L2(0, t;U) when x0 = 0.

It should be noted that the definition above is not the standard one given by [5]
or [8], but it is equivalent to Weiss’s definition (see [16], [23], [27]). From [31], B is
admissible for T(·) if and only if the adjoint operator B∗ is admissible for T∗(·), the
adjoint C0-semigroup of T(t).

Roughly speaking, a well-posed system is a system for which both the state and
output depend continuously on the initial state and input function of the system.

If system (2.1) is well-posed, then the weak solution of (2.1) can be represented
as (see [5], [28])⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = T(t)x0 +

∫ t

0

T(t− τ)Bu(τ)dτ ∈ C([0,∞);X)

∀ x0 ∈ X,u ∈ L2
loc(0,∞;U),

y(t) = CΛ

[
x(t) − (λ− A)−1Bu(t)

]
+ H(λ)u(t) ∈ L2

loc(0,∞;Y )

∀ u ∈ L2
loc(0,∞;U),

(2.2)

where CΛx = limλ→+∞ Cλ(λ − A)−1x for all x ∈ D(CΛ) is by definition the Λ-
extension of C, where D(CΛ) is the subspace of X for which the associated limit
exists (see [5]). H(λ) is called the transfer function which is defined in some right-half
planes and is an analytic L(U, Y )-valued function. It can be shown that if û(λ) exists,
then

ŷ(λ) = H(λ)û(λ) when x0 = 0,(2.3)

whereˆdenotes the Laplace transform. In terms of the operators from (2.1), we have
(see [28])

H(λ) = Ce(λ− A)−1B + De.

The transfer function H(λ) can be determined by the triple of operators (A,B,C) up
to an additive constant bounded operator in the following way (see [8]):

H(λ) − H(β)

λ− β
= −C(λ− A)−1(β − A)−1B ∀ λ, β ∈ C+

ρ , λ �= β,(2.4)

where C+
ρ = {λ ∈ C| Reλ > ρ} for some ρ > 0 and C stands for the complex plane.

Using the transfer function, the boundedness of the input-output map described in
condition (d) of Definition 2.1 can be expressed as the boundedness of the transfer
function on an open right complex half plane (see [8], [11], [16])

sup
Reλ≥α>ρ

‖H(λ)‖L(U,Y ) < ∞(2.5)

for some α ∈ R.
The paper [32] introduced an important subclass of well-posed systems, the so-

called regular systems, for which the representation (2.2) becomes much simpler.
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Definition 2.2. System (2.1) is said to be regular if it is well-posed and there
exists an operator D ∈ L(U, Y ) such that, for x0 = 0 and u(t) ≡ u ∈ U , the output y
of (2.1) satisfies

lim
t→0

1

t

∫ t

0

y(τ)dτ = Du(2.6)

in the strong topology of Y . The above D and property (2.6) are called the feedthrough
operator and the regularity of system (2.1), respectively.

It was shown in [34] that, in the frequency domain, (2.6) is equivalent to

lim
λ∈R, λ→+∞

H(λ)u = Du ∀ u ∈ U.(2.7)

If a well-posed system is regular, then (2.2) can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(t) = T(t)x0 +

∫ t

0

T(t− τ)Bu(τ)dτ ∈ C([0,∞);X),

x0 ∈ X, u ∈ L2
loc(0,∞;U),

y(t) = CΛx(t) + Du(t) ∈ L2
loc(0,∞;Y ), u ∈ L2

loc(0,∞;U).

(2.8)

In this case, the transfer function is uniquely determined by the quadruple of operators
(A,B,C,D) and can be represented as

H(λ) = D + CΛ(λ− A)−1B.(2.9)

It is seen that the representations (2.8) and (2.9) resemble that for finite-dimensional
systems.

Roughly speaking, a well-posed regular system is like a linear finite-dimensional
system among the infinite-dimensional systems but with the feature of allowing both
control and observation operators to be unbounded in some sense. Unlike stability,
controllability, observability, etc., which have finite-dimensional counterparts, regu-
larity is an important but new concept in linear infinite-dimensional systems under
the elegant framework of well-posed linear systems theory.

Now let us introduce a special class of well-posed systems: the colocated second-
order linear systems. It is well known that “passivity,” which was introduced in
connection with circuit theory in the 1950s (see [10]), is a very important concept in
control system design. It means that the increase of energy stored in the system does
not exceed the energy that enters from the external world. For such a system, the
transfer function is positive real, and negative output feedback produces a dissipative
system, which is stable in the sense of Lyapunov. For a long time, it has been known
by engineers that a partial differential equation describing a mechanical system, like a
flexible structure in which the power flow into the system is the scalar product 〈u, y〉
(e.g., when u is force and y is velocity), leads to a positive-real system (2.1) in which
U = Y and A∗ +A ≤ 0,C = B∗ if actuators and sensors are designed in a “colocated”
fashion. The particular case A + A∗ = 0 corresponds to energy preserving systems.
This means that the measurement and control action are made dual in some sense.
In [11] and [35], an abstract setting of a second-order passive system of the following

type was studied. The state space is X = D(A
1/2
0 ) × H, and the input and output

spaces are the same U = Y (see also [2], [37]):{
ẍ(t) + A0x(t) = B0u(t),
y(t) = B∗

0ẋ(t),
(2.10)
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where
(i) A0 : D(A0)(⊂ H) → H is an unbounded positive self-adjoint operator in the

Hilbert space H;

(ii) B0 ∈ L(U, (D(A
1/2
0 ))

′
);

(iii) B∗
0 ∈ L(D(A

1/2
0 ), U) is defined as

(B∗
0x, u)U = 〈x,B0u〉D(A

1/2
0 )×(D(A

1/2
0 ))′

∀ x ∈ D(A
1/2
0 );

(iv) an extension Ã0 ∈ L(D(A
1/2
0 ), (D(A

1/2
0 ))′) of A0 is defined by

〈Ã0x, z〉(D(A
1/2
0 ))′×D(A

1/2
0 )

= (A
1/2
0 x,A

1/2
0 z)H ∀ x, z ∈ D(A

1/2
0 ).

It was found in [11] that if system (2.10) is well-posed, its transfer function is
uniquely determined by the pair (A0,B0):

H(λ) = λB∗
0(λ

2 + Ã0)
−1B0.(2.11)

Actually, it was indicated in [2] and [37] that, for this system, the boundedness of
the transfer function on some open right half complex plane implies automatically
the admissibility of [ 0

B0
] for the associated semigroup generated by A = [ 0 I

−A0 0 ]. This
system is closely related (via feedback) to the example in [29].

To end this section, we return to our wave equation (1.1) with control u ∈
L2
loc(0,∞;U), U = L2(Γ0). We formulate our problem in the framework of (2.10),

although it is already available in the literature (see, e.g., [1]).
Let H = H−1(Ω) be the dual space of the usual Sobolev space H1

0 (Ω) (with
respect to the pivot space L2(Ω)). Let A0 be the positive self-adjoint operator in H
induced by the bilinear form a(·, ·) defined by

〈A0f, g〉H−1(Ω)×H1
0 (Ω) = a(f, g) =

∫
Ω

∇f(x)∇g(x)dx ∀ f, g ∈ H1
0 (Ω).(2.12)

By means of the Lax–Milgram theorem, A0 is a canonical isomorphism from D(A0) =
H1

0 (Ω) to H. If we introduce the Laplacian −Δ : H2(Ω) ∩H1
0 (Ω) → L2(Ω), then it

is easy to show that A0f = −Δf for f ∈ H2(Ω) ∩H1
0 (Ω) and that A−1

0 g = (−Δ)−1g
for any g ∈ L2(Ω). Hence, A0 is an extension of usual Laplacian to the space H1

0 (Ω).

It is well known that D(A
1/2
0 ) = L2(Ω). Define the Dirichlet map

Υ ∈ L(L2(Γ0), L
2(Ω)),

i.e., Υu = v by {
Δv = 0 in Ω,
v|Γ1 = 0, v|Γ0 = u.

(2.13)

Using the Dirichlet map, we can rewrite the first three equations in (1.1) as

ẅ + A0(w − Υu) = 0.(2.14)

We identify H with its dual H ′. Then the following relations hold:

D(A
1/2
0 ) ↪→ H ↪→ (D(A

1/2
0 ))′.
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An extension Ã0 ∈ L(D(A
1/2
0 ), (D(A

1/2
0 ))′) of A0 is defined by

〈Ã0f, g〉(D(A
1/2
0 ))′×D(A

1/2
0 )

= (A
1/2
0 f,A

1/2
0 g)H ∀ f, g ∈ D(A

1/2
0 ).(2.15)

Hence, (2.14) can be rewritten in H−1 as

ẅ + Ã0w = B0u,(2.16)

where B0 ⊂ L(U, (D(A
1/2
0 ))′) is given by

B0u = Ã0Υu ∀ u ∈ U.(2.17)

Define B∗
0 ∈ L(D(A

1/2
0 ), U) by

(B∗
0f, u)U = 〈f,B0u〉D(A

1/2
0 )×(D(A

1/2
0 ))′

∀ f ∈ D(A
1/2
0 ).

Then for any f ∈ D(A
1/2
0 ) and u ∈ C∞

0 (Γ0), we have

〈f,B0u〉D(A
1/2
0 )×(D(A

1/2
0 ))′

= 〈Ã0f, Ã
−1
0 B0u〉D(A

1/2
0 )×(D(A

1/2
0 ))′

= (A
1/2
0 f,A

1/2
0 Ã−1

0 B0u)H = (A−1
0 A

1/2
0 f,A−1

0 A
1/2
0 Ã−1

0 B0u)H1
0 (Ω)

= (A
−1/2
0 f,A

−1/2
0 Υu)H1

0 (Ω) = (f,Υu)L2(Ω)

= (A0A
−1
0 f,Υu)L2(Ω) = −

(
∂(−Δ)−1f

∂ν
, u

)
U

.

In the last step, we used the fact that∫
Ω

∇v∇φ = 0 ∀ φ ∈ H1
0 (Ω)

holds for any classical solution v of (2.13). Since C∞
0 (Γ0) is dense in L2(Γ0), we obtain

B∗
0 = −∂(−Δ)−1

∂ν

∣∣∣∣
Γ0

.(2.18)

Now, we have formulated system (1.1) into an abstract form of the second-order
system (2.10) in the state space H:{

ẅ(t) + Ã0w(t) = B0u(t),
y(t) = B∗

0 ẇ,
(2.19)

where B0 and B∗
0 are defined by (2.17) and (2.18), respectively.

The main contribution of this paper is to show that system (2.19) is regular with
feedthrough operator D = I.

3. Proof of Theorem 1.2. From (2.19), we see that system (1.1) is in the
framework of form (2.10) discussed in section 2. Since system (1.1) is well-posed, it
follows from (2.11) that the transfer function of system (1.1) is

H(λ) = λB∗
0(λ2 + Ã0)

−1B0,(3.1)
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where Ã0, B0, and B∗
0 are given by (2.15), (2.17), and (2.18), respectively. Moreover,

from the well-posedness and (2.5), it follows that there exists a positive number α > 0
such that

sup
Reλ≥α

‖H(λ)‖L(U) = M < ∞.(3.2)

To begin, we show the following proposition.
Proposition 3.1. Theorem 1.2 is valid if for any u ∈ C∞

0 (Γ0) the solution uε

to the equation ⎧⎨⎩
uε(x) − ε2Δuε(x) = 0, x ∈ Ω,
uε(x) = 0, x ∈ Γ1,
uε(x) = u(x), x ∈ Γ0

(3.3)

satisfies

lim
ε→0

∫
Γ0

∣∣∣∣ε∂uε(x)

∂ν
− u(x)

∣∣∣∣2 dx = 0,(3.4)

where ε are real and positive numbers.
Proof. In light of the equivalence between (2.6) and (2.7), in order to prove

Theorem 1.2 we need only to show that

lim
λ∈R, λ→+∞

H(λ)u = u(3.5)

for any u ∈ L2(Γ0) = U in the strong topology of U , where H(λ) is given by (3.1).
We claim that in order to show (3.5), it suffices to show that (3.5) is satisfied for all
u ∈ C∞

0 (Γ0). Indeed, for any u ∈ U and any given δ > 0, since C∞
0 (Γ0) is dense in

L2(Γ0), if (3.5) is valid for u ∈ C∞
0 (Γ0), then one can find u0 ∈ C∞

0 (Γ0) and the real
number β > α such that

‖u0 − u‖U < min

{
δ

3M
,
δ

3

}
, sup

λ∈R, λ>β
‖H(λ)u0 − u0‖U <

δ

3
,

where M and α are given in (3.2). Therefore,

sup
λ∈R, λ>β

‖H(λ)u− u‖U = sup
λ∈R, λ>β

‖H(λ)u0 − u0 + H(λ)(u− u0) − u + u0‖U < δ.

This shows that (3.5) is valid for any u ∈ U .
Now assume that u ∈ C∞

0 (Γ0), and put

wλ(x) = ((λ2 + Ã0)
−1B0u)(x).

Then wλ satisfies ⎧⎨⎩
λ2wλ(x) − Δwλ(x) = 0, x ∈ Ω,
wλ(x) = 0, x ∈ Γ1,
wλ(x) = u(x), x ∈ Γ0,

(3.6)

and

(H(λ)u)(x) = −λ
∂((−Δ)−1wλ)(x)

∂ν
∀ x ∈ Γ0.(3.7)
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Since u ∈ C∞
0 (Γ0), there exists a unique classical solution to (3.6). Take a function

v ∈ H2(Ω) such that ⎧⎨⎩
Δv(x) = 0, x ∈ Ω,
v(x) = 0, x ∈ Γ1,
v(x) = u(x), x ∈ Γ0.

(3.8)

Then (3.6) can be written as{
λ2wλ(x) − Δ(wλ(x) − v(x)) = 0, x ∈ Ω,
(wλ − v)

∣∣
∂Ω

= 0,
(3.9)

or equivalently

−λ2((−Δ)−1wλ)(x) = wλ(x) − v(x).

Hence (3.7) becomes

(H(λ)u)(x) =
1

λ

∂wλ(x)

∂ν
− 1

λ

∂v(x)

∂ν
.(3.10)

Letting uε(x) = wλ(x) with ε = λ−1 and noting that ∂v(x)
∂ν is independent of λ, we

conclude the required result.
The rest of this section is devoted to proving that the solution uε of (3.3) with

u ∈ C∞
0 (Γ0) satisfies (3.4). We shall go a little bit further. Indeed, we will show that

there exists a constant C > 0 such that for all ε ∈ (0, 1), any solution uε ∈ H2(Ω) of(
ε2Δ − 1

)
uε(x) = 0, x ∈ Ω,

satisfies the following inequality:∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

≤ Cε ‖uε‖2
H3/2(∂Ω) .

This will be performed by estimating the Dirichlet–Neumann map by means of
easy Fourier analysis tools after applying a diffeomorphism to reduce locally our ge-
ometry to the half-space. Notice that the Dirichlet–Neumann map for the Laplacian
in a manifold was more precisely computed in [18] by using symbolic calculus of
pseudodifferential operators.

Proof of Theorem 1.2. By Proposition 3.1, we need only to show that the solution
uε of (3.3) with u ∈ C∞

0 (Γ0) satisfies (3.4) . We assume 0 < ε < 1 throughout the
proof.

For any x0 ∈ ∂Ω, suppose without loss of generality that in an open neighborhood
Vx0

⊂ Rn of x0,

Vx0 ∩ Ω = {(x′, xn) = (x1, x2, . . . , xn−1, xn) ∈ Vx0 , xn − φ(x′) > 0}

for some φ ∈ C3(Rn−1). Then the unit outward normal vector to Vx0∩∂Ω at (x′, φ(x′))
is defined by

ν(x′) =

(
∂x1φ(x′), . . . , ∂xn−1φ(x′),−1

)√
1 + |∇φ(x′)|2

.
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Let us use the geodesic normal coordinates as follows. Let

(h, s) = (h1, h2, . . . , hn−1, s) ∈ Rn.

We introduce a diffeomorphism by

Ψ(h, s) = (h, φ(h)) − sν(h)

such that
(i) Ψ−1(Ωx0

) = Br = {(h, s) ∈ Rn, |(h, s)| < r};
(ii) Ψ−1(Ωx0 ∩ Ω) = B+

r = {(h, s) ∈ Br, s > 0};
(iii) Ψ−1(Ωx0 ∩ ∂Ω) = {(h, s) ∈ Br, s = 0} = {|h| < r} × {0}

for some r > 0 and an open neighborhood Ωx0(⊂ Vx0) of x0, where | · | denotes the
Euclidean norm. Using the diffeomorphism Ψ : Br → Ωx0

, the normal derivative on
the boundary becomes

∂

∂ν
= −∂s,

and the operator in the first equation of (3.3) can be written in the form

Δ − 1

ε2
= ∂2

s + P (h, s,−i∂h) + �(h, s)∂s −
1

ε2
,

where ∂h = (∂h1
, . . . , ∂hn−1

), � is a continuous function, and P is a second-order
elliptic differential operator in the h variables only.

The proof is now divided into three steps.
Step 1. Flattening and localization. We first flatten the local domain Ωx0

∩ Ω
with the above diffeomorphism Ψ and set

ũε(h, s) = uε(Ψ(h, s)), ũ(h) = uε(Ψ(h, 0)).(3.11)

Then ũε satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
s ũε(h, s) +

n−1∑
i,j=1

aij(h, s)∂hi
∂hj

ũε(h, s) + Qũε(h, s) −
1

ε2
ũε(h, s) = 0,

(h, s) ∈ B+
r ,

ũε(h, 0) = ũ(h), |h| < r,

(3.12)

where Q is a linear differential operator of order 1 with continuous coefficients in
Br and (aij)1≤i,j≤n−1 is a strictly positive definite symmetric matrix of continuous
functions of (h, s) in Br. Assume that λ0 > 0 is a constant such that

n−1∑
i,j=1

aij(h, s)ξiξj ≥ λ0|ξ|2 ∀ ξ = (ξ1, ξ2, . . . , ξn−1) ∈ Rn−1, (h, s) ∈ Br.(3.13)

Let μ0 > 0 be such that μ0 < λ0

(n−1)2 . Since aij is continuous in Br, one can find

a scalar ρ ∈ (0, r) such that

|aij(h, s) − aij(0, 0)| ≤ μ0 ∀ i, j = 1, 2, . . . , n− 1, (h, s) ∈ B+
ρ .(3.14)
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Second, we introduce a cutoff function ϕ = ϕ(h, s) ∈ C∞
0 (Bρ) such that 0 ≤ ϕ ≤ 1

and ϕ = 1 in Bρ/2. Set, for all (h, s) ∈ Rn−1 × R+,

χε(h, s) = ϕ(h, s)ũε(h, s), f(h) = ϕ(h, 0)ũ(h).(3.15)

Then one can check that χε ∈ H2(Rn−1 × R+) and χε(h, s) = 0 in Rn−1 × {s ≥ ρ}.
By (3.12), χε satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂2
sχε(h, s) +

n−1∑
i,j=1

aij(0, 0)∂hi
∂hj

χε(h, s) −
1

ε2
χε(h, s)

= Gχε(h, s) + Lũε(h, s), (h, s) ∈ Rn−1 × R+,

χε(h, 0) = f(h), h ∈ Rn−1,

(3.16)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Gχε(h, s) =

n−1∑
i,j=1

[aij(0, 0) − aij(h, s)]∂hi
∂hj

χε(h, s),

Lũε(h, s) = −ϕ(h, s)Qũε(h, s) + [∂2
s , ϕ]ũε(h, s)

+

n−1∑
i,j=1

aij(h, s)[∂hi
∂hj , ϕ]ũε(h, s)

(3.17)

with

[∂2
s , ϕ]ũε = 2∂sϕ∂sũε + ∂2

sϕũε, [∂hi∂hj , ϕ]ũε = ∂hiϕ∂hj ũε + ∂hjϕ∂hi ũε + ∂hi∂hjϕũε.

Clearly, G and L are two linear differential operators of order 2 and order 1, respec-
tively.

Step 2. Partial Fourier transform. Fix s, for any χ(·, s) ∈ L2(Rn−1). From now
on, we denote by χ̂(ξ, s) the partial Fourier transform of χ(h, s) with respect to h,
i.e.,

χ̂(ξ, s) =

∫
Rn−1

χ(h, s)e−i〈h,ξ〉dh.

Applying the above partial Fourier transform to system (3.16), it becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2
s χ̂ε(ξ, s) −

1

ε2
(ε2ξ�Aξ + 1)χ̂ε(ξ, s) = Ĝχε(ξ, s) + L̂ũε(ξ, s),

(ξ, s) ∈ Rn−1 × R+,

χ̂ε(ξ, 0) = f̂(ξ), ξ ∈ Rn−1,

(3.18)

where A = {aij(0, 0)}1≤i,j≤n−1 is a positive definite symmetric matrix. Notice that

χ̂ε(ξ, s) = 0 ∀(ξ, s) ∈ Rn−1 × [ρ,+∞) .(3.19)

To analyze the solution of (3.18) satisfying (3.19), we decompose χ̂ε(ξ, s) as fol-
lows. Let

χ̂ε(ξ, s) = wε(ξ, s) + vε(ξ, s), (ξ, s) ∈ Rn−1 × R+,(3.20)
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where wε satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
swε(ξ, s) −

1

ε2
(ε2ξ�Aξ + 1)wε(ξ, s) = 0, (ξ, s) ∈ Rn−1 × R+,

wε(ξ, 0) = f̂(ξ), ξ ∈ Rn−1,
lim

s→+∞
wε(ξ, s) = 0, ξ ∈ Rn−1,

(3.21)

and vε satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂2
svε(ξ, s) −

1

ε2
(ε2ξ�Aξ + 1)vε(ξ, s) = Ĝχε(ξ, s) + L̂ũε(ξ, s),

(ξ, s) ∈ Rn−1 × R+,

vε(ξ, 0) = 0, ξ ∈ Rn−1,

vε(ξ, s) = −f̂(ξ)e−s

√
ε2ξ�Aξ+1

ε , (ξ, s) ∈ Rn−1 × [ρ,+∞) .

(3.22)

The validity of the last equality comes from (3.19) and the following explicit expression
of the solution of (3.21):

wε(ξ, s) = f̂(ξ)e−s

√
ε2ξ�Aξ+1

ε .(3.23)

We claim that there exists a constant C > 0 such that for all ε ∈ (0, 1)∫
Rn−1

|ε∂swε(ξ, 0) + wε(ξ, 0)|2dξ ≤ Cε2‖uε‖2
H1(∂Ω).(3.24)

Indeed, by (3.23), we get∫
Rn−1

|ε∂swε(ξ, 0) + wε(ξ, 0)|2dξ =

∫
Rn−1

(
ε2ξ�Aξ√

ε2ξ�Aξ + 1 + 1

)2

|f̂(ξ)|2dξ

≤
∫

Rn−1

ε2ξ�Aξ|f̂(ξ)|2dξ,

and (3.24) follows easily.
Now we need to bound the quantity

∫
Rn−1 |ε∂svε(ξ, 0) + vε(ξ, 0)|2dξ uniformly

with respect to ε. This will be done in the next step.
Step 3. Estimate of ε∂svε(·, 0) + vε(·, 0). We will estimate ∂svε(·, 0) by means

of a classical trace theorem. This requires the computation of ∂2
svε and ∂svε. To do

it, we estimate L̂ũε and Ĝχε first. Throughout the proof, C denotes several positive
constants independent of ε.

(a) Estimate of L̂ũε and Ĝχε. Clearly, we have∥∥∥L̂ũε

∥∥∥
L2(Rn−1×R+)

≤ C ‖uε‖H1(Ω) .(3.25)

By (3.14) and the Plancherel formula, it follows that

‖Ĝχε‖L2(Rn−1×R+) = (2π)
n−1

2 ‖Gχε‖L2(Rn−1×R+)

≤ (2π)
n−1

2 μ0

n−1∑
i,j=1

‖∂hi
∂hj

χε‖L2(Rn−1×R+)

≤ μ0(n− 1)2‖|ξ|2χ̂ε‖L2(Rn−1×R+).

(3.26)
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From (3.26) and noting (3.20), we find

‖Ĝχε‖L2(Rn−1×R+) ≤ μ0(n− 1)2
∥∥|ξ|2wε

∥∥
L2(Rn−1×R+)

(3.27)

+μ0(n− 1)2
∥∥|ξ|2vε∥∥L2(Rn−1×R+)

.

On the other hand, multiplying (3.22) by −|ξ|2vε and then integrating by parts
over Rn−1 × R+, taking (3.13) and the last equality of (3.22) into account, we have

λ0

∥∥|ξ|2vε∥∥L2(Rn−1×R+)
≤ ‖Ĝχε‖L2(Rn−1×R+) + ‖L̂ũε‖L2(Rn−1×R+).(3.28)

Substituting (3.28) into (3.27), we get(
1 − μ0(n−1)2

λ0

)∥∥∥Ĝχε

∥∥∥
L2(Rn−1×R+)

≤ μ0(n− 1)2
∥∥∥|ξ|2 wε

∥∥∥
L2(Rn−1×R+)

+ μ0(n−1)2

λ0

∥∥∥L̂ũε

∥∥∥
L2(Rn−1×R+)

.
(3.29)

Moreover, from (3.23) and (3.13), we have

∥∥∥|ξ|2 wε

∥∥∥
L2(Rn−1×R+)

=

(∫
Rn−1

∣∣∣|ξ|2 f̂(ξ)
∣∣∣2 (∫ +∞

0

e−2s

√
ε2ξ�Aξ+1

ε ds

)
dξ

)1/2

=

∥∥∥∥√ ε

2
√

ε2ξ�Aξ+1
|ξ|2 f̂

∥∥∥∥
L2(Rn−1)

≤
√

1
2
√
λ0

∥∥∥|ξ|3/2 f̂ ∥∥∥
L2(Rn−1)

≤ C ‖uε‖H3/2(∂Ω).

(3.30)

Finally, it follows from (3.29), (3.30), and (3.25) that∥∥∥Ĝχε

∥∥∥
L2(Rn−1×R+)

≤ C
(
‖uε‖H3/2(∂Ω) + ‖uε‖H1(Ω)

)
.(3.31)

(b) Estimate of ∂2
svε. Multiplying (3.22) by ∂2

svε and then integrating by parts
over Rn−1 × R+, we obtain, noticing the last equality of (3.22),

‖∂2
svε‖2

L2(Rn−1×R+) ≤
(
‖Ĝχε‖L2(Rn−1×R+) + ‖L̂ũε‖L2(Rn−1×R+)

)
‖∂2

svε‖L2(Rn−1×R+).

This together with (3.25) and (3.31) gives

‖∂2
svε‖L2(Rn−1×R+) ≤ C[‖uε‖H3/2(∂Ω) + ‖uε‖H1(Ω)].(3.32)

(c) Estimate of ∂svε. Noticing the last equality of (3.22), multiplying (3.22) by
−vε, and integrating by parts over Rn−1 × R+, we also have

‖∂svε‖2
L2(Rn−1×R+) +

1

ε2
‖vε‖2

L2(Rn−1×R+)

≤ ‖ε(Ĝχε + L̂ũε)‖L2(Rn−1×R+)

∥∥∥vε
ε

∥∥∥
L2(Rn−1×R+)

.

Thus,

‖∂svε‖L2(Rn−1×R+) ≤ ε
(
‖Ĝχε‖L2(Rn−1×R+) + ‖L̂ũε‖L2(Rn−1×R+)

)
.
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This together with (3.25) and (3.31) gives

‖∂svε‖L2(Rn−1×R+) ≤ C[‖uε‖H3/2(∂Ω) + ‖uε‖H1(Ω)].(3.33)

(d) Estimate of ∂svε(·, 0). We use the following standard inequality:∫
Rn−1

|∂svε(ξ, 0)|2 dξ = −2

∫
Rn−1

∫ +∞

0

Re
(
∂svε(ξ, s)∂2

svε(ξ, s)
)
dsdξ

≤ ‖∂svε‖2
L2(Rn−1×R+) +

∥∥∂2
svε

∥∥2

L2(Rn−1×R+)
.

(3.34)

This together with (3.32) and (3.33) gives the desired estimate for vε:∫
Rn−1

|ε∂svε(ξ, 0) + vε(ξ, 0)|2dξ ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)].(3.35)

Here we used the fact that vε(·, 0) = 0 given by the second equation of (3.22).
Combining (3.20), the estimates (3.24) and (3.35) imply∫

Rn−1

|ε∂sχ̂ε(ξ, 0) + χ̂ε(ξ, 0)|2dξ ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)],(3.36)

and hence by the Parseval formula, we obtain∫
Rn−1

|ε∂sχε(s, 0) + χε(s, 0)|2ds ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)].(3.37)

By (3.15), we deduce from (3.37) that∫
|s|<ρ/2

|ε∂sũε(s, 0) + ũε(s, 0)|2ds ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)],(3.38)

which implies by the change of coordinates involving Ψ that∫
Ω̃x0

∩∂Ω

∣∣∣∣ε∂uε(x)

∂ν
− uε(x)

∣∣∣∣2 dx ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)],(3.39)

where Ω̃x0 ⊂ Ωx0 is an open neighborhood of x0 ∈ ∂Ω. Since x0 is arbitrarily chosen,
one easily deduces from (3.39) that∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)].(3.40)

Now, multiplying (3.3) by uε and integrating by parts, we find

‖ε∇uε‖2
L2(Ω) + ‖uε‖2

L2(Ω) = ε2

∫
∂Ω

∂uε(x)

∂ν
uε(x)dx.

Hence, using the Cauchy–Schwarz inequality, we get

ε2‖uε‖2
H1(Ω) ≤ ε

(∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥
L2(∂Ω)

+ ‖uε‖L2(∂Ω)

)
‖uε‖L2(∂Ω)

≤ ε

2C

∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

+

(
1 +

C

2

)
ε‖uε‖2

L2(∂Ω).
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Substituting the above formula into (3.40), we have finally proved that there exists a
constant C > 0 such that for all ε ∈ (0, 1) any solution uε ∈ H2(Ω) of(

ε2Δ − 1
)
uε(x) = 0, x ∈ Ω,

satisfies ∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

≤ Cε‖uε‖2
H3/2(∂Ω).(3.41)

Therefore,

lim
ε→0

∥∥∥∥ε∂uε

∂ν
− u

∥∥∥∥
L2(Γ0)

= 0.

This completes the proof of Theorem 1.2.

Acknowledgments. The special case of Theorem 1.2 in a 2-D disk was first
proved in [12] when Bao-Zhu Guo was visiting INRIA in Metz, France in 2002. The
authors would like to thank the anonymous referees for their careful reading, helpful
suggestions, and many corrections of the manuscript.

REFERENCES

[1] K. Ammari, Dirichlet boundary stabilization of the wave equation, Asymptot. Anal., 30 (2002),
pp. 117–130.

[2] K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of
unbounded feedbacks, ESAIM Control Optim. Calc. Var., 6 (2001), pp. 361–386.

[3] C. I. Byrnes, D. S. Gilliam, V. I. Shubov, and G. Weiss, Regular linear systems governed
by a boundary controlled heat equation, J. Dynam. Control Systems, 8 (2002), pp. 341–370.

[4] A. Cheng and K. Morris, Well-posedness of boundary control systems, SIAM J. Control
Optim., 42 (2003), pp. 1244–1265.

[5] R. F. Curtain, The Salamon–Weiss class of well-posed infinite dimensional linear systems: A
survey, IMA J. Math. Control Inform., 14 (1997), pp. 207–223.

[6] R. F. Curtain, Linear operator inequalities for strongly stable weakly regular linear systems,
Math. Control Signals Systems, 14 (2001), pp. 299–337.

[7] R. F. Curtain, H. Logemann, and O. J. Staffans, Absolute-stability results in infinite di-
mensions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), pp. 2171–2196.

[8] R. F. Curtain and G. Weiss, Well posedness of triples of operators (in the sense of linear
systems theory), in Control and Estimation of Distributed Parameter Systems, Internat.
Ser. Numer. Math. 91, F. Kappel, K. Kunisch, and W. Schappacher, eds., Birkhäuser,
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Abstract. In this paper we study the regularity properties of a free boundary problem arising in
the optimization of the best Sobolev trace constant in the immersion H1(Ω) ↪→ Lq(∂Ω) for functions
that vanish in a subset of Ω. This problem is also related to a minimization problem for Steklov
eigenvalues.
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1. Introduction. The study of Sobolev inequalities and of optimal constants is
a subject of interest in the analysis of PDEs and related topics. It has been widely
studied in the past by many authors and is still an area of intensive research. See,
for instance, the book [1] and, for recent developments in this field, see the articles
[6, 11, 9, 17] and the survey [7] among others.

The optimal Sobolev constant and its corresponding extremals (if they exist) are
related to eigenvalue problems. In the case of the best Sobolev trace embedding
H1(Ω) → Lq(∂Ω), where Ω is a bounded smooth domain in RN , the best constant
and the extremal (that exists for 1 ≤ q < 2∗ = 2(N − 1)/(N − 2) since the immer-
sion is compact) give rise to the following elliptic problem with nonlinear boundary
conditions: {−Δu + u = 0 in Ω,

∂u

∂ν
= λuq−1 on ∂Ω.

The constant λ depends on the normalization of the extremal u. For instance, if u is
chosen so that ‖u‖Lq(∂Ω) = 1, then λ = S, the best Sobolev trace constant. In the
linear case, q = 2, this problem becomes an eigenvalue problem that is known as the
Steklov eigenvalue problem [19].

In this paper we are interested in the best Sobolev trace constant among functions
that vanish in a subset of Ω. We try to optimize this best constant when varying the
subset in the class of measurable sets with prescribed positive measure α. In a previous
article [10], we proved that there exists an optimal set. In this paper we focus our
attention on regularity properties of these optimal sets.
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from Departamento de Matemática, FCEyN, UBA (1428) Buenos Aires, Argentina (jrossi@dm.
uba.ar, http://mate.dm.uba.ar/∼jrossi).

1614



REGULARITY IN AN OPTIMIZATION PROBLEM 1615

More precisely, in [10] we studied the following problem. Let

J (v) =

∫
Ω

|∇v|2 + v2 dx,

Aα = {v ∈ H1(Ω) / ‖v‖Lq(∂Ω) = 1 and |{v > 0}| = α}.

Then the problem is as follows:

Find φ0 ∈ Aα such that S(α) := inf
v∈Aα

J (v) = J (φ0).(Pα)

In [10] we proved that there exists a solution φ0 to (Pα), but the approach in [10]
does not give any regularity properties of φ0 or of the hole {φ0 = 0}.

In this paper we consider a different approach. Instead of minimizing J (v) over
Aα we penalize the functional and minimize without the measure restriction. This
approach has been used with great success by many authors starting with the work
[2] (see also, for instance, [3, 15, 16, 20]). Thus, let

Jε(v) =

∫
Ω

|∇v|2 + v2 dx + Fε(|{v > 0}|),(1.1)

where

Fε(s) =

⎧⎨⎩
1

ε
(s− α) if s ≥ α,

ε(s− α) if s < α.

The penalized problem is to minimize Jε over the class

K1 = {v ∈ H1(Ω) / ‖v‖Lq(∂Ω) = 1}.

For technical reasons, it is better to minimize in the class

K = {v ∈ H1(Ω) / ‖v‖Lq(ΓN ) = 1, v = ϕ0 on ΓD},

where ∅ 	= ΓN ⊂ ∂Ω, ΓD = ∂Ω \ ΓN is the closure of a relatively open set of the
boundary and ϕ0 ∈ H1(Ω), ϕ0 ≥ c0 > 0 on ΓD. We will only need to assume that
ΓD 	= ∅ at the end of our arguments. See section 4, Lemma 4.3.

So the penalized problem is as follows:

Find uε ∈ K such that Jε(uε) = inf
v∈K

Jε(v).(Pε)

Observe that minimizing Jε over K gives a problem with mixed boundary condi-
tions. We believe that this problem has independent interest.

The main idea is to prove that for ε small any minimizer uε of Jε in K satisfies
|{uε > 0}| = α; therefore, the penalization term Fε vanishes, and hence we have a
minimizer of our original problem. This allows us to avoid the passage to the limit
(as ε → 0) where uniform bounds are needed. Proving regularity of the minimizers of
Jε and their free boundaries, ∂{uε > 0}, is easier than the original problem, thanks
to the results of [4].

The main theorem in this article is the following.
Theorem 1.1. For every ε > 0 there exists a solution uε ∈ K to (Pε). Moreover,

any such solution is a locally Lipschitz continuous function and the free boundary
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∂{uε > 0} is locally a C1,β surface up to a set of zero HN−1 measure. In the case
N = 2 the free boundary is locally a C1,β surface. Moreover, if ΓD 	= ∅, for ε small
we have |{uε > 0}| = α.

Outline of the paper. In section 2 we begin our analysis of problem (Pε) for
fixed ε. First we prove the existence of a minimizer, local Lipschitz regularity, and
nondegeneracy near the free boundary (Theorem 2.1). Then we prove that a minimizer
uε of (Pε) is a weak solution to the free boundary problem⎧⎨⎩ −Δu + u = 0 in {u > 0} ∩ Ω,

∂u

∂ν
= λε on ∂{u > 0} ∩ Ω,

where λε is a positive constant (Theorem 2.6).
In section 3, again for fixed ε, we analyze the regularity of the free boundary and

show that, up to a set of zero HN−1 measure, ∂{uε > 0} is locally a C1,β surface
and, in the case N = 2, the free boundary has no exceptional points (Theorem 3.1).
The proof of this result follows almost exactly the lines in [4], so we note only the
significant differences and refer the reader to [4] for further details.

In section 4 we analyze the behavior of the solutions to (Pε) for small ε. We prove
that if ΓD 	= ∅, the positivity set of the minimizer uε has measure α (Theorem 4.1).

Finally, in section 5, we go back to our original problem and show, under some
mild assumptions on the solutions φ0 to (Pα), that they are also solutions to (Pε)
for small ε, so they inherit the properties of the solutions to (Pε) (Theorem 5.1).
These extra assumptions are satisfied, for instance, if Ω is a ball (Corollary 5.1).
In the general case, without the assumption that ΓD 	= ∅, we prove that the set
of α’s for which there is a solution to (Pα) with smooth free boundary is dense in
(0, |Ω|) (Theorem 5.2). Then, we show that the minimizers of (Pε) converge (up to
a subsequence) to a solution to (Pα) (Theorem 5.3). We believe that this last result
might be of interest in numerical approximations.

2. The penalized problem. In this section, we consider the penalized problem
(Pε) stated in the introduction and prove the existence of a minimizer and some
regularity properties.

Theorem 2.1. There exists a solution to the problem (Pε). Moreover, any such
solution uε has the following properties:

(1) uε is locally Lipschitz continuous in Ω.
(2) For every D ⊂⊂ Ω, there exist constants C, c > 0 such that for every x ∈

D ∩ {uε > 0},

cdist(x, ∂{uε > 0}) ≤ uε(x) ≤ C dist(x, ∂{uε > 0}).

(3) For every D ⊂⊂ Ω, there exists a constant c > 0 such that for x ∈ ∂{u > 0}
and Br(x) ⊂ D,

c ≤ |Br(x) ∩ {uε > 0}|
|Br(x)| ≤ 1 − c.

The constants may depend on ε.
The proof will be divided into a series of steps for the reader’s convenience.
Proof of existence. Let (un) ⊂ K be a minimizing sequence for Jε. Then Jε(un)

is bounded and so ‖un‖H1(Ω) ≤ C. Therefore there exists a subsequence (that we still
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call un) and a function uε ∈ H1(Ω) such that

un ⇀ uε weakly in H1(Ω),

un → uε strongly in Lq(∂Ω),

un → uε a.e. Ω.

Thus,

‖uε‖Lq(ΓN ) = 1,

uε = ϕ0 on ΓD,

|{uε > 0}| ≤ lim inf
n→∞

|{un > 0}|, and

‖uε‖H1(Ω) ≤ lim inf
n→∞

‖un‖H1(Ω).

Hence uε ∈ K and

Jε(uε) ≤ lim inf
n→∞

Jε(un) = inf
v∈K

Jε(v);

therefore uε is a minimizer of Jε in K.
Remark 1. Any minimizer uε of Jε satisfies the inequality

Δu− u ≥ 0 in Ω.(2.1)

In fact, this can be seen by performing one-side perturbations. Namely, we let
v = uε − tϕ with t > 0 and ϕ ∈ C∞

0 (Ω), ϕ ≥ 0, to get∫
Ω

∇uε∇ϕ + uεϕ ≤ 0.

In the remainder of the section we will remove the subscript ε from the solution
of (Pε).

For the proof of properties (1)–(3), we apply the ideas developed in [4]. To this
end, we need a series of lemmas.

Lemma 2.1. Let u ∈ K be a solution to (Pε). There exists a constant C =
C(N,Ω, ε) such that for every ball Br ⊂⊂ Ω

1

r
–

∫
–
∂Br

u ≥ C implies u > 0 in Br.

Proof. The idea is similar to that of Lemma 3.2 in [4]. Let v be the solution to{
v = u in Ω \Br,

Δv = v in Br.
(2.2)

Then v ∈ K, v > 0 in Br. We claim that

‖u− v‖2
H1(Ω) = ‖u‖2

H1(Ω) − ‖v‖2
H1(Ω).(2.3)

In fact, ∫
Br

∇v∇(v − u) + v(v − u) dx = 0
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since v − u ∈ H1
0 (Br). This implies∫

Br

∇u∇v + uv dx =

∫
Br

|∇v|2 + v2 dx.(2.4)

This equality implies the claim since u = v in Ω \Br.
By (2.1), u ≤ v in Br. Now, by (2.3), since u is a minimizer and u = v in Ω \Br,

we have ∫
Ω

|∇(u− v)|2 + (u− v)2 dx ≤ −Fε(|{u > 0}|) + Fε(|{v > 0}|)

≤ Cε |{u = 0} ∩Br|.
(2.5)

Now, as in [4], the idea is to control |{u = 0} ∩ Br| from above by the left-hand
side of (2.5). By replacing u(x) by u(x0 + rx)/r we can assume that Br = B1(0). For
|z| ≤ 1

2 we consider the change of variables from B1 into itself such that z becomes
the new origin. We call uz(x) = u

(
(1−|x|)z+x

)
, vz(x) = v

(
(1−|x|)z+x

)
and define

rξ = inf

{
r such that

1

8
≤ r ≤ 1 and uz(rξ) = 0

}
if this set is nonempty. Observe that this change of variables leaves the boundary
fixed.

Now, for almost every ξ ∈ ∂B1 we have

vz(rξξ) =

∫ 1

rξ

d

dr
(uz − vz)(rξ) dr ≤

√
1 − rξ

(∫ 1

rξ

|∇(uz − vz)(rξ)|2 dr
)1/2

.(2.6)

Let us see that

vz(rξξ) ≥ C(N,Ω)(1 − rξ) –

∫
–
∂B1

u.(2.7)

In fact, vz(rξξ) = v
(
(1 − rξ)z + rξξ

)
, and if |(1 − rξ)z + rξξ| ≤ 3

4 , by the Harnack
inequality applied to a solution to Δv − r2v = 0 in B1 with r ≤ 1,

vz(rξξ) ≥ CNv(0).

Clearly (2.7) follows from

v(0) ≥ α(N) –

∫
–
∂B1

v = α(N) –

∫
–
∂B1

u.(2.8)

But (2.8) is a consequence of the mean value property of solutions to the Schrödinger
equation Δv − r2v = 0, namely,

v(0) =
1

J(r)
–

∫
–
∂B1(0)

v,

where J(r) = Γ(N/2)( r2 )1−
N
2 IN−2

2
(r) and IN−2

2
is the Bessel function. In particular,

J(0) = 1.
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See Theorem 9.9 in [18] for this result.
Now, if |(1− rξ)z + rξξ| ≥ 3

4 , we prove by a comparison argument that inequality
(2.7) also holds. In fact, first observe that we can assume that –

∫
–
∂B1

v = –
∫
–
∂B1

u = 1.

Then, by (2.8), v ≥ CNα in B3/4. Let w(x) = e−λ|x|2 −e−λ. There exists λ = λ(N,α)
such that ⎧⎪⎨⎪⎩

Δw ≥ w in B1 \B3/4,

w ≤ CNα in ∂B3/4,

w = 0 in ∂B1,

so that, since Δv ≤ v, there holds that v ≥ w ≥ C(1 − |x|) in B1 \B3/4. Therefore,

vz(rξξ) ≥ C
(
1 − |(1 − rξ)z + rξξ|

)
–

∫
–
∂B1

u ≥ C(1 − rξ) –

∫
–
∂B1

u

since |z| ≤ 1
2 . Thus (2.7) holds for every rξ ≥ 1

8 .
By (2.6) and (2.7) we have

c
√

1 − rξ –

∫
–
∂B1

u ≤
(∫ 1

rξ

|∇(uz − vz)|2(rξ) dr
)1/2

.

Hence

c2
∫
∂B1

(1 − rξ) dSξ

(
–

∫
–
∂B1

u

)2

≤
∫
∂B1

∫ 1

rξ

|∇(uz − vz)|2(rξ) dr dSξ

≤ C

∫
B1

|∇(uz − vz)|2 dx.

Since ∫
∂B1

(1 − rξ) dSξ ≥
∫
B1\B1/4(z)

χ{u=0} dx,

we have

c2|{x ∈ B1 \B1/4(z) / u(x) = 0}|
(

–

∫
–
∂B1

u

)2

≤ C

∫
B1

|∇(uz − vz)|2 dx

≤ K

∫
B1

|∇(u− v)|2 dx.

Finally, we integrate over z ∈ B1/2(0) and use (2.5) to obtain

|B1 ∩ {u = 0}|
(

–

∫
–
∂B1

u

)2

≤ K

∫
B1

|∇(u− v)|2 dx(2.9)

≤ KCε|B1 ∩ {u = 0}|.

Therefore we either have u > 0 a.e. in B1 or else –

∫
–
∂B1

u ≤
√
KCε.

Hence we deduce that if

–

∫
–
∂B1

u ≥
√
KCε = C(N,Ω, ε),
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then |B1 ∩ {u = 0}| = 0. Thus by (2.5) u = v > 0 in B1.
Now we can prove the Lipschitz continuity of the minimizer u.
Proof of Theorem 2.1(1). The proof follows as in [4, Lemma 3.3]. In fact, let

D ⊂⊂ D′ ⊂⊂ Ω and x ∈ D. Let r > 0 be the largest number such that Br(x) ⊂ {u >
0} ∩D′. As in [4] we prove by using Lemma 2.1 that {u > 0} is open and

1

r
–

∫
–
∂Br(x)

u ≤ C

with C independent of either u or x. Since u > 0 in Br(x), it is a solution to

Δu = u in Br(x).

In fact, let v be the solution to Δv = v in Br(x), v = u on Ω \Br(x). Then,

0 ≤ ‖u− v‖2
H1(Ω) = ‖u‖2

H1(Ω) − ‖v‖2
H1(Ω) = Jε(u) − Jε(v) ≤ 0.

Thus, u = v in Br(x).
Hence, there is a universal constant such that

|∇u(x)| ≤ C

{
r‖u‖L∞(Br(x)) +

1

r
–

∫
–
∂Br(x)

u

}
.

Now, since u is subharmonic in Ω and D′ ⊂⊂ Ω, there holds that u is bounded in
D′ by a constant that depends on the H1 norm of u in Ω, which is bounded by a
constant that depends only on Ω and ε. Therefore,

|∇u(x)| ≤ C

with C depending only on N, Ω, ε, D, and D′.
In order to prove the nondegeneracy of u we need the following lemma (see [4,

Lemma 3.4]).
Lemma 2.2. Let u ∈ K be a solution to (Pε). For 0 < κ < 1 there exists a

constant c = c(κ,N,Ω, ε) such that for every ball Br(x0) ⊂⊂ Ω,

1

r
–

∫
–
∂Br

u ≤ c implies that u = 0 in Bκr.

Proof. As in [4, Lemma 3.4], we consider the function

φN
s (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s

N − 2

((
s

|x|

)N−2

− 1

)
for N ≥ 3,

s log
s

|x| for N = 2,

s− |x| for N = 1.

(2.10)

For simplicity let us take ū(x) =
1

r
u(x0 + rx),

F̄ε(s) =

⎧⎪⎨⎪⎩
1

ε

(
s− α

rN

)
if s >

α

rN
,

ε
(
s− α

rN

)
if s ≤ α

rN
,
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and

J̄ε(w) =

∫
Ωr

|∇w|2 + r2w2 + F̄ε(|{w > 0}|),

where Ωr = 1
r (Ω − x0). Thus, Jε(u) = rN J̄ε(ū).

Now, let v(x) = γ
√
κ

−φN
κ (

√
κ)

max(−φN
κ (x), 0), where, since ū is subharmonic,

γ :=
1√
κ

sup
B√

κ

ū ≤ C1(N,κ) –

∫
–
∂B1

ū = C1(N,κ)
1

r
–

∫
–
∂Br(x0)

u.

Hence, v ≥ ū on ∂B√
κ, and therefore if

w =

{
min(ū, v) in B√

κ,

ū in Ωr \B√
κ,

there holds that∫
Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}|

= J̄ε(ū) −
∫

Ωr\Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}| − F̄ε(|{ū > 0}|)

≤ J̄ε(w) −
∫

Ωr\Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}| − F̄ε(|{ū > 0}|)

=

∫
B√

κ\Bκ

|∇w|2 + r2w2 dx−
∫
B√

κ\Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}|∫
+ F̄ε(|{w > 0}|) − F̄ε(|{ū > 0}|)

≤
∫
B√

κ\Bκ

|∇w|2 + r2w2 dx−
∫
B√

κ\Bκ

|∇ū|2 + r2ū2 dx + (1 − ε) |Bκ ∩ {ū > 0}|,

since w = 0 in Bκ, w = ū in Ωr \ B√
κ. We have also used that F̄ε(A) − F̄ε(B) ≥

ε(A−B) if A ≥ B and {w > 0} ⊂ {ū > 0}. This inclusion follows from the fact that
w ≤ ū. Thus,∫
Bκ

|∇ū|2 + r2ū2 dx + ε|Bκ ∩ {ū > 0}|

≤
∫
B√

κ\Bκ

|∇w|2 + r2w2 dx−
∫
B√

κ\Bκ

|∇ū|2 + r2ū2

=

∫
B√

κ\Bκ

|∇ū−∇(ū− v)+|2 − |∇ū|2 dx + r2

∫
B√

κ\Bκ

(
ū− (ū− v)+

)2 − ū2 dx

= −
∫
B√

κ\Bκ

∇(ū− v)+∇(ū + v) dx− r2

∫
B√

κ\Bκ

(ū− v)+(ū + v) dx

= −
∫
B√

κ\Bκ

∇(ū− v)+∇ū dx− r2

∫
B√

κ\Bκ

(ū− v)+ū dx

−
∫
B√

κ\Bκ

∇(ū− v)+∇v dx− r2

∫
B√

κ\Bκ

(ū− v)+v dx
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≤ −2

∫
B√

κ\Bκ

∇(ū− v)+∇v dx− 2r2

∫
B√

κ\Bκ

(ū− v)+v dx

≤ 2

∫
∂Bκ

ū∇v η dS ≤ C2(N,κ) γ

∫
∂Bκ

ū.

Therefore, ∫
Bκ

|∇ū|2 + r2ū2 dx + ε|Bκ ∩ {ū > 0}| ≤ C2(N,κ) γ

∫
∂Bκ

ū.(2.11)

Here we have used that min(ū, v) = ū− (ū− v)+, Δv = 0 in B√
κ \Bκ, v = 0 on ∂Bκ,

and (ū− v)+ = 0 on ∂B√
κ.

Recall that γ is controlled by 1
r –
∫
–
∂Br(x0)

u; thus γ will be small if 1
r –
∫
–
∂Br(x0)

u is

small.

On the other hand, by standard estimates,∫
∂Bκ

ū ≤ C3(N,κ)

∫
Bκ

|∇ū| + ū dx

≤ C3(N,κ)
{1

2

∫
Bκ

|∇ū|2 dx +
1

2
|Bκ ∩ {ū > 0}| + γ|Bκ ∩ {ū > 0}|

}
≤ C3(N,κ)

{∫
Bκ

|∇ū|2 + r2ū2 dx + |Bκ ∩ {ū > 0}|
}

if γ ≤ 1/2.

Thus, by (2.11), if γ is small enough (γ ≤ 1/2 and C2(N,κ)C3(N,κ)γ < 1),
we deduce that |Bκ ∩ {ū > 0}| = 0. That is, u = 0 in Brκ(x0) and the lemma is
proved.

We can now prove the nondegeneracy of u.

Proof of Theorem 2.1(2). Let x ∈ {u > 0} and r = dist (x, {u = 0}). As we
proved in (2.8), since Δu = u in Br(x), there holds that

u(x) ≥ α(N) –

∫
–
∂Br(x)

u.

Since u(x) > 0,

1

r
–

∫
–
∂Br(x)

u ≥ c,

where c is the constant in Lemma 2.2 for κ = 1/2. Thus,

u(x) ≥ cα r.

The upper bound clearly follows from the Lipschitz continuity of u. Hence (2) is
proved.

Proof of Theorem 2.1(3). In order to prove the uniform positive density of {u > 0}
and {u = 0} at every free boundary point we proceed as in [4, Lemma 3.7]. The only
difference is that the function v that we have to take is the one in (2.2).

This ends the proof of Theorem 2.1.
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Corollary 2.1. Let u ∈ K be a solution to (Pε). Let D ⊂⊂ Ω. There exist
constants c, C > 0 depending only on N,Ω, D, and ε such that for Br(x) ⊂ D and
x ∈ ∂{u > 0},

c ≤ 1

r
–

∫
–
∂Br(x)

u ≤ C.(2.12)

Proof. The proof follows easily from Lemmas 2.1 and 2.2.
Lemma 2.3. Let u ∈ K be a solution to (Pε). Then u satisfies, for every ϕ ∈

C∞
0 (Ω) such that suppϕ ⊂ {u > 0},∫

Ω

∇u∇ϕ + uϕdx = 0.(2.13)

Moreover, the application

λ(ϕ) := −
∫

Ω

∇u∇ϕ + uϕdx

from C∞
0 (Ω) into R defines a nonnegative Radon measure with support on Ω∩ ∂{u >

0}.
Proof. The proof follows exactly as in [4, Lemma 4.2].
Theorem 2.2. Let u ∈ K be a solution to (Pε). Let D ⊂⊂ Ω. Then there exist

constants C, c > 0 such that for Br(x) ⊂ D and x ∈ ∂{u > 0},

c rN−1 ≤
∫
Br(x)

dλ ≤ C rN−1.

Proof. For n large enough, let un = u ∗ ρn, where ρn are the standard mollifiers.
Then ∫

Br(x)

λ ∗ ρn dx =

∫
Br(x)

Δun − un dx =

∫
∂Br(x)

∇un · ν dS −
∫
Br(x)

un

≤ ωN−1 sup
∂Br(x)

|∇un| rN−1 ≤ C rN−1

since |∇un| ≤ |∇u| ≤ C for a certain constant C depending on D. By taking the
limit for n → ∞ we get ∫

Br(x)

dλ ≤ C rN−1.

The other inequality follows as in the proof of Theorem 4.3 in [4] by taking as
Gy(z) the (positive) Green function of −Δ+Id with homogeneous Dirichlet boundary
conditions in the ball Br(x). Then for 0 < κ < 1/2 and y ∈ Bκr(x) one uses the
inequality

v(y) ≥ Cv(x) ≥ Cα –

∫
–
∂Br(x)

u

for v the solution to Δv − v = 0 in Br(x), v = u on ∂Br(x), which follows from the
Harnack inequality and (2.8).

Theorem 2.3 (representation theorem). Let u ∈ K be a solution to (Pε). Then
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(1) HN−1(D ∩ ∂{u > 0}) < ∞ for every D ⊂⊂ Ω.
(2) There exists a Borel function qu such that

Δu− u = qu HN−1�∂{u > 0}.

(3) For D ⊂⊂ Ω there are constants 0 < c ≤ C < ∞ depending on N,Ω, D, and
the constants in (2.12) such that for Br(x) ⊂ D and x ∈ ∂{u > 0},

c ≤ qu(x) ≤ C, c rN−1 ≤ HN−1(Br(x) ∩ ∂{u > 0}) ≤ C rN−1.

Proof. The proof follows exactly as in Theorem 4.5 in [4].
Remark 2. Let u ∈ K be a solution to (Pε) and let D ⊂⊂ Ω. Then D ∩ ∂{u > 0}

has finite perimeter. Thus, the reduced boundary ∂red{u > 0} is defined as well as
the measure theoretic normal ν(x) for x ∈ ∂red{u > 0}. See [8].

If the free boundary ∂{u > 0} is a regular surface, then qu = −∂νu. In Theo-
rem 2.4 it is shown that this is true for almost all points in the reduced boundary.

Proposition 2.1. Let u ∈ K be a solution to (Pε) and let Bρk
(xk) ⊂ Ω be a

sequence of balls with ρk → 0, xk → x0 ∈ Ω, and u(xk) = 0. Let

uk(x) :=
1

ρk
u(xk + ρkx).

We call uk a blow-up sequence with respect to Bρk
(xk). Since u is locally Lipschitz

continuous, there exists a blow-up limit u0 : RN → R satisfying (2.12) with the same
constants, when xk ∈ ∂{u > 0} and such that for a subsequence,

uk → u0 in Cα
loc(R

N ) for every 0 < α < 1,

∇uk → ∇u0 weakly� in L∞
loc(R

N ),

∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance,

χ{uk>0} → χ{u0>0} in L1
loc(R

N ),

Δu0 = 0 in {u0 > 0}.

Moreover, if xk ∈ ∂{u > 0}, then 0 ∈ ∂{u0 > 0}.
Proof. The proof follows as in [4, section 4.7], observing that Δuk − ρ2

kuk = 0 in
{uk > 0}.

Theorem 2.4 (identification of qu). Let u ∈ K be a solution to (Pε). Then, for
almost every x0 ∈ ∂red{u > 0},

u(x0 + x) = qu(x0)〈x, ν(x0)〉− + o(|x|) for x → 0

with ν(x0) the outward unit normal de ∂{u > 0} in the measure theoretic sense.
Proof. The proof follows exactly as in Theorem 4.8 and Remark 4.9 in [4].
Remark 3. Observe that by Theorem 2.1(3)

HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

See [8].
Now we get a more precise identification of qu.
Theorem 2.5. Let u ∈ K be a solution to (Pε) and let qu be the function in

Theorem 2.4. Then there exists a constant λu such that

lim sup
x→x0

u(x)>0

|∇u(x)| = λu for every x0 ∈ Ω ∩ ∂{u > 0},(2.14)

qu(x0) = λu, HN−1 a.e. x0 ∈ Ω ∩ ∂{u > 0}.(2.15)
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Moreover, if B is a ball contained in {u = 0} touching the boundary ∂{u > 0} at x0,
then

lim sup
x→x0

u(x)>0

u(x)

dist(x,B)
= λu.(2.16)

Proof. We follow the ideas of [2, Theorem 3] and [16, Theorem 5.1 and Lemma 5.2].
Let x0, x1 ∈ ∂{u > 0} and ρk → 0+. For i = 0, 1, let xi,k → xi with u(xi,k) = 0

such that Bρk
(xi,k) ⊂ Ω and such that the blow-up sequence

ui,k(x) =
1

ρk
u(xi,k + ρkx)

has a limit ui(x) = λi〈x, νi〉−, with 0 < λi < ∞ and νi a unit vector. We will prove
that λ0 = λ1. From this, the theorem will follow as in [16].

Assume that λ1 < λ0. Then we will perturb the minimizer u near x0 and x1 and
get an admissible function with less energy, which is a contradiction. We perform a
perturbation that increases the measure of the positivity set in a neighborhood of x0,k

and decreases its measure in a neighborhood of x1,k. We perform this perturbation in
such a way that we change the measure of the positivity set in an amount of essentially
order o(ρNk ).

To this end, we take a nonnegative C∞
0 symmetric function Φ supported in the

unit interval and for t > 0 small, we define

τk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + tρkΦ
( |x− x0,k|

ρk

)
ν0 for x ∈ Bρk

(x0,k),

x− tρkΦ
( |x− x1,k|

ρk

)
ν1 for x ∈ Bρk

(x1,k),

x elsewhere,

which is a diffeomorphism if t is small enough. Now, let

vk(x) = u(τ−1
k (x)),

which are admissible functions. Moreover, since ‖Dτ−1
k ‖ ≤ C independent of k for t

small enough, there holds that

‖∇vk‖L∞ ≤ C

independent of k.
Also, we have

Fε(|{vk > 0}|) − Fε(|{u > 0}|) = o(t) ρNk + o(ρNk ).(2.17)

In fact, vk = u in Ω \ (Bρk
(x0,k) ∪Bρk

(x1,k)) and

|{vk > 0} ∩Bρk
(xi,k)| − |{u > 0} ∩Bρk

(xi,k)| =

= (−1)i ρNk

(
t

∫
B1∩{y1=0}

Φ(|y|) dHN−1
y + oi(t)

)
+ o(ρNk ),
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since Φ(|y|) is radially symmetric and χ{ui,k>0} → χ{〈x,νi〉<0} in L1
loc(R

N ).
Similar computations that also involve the development of ∇vk in terms of ∇u

and Dτk give∫
Ω

|∇vk|2 dx−
∫

Ω

|∇u|2 dx

= ρNk

(
(λ2

1 − λ2
0) t

∫
B1(0)∩{y1=0}

Φ(|y|) dHN−1
y + o(t)

)
+ o(ρNk ).

(2.18)

See [2] or [16] for detailed computations.
It remains to estimate the difference of the L2 norms. Since u(xi,k) = 0 there

holds that

u(x) ≤ CρNk in Bρk
(xi,k).

On the other hand,

0 = u(xi,k) = vk(τk(xi,k)) = vk(xi,k + (−1)i tρkΦ(0)νi).

Thus,

vk(z) ≤ C
∣∣z − xi,k − (−1)i tρkΦ(0)νi

∣∣ ≤ Kρk if z ∈ Bρk
(xi,k).

Therefore, ∫
Ω

v2
k dx−

∫
Ω

u2 dx = o(ρNk ).(2.19)

Thus, we get from (2.17), (2.18), and (2.19), for t small enough and k large
enough, that

Jε(vk) < Jε(u),

a contradiction.
Summing up, we have the following theorem,
Theorem 2.6. Let u ∈ K be a solution to (Pε). Then u is a weak solution to the

free boundary problem

− Δu + u = 0 in {u > 0} ∩ Ω,

∂u

∂ν
= λu on ∂{u > 0} ∩ Ω,

where λu is the constant in Theorem 2.5. More precisely, HN−1 a.e. point x0 ∈ ∂{u >
0} belongs to ∂red{u > 0} and

u(x0 + x) = λu〈x, ν(x0)〉− + o(|x|) for x → 0.

Finally, we get an estimate of the gradient of u that will be needed in order to
get the regularity of the free boundary.

Theorem 2.7. Let u ∈ K be a solution to (Pε). Given D ⊂⊂ Ω, there exist
constants C = C(N, ε,D), r0 = r0(N,D) > 0, and γ = γ(N, ε,D) > 0 such that if
x0 ∈ D ∩ ∂{u > 0} and r < r0, then

sup
Br(x0)

|∇u| ≤ λu(1 + Crγ).
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Proof. The proof follows the lines of the proof of Theorem 4.1 in [5].

Let Uk =
(
|∇u| − λu − 1

k

)+
and U0 =

(
|∇u| − λu

)+
. By (2.14) we know that Uk

vanishes in a neighborhood of the free boundary. Also, the support of Uk is contained
in {u > 0}. Therefore Uk satisfies

ΔUk ≥ Uk in Ω ∩ {u > 0}

and vanishes in a neighborhood of the free boundary. We extend Uk by zero into
{u = 0} and set

hk(r) = sup
Br(x0)

Uk, h0(r) = sup
Br(x0)

U0

for any r < r0 = dist (D, ∂Ω) and x0 ∈ D ∩ ∂{u > 0}.
Then, hk(r) − Uk is a supersolution of Δv = v in the ball Br(x0) and

hk(r) − Uk ≥ 0 in Br(x0)
= hk(r) in Br(x0) ∩ {u = 0}.

Applying the weak Harnack inequality (see [12, p. 246]) with 1 ≤ p < N/(N − 2), we
get

inf
Br/2(x0)

(
hk(r) − Uk

)
≥ cr−N/p‖hk(r) − Uk‖Lp(Br(x0)) ≥ chk(r),

since, by Theorem 2.1(3), |Br(x0) ∩ {u = 0}| ≥ crN . Taking now k → ∞ we obtain

inf
Br/2(x0)

(
h0(r) − U0

)
≥ ch0(r)

for some 0 < c < 1, which is the same as

sup
Br/2(x0)

U0 ≤ (1 − c)h0(r).

Therefore

h0

(r
2

)
≤ (1 − c)h0(r),

from which it follows that h0(r) ≤ Crγ for some C > 0, 0 < γ < 1, and now the
conclusion of the theorem follows.

3. Regularity of the free boundary. At this point we have that our minimizer
uε meets the conditions of the regularity theory developed in [4], the only difference
being the equation satisfied by uε in {uε > 0}.

We recall some definitions and point out the only significant difference with [4].
The rest of the proof of the regularity then follows as sections 7 and 8 of [4] with only
minor modifications.

Throughout this section we remove the subscript ε.
Definition 3.1 (flat free boundary points). Let 0 < σ+, σ− ≤ 1 and τ > 0. We

say that u is of class

F (σ+, σ−; τ) in Bρ = Bρ(0)

if
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(1) 0 ∈ ∂{u > 0} and

u = 0 for xN ≥ σ+ρ,
u(x) ≥ −λ(xN + σ−ρ) for xN ≤ −σ−ρ;

(2) |∇u| ≤ λ(1 + τ) in Bρ.
If the origin is replaced by x0 and the direction eN by the unit vector ν, we say that
u is of class F (σ+, σ−; τ) in Bρ(x0) in direction ν.

Observe that the results in section 2 imply that the minimizer u of Jε is in
the class F (σ, 1;σ) in Bρ(x0) in direction νu(x0) for every x0 ∈ ∂red{u > 0} with
σ = σ(ρ) → 0 as ρ → 0.

The following lemma (Lemma 7.2 in [4]) is the only one that requires a nonobvious
modification.

Lemma 3.1. There is a constant C = C(N) such that u ∈ F (σ, 1;σ) in Bρ(x0)
in direction ν implies u ∈ F (2σ,Cσ;σ) in Bρ/2(x0) in direction ν.

Proof. Clearly, by a change of variables, we may assume that x0 = 0 and ν = eN .
Let ū(x) = u(ρx)/λρ; then |∇ū| ≤ 1 + σ and ū ∈ F (σ, 1;σ) in B1. That is, ū = 0 if
xN > σ. Define

η(x′) =

⎧⎨⎩exp

(
− 9|x′|2

1 − 9|x′|2

)
for |x′| < 1

3 ,

0 otherwise

and choose s ≥ 0 maximal with the property that ū = 0 in xN > σ − sη(x′).
Now, the proof follows as in Lemma 7.2 of [4] with the only difference being that

the comparison function v must be the solution to Δv = ρ2ū in D = B1 ∩ {xN <
σ − sη(x′)} instead of a harmonic function. The estimate

∂−νv ≤ 1 + Cσ

follows from

|∇(v + xN )| ≤ C
[
sup
D

(v + xN ) + ρ2
]
≤ Cσ

in D ∩B1/2 if ρ2 ≤ Cσ, since

Δ(v + xN ) = ρ2ū in D,

v + xN ≤ Cσ in D, and |ū(x)| ≤ 2.
Once this lemma is established the following regularity result follows.
Theorem 3.1. Let u ∈ K be a solution to (Pε). Then ∂red{u > 0} is a C1,β

surface locally in Ω, and the remainder of the free boundary has zero HN−1 measure.
Moreover, if N = 2, then the whole free boundary is a C1,β surface.

4. Behavior of the minimizer for small ε. To complete the analysis of the
problem, we now show that if ε is small enough, then

|{uε > 0}| = α.

To this end, we need to prove that the constant λε := λuε is bounded from above
and below by positive constants independent of ε. We perform this task in a series of
lemmas.
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Lemma 4.1. Let uε ∈ K be a solution to (Pε). Then there exist constants C, c > 0
independent of ε such that

c ≤ |{uε > 0}| ≤ α + Cε.(4.1)

Proof. As Jε(uε) is bounded from above uniformly in ε we obtain

Fε(|{uε > 0}|) ≤ C.

Hence

|{uε > 0}| ≤ α + Cε.

For the lower bound, we proceed as follows: by the Sobolev trace embedding, for some
1 < p < 2 such that p(N − 1)/(N − p) > q,

1 ≤ ‖uε‖Lq(∂Ω) ≤ C‖uε‖W 1,p(Ω) ≤ C‖uε‖H1(Ω)|{uε > 0}|θ

for some exponent θ that depends only on p. Since ‖uε‖H1(Ω) is uniformly bounded,
the lower bound follows.

Lemma 4.2. Let uε ∈ K be a solution to (Pε). Then there exists a constant C > 0
independent of ε such that

λε := λuε ≤ C.

Proof. Let D ⊂⊂ Ω smooth, such that ω = |D| > α and |Ω \D| < c, where c is
the constant in Lemma 4.1. Then,

|D ∩ {uε > 0}| ≤ α + Cε < ω

for ε small enough. On the other hand,

|D ∩ {uε > 0}| ≥ |{uε > 0}| − |Ω \D| ≥ c− |Ω \D| > 0.

Therefore by the relative isoperimetric inequality, we have

HN−1(D ∩ ∂{uε > 0}) ≥ c0 min {|D ∩ {uε > 0}|, |D ∩ {uε = 0}|}
N−1
N ≥ c1 > 0.

Now take ϕ ∈ C∞
0 (Ω) as a test function in Lemma 2.3 such that 0 ≤ ϕ ≤ 1,

ϕ ≡ 1 in D, and ‖∇ϕ‖∞ ≤ C = C(dist(D, ∂Ω)) to get, since ‖uε‖H1(Ω) is bounded
independently of ε,

C ≥
∫

Ω

∇uε∇ϕdx +

∫
Ω

uεϕdx = λε(ϕ) ≥ λεHN−1(D ∩ ∂red{uε > 0}).

This completes the proof of the lemma.
The proof of the uniform lower bound follows similarly to Lemma 6 in [2]. We

only make a sketch of the proof for the reader’s convenience. It is at this point where
we need the hypothesis that ΓD 	= ∅.

Lemma 4.3. Let ΓD 	= ∅ be the closure of a relatively open subset of ∂Ω. Let
ϕ0 ∈ H1(Ω) with ϕ0 ≥ c0 > 0 in ΓD. Let uε ∈ K be a solution to (Pε). Then

(1) uε is positive in a neighborhood of ΓD (depending on ε);
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(2) there exists a constant c > 0 independent of ε such that

c < λε := λuε .

Proof. Let us first prove (1). In fact, arguing as in (2.9), given y0 ∈ ΓD there
exists a constant K > 0 independent of ε such that

|Ωr ∩ {u = 0}|
(

1

r
–

∫
–
∂Ωr

u

)2

≤ K

∫
Ωr

|∇(u− v)|2 dx,

where Ωr = Ω ∩Br(y0) and v is the solution of{
Δv = v in Ωr,

v = u on ∂Ωr.

Therefore,(c0
r

)2

|Ωr ∩ {u = 0}| ≤ K(‖u‖2
H1(Ωr) − ‖v‖2

H1(Ωr)) ≤
C

ε
|Ωr ∩ {u = 0}|.

Thus, u > 0 in Ωr for small r depending on ε.
In order to see (2) we proceed as in [2, Lemma 6]. Let y0 ∈ ΓD and let Dt with

0 ≤ t ≤ 1 be a family of open sets with smooth boundary and uniformly (in ε and t)
bounded curvatures such that D0 is an exterior tangent ball at y0, D1 contains a free
boundary point, Dt ∩ ∂Ω ⊂ ΓD, and D0 ⊂⊂ Dt for t > 0.

Let t ∈ (0, 1) be the first time that Dt touches the free boundary and let x0 ∈
∂Dt ∩ ∂{uε > 0}∩Ω. Now, take w as the solution to Δw = w in Dt \D0 with w = c0
on ∂D0 and w = 0 on ∂Dt. Thus w ≤ uε in Dt ∩ Ω and ∂−νw(x0) ≥ c c0 with c
independent of ε; therefore, for r small enough,

1

r
–

∫
–
∂Br(x0)

uε ≥
1

r
–

∫
–
∂Br(x0)

w ≥ c̄ c0

with c̄ independent of ε.
If v0 is the solution to {

Δv = v in Br(x0),

v = u on ∂Br(x0),

then, by (2.9), we have

c|Br(x0) ∩ {uε = 0}| ≤ |Br(x0) ∩ {uε = 0}|
(

1

r
–

∫
–
∂Br(x0)

uε

)2

≤ K

∫
Br(x0)

|∇(uε − v0)|2 dx

≤ K(‖uε‖2
H1(Br(x0))

− ‖v0‖2
H1(Br(x0))

).

Now let δr = |Br(x0) ∩ {uε = 0}| and let x1 ∈ ∂{uε > 0} be such that the free
boundary is smooth in a neighborhood of x1. We perturb {uε > 0} in a neighborhood
of x1 so that the measure of the perturbed set is increased by an amount δr (cf.
Theorem 2.5).
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Let Φ be a smooth nonnegative function supported in Bκ(x1) with κ > 0 small.
For x ∈ Bκ(x1) we write x = σ + sν(σ) with σ ∈ ∂{uε > 0} and s ∈ R, where
ν(σ) is the outer unit normal to the free boundary at σ. We define the change of
variables y = x − Φ(σ)τν(σ) with τ > 0 small and the deformed set Dδr such that
Dδr ∩Bκ(x1) = {y / x ∈ {uε > 0}∩Bκ(x1)}. Observe that if r is small we can perform
this perturbation in such a way that it decreases the measure of {uε > 0} by exactly
δr. Also, observe that δr → 0 as r → 0.

Now let vr be the solution of⎧⎪⎨⎪⎩
Δv = v in Dδr ,

v = 0 on ∂Dδr ∩Bκ(x1),

v = uε on ∂Bκ(x1) ∩ Dr.

(4.2)

Then vr verifies

∂vr
∂ν

= −λε + o(δr).

On the other hand,

uε = λεδr + oε(δr) on ∂{vr > 0} ∩Bκ(x1).

Thus ∫
Bκ(x1)

|∇vr|2 + v2
r dx−

∫
Bκ(x1)

|∇uε|2 + (uε)
2 dx

=

∫
Bκ(x1)

|∇(uε − vr)|2 + (uε − vr)
2 dx

= −
∫
∂{vr>0}∩Bκ(x1)

∂vr
∂ν

uε dS

= λ2
εδr + oε(δr).

Now we extend vr by zero to Bκ(x1) \ Dδr and define

wr =

⎧⎪⎨⎪⎩
vr in Bκ(x1),

v0 in Br(x0),

u elsewhere.

Then |{wr > 0}| = |{uε > 0}| and wr = uε on ∂Ω; thus

0 ≤ Jε(wr) − Jε(uε) =

∫
Ω

|∇wr|2 + w2
r dx−

∫
Ω

|∇uε|2 + (uε)
2 dx

=

∫
Br(x0)

|∇v0|2 + v2
0 dx−

∫
Bκ(x0)

|∇uε|2 + (uε)
2 dx

+

∫
Bκ(x1)

|∇vr|2 + v2
r dx−

∫
Bκ(x1)

|∇uε|2 + (uε)
2 dx

≤ −cδr + λ2
εδr + oε(δr)

for every r > 0 small. Therefore, λ2
ε ≥ c/2.



1632 J. FERNÁNDEZ BONDER, J. D. ROSSI, AND N. WOLANSKI

Now we are in a position to prove the main result of this section, namely, that
for ε small the measure of the positivity set is exactly α.

Theorem 4.1. Let ΓD 	= ∅ be the closure of a relatively open subset of ∂Ω. Let
ϕ0 ∈ H1(Ω) with ϕ0 ≥ c0 > 0 in ΓD. Let uε ∈ K be a solution to (Pε). Then, for ε
small

|{uε > 0}| = α.(4.3)

Proof. Arguing by contradiction, assume first that |{uε > 0}| > α. Let x1 ∈
∂{uε > 0} ∩ Ω be a regular point. We will proceed as in the proof of the previous
lemma. Given δ > 0, we perturb the domain {uε > 0} in a neighborhood of x1,
Bκ(x1), decreasing its measure by δ. We choose δ small so that the measure of the
perturbed set is still larger than α. Then we let v be the solution to (4.2) extended
by zero to the rest of Bκ(x1) and equal to u in the rest of Ω. We have

0 ≤ Jε(v) − Jε(uε) =

∫
Ω

|∇v|2 + v2 −
∫

Ω

|∇uε|2 + (uε)
2 + Fε(|{v > 0}|)

− Fε(|{uε > 0}|)

≤ λ2
εδ + oε(δ) −

1

ε
δ ≤

(
C2 − 1

ε

)
δ + oε(δ) < 0

if ε < ε0, and then δ < δ0(ε), a contradiction.
Now assume that |{uε > 0}| < α. We proceed as in the previous case but this

time we perturb in a neighborhood of x1 the set {uε > 0}, increasing the measure by
δ. Then we construct the function v as before, and if δ is small enough, |{v > 0}| < α.
Then

0 ≤ Jε(v) − Jε(uε) =

∫
Ω

|∇v|2 + v2 −
∫

Ω

|∇uε|2 + (uε)
2 + Fε(|{v > 0}|)

− Fε(|{uε > 0}|)
≤ −λ2

εδ + oε(δ) + εδ ≤ (−c2 + ε)δ + oε(δ) < 0

if ε < ε1, and then δ < δ0(ε). Again, a contradiction that ends the proof.
As a consequence of the previous theorem, we get the following corollary.
Corollary 4.1. Let ΓD 	= ∅ be the closure of a relatively open subset of ∂Ω. Let

ϕ0 ∈ H1(Ω) with ϕ0 ≥ c0 > 0 in ΓD. Then there exists a minimizer u of J (v) in the
set

Kα = {v ∈ H1(Ω) / ‖v‖Lq(ΓN ) = 1, v = ϕ0 on ΓD, |{v > 0}| = α}.

This minimizer can be chosen in such a way that it is locally Lipschitz continuous in
Ω and the free boundary ∂{u > 0} ∩ Ω is locally a C1,β surface up to a set of zero
HN−1 measure. In the case N = 2 the free boundary is locally a C1,β surface.

Proof. From our previous results we have (4.3) for every ε small enough. Therefore
we can take u = uε and the desired regularity of u and its free boundary follows from
the results of sections 2 and 3.

5. Main results. In this section we go back to our original minimization prob-
lem related to the best Sobolev trace constant. Here we prove that any extremal is a
locally Lipschitz continuous function and the boundary of the hole ∂{u > 0} ∩ Ω is
locally C1,β up to a set of zero HN−1 measure.
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We begin with the following theorem.
Theorem 5.1. Let φ0 be a minimizer for (Pα). Assume that there exists a positive

constant c such that φ0 > c in a ball B′
0 ⊂ Ω (resp., on B′

0 ∩ ∂Ω, where B′
0 is a ball

centered at ∂Ω). Then φ0 is a minimizer of Jε in

K2 = {v ∈ H1(Ω) / ‖v‖Lq(∂Ω) = 1, v = φ0 in B0}

(resp., φ0/k is a minimizer of Jε in K = {v ∈ H1(Ω) / ‖v‖Lq(ΓN ) = 1, v = φ0/k on ΓD}
with ΓD = ∂Ω ∩ B0, ΓN = ∂Ω \ ΓD). Here, B0 is a ball compactly contained in B′

0

and k = ‖φ0‖Lq(ΓN ).
In particular, φ0 is locally Lipschitz continuous in Ω and the free boundary ∂{φ0 >

0} ∩Ω is locally a C1,β surface up to a set of zero HN−1 measure. In the case N = 2
the free boundary is locally a C1,β surface.

Proof. We will make the proof for the first case; the second one follows in the
same way.

Let ε be small enough so that any minimizer uε of Jε in K2 verifies that |{uε >
0}| = α. Then it follows that φ0 is one such minimizer and thus the conclusions of
the theorem follow. In fact, as φ0 minimizes (Pα) we have

Jε(φ0) =

∫
Ω

|∇φ0|2 + |φ0|2 dx ≤
∫

Ω

|∇v|2 + |v|2 dx(5.1)

for any v ∈ H1(Ω) such that ‖v‖Lq(∂Ω) = 1 and |{v > 0}| = α. In particular (5.1)
holds for v = uε. Thus

Jε(φ0) ≤ Jε(uε) = inf
v∈K2

Jε(v).

This ends the proof.
In particular, by the symmetry results for minimizers of (Pα) in balls of [10] we

have the following corollary.
Corollary 5.1. Let Ω = B(x0, r) be a ball and let φ0 be a minimizer of (Pα).

Then φ0 is locally Lipschitz continuous in B(x0, r) and the free boundary ∂{φ0 >
0} ∩B(x0, r) is locally a C1,β surface up to a set of zero HN−1 measure. In the case
N = 2 the free boundary is locally a C1,β surface.

Proof. In [10] it was proved that any minimizer φ0 of (Pα) in the case that Ω is
a ball Br(x0) satisfies that, for any c0 > 0, {φ0 ≥ c0} ∩ ∂Br(x0) is a spherical cap.
Since ‖φ0‖Lq(∂Ω) = 1, there exists c0 > 0 such that {φ0 ≥ c0} ∩ ∂Br(x0) 	= ∅. Hence
the conditions of Theorem 5.1 are satisfied.

In the general case, for the problem (Pα) we can prove that the set of α’s for
which there exist minimizers with smooth free boundary is dense in (0, |Ω|). More
precisely, we have the following theorem.

Theorem 5.2. For any 0 < α < |Ω| there exists αε → α as ε → 0 such that
there exists a solution φε of (Pαε) which is locally Lipschitz continuous in Ω and has
locally a C1,β free boundary up to a set of zero HN−1 measure. In the case N = 2 the
free boundary is locally a C1,β surface.

Proof. Let uε be a minimizer of Jε. We already know that αε := |{uε > 0}| ≤
α + Cε (see (4.1)). Let us see that αε → α as ε → 0. If not, there exists a sequence
εj → 0 such that αεj = |{uεj > 0}| ≤ θ < α. Let φ0 be a minimizer of (Pα). By the
strict monotonicity of S(α) (see [10, Remark 2.2]) we have

J (φ0) = S(α) < S(θ) ≤ J (uεj ) = Jεj (uεj ) − Fεj (αεj )

≤ Jεj (φ0) − Fεj (αεj ) = J (φ0) − Fεj (αεj ) ≤ J (φ0) + Cεj ,
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a contradiction.
Now, taking φε = uε we see that φε is a minimizer of (Pαε). In fact, let v be an

admissible function for (Pαε); then

J (v) + Fε(αε) = Jε(v) ≥ Jε(φε) = J (φε) + Fε(αε)

and therefore

J (v) ≥ J (φε).

The theorem is proved.
Finally, we have the following result.
Theorem 5.3. Let uε be a minimizer of Jε in K1. Then there exists φ0 ∈ H1(Ω),

a solution to (Pα) such that, up to a subsequence, uε → φ0 in H1(Ω).
Proof. In the proof of Theorem 5.2 we showed that |{uε > 0}| → α as ε → 0.
It is easy to see that Jε(uε) is bounded uniformly in ε and so uε is uniformly

bounded in H1(Ω). Therefore, passing to a subsequence if necessary, there exists
u0 ∈ H1(Ω) such that

uε ⇀ u0 weakly in H1(Ω),

uε → u0 strongly in Lq(∂Ω),

uε → u0 a.e. Ω.

Thus,

‖u0‖Lq(∂Ω) = 1,

|{u0 > 0}| ≤ α = lim
ε→0

|{uε > 0}|, and

‖u0‖H1(Ω) ≤ lim inf
ε→0

‖uε‖H1(Ω).

Let us call φ0 = u0 and let us see that φ0 is a solution to (Pα). In fact, let
v ∈ H1(Ω) be such that |{v > 0}| = α and ‖v‖Lq(∂Ω) = 1. Then

J (v) = Jε(v) ≥ Jε(uε).

Now, since lim infε→0 Fε(|{uε > 0}|) ≥ 0, there holds that

J (v) ≥ lim inf
ε→0

Jε(uε) ≥ lim inf
ε→0

J (uε) ≥ J (φ0).(5.2)

It remains to see that |{φ0 > 0}| = α. Assume not; then α1 := |{φ0 > 0}| < α. Thus,
by the strict monotonicity of S(·), there holds that S(α) < S(α1), but

S(α) = inf
v
J (v) ≥ J (φ0) ≥ S(α1),

a contradiction.
Now taking v = φ0 in (5.2),

J (φ0) ≤ lim inf
ε→0

J (uε) ≤ lim inf
ε→0

Jε(uε) ≤ J (φ0).

Hence, ‖φ0‖H1(Ω) = lim infε→0 ‖uε‖H1(Ω) and thus, by taking a further subsequence
if necessary, the convergence is actually strong.

Remark 4. We believe that, as in the previous cases, the minimizers uε of Jε in
K1 will already be solutions to (Pα) for ε small. Nevertheless, despite the fact that
the result of Theorem 5.3 does not give regularity of the minimizer φ0, we believe
that it could be of interest in numerical approximations of the solution to (Pα).
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Abstract. An optimal control problem for a two-dimensional elliptic equation is investigated
with pointwise control constraints. This paper is concerned with discretization of the control by
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1. Introduction. This paper is concerned with the discretization of the two-
dimensional elliptic optimal control problem

J(u) = F (y, u) =
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω)(1.1)

subject to the state equations

Ay + a0y = u in Ω,

y = 0 on Γ(1.2)

and subject to the control constraints

a ≤ u(t, x) ≤ b for a.a. x ∈ Ω,(1.3)

where Ω is a bounded domain with boundary Γ; A denotes a second-order elliptic
operator of the form

Ay(x) = −
2∑

i,j=1

Di(aij(x)Djy(x)),

where Di denotes the partial derivative with respect to xi, and a and b are real
numbers. Moreover, ν > 0 is a fixed positive number. We denote the set of admissible
controls by Uad:

Uad = {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω}.

We discuss here the full discretization of the control and the state equations by a
finite-element method. The asymptotic behavior of the discretized problem is studied.
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The approximation of the discretization for semilinear elliptic optimal control
problems is discussed in Arada, Casas, and Tröltzsch [1]. The optimal control problem
(1.1)–(1.3) is a linear-quadratic counterpart of such a semilinear problem.

The discretization of optimal control problems by piecewise constant functions is
well investigated; we refer to Falk [7] and Geveci [8]. Piecewise constant and piecewise
linear discretization in space are discussed for a parabolic problem in Malanowski [12].
Theory and numerical results for elliptic boundary control problems are contained in
Casas and Tröltzsch [6] and Casas, Mateos, and Tröltzsch [5]. All of these papers
are mainly focused on L2-estimates. However, in Arada, Casas, and Tröltzsch [1] and
Casas, Mateos, and Tröltzsch [5] we find also L∞-estimates of order h for piecewise
constant functions.

Piecewise linear control discretizations for elliptic optimal control problems were
studied by Casas and Tröltzsch [6] and Casas [4]. In an abstract optimization problem,
piecewise linear approximations were investigated in Rösch [15]. In these papers, the
convergence was mainly discussed in the L2-norm.

Error estimates in the L∞-norm can also be obtained by other discretization
concepts; see Hinze [10] and Meyer and Rösch [13].

The interest for L∞-estimates is motivated by the following circumstances. The
L∞-space plays an important role in the theory of semilinear optimal control problems.
Usually, sufficient second-order optimality conditions hold in an L∞-neighborhood
of the optimal solution. These optimality conditions are the main ingredients for
the convergence theory of the SQP method. For numerical computations the linear-
quadratic subproblems have to be solved with a sufficient accuracy in the L∞-norm.

In this paper, we will show that also for piecewise linear controls the approxi-
mation order h can be obtained in the L∞-norm. A result of this type cannot be
obtained with one of the above mentioned methods. The L∞-estimate is obtained
in two main steps. We prove in the first step that the discretized solutions violate a
pointwise projection formula only in an order h. The L∞-estimates for grid points
and later for arbitrary points are derived in the second step.

The paper is organized as follows: In section 2 the discretizations are introduced
and the main results are stated. Section 3 contains auxiliary results. The proofs
of the approximation result is placed in section 4. The paper ends with numerical
experiments shown in section 5.

2. Discretization and main result. Throughout this paper, Ω denotes a con-
vex bounded open subset in R2 of class C1,1. The coefficients aij of operator A belong
to C0,1(Ω̄) and satisfy the ellipticity condition

m0|ξ|2 ≤
2∑

i,j=1

aij(x)ξiξj for all (ξ, x) ∈ R2 × Ω̄, m0 > 0.

Moreover, we require yd ∈ Lp(Ω) for some p > 2. For the function a0 ∈ L∞(Ω), we
assume a0 ≥ 0. Next, we recall a result of Grisvard [9, Theorem 2.4.2.5].

Lemma 2.1 (see [9]). For every p > 2 and every function g ∈ Lp(Ω), the solution
y of

Ay + a0y = g in Ω, y|Γ = 0,

belongs to H1
0 (Ω)∩W 2,p(Ω). Moreover, there exists a positive constant c, independent

of a0, such that

‖y‖W 2,p(Ω) ≤ c‖g‖Lp(Ω).
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We introduce the adjoint equation

A∗p + a0p = y − yd in Ω,

p = 0 on Γ,(2.1)

where A∗ denotes the formally adjoint operator. Due to Lemma 2.1, the state equation
and the adjoint equation admit unique solutions in H1

0 (Ω) ∩ W 2,p(Ω) if yd ∈ Lp(Ω)
for p > 2. This space is embedded in C0,1(Ω̄).

We call the solution y of (1.2) for a control u associated state to u and write
y(u). In the same way, we call the solution p of (2.1) corresponding to y(u) associated
adjoint state to u and write p(u).

Introducing the projection

Π[a,b](f(x)) = max(a,min(b, f(x))),

we can formulate the necessary and sufficient first-order optimality condition for (1.1)–
(1.3).

Lemma 2.2. A necessary and sufficient condition for the optimality of a control
ū with the corresponding state ȳ = y(ū) and adjoint state p̄ = p(ū), respectively, is
that the equation

ū(x) = Π[a,b]

(
− 1

ν
p̄(x)

)
(2.2)

holds.
Since the optimal control problem is strictly convex, we obtain the existence

of a unique optimal solution. The optimality condition can be formulated as the
variational inequality

(νū + p̄, u− ū)U ≥ 0 for all u ∈ Uad,

where (·, ·)U denotes the natural inner product in U = L2(Ω). A standard pointwise
a.e. discussion of this variational inequality leads to the above formulated projection
formula; see [12]. Clearly, the Lipschitz continuity of p̄ implies that also ū is Lipschitz
continuous.

We are now able to introduce the discretized problem. We define a finite-element–
based approximation of the optimal control problem (1.1)–(1.3). To this aim, we
consider a family of triangulations (Th)h>0 of Ω̄. With each element T ∈ Th, we
associate two parameters ρ(T ) and σ(T ), where ρ(T ) denotes the diameter of the set
T, and σ(T ) is the diameter of the largest ball contained in T . The mesh size of
the grid is defined by h = maxT∈Th

ρ(T ). We suppose that the following regularity
assumptions are satisfied.

(A1) There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.
(A2) Let us define Ω̄h =

⋃
T∈Th

T , and let Ωh and Γh denote its interior and its
boundary, respectively. We assume that Ω̄h is convex and that the vertices of Th

placed on the boundary of Γh are points of Γ. From [14, estimate (5.2.19)], it is
known that

|Ω \ Ωh| ≤ Ch2,
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where |.| denotes the measure of the set.
Next, to every boundary triangle T of Th we associate another triangle T̂ with

the curved boundary as follows: the edge between the two boundary nodes of T
is substituted by the corresponding curved part of Γ. We denote by T̂h the union
of these curved boundary triangles with the interior triangles to Ω of Th such that
Ω̄ =

⋃
T̂∈T̂h

T̂ . Moreover, we set

Vh = {yh ∈ C(Ω̄) : yh ∈ P1 for all T ∈ Th, and yh = 0 on Ω̄ \ Ωh},

Uh = {uh ∈ C(Ω̄) : uh ∈P1 for all T ∈ Th, and uh = Π[a,b](0) on Ω̄ \ Ωh},
Uad
h = Uh ∩ Uad,

where P1 is the space of polynomials of degree less than or equal to 1. The definition
of the set Uh is motivated by the projection formula (2.2) and the homogeneous
boundary condition (2.1) of the adjoint equation.

For each uh ∈ Uh, we denote by yh(uh) the unique element of Vh that satisfies

a(yh(uh), vh) =

∫
Ω

uhvh dx for all vh ∈ Vh,(2.3)

where a : Vh × Vh → R is the bilinear form defined by

a(yh, vh) =

∫
Ω

⎛⎝a0(x)yh(x)vh(x) +

2∑
i,j=1

aij(x)Diyh(x)Djvh(x)

⎞⎠ dx.

In other words, yh(uh) is the approximated state associated with uh. Because of
yh = vh = 0 on Ω̄ \Ωh the integrals over Ω can be replaced by integrals over Ωh. The
finite-dimensional approximation of the optimal control problem is defined by

inf J(uh) =
1

2
‖yh(uh) − yd‖2

L2(Ω) +
ν

2
‖uh‖2

L2(Ω), uh ∈ Uad
h .(2.4)

The adjoint equation is discretized in the same way:

a∗(ph(uh), vh) =

∫
Ω

(yh(uh) − yd)vh dx for all vh ∈ Vh(2.5)

with

a∗(ph(uh), vh) =

∫
Ω

⎛⎝a0(x)yh(x)vh(x) +

2∑
i,j=1

aji(x)Diyh(x)Djvh(x)

⎞⎠ dx.

Now, we are able to state the main result.
Theorem 2.3. Let ū and uh be the optimal solution of (1.1) and (2.4), respec-

tively. Then, there exists a positive constant C independent of h with

‖ū− uh‖L∞(Ω) ≤ Ch.(2.6)

The proof of Theorem 2.3 is contained in section 4. Moreover, the constant C is
specified in that section.
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3. Auxiliary results. We start with an L2-estimate corresponding to Theo-
rem 2.3.

Lemma 3.1. Let ū and uh be the optimal solution of (1.1) and (2.4), respectively.
Then, the estimate

‖ū− uh‖L2(Ω) ≤ C2h(3.1)

holds true with a positive constant C2.
This statement can be easily proved by the arguments of Casas and Tröltzsch [6].

It is a special case of a new general result of Casas [4].
This and the Sobolev imbeddings imply easily the following L∞-estimate:

‖p̄− p(uh)‖L∞(Ω) ≤ c‖p̄− p(uh)‖H2(Ω) ≤ ch.(3.2)

Lemma 3.2. The inequality

‖p̄− ph(uh)‖L∞(Ω) ≤ κh(3.3)

is valid with a positive constant κ.
Proof. First, we recall an L∞-estimate for the finite-element solution

‖p(uh) − ph(uh)‖L∞(Ω) ≤ ch;(3.4)

see Braess [3]. Using (3.2), we find

‖p̄− ph‖L∞(Ω) ≤ ‖p̄− p(uh)‖L∞(Ω) + ‖p(uh) − ph‖L∞(Ω) ≤ κh.

Next, we introduce a new notation for the piecewise linear functions. Let Ei be
an arbitrary vertex of the triangulation Th. Then, we define a basis function ei ∈ Uh

by

ei(Ej) = δij ,

where δij is the Kronecker symbol. Therefore, we can represent the functions uh and
ph(uh) by

uh(x) =
∑
Ei

uiei(x),

(ph(uh))(x) =
∑
Ei

piei(x)

with ui = uh(Ei) and pi = (ph(uh))(Ei).
We denote the set of neighboring vertices of Ei, i.e., (ei, ej)U �= 0 and i �= j, by

N(Ei).
Lemma 3.3. For every j with Ej ∈ N(Ei), we have

1

ν
|pi − pj | ≤ Dh(3.5)

with

D =
L + 2κ

ν
,(3.6)
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where L denotes the Lipschitz constant of p̄.
Proof. Because of Lemma 2.1, p̄ belongs to W 2,p(Ω) for a certain p > 2. Therefore,

p̄ is Lipschitz, and we have

|p̄(Ei) − p̄(Ej)| ≤ Lh.

Combining this inequality with (3.3), we obtain

|pi − pj | ≤ |pi − p̄(Ei)| + |p̄(Ei) − p̄(Ej)| + |p̄(Ej) − pj |
≤ κh + Lh + κh.

Next, we recall a property concerning the mass matrix.
Lemma 3.4. For every basis function ei

(ei, ei)U ≥
∑

Ej∈N(Ei)

(ei, ej)U(3.7)

is valid.
Proof. The element mass matrix of the reference element Tr is given by

Mr =
1

24

⎛⎝ 2 1 1
1 2 1
1 1 2

⎞⎠,

which has the desired property with equality. For an arbitrary triangle Ts we find

Ms =
|Ts|
|Tr|

Mr.

Consequently, every element mass matrix has this property. This holds also for the
summation over all triangles. The inequality sign is obtained if the support of ei
contains at least one boundary point.

Next, we want to investigate the following quantity:

M := max
i

∣∣∣∣ui − Π[a,b]

(
− 1

ν
pi

)∣∣∣∣ .(3.8)

Our main goal will be the proof of the inequality

M ≤ D · h.

Of course for M = 0 such an inequality is automatically fulfilled. Therefore, we will
now assume M > 0. In all what follows, the index i denotes a fixed vertex where this
maximum is attained.

Equation (3.8) means that one of the following cases (A) and (B) occurs:
(A) M = ui − Π[a,b](− 1

ν pi),

(B) M = −(ui − Π[a,b](− 1
ν pi)).

Lemma 3.5. Let M > 0 and i be an index where this maximum in (3.8) is
attained. Then, we have

M ≤ ui +
1

ν
pi in case (A),

M ≤ −
(
ui +

1

ν
pi

)
in case (B).

(3.9)
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Moreover, there exists a constant ε > 0 such that vh = uh − εei is admissible in case
(A) and vh = uh + εei is admissible in case (B).

Proof. We discuss here only case (A). Case (B) can be investigated in the same
way.

Since M is positive and Π[a,b](− 1
ν pi) ∈ [a, b] by definition, we have

ui > a.

Moreover, ui ≤ b and M > 0 imply Π[a,b](− 1
ν pi) < b. Therefore, we have

Π[a,b]

(
− 1

ν
pi

)
≥ −1

ν
pi

and

M = ui − Π[a,b]

(
− 1

ν
pi

)
≤ ui +

1

ν
pi.

Because of ui > a, there exists an ε > 0 such that

ui − ε > a.

This means that the control vh = uh − εei is admissible.
Lemma 3.6. Let M > 0, and let i be an index, where the maximum in (3.8) is

attained. Then, we have

ui +
1

ν
pi ≤ max

Ej∈N(Ei)
−
(
uj +

1

ν
pj

)
in case (A),(3.10)

−(ui +
1

ν
pi) ≤ max

Ej∈N(Ei)

(
uj +

1

ν
pj

)
in case (B).(3.11)

Moreover, if equality holds in (3.10) or (3.11), then we have

ui +
1

ν
pi = −

(
uj +

1

ν
pj

)
for all j with Ej ∈ N(Ei).

Proof. Without loss of generality, we discuss only case (A). We start with the
optimality condition for uh:

(νuh + ph(uh), vh − uh)U ≥ 0 for all vh ∈ Uad
h .

We test this inequality with vh = uh − εei:

(νuh + ph(uh),−εei)U ≥ 0.

From this, we obtain

(νui + pi)(ei, ei)U ≤
∑

Ej∈N(Ei)

−(νuj + pj)(ei, ej)U .

Using (3.7), we find

(νui + pi)(ei, ei)U ≤ max
Ej∈N(Ei)

−
(
uj +

1

ν
pj

) ∑
Ej∈N(Ei)

(ei, ej)U

≤ max
Ej∈N(Ei)

−
(
uj +

1

ν
pj

)
(ei, ei)U .
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Division by (ei, ei)U yields (3.10). Since the scalar products (ei, ej)U are positive for
all j with Ej ∈ N(Ei), equality can only occur if

ui +
1

ν
pi = −

(
uj +

1

ν
pj

)
for all j with Ej ∈ N(Ei).

Next, we denote an index where the maximum is attained in (3.10) for case (A)
by k:

−
(
uk +

1

ν
pk

)
= max

Ej∈N(Ei)
−
(
uj +

1

ν
pj

)
.(3.12)

In case (B), an index k is defined by

uk +
1

ν
pk = max

Ej∈N(Ei)

(
uj +

1

ν
pj

)
.(3.13)

Lemma 3.7. Assume M > 0. It holds that

−
(
uk − Π[a,b]

(
− 1

ν
pk

))
≤ M ≤ ui +

1

ν
pi ≤ −

(
uk +

1

ν
pk

)
(3.14)

in case (A) and that

uk − Π[a,b]

(
− 1

ν
pk

)
≤ M ≤ −

(
ui +

1

ν
pi

)
≤ uk +

1

ν
pk(3.15)

in case (B).
Proof. Again, we discuss only case (A): combining (3.9), (3.10), and (3.12), we

find

M ≤ ui +
1

ν
pi ≤ −

(
uk +

1

ν
pk

)
.(3.16)

Moreover, we have by definition of M

M ≥
∣∣∣uk − Π[a,b]

(
− 1

ν
pk

)∣∣∣.(3.17)

Due to (3.12) and M > 0, uk+ 1
ν pk is negative. Hence, the expression uk−Π[a,b](− 1

ν pk)

is nonpositive: in the case − 1
ν pk ≤ b, we get

Π[a,b]

(
− 1

ν
pk

)
≥ −1

ν
pk.

Consequently, we find

0 > uk −
(
− 1

ν
pk

)
≥ uk − Π[a,b]

(
− 1

ν
pk

)
.

In the other case, − 1
ν pk > b, we have Π[a,b](− 1

ν pk) = b, and now

0 ≥ uk − Π[a,b]

(
− 1

ν
pk

)
(3.18)

follows from uk ≤ b.
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Combining (3.17) and (3.18), we have

M ≥ −
(
uk − Π[a,b]

(
− 1

ν
pk

))
.(3.19)

This yields together with (3.16)

−
(
uk − Π[a,b]

(
− 1

ν
pk

))
≤ M ≤ ui +

1

ν
pi ≤ −

(
uk +

1

ν
pk

)
,

i.e., inequality (3.14).
Lemma 3.8. Assume M > 0. Then, there exists an index i with

M =
∣∣∣ui − Π[a,b]

(
− 1

ν
pi

)∣∣∣
and a corresponding index k, Ek ∈ N(Ei) with

Π[a,b]

(
− 1

ν
pk

)
�= −1

ν
pk.(3.20)

Proof. Again, we discuss only case (A): first, we investigate the case where in
inequality (3.14) at least one strong inequality occurs. Then, we have

−
(
uk − Π[a,b]

(
− 1

ν
pk

))
< −

(
uk +

1

ν
pk

)
.

This implies directly

Π[a,b]

(
− 1

ν
pk

)
< −1

ν
pk,(3.21)

and the assertion is proved for this case.
In the other case, we discuss as follows. Here, we know

M = −
(
uk − Π[a,b]

(
− 1

ν
pk

))
.

This means that the maximum M is also attained in the vertex Ek. Consequently, we
have case (B) for the vertex Ek, and hence (3.15) holds with i= k and a corresponding
index m instead of k. For the case where at least one strong inequality occurs in (3.15),
i.e.,

um − Π[a,b]

(
− 1

ν
pm

)
< um +

1

ν
pm with m ∈ N(Ek),

we can proceed as in the first part of the proof. Hence, we have only to show that
the equality case cannot occur for the index k, too: First, there exists at least one
common neighboring vertex (El ∈ N(Ei) and El ∈ N(Ek)). Next, we can apply
Lemma 3.6 for the indices i and k. Therefore, we obtain the equations

ui +
1

ν
pi = −

(
uk +

1

ν
pk

)
,

ui +
1

ν
pi = −

(
ul +

1

ν
pl

)
,

uk +
1

ν
pk = −

(
ul +

1

ν
pl

)
,
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implying ui + 1
ν pi = 0. This is a contradiction to (3.9) and M > 0. Therefore,

the equality case cannot occur for the index k, too. Consequently, the assertion is
true.

Lemma 3.9. Assume that

Dh < b− a

is valid. Then, the estimate

M = max
i

∣∣∣ui − Π[a,b]

(
− 1

ν
pi

)∣∣∣ < Dh(3.22)

holds true.
Proof. If M = 0, then (3.22) is automatically true. Therefore, we have only to

discuss the case M > 0. Let us assume that the statement of Lemma 3.8 is true for
an index i with case (A) and a corresponding index k. Case (B) can be discussed in
the same way.

Inequality (3.21) implies directly

b = Π[a,b]

(
− 1

ν
pk

)
< −1

ν
pk.(3.23)

From this and (3.5), we obtain

−1

ν
pi > b−Dh.

By assumption, the value b−Dh is greater than a. From (A),

ui − Π[a,b]

(
− 1

ν
pi

)
= M > 0,

and u ≤ b, we obtain

−1

ν
pi ≤ b.

Consequently, we find

−1

ν
pi = Π[a,b]

(
− 1

ν
pi

)
,

which implies

ui +
1

ν
pi = ui − Π[a,b]

(
− 1

ν
pi

)
= M.

Using ui ≤ b and 1
ν pi < −(b−Dh), we find

ui +
1

ν
pi < b− (b−Dh) = Dh.

Combining the last two inequalities, the assertion is proved.
Let us briefly comment on the assumption Dh < b− a. First, this assumption is

fulfilled for sufficiently small h. Second, in the cases b − a ≤ Dh Theorem 2.3 holds
trivially with C = D.
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4. Proof of the main result. The proof of Theorem 2.3 is divided into two
parts. In the next lemma we derive a corresponding estimate for the grid points. The
estimate for arbitrary points is obtained in a second step.

Lemma 4.1. The estimate

max
i

|uh(Ei) − ū(Ei)| ≤
(
D +

κ

ν

)
h

is valid.
Proof. For b− a ≤ Dh the assertion is trivially fulfilled. Therefore, we have only

to discuss the case Dh < b− a. From Lemma 3.9, we know

max
i

∣∣∣ui − Π[a,b]

(
− 1

ν
pi

)∣∣∣ ≤ Dh

or in other notation

max
i

∣∣∣uh(Ei) − Π[a,b]

(
− 1

ν
ph(Ei)

)∣∣∣ ≤ Dh.

From (3.3),

‖p̄− ph‖L∞(Ω) ≤ κh,

and the Lipschitz continuity of the projection operator we deduce∣∣∣∣∣∣Π[a,b]

(
− 1

ν
p̄(Ei)

)
− Π[a,b]

(
− 1

ν
ph(Ei)

)∣∣∣∣∣∣
L∞(Ω)

≤ κ

ν
h.

Using

ū(Ei) = Π[a,b]

(
− 1

ν
p̄(Ei)

)
and the triangle inequality, we end up with

max
i

|uh(Ei) − ū(Ei)| ≤
(
D +

κ

ν

)
h.

Now, we are able to prove Theorem 2.3.
Proof. A nongrid point x ∈ Ti can be expressed by a convex linear combination

of the vertices Ej of the corresponding triangle

x =
∑

Ej∈Ti

λjEj ,
∑

Ej∈Ti

λj = 1.

Since uh is linear on Ti, we get

|uh(x) − ū(x)| =
∣∣∣ ∑
Ej∈Ti

λjuh(Ej) − ū(x)
∣∣∣

≤
∑

Ej∈Ti

λj |uh(Ej) − ū(Ej)| +
∑

Ej∈Ti

λj |ū(x) − ū(Ej)|

≤
(
D +

κ

ν

)
h +

∑
Ej∈Ti

λj |ū(x) − ū(Ej)|

≤
(
D +

κ

ν

)
h +

L

ν
h.
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In the final inequality we used the Lipschitz continuity of ū. Summarizing all results,
we obtain

‖ū− uh‖L∞(Ωh) ≤
(
D +

κ + L

ν

)
h.

Therefore, the assertion is true for every point x ∈ Ti with

C = D +
κ + L

ν
.

It remains to investigate the part Ω\Ωh. By definition, we have uh = Π[a,b](0) on this
part. From (2.2), we obtain easily ū = Π[a,b](0) on Γ. Let x ∈ Ω \Ωh be an arbitrary
point. From [14], we know that

min
xΓ∈Γ

|x− xΓ| ≤ cΓh
2

holds with a certain constant cΓ > 0 independent of h. Therefore, we find for x ∈
Ω \ Ωh

|uh(x) − ū(x)| = |Π[a,b](0) − ū(x)| = |ū(xΓ) − ū(x)| ≤ cΓL

ν
h2.

5. Numerical example. We have tested the convergence theory by the follow-
ing example:

−Δy = u in Ω,

y = 0 on Γ
(5.1)

with Ω = (0, 1)×(0, 1). One can easily verify that this problem fulfills the assumptions
mentioned in the beginning of section 2 except the boundary regularity. Although Γ
is not of class C1,1, the W 2,p-regularity of p̄ (see Lemma 2.1) is obtained by a result
of Grisvard [9] for convex polygonal domains.

In [13], we derived an exact solution to (5.1), which is also used here. For the
reader’s convenience, we recall this example.

The optimal state is defined by

ȳ = ya − yg

with an analytical part ya = sin(πx1) sin(πx2) and a less smooth function yg. The
function yg represents the solution of

−Δyg = g in Ω,

yg = 0 on Γ.

Here, g is given by

g(x1, x2) =

⎧⎨⎩
û(x1, x2) − a if û(x1, x2) < a,
0 if û(x1, x2) ∈ [a, b],
û(x1, x2) − b if û(x1, x2) > b

with û(x1, x2) = 2π2 sin(πx1) sin(πx2). Due to the state equation (5.1), we obtain
for the exact optimal control ū

ū(x1, x2) =

⎧⎨⎩
a if û(x1, x2) < a,
û(x1, x2) if û(x1, x2) ∈ [a, b],
b if û(x1, x2) > b.



1648 C. MEYER AND A. RÖSCH
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Fig. 5.1. Optimal control uh.
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Fig. 5.2. ‖ū− uh‖L∞(Ω).

Table 5.1

h/
√

2 0.04 0.02 0.01 0.005
‖ū− uh‖L∞(Ω) 1.17450 0.26396 0.11536 0.06328

For the optimal adjoint state p̄, we find

p̄(x1, x2) = −2π2 ν sin(πx1) sin(πx2).

To fulfill the necessary and sufficient first-order optimality conditions, the desired
state yd is defined by

yd(x1, x2) = ȳ + Δp̄ = ya − yg + 4π4 ν sin(πx1) sin(πx2).

The optimization problem was solved numerically by a primal-dual active set
strategy; see [2], [11]. As mentioned in section 2, the state equation and the adjoint
equation were discretized with linear finite elements. Here, uniform meshes were
used. The resulting linear system of equations was solved with the conjugate gradient
method.

To approximate the L∞-norm ‖ū− uh‖L∞(Ω), we evaluated |ū(x)− uh(x)| in the
grid points, in the barycenters of the elements, and in the midpoints of the edges of
the triangulation.

In a first test we chose a = −15 and b = 15. Here, we have 0 ∈ (a, b). Conse-
quently the control is inactive near the boundary Γ.

Figure 5.1 shows the numerically calculated optimal control uh for the mesh size
h/

√
2 = 0.02.

Figure 5.2 and Table 5.1 illustrate the convergence behavior for the first test. As
one can see, the theoretical predictions are fulfilled, and one obtains linear approxi-
mation order for ‖ū− uh‖L∞(Ω) (except on the coarsest grid).

In the second test we chose a = 3 and b = 15. Consequently, 0 �∈ [a, b], i.e., the
control is active near the boundary Γ.

Figure 5.3 shows again the numerically calculated optimal control uh, for the
mesh size h/

√
2 = 0.02. Figure 5.4 and Table 5.2 illustrate the convergence behavior

for the second test. The convergence behavior is similar to the first test and one again
obtains linear convergence for ‖ū− uh‖L∞(Ω).
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Table 5.2

h/
√

2 0.04 0.02 0.01 0.005
‖ū− uh‖L∞(Ω) 0.58292 0.30681 0.14813 0.07390
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[13] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J.

Control Optim., 43 (2004), pp. 970–985.
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OPTIMALITY OF AN (s,S) POLICY WITH COMPOUND POISSON
AND DIFFUSION DEMANDS: A QUASI-VARIATIONAL

INEQUALITIES APPROACH∗
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Abstract. We prove that an (s, S) policy is optimal in a continuous-review stochastic inventory
model with a fixed ordering cost when the demand is a mixture of (i) a diffusion process and a
compound Poisson process with exponentially distributed jump sizes, and (ii) a constant demand
and a compound Poisson process. The proof uses the theory of impulse control. The Bellman equation
of dynamic programming for such a problem reduces to a set of quasi-variational inequalities (QVI).
An analytical study of the QVI leads to showing the existence of an optimal policy as well as the
optimality of an (s, S) policy. Finally, the combination of a diffusion and a general compound Poisson
demand is not completely solved. We explain the difficulties and what remains open. We also provide
a numerical example for the general case.

Key words. stochastic inventory model, economic order quantity model, impulse control, quasi-
variational inequalities, (s, S) policy, diffusion process, compound Poisson process
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1. Introduction. It is well known that the optimal ordering policies are of (s, S)
type for a broad class of stochastic inventory models involving a fixed ordering cost,
where s denotes the ordering point and S ≥ s is the order-up-to level. In other words,
when the inventory level at time t is s or below, an order is issued at time t to bring
the inventory level up to the level S. Ample literature exists. We review it briefly,
while referring the readers to Presman and Sethi (2004) for a detailed review and a
list of references on this subject.

One class of models that has been extensively studied in the literature is the
continuous-review stochastic inventory models with a compound Poisson demand and
fixed ordering cost. In this scenario, the demands arrive at random epochs governed
by a Poisson process. At any epoch, the demand size is an independently and identi-
cally distributed (i.i.d.) random variable. Studies of (s, S) policies for this model are
conducted by Richards (1975), Thompstone and Silver (1975), Archibald and Silver
(1978), Feldman (1978), and Federgruen and Schechner (1983). Additionally, Tijms
(1972), Sahin (1979, 1983), and Federgruen and Schechner (1983) consider the com-
pound renewal demands in which the jump epochs are assumed to follow a renewal
process. Zipkin (1986) uses a compound counting process to model demands. Some
of these papers show that an (s, S) policy is optimal and others study the behavior
of (s, S) policies without showing their optimality.

Another studied class of models is the so-called world-dependent demands or
Markovian demands; see Beyer, Cheng, and Sethi (2006). Song and Zipkin (1993)
consider a continuous-review model with world-dependent Poisson demands. They
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use a continuous-time Markov chain to model the “state of the world.” To solve the
problem, they invoke the standard uniformization procedure (Keilson (1979) and Van
Dijk (1990)) to convert the continuous-time problem to a discrete-time problem and
then use the discrete-time dynamic programming to obtain a state-dependent (s, S)
policy. A verification theorem, usually required to prove optimality in such problems,
is given in Beyer, Sethi, and Taksar (1998) for problems with Markovian demands
and a fairly general surplus cost function. We should mention that in a continuous-
review model with Poisson or compound Poisson demands, since demands arrive only
at discrete epochs, the optimal ordering decisions can be restricted to these epochs
without loss of optimality. This is the key observation that makes the uniformization
procedure applicable.

In contrast with Poisson process models, the classical economic order quantity
(EOQ) problem is a “purely continuous” inventory model in the sense that the de-
mands arrive continuously at a fixed constant rate. A natural and interesting model
to study is the one that combines the constant continuous demand and the compound
Poisson demand. However, this work had not been done until a very recent paper by
Presman and Sethi (2004). A major reason, as mentioned in their paper, is that the
presence of a constant demand means that the optimal ordering decisions may not be
restricted only at the jump epochs of the compound Poisson demands. As a result,
the standard uniformization procedure does not work in this case; see Presman and
Sethi (2004) for other difficulties arising in the analysis of such a model.

Presman and Sethi (2004) consider the demand process to be the sum of a constant
demand rate and a compound Poisson process. They develop a new approach to prove
the optimality of an (s, S) policy in the presence of a fixed ordering cost. This is also
a unified approach in the sense that it deals with both the long-run average cost
and the discounted-cost criteria. Their approach can be outlined as follows: it starts
with an (s, S) policy and then finds the corresponding discounted-cost formula and a
closely related modified cost function. By minimizing the modified cost function, a
candidate optimal (s, S) policy is obtained. Using this candidate and the formula for
the discounted cost, a potential function is constructed, which is shown to satisfy the
dynamic programming equation associated with the problem.

The next step in the generalization of the model is to add a Wiener process to the
demand process and to prove the optimality of an (s, S) policy. This is the subject
of this paper. We study an inventory model with a fixed ordering cost and a general
demand process that consists of a compound Poisson demand and a diffusion process.
Here the drift of the diffusion process represents the constant part of the demand.
This is a problem of impulse control, the theory of which has been developed by
Bensoussan and Lions (1984). The general idea is briefly as follows. Under the
framework of impulse control, the Bellman equation of dynamic programming for
the inventory problem under consideration reduces to a quasi-variational inequality
(QVI). Using the QVI approach, i.e., by solving the QVI and analyzing the properties
of its solution, it is possible to prove the existence of an optimal impulse control, and
hence of an optimal inventory policy.

Bensoussan and Tapiero (1982) formulate a stochastic demand model consisting of
a diffusion process and a pure Poisson process. They consider a finite horizon problem
and derive the associated QVI. While they give conditions for an (s, S) policy to be
optimal, they do not solve the problem.

Constantinides and Richard (1978) treat an infinite horizon discounted-cost inven-
tory problem with a diffusion demand. They prove the existence and the optimality
of an (s, S) policy. Sulem (1986) provides an explicit solution for this problem as well
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as for its average-cost version. Some related models are Bather (1966), Whitt (1973),
Puterman (1975), and Beyer (1994). But they do not go as far, for our purposes, as
Sulem (1986) does.

A model presented by Browne and Zipkin (1991) also involves a diffusion term
in the demand but treats it in a different way. While our model directly includes
the diffusion as a part of the demand, they assume that the demand process is state-
dependent and the underlying “state of the world” is modeled either by a continuous-
time Markov chain or by a diffusion process. They consider an (s, S) policy, which
typically is not optimal for their model.

Our primary goal is to prove that an (s, S) policy solves the QVI for the general
stochastic demand model under consideration. We achieve it in two important cases:
when the demand is (i) a mixture of a diffusion process and a compound Poisson
process with exponentially distributed jump sizes, and (ii) a mixture of a constant
demand and a compound Poisson process. However, the combination of a diffusion
process and a general compound Poisson process is not completely solved. We explain
the difficulties that arise and what remains open.

The specific steps taken in our approach are as follows. (i) We solve the QVI
(4.2) by postulating that the first inequality is an equation (4.4) to the right of a
number s (to be determined), and the second one is an equation (4.5) to the left of
s. The value of s is fixed by imposing that the solution of the QVI is C1 on the real
line. (ii) We analytically solve (4.4) and (4.5) together with the boundary conditions
(4.6) and (4.7) and the smoothness condition (4.8). This is done in three steps:
(a) We solve (4.4) with condition (4.6) and obtain a C1 solution Gs for any given s.
(b) Then we show that a minimum S(s) of the function Gs exists and that condition
(4.7) is satisfied. (c) We use (4.5) to determine a unique optimal s. (iii) We check that
the function constructed in this way satisfies the original QVI (4.2) of the inventory
problem. This method leads to a unique function, which is C1, and a unique pair
(s, S). It is also the value function over the class of all (s, S) policies.

We emphasize that our approach is different from the one used in Presman and
Sethi (2004) even though both involve QVIs. Presman and Sethi (2004) start with an
arbitrary (s, S) policy and consider the cost function obtained using that policy. They
derive a specific function of s and S, which is closely related to the cost function. They
minimize this function to obtain an optimal pair (s, S) within the class of all (s, S)
policies. They prove that the cost function associated with such an optimal (s, S)
pair satisfies the QVI for the inventory problem and, therefore, is the minimum cost
with respect to all feasible ordering decisions. We, on the other hand, begin with the
QVI associated with the inventory control problem. We solve the QVI, as indicated
above, to obtain the value function. In summary, our method is analytical in nature,
whereas Presman and Sethi (2004) use a probabilistic approach. Moreover, we extend
the result on the optimality of an (s, S) policy to include a diffusion demand.

Specifically, our paper makes the following main contributions.

1. We formulate a fairly general stochastic inventory model and consider the
appropriate QVI.

2. Our work generalizes the stochastic demand considered in Presman and Sethi
(2004) by allowing a Brownian motion term in the demand process. However, we must
note that our generalization comes at the expense of requiring the compound Poisson
process to have exponentially distributed jump sizes.

3. We solve the QVI analytically to obtain a closed-form solution.
4. We prove that an (s, S) policy solves the QVI for two important special cases,
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mentioned earlier and in the abstract.
5. We reveal an interesting relation between the optimal values of S and s; see

(5.5) and Remark 5.5.
6. We explain the difficulties with the general model having a combined demand

process involving both diffusion and compound Poisson demands.
The rest of the paper is organized as follows. In section 2, we provide a precise

formulation of the stochastic inventory problem under consideration. We also present
the QVI that must be satisfied by the value function of the problem. In section 3,
we briefly review the general theory of impulse control and QVI. In section 4, we
derive a set of equations for a given s and solve them to obtain a closed-form solution.
Section 5 presents some properties of the solution that are important to the optimal
(s, S) policy. The existence of the corresponding S for each given s is proved. In
section 6, we study the optimal (s, S) policy using the solution and an additional
condition that must be satisfied by the solution if an (s, S) policy is to be optimal,
including its existence. In section 7, we deal with a special case in which the random
jump size in the compound Poisson process is assumed to be exponentially distributed.
Section 8 treats the nondiffusion case using a different approach for the optimality
proof. In section 9, we provide some explanations for the difficulties with the general
case. A numerical example is presented. Section 10 concludes the paper.

2. Problem formulation. In this section, we provide a precise formulation of
the stochastic inventory problem under consideration. We present the QVI associated
with the problem that is satisfied by the value function.

We first define the demand process. Let (Ω,F ,P) be the underlying probability
space. The cumulative demand y(t) in the interval [0, t] is a stochastic process given
by

y(t) = Dt + σW (t) + N(t),(2.1)

where D ≥ 0 is the constant demand per unit time, W (t) denotes the standard
Brownian motion with W (0) = 0, and σ ≥ 0. The process Dt + σW (t) is referred
to as a diffusion process with drift D and volatility σ. N(t) is a compound Poisson
process defined next. Let n(t) be a right-continuous Poisson process with n(0) = 0
and the intensity λ ≥ 0. Let ξi ≥ 0, i = 1, 2 , . . . , be a sequence of i.i.d. nonnegative
random variables having distribution density μ(·). Then,

N(t) =
∑

i≤n(t)

ξi, t ≥ 0.

We note that the process n(t) produces a sequence of jump times and that ξi denotes
the size (random) of the demand at the ith jump. We shall sometimes simply use ξ
for the jump size for convenience in exposition.

Assumption 2.1. The Wiener process W (t), the Poisson process n(t), and the
jump sequence {ξi} are all independent.

Next we define the class of admissible ordering policies. Let Ft, t > 0, be the
sigma algebra generated by {N(s),W (s), 0 < s ≤ t} and F0 = {∅,Ω}. Let θi ≥
0, i = 1, 2, . . ., be a strictly increasing sequence of stopping times with respect to the
filtration {Ft+0}, and let ui > 0 be a positive random variable adapted to Fθi . An
admissible ordering policy is defined by

U = (θ1, u1, θ2, u2, . . .).
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Here θi denotes the time of the ith order, and ui denotes the amount ordered. We
use U to denote the set of all admissible ordering policies.

The cumulative amount of orders from time 0 up to but not including t is then
given by

M(t) =
∑

{i:θi<t}
ui.

We assume the orders are delivered instantaneously. Then the surplus level xU (t) at
time t under a policy U ∈ U is given by the equation

xU (t) = x−Dt− σW (t) −N(t) + M(t),(2.2)

where xU (0) = x (a constant) is the initial surplus level at t = 0. Note the surplus
xU (t) when positive means inventory and when negative means backlog.

Next we introduce the surplus and ordering costs. Let the surplus cost f(x) be a
nonnegative and piecewise continuously differentiable function with f(0) = 0. It gives
the cost of holding inventory for x > 0 and the backlog cost for x < 0. As in Beyer,
Sethi, and Taksar (1998), we make the following assumption on f .

Assumption 2.2. f(x) has a polynomial growth rate.

Some additional properties of f(x) will be specified later.

The cost c(u) of ordering an amount u is given by

c(u) =

{
K + cu, u > 0,

0, u = 0,
(2.3)

where K > 0 is the fixed set up cost of ordering, and c denotes the unit cost of each
item ordered.

We consider in this paper a discounted cost objective function. Let ρ > 0 be the
specified discount rate. For a given initial inventory level x and an ordering policy
U ∈ U , we define the discounted cost as

F (x, U) = E

{∫ ∞

0

f(xU (t))e−ρtdt +

∞∑
i=1

c(ui)e
−ρθi

}
.(2.4)

Define the value function associated with (2.4) as

F (x) = inf
U∈U

F (x, U).(2.5)

Our goal is to find a policy U∗ ∈ U such that F (x, U∗) = F (x).

Now we recall the notion of an (s, S) policy of ordering. For −∞ < s < S < +∞,
let Us,S denote the (s, S) policy given by the following function:

Us,S(x) =

{
0 if x > s,
S − x if x ≤ s,

where s is called the ordering level, and S is called the order-up-to level. Clearly
Us,S ∈ U . Let Us,S denote the subset of U containing all (s, S) policies.
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Next we present the QVI associated with (2.2)–(2.5). To this end, we introduce
the following operators. For function φ, let⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Aφ)(x) = −σ2

2
φ′′(x) + Dφ′(x),

(Bφ)(x) = λ

∫ ∞

0

(φ(x− ξ) − φ(x))μ(ξ) dξ,

(Mφ)(x) = K + inf
u≥0

(cu + φ(x + u)).

The Bellman equation for the value function reduces to a set of inequalities:⎧⎨⎩
AV −BV + ρV ≤ f,
V ≤ MV,
(AV −BV + ρV − f)(V −MV ) = 0.

(2.6)

These relations make sense a.e. x for any function V (x) that is continuously differ-
entiable. Our purpose therefore is to look for a C1 solution of (2.6) with polynomial
growth.

We make the following assumption on the random variable ξ.
Assumption 2.3. There is a π̄ < 0 such that∫ ∞

0

e−πξμ(ξ)dξ < ∞ for all π > π̄.

It should be noted that this assumption is stronger than that of a finite mean for
the jump size ξ.

3. A brief review of the impulse control theory. The QVI (2.6) is a special
case of the general QVI theory studied in Bensoussan and Lions (1984). They present
results on the existence of solution and the probabilistic interpretation in the context
of inventory control. In this section, we provide a brief review of related formulations
and results from the general theory of QVIs for impulse control.

Let βα(x) = exp(−α(1 + x2)
1
2 ), α > 0. Consider the Hilbert spaces L2

α and H1
α

defined as follows:

L2
α =

{
v

∣∣∣∣ ∫ +∞

−∞
v2β2

α dx < ∞
}
, H1

α = {v|v ∈ L2
α, v

′ ∈ L2
α}

with (v, w)α =
∫ +∞
−∞vwβ2

α dx, v, w ∈ L2
α. Define the bilinear form on H1

α by

aα(v, w) =
σ2

2

∫ +∞

−∞
v′w′β2

α dx +

∫ +∞

−∞
v′w

(
D − ασ2x

(1 + x2)
1
2

)
β2
α dx

+ ρ

∫ +∞

−∞
vwβ2

α dx−
∫ +∞

−∞
(Bv)wβ2

α dx, v, w ∈ H1
α.

We first note some properties of Bv. These are

|Bv|α ≤ λ(1 + Cα)|v|α, (Bv, v)α ≤ λ(Cα − 1)|v|2α

with

Cα =

(∫ ∞

0

exp(2αξ)μ(ξ) dξ

) 1
2

, 2α < −π̄.
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These follow from∫ +∞

−∞
β2
α(x)

(∫ +∞

0

v(x− ξ)μ(ξ) dξ

)2

dx ≤
∫ +∞

−∞
β2
α(x)

(∫ +∞

0

v2(x− ξ)μ(ξ) dξ

)
dx

and

β2
α(x) ≤ β2

α(x− ξ) exp(2αξ).

We also have

(Bv, v+)α ≤ (Bv+, v+)α and (Bv, v−)α ≥ −(Bv−, v−)α,

where v+ = max(v, 0) and v− = max(−v, 0). Set ρα = αD+α2σ2 + λ(Cα − 1). Then
we have

aα(v, v) ≥ σ2

2

∫ +∞

−∞
v′2β2

α dx + (ρ− ρα)

∫ +∞

−∞
v2β2

α dx.

Note that for a sufficiently small α, we have ρα < ρ.
We define the following variational inequality using the above notions:{

aα(v, w − v) ≥ (f, w − v)α
for any w ∈ H1

α such that w ≤ Mv, v ≤ Mv, and v ∈ H1
α.

(3.1)

Now let v0 be defined as

v0(x) = V0 exp(α(1 + x2)
1
2 ) = V0β−α(x),

where V0 > 0 is a constant. We wish to find a V0 such that

aα(v0, w) ≥ (f, w)α for any w ≥ 0.(3.2)

Noting the fact that

|Bv0(x)| ≤ λv0(x)αeα
∫ ∞

0

ξeαξμ(ξ) dξ,

we have

aα(v0, w) ≥ (ρ− ρ′α)(v0, w)α,

where

ρ′α = Dα +
1

2
σ2α2 +

1

2
σ2α + λαeα

∫ ∞

0

ξeαξμ(ξ) dξ.

Therefore, it is sufficient for (3.2) to achieve

(ρ− ρ′α)V0 exp(α(1 + x2)
1
2 ) ≥ f(x), x ∈ (−∞,+∞).

Since f has a polynomial growth rate by Assumption 2.2, i.e., there exist positive
constants f0 and γ such that

f(x) ≤ f0(1 + |x|γ), x ∈ (−∞,+∞),
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and since

(ρ− ρ′α)V0 exp(α(1 + x2)
1
2 ) ≥ (ρ− ρ′α)V0 exp(α|x|),

it is sufficient to pick a V0 such that

V0(ρ− ρ′α)

f0
≥ max

x>0
(1 + xγ) exp(−αx).

From the general result (Theorem 4.1, Chapter 4 in Bensoussan and Lions (1984)),
it follows that the set of solutions of (3.1) satisfying 0 ≤ v ≤ v0 is nonempty, and
it has a minimum solution v and a maximum solution v̄. Moreover, one has the
following probabilistic interpretation of the minimum solution v in the context of
impulse control (Theorem 3.4, Chapter 6 in Bensoussan and Lions (1984)):

v(x) = F (x) = min
U∈U

F (x, U),

i.e., there exists an admissible control U such that the value function F (x) is attained
using this control, and F (x) is indeed equal to the minimum solution v(x).

The C1 solution of (2.6) we are aiming at will be a solution of (3.1). To check
that it is the value function and the minimum solution of (3.1), one relies on the fact
that such a solution satisfies

V (x) ≤ F (x, U) for all U ∈ U .

These two statements are standard in the literature. For a proof of these in the pure
diffusion case see section 1.4 in Chapter 6 of Bensoussan and Lions (1984).

For our purpose, it is sufficient to find a solution V (x) of the QVI (2.6), which
leads to an (s, S) policy. Then we can attach to this (s, S) policy an impulse control
such that

V (x) = F (x, Us,S).

This implies that the solution V (x) obtained in this way is unique and is equal to
F (x).

Thus, the problem boils down to finding a solution V (x) of (2.6), which is C1

and of polynomial growth, and which corresponds to an (s, S) policy. Finding such a
solution is, therefore, the main objective in the rest of the paper.

4. An (s,S) policy and QVI. Let F be a solution of (3.1), which is C1 and
of polynomial growth. Let G(x) = F (x) + cx and

g(x) = f(x) + cρx.(4.1)

Then G satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
AG−BG + ρG ≤ g + cD + cλξ̄,

G(x) ≤ K + inf
u≥0

G(x + u),

(AG−BG + ρG− g − cD − cλξ̄)(G(x) −K − inf
u≥0

G(x + u)) = 0,

(4.2)

where ξ̄ =
∫∞
0

ξμ(ξ) dξ is the mean of ξ.
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Remark 4.1. If σ = 0 and λ = 0, then our model reduces to the classical EOQ
model. In this case, the QVI (4.2) takes the special form⎧⎪⎨⎪⎩

DG′ + ρG ≤ g + cD,
G(x) ≤ K + inf

u≥0
G(x + u),

(DG′ + ρG− g − cD)(G(x) −K − inf
u≥0

G(x + u)) = 0.
(4.3)

Beyer and Sethi (1998) give a rigorous proof of the optimality of the well-known EOQ
formula by using the QVI approach. It is easy to check that (4.3) is equivalent to the
QVI (1) in their paper.

We make the following assumptions on the function g.
Assumption 4.2. There exists a number a such that g is increasing on (a,∞) and

decreasing and convex on (−∞, a). Furthermore, there exist a c0 > 0 and an x1 ≥ a
such that g′(x) ≥ c0 for x ≥ x1.

Remark 4.3. Presman and Sethi (2004) do not require g to be convex on (−∞, a)
in their study of the inventory model with demand consisting of only a constant term
and a compound Poisson process.

Since we are interested in an (s, S) policy, we seek a solution of the QVI (4.2),
which implies ordering up to S on the interval (−∞, s] and not ordering on the interval
(s,+∞). This means that we are interested in finding an s such that G satisfies the
following two equations:

AG−BG + ρG = g + cD + cλξ̄ for x ≥ s,(4.4)

G(x) = K + G(S) for x ≤ s(4.5)

with two boundary conditions

G′(s) = 0,(4.6)

G′(S) = 0.(4.7)

It follows from (4.4) to (4.7) that G is smooth, i.e.,

G ∈ C1.(4.8)

It will also have a polynomial growth rate. So our problem is reduced to finding a
triple {s, S,G(x)} which satisfies (4.4)–(4.7).

We will solve (4.4)–(4.7) in three steps. For s given, the first step finds a function
G=Gs which satisfies (4.4) and (4.6), which is constant on the left-hand side of s,
and which is C1. The function Gs will be obtained in Theorem 4.8 in this section.
The second step is devoted to determining S(s) satisfying (4.7); see Theorem 5.3 in
section 5. The solution {s, S(s), Gs} of (4.4), (4.6), and (4.7) will be unique by the
analytic treatment pursued below. The third step will be to obtain s and to solve
(4.5). This is accomplished in Theorem 6.1.

To proceed, it is convenient to introduce Hs(x) = G′
s(x), which is the solution of⎧⎨⎩−σ2

2
H ′′

s (x) + DH ′
s(x) + (ρ + λ)Hs(x) − λ

∫ x−s

0

Hs(x− ξ)μ(ξ) dξ = g′(x),

Hs(s) = 0, Hs has a polynomial growth, x > s.
(4.9)
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Note that Hs(x) = 0 for x < s. Set Zs(x) = Hs(x + s) and gs(x) = g(x + s), x > 0.
It follows that⎧⎨⎩−σ2

2
Z ′′
s (x) + DZ ′

s(x) + (ρ + λ)Zs(x) − λ

∫ x

0

Zs(x− ξ)μ(ξ) dξ = g′s(x),

Zs(0) = 0, Zs has a polynomial growth, x > 0.
(4.10)

Now we solve (4.10) by the transformation

Zs(x) =

∫ x

0

Γ(x− θ)Qs(θ) dθ,

where Γ(θ) is a solution of⎧⎨⎩−σ2

2
Γ′′(θ) + DΓ′(θ) + (ρ + λ)Γ(θ) − λ

∫ θ

0

Γ(θ − ξ)μ(ξ) dξ = 0,

Γ(0) = 1, Γ(+∞) = 0,
(4.11)

and Qs(x) is a solution of

−σ2

2
Q′

s(x) +

(
D − σ2

2
Γ′(0)

)
Qs(x) = g′s(x), Qs(+∞) = 0.(4.12)

Let us denote

μ̂(π) =

∫ ∞

0

e−πξμ(ξ) dξ,(4.13)

which by Assumption 2.3 is well defined for π > π̄. We have the following results.
Proposition 4.4. There exists a unique solution Γ(θ) ≥ 0 of (4.11), whose

Laplace transform Γ̂(π) =
∫∞
0

e−πθΓ(θ) dθ is well defined for π > β1, with π̄ < β1 < 0,
and it is given by

Γ̂(π) =
ϕ̂(π)

π − β1
,(4.14)

where ϕ̂(π) > 0 (to be defined next) for any π > π̄.
Proof. By (4.11), the Laplace transform Γ̂(π) is given by

Γ̂(π) =
D − σ2

2 π − σ2

2 Γ′(0)

χ(π)
(4.15)

with

χ(π) = −σ2

2
π2 + Dπ + ρ + λ− λμ̂(π).(4.16)

We have

χ(π̄) = χ(+∞) = −∞,

χ′(π) = −σ2π + D + λ

∫ ∞

0

ξe−πξμ(ξ) dξ,

χ′′(π) = −σ2 − λ

∫ ∞

0

ξ2e−πξμ(ξ) dξ < 0,

χ′(π̄) = +∞, χ′(+∞) = −∞, χ′(0) > 0.
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Hence, there exists a unique π0 > 0 such that χ′(π0) = 0. Therefore, χ(π) has a
unique maximum at π0. Note that χ(0) = ρ > 0. Then χ has two zeros β1, β2 with
π̄ < β1 < 0 < π0 < β2. We may then write (4.16) as

χ(π) = −
σ2

2 (π − β1)(π − β2)

ϕ̂(π)
, ϕ̂(π) > 0 for any π > π̄.(4.17)

Then (4.15) becomes

Γ̂(π) = −

(
D − σ2

2 π − σ2

2 Γ′(0)
)
ϕ̂(π)

σ2

2 (π − β1)(π − β2)
.(4.18)

Since Γ̂(π) is well defined for any π > 0, we must get rid of (π−β2) in the denominator
of (4.18). This implies that the numerator has a zero at β2. As a result, we must have

Γ′(0) =
2D

σ2
− β2,(4.19)

and accordingly, Γ̂(π) has the form (4.14). Additionally, since ϕ̂(0) = −σ2β1β2

2ρ > 0,

Γ(+∞) = lim
π→0

πΓ̂(π) = 0.

We now show that

Γ(θ) ≥ 0, θ ≥ 0.(4.20)

In fact, if (4.20) were not true, then Γ would have a negative minimum at θ0 > 0 such
that Γ(θ0) < 0, Γ′(θ0) = 0, and Γ′′(θ0) > 0. It follows that

Γ(θ0) −
∫ θ0

0

Γ(θ0 − ξ)μ(ξ) dξ ≤ Γ(θ0)

(
1 −

∫ θ0

0

μ(ξ) dξ

)
< 0,

which is a contradiction with (4.11). This completes the proof.
In addition to the proof, we have the following remark.
Remark 4.5. Since χ′(D/σ2) > 0, we know that D/σ2 < π0 < β2. Hence,

β2 > 2D/σ2 − β2. Moreover,

χ

(
2D

σ2
− β2

)
=−σ2

2
β2

2 + Dβ2 + ρ + λ− λμ̂

(
2D

σ2
− β2

)
=λμ̂(β2) − λμ̂

(
2D

σ2
− β2

)
< 0.

Therefore, we have

2D

σ2
− β2 < β1 and Γ′(0) < β1.

Proposition 4.6. The solution Γ(θ) of (4.11) satisfies

exp(β0θ) ≤ Γ(θ) ≤ exp(β1θ), θ ≥ 0,(4.21)
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where β0 is the negative solution of the equation

−σ2

2
β2

0 + Dβ0 + ρ + λ = 0.

Proof. First we let Σ(θ) = exp(β1θ). Then,

−σ2

2
Σ′′(θ) + DΣ′(θ) + (ρ + λ)Σ(θ) − λ

∫ θ

0

Σ(θ − ξ)μ(ξ) dξ

= exp(β1θ)

(
−σ2

2
β2

1 + Dβ1 + ρ + λ− λ

∫ θ

0

exp(−β1ξ)μ(ξ) dξ

)

≥ exp(β1θ)

(
−σ2

2
β2

1 + Dβ1 + ρ + λ− λ

∫ ∞

0

exp(−β1ξ)μ(ξ) dξ

)
= 0,

Σ(0) = 1, and Σ(+∞) = 0. It follows that Γ(θ) ≤ exp(β1θ). Next, in terms of (4.11),
we get −σ2

2 Γ′′ + DΓ′ + (ρ + λ)Γ ≥ 0, which implies the first inequality of (4.21). This
completes the proof.

Using (4.19), the unique solution of (4.12) is given by

Qs(x) =
2

σ2

∫ ∞

x

exp(β2(x− y))g′s(y)dy.

Finally, we get the formula

Hs(x) =

∫ x

s

Γ(x− y)Q(y)dy,(4.22)

where Q is given by

Q(x) =
2

σ2

∫ ∞

x

exp(−β2(y − x))g′(y)dy.(4.23)

We have proved the following result.
Proposition 4.7. Let Assumptions 2.1, 2.2, and 2.3 hold. Then the function

Hs(x) defined in (4.22) is a solution of (4.9).
We now obtain Gs using Hs. For a specified ordering level s, we set

Gs(x) = Gs(s) +

∫ x

s

Hs(y) dy.(4.24)

Integrating (4.9) from s to x > s, we get

−σ2

2
(H ′

s(x) −H ′
s(s)) + DHs(x) + (ρ + λ)

∫ x

s

Hs(y) dy

− λ

∫ x

s

dy

∫ y−s

0

Hs(y − ξ)μ(ξ) dξ = g(x) − g(s).

Note that H ′
s(s) = Q(s). Hence,

−σ2

2
G′′

s (x) +
σ2

2
Q(s) + DG′

s(x) + (ρ + λ)(Gs(x) −Gs(s))

− λ

∫ x

s

dy

∫ y−s

0

Hs(y − ξ)μ(ξ) dξ = g(x) − g(s)
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and∫ x

s

dy

∫ y−s

0

Hs(y − ξ)μ(ξ) dξ =

∫ x−s

0

Gs(x− ξ)μ(ξ) dξ −Gs(s) +Gs(s)

∫ ∞

x−s

μ(ξ) dξ.

Using these results and comparing with the right-hand side of (4.4), we obtain

Gs(s) =
g(s) + σ2

2 Q(s) + cD + cλξ̄

ρ
.(4.25)

We have proved the following theorem.
Theorem 4.8. Under Assumptions 2.1, 2.2, and 2.3, the function Gs(x) defined

by (4.24) and (4.25) is a solution of (4.4) and (4.6).

5. Properties of the solution and finding S for any given s. This section
further discusses the solution obtained above and derives some properties. These
properties are important to finding an optimal (s, S) pair and completing the solution
of (4.4)–(4.7). They are also important to proving the optimality of an (s, S) policy
for our inventory model.

Proposition 5.1. There exists a unique number a0 < a such that Q(a0) = 0,
Q(x) < 0 if x < a0, and Q(x) > 0 if x > a0. Moreover, Q′(x) > 0 for x ≤ a and
Q(x) ≥ 2c0/σ

2β2 for x ≥ x1, where a, x1, c0 are introduced in Assumption 4.2.
Proof. In terms of (4.12), (4.19), and the relation Qs(x) = Q(x + s), we have

Q′(x) = β2Q(x) − 2g′(x)

σ2
.(5.1)

For x < a, from (4.23), and the convexity of g, we have

Q(x)≥ 2

σ2

∫ a

x

exp(−β2(y − x))g′(y) dy

≥ 2

σ2
g′(x)

∫ a

x

exp(−β2(y − x)) dy

=
2

σ2
g′(x)

1 − exp(−β2(a− x))

β2
,

which gives

β2Q(x) − 2g′(x)

σ2
≥ − 2

σ2
g′(x) exp(−β2(a− x)) > 0.

Hence, Q′(x) > 0.
By (4.23), for x < x0 < a, we have

Q(x)≤ 2

σ2

∫ x0

x

exp(−β2(y−x))g′(y) dy+
2

σ2
exp(−β2(a−x))

∫ ∞

a

exp(−β2(y−a))g′(y) dy,

and again from the convexity of g, we have

Q(x)≤ 2

σ2

g′(x0)

β2
(1−exp(−β2(x0−x)))+

2

σ2
exp(−β2(a−x))

∫ ∞

a

exp(−β2(y−a))g′(y) dy.

It can be seen that there exists an x′
0 < x0 such that

Q(x) <
1

σ2β2
g′(x0) < 0 for x < x′

0.
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Since Q(a) > 0, it follows that there exists a unique a0 < a such that Q(a0) = 0 and
Q(x) < 0 if x < a0, and Q(x) > 0 if x > a0.

Finally, from Assumption 4.2, g′(x) ≥ c0 for x ≥ x1 ≥ a, and thus, for x > x1,

Q(x) ≥ 2c0
σ2

∫ ∞

x

exp(−β2(y − x)) dy =
2c0
σ2β2

.

This completes the proof.
Remark 5.2. If g is convex on (−∞,∞), then Q′(x) ≥ 0 for any x ∈ (−∞,∞).

Indeed we have in this case,

Q(x) ≥ 2

σ2
g′(x)

∫ ∞

x

exp(−β2(y − x)) dy =
2

σ2

g′(x)

β2
.

Hence from (5.1), Q′(x) ≥ 0.
Next we study the existence of an order-up-to level S. From Proposition 5.1, for

s > a0 and y > s, we see that Q(y) > 0. Hence, for x > s > a0, we have Hs(x) > 0.
Therefore, in particular,

Gs(x) > Gs(s) for x > s > a0.(5.2)

For s < x < a0, Hs(x) < 0. Hence, Gs(x) decreases on [s, a0]. Moreover, we know
that for x ≥ x1 ≥ a, we have Q(x) ≥ 2c0/σ

2β2. Using (4.21), we have

Hs(x)≥
∫ a0

s

Γ(x− θ)Q(θ) dθ +
2c0
σ2β2

∫ x

x1

Γ(x− θ) dθ

≥
∫ a0

s

exp(β1(x− θ))Q(θ) dθ +
2c0
σ2β2

∫ x

x1

exp(β0(x− θ)) dθ

= exp(β1(x− a0))

∫ a0

s

exp(β1(a0 − θ))Q(θ) dθ − 2c0
σ2β2β0

(1 − exp(β0(x− x0))).

For x sufficiently large, we see that

Hs(x) ≥ − c0
σ2β2β0

> 0.

This implies that Gs(x) → ∞ as x → ∞.
Therefore, for s < a0, Gs(x) reaches its minimum on [s,∞). We denote by S(s)

the smallest minimum point. It is necessary to have S(s) > a0, since Gs(x) decreases
on [s, a0]. Furthermore,

Hs(S(s)) = 0.

For s > a0, in view of (5.2), it is convenient to define S(s) = s. In summary, we
have

Gs(S(s)) = min
x≥s

Gs(x) for any s.(5.3)

Let us summarize the result we have just proved.
Theorem 5.3. Let Assumptions 2.1, 2.2, 2.3, and 4.2 hold. Then for any s, there

exists an S(s) such that (5.3) is satisfied. This, in turn, implies (4.7).
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Next we discuss some important properties of S(s). For s < a0, since S(s)
minimizes Gs(x), we have G′′

s (S(s)) = H ′
s(S(s)) > 0, which implies that

Q(S(s)) +

∫ S(s)

s

Γ′(S(s) − θ)Q(θ) dθ > 0, s < a0.

Note that for any s, Hs(S(s)) = 0, which gives∫ S(s)

s

Γ(S(s) − θ)Q(θ) dθ = 0.

Therefore, S(s) is differentiable and

S′(s)

(
Q(S(s)) +

∫ S(s)

s

Γ′(S(s) − θ)Q(θ) dθ

)
− Γ(S(s) − s)Q(s) = 0.(5.4)

It follows that {
S′(s) < 0 for s < a0,
S′(s) = 1 for s > a0.

(5.5)

Remark 5.4. Note that for s < a0 and s close to a0, we have Q(s) ≈ (s −
a0)Q

′(a0) = − 2
σ2 g

′(a0)(s− a0). Thus,∫ a0

s

Γ(S(s) − θ)(θ − a0)Q
′(a0) dθ +

∫ S(s)

a0

Γ(S(s) − θ)(θ − a0)Q
′(a0) dθ ≈ 0,

and hence,

S(s) − a0 ≈ a0 − s.

But we may also write (5.4) as

S′(s)

(
Γ(S(s) − s)Q(s) +

∫ S(s)

s

Γ(S(s) − θ)Q′(θ) dθ

)
= Γ(S(s) − s)Q(s).

Hence, for s < a0 and s close to a0, we get

S′(s)

(
Γ(S(s) − s)Q(s) + Γ(S(s) − s)

∫ S(s)

s

Q′(θ) dθ

)
≈ Γ(S(s) − s)Q(s),

which implies that

S′(s) ≈ Q(s)

Q(S(s))
≈ s− a0

S(s) − a0
→ −1 as s → a0.(5.6)

Remark 5.5. Relations (5.5) and (5.6) reveal the behavior of S′(s) as s approaches
the point a0. An interesting question then arises: What is the behavior of S′(s) and
S(s) as s decreases from a0? The answer to this question would give us a deeper
understanding of the optimal (s, S) policy. The answer may also enable us to deal
with our model when no backlogging is allowed.
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6. Optimal (s,S) policy as the solution of QVI. In this section we complete
the solution of (4.4)–(4.7) by finding the value of s. In view of Theorems 4.8 and 5.3,
the only remaining equation to be satisfied is (4.5). Moreover, it is enough to satisfy
it at x = s, and this condition gives us the value of s. We then verify that the solution
satisfies the QVI (4.2).

Consider the function γ(s) =
∫ S(s)

s
Hs(x) dx. Then,

γ′(s) =

∫ S(s)

s

∂Hs

∂s
(x) dx = −Q(s)

∫ S(s)

s

Γ(x− s) dx.

We have {
γ′(s) > 0 for s < a0,
γ′(s) = 0 for s ≥ a0.

Moreover, for s < a0, we have by (4.21)

γ′(s)≥−Q(s)

∫ S(s)

s

exp(β0(x− s)) dx

=
Q(s)

β0
(1 − exp(β0(S(s) − s)))

≥ Q(s)

β0
(1 − exp(β0(a0 − s))).

From Proposition 5.1, for s < a0, we have Q′(x) > 0. Therefore, for s < s1 < a0, we
have Q(s) < Q(s1) < 0, and

γ′(s) ≥ Q(s1)

β0
(1 − exp(β0(a0 − s))).

Integrating the inequality from s to s1, we get

γ(s1) − γ(s) ≥ Q(s1)

β0

(
s1 − s +

1

β0
exp(β0(a0 − s1)) −

1

β0
exp(β0(a0 − s))

)
≥ Q(s1)

β0

(
s1 − s +

1

β0
exp(β0(a0 − s1))

)
.

It follows that γ(s) → −∞ as s → −∞. As a result, we have shown that γ(s)
increases strictly from −∞ to 0 as s goes from −∞ to a0. Therefore, there exists a
unique s < a0 such that γ(s) = −K, where K is the fixed component of the ordering
cost function (2.3). This is the optimal s we have been looking for. Thus, we have
the following result.

Theorem 6.1. Under the assumptions of Theorem 5.3, there exists one and only
one s that satisfies the relation

Gs(s) = K + Gs(S(s)).(6.1)

Additionally, since Gs(x) satisfies (4.4), we have

−σ2

2
G′′

s (S(s)) + (ρ + λ)Gs(S(s)) − λ

∫ S(s)−s

0

G(S(s) − ξ)μ(ξ) dξ

− λGs(s)

∫ ∞

S(s)−s

μ(ξ) dξ = g(S(s)) + cD + cλξ̄,
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which gives

(ρ + λ)Gs(S(s)) ≥ λGs(S(s)) + g(S(s)) + cD + cλξ̄.

Then,

ρGs(S(s)) ≥ g(S(s)) + cD + cλξ̄.

We also have from (4.25),

ρGs(s) = g(s) +
σ2

2
Q(s) + cD + cλξ̄.(6.2)

Therefore, we get

−ρK ≥ g(S(s)) − g(s) − σ2

2
Q(s).(6.3)

Remark 6.2. Presman and Sethi (2004) have shown that the ordering level s
is unique when the demand consists of a compound Poisson process and a constant
demand rate. Here we have proved the uniqueness of s, when the demand also includes
a Wiener process.

We have completely solved (4.4)–(4.7). To finish, it remains to verify the QVI
relations (4.2). The first relation in (4.2) is satisfied for x ≥ s. For x < s, since
Gs(x) = Gs(s), we need to show that

ρGs(s) ≤ g(x) + cD + cλξ̄, x < s.

This is done from (6.2), noting that g(x) decreases for x < s and Q(s) < 0.
The key issue is the second relation in (4.2), i.e., to verify the inequality

Gs(x) ≤ K + inf
y≥x

Gs(y).(6.4)

It clearly holds for x < s, since Gs(x) = Gs(s) = K + Gs(S(s)). For s < x < a0, we
know that Hs(x) < 0. Then we have Gs(x) ≤ Gs(s), and (6.4) is satisfied.

There remains the case x > a0, which turns out to be the most difficult one. First
we prove the following result under a special condition. Then we treat two special
cases in sections 7 and 8.

Lemma 6.3. If S (:= S(s)) is the unique zero of Hs(x) on (s,∞), then (6.4) is
satisfied for x > a0.

Proof. From the previous discussion on Hs, we have{
Hs(x) < 0 for s < x < S,
Hs(x) > 0 for x > S.

Therefore, Gs(x) is decreasing on the interval (s, S) and increasing on (S,∞). Then,

Gs(S) < Gs(x) < Gs(s) for any s < x < S

and

Gs(x) < Gs(y) for any S < x < y.



A QVI APPROACH TO (s, S) INVENTORY POLICIES 1667

It follows that for s < x < S,

Gs(x) < Gs(s) = K + Gs(S) < K + Gs(y) for any y ≥ x,

and for x > S, Gs(x) ≤ Gs(y) for any y ≥ x. Therefore (6.4) is satisfied. This
completes the proof.

With Lemma 6.3 in hand, we can state the main result of this section.
Theorem 6.4. Let Assumptions 2.1, 2.2, 2.3, and 4.2 hold. Let S(s) be the

unique zero of Hs(x) on (s,∞). Then the triple {s, S(s), Gs} defined by (4.24), (4.25),
(5.3), and (6.1) is a solution of the QVI (4.2).

In the next section, we give a special case where we can show that the condition
of Lemma 6.3 holds, and thus by Theorem 6.4, we have a solution of the QVI (4.2).
In section 8, we will see that in the nondiffusion case, we can obtain directly the result
without relying on Lemma 6.3. This will be done by a different method, which fails
when σ > 0.

7. Exponentially distributed jump size. We present a special case in which
the random jump size in the compound Poisson process is assumed to be exponentially
distributed. Additionally, we assume that the function g is convex on (−∞,∞). Under
these conditions, we prove the condition of Lemma 6.3, namely, the zero uniqueness
of Hs. Thus by Theorem 6.4, we have obtained a solution of the QVI (4.2), which
corresponds to an (s, S) policy. While the exponential assumption makes the analysis
simpler, it is nevertheless an important case from the inventory modeling perspective.

Let μ(ξ) = e−ξ. Hence, π̄ = −1. Using (4.13) in (4.16), we have

χ(π) =−σ2

2
π2 + Dπ + ρ + λ− λ

π + 1

=
−σ2

2 π3 + (D − σ2

2 )π2 + (D + ρ + λ)π + ρ

π + 1
=

ζ(π)

π + 1
,

where

ζ(π) = −σ2

2
π3 +

(
D − σ2

2

)
π2 + (D + ρ + λ)π + ρ.

Since

ζ(−∞) = +∞, ζ(−1) = −λ < 0, ζ(0) = ρ > 0, and ζ(+∞) = −∞,

ζ has three distinct zeros β1, β2, and β3 with β3 < −1 < β1 < 0 < β2. Therefore,

χ(π) =
−σ2

2 (π − β3)(π − β1)(π − β2)

π + 1
.

From (4.17), we get

ϕ̂(π) =
π + 1

π − β3
,

and from (4.14), we have

Γ̂(π) =
π + 1

(π − β3)(π − β1)
=

1

β1 − β3

(
1 + β1

π − β1
− 1 + β3

π − β3

)
.
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It follows that

Γ(θ) =
1

β1 − β3
((1 + β1) exp(β1θ) − (1 + β3) exp(β3θ)).

In terms of (4.22), we have

Hs(x) =
1

β1 − β3

∫ x

s

((1 + β1) exp(β1(x− y)) − (1 + β3) exp(β3(x− y)))Q(y) dy

=
exp(β3x)

β1 − β3
ψs(x),

where

ψs(x) = (1+β1) exp((β1−β3)x)

∫ x

s

exp(−β1y)Q(y) dy−(1+β3)

∫ x

s

exp(−β3y)Q(y) dy.

Note that ψs(a0) < 0, since s < a0, and Q(x) < 0 for x < a0. Additionally,

ψ′
s(x) = (1 + β1)(β1 − β3) exp((β1 − β3)x)

∫ x

s

exp(−β1y)Q(y) dy

+ (1 + β1) exp((β1 − β3)x) exp(−β1x)Q(x) − (1 + β3) exp(−β3x)Q(x)

= (β1 − β3) exp((β1 − β3)x)

(
(1 + β1)

∫ x

s

exp(−β1y)Q(y) dy + exp(−β1x)Q(x)

)
.

Let

ϑ(x) = (1 + β1)

∫ x

s

exp(−β1y)Q(y) dy + exp(−β1x)Q(x).

Then,

ϑ′(x) = exp(−β1x)(Q(x) + Q′(x)).

Recall Remark 5.2. Since g is convex on (−∞,∞), we have Q′(x) ≥ 0. Then ϑ′(x) > 0
for x > a0. Therefore,

ψ′
s(x) exp(−(β1 − β3)x)

β1 − β3

increases strictly from ϑ(a0) = (1 + β1)
∫ a0

s
exp(−β1y)Q(y) dy < 0 to + ∞. Hence,

there is a unique S0 > a0 such that ψ′
s(S0) = 0 and ψ′

s(S0) < 0 for a0 < x < S0,
and ψ′

s(S0) > 0 for x > S0. Consequently, ψs(x) decreases strictly on (a0, S0) and
increases strictly on (S0,∞). Since ψs(a0) < 0 and ψs(+∞) = +∞, it follows that
there exists a unique S(s) such that ψs(S(s)) = 0 on (a0,∞), and hence a unique
S := S(s) such that Hs(S) = 0 on (a0,∞).

Remark 7.1. If λ = 0 (pure diffusion), then it is not necessary to assume that g
is convex everywhere. Indeed, in that particular case, χ(π) has only two zeros β1, β2

and β1 = β0, where β0 is introduced in Proposition 4.6. Therefore, Hs(S) = 0 implies
that ∫ S

s

exp(−β0y)Q(y) dy = 0

and so

−
∫ a0

s

exp(−β0y)Q(y) dy =

∫ S

a0

exp(−β0y)Q(y) dy.

It then follows that S is unique.
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8. The nondiffusion case (σ = 0). In this section we drop the Wiener process
from our demand, but we keep the general jump size distribution of the compound
Poisson process. Thus the demand process we will consider is y(t) given in (2.1) with
σ = 0. We will not try to prove the zero uniqueness of Hs as we did in section 7
for the special exponential case. Instead, we develop a different analysis to ascertain
the optimality of the obtained (s, S) policy. Recall that this model was treated by
Presman and Sethi (2004) using a probabilistic method, and with a somewhat more
general surplus cost function f(x).

We state the following result.
Theorem 8.1. Under the assumptions of Theorem 5.3 and σ = 0, the triple

{s, S(s), Gs} defined by (4.24), (4.25), (5.3), and (6.1) is a solution of the QVI (4.2).
Proof. From (4.15) and (4.16), we obtain

Γ̂(π) =
D

Dπ + ρ + λ− λμ̂(π)
,

and from (4.11), Γ is the solution of

DΓ′(θ) + (ρ + λ)Γ(θ) − λ

∫ θ

0

Γ(θ − ξ)μ(ξ) dξ = 0, Γ(0) = 1.

Hence, Γ′(0) = −ρ+λ
D . Therefore, from (4.19) we see that β2σ

2

2 → D as σ → 0. Note
that from (4.23), we get

Q(x) =
1

D

∫ ∞

0

exp

(
−β2σ

2

2D
θ

)
g′
(
x +

σ2θ

2D

)
dθ

=
1

D

∫ ∞

0

e−θg′(x) dθ =
g′(x)

D
.

(8.1)

From the definition of a0 in Proposition 5.1, we see that a0 = a. Additionally, (4.25)
becomes

Gs(s) =
g(s) + cD + cλξ̄

ρ
,

and (6.3) gives

−ρK ≥ g(S(s)) − g(s).(8.2)

Now we let Ls(x) = Gs(x) − Gs(s) =
∫ x

s
Hs(y) dy. In terms of (4.22) and (8.1),

we have

Ls(x) =
1

D

∫ x

s

dy

∫ y

s

Γ(y − θ)g′(θ) dy =
1

D

∫ x

s

Γ(x− θ)(g(θ) − g(s)) dθ.

Since g is decreasing on (−∞, a) and increasing on (a,∞), we have Ls(x) ≤ 0 for
s ≤ x < a. For a < x < S, we have

Ls(x) =
1

D

∫ a

s

Γ(x− θ)(g(θ) − g(s)) dθ +
1

D

∫ x

a

Γ(x− θ)(g(θ) − g(s)) dθ

≤ 1

D

∫ x

a

Γ(x− θ)(g(θ) − g(s)) dθ

≤ 1

D
(g(S) − g(s))

∫ x

a

Γ(x− θ) dθ ≤ 0,
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where the last inequality holds because of (8.2). Moreover, Ls(x) is the solution of

DL′
s(x) + (ρ + λ)Ls(x) − λ

∫ x−s

0

Ls(x− ξ)μ(ξ) dξ = g(x) − g(s), Ls(s) = 0.(8.3)

Next, let x0 > S be the first value such that Ls(x0) = 0 (note that Ls(x) → +∞
as x → +∞, so such an x0 exists). We recall that Ls(x) = 0 for x ≤ s. Let u ≥ 0.
We can rewrite (8.3) as follows (even if x0 − u ≤ s):

DL′
s(x) + (ρ + λ)Ls(x) − λ

∫ x

x0−u

Ls(η)μ(x− η) dη

= (g(x) − g(s))1lx>s + λ

∫ x0−u

s

Ls(η)μ(x− η) dη,

(8.4)

which implies

DL′
s(x) + (ρ + λ)Ls(x) − λ

∫ x

x0−u

Ls(η)μ(x− η) dη ≤ (g(x) − g(s))1lx>s.(8.5)

Note that (8.4) and (8.5) hold for any x, and particularly for x > x0 − u. Moreover,
we have

Ls(x0 − u) ≤ 0.(8.6)

Now we set

Ms(x) = Ls(x + u) + K.(8.7)

It follows that

Ms(x0 − u) = K.(8.8)

We rewrite (8.4) with x changed to x + u > x0. Then,

DM ′
s(x) + (ρ+λ)Ms(x)− (ρ+λ)K −λ

∫ x+u

s

Ls(η)μ(x+u− η) dη = g(x+u)− g(s).

Since∫ x+u

s

Ls(η)μ(x + u− η) dη =

∫ x0

s

Ls(η)μ(x + u− η) dη +

∫ x+u

x0

Ls(η)μ(x + u− η) dη

=

∫ x0

s

Ls(η)μ(x + u− η) dη +

∫ x

x0−u

Ms(η)μ(x− η) dη

−K

∫ x+u

x0

μ(x + u− η) dη,
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we have

DM ′
s(x) + (ρ + λ)Ms(x) − λ

∫ x

x0−u

Ms(η)μ(x− η) dη

= g(x + u) − g(s) + ρK + λK + λ

∫ x0

s

Ls(η)μ(x + u− η) dη

− λK

∫ x+u

x0

μ(x + u− η) dη

= g(x + u) − g(s) + ρK + λK + λ

∫ x0

s

(Ls(η) + K)μ(x + u− η) dη

− λK

∫ x+u

s

μ(x + u− η) dη

≥ g(x + u) − g(s) + ρK + λK − λK

∫ x+u

s

μ(x + u− η) dη

≥ g(x + u) − g(s) + ρK.

(8.9)

To proceed, we claim that the following relation holds:

g(x + u) − g(s) + ρK − (g(x) − g(s))1lx>s ≥ 0, x > x0 − u.(8.10)

In fact, we first note that g(x0)−g(s) > 0, which follows from (8.5) written for x = x0.
Hence,

g(x + u) − g(s) ≥ g(x0) − g(s) > 0.

Now, if x < s, then (8.10) is obviously satisfied. If x > s, we have

g(x + u) − g(s) + ρK − (g(x) − g(s)) = g(x + u) − g(x) + ρK.

If x > a, we have g(x + u) − g(x) > 0, and if s < x < a, we have g(x) < g(s) and
g(x + u) ≥ g(x0). Hence,

g(x + u) − g(x) + ρK ≥ g(x0) − g(s) + ρK ≥ 0.

So in both cases we get (8.10).
Now setting Ys(x) = Ms(x) − Ls(x), x ≥ x0 − u, and combining (8.5)–(8.10), we

get ⎧⎨⎩DY ′
s (x) + (ρ + λ)Ys(x) − λ

∫ x

x0−u

Ys(η)μ(x− η) dη ≥ 0,

Ys(x0 − u) ≥ 0.

Therefore, Ys(x) ≥ 0 for x ≥ x0 − u, and particularly Ys(x) ≥ 0 for x ≥ x0. It follows
that

Ls(x) ≤ K + Ls(x + u), x ≥ x0, u ≥ 0,

and then

Gs(x) ≤ K + Gs(x + u), x ≥ x0, u ≥ 0,

i.e.,

Gs(x) ≤ K + inf
y≥x

Gs(y), x ≥ x0.
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For s ≤ x ≤ x0, since Ls(x) ≤ 0, we have

Gs(x) ≤ Gs(s) = K + Gs(S) ≤ K + inf
y≥x

Gs(y).

We have just completed the verification of the key relation (6.4) for x > s and,
therefore, have shown that the triple {s, S(s), Gs} satisfies the QVI (4.2). This com-
pletes the proof.

9. Remarks on the general case and numerical demonstration. We have
pointed out in section 6 that the key issue in the analysis of the optimal (s, S) policy is
(6.4). Whether it holds or not remains an open question for the general case, in which
both diffusion and random jumps are present in the demand. In this section, we first
remark the difficulty in trying to verify (6.4). Then we present a more complicated
example to gain some insights into the general model.

Let, in general,

Ls(x) = Gs(x) −Gs(s) =

∫ x

s

Hs(y) dy =

∫ x

s

dy

∫ y

s

Γ(y − θ)Q(θ) dθ.

Set ζ(x) = 2
β2σ2 (g(x) + σ2

2 Q(x)). By (5.1), we have

ζ ′(x) = Q(x)

{
< 0 for x < a0,
> 0 for x > a0.

Hence,

Ls(x) =

∫ x

s

dy

∫ y

s

Γ(y − θ)ζ ′(θ) dθ =

∫ x

s

Γ(x− y)(ζ(y) − ζ(s)) dy.

We have shown that Ls(x) ≤ 0 for s ≤ x ≤ a0. Then for a0 < x < S, we have

Ls(x) =

∫ a0

s

Γ(x− y)(ζ(y) − ζ(s)) dy +

∫ x

a0

Γ(x− y)(ζ(y) − ζ(s)) dy

≤
∫ x

a0

Γ(x− y)(ζ(y) − ζ(s)) dy

≤ (ζ(S) − ζ(s))

∫ x

a0

Γ(x− y) dy.

Remark 9.1. Here the difficulty is that we do not know if ζ(S) − ζ(s) ≤ 0 or
not.

On the other hand, if we go back to see how we got (6.3), we can actually assert
that

−ρK ≥ σ2

2
H ′

s(S) + g(S) − g(s) − σ2

2
Q(s)

≥ σ2

2
(H ′

s(S) −Q(S)) + g(S) − g(s).

Remark 9.2. The difficulty here is that we do not know how H ′
s(S) compares

with Q(S).
In the rest of this section, we study a more general demand than that in section 7

and try to get some insights into this case. Let

μ(ξ) = a1e
−α1ξ + a2e

−α2ξ
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with 0 < α1 < α2, a1 > 0, a2 > 0, a1α2 + a2α1 = α1α2. For π > −α1 = π̄, we get

μ̂(π) =
a1

π + α1
+

a2

π + α2

and

χ(π) = −σ2

2
π2 + Dπ + ρ + λ− λa1

π + α1
− λa2

π + α2
=

ζ(π)

(π + α1)(π + α2)
.

Note that

ζ(−∞) = ζ(∞) = −∞,
ζ(−α2) = λa2(α2 − α1) > 0,
ζ(−α1) = −λa1(α2 − α1) < 0,
ζ(0) = ρα1α2 > 0.

Hence, ζ has four distinct zeros β1, β2, β3, and β4 with β4 < −α2 < β3 < −α1 <
β1 < 0 < β2, and

ζ(π) = −σ2

2
(π − β4)(π − β3)(π − β1)(π − β2).

It follows that

Γ̂(π) =
(π + α1)(π + α2)

(π − β1)(π − β3)(π − β4)
=

A

π − β1
+

B

π − β3
+

C

π − β4
,

where

A =
(β1 + α1)(β1 + α2)

(β1 − β3)(β1 − β4)
, B =

(β3 + α1)(β3 + α2)

(β3 − β1)(β3 − β4)
, C =

(β4 + α1)(β4 + α2)

(β4 − β1)(β4 − β3)
,

and A > 0, B > 0, C > 0. Thus,

Γ(θ) = A exp(β1θ) + B exp(β3θ) + C exp(β4θ)

and

Hs(x) =

∫ x

s

(A exp(β1(x− θ)) + B exp(β3(x− θ)) + C exp(β4(x− θ)))Q(θ) dy.

We choose a surplus cost function f(x) often used in the literature, i.e.,

f(x) =

{
hx for x ≥ 0,

−px for x < 0,

where h > 0 is the unit holding cost per unit time, and p > 0 is the unit shortage cost
per unit time. Then in terms of (4.1),

g(x) =

{
(h + cρ)x for x ≥ 0,

−(p− cρ)x for x < 0.

Additionally, we assume p > cρ to avoid the trivial case in which the optimal s would
be −∞; see Presman and Sethi (2004).
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Since a = 0 for the considered g function, we have

Q(x) =

⎧⎪⎪⎨⎪⎪⎩
2

σ2β2

(
(p + h)eβ2x − (p− cρ)

)
if x < 0,

2

σ2β2
(h + cρ) if x ≥ 0.

Moreover,

a0 =
1

β2
ln

(
p− cρ

p + h

)
< 0.

Using the result for Q(x), we can find the explicit expression for Hs(x). Let

H0
s (x) = − (p− cρ)

(
A

β1
eβ1(x−s) +

B

β3
eβ3(x−s) +

C

β4
eβ4(x−s)

)
− (p + h)

(
A

β2 − β1
eβ1xe(β2−β1)s +

B

β2 − β3
eβ3xe(β2−β3)s

+
C

β2 − β4
eβ4xe(β2−β4)s

)
.

Then we have for x < 0,

Hs(x) =
2

σ2β2

(
H0

s (x) + (p− cρ)

(
A

β1
+

B

β3
+

C

β4

)
+ (p + h)

(
A

β2 − β1
+

B

β2 − β3
+

C

β2 − β4

)
eβ2x

)
,

and for x ≥ 0,

Hs(x) =
2

σ2β2

(
H0

s (x) − (h + cρ)

(
A

β1
+

B

β3
+

C

β4

)
+ (p + h)β2

(
A

β1(β2 − β1)
eβ1x +

B

β3(β2 − β3)
eβ3x +

C

β4(β2 − β4)
eβ4x

))
.

We numerically test the zero of function Hs(x). Set

α1 = 1, α2 = 2, a1 =
1

2
, a2 = 2,

and choose

D = 0.1, λ = 0.1, σ = 0.2, ρ = 0.05.

Using the Newton–Raphson procedure, the four zeros of ζ are calculated as

β4 = −2.5136, β3 = −1.3112, β1 = −0.2497, β2 = 6.0746.

Set p = 1, h = 1, and c = 5. Then we obtain that a0 = −0.1615.
From section 6 we know that the optimal value of s must satisfy the condition

s < a0. Therefore, we pick a number of values for s on the left of a0 and numerically
investigate the corresponding function Hs(x). Figure 9.1 shows the graphs of Hs(x)
for seven different values of s, which are s = −3, −2, −1.5, −1, −0.75, −0.5, and
−0.3. These graphs suggest that Hs(x) has a unique zero S on (s,∞).
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Fig. 9.1. Graph of Hs(x) for various values of s.

10. Conclusions. We consider a continuous-review stochastic inventory model
with a demand consisting of a compound Poisson process and a diffusion process. We
formulate the inventory problem as an impulse control problem, which allows us to
use the QVI approach to study it.

We prove the optimality of an (s, S) policy in two cases. (i) When the demand is
a mixture of a diffusion process and a compound Poisson process with exponentially
distributed jump sizes, and (ii) when the demand is a mixture of a constant demand
and a compound Poisson process. However, the combination of a diffusion process
and a general compound Poisson demand is not completely solved. We explain the
difficulties that arise in the course of trying to prove the optimality (Remarks 9.1 and
9.2). We also present a condition in Lemma 6.3 that might be the key if the optimal
decision is indeed of (s, S) type, which we believe to be the case. Although we have
verified this condition for the special case of exponentially distributed jump demand
and our numerical results in section 9 suggest that it holds for a more complicated
example, the optimality of the general model remains an open and interesting problem
for further study.

More generally, it would be of interest to extend the analysis of this paper to
problems including Lévy processes having nonfinite Lévy measures. This extension is
potentially important for problems in finance, where stock prices are often modeled
by Lévy processes and there are fixed transaction costs incurred in buying and selling
of stocks.

Further generalizations include inventory models with the Markovian demand as
discussed in Beyer, Cheng, and Sethi (2006) in the discrete-time framework and with
information delays as discussed in Bensoussan, Cakanyildirim, and Sethi (2005) also in
the discrete-time framework. Extensions of our results to inventory models with lead
times, lost sales case (Remark 5.5), nonstationary problems, and inventory problems
with multiple products could also be considered. One could also investigate the use
of the vanishing discount approach to obtain a proof of the optimality of an (s, S)
policy in the average-cost case.

To conclude, we should mention that there is a large amount of literature treating
the various proposed problems in the discrete-time framework. To ascertain the op-
timality of (s, S) policies in these cases when time is continuous and demand is more
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general than a compound Poisson process is a challenging research agenda for future
research on optimal control models of inventory problems.
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1. Introduction. The goal of this paper is to provide examples of what Lefschetz
coincidence theory can contribute to control theory. We discuss existence of equilibria
and their robustness, and controllability and its robustness.

We develop some topological techniques, already available in dynamics, in the
control theoretic setting. A (discrete) dynamical system on a manifold M is simply
a map f : M → M. Then x ∈ M and f(x) are the current and next states of the
system, respectively. An equilibrium of the system is a fixed point of f. The problem
of detecting equilibria can be treated via the more general coincidence problem [2,
sect. VI.14], [4], [35, Ch. 7], [15]: “Given two maps f, g : N → M between two n-
dimensional manifolds, what can be said about the coincidence set C of all x such that
f(x) = g(x)?” Indeed, the equilibrium set C = {x ∈ M : f(x) = x} is the coincidence
set of f and the identity map g : M → M. The famous Lefschetz coincidence theorem
states that if the Lefschetz number λfg is not equal to zero, then there is at least one
coincidence, i.e., C �= ∅. Using this and other invariants, one can find out whether a
dynamical system has an equilibrium or a periodic point.

In the case of a controlled dynamical system, the next state f(x, u) depends not
only on the current state, x ∈ M, but also on the input, u ∈ U. A discrete time control
system is given by the space of inputs U , the space of states M , the “state-input” space
N = M×U, a map f : N = M×U → M, and the projection g : N = M×U → M (in
general, N is a fiber bundle and g : N → M is the bundle projection). Then, just as
above, the equilibrium set C = {x ∈ M : f(x, u) = x for some u ∈ U} of the system is
the coincidence set of the pair (f, g). However, since the dimensions of N and M are
no longer equal, the Lefschetz number is replaced with the Lefschetz homomorphism
[31], which does a better job of detecting coincidences.

Another application of the coincidence theory approach is controllability. A sys-
tem is called controllable if any state can be reached from any other state; i.e., for each
pair of states x, y ∈ M there are inputs u0, . . . , ur ∈ U such that x1 = f(u0, x), x2 =
f(u1, x1), . . . , y = xr+1 = f(ur, xr). Therefore controllability is equivalent to sur-
jectivity of the composition of several iterations of f. On the other hand, a map is
surjective if it has a coincidence with any constant map.

∗Received by the editors March 22, 2004; accepted for publication (in revised form) May 8, 2005;
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The state space M is often a manifold, as opposed to a Euclidean space, when
it appears in robotics. For example, M = Tn = (S1)n, the n-dimensional torus, is
the space of all possible states of a robotic arm with n revolving joints [27, p. 1]; or
M = R3 × SO(3) is the space of positions of a rigid body [25, Ch. 2]. Typically, we
have N = M×U. However, nontrivial bundles are also common. For example, consider
a spherical pendulum with a gas jet control which is always directed in the tangent
space. Then its state space is M = S2, the 2-sphere, while the state-input space
N is the tangent bundle TS2 of S2, which is an R2-bundle over M not isomorphic
to M × R2 [27, p. 17]. In spite of the abundance of such examples [6], [25], [27],
topological techniques have not thus far found broad applications in control theory.
The only recent examples known to the author are [18], [19], [20], [21], [22].

The topological approach provides the following advantages. Consider a control
system as a triple (M,N, f) of topological spaces M,N and a continuous map f
as described above. Since our knowledge of the model is inevitably imprecise, we
have to deal with perturbations of the system. As perturbations may be understood
as variations of unknown parameters of the system, their effect on the behavior of
the system is also unknown. However, if the system depends continuously on these
parameters, the change of M,N, and f is also continuous. This means that we are to
consider spaces homeomorphic to M,N and maps homotopic to f. An appropriate tool
to deal with this degree of generality is homology theory. Indeed, the homology groups
H∗(M), H∗(N) of M,N and the homology homomorphism f∗ : H∗(N) → H∗(M) of
f remain constant under homeomorphisms of M,N and homotopies of f. They can
also be rigorously and effectively computed [26], [19].

Further, the perturbations of f are normally assumed “small” (in particular, this
is the basis of the notion of structural stability). However, unless actual estimates
are available, we do not know how “small” the perturbations of the real system are.
Therefore, in order to take into account the “worst possible scenario,” we consider
large, but still continuous, perturbations of the system. As an example, a constant
external force, such as gravitation, in any of the above robotic systems may be treated
as such a perturbation. Thus the use of homology theory provides answers with a
new, for control theory, degree of robustness. Providing results of this nature is the
first objective of this paper. We apply Lefschetz coincidence theory to prove existence
of equilibria (Theorem 6.1) and controllability (Theorem 7.2) for systems determined
by maps homotopic to f .

The second objective of this paper is to study robustness of these properties under
arbitrarily small perturbations because sometimes they produce a dramatic change in
the properties of the system. This change may be the loss of an equilibrium (Theorem
6.4) or the loss of controllability (Theorem 7.3).

The paper is organized as follows. Some preliminaries from algebraic topology
are outlined in section 2. In section 3 we review the classical theory of Lefschetz
numbers and show its inadequacy for control theory. In section 4 we consider the
necessary generalization, the Lefschetz homomorphism, of the Lefschetz number and
state several relevant results about existence of coincidences. In section 5 we state
some results about removability of coincidences. In section 6 we provide sufficient
conditions of existence of equilibria of a discrete system and their robustness. In
section 7 we provide sufficient conditions of controllability of a discrete system and
its robustness. In section 8 we discuss how our coincidence results can be applied to
existence of equilibria and controllability of continuous time control systems. Notions
of control theory are defined as needed; for details see [27], [29], [34].
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2. Preliminaries from algebraic topology. The terminology we use is stan-
dard [2]. Suppose N is a topological space and A ⊂ N is a subspace. The singular
homology group Hk(N,A) of N relative to A over Q or any other field is defined as fol-
lows. If Δk is the standard k-simplex, k = 0, 1, 2, . . . , any map σ : Δk → N is called
a singular k-simplex in N . We let Ck(N,A) be the vector space over Q generated by
all singular k-simplices of N whose images are not completely in A. Then the bound-
ary operator ∂k : Ck(N,A) → Ck−1(N,A) is defined in the natural way, and we let
Hk(N,A) = ker ∂k/ Im ∂k. Further, let Ck(N,A) be the dual of Ck(N,A), i.e., the vec-
tor space of all linear functions from Ck(N,A) to Q. Then ∂k generates the coboundary
operator ∂k : Ck(N,A) → Ck+1(N,A), and we let Hk(N,A) = ker ∂k/ Im ∂k be the
cohomology group of N relative to A. Also Hk(N) = Hk(N,∅), Hk(N) = Hk(N,∅).
If (N,A) is a simplicial complex, its simplicial homology and cohomology are defined
in the same way starting with Ck(N,A) generated by all simplices of (N,A). The
homology and cohomology groups Hk(N,A;G), Hk(N,A;G) over any group G can
be defined in a similar fashion.

Homology and cohomology groups {Hk(N,A) : k = 0, 1, 2, . . . }, {Hk(N,A) : k =
0, 1, 2, . . . } over fields are (graded) vector spaces with the following properties. The
Betti numbers, bk = dimHk(N), for k = 0, 1, 2, are the numbers of path components,
“tunnels,” and “voids” of N, respectively. In the case of a path connected N, the
identities of H0(N) = H0(N) = Q are denoted by 1. If N is contractible, it is acyclic;
i.e., Hk(N) = Hk(N) = 0 for k > 0. If N is an n-dimensional simplicial complex,
Hk(N) = 0 for all k > n. If M is a compact connected orientable n-dimensional
manifold with boundary ∂M , then Hn(M,∂M) = Hn(M,∂M) = Q. The identities
of these two groups are the fundamental classes OM and OM of M , respectively.
Further, there is the Poincaré duality isomorphism DM : Hk(M,∂M) → Hn−k(M)
given by the cap product with the fundamental class OM . The cap product is the
homomorphism �: Hk(N,A)⊗Hm(N,A) → Hm−k(N) given by x � a = (1×x)Δa,
where Δ is a diagonal approximation. Then a ∈ Hk(N,A) and x ∈ Hk(N,A) are
called dual if x � a = 〈x, a〉 = x(a) = 1. In particular, OM and OM are dual. By the
Künneth theorem, Hk(M × U) =

∑
i+j=k Hi(M) ⊗Hj(U), k = 0, 1, 2, . . . .

Suppose B is a subspace of the topological space M and f : N → M is a map;
then f : (N,A) → (M,B) is a map of pairs if f(A) ⊂ B. In this case, f generates the
natural homomorphism from Ck(N,A) to Ck(M,B). This homomorphism generates
f∗ : Hk(N,A) → Hk(M,B), the homology homomorphism of f , and f∗ : Hk(M,B) →
Hk(N,A), the cohomology homomorphism of f . Two maps f, g : (N,A) → (M,B)
are called homotopic if f can be continuously “deformed” into g; i.e., there is a map
F : [0, 1] × (N,A) → (M,B) such that F (0, ·) = f and F (1, ·) = g. If f and g are
homotopic, then f∗ = g∗. In particular, if f is homotopic to a constant map, then f∗
is trivial; i.e., f∗ : Hk(N,A) → Hk(M,B) is zero for k = 1, 2, . . . , or simply f∗ = 0.
In the case of n-manifolds, the homomorphism f∗ : Hn(N, ∂N) → Hn(M,∂M) is the
multiplication by deg f , the degree of f. The kth homotopy group πk(N) of N is the
group of homotopy classes of maps of k-spheres to N .

3. Review of Lefschetz theory. In this section, M and N are orientable com-
pact connected manifolds with boundaries ∂M, ∂N, and dimM = dimN = n.

Consider the fixed point problem: “If f : M → M is a map, what can be said
about the set of points x ∈ M such that f(x) = x?” Applications of fixed point
theorems (Kakutani, Banach, etc.) to control problems are abundant [1], [7], [8], [16],
[23], [28]. However, the methods we suggest in this paper go far beyond those.
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One may associate with f an integer λf called the Lefschetz number [3]:

λf =
∑
k

(−1)kTrace(f∗k),

where f∗k : Hk(M) → Hk(M) is induced by f. The Lefschetz fixed point theorem
states that if λf �= 0, then f has a fixed point.

The coincidence problem is concerned with a similar question about two maps
f, g : N → M and their coincidences x ∈ N, f(x) = g(x). One of the main tools
is the Lefschetz coincidence number λfg defined similarly to λf as the alternating
sum of traces of a certain endomorphism on the homology group of M. Algebraically,
if h : E∗ → E∗ is a (degree 0) endomorphism of a finitely generated graded vector
space E∗ = {Ek}, given by hk : Ek → Ek, then its Lefschetz number is L(h) =∑

k(−1)kTrace(hk). To apply this formula in the topological setting we let E∗ =
H∗(M); then the Lefschetz number is defined as λfg = L(g∗DNf∗D−1

M ), where DM :
Hk(M,∂M) → Hn−k(M), DN : Hk(N, ∂N) → Hn−k(N) are the Poincaré duality
isomorphisms. Observe that for f∗ : Hk(M,∂M) → Hk(N, ∂N) to be well defined,
the map f has to be boundary preserving, f : (N, ∂N) → (M,∂M).

A Lefschetz-type coincidence theorem states that if λfg �= 0, then the pair (f, g)
(and any pair homotopic to them) has a coincidence. The converse is false in general.
When λfg = 0, the maps f, g may have coincidences, but under certain circumstances
they can be removed by homotopies of f, g [5].

Until the 1990’s, such theorems have been mostly considered in the following
two settings. First [2, sect. VI.14], [35, Ch. 7], f : N → M is a map between
two n-manifolds as above. This way the Lefschetz theorem can be applied to detect
equilibria of a dynamical system, but it does not apply to an even simplest control
system because the dimensions of N = M × U and M have to be equal. Second [15],
f : X → M is a map from an arbitrary topological space X to an open subset of
Rn, and all fibers f−1(y) are acyclic. Here the dimensions are also equal in the sense
that H∗(X) = H∗(M) (Vietoris theorem). Thus neither case is broad enough to cover
control systems, the input spaces U of which have nonzero dimension.

As an example from dynamics, consider the problem of existence of closed orbits
of a flow. The flow is given by a map f : M × [0,∞) → M so that the initial
position is f(0, x) = x and f(t, x) is the position at time t. Closed orbits correspond
to coincidences of f and the projection p : M × [0,∞) → M . More generally, one
considers f : M×X → M, where X is a topological space. This situation was studied
in [24], [12], [13], [11] under the name “parametrized fixed point theory.” These results
can be applied to detect equilibria (section 6), but the setting is not general enough
to study controllability (section 7). The author [30], [31] extended some of the results
of [13] to the general case of two arbitrary maps f, g : N → M from an arbitrary
topological space to a manifold. The content of these papers is briefly outlined in the
next section.

4. Detecting coincidences. In this section, N is an arbitrary topological space,
A ⊂ N , M is an orientable compact connected manifold with boundary ∂M , dimM =
n, and f : (N,A) → (M,∂M), g : N → M are maps.

The generalization of the Lefschetz number is based on the fact that since the
finitely generated graded vector space E = H∗(M) is equipped with the cap prod-
uct �: E∗ ⊗ E∗ → E∗, one can define the Lefschetz class L(h) ∈ E∗ of a graded
endomorphism h given by hk : Ek → Ek+m of any degree m, not just of degree 0 as
in the classical case.
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Definition 4.1 (see [31, Proposition 2.2]). If h : Hk(M) → Hk+m(M), k =
0, 1, 2, . . . , is a graded homomorphism of degree m, then the Lefschetz class L(h) ∈
Hm(M) is defined as

L(h) =
∑
k

(−1)k(k+m)
∑
j

xk
j � h(akj ),

where {ak1 , . . . , akmk
} is a basis for Hk(M) and {xk

1 , . . . , x
k
mk

} the corresponding dual

basis for Hk(M).
It is easy to see that if the degree m of h is zero, L(h) =

∑
k(−1)kTrace(hk).

For a given z ∈ Hs(N,A), suppose the homomorphism hz
fg is defined as the

composition

Hi(M)
D−1

M−−−−−−−→Hn−i(M,∂M)
f∗

−−−−−→Hn−i(N,A) �z−−−−−−→Hs−n+i(N)
g∗−−−−−→Hs−n+i(M),

i.e.,

hz
fg(x) = g∗((f

∗D−1
M (x)) � z).

Its degree is m = s− n.
Definition 4.2. The Lefschetz homomorphism Λfg : Hs(N,A) → Hs−n(M),

k = 0, 1, . . . , of the pair (f, g) is defined by

Λfg(z) = L(hz
fg).

The degree of the homomorphism hz
fg is zero if z ∈ Hn(N,A). If, moreover, N is

an orientable compact connected manifold of dimension n, we have Hn(N, ∂N) = Q.
Its identity is the fundamental class ON ∈ Hn(N, ∂N) of N. Since DN (x) = x � ON ,
we recover the classical Lefschetz number, λfg = Λfg(ON ).

Theorem 4.3 (see [31, Theorem 6.1]) (existence of coincidences). If Λfg �= 0,
then any pair of maps f ′, g′ homotopic to f, g has a coincidence.

Especially important for the control theory applications are the following two
corollaries. They are applied to existence of equilibria (section 6) and controllability
(section 7), respectively. Observe that the second corollary is about a map of pairs
and the first is not.

Corollary 4.4 (existence of fixed points) (cf. [13]). Let g : M × U → M be
a map. Given v ∈ Hs(U), suppose the homomorphism gv : Hi(M) → Hi+s(M),
i = 0, 1, . . . , of degree s is defined by

gv(x) = (−1)(n−i)sg∗(x⊗ v),

x ∈ Hi(M). Then, if

L(gv) �= 0 for some v ∈ Hs(U),

then any map g′ : M × U → M homotopic to g has a fixed point x, g′(x, u) = x for
some u.

Proof. Let (N,A) = (M,∂M)×U , and apply Theorem 4.3 to the pair p, g, where
p : (M,∂M) × U → (M,∂M) is the projection. Also, according to Corollary 5.7 in
[31], Λpg(OM ⊗ v) = L(gv).

Corollary 4.5 (sufficient condition of surjectivity). If

f∗ : Hn(N,A) → Hn(M,∂M) = Q is nonzero,

then any map f ′ : (N,A) → (M,∂M) homotopic to f is onto.
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Proof. Apply Theorem 4.3 to the pair f, c, where c is any constant map (as in
section 5 in [30] and Proposition 6.8 in [31]).

In the case of manifolds of equal dimensions, the condition of this corollary is
equivalent to the nonvanishing of the degree deg f [2, p. 186] of f .

5. Removing coincidences. In this section, M is a compact orientable con-
nected manifold with boundary ∂M , dimM = n, N is a manifold, and f, g : N → M
are maps.

When dimN = dimM =n > 2, the vanishing of the Lefschetz number λfg implies
that the coincidence set can be removed by homotopies of f, g [5]. If dimN = n +
m,m > 0, this is no longer true even if λfg is replaced with Λfg. Some progress
has been made for m = 1. In this case the secondary obstruction to the removability
of a coincidence set was considered in [10], [9], [17]. These results can be used to
study removability of equilibria when the dimension of the input space is 1. However,
the conditions on f and g are hard to verify. Necessary conditions of the global
removability for arbitrary m were considered in [14, section 5] with N a torus and M
a nilmanifold. For some m > 1, a partial converse of Theorem 4.3 is provided by the
author [32]. A version of this theorem is given below.

Suppose F is an isolated subset of the coincidence set of f, g and f(F ) = g(F ) =
{x}, x ∈ M\∂M. Let D be a open neighborhood of x such that D ∩ ∂M = ∅.
Choose a neighborhood W of F in N with no coincidences such that f(W ) ⊂ D
and g(W ) ⊂ D. Suppose V ⊂ V ⊂ W is another neighborhood of F ; then there
is an open neighborhood B ⊂ B ⊂ D of x such that f(W\V ) ⊂ D\B. Therefore
f : (W,W\V ) → (D,D\B) is a map of pairs.

Theorem 5.1 (local removability of coincidences). Suppose the following prop-
erty is satisfied:

(∗) Hk+1(W,W\V ;πk(S
n−1)) = 0 for k ≥ n + 1.

Suppose also that

f∗ : Hn(W,W\V ) → Hn(D,D\B) = Q is zero.

Then there is a homotopy of f constant on the complement of V to a map f ′such that
the new pair has no coincidences in V .

Since D is arbitrary we can say that the homotopy can be chosen arbitrarily small.
Proof. According to the proof of Theorem 2 in [32] the coincidence subset F can

be removed by a homotopy of f constant on N\V , provided the local cohomology
index IWfg (τ) vanishes. This index is defined as follows. Since F ⊂ V is the set of

all coincidences in W, the map (f, g) : (W,W\V ) → D× = (D × D,D × D\d(D)),
where d(D) is the diagonal of D ×D, is well defined. Therefore the homomorphisms
(f, g)∗ : Hk(W,W\V ) → Hk(D

×) and (f, g)∗ : Hk(D×) → Hk(W,W\V ) are also well
defined. Now let Ifg be the homology coincidence homomorphism defined by Ifg =
(f, g)∗ : Hk(W,W\V ) → Hk(D

×). Let IWfg (τ) = (f, g)∗(τ) ∈ Hn(W,W\V ) be the

cohomology coincidence index [32, section 2], where τ is the identity of Hn(D×) = Q.
By Theorem 6.1 in [31], Λfg(z) = π∗(τ � Ifg(z)), where π : D × D → D is the
projection on the first factor. Then, for any z ∈ Hn(W,W\V ),

Λfg(z) = π∗(τ � (f, g)∗(z)) = π∗(f, g)∗((f, g)
∗(τ) � z)

= 〈(f, g)∗(τ), z〉 =
〈
IWfg (τ), z

〉
.

Therefore IWfg (τ) = 0 if and only if Λfg(z) = 0 for all z ∈ Hn(W,W\V ). Finally,
observe that g|W is homotopic to a constant map. Therefore f∗ = 0 if and only if
Λfg(z) = 0 for all z ∈ Hn(N,A) (section 5 in [30]).
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Condition (*) ensures that only the primary obstruction to removability, i.e., the
Lefschetz number, can be nonzero. Further investigation of necessary conditions of
removability of coincidences will require computing higher order obstructions. The
case when f(F ) is not a single point is best addressed in the context of Nielsen theory
via Wecken-type theorems [33]. In general, the homotopy of f cannot be always
chosen arbitrarily small.

Especially important for the control theory applications are the following corollar-
ies. They are applied to the disappearance under perturbations of equilibria (section
6) and controllability (section 7), respectively.

Corollary 5.2 (removability of fixed points).Suppose the conditions of Theorem
5.1 are satisfied for N = M × U , where U is a manifold, x ∈ M\∂M is an isolated
fixed point of f : M ×U → M (i.e., f(x, u) = x for some u ∈ U), and F = {x}×{u ∈
U : g(x, u) = x}. Then there is a homotopy of f to a map f ′such that f ′ has no
fixed points in a neighborhood of F. The homotopy can be chosen arbitrarily small and
constant on the complement of a neighborhood of F.

Proof. If g : M × U → M is the projection, then F is the coincidence set of
f, g.

Corollary 5.3 (necessary condition of surjectivity). Suppose the conditions of
Theorem 5.1 are satisfied for F = f−1(x) of f : N → M . Then there is a homotopy
of f to a map f ′ which is not onto; specifically, x /∈ f ′(N). The homotopy can be
chosen arbitrarily small and constant on the complement of a neighborhood of F.

Proof. If g is the constant map, then F is the coincidence set of f, g.
These two corollaries are partial converses of Corollaries 4.4 and 4.5, respectively.
A submanifold F of N satisfies condition (*) if one of the following three conditions

holds [32, section 4]:
• (a1) M is a surface, i.e., n = 2; or
• (a2) F is acyclic, i.e., Hk(F ) = 0 for k = 1, 2, . . . ; or
• (a3) every component of F is a homology m-sphere, i.e., Hk(F ) = 0 for

k �= 0,m, for the following values of m and n:
(1) m = 4 and n ≥ 6;
(2) m = 5 and n ≥ 7;
(3) m = 12 and n = 7, 8, 9, or n ≥ 14.

6. Existence of equilibria. In this section, M is a compact orientable con-
nected manifold with boundary ∂M , dimM = n, and U is a topological space.

A discrete time control system Dg is given by a map g : M ×U → M , with U the
space of inputs and M the space of states of the system.

We say that Dg′ is a perturbation of Dg if g′ homotopic to g. To justify this
definition, recall that a system Dg′ is normally called a perturbation of Dg if g′ is
“close enough” to g in terms of the distance between g(z) and g′(z). However, if g′

is a simplicial approximation of g [2, p. 251], then g and g′ are homotopic. Thus we
permit large but continuous perturbations of the system. Properties preserved under
such perturbations may be called strongly robust.

As before, suppose {ak1 , . . . , akmk
} is a basis for Hk(M) and {xk

1 , . . . , x
k
mk

} the

corresponding dual basis for Hk(M).
Theorem 6.1 (existence of equilibria). If

L(gv) = (−1)ns
∑
k

(−1)k
∑
j

xk
j � g∗(a

k
j ⊗ v) �= 0 for some v ∈ Hs(U),

then every perturbation of the discrete time system Dg has an equilibrium.
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Proof. In light of Corollary 4.4 we need only to show that the above formula for
the Lefschetz class L(gv) of gv(x) = (−1)(n−i)sg∗(x ⊗ v), x ∈ Hi(M), is true. Since
the degree of gv is s and akj ∈ Hk(M), we substitute m = s and i = k in Definition
4.1:

L(gv) =
∑
k

(−1)k(k+s)
∑
j

xk
j � (−1)(n−k)sg∗(a

k
j ⊗ v)

=
∑
k

(−1)k
2+ns

∑
j

xk
j � g∗(a

k
j ⊗ v),

and the formula follows.
The following is a generalization of a well-known theorem about dynamical sys-

tems.
Corollary 6.2. Suppose Dg is a perturbation of the constant system Dp; i.e.,

p(x, u) = x for all u. If the Euler characteristic of M is nonzero, χ(M) �= 0, then Dg

has an equilibrium.
Proof. Since p∗(a

k
j ⊗ v) = akj if v = 1 and 0 otherwise, we have

L(gv) =
∑
k

(−1)k
∑
j

xk
j � p∗(a

k
j ⊗ v)

=
∑
k

(−1)k
∑
j

1

=
∑
k

(−1)kmk

= χ(M).

Corollary 6.3. Suppose M = Sn, and suppose one of the following conditions
is satisfied:

(1) g∗(d⊗ 1) �= (−1)n+1d, where d is the identity of Hn(Sn); or
(2) g∗(1 ⊗ v) �= 0 for some v ∈ Hn(U).
Then every perturbation of the discrete time system Dg, g : Sn×U → Sn, has an

equilibrium.
Proof. Let us compute L(gv) for an arbitrary v ∈ Hs(U). As akj ∈ Hk(M), we

have akj ⊗ v ∈ Hk+s(M × U) and g∗(a
k
j ⊗ v) ∈ Hk+s(M). Since Hi(M) = Hi(S

n) = 0

for all i �= 0, n, we have g∗(a
k
j ⊗ v) = 0, except for the following two cases. (1) Choose

v = 1 ∈ H0(U), s = 0; then either k = 0, a0
j = 1, x0

j = 1, or k = n, anj = d, xn
j = d.

(2) Choose v ∈ Hn(U), s = n; then k = 0, a0
j = 1, x0

j = 1. Here d is the dual of d,

d � d = 1. Thus we have

(1) L(g1) = (−1)n0(1 � g∗(1 ⊗ 1) + (−1)nd � g∗(d⊗ 1))

= 1 + (−1)nd � g∗(d⊗ 1);

(2) L(gv) = (−1)nn(1 � g∗(1 ⊗ v))

= (−1)ng∗(1 ⊗ v).

Now, if either L(g1) or L(gv) is nonzero, then Dg has an equilibrium by Theo-
rem 6.1.

Condition (1) means that the degree of g(·) = g(·, u0) : Sn → Sn is not equal to
(−1)n+1.
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If U = M is a compact Lie group and g : M ×M → M is the multiplication, then
Dg has a equilibrium [13, Ex. 2.3]. For more examples, see [13], [30], [31].

In the control setting, Corollary 5.2 reads as follows.
Theorem 6.4 (removability of equilibria). Suppose U is a manifold, and suppose

x ∈ M\∂M is an isolated equilibrium of Dg. Suppose condition (∗) is satisfied for
F = {x} × {u ∈ U : g(x, u) = x} and

f∗ : Hn(W,W\V ) → Hn(D,D\B) = Q is zero,

where V ⊂ V ⊂ W and B ⊂ B ⊂ D ⊂ M\∂M are neighborhoods of F and x,
respectively. Then this equilibrium can be removed by an arbitrarily small perturbation
restricted to a neighborhood of F .

7. Controllability. In this section, M is a compact orientable connected mani-
fold with boundary ∂M, dimM = n, and U is a topological space.

Suppose a discrete system Df is given by f : M × U → M. The system Df is
called controllable [34] if any state can be reached from any other state by means of
f ; i.e., for each pair of states x, y ∈ M there are inputs u0, . . . , ur ∈ U such that
x1 = f(u0, x), x2 = f(u1, x1), . . . , y = xr+1 = f(ur, xr), notation x �f y.

Below, this notion is generalized in three nontypical, but topologically appropri-
ate, ways. First, we consider the possibility of an arbitrary state reached not from
any given state but from a state in a particular subset L of M. Second, as before, we
permit arbitrary, not necessarily small, perturbations of f. Third, instead of looking
into controllability of a new, perturbed system Dg, where g is homotopic to f , we
allow for consecutive applications of possibly different maps each homotopic to f .

Definition 7.1. Given L ⊂ M, let f ′ : L×U → M be the restriction of f. Then
the system is called strongly robustly controllable from L if for any map f0 homotopic
to f ′, any maps f1, . . . , fr homotopic to f, and for each y ∈ M there is x ∈ L and
inputs u0, . . . , ur ∈ U such that

x1 = f0(x, u0), x2 = f1(x1, u1), . . . , y = xr+1 = fr(xr, ur).

Then the system is controllable if it is controllable from any point.
It is clear that controllability is equivalent to surjectivity of several iterations of

f. To deal with surjectivity we apply Corollary 4.5, which requires f to be a map
of pairs. For this purpose, in this section we make the following assumption about
Df . If the initial state lies at the boundary ∂M of M , then the next state, regardless
of the input, lies within a certain neighborhood of ∂M . For simplicity we make a
topologically equivalent assumption,

f(∂M × U) ⊂ ∂M.

Next, let U ′ be the set of controls that take any given state to the boundary of
M, i.e.,

U ′ = {u ∈ U : f(x, u) ∈ ∂M for all x ∈ M}.

Then f(M ×U ′) ⊂ ∂M. Combining this with the above assumption we conclude that
f is a map of pairs, f : (M,∂M) × (U,U ′) → (M,∂M). Let L′ = L ∩ ∂M ; then
f ′ : (L,L′) × (U,U ′) → (M,∂M) is also a map of pairs.

The following theorem translates the above “reachability” condition into the lan-
guage of homology: any element of Hn(M,∂M) = Q can be reached from some
a0 ∈ H∗(L,L

′) by means of f∗.
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Theorem 7.2 (sufficient condition of robust controllability). Suppose that there
are a0 ∈ Hp(L,L

′), v0 ∈ Hs0(U,U
′), . . . , vr ∈ Hsr (U,U

′) such that

a1 = f ′
∗(a0 ⊗ v0), a2 = f∗(a1 ⊗ v1), . . . , ar+1 = f∗(ar ⊗ vr) ∈ Hn(M,∂M)\{0}.

Then the discrete time system Df is strongly robustly controllable from L.
Here, if ai ∈ Hni(M,∂M), i = 0, 1, 2, . . . , r, then n0 = p, n1 = p + s0, n2 =

n1 + s1, . . . , nr+1 = nr + sr = n. Thus we have a sequence of homology classes
a0, . . . , ar of (M,∂M) “climbing” dimensions from p to n.

Proof. The result of consecutive applications of f is defined as a map F : (L,L′)×
(U,U ′)r+1 → (M,∂M) given by

F (x, u0, . . . , ur) = f(. . . f(f ′(x, u0), u1), . . . , ur);

i.e., it is given by the composition

F : (L,L′) × (U,U ′) × · · · × (U,U ′)
f ′×Id−−−−−−−−−−→

(M,∂M) × (U,U ′) × · · · × (U,U ′)
f×Id−−−−−−−−−−→ . . . .

Then x �f F (x, u0, . . . , ur). Suppose a map f0 is homotopic to f ′ and maps f1, . . . , fr
are homotopic to f. The result of consecutive applications of f0, . . . , fr is defined as
a map G : (L,L′) × (U,U ′)r+1 → (M,∂M) given by

G(x, u0, . . . , ur) = fr(. . . f1(f0(x, u0), u1), . . . , ur).

Therefore strong robust controllability from L means that G : L×Ur+1 → M is onto.
By Corollary 4.5, if

F∗ : Hn((L,L′) × (U,U ′) × · · · × (U,U ′)) → Hn(M,∂M) = Q

is nonzero, then every map homotopic to F is onto. Since G is clearly homotopic to
F, all we need to prove is that F∗ is nonzero. By the Künneth theorem, F∗ is given
by the composition

F∗ : H∗(L,L
′) ⊗H∗(U,U

′) ⊗ · · · ⊗H∗(U,U
′)

f ′
∗⊗Id−−−−−−−−−−→

H∗(M,∂M) ⊗H∗(U,U
′) ⊗ · · · ⊗H∗(U,U

′)
f∗⊗Id−−−−−−−−−−→ . . . .

Now the condition of Theorem 7.2 implies that f∗(. . . f∗(f
′
∗(a0⊗v0)⊗v2)⊗· · ·⊗vr) �= 0

for some a0 ∈ Hp(L,L
′) and some v0 ∈ Hs1(U,U

′), . . . , vr ∈ Hsr (U,U
′) such that

p + s1 + · · · + sr = n. Therefore F∗(a0 ⊗ v0 ⊗ v2 ⊗ · · · ⊗ vr) �= 0.
Moreover, it is clear that what we have is the “finite time reachability”; i.e., every

state can be reached in a finite number, r + 1, of steps, and that number is common
for all states.

Theorem 7.2 involves multiple iterations of f∗, while it is preferable to have a
condition involving only f∗ itself. Let us consider a case when this is possible.

Consider first a simple example, where U = S1, U ′ = ∅, M = Tn = (S1)n,
and f : S1 × Tn → Tn is given by f(u, x1, . . . , xn) = (u, x1, . . . , xn−1). This may
serve as a model for a robotic arm with n joints where only the first joint can be
controlled directly and the next state of a joint is “read” from the current state of the
previous joint. The system is obviously controllable. Indeed, after n iterations with
inputs u1, . . . , un the system’s state is (un, . . . , u1). Whether the system is robustly
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controllable is not as obvious. The affirmative answer is provided by Theorem 7.2 as
follows. Let L be a point, p = 0. Now, with d the identity of H1(S

1) we choose

v0 = v1 = · · · = vn = d ∈ H1(S
1), and

a0 = 1 ∈ H0(T
n),

a1 = d ∈ H1(T
n),

a2 = d⊗ d ∈ H2(T
n),

. . .

an = d⊗ · · · ⊗ d ∈ Hn(Tn).

More generally, suppose the state space M has the product structure, M =
K1 × · · · ×Ks, where Ki are manifolds of dimensions ki. Suppose f = (h1, . . . , hs),
where hi : U × M → Ki. For i = 1, . . . , s, define maps ha

i : Ki−1 → Ki, where
K0 = U, by ha

i (xi−1) = hi(a0, . . . , ai−2, xi−1, ai, . . . , as). If all ha
i are onto, then

the system is controllable. According to Corollary 4.5 it suffices to require that all
ha
i∗ : Hki

(Ki−1) → Hki
(Ki) are nonzero, i = 1, . . . , s.

Theorem 7.2 can be informally understood as follows. If there are some sub-
manifolds M1, . . . ,Mr, dimMi = ni, of M such that M0 = L,M1 = f(M0 × U),
M2 = f(M1 × U), . . . ,M = f(Mr × U), then the system is controllable. It means
that the restrictions f0 : L×U → M1, f1 : M1 ×U → M2, . . . , fr : Mr ×U → M of f
are surjective. This holds, provided fi∗(OMi

⊗OU ) = qiOMi+1
, where OMi

∈ Hni
(Mi)

is the fundamental class of Mi, for some qi ∈ Q. Since each OMi corresponds to
ai = Ji∗(OMi) ∈ Hni(M), where Ji : Mi → M is the inclusion, we arrive at the
requirement of Theorem 7.2. The robustness of each of these surjectivity conditions
can be tested by means of Corollary 5.3. As a special case we have the following.

Theorem 7.3 (necessary condition of robust controllability). Suppose U is a
manifold and there is a fiber F = f−1(x), x ∈ M, of f satisfying condition (∗) and

f∗ : Hn(W,W\V ) → Hn(D,D\B) = Q is zero,

where V ⊂ V ⊂ W and B ⊂ B ⊂ D ⊂ M\∂M are neighborhoods of F and x, respec-
tively. Then there is an arbitrarily small perturbation restricted to a neighborhood of
F of the system Df which is not controllable from M ; specifically, x is unreachable
from any point.

Proof. Corollary 5.3 implies that there is g homotopic to f such that x /∈
g(M × U).

8. Continuous systems. In this section we outline, in fewer details than above,
the possibilities of applying Lefschetz numbers to continuous systems.

In this section, M is a compact orientable connected smooth manifold with bound-
ary ∂M , and dimM = n. Let TM be the tangent bundle of M ; then dimTM = 2n.

A continuous time control system Ch [27, p. 16] is defined as a commutative
diagram

Q h−−−−→ TM,
↓p ↙πM

M

where p : Q → M is a fiber bundle over M and πM is the projection. Thus Ch is a
parametrized vector field on M.
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We say that x ∈ M is an equilibrium of this system if there is y ∈ Q such that
h(y) = (x, 0) ∈ TM, x = p(y) ∈ M. Detecting an equilibrium can be restated as a
coincidence problem. Suppose i : M → TM is the inclusion and p1 : Q × M → Q,
p2 : Q × M → M are the projections. Define the maps f, g : Q × M → TM by
f = hp1, g = ip2. Then a coincidence of the pair f, g is an equilibrium of the system
Ch. Therefore equilibria can be detected by means of the coincidence results in section
4, and their robustness can be studied by means of the results of section 5.

We have a simpler coincidence problem when M is parallelizable; i.e., TM is
isomorphic to M × Rn. For example, S1, S3, S7 are parallelizable. Let q : TM �
M×Rn → M be the projection. Then a coincidence of the pair qh, p is an equilibrium
of the system Ch, and we can use Theorem 4.3 to detect equilibria and Theorem 5.1
to study their robustness. In fact, Dqh is a discrete control system associated with
the continuous system Ch. In particular, when Q = M × U, the results of sections 6
and 7 can be applied to study equilibria and controllability of Ch.

For a general M a discrete system Df associated with the continuous system Ch

may be constructed as follows.
Let A be the topological space of admissible controls associated with Ch, i.e., a

set of functions z : [0, d] → Q, for all d ∈ R. A map cz : [0, d] → M is called a
trajectory of the control system if there exists a control z ∈ A satisfying pz = cz and
d
dtcz = hz.

We assume that Q = M×U, where U is the topological space of all possible inputs,
and p : Q = M × U → M is the projection. Then A is the set of pairs (c, p), where
c : [0, d] → M is a trajectory and p : [0, d] → U is a function representing the input.
To simplify things even further we consider only constant inputs. First, we assume
that the system Ch satisfies the following existence and uniqueness property: for every
x ∈ M and any constant input p(t) = u ∈ U there is a unique trajectory c such that
c(0) = x and (c, p) ∈ A. Then the following end point map, fd : M ×U → M , is well
defined. We let fd(x, u) = c(d), where c : [0, d] → M is the above trajectory. Assume
also that the map f = fd is continuous. Then for each d ≥ 0 we have a discrete time
control system Df .

Next, the system Ch is called controllable if any state can be reached from any
other state; i.e., for each pair of states x, y ∈ M there is a trajectory c : [0, d] → M
such that x = c(0), y = c(d).

We make the same assumption about Df as in section 7: if the initial state lies
at the boundary ∂M of M , then the next state, regardless of the input, lies within a
certain neighborhood W of ∂M, or, alternatively, f(∂M × U) ⊂ ∂M . In particular,
this condition is satisfied if h(x, u) is tangent to ∂M for all x ∈ ∂M . Let U ′ be the
set of controls that take any given state to the boundary ∂M, i.e.,

U ′ = {u ∈ U : f(x, u) ∈ ∂M for all x ∈ M}.

Then f is a map of pairs, f : (M,∂M)× (U,U ′) → (M,∂M). Given a subset L of M,
let L′ = L ∩ ∂M , and let f ′ : (L,L′) × (U,U ′) → (M,∂M) be the restriction of f.

Theorem 8.1 (sufficient condition of controllability). Suppose that there are
a0 ∈ Hp(L,L

′), v0 ∈ Hs0(U,U
′), . . . , vr ∈ Hsr (U,U

′) such that

a1 = f ′
∗(a0 ⊗ v0), a2 = f∗(a1 ⊗ v1), . . . , ar+1 = f∗(ar ⊗ vr) �= 0.

Then the continuous time system Ch is controllable from L by means of piecewise
constant controls.

Proof. The discrete system Df is controllable from L by Theorem 7.2.
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It follows also that if for a small enough ε > 0 a map k : Q → TM satisfies
d(k(z), h(z)) < ε for all z ∈ Q, where d is the distance on TM, and the system Ck

satisfies all of the above assumptions, then Ck is also controllable. We can say then
that Ch is robustly controllable.

Consider the applicability of Theorem 8.1 to local controllability or controllability
in a Euclidean space. In either case, M is the n-ball. Then Hi(M,∂M) is nontrivial
only in dimension n. As a result the above “chain” of homology classes a1, a2, . . . , ar+1

has to have only one “link,” a1 = f ′
∗(a0 ⊗ v0) ∈ Hn(M,∂M)\{0}. Thus Theorem 8.1

reduces to the claim of one-step controllability, provided f ′
∗n is nonzero. As a result

the similarity between the homology reachability condition of Theorem 8.1 and the Lie
bracket condition [27, section 3.1] does not materialize. The author believes, however,
that a generalization of Theorem 7.2 will provide a necessary connection.

Observe also that if ∂M = ∅, then f = fd is homotopic to the constant map f0

under the homotopy H(t, x, u) = ft(x, u), and hence f∗ = 0. Therefore the condition
of Theorem 8.1 is never satisfied.

Here is another approach to controllability. Let A′ be the set of controls whose
trajectories have one of the end points at the boundary of M, i.e.,

A′ = {z : [0, d] → Q, z ∈ A, cz(0) ∈ ∂M or cz(d) ∈ ∂M}.

Define G(u) = (cz(0), cz(d)), the end points of the trajectory cz = pz : [0, d] → M
corresponding to z. Then G : (A,A′) → (M ×M,∂(M ×M)) is a well-defined map
of pairs.

Theorem 8.2 (sufficient condition of controllability). If

G∗ : H2n(A,A′) → H2n(M ×M,∂(M ×M)) = Q is nonzero,

then the continuous time system Ch is controllable.
Proof. By Corollary 4.5, G is onto.
A similar condition is found in [28], where a boundary operator l : AC([0, 1],Rn)×

L∞([0, 1],Rn) → Rp is considered instead of G. One of the conditions of controllability
is deg l0 �= 0, where l0 is the restriction of l to some p-dimensional subspace and deg l0
its topological degree.
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REFERENCES

[1] K. Balachandran and J. P. Dauer, Controllability of nonlinear systems via fixed-point the-
orems, J. Optim. Theory Appl., 53 (1987), pp. 345–352.

[2] G. E. Bredon, Topology and Geometry, Springer-Verlag, New York, 1993.
[3] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, Chicago IL, 1971.
[4] R. F. Brown, Fixed point theory, in History of Topology, North–Holland, Amsterdam, 1999,

pp. 271–299,
[5] R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence-producing maps

for manifolds with boundary, Topology Appl., 46 (1992), pp. 65–79.
[6] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis,

and Design for Simple Mechanical Control Systems, Springer-Verlag, New York, 2004.
[7] N. Carmichael and M. D. Quinn, Fixed-point methods in nonlinear control, IMA J. Math.

Control Inform., 5 (1988), pp. 41–67.
[8] G. Conti, P. Nistri, and P. Zecca, Controllability problems via set-valued maps, in Recent

Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing,
II (Kobe, 1991), Mita, Tokyo, 1992, pp. 253–258.



1690 PETER SAVELIEV

[9] D. Dimovski and R. Geoghegan, One-parameter fixed point theory, Forum Math., 2 (1990),
pp. 125–154.

[10] F. B. Fuller, The homotopy theory of coincidences, Ann. of Math., 59 (1954), pp. 219–226.
[11] R. Geoghegan, Nielsen fixed point theory, in Handbook of Geometric Topology, R. Daverman

and R. Sher, eds, North–Holland, Amsterdam, 2002, pp. 499–521.
[12] R. Geoghegan and A. Nicas, Trace and torsion in the theory of flows, Topology, 33 (1994),

pp. 683–719.
[13] R. Geoghegan, A. Nicas, and J. Oprea, Higher Lefschetz traces and spherical Euler char-

acteristics, Trans. Amer. Math. Soc., 348 (1996), pp. 2039–2062.
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INTRINSIC OBSERVER-BASED STABILIZATION FOR SIMPLE
MECHANICAL SYSTEMS ON LIE GROUPS∗
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Abstract. This paper presents a dynamic observer for a class of simple mechanical systems
on Lie groups. This observer provides velocity estimates based on configuration measurements.
The observer is intrinsic, so its performance does not depend on the choice of coordinates, and
it is coordinate free, in the sense that the equations may be written explicitly without specifying
coordinates for the configuration space. Our main result is obtained by specializing a previous
result of Aghannan and Rouchon concerning velocity estimation of simple mechanical systems on
Riemannian manifolds to such systems on Lie groups. This specialization is nonobvious and extremely
powerful. Further we extend the original result to include velocity-dependent external forces. This
estimator, combined with a coordinate-free formulation of passivity-based state-feedback control,
allows the construction of a coordinate-free, intrinsic dynamic output feedback compensator. This
is, to our knowledge, the first time such a result has been reported. Explicit expressions are computed
for the Lie groups SO(3) and SE(3), allowing easy specialization to practical problems of rigid body
motion. The theory is illustrated via application to the axisymmetric top and to a six-degrees-of-
freedom microelectromechanical system.
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1. Introduction. The traditional approach to nonlinear control has been to ex-
tend the extremely successful concepts developed for linear systems. This tactic has
led to notable success, but it is inherently limited by the great variety of nonlinear
phenomena. An alternative is to exploit the structural properties of specific classes of
nonlinear systems. In particular, the systematic geometric study of mechanical con-
trol systems has received much attention. Formally, a holonomic simple mechanical
system consists of (i) a smooth manifold corresponding to the configuration space of
the system, (ii) a smooth Lagrangian corresponding to kinetic energy minus potential
energy, and (iii) a set of external forces or one-forms [1]. When some of these forces
may be used for control, we refer to a simple mechanical control system [6, 24]. The
study of mechanical systems from a modern geometric point of view can be found,
for example, in the excellent texts of Abraham and Marsden [1], Arnold [5], Bloch
et al. [12], Bullo and Lewis [15], and Marsden and Ratiu [29]. Certain important
nonlinear optimal control problems naturally lead to the consideration of such sys-
tems. The relationship between optimal control and mechanics is explored in essays
by Bloch and Crouch [8] and Jurdjevic [22]. Work by Bloch, Leonard, and Mars-
den [9], Bloch and Leonard [11], Bloch [12], and the references therein, develops the
notion of controlled Lagrangian systems, in which Lagrangian systems are stabilized
by symmetry-preserving kinetic energy shaping and damping injection in such a way
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that the closed-loop system retains a Lagrangian structure [7, 9, 11]. These results
have been extended to the case where the uncontrolled mechanical system has no
underlying symmetry [10]. A parallel development for controller synthesis in Hamil-
tonian systems is the port controlled Hamiltonian approach [17, 33, 34, 40]. Both
the Lagrangian and Hamiltonian methods make extensive use of structural features
such as the Riemannian metric or the Poisson structure of the system. Symmetry-
preserving tracking controls have been developed recently for general control systems
admitting symmetry by Martin, Rouchon, and Rudolph [30] using the geometric no-
tion of Cartan’s moving frame method. The underlying Riemannian structure is
exploited by Bullo and Murray [14] to derive intrinsic tracking controls for fully ac-
tuated simple mechanical systems on a general Riemannian manifold. The tools of
passivity-based control have also been extended, through a generalization of LaSalle’s
invariance theorem, to a class of simple mechanical systems on Riemannian manifolds
[32]. In a recent paper [2], Aghannan and Rouchon present an intrinsic observer that,
given measurements of the configuration variables of a simple mechanical system on
a Riemannian manifold, provides estimates of the states (both configurations and
velocities). This is accomplished with a reformulation of the Luenberger observer,
where the observation error is defined intrinsically by the geodesic distance between
the actual and estimated configuration variables. These powerful results concerning
the dynamics and control of systems on manifolds are intrinsic, implying that the
performance will not depend on the choice of coordinates. However, on a general
Riemannian manifold, their explicit expression requires coordinates. On a Lie group,
however, due to the natural identification of tangent spaces and neighborhoods of a
point by left-translation, coordinate-free explicit expressions may be feasible.

Simple mechanical control systems on Lie groups provide a rich source of control
problems. Some examples include underwater vehicles, satellites, surface vessels, air-
ships, hovercraft, and robots [3, 4, 11, 13, 41, 42]. Simple mechanical systems on Lie
groups are also interesting as subsets of more complex interconnected systems. An
example is a model of an electrostatically actuated microelectromechanical system
(MEMS) with a mechanical subsystem represented as a simple mechanical system on
the Lie group SE(3), and an electrical subsystem without such an additional structure
[25]. Systems on Lie groups exhibiting symmetry can be further exploited. When the
Lagrangian of the system is invariant under the left action of the group on itself, and
the external forces acting on the system are left invariant, a reduction of dynamics to
the Lie algebra of the Lie group is immediate [11, 13, 29]. In this case no coordinates
need to be introduced on the Lie group to express the system and control strategies.
Open-loop, coordinate-free, motion planning algorithms using small amplitude forc-
ing have been developed for underactuated systems with such symmetry [13]. One of
the main contributions of the present work is to show how, with left-invariant kinetic
energy but without additional symmetry constraints, explicit formulas for intrinsic,
dynamic output feedback controllers may be obtained without introducing coordi-
nates on the Lie group. For example, there is a wide class of mechanical systems on
Lie groups for which the forces are dissipative or nonleft invariant. Examples include
MEMS, robot manipulators, land vehicles, and general three-dimensional motion in
a gravitational field with or without damping.

Specifically we specialize to Lie groups two intrinsic results for control [32] and
estimation [2] of simple mechanical systems on general Riemannian manifolds. We
give coordinate-free explicit expressions of these results valid on any simple mechanical
system on a Lie group with left-invariant kinetic energy. For a given Lie group the
key computations required are the Levi-Civita connection, the Riemannian curvature,
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and an approximation to the associated distance function and parallel transport. The
computation of these quantities require only a choice of coordinates for the Lie algebra
of the Lie group. Once these quantities are computed they can be used for any
simple mechanical system with left-invariant kinetic energy, merely by specifying the
particular kinetic energy tensor and external forces. Unless the external forces are left
invariant, the expression of the force terms may require coordinates on the Lie group.

In section 2 below we briefly review the necessary mathematical background.
In section 3 we first employ the results of [32] to derive passivity-based full state-
feedback control for uncoupled simple mechanical systems on Lie groups. We then
derive similar results for simple mechanical systems on Lie groups that are coupled
to a system on a general manifold by generalizing the results of [16].

Often in applications, configuration and velocity are not both easily measured. In
some cases the velocities are available [4, 31, 36], while in others, it is the configuration
[3, 37, 39]. In section 4 we consider the latter case, where the configuration variables
are measured and the velocities must be estimated. Section 4 presents a coordinate-
free explicit expression of the results of [2]. We apply feedback passivation followed by
damping injection. Since the original result in [2] assumes all forces to be only config-
uration dependent, we require an extension of that result to accommodate velocity-
and configuration-dependent forces. The extension is presented in the appendix.

Section 4 concludes with a statement of a separation principle for the dynamic
output feedback law resulting from the combination of this estimator with the uncou-
pled passivity-based controller of section 3.

In section 5 we specifically compute and apply the dynamic output feedback
controller to representative systems on two Lie groups of special interest, namely, the
rotation group SO(3) and the Euclidean motion group SE(3). The expressions given
in this section may be applied to many problems of practical significance arising from
rigid body motion by specializing only the inertia tensor and the external force terms.
The classical axisymmetric top problem is used to demonstrate the construction and
performance of the observer on SO(3). An example on SE(3) models setpoint control
in the presence of a saddle-node bifurcation for a MEMS. Simulation results show
excellent performance.

2. Mathematical background. This section briefly describes the notation and
several geometric notions that will be used in the rest of the paper. For additional
details the reader is referred to the texts of [1, 15, 12, 18, 20, 21, 29, 35]. Let G be a
connected Lie group and let G � TeG be its Lie algebra. The left-translation of ζ ∈ G
to TgG will be denoted g · ζ = DLg ζ. The Lie bracket on G for any two ζ, η ∈ G
will be denoted [ζ, η] = adζ η, and the dual of the ad operator will be denoted ad∗.
Any smooth vector field X(g) on G has the form g · ζ(g) for some smooth ζ : G �→ G.
Let {ei} be any basis for the Lie algebra G and let {Ei(g) = g · ei} be the associated
left-invariant basis vector field on G. Now [ei, ej ] = Ck

ijek, where Ck
ij are the structure

constants of the Lie algebra G (Ck
ij = −Ck

ji), and [Ei, Ej ] = Ck
ijEk.

2.1. The Riemannian structure. Consider a left-invariant metric 〈〈·, ·〉〉 on G.
Such a metric induces a unique inner product 〈〈· , ·〉〉G on G by the restriction of 〈〈· , ·〉〉
to TeG. Define the isomorphism I : G �→ G∗ by the relation 〈Iζ , η〉 = 〈〈ζ , η〉〉G . Here
〈·, ·〉 denotes the usual pairing between a vector and a covector. Let the matrix I be
defined by Iij = 〈〈ei , ej〉〉G and let Iij be its inverse. I is symmetric and positive
definite. In similar fashion such an I induces a unique left-invariant metric on G by
the relation 〈〈g · ζ , g · η〉〉 = 〈Iζ , η〉.
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The presentation that follows is based on the texts of [20, 21, 35]. Associated
with any metric is a unique connection that is torsion free and metric called the
Levi-Civita connection. For a vector field X = Xk Ek and a vector v = vkEk the
Levi-Civita connection is given by

∇vX = (dXk(v) + ωk
ij(g)v

iXj)Ek ,(2.1)

where ωk
ij(g) are the connection coefficients in the frame {Ek}. If the metric is left

invariant, then the connection coefficients are constant, given by

ωk
ij =

1

2

(
Ck

ij − Iks(IirC
r
js + IjrC

r
is)

)
.(2.2)

Note that since in general Ek are not coordinate vector fields, ωk
ij are not the Christof-

fel symbols. In the case of a left-invariant metric, the coefficients of the Riemannian
curvature two-forms Rk

jab are also constant and can be shown to be [26]

Rk
jab = (−ωk

rjC
r
ab + 2ωk

arω
r
bj).(2.3)

We remark that they are in general different from the usual curvature coefficients that
one would obtain in a coordinate frame field. The Riemannian curvature is then

R(ζ , η)ξ = {Rk
jabξ

j(ζa ηb − ζb ηa) − ωk
ijC

i
abζ

a ηb ξj}ek.(2.4)

These derivations are based on Cartan’s structural equations as presented in sections
9.3b–9.3e of [20].

2.1.1. The local distance function on a Lie group. Given any two points
g and g̃ on a Riemannian manifold (G, 〈〈·, ·〉〉), define the set of curves,

Λ(g, g̃) := {γ : [0 1] �→ G | γ is piecewise smooth and γ(0) = g, γ(1) = g̃}.(2.5)

Then the distance between g and g̃ is defined as

d(g, g̃) := inf{l(γ) : γ ∈ Λ(g, g̃)}(2.6)

and defines a metric on the Riemannian manifold (G, 〈〈·, ·〉〉) [21, 35]. If a C1 curve
γ ∈ Λ(g, g̃) exists such that d(g, g̃) = l(γ), then it is referred to as a segment. It is
known that segments are always geodesics and that any two sufficiently close points
can be connected by a unique segment. In fact, since Lie groups are geodesically
complete from the Hopf–Rinow theorem [21, 35] it follows that any two points on a
Lie group can be joined by a geodesic.

For g and g̃ sufficiently close there exists a unique ζe ∈ G such that

e := g−1g̃ = exp ζe.(2.7)

Recall that exp sζe = e(s) is the one-parameter subgroup generated by ζe with respect
to left-translation with e(0) = id and e(1) = e. The inverse of this exponential
map (2.7) defines local coordinates around g, commonly referred to as logarithmic
coordinates [18]. For a fixed g ∈ G, define the function

f(g̃) := ||ζe||G .(2.8)
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Since e(s) = exp sζe is a one-parameter subgroup, f(g̃) is the length of this curve
and hence for g fixed d(g, g̃) ≤ f(g̃). Equality holds if the metric is bi-invariant. In
logarithmic coordinates, f(g̃) =

√
ζTe Iζe and up to order-two terms in ζe, d(g, g̃) =√

ζTe Iζe. Thus up to order-two terms, the geodesic distance between g and g̃ is
explicitly given by the function (2.8) and is referred to as a local distance function.

The function F (g̃) := 1
2d

2(g, g̃) plays a crucial role in the observer to be presented
in section 4. From the above discussion it follows that up to third order F (g̃) = 1

2f
2(g̃).

Thus in logarithmic coordinates, up to second order, it follows that grad F (g̃) = g̃ ·ζe.
The approximation arguments are intrinsic since smooth coordinate changes will not
reduce the order of the neglected higher-order terms.

2.2. Simple mechanical control systems on Lie groups. A simple mechan-
ical control system evolving on a Lie group G, equipped with a left-invariant metric
〈〈· , ·〉〉, is defined as a system with kinetic energy E(ġ) = 1

2 〈〈ġ , ġ〉〉, and Lagrangian
L(g, ġ) = E(ġ) − U(g) for some smooth function U(g) on G [15, 32]. A function
with all nondegenerate critical points is referred to as a Morse function. For conve-
nience in this paper we assume that U(g) is a globally defined Morse function. Let
I : G �→ G∗ be the isomorphism associated with the kinetic energy metric. Then the
Euler–Lagrange equations of motion are given by

ġ = g · ζ,(2.9)

∇ġ ġ = g · I−1

(
fc(g) + fd(g, ζ) +

m∑
i

uif
i(g)

)
= g · S(g, ζ),(2.10)

where fc(g), fd(g, ζ), f i(g) ∈ G∗, and ui ∈ R. The conservative force fc(g) and
damping force fd(g, ζ) satisfy the conditions 〈dU, g · ξ〉=−〈f c(g), ξ〉 and 〈fd(g, ξ), ξ〉 ≤
0 for any ξ ∈ G. Here the f i(g) denote the control directions and are assumed to be
linearly independent. The ui are the magnitude of the forces and are the controls
of the system. If m < dim(G), then the system is said to be underactuated, and if
m = dim(G), the system is said to be fully actuated.

Equation (2.9) is the kinematic equation and (2.10) is the Euler–Lagrange equa-
tion of the system. These equations can also be expressed as

ġ = g · ζ ,(2.11)

ζ̇ = I−1

(
ad∗ζ Iζ + fc(g) + fd(g, ζ) +

m∑
i

uif
i(g)

)
,(2.12)

where now (2.11)–(2.12) define a dynamical system on G × G, the left trivialization
of TG. This formulation does not require coordinates on the Lie group G. In the
case where the forcing terms do not depend on the configuration variable g, (2.12)
represents a complete reduction of dynamics to G and is referred to as the Euler–
Poincare equation. The kinematic equation (2.11) can be integrated to recover the
configuration once the velocities have been solved for and hence is referred to as the
reconstruction equation.

3. Passivity-based control for simple mechanical systems.

3.1. Uncoupled simple mechanical systems. The uncontrolled equilibrium
points of the system are of the form (ḡ, 0), where ḡ is a critical point of U(g). Assume
that ḡ is a local minimum. Since U(g) is assumed to be a Morse function, ḡ is in fact an
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isolated local minimum. This implies that the equilibrium (ḡ, 0) of the uncontrolled
system is stable. If any of these criteria are not satisfied by the natural potential
energy, for example if the desired equilibrium is not a local minima of U(g), the
methods of [10, 32] may be used to shape the potential energy. If the damping forces
satisfy 〈fd(g, ζ), ζ〉 < 0, then the equilibrium (ḡ, 0) is locally asymptotically stable. If
this inequality is not strict, then the equilibrium is guaranteed only to be stable. Here
we wish to enforce convergence to the equilibrium via “damping injection” control.
Similarly, if the natural damping is insufficient, we may use this strategy to augment it.

For convenience assume that the damping force fd(g, ζ) is of Rayleigh type. That
is, fd(g, ζ) = −R(g)ζ, where R(g) : G �→ G∗ is a map smooth in g so that the
relation 〈R(g)ζ, η〉 = 〈〈ζ, η〉〉D defines a degenerate inner product on G. This means
that in a matrix representation R(g) is symmetric and positive semidefinite. Let
Im(B(g)) := span{f1(g), . . . , fm(g)}.

To be passive a system must have a storage function satisfying the dissipation
inequality with supply rate yTu, where y is the system output [40]. For simple me-
chanical control systems the output that is compatible with passivity is completely
determined and is given intrinsically by yi = 〈f i(g) , ζ〉 or in a matrix representation
by y = B(g)T ζ. Consider the storage function

H(g, ζ) =
1

2
〈〈ζ , ζ〉〉G + U(g),(3.1)

Ḣ = −〈R(g)ζ, ζ〉 +

m∑
i

ui〈f i(g) , ζ〉 ≤
m∑
i

ui〈f i(g) , ζ〉 = yTu.(3.2)

Thus (2.11)–(2.12) are passive with storage function H. Now consider the damping
injection control

ui = −yi = −〈f i(g) , ζ〉.(3.3)

In matrix representations, (3.3) can also be written as u = −B(g)T ζ and (3.2) as
Ḣ = −ζTR(g)ζ − ζTB(g)B(g)T ζ.

Recall that Lie groups are complete metric spaces [35]. Thus, using this control,
the generalized LaSalle invariance theorem of [32] guarantees that the trajectories
of (2.11)–(2.12) converge to the largest invariant set of (2.11)–(2.12) contained in
S := {(g, ζ) | Ḣ = 0}. Let N (R(g)) be the null space of the degenerate inner product
〈〈·, ·〉〉D and define [Im(B(g))]⊥ := {ζ ∈ G | 〈f i(g), ζ〉 = 0 for i = 1, . . . ,m}. If at
every g ∈ G, N (R(g)) ∩ [Im(B(g))]⊥ = {0}, then S = {(g, ζ) | ζ = 0} and the largest
invariant set contained in S consists of only the equilibrium points of the system.
The equilibrium points of the system are given by the critical points of the potential
energy function U(g), and by assumption (ḡ, 0) is a local nondegenerate minimum.
Thus the damping control (3.3) locally asymptotically stabilizes (ḡ, 0). In terms of a
matrix representation the condition N (R(g)) ∩ [Im(B(g))]⊥ = {0} implies that the
symmetric matrix R(g) + B(g)BT (g) is positive definite. From this point on we will
assume this condition is satisfied. This is trivially the case for fully actuated systems.

We say an equilibrium is almost globally asymptotically stable if its region of
attraction is an open and dense set. In particular the stabilization results are almost
global if the potential energy function U(g) is a globally defined smooth proper Morse
function with a unique minimum at the desired equilibrium configuration ḡ [23]. We
return to this point in section 4 when we consider almost global performance of the
dynamic output feedback compensator.
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3.2. Coupled simple mechanical systems. Consider the product space M =
Q× TG for some smooth manifold Q, and the class of systems on M of the form

q̇ = s0(q, g, ζ) +

m∑
i=1

si(q, g, ζ)ui,(3.4)

ġ = g · ζ ,(3.5)

ζ̇ = I−1

(
ad∗ζ Iζ + fc(g) + fd(g, ζ) +

m∑
i=m

f i(g, ζ, y)yi

)
,(3.6)

yi = hi(q) for i = 1, 2, . . . ,m,(3.7)

where q ∈ Q and si : M �→ TQ are smooth maps such that πQ ◦ si = πM , where
πQ : TQ �→ Q is the projection of TQ onto Q, and πM : M �→ Q is the projection of
M on to Q. Furthermore let y := [y1 y2 · · · ym]T = [h1 h2 · · · hm]T := h ∈ Rm and
s := [s1 s2 · · · sm] be such that Dh is onto at every q ∈ Q and dim(span{si}mi=1) = m
uniformly. If the matrix Ls h := (Lsihj) for i, j = 1, 2, 3 . . . ,m is nonsingular for all
q ∈ Q, g ∈ G, ζ ∈ G, then the interconnected system (3.4)–(3.7) has uniform relative
degree {1, 1, . . . 1} with respect to the outputs yi. The uniform relative degree of the
system implies that the feedback law

u = −[Ls h]−1(Ls0 h− ν)(3.8)

is globally smooth. Thus the state feedback (3.8) input-output linearizes the system.
Since Dh is full rank at each q ∈ Q, the set h−1(y) ⊂ Q is a smooth embedded
submanifold of Q for each y ∈ Rm. Introducing local coordinates (y, z) on Q, the
system (3.4)–(3.7) together with the control (3.8) can be expressed as

ẏ = ν,(3.9)

ġ = g · ζ ,(3.10)

ζ̇ = I−1

(
ad∗ζ Iζ + fc(g) + fd(g, ζ) +

m∑
i=m

f i(g, ζ, y)yi

)
,(3.11)

ż = N(z, g, ζ, ν, y).(3.12)

The zero dynamics of the system are given by

ġ = g · ζ ,(3.13)

ζ̇ = I−1
(
ad∗ζ Iζ + fc(g) + fd(g, ζ)

)
,(3.14)

ż = N(z, g, ζ, 0, 0).(3.15)

Consider the following candidate storage function for the input-output linearized
system (3.9)–(3.11):

V (y, g, ζ) =
1

2
〈〈ζ, ζ〉〉G + U(g) +

1

2

m∑
i=1

yi
2,(3.16)

where the potential energy of the mechanical system is U(g) and U(g) ≥ 0 is Morse.
Then specializing the results of [16, 38, 40] on passivity of interconnected subsystems,
it can be shown that the control νi = −〈f i(g, ζ, y) , ζ〉+wi renders the input-output
linearized system (3.9)–(3.11) passive with respect to the input-output pair (w, y)
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and storage function V . Thus if ḡ is a nondegenerate local minimum of U(g) and
〈fd(g, ζ) , ζ〉 < 0 for all ζ ∈ G, the control w = −y locally asymptotically stabilizes
the equilibrium (0, ḡ, 0) of the input-output linearized system (3.9)–(3.11). Explicitly
this control is given by

νi = −〈f i(g, ζ, y) , ζ〉 − yi.(3.17)

Furthermore if the equilibrium of (3.15) is locally asymptotically stable with g ≡ ḡ
and ζ = 0, then the equilibrium (0, ḡ, 0) of the whole system (3.4)–(3.6) is locally
asymptotically stable. The stability result of the composite system (3.4)–(3.6) is al-
most global if additionally U(g) is a smooth proper Morse function with a unique
minimum at the equilibrium configuration ḡ and N is vacuous or satisfies some addi-
tional requirements given by Theorem 4.7 of [38]. Observe that if dim(Q) = m, then
N is vacuous.

4. Intrinsic observer for velocity estimation. The controls (3.3) and (3.17)
involve the feedback of both the configuration g and the velocity ζ. In the case where
the configuration is available for measurement, but the velocity is not, we propose an
intrinsic observer to estimate the velocity variable. This is based on the work reported
in [2]. There a velocity estimate based on a configuration measurement is presented for
a general Riemannian manifold and expressed in coordinates. We specialize that result
to a Lie group equipped with a left-invariant metric. Our reformulation avoids the
need to introduce coordinates on the Lie group and includes a proof that the external
forcing can exhibit velocity dependence in addition to configuration dependence.

Consider the system given by (2.9)–(2.10). Let (g̃, ζ̃) be the estimated value of
(g, ζ) and let α, β > 0 be constant. Then it is shown in [2] that the following observer
converges locally exponentially if the initial observer configuration error is sufficiently
small:

˙̃g = g̃ · ζ̃ − 2α grad F (g̃),(4.1)

∇ ˙̃g g̃ · ζ̃ = g̃ · Γ(S) − g̃ ·R(ζ̃, g̃−1grad F (g̃))ζ̃ − β gradF (g̃),(4.2)

where F (g̃) = 1
2d(g, g̃)

2 and Γ(S) is the parallel transport of the resultant external
force S at g to g̃ along the geodesic joining the two points. In [2] it is pointed out
that replacing Γ(S) and gradF by their respective first-order approximations will not
affect the local convergence properties of the observer.

Although convergence is proved in [2] assuming that S = S(g), the same basic
argument holds when S = S(g, ζ), where we now use ζ̃ instead of ζ in the parallel
transport term Γ(S(g, ζ̃)). In [2], the first variation of the observer dynamics is
constructed, then contraction analysis is used to prove local exponential convergence
of the observer. In the appendix we show that the first variation of the observer
dynamics does not change when S is allowed to depend on the velocity ζ. Thus the
contraction argument of [2] applies without modification and the local exponential
convergence of the observer (4.1)–(4.2) follows even when S = S(g, ζ).

It was shown in section 2.1.1 that up to second order grad F = g̃ζe. Therefore
the first-order approximation of the observer (4.1)–(4.2) can be expressed as

˙̃g = g̃ · (ζ̃ − 2αζe),(4.3)

∇ ˙̃g g̃ · ζ̃ = g̃ · Γ(S) − g̃ ·R(ζ̃, ζe)ζ̃ − β g̃ · ζe.(4.4)

Expanding (4.4), the first-order approximation of the observer is explicitly given
by
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˙̃g= g̃ · (ζ̃ − 2αζe),(4.5)

˙̃
ζ=I−1

(
ad∗

ζ̃
Iζ̃ − α(ad∗ζeIζ̃ + ad∗

ζ̃
Iζe)

)
+ α[ζe, ζ̃]G + Γ(S) −R(ζ̃, ζe)ζ̃ − βζe,(4.6)

where up to order-two terms,

Γ(S) =
(
Sk(g, ζ̃) − ωk

ijS
i(g, ζ̃)ζje

)
ek.(4.7)

This coordinate-free formulation of the observer clearly shows its structure. For in-
stance, the terms in (4.6) involving the gain α are the corrections to the inertial
forces of the observer that are needed to compensate for curvature effects, Γ(S) is
the intrinsic model of the external forces of the observed system, and R(ζ̃, ζe)ζ̃ is
the curvature term that is needed to correct for the effects of possible divergence of
nearby geodesics. The 2αζe and βζe terms are the error feedback that ensure conver-
gence. The coordinate-free formulation also shows the versatility of the expressions
(4.5)–(4.6). Specifically it is readily applicable to any simple mechanical system on
the Lie group G. Depending on the specific problem all the control designer needs to
do is specify the kinetic energy tensor I and the external forces S.

Using the observer (4.5)–(4.6), the control (3.3) can be implemented with velocity
estimates replacing velocity measurements as

ui = −〈f i(g) , ζ̃〉.(4.8)

It is natural to ask whether the dynamic output feedback control (4.8) preserves the
stability properties of the state-feedback control (3.3)—that is, whether a separation
principle holds. In the appendix we show, using results of [28], that it does. In
particular, if (3.3) is almost globally stabilizing (resp., asymptotically stabilizing),
then so is (4.8).

5. Examples. In this section we demonstrate the preceding constructions for
two cases of practical significance in which the configuration space of the simple me-
chanical systems are Lie groups—first SO(3), and then SE(3). Since these groups
arise in many practical problems involving rigid body motions we include here explicit
expressions for the Riemannian connection, Riemannian curvature, and the approx-
imate local distance functions. To implement the observer in a specific application,
now only the inertia tensor I and the external force S need to be changed. The ef-
fectiveness of the observer is demonstrated in SO(3) for the axisymmetric top and in
SE(3) for a model of an electrostatically actuated MEMS.

5.1. The rotation group SO(3). The rotation group, SO(3), is the group of
matrices R ∈ GL(3,R) that satisfy the conditions RRT = RT R = I and det(R) = 1.
Euler’s theorem states that any given R ∈ SO(3) is a rotation about some axis n by
an angle ψ, that is, R = exp (ψn̂), where

ψn̂ =
ψ

2 sinψ
(R−RT ),(5.1)

and cosψ = (tr(R) − 1)/2 for |ψ| < π.
The Lie algebra so(3) of SO(3) is the set of traceless skew symmetric 3 × 3

matrices. The Lie algebra so(3) is identified with R3 by the isomorphism

ξ ∈ R3 �→ ξ̂ =

⎡⎣ 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

⎤⎦ ∈ so(3),(5.2)
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where ξ = [ξ1 ξ2 ξ3]T . We will use both ξ and ξ̂ to mean the same element of so(3).
The isomorphism I : so(3) � R3 �→ so(3)∗ � R3 defined by the positive definite

matrix I induces a left-invariant metric on SO(3) by the relation 〈〈R · ξ , R · ψ〉〉 =
〈〈ξ , ψ〉〉so(3) = Iξ · ψ for any two elements R · ξ,R · ψ ∈ TRSO(3). The Lie bracket
on so(3) is [ξ , ψ]so(3) = adξ ψ = ξ × ψ and the dual of the ad operator is given by
ad∗ξ Π = Π × ξ, where Π ∈ so(3)∗ � R3.

From (2.11)–(2.12), a simple mechanical control system on SO(3) takes the form

Ṙ = Rζ̂,(5.3)

ζ̇ = I−1
(
Iζ × ζ + S̃(R, ζ)

)
,(5.4)

where S̃(R, ζ) = fc(R)+ fd(R, ζ)+
∑m

i uif
i(R). The passivity-based damping injec-

tion (3.3) takes the form

ui = −〈f i(R) , ζ〉.(5.5)

The intrinsic observer (4.5)–(4.6) takes the form

˙̃R=R̃(
ˆ̃
ζ − 2αζ̂e),(5.6)

˙̃
ζ=I−1

(
Iζ̃ × ζ̃−α (Iζ̃ × ζe+Iζe × ζ̃)

)
+αζe × ζ̃+Γ(S)−Rc(ζ̃, ζe)ζ̃−βζe,(5.7)

where ζe satisfies exp(ζe) = RT R̃ and is given by (5.1) as

ζe =
ψ

2 sinψ
(RT R̃− R̃TR),(5.8)

where cosψ = (tr(RT R̃) − 1)/2 for |ψ| < π. The parallel transport term Γ(S) is
calculated from (4.7), where S(R, ζ) = I−1S̃(R, ζ), and the curvature term Rc(ζ̃, ζe)ζ̃
is calculated from (2.4).

If the potential energy U(R) of the mechanical system is a globally defined smooth
Morse function with a unique minimum at the equilibrium configuration R̄, then
the control (5.5) almost globally stabilizes the equilibrium (R̄, 0). Furthermore since
SO(3) is compact, from Corollary A.2 in the appendix it also follows that (5.5) im-
plemented with the velocity observer also almost globally stabilizes the equilibrium
(R̄, 0) if the initial observer configuration error is sufficiently small.

In the canonical basis the nonzero structure constants Ck
ij on so(3) � R3 are

C3
12 = 1, C2

13 = −1, C1
23 = 1.

In the special case of axisymmetric rigid bodies, I = diag(Ix, Iy, Iz). For such exam-
ples using (2.2) the nonzero connection coefficients ωk

ij are calculated to be

ω1
23 =

Ix − Iy + Iz
2Ix

, ω1
32 =

−Ix − Iy + Iz
2Ix

, ω2
13 =

Ix − Iy − Iz
2Iy

,

ω2
31 =

Ix + Iy − Iz
2Iy

, ω3
12 =

−Ix + Iy + Iz
2Iz

, ω3
21 =

−Ix + Iy − Iz
2Iz

.

The nonzero curvature coefficients are too numerous to be listed here.
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5.1.1. Angular velocity estimation for the axisymmetric top. In this
section we demonstrate the effectiveness of the observer (5.6)–(5.7) by means of simu-
lation. Consider the classical problem of an axisymmetric top in a gravitational field.
Let P = {P1, P2, P3} be an inertial frame fixed at the fixed point of the top and let
e = {e1, e2, e3} be a body-fixed orthonormal frame with the origin coinciding with
that of P . At t = 0, the two frames coincide. Then let the coordinates of a point p
in the inertial frame P be given by x and in the body frame, e, let the coordinates of
the point p be given by X. They are related by x(t) = R(t)X, where R(t) ∈ SO(3).
Let −P3 be the direction of gravity and let I be the inertia matrix of the axisym-
metric top about the fixed point. The kinetic energy of the top is K = Iζ · ζ/2,
where ζ is the body angular velocity and the potential energy is U(R) = mglRe3 ·P3.
Here m is the mass of the top, g is the gravitational constant, and l is the distance
along the e3 axis to the center of mass. For simplicity we assume the top to be sym-
metric about the e3 axis. The generalized potential forces f c(R) in the body frame

will be given by the relation 〈fc(R), ζ〉 = −〈dU,R · ζ〉 = −mglRζ̂e3 · P3 for any
ζ ∈ so(3), which yields that fc(R) = mgl RTP3 × e3. The metric induced on SO(3)
by the kinetic energy is left invariant, and the system is a simple mechanical system
on SO(3). Thus the equations of motion on SO(3) × so(3) are given by (5.3)–(5.4),
where S̃(R) = mgl RTP3 × e3. Since it is assumed that the top is symmetric about
the e3 axis, the inertia matrix is diagonal with I1 = I2, that is, I = diag(I1, I1, I3).
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Fig. 5.1. Angular velocity estimates versus true values in axisymmetric top simulation. The
true values are the solid lines while the dotted lines are the estimated values.

Substituting I = diag(1, 1, 2) and S = I−1(RTP3 × e3) in the observer (5.6)–(5.7)
with α = β = 10, we estimate the angular velocities of the axisymmetric top. The
simulation results are shown in Figure 5.1. The initial body angular velocities of the
axisymmetric top are [.7 − .5 .2], the initial observer angular velocity is [−3 2 3],
while the initial observer configuration error corresponds to a π/10 radian rotation
about the P2 = [0 1 0]T axis.

5.2. The special Euclidean motion group SE(3). The special Euclidean
motion group SE(3) is the semidirect product SO(3) ×s R3. As a matrix group, an
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element A ∈ SE(3) and its inverse A−1 can be represented by

A =

[
R b
0 1

]
, A−1 =

[
RT −RT b
0 1

]
,

where R ∈ SO(3) and b ∈ R3.

The Lie algebra of SE(3), denoted by se(3), is the set of matrices

ζ =

[
ξ̂ v
0 0

]
,

where ξ̂ ∈ so(3) and v ∈ R3. Then se(3) � R3 × R3 by identifying ζ ∈ se(3) with
(ξ , v) ∈ R3 ×R3.

Let the inner product between the two elements (ξ, v), (ψ, u) ∈ se(3) on se(3),
〈〈· , ·〉〉se(3) be defined as 〈〈(ξ, v), (ψ, u)〉〉se(3) = Ibξ ·ψ+Mv ·u, where Ib is a positive
definite matrix. This inner product on se(3) defines a left-invariant metric on SE(3)
in the usual way. The Lie bracket on se(3) is given by

[(ξ , v), (ψ , u)]se(3) = ad(ξ , v)(ψ , u) = (ξ × ψ , ξ × u− ψ × v),(5.9)

and the dual of the ad operator is given by

ad∗(ξ , v)

[
Π
μ

]
=

[
Π × ξ + μ× v

μ× ξ

]
,(5.10)

where (Π, μ) ∈ se(3)∗ � R3 ×R3.

From (2.11)–(2.12), a simple mechanical control system on SE(3) takes the form[
Ṙ ḃ
0 0

]
=

[
R b
0 1

] [
ξ̂ v
0 0

]
(5.11) [

ξ̇
v̇

]
= I−1

([
Ibξ × ξ
Mv × ξ

]
+ S̃(R, b, ξ, v)

)
,(5.12)

where S̃(R, b, ξ, v) = f c(R, b) + fd(R, b, ξ, v) +
∑m

i uif
i(R, b).

The passivating control (3.3) takes the form

ui = −〈f i(R, b) , (ξ, v)〉.(5.13)

The intrinsic observer (4.5)–(4.6) takes the form[
˙̃R

˙̃
b

0 0

]
=

[
R̃ b̃
0 1

][ ˆ̃
ξ − 2α ξ̂e ṽ − 2α ve

0 0

]
(5.14) [

˙̂
ξ
˙̂v

]
=

[
I−1
b

(
Ibξ̃ × ξ̃ − α(Ibξ̃ × ξe + Ibξe × ξ̃)

)
+ α ξe × ξ̃

ṽ × ξ̃ − 2α ṽ × ξe

]
+ Γ(S) −Rc(ζ̃, ζe)ζ̃ − βζe,(5.15)
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where ζe = (Ωe, Ve) satisfies exp(ζe) = A−1Ã and is explicitly given by

Ωe =
ψ

2 sinψ
(RT R̃− R̃TR),(5.16)

Ve = W−1(RT b̃− R̃T b),(5.17)

where cosψ = (tr(RT R̃) − 1)/2 for |ψ| < π [29] and

W = I3×3 +
(1 − cosψ)

ψ2
Ωe +

(ψ − sinψ)

ψ3
Ω2

e.

The parallel transport term Γ(S) is calculated from (4.7), where S(R, b, ξ, v) =
I−1S̃(R, b, ξ, v), and the curvature term Rc(ζ̃, ζe)ζ̃ is calculated from (2.4). In the
canonical basis the nonzero structure constants Ck

ij on se(3) � R6 are

C3
12 = 1, C2

13 = −1, C6
15 = 1, C5

16 = −1, C1
23 = 1,

C6
24 = −1, C4

26 = 1, C5
34 = 1, C4

35 = −1.

In the case where Ib = diag(Ix, Iy, Iz) and M is a positive scalar, using (2.2) the
nonzero connection coefficients ωk

ij are shown to be

ω1
23 =

Ix − Iy + Iz
2Ix

, ω1
32 =

−Ix − Iy + Iz
2Ix

, ω2
13 =

Ix − Iy − Iz
2Iy

,

ω2
31 =

Ix + Iy − Iz
2Iy

, ω3
12 =

−Ix + Iy + Iz
2Iz

, ω3
21 =

−Ix + Iy − Iz
2Iz

,

ω6
15 = ω4

26 = ω5
34 = 1, ω5

16 = ω6
24 = ω4

35 = −1.

The coefficients of the curvature tensor Rk
jab can be calculated using (2.3).

5.2.1. Stabilization of an electrostatically actuated six-degrees-of-
freedom micromirror. In this section, our observer-based stabilization approach
is applied to an electrostatically actuated MEMS. An intrinsic and geometric model
of a six-degrees-of-freedom, electrostatically actuated micromirror is developed in [25].
Such devices may be used as steerable micromirrors, for example, to guide an optical
beam into one of a number of output fiberoptics or to simultaneously correct the phase
and amplitude of an optical signal. For further physical motivation and applications
the reader is referred to [25, 27] and the references therein. The device consists of a
fixed bottom plate and a rigid top plate. The top plate is free to rotate and translate,
subject to the constraint that each side is connected to a support structure through
flexible cantilevers. The bottom plate is segmented into four drive electrodes. The
system is actuated by a voltage difference between each electrode and the grounded
top plate. Figure 5.2 is a schematic of the movable top plate. The points qi denote
the locations at which the external spring and damping forces act on the system.

The device is modeled as a mechanical subsystem coupled to an electrical subsys-
tem via the electrostatic actuation forces. The configuration space of the mechanical
system is the group of three-dimensional Euclidean motions represented by SE(3).
Let e = (e1, e2, e3) be a body-fixed orthonormal coordinate frame centered at the
center of mass of the top plate, and let P = (P1, P2, P3) be an inertially fixed or-
thonormal coordinate frame coinciding with e when the system is in equilibrium with
no actuation. At a given time t the orientation of the top plate with respect to the
inertial frame is given by R(t), while the displacement of the center of mass of the top
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Fig. 5.2. Schematic diagram of a rigid three-dimensional microactuator.

plate with respect to the inertial frame is given by b(t). The body angular velocity
of the top plate is denoted by ξ(t). The velocity of the center of mass of the top
plate in the inertial coordinates is denoted by ḃ = R(t)v(t), where v(t) is the velocity
of the center of mass in the body frame. The nonactuated equilibrium gap between
the center of mass of the top plate and the bottom plate is d. The resistance in the
pth capacitor circuit is rp. The permittivity of the dielectric medium between the
electrodes is ε. The electrode areas are each assumed to be equal, and denoted A.
The charge stored in the pth capacitor is Qp. The voltage control supplied to the pth
capacitor is up. The position vector in the body-fixed coordinates of the ith point is
qi. The inertia matrix of the top plate is denoted by I. The total mass of the top
plate is m.

The spring forces exerted by the cantilever beams are assumed to be linear in the
absolute displacement. This assumption implies that the spring forces FC

p (R, b) are
given by [

FC
i (R, b)

0

]
= −

[
Ki 0
0 0

]([
R b
0 1

] [
qi
1

]
−
[

qi
1

])
.

The structural dissipative forces FD
i (R, b, ξ, v) of the system are assumed to be of

Rayleigh type and are given by[
FD
i (R, b, ξ, v)

0

]
= −

[
Ci 0
0 0

]([
R b
0 1

] [
ξ̂ v
0 0

] [
qi
1

])
.

The 3×3 matrices Ki and Ci are positive semidefinite. Computing the torques about
the center of mass of the movable electrode in the body coordinates, the generalized
body forces due to the stiffness and structural damping of the cantilever are expressed
by

fc
i =

[
q̂iR

TF c
i

RTFC
i

]
, fd

i =

[
q̂iR

TFD
i

RTFD
i

]
.

Neglecting parasitics, allowing fringing, but assuming that the electrostatic field gener-
ated by each individual electrode does not interact with the others (these are standard
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assumptions in the modeling of multielectrode electrostatic devices [19]), the general-
ized body electrostatic forces are given by BW (Q), where Q = [Q1 Q2 Q3 Q4]

T ,

W (Q) =

⎡⎣ w1

w2

w3

⎤⎦ =
1

4εA

⎡⎣ 1 −1 −1 1
−1 −1 1 1
−1 −1 −1 −1

⎤⎦
⎡⎢⎢⎣

Q2
1

Q2
2

Q2
3

Q2
4

⎤⎥⎥⎦,

B =

[
−ly e1 −lx e2 0

0 0 2e3

]
.

Using these generalized forces, in [25] the governing equation of the MEMS is
shown to be

Q̇p = − 1

rp

(
Vdp

− up

)
for p = 1, 2, 3, 4,(5.18) [

Ṙ ḃ
0 0

]
=

[
R b
0 1

] [
ξ̂ v
0 0

]
(5.19) [

ξ̇
v̇

]
= I−1

([
Ibξ×ξ
Mv×ξ

]
+

4∑
i=1

fc
i (R, b) +

4∑
i=1

fd
i (R, b, ξ, v)+B w(Q)

)
,(5.20)

ymp = Vdp for p = 1, 2, 3, 4,(5.21)

yp = Qp for p = 1, 2, 3, 4,(5.22)

where g, ymp
, and yp are the measured outputs. The system has relative degree

{1, 1, 1, 1} with respect to the output y = Q, and stable zero dynamics.
For a given Q̄, the corresponding equilibrium points of (5.19)–(5.20) are given by

ξ̄ = 0, v̄ = 0, and

0 =

4∑
i=1

fc
i (R̄, b̄) + Bw(Q̄).(5.23)

Using the results of section 3.2 it can be shown that the feedback law

(5.24)

u =

⎡⎢⎢⎣
Vd1

Vd2

Vd3

Vd4

⎤⎥⎥⎦ +

⎡⎢⎢⎣
r1(lyξ1 − lxξ2 + 2v3)(Q1 + Q̄1)/4εA
r2(−lyξ1 − lxξ2 + 2v3)(Q2 + Q̄2)/4εA
r3(−lyξ1 + lxξ2 + 2v3)(Q3 + Q̄3)/4εA
r4(lyξ1 + lxξ2 + 2v3)(Q4 + Q̄4)/4εA

⎤⎥⎥⎦− α

⎡⎢⎢⎣
r1(Q1 − Q̄1)
r2(Q2 − Q̄2)
r4(Q3 − Q̄3)
r4(Q4 − Q̄4)

⎤⎥⎥⎦
with α > 0 locally asymptotically stabilizes the corresponding given equilibrium
(0, Q̄, R̄, b̄, 0, 0).

The control (5.24) involves angular and linear velocity measurements. Making
these measurements in situ on the MEMS is infeasible. Thus assuming that the
configuration variables (R, b) are available for measurement (see [25] for a discussion
of how to do this), we estimate the angular and linear velocities of the mirror in
the body frame using the intrinsic observer of section 5.2, where now S(R, b, ξ, v) =

I−1(
∑4

i=1 f
c
i (R, b) +

∑4
i=1 f

d
i (R, b, ξ, v) + B w(Q)). MATLAB simulation results are

shown in Figure 5.3. For comparison purposes the performance of both the full state-
feedback controller and the dynamic output feedback controller are plotted on the
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same figures for identical initial conditions of the MEMS. In the case of the dynamic
output feedback control the initial observer configuration error corresponds to a π/10
rotation about the [1 1 0] axis and a translation of [3 3 3]. The initial body angular
velocity error is [9 12 − 9] and the initial velocity error of the center of mass in the
body coordinates is [6 9 − 3].
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Fig. 5.3. The position of the center of mass and the direction cosines of the unit normals
of the movable electrode versus time. In the case of dynamic output feedback the thin solid curve
corresponds to the P3 direction, the thick solid curve corresponds to the P1 direction, and the dashed
curve corresponds to the P2 direction. The dotted curves correspond to full state feedback.

6. Conclusion. We present an intrinsic observer-based approach to the stabi-
lization of a class of simple mechanical control systems on a Lie group. Specifically,
we consider systems with left-invariant kinetic energy and a measured configuration
variable. The result is obtained by specializing two general formulations on arbitrary
Riemannian manifolds, namely, passivity-based control and intrinsic velocity estima-
tion. This specialization is noteworthy because it results in drastically simplified
explicit expressions for the controller that can be readily applied once the kinetic en-
ergy tensor and the external forces are specified. The observer is explicitly computed
for two special cases of particular importance, namely, the rotation group SO(3) and
the Euclidean motion group SE(3). The expressions given in those sections may be
applied to the many problems of practical significance arising from rigid body motion
by specializing only the inertia tensor and the external forces. Here the results are ap-
plied to estimation of the velocities of the axisymmetric top and to the stabilization of
an electrostatically actuated MEMS model. Simulations show excellent performance.

Appendix.

A.1. First variation equations of the observer. If a separation principle is
to hold in the presence of velocity-dependent control, then the observer must converge
even when velocity terms are allowed in the external forces. Following [2] we first
construct the first variation of the observer and then use contraction analysis to prove
local exponential convergence of the observer. In what follows we show that including
such velocity terms in S does not change the first variation equations obtained in
[2]. Thus the contraction analysis of [2] holds without modification, and the observer
converges when S = S(q, v).
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Consider the simple mechanical system on a Riemannian manifold (M, 〈〈·, ·〉〉)
given by

q̇ = v,(A.1)

∇q̇ v = S(q, v),(A.2)

and the observer

˙̃q = X(q̃, ṽ) = ṽ − α grad F (q̃),(A.3)

∇ ˙̃q ṽ = Y (q̃, ṽ) = Γ(S(q, ṽ)) −R(ṽ, grad F (q̃))ṽ − β gradF (q̃),(A.4)

where R(·, ·)· is the curvature and Γ(S(q, ṽ)) is the parallel transport of the external
forces S(q, ṽ) to q̃ along the unique geodesic joining q to q̃ (for q and q̃ sufficiently
close). Observe that in the parallel transport term of Γ(S(q, ṽ)) we use ṽ instead of
v.

Let (q(t), v(t)) be a solution of (A.3)–(A.4) with initial condition (q0, v0) and
(q̃(t), ṽ(t)) be a solution of (A.3)–(A.4) with initial conditions (q̃(0), ṽ(0)) �= (q0, v0).
Let s �→ γ(s) ∈ M be a smooth curve on M such that γ(0) = q0 and γ(1) = q̃0 and let
s �→ τ(s) ∈ Tγ(s)M be a smooth vector field defined along γ(s) such that τ(0) = v0

and τ(1) = ṽ0. Let (q̃(s, t), ṽ(s, t)) be a solution of (A.3)–(A.4) with initial conditions
(γ(s), τ(s)). Define

∂q̃

∂s
(s, t) = Jq(s, t) ∈ Tq̃(s,t)M,(A.5)

∂ṽ

∂s
(s, t) = ∇Jq

ṽ = Jv(s, t) ∈ Tq̃(s,t)M.(A.6)

In coordinates these equations correspond exactly to those given by (6) in [2]. By
construction it follows that [Jq, ˙̃q] = 0 and thus the first variation of (A.3)–(A.4) can
be intrinsically computed as follows:

∂ ˙̃q

∂s
= ∇Jq

˙̃q = ∇ ˙̃qJq = ∇JqX,(A.7)

∂∇ ˙̃q ṽ

∂s
= ∇Jq∇ ˙̃q ṽ = ∇ ˙̃q∇Jq ṽ + R(Jq, ˙̃q)ṽ = ∇JqY,(A.8)

where the second equality in (A.7) follows from [Jq, ˙̃q] = 0 and the second equality in
(A.8) follows from

∇Jq∇ ˙̃q ṽ −∇ ˙̃q∇Jq
ṽ = R(Jq, ˙̃q)ṽ.

Thus from (A.6), (A.7), and (A.8) we have the first variation equations of (A.3)–(A.4)
as

∇ ˙̃qJq = ∇JqX,(A.9)

∇ ˙̃qJv = −R(Jq, ˙̃q)ṽ + ∇Jq
Y.(A.10)

When X(q̃, ṽ) = ṽ and Y (q̃, ṽ) = 0 we recover Jacobi’s equation of geodesic variation
∇2

˙̃q
Jq = −R(Jq, ṽ)ṽ.
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Substituting for X and Y from (A.3)–(A.4) in (A.9) and (A.10) we have

∇ ˙̃qJq = Jv − α∇Jqgrad F,(A.11)

∇ ˙̃qJv = −R(Jq, ˙̃q)ṽ + ∇JqΓ − β∇Jqgrad F −∇JqR(ṽ, grad F (q̃))ṽ.(A.12)

From [35]

∇JqR(ṽ, grad F (q̃))ṽ = (∇JqR) ((ṽ, grad F (q̃))ṽ) + R(∇Jq ṽ, grad F (q̃))ṽ

+R(ṽ,∇Jqgrad F (q̃))ṽ + R(ṽ, grad F (q̃))∇Jq ṽ.

Then the first variation equations of the observer (A.3)–(A.4) are

∇ ˙̃qJq = Jv − α∇Jqgrad F,(A.13)

∇ ˙̃qJv = −R(Jq, ˙̃q)ṽ + ∇JqΓ − β∇Jqgrad F

−(∇JqR) ((ṽ, grad F (q̃))ṽ) −R(∇Jq
ṽ, grad F (q̃))ṽ

−R(ṽ,∇Jqgrad F (q̃))ṽ −R(ṽ, grad F (q̃))∇Jq
ṽ.(A.14)

These equations correspond exactly with (9) of [2]. Note our curvature convention
follows [20, 21, 35] which results in a sign difference from [2].

When q̃ and q are sufficiently close (i.e., up to second order)

grad F = 0, ∇Jqgrad F = Jq, ∇JqΓ(S(q, ṽ)) = 0.

Thus for sufficiently close q̃ and q the first variation equations reduce to

∇ ˙̃qJq = Jv − αJq,(A.15)

∇ ˙̃qJv = −βJq.(A.16)

These equations correspond exactly with equation (10) of [2].

A.2. Separation principle. The following lemma proved in [28] provides the
basis for a separation principle when the Lie group G is compact. Consider the system

ġ = g · ζ,(A.17)

ζ̇ = I−1
(
ad∗ζ Ĩζ + f(g, ζ)

)
+ ψ(g, ζ, q),(A.18)

with (g, ζ) ∈ G× G and q ∈ Rn and V = U(g) + 1
2 〈〈ζ, ζ〉〉G , where U(g) is a smooth

globally defined Morse function and is the potential energy of the system. Also con-
sider the following assumptions.

Assumption A.1. The point (ḡ, 0) is an almost globally stable equilibrium of
(A.17)–(A.18) with ψ ≡ 0 and furthermore 〈〈g−1gradU, ζ〉〉G + 〈〈I−1f, ζ〉〉G ≤ 0.

The condition 〈〈g−1gradU, ζ〉〉G + 〈〈I−1f, ζ〉〉G ≤ 0 is satisfied by any simple
mechanical system with potential energy U(g) and Rayleigh-type dissipation. The
equilibrium (ḡ, 0) is an almost globally stable equilibrium if ḡ is a unique minimum
of U(g).

Assumption A.2. The function q(t) ∈ Rn satisfies

||q(t)|| ≤ c||q(0)||e−λt(A.19)

for some c > 0, λ > 0, and all t > 0.
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Assumption A.3. The interconnection term satisfies ψ(g, ζ, 0) ≡ 0 and the linear
growth conditions

||ψ|| ≤ γ1(||q||)||ζ|| + γ2(||q||)(A.20)

for two class K∞ functions γ1(·), γ2(·).
Lemma A.1. If the Lie group G is compact and if Assumptions A.1–A.3 are

satisfied, then the equilibrium (ḡ, 0) of the system (A.17)–(A.18) is almost globally
stable. Convergence is asymptotic if the inequality in Assumption A.1 is strict.

Corollary A.2. For a compact Lie group G if the state-feedback control (3.3)
almost globally stabilizes (ḡ, 0), then the dynamic output feedback control (4.8) al-
most globally stabilizes (ḡ, 0). Convergence is asymptotic if the control (3.3) ensures
asymptotic convergence.

Proof of Corollary A.2. Define the observation error of the velocities by ζoe :=
ζ̃ − ζ. From Theorem 1 of [2] we have that for sufficiently small initial observer
configuration error,

(d(g(t), g̃(t)) + ||ζoe(t)||G) < (d(g(0), g̃(0)) + ||ζoe(0)||G) e−λt(A.21)

for some λ > 0. From (A.21) it follows that for nonzero initial velocity error,

||ζoe(t)||G < c ||ζoe(0)||G e−λt(A.22)

for some c > 0.
Substituting ζ̃ = ζ + ζoe in the controls (4.8) we obtain a simple mechanical

system in the form of (A.17)–(A.18), where the interconnection term ψ(g, ζ, ζoe) =
B(g)B(g)T ζoe with B(g) = [f1(g)f2(g) · · · fm(g)]. If the potential energy U(g) of the
system is a globally defined smooth Morse function with a unique minimum at ḡ and
the damping injection u = −BT ζ almost globally stabilizes the equilibrium (ḡ, 0),
then it can be verified that Assumption A.1 is satisfied. From (A.22) Assumption
A.2 is satisfied. Since ψ(g, ζ, ζoe) = B(g)B(g)T ζoe, if G is compact, it can be easily
verified that Assumption A.3 is satisfied. Thus from Lemma A.1 the dynamic feedback
control (4.8) almost globally stabilizes the equilibrium (ḡ, 0) provided that the initial
observer configuration error is sufficiently small. Convergence is asymptotic if the
inequality in Assumption A.1 is strict. This is guaranteed if (3.3) ensures asymptotic
convergence.
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1. Introduction. On Rn×Rm, we consider the singularly perturbed differential
equation

ẋε(t) = f(xε(t), yε(t)), xε(0) = x0,

ε ẏε(t) = g(xε(t), yε(t)), yε(0) = y0, t ≥ 0,
(1)

where ε > 0 is a small perturbation parameter reflecting the presence of two natural
time scales. An important aim in singular perturbation theory is the decomposi-
tion of the coupled system into two unperturbed subsystems and to draw conclusions
from certain properties of the unperturbed subsystems. In connection with exponen-
tial stability properties, this decomposition method works very well. The following
fact on finite-dimensional smooth systems is well known; see [10, section 7, Corollary
2.3]. If both the unperturbed fast (boundary layer) systems and the unperturbed
slow (reduced) system are exponentially stable with uniform gain and decay rates,
then the singularly perturbed system is exponentially stable as well, at least for suf-
ficiently small perturbation parameters. Suitable upper bounds for the perturbation
parameter are obtained in [14]. In [4] the asymptotic behavior of the decay rates
is investigated. All these works mentioned rely on a sophisticated Lyapunov theory,
involving appropriate (converse) Lyapunov theorems. Consequently, the results are
presented in a smooth, finite-dimensional ODE framework.

A different approach using the approximating properties of an averaged slow limit
system has been presented in [2], where under mild regularity conditions the (near)
asymptotic stability of the slow subsystem is investigated. In [7, 8] a similar method
has been applied in order to characterize the exponential stability of (multivalued)
differential equations with a fast time variable. Here, the method of proof is based on
a suitable time discretization along with a computation of the distance between the
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perturbed and the unperturbed trajectories. The present paper aims at an adaption
of this method to the coupled singularly perturbed system (1). The method provides
several features listed below.

• The regularity of the vector fields involved is reduced to Lipschitz continuity.
• Estimates for both gain and decay rates are obtained.
• The results can be extended to differential equations in Banach spaces.
• Multivalued regular perturbations are taken into account.
• Small delays are considered.

The paper is organized as follows. In section 2 we present the setting and the
main result, Theorem 2.5. This result is compared to the present literature on related
problems. A version of Tychonov’s theorem (see [15] or [3]) on the approximation of
singularly perturbed differential equations along with important tools for the proof
of Theorem 2.5 are provided in section 3. The proof of Theorem 2.5 is carried out in
section 4. In section 5 an application to small delays is worked out in detail.

2. Setting and main result.
Assumption 2.1 (regularity). The mappings f : Rn × Rm → Rn and g : Rn ×

Rm → Rm are Lipschitz continuous with constant L ≥ 0. Moreover, the origin
(0, 0) ∈ Rn × Rm is an equilibrium point of (f, g), i.e., f(0, 0) = 0 and g(0, 0) = 0.

The decomposition of the singularly perturbed differential equation (1) into two
unperturbed subsystems works as follows. Introducing the new time variable s := εt,
the dynamic equations of (1) become

ẋε(s) = ε f(xε(s), yε(s)),

ẏε(s) = g(xε(s), yε(s)), s ≥ 0.
(2)

Setting ε = 0 yields the so-called boundary layer systems, where the slow state x ∈ Rn

is fixed.
Assumption 2.2 (exponential stability of the boundary layer systems).The bound-

ary layer systems

ẏx(s) = g(x, yx(s)), yx(0) = y0, s ≥ 0,

are exponentially stable. In particular, there are constants D ≥ 1, β > 0 such that
for any x ∈ Rn there is a φ(x) ∈ Rm with

‖yx(s) − φ(x)‖ ≤ De−βs‖y0 − φ(x)‖

for all s ≥ 0 and y0 ∈ Rm.
The graph of the mapping φ : Rn → Rm defines the so-called equilibrium manifold

in Rn×Rm, whose regularity is investigated in the next section. Plugging for each x ∈
Rn the corresponding equilibrium φ(x) ∈ Rm into the dynamic equations for the slow
variable in (1) yields the so-called reduced system, which defines an approximating
limit system for the x-trajectories, as ε → 0; see Theorem 3.5.

Assumption 2.3 (exponential stability of the reduced system). The reduced sys-
tem

ẋ0(t) = f(x0(t), φ(x0(t))), x0(0) = x0, t ≥ 0,

is exponentially stable. In particular, there are constants C ≥ 1, α > 0 such that

‖x0(t)‖ ≤ Ce−αt‖x0‖
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for all t ≥ 0 and x0 ∈ Rn.
These assumptions guarantee the exponential stability not only of the singu-

larly perturbed differential equation (1) but also of a particular multivalued inflation
of (1).

Definition 2.4 (multivalued perturbation). For a nondecreasing continuous
function κ : [0,∞) → [0,∞) with κ(0) = 0 we define the multivalued perturbed vector
fields

F (x, y, ε) := f(x, y) + κ(ε)(‖x‖ + ‖y − φ(x)‖)BRn ,

G(x, y, ε) := g(x, y) + κ(ε)(‖x‖ + ‖y − φ(x)‖)BRm ,

where BRn (respectively, BRm) denotes the closed unit ball of Rn (respectively, Rm).
The multivalued perturbed vector fields produce a singularly perturbed differen-

tial inclusion

ẋε(t) ∈ F (xε(t), yε(t), ε), xε(0) = x0,

ε ẏε(t) ∈ G(xε(t), yε(t), ε), yε(0) = y0, t ≥ 0,
(3)

which can be considered as a multivalued inflation of (1). We are now in a position to
formulate the main result on the uniform exponential stability of nonlinear singularly
perturbed systems.

Theorem 2.5. Let Assumptions 2.1, 2.2, and 2.3 be effective. There is a constant
E > 0 such that for any δ > 0 there is an εδ > 0 such that for any solution to (3) we
can estimate

‖xε(t)‖ ≤ (C + δ)e−(α−δ)t‖x0‖ + εEe−(α−δ)t‖y0 − φ(x0)‖,
‖yε(t) − φ(xε(t))‖ ≤ (D + δ)e−(β−δ) t

ε ‖y0 − φ(x0)‖ + εEe−(α−δ)t‖x0‖
+ ε2Ee−(α−δ)t‖y0 − φ(x0)‖

for all initial values x0 ∈ Rn, y0 ∈ Rm, all times t ≥ 0, and all perturbation parameters
ε ∈ (0, εδ].

Note that the gain and decay of the leading terms in the estimations above ap-
proximate the exponential characteristics of the reduced system and the boundary
layer systems. Surprisingly, the higher order terms are linear and quadratic, despite
the fact that the order of the multivalued regular perturbation, determined by κ(ε),
might be arbitrary.

What follows is a short discussion on related results. First, it is mentionable that
in the pioneering work of Tychonov on the approximation of singularly perturbed
differential equations (see [15] or also the survey [16] and the references therein) only
(uniform) asymptotic stability properties of the fast subsystem are used. Moreover,
as elaborated in [13] using Lyapunov’s matrix function method, under certain condi-
tions the additional asymptotic stability of the reduced system forces the asymptotical
stability of the whole system for sufficiently small perturbation parameters. Related
results can be found in [12]. The interest in exponential stability properties, as in-
vestigated in [14, 10, 4], seems to originate from the possibility of verifying it via
linearization. In the present paper, we focus on additional multivalued perturbations.
Hence it is essential to concentrate on exponential stability, since it is well known that
mere asymptotic stability is not preserved even under small linearly bounded regular
perturbations.
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Second, we emphasize that the particular structure of the singularly perturbed
differential inclusion (3) is essential in order to prove Theorem 2.5. The main tool,
Tychonov’s theorem, is valid for multivalued differential equations only under addi-
tional suppositions on the fast subsystems that are natural for single-valued differen-
tial equations but quite restrictive for multivalued differential equations. The point
is that, in general, the reduced system does not produce all slow limit trajectories,
as the perturbation parameter tends to zero. In other words, it is difficult to achieve
upper semicontinuity at ε = 0 of the solution mapping assigning to ε > 0 the (slow)
solution set to a singularly perturbed differential inclusion and to ε = 0 the solution
set to the reduced system. In [5] this problem is solved via a restriction to Lipschitz
continuous solutions that excludes oscillations of the fast trajectories. Another ap-
proach is attempted in [17, 18]. Here, forward invariance and attractivity of a set
of fast equilibrium states is assumed in order to achieve upper semicontinuity of the
solution mapping. Recently, this idea has been enhanced in [19], where problems on
an infinite time horizon are under investigation. However, for singularly perturbed
differential inclusions not possessing a particular structure of the fast subinclusion,
the use of averaging techniques (see [1] and also [6] for singularly perturbed nonlinear
control systems) is indispensable in order to construct a sufficiently rich limit system.

3. Approximation. In this section we prove a version of Tychonov’s theorem
on the approximating properties of the reduced system, Theorem 3.5. This theorem
applies to system (3) on a time interval t ∈ [0, T ], where T > 0 can be considered as
a discretization step of the slow variable.

We proceed as follows. First, we show the Lipschitz continuity of the equilib-
rium manifold in order to obtain unique trajectories for the reduced system. Then
we present a simple lemma on perturbed linear recursions which is used to obtain
estimations for the slow variables on time intervals [kT, (k + 1)T ] for k ∈ N.

In what follows we consider the singularly perturbed system (3) in the natural
time scale of the fast subsystem on the time interval s ∈

[
0, T

ε

]
. We introduce a step

size of the fast variable, H > 0, and show boundedness of the trajectories for s ∈ [0, H]
uniformly in ε > 0. An iteration of this result gives bounds for the trajectories on
the whole time interval s ∈

[
0, T

ε

]
. Again, for the iteration the lemma on perturbed

linear recursions is needed to show the exponential decay of the fast variables on time
intervals [kH, (k + 1)H] for k ∈ N.

3.1. Lipschitz continuity of the equilibrium manifold. The exponential
stability of the boundary layer systems forces the Lipschitz continuity of the equilib-
rium manifold.

Lemma 3.1. Let Assumptions 2.1 and 2.2 be effective. The mapping φ : Rn →
Rm, x �→ φ(x) is Lipschitz continuous with Lipschitz constant K = 2LSeLS, where
S = log(2D)/β.

Proof. For x ∈ Rn, we define a mapping Ax : Rm → Rm by Ax(y0) = yx(S) (in
which yx(·) is the solution to the corresponding boundary layer system with yx(0) =
y0), where S ≥ 0 is chosen such that

De−βS =
1

2
.

For x1, x2 ∈ Rn, using Assumption 2.2, we conclude that

‖φ(x1) − φ(x2)‖ = ‖Ax1(φ(x1)) −Ax2(φ(x2))‖
≤ ‖Ax1(φ(x1)) −Ax1(φ(x2))‖ + ‖Ax1(φ(x2)) −Ax2(φ(x2))‖
≤ De−βS‖φ(x1) − φ(x2)‖ + ‖x1 − x2‖LSeLS .
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We obtain

‖φ(x1) − φ(x2)‖ ≤ 2‖x1 − x2‖LSeLS ,

and the proof is finished.

3.2. Perturbed linear recursions. For two matrices M,N ∈ R2×2 we write
M ≤ N if Mij ≤ Nij for all 1 ≤ i, j ≤ 2.

Lemma 3.2. Let a, b, c > 0 be real constants with a 	= b and Mε ∈ R2×2 defined
by

Mε :=

(
a + εc εc
εc b + εc

)
for any ε ≥ 0. Then there is an ε0 > 0 such that we can estimate

0 ≤ Mk
ε ≤

(
(a + ε2c)k + ε2(2d)2(b + ε2c)k ε2d(a + ε2c)k + ε2d(b + ε2c)k

ε2d(a + ε2c)k + ε2d(b + ε2c)k (b + ε2c)k + ε2(2d)2(a + ε2c)k

)
for k = 0, 1, 2, . . . , ε ∈ (0, ε0], where d = c

|a−b| .

Proof. The first inequality is obvious; we concentrate on the second one. The
unperturbed matrix M0 is diagonal with eigenvalues λ1(0) = a, λ2(0) = b and eigen-
vectors v1(0) = (1, 0)T , v2(0) = (0, 1)T . Hence, for ε > 0 sufficiently small, the
characteristic polynomial of the perturbed matrix Mε has two different zeros as well.
A straightforward calculation yields∣∣∣∣dλ1

dε
(0)

∣∣∣∣ = c,

∣∣∣∣dλ2

dε
(0)

∣∣∣∣ = c.

Hence, for ε > 0, we obtain the estimations |λ1(ε) − a| ≤ 2cε, |λ2(ε) − b| ≤ 2cε
for the eigenvalues of Mε. For ε > 0 we are looking for eigenvectors of the form
v1(ε) = (1, w(ε)), v2(ε) = (u(ε), 1). Straightforward computations yield∣∣∣∣dwdε (0)

∣∣∣∣ =
c

|a− b| ,
∣∣∣∣dudε (0)

∣∣∣∣ =
c

|a− b| ,

which allows us to estimate |w(ε)| ≤ 2c
|a−b| , |u(ε)| ≤ 2c

|a−b| for sufficiently small ε > 0.

We conclude that

Mk
ε ≤

(
1 ε 2c

|a−b|
ε 2c
|a−b| 1

)(
a + ε2c 0

0 b + ε2c

)k
(

1 ε 2c
|a−b|

ε 2c
|a−b| 1

)

for ε > 0 sufficiently small, and the claim easily follows.

3.3. Boundedness of the trajectories. In what follows, we consider the singu-
larly perturbed differential inclusion (3) in the natural time scale of the fast subsystem,
s = εt. Then the system becomes

ẋε(s) ∈ ε F (xε(s), yε(s), ε), xε(0) = x0,

ẏε(s) ∈ G(xε(s), yε(s), ε), yε(0) = y0, s ≥ 0.
(4)

Tychonov’s theorem on the approximation applies to a time horizon that is
bounded in the natural time scale of the slow subsystem. Hence, for a fixed T ≥ 0,
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we are interested in the system above for times s ∈ [0, T
ε ]. To this end, we consider

the system above first on a time horizon s ∈ [0, H], where 0 < H ≤ T
ε . Since the

estimations obtained are linear in the initial values, we can iterate the procedure
[

T
Hε

]
times (here, we set [x] := max{k ∈ N : k ≤ x} for real numbers x ∈ R) and obtain
estimations on the whole interval s ∈ [0, T

ε ].
For an arbitrary H > 0 and ε > 0 we set

P ε
H := max

(xε,yε)
max

s∈[0,H]
‖F (xε(s), yε(s), ε)‖,

where the first maximum is taken over all trajectories (xε, yε) of (4).
Lemma 3.3. Let Assumptions 2.1 and 2.2 be effective. For any H > 0 there is

an εH > 0 such that

P ε
H ≤ 2(L + LK + 2)‖x0‖ + 4LD‖y0 − φ(x0)‖

for all ε ∈ (0, εH ].
Proof. We set Ms := max0≤s′≤s ‖yε(s′)−φ(xε(s

′))‖ and Ns := max0≤s′≤s ‖xε(s
′)‖.

Using the Gronwall lemma, for s ∈ [0, H], we calculate

‖yε(s) − φ(xε(s))‖
≤ ‖yε(s) − yx0(s, y0)‖ + ‖yx0(s, y0) − φ(x0)‖ + ‖φ(x0) − φ(xε(s))‖
≤ LseLs (sεP ε

H + κ(ε)Ns + κ(ε)Ms) + De−βs‖y0 − φ(x0)‖ + KsεP ε
H

≤ (LseLssε + Ksε)P ε
H + LseLsκ(ε)Ns + LseLsκ(ε)Ms + De−βs‖y0 − φ(x0)‖.(5)

We fix an arbitrary η ∈ (0, 1
2 ]. Then, for εH > 0 fulfilling

LHeLHκ(εH) ≤ η(6)

and ε ∈ (0, εH ] we obtain

MH ≤ 2(LHeLHHε + KHε)P ε
H + NH + 2D‖y0 − φ(x0)‖.

For εH > 0 fulfilling (6) and

κ(εH) ≤ 1(7)

we calculate

P ε
H ≤ LNH + L max

0≤s≤H
‖yε(s)‖ + κ(ε)NH + κ(ε)MH

≤ (L + 1)NH + L max
0≤s≤H

‖φ(xε(s))‖ + (L + 1)MH

≤ (L + LK + 1)NH + (L + 1)MH

≤ (L + LK + 2)(‖x0‖ + εHP ε
H) + 2(L + 1)(LHeLHHε + KHε)P ε

H

+ 2LD‖y0 − φ(x0)‖

for all ε ∈ (0, εH ]. Hence, for εH > 0 fulfilling (6), (7), and

(L + LK + 2)εHH + 2(L + 1)(LHeLHHεH + KHεH) ≤ 1

2
(8)

we obtain the required estimation.
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Lemma 3.4 (boundedness of the trajectories). Let Assumptions 2.1 and 2.2 be
effective. For any δ ∈ (0, β) there is an ε0 > 0 such that for any T > 0 there is a
constant CT ≥ 0 with

‖xε(s)‖ ≤ CT ‖x0‖ + εCT ‖y0 − φ(x0)‖,
‖yε(s) − φ(xε(s))‖ ≤ εCT ‖x0‖ + (D + δ)e−(β−δ)s‖y0 − φ(x0)‖ + ε2CT ‖y0 − φ(x0)‖

for ε ∈ (0, ε0], s ∈
[
0, T

ε

]
. Moreover, for ε ∈ (0, ε0] and s = T

ε , the improved estimation∥∥∥∥yε (T

ε

)
− φ

(
xε

(
T

ε

))∥∥∥∥ ≤ εCT ‖x0‖ + e−(β−δ)T
ε ‖y0 − φ(x0)‖ + ε2CT ‖y0 − φ(x0)‖

is valid.
Proof. Let δ ∈ (0, β). We choose H ≥ 1 such that

e−δH ≤ 1

2D
and e−(β−δ)H ≤ 1

2
,

and then η ∈ (0, 1
2 ] and ε0 ∈ (0, εH ], where εH > 0 is given by (6), (7), and (8) such

that

ε02D

εHL
+ 4LDε0H + η2D ≤ min

{
e−(β−δ)H

2
, δe−(β−δ)H

}
.

From Lemma 3.3 and (5) we obtain

‖yε(s) − φ(xε(s))‖

≤ εP ε
H

εH4L
+ ηNs + ηMs + De−βs‖y0 − φ(x0)‖

≤ εP ε
H

εH4L
+ ηNH + η

(
εP ε

H

εH2L
+ NH + 2D‖y0 − φ(x0)‖

)
+ De−βs‖y0 − φ(x0)‖

≤ εP ε
H

εH4L
+ 2ηεHP ε

H + η

(
εP ε

H

εH2L
+ 2D‖y0 − φ(x0)‖

)
+ De−βs‖y0 − φ(x0)‖

≤
(
2(L + LK + 2)‖x0‖ + 4LD‖y0 − φ(x0)‖

)( ε

εH4L
+ 2ηεH +

ηε

εH2L

)
+ η2D‖y0 − φ(x0)‖ + De−βs‖y0 − φ(x0)‖.(9)

Furthermore, we have

‖xε(s)‖ ≤ ‖x0‖ + εH
(
2(L + LK + 2)‖x0‖ + 4LD‖y0 − φ(x0)‖

)
for all s ∈ [0, H], where εH > 0 is given by (6) and (8). In particular, for s = H, we
obtain

‖yε(H) − φ(xε(H))‖ ≤ (L + LK + 2)

(
ε

εHL
+ ε2H

)
‖x0‖

+

(
ε2D

εHL
+ 4LDεH + η2D + De−βH

)
‖y0 − φ(x0)‖

≤ (L + LK + 2)

(
ε

εHL
+ ε2H

)
‖x0‖

+ e−(β−δ)H‖y0 − φ(x0)‖
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and

‖xε(H)‖ ≤ (1 + εH2(L + LK + 2)) ‖x0‖ + εH2LD‖y0 − φ(x0)‖.

For k = 0, 1, . . . , kH :=
[

T
εH

]
we set

Xk := ‖xε(kH)‖, Yk := ‖yε(kH) − φ(xε(kH))‖.

Then we obtain the linear recursive relation

Xk+1 ≤ (1 + εCH)Xk + εCHYk,

Yk+1 ≤ εCHXk + e−(β−δ)HYk,

where

CH := max

{
(L + LK + 2)

(
1

εHL
+ 2H

)
, 2H(L + LK + 2), 2HLD

}
.

The corresponding matrix is

Mε :=

(
1 + εCH εCH

εCH e−(β−δ)H

)
.

According to Lemma 3.2 we can estimate

0 ≤ Mk
ε ≤

(
(1 + ε2CH)k + ε2(2d)2 ε2d(1 + ε2CH)k + ε2d
ε2d(1 + ε2CH)k + ε2d e−(β−δ)kH + ε2(2d)2(1 + ε2CH)k

)
with d = 2CH . Since

(1 + ε2CH)k ≤ (1 + ε2CH)
T
εH ≤ e

2CHT

H ≤ e2CHT

for k = 0, 1, . . . , kH , the estimation for the slow variable follows easily. As for the fast
variable we have

‖yε (kH) − φ (xε (kH))‖ ≤ εCT ‖x0‖ + e−(β−δ)kH‖y0 − φ(x0)‖ + ε2CT ‖y0 − φ(x0)‖

for any k = 0, 1, . . . , kH . For times s ∈ [kH, (k+1)H], the required estimation follows
from (9) and from the choice of η and ε0.

3.4. A version of Tychonov’s theorem. Now we are in a position to prove an
appropriate version of Tychonov’s theorem on the uniform approximation of the slow
trajectories. The interesting aspect of this version is the linearity of the estimations
with respect to the initial conditions. The theorem is formulated and proven in the
natural time scale of the fast subsystem s = εt; hence xε(·) denotes the solution to the
singularly perturbed system (4), whereas x0(·) is the solution to the reduced system

ẋ0(s) = ε f(x0(s), φ(x0(s))), x0(0) = x0, s ∈
[
0,

T

ε

]
.

Note that this version of Tychonov’s theorem does not use Assumption 2.3, and hence
gives information on the approximation of the slow variable on a time horizon that is
bounded in the natural time scale of the slow variable. Under exponential stability
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suppositions on the reduced system, the result can be extended to an infinite time
interval; see [9].

Theorem 3.5 (Tychonov). Let Assumptions 2.1 and 2.2 be effective. There is
an ε0 > 0 such that for any T > 0 there is a BT ≥ 0 such that we can estimate

max
0≤s≤T

ε

‖xε(s) − x0(s)‖ ≤ (ε + κ(ε))BT ‖x0‖ + εBT ‖y0 − φ(x0)‖

for all initial values x0 ∈ Rn, y0 ∈ Rm and all perturbation parameters ε ∈ (0, ε0].
Proof. We fix an arbitrary δ ∈ (0, β). Let ε0 > 0 be the corresponding upper

bound for the perturbation parameter given by Lemma 3.4. Using Lemma 3.4, we
calculate, for s ∈

[
0, T

ε

]
,

‖xε(s) − x0(s)‖

≤
∫ s

0

ε‖f(xε(s
′), yε(s

′)) − f(x0(s
′), φ(x0(s

′)))‖ds′

+

∫ s

0

εκ(ε) (‖xε(s
′)‖ + ‖yε(s′) − φ(xε(s

′))‖) ds′

≤
∫ s

0

εL (‖xε(s
′) − x0(s

′)‖ + ‖yε(s′) − φ(x0(s
′))‖) ds′

+

∫ s

0

εκ(ε) (‖xε(s
′)‖ + ‖yε(s′) − φ(xε(s

′))‖) ds′

≤
∫ s

0

εL (‖xε(s
′) − x0(s

′)‖ + ‖yε(s′) − φ(xε(s
′))‖ + ‖φ(xε(s

′)) − φ(x0(s
′))‖) ds′

+

∫ s

0

εκ(ε) (‖xε(s
′)‖ + ‖yε(s′) − φ(xε(s

′))‖) ds′

≤
∫ s

0

εL(1 + K)‖xε(s
′) − x0(s

′)‖ + ε(L + κ(ε))‖yε(s′) − φ(xε(s
′))‖ + εκ(ε)‖xε(s

′)‖ds′

≤
∫ s

0

εL(1 + K)‖xε(s
′) − x0(s

′)‖ds′

+

∫ s

0

ε(L + κ(ε))
(
εCT ‖x0‖ + (D + δ)e−(β−δ)s′‖y0 − φ(x0)‖

)
ds′

+

∫ s

0

ε(L + κ(ε))ε2CT ‖y0 − φ(x0)‖ds′

+

∫ s

0

εκ(ε)
(
CT ‖x0‖ + εCT ‖y0 − φ(x0)‖

)
ds′

for all ε ∈ (0, ε0]. Hence, the Gronwall lemma yields the required estimate.

4. Proof of Theorem 2.5. We fix a δ ∈ (0,min{α, β}) and choose T > 0 such
that

e−δT ≤ 1

2C
.

Let ε0 > 0 be the corresponding upper bound for the perturbation parameter given
by Lemma 3.4. Then we choose εδ ∈ (0, ε0] such that

(εδ + κ(εδ))BT ≤ min

{
e−(α−δ)T

2
, δe−(α−δ)T

}
.
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For s ∈
[
0, T

ε

]
we calculate

‖xε(s)‖ ≤ ‖xε(s) − x0(s)‖ + ‖x0(s)‖
≤ (ε + κ(ε))BT ‖x0‖ + εBT ‖y0 − φ(x0)‖ + Ce−αεs‖x0‖.(10)

In particular, for s = T
ε , we obtain∥∥∥∥xε

(
T

ε

)∥∥∥∥ ≤ e−(α−δ)T ‖x0‖ + εBT ‖y0 − φ(x0)‖.

Moreover, by Lemma 3.4 we have∥∥∥∥yε (T

ε

)
− φ

(
xε

(
T

ε

))∥∥∥∥ ≤ εCT ‖x0‖ + e−(β−δ)T
ε ‖y0 − φ(x0)‖ + ε2CT ‖y0 − φ(x0)‖.

For k = 0, 1, 2, . . . , we set

Xk :=

∥∥∥∥xε

(
kT

ε

)∥∥∥∥ , Yk :=

∥∥∥∥yε (kT

ε

)
− φ

(
xε

(
kT

ε

))∥∥∥∥ .
Then we obtain the linear recursive relation

Xk+1 ≤ e−(α−δ)TXk + εC ′Yk,

Yk+1 ≤ εC ′Xk + e−(β−δ)T
ε Yk + εC ′Yk,

where

C ′ := max {BT , CT } .

The corresponding matrix becomes

Mε :=

(
e−(α−δ)T εC ′

εC ′ e−(β−δ)T
ε + εC ′

)
.

As for the fast variables, the claim follows directly from Lemmas 3.2 and 3.4. For the
slow variables we have∥∥∥∥xε

(
kT

ε

)∥∥∥∥ ≤ e−(α−δ)kT ‖x0‖ + εEe−(α−δ)kT ‖y0 − φ(x0)‖

for k ∈ N. For times s ∈ [kTε , (k+1)T
ε ] the required estimation follows from (10) and

from the choice of εδ.
Remark 4.1. The proof of Theorem 2.5 is based on Gronwall-type estimations

only; in particular no compactness arguments are used. Hence, the result is valid for
systems in arbitrary real Banach spaces, and the proofs remain unchanged.

Remark 4.2. An inspection of the proof of Theorem 2.5 shows that the condition
κ(0) = 0 in Definition 2.4 is only needed in order to achieve that the gain and expo-
nential decay rates of the singularly perturbed multivalued differential equation (3)
approximate the corresponding values of the reduced system and the boundary layer
systems. If we are merely interested in the exponential stability of the singularly per-
turbed multivalued differential equation (3) for small perturbation parameters, then
we need only that κ(0) ≥ 0 is sufficiently small.
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5. An application to small delays. An important application of decomposi-
tion results such as Theorem 2.5 is the construction of feedback controls. Assumptions
2.2 and 2.3 along with Theorem 2.5 allow a significant simplification of this problem,
since the decoupled stabilization takes place in lower dimensional spaces. Accord-
ing to Theorem 2.5, one has to construct the feedback in a way that the boundary
layer systems and the reduced system are exponentially stable. This construction is
described in detail in [10] via Lyapunov functions.

Still the question arises to what extent this feedback is robust with respect to
delays. In other words, for what kind of mappings h : [0,∞) → [0,∞) is the system
with delays

ẋε(t) = f̃(xε(t), yε(t), xε(t− h(ε)), yε(t− h(ε))), t > 0,

ε ẏε(t) = g̃(xε(t), yε(t), xε(t− h(ε)), yε(t− h(ε))), t > 0,

xε(t) = x0, t ∈ [−h(ε), 0],

yε(t) = y0, t ∈ [−h(ε), 0],

(11)

exponentially stable for ε > 0 sufficiently small? Since Theorem 2.5 applies to mul-
tivalued perturbations as given by (3), we can answer this question. To this end we
formulate the delay as a regular perturbation, which is automatically contained in the
differential inclusion (3). A similar idea has been used in [11] in order to show that
exponentially stabilizing feedback controls are robust with respect to small delays.

Theorem 5.1. Let the mappings f̃ : Rn × Rm × Rn × Rm → Rn, g̃ : Rn ×
Rm × Rn × Rm → Rm be Lipschitz continuous with Lipschitz constant L ≥ 0. Let
f : Rn × Rm → Rn, g : Rn × Rm → Rm given by

f(x, y) := f̃(x, y, x, y), g(x, y) := g̃(x, y, x, y)

satisfy Assumptions 2.1, 2.2, and 2.3. Let h : [0,∞) → [0,∞) satisfy

h(ε)

ε
→ 0, as ε → 0.

Then there is a constant E > 0 such that for any δ > 0 there is an εδ > 0 such that
for any solution to the delayed feedback system (11) we can estimate

‖xε(t)‖ ≤ (C + δ)e−(α−δ)t‖x0‖ + εEe−(α−δ)t‖y0 − φ(x0)‖,
‖yε(t) − φ(xε(t))‖ ≤ (D + δ)e−(β−δ)t/ε‖y0 − φ(x0)‖ + εEe−(α−δ)t‖x0‖

+ ε2Ee−(α−δ)t‖y0 − φ(x0)‖

for all initial values x0 ∈ Rn, y0 ∈ Rm, all times t ≥ 0, and all perturbation parameters
ε ∈ (0, εδ].

Proof. Let (xε, yε) be a solution to (11). Without loss of generality we can assume
that 0 < ε ≤ 1. Then the right-hand side of the differential equation for xε is of order
1
ε as well, and the xε trajectory can be treated as the yε trajectory. For short we write
zε := (xε, yε) and use the norm ‖zε(t)‖ = ‖xε(t)‖ + ‖yε(t)‖. We claim that

max
t−h(ε)≤s≤t

‖zε(s)‖ ≤ 2‖zε(t)‖(12)

for all t ≥ 0 and all sufficiently small perturbation parameters ε > 0. We prove (12)
by induction. First, let t ∈ [0, h(ε)] and t∗ ∈ [0, t] with

‖zε(t∗)‖ = max
t−h(ε)≤s≤t

‖zε(s)‖.
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Then we can estimate

‖zε(t)‖ ≥ ‖zε(t∗)‖ − L
h(ε)

ε
max

t−h(ε)≤s≤t
‖zε(s)‖ − L

h(ε)

ε
‖z0‖

≥
(

1 − 2L
h(ε)

ε

)
max

t−h(ε)≤s≤t
‖zε(s)‖,

which yields the estimation (12) for sufficiently small ε > 0. In the next step we
let T ≥ h(ε) and assume that the estimation (12) is valid for t = T − h(ε). Let
T ∗ ∈ [T − h(ε), T ] such that

‖zε(T ∗)‖ = max
T−h(ε)≤s≤T

‖zε(s)‖.

Then we can write

‖zε(T )‖ ≥ ‖zε(T ∗)‖ − L
h(ε)

ε
max

T−h(ε)≤s≤T
‖zε(s)‖ − L

h(ε)

ε
max

T−2h(ε)≤s≤T−h(ε)
‖zε(s)‖

≥ max
T−h(ε)≤s≤T

‖zε(s)‖ − L
h(ε)

ε
max

T−h(ε)≤s≤T
‖zε(s)‖ − L

h(ε)

ε
2‖zε(T − h(ε))‖

≥
(

1 − L
h(ε)

ε
− 2L

h(ε)

ε

)
max

T−h(ε)≤s≤T
‖zε(s)‖,

which yields the estimation (12) for t = T and sufficiently small ε > 0.
In what follows we make use of the estimate

max
t−2h(ε)≤s≤t

‖zε(s)‖ ≤ 4‖zε(t)‖,(13)

which is valid for all t ≥ h(ε) and sufficiently small ε > 0. With Assumption 2.1 and
(13) we can estimate

‖xε(t) − xε(t− h(ε))‖ ≤ 4h(ε)L(‖xε(t)‖ + ‖yε(t)‖)

and

‖yε(t) − yε(t− h(ε))‖ ≤ 4
h(ε)

ε
L(‖xε(t)‖ + ‖yε(t)‖).

We are in a position to formulate the delay in (11) as a regular perturbation. To this
end we write ∥∥∥f(xε(t), yε(t)) − f̃(xε(t), yε(t), xε(t− h(ε)), yε(t− h(ε)))

∥∥∥
≤ 8

h(ε)

ε
L2(‖xε(t)‖ + ‖yε(t)‖)

≤ 8
h(ε)

ε
L2(‖xε(t)‖ + ‖yε(t) − φ(yε(t))‖ + ‖φ(yε(t))‖)

≤ 8
h(ε)

ε
L2(1 + K)(‖xε(t)‖ + ‖yε(t) − φ(yε(t))‖)

and compute in the same way

‖g(xε(t), yε(t)) − g̃(xε(t), yε(t), xε(t− h(ε)), yε(t− h(ε)))‖

≤ 8
h(ε)

ε
L2(1 + K)(‖xε(t)‖ + ‖yε(t) − φ(yε(t))‖).
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Hence, the system (11) is included in the differential inclusion (3) with

κ(ε) = 8
h(ε)

ε
L2(1 + K),

and the proof is finished.
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Notation.

Id := diag[1, . . . , 1] ∈ Rd×d

0d := (0, . . . , 0)T ∈ Rd

A the ring of real analytic functions f : R → R

M the field of real meromorphic functions

A[D], M[D] the skew polynomial ring of differential polynomials with coefficients in

A, M, respectively, indeterminate D, and multiplication rule Df = fD + ḟ

CN (M,Rq) the real vector space of N -times differentiable functions f : M → Rq,

M ⊂ R an open set, N ∈ N ∪ {∞}
Cω(I,Rq) the real vector space of real analytic functions f : I → Rq,

I ⊂ R an open interval

C∞
pw(Rq) := {w ∈ C∞(R \ T,Rq) | T ⊂ R discrete}

C∞
t (Rq) := {w ∈ C∞(I,Rq) | I ⊂ R an open interval with t ∈ I}, t ∈ R

imt M := {w ∈ C∞
t (Rq) | ∃ l ∈ C∞

t (Rm) for all τ ∈ domw ∩ dom l : w(τ) = M( d
dτ

)l(τ)},
t ∈ R, M(D) ∈ M[D]q×m

imM := {w ∈ C∞
pw(Rq) | ∃ l ∈ C∞

pw(Rm) for a.a. τ ∈ domw ∩ dom l : w(τ) = M( d
dτ

)l(τ)},
M(D) ∈ M[D]q×m

kert R := {w ∈ C∞
t (Rq) | R( d

dτ
)w(τ) = 0 for all τ ∈ domw}, t ∈ R, R(D) ∈ M[D]g×q

kerR := {w ∈ C∞
pw(Rq) | R( d

dτ
)w(τ) = 0 for almost all τ ∈ R}, R(D) ∈ M[D]g×q

domw the domain of a function w

∗Received by the editors March 22, 2004; accepted for publication (in revised form) March 8,
2005; published electronically November 23, 2005.

http://www.siam.org/journals/sicon/44-5/44223.html
†Institut für Mathematik, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau,

Germany (achim.ilchmann@tu-ilmenau.de).
‡Institut für Mathematik, MA 4-5, TU Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany

(mehrmann@math.tu-berlin.de). This author’s research was supported by DFG Research Center
Matheon Mathematics for key technologies in Berlin.

1725



1726 ACHIM ILCHMANN AND VOLKER MEHRMANN

1. Introduction.

1.1. An algebraic approach and solution spaces. The aim of the present
paper is to develop a behavioral approach to linear time-varying systems described
by differential-algebraic equations of the form

R( d
dt )w = 0,(1.1)

where R(D) is a g×q polynomial matrix in the indeterminate D with real meromorphic
coefficient matrices belonging to Mg×q; we use the notation R(D) ∈ Mg×q[D].

Instead of considering real meromorphic coefficients of R(D) on the whole time
axis R, we also could develop the theory on some open interval I ⊂ R; this is omitted.

The ring M[D] is endowed with the multiplication rule

Df = fD + ḟ .(1.2)

This is a consequence of assuming the associative rule (Df)g = D(fg) for all dif-
ferentiable functions f, g which yields (Df)(g) = d

dtf · g + f · d
dtg = ( d

dtf + fD)(g).
The noncommutativity of M[D], in contrast to the commutative ring R[D] in the
time-invariant case, is crucial in the following.

Note that we distinguish between the algebraic indeterminate D and the differ-
ential operator d

dt ; for

R(D) =

n∑
i=0

RiD
i ∈ M[D]

g×q ∼= Mg×q[D],

equality in (1.1) means

n∑
i=0

Ri(t)w
(i)(t) = 0 for almost all t ∈ R.

Skew polynomial rings are, for example, treated in the monograph [6]; the ring
M[D] was introduced in [14] to study linear time-varying systems. We are interested
in the behavior introduced by all solutions of (1.1). Since the coefficients of R(D)
are meromorphic functions, we can only expect solutions which are defined “almost
globally” (see subsection 1.3). To be more precise, we allow for the solution space

C∞
pw(Rq) =

{
w ∈ C∞(R \ T,Rq)

∣∣ T ⊂ R discrete
}

of piecewise C∞-functions (see the notation) defined almost everywhere on R, and the
set

C∞
t (Rq) =

{
w ∈ C∞(I,Rq)

∣∣ I ⊂ R an open interval with t ∈ I
}
, t ∈ R,

of C∞-solution pieces on some open interval including t.
For R(D) ∈ M[D]

g×q
, we study the almost global behavior given by the kernel

representation

kerR = {w ∈ C∞
pw(Rq) |R( d

dτ )w(τ) = 0 for almost all τ ∈ R}

and the local behavior

kert R = {w ∈ C∞
t (Rq) |R( d

dτ )w(τ) = 0 for all τ ∈ domw}, t ∈ R.



TIME-VARYING LINEAR SYSTEMS, PART I 1727

1.2. Examples of system classes. Our approach generalizes results on the
following subclasses of systems:

(a) Time-varying state space systems of the form

d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(1.3)

with real analytic matrices A ∈ An×n, B ∈ An×m, C ∈ Ap×n, and F ∈ Ap×m,
are well studied; see, for example, the standard monograph [30].

(b) Time-varying descriptor systems of the form

E(t) d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(1.4)

with A ∈ A�×n, B ∈ A�×m, C ∈ Ap×n, F ∈ Ap×m, where E ∈ A�×n

is allowed to be singular in the sense that rkE(t) < min{�, n} for some
t ∈ R, have been studied by different authors. In [5] controllability and
observability were studied in terms of derivative arrays. In [2] a first behavior-
like approach to systems (1.4) with analytic coefficients was discussed. A more
general approach that allows for larger classes of coefficients and that can be
implemented also numerically was introduced in [20] and generalized partially
to the nonlinear case in [18]. A completely different approach results from the
study of differential-algebraic equations introduced in [1, 9, 19]. A general
solvability theory for nonsquare linear time-varying systems was first given in
[16] and analyzed for control problems in a behavioral context in [2, 20, 26];
see also [18] for the general nonlinear case.

(c) In [14] time-varying polynomial systems of the form

P ( d
dt )z(t) = Q( d

dt )u(t),

y(t) = V ( d
dt )z(t) + W ( d

dt )u(t),
(1.5)

where P (D), Q(D), V (D), and W (D) are matrices of size r × r, r × m,
p × r, and p × m, respectively, over M[D] are studied under the following
assumptions:

• P (D) represents a so-called full operator, i.e., if z is a real analytic
solution of P ( d

dt )z = 0 on some interval I ⊂ R, then this solution can be
analytically extended to the whole of R.

• For every u ∈ C∞(R,Rm) with bounded support to the left, there exist
some z ∈ C∞(R,Rr) and y ∈ C∞(R,Rp) so that (1.5) is satisfied.

Time-invariant polynomial (so-called Rosenbrock) systems of the form (1.5)—
i.e., P (D), Q(D), V (D), and W (D) are matrices over R[D] and detP (·) �= 0—
were introduced in [27] and are well studied; see, for example, [11, 39].

(d) Time-invariant polynomial systems in the so-called kernel representation

R( d
dt )w(t) = 0, R(D) ∈ R[D]g×q(1.6)

were introduced by Willems in [35]; see also [36, 37, 38] and the mono-
graph [24].

It is easy to see that time-varying descriptor systems (1.4) or, if E = In and
n = �, state space systems (1.3) are special cases of time-varying Rosenbrock systems
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(1.5). Furthermore, time-varying Rosenbrock systems of the form (1.5) are a special
case of systems in kernel representation (1.1): set w = [zT , uT , yT ]T and

R(D) = [R1(D), R2(D)], R1(D) =

[
P (D)
V (D)

]
, R2(D) =

[
−Q(D), 0
W (D), −Ip

]
.(1.7)

1.3. Examples of time-varying scalar differential equations. In the fol-
lowing, we present some prototypical scalar differential equations which illustrate
how time-varying coefficients may affect the solutions in very different ways. Set, for
r(D) ∈ M[D] and W a suitable solution space to be specified,

kerW r( d
dt ) := {w ∈ W | r( d

dt )w = 0}.

(i) Let r(D) = tD + 1. Then the function t �→ w(t) = t−1 is a meromorphic
solution of r( d

dt )w = t d
dtw + w = 0.

The point 0 is the only zero of the leading coefficient t �→ t of r(D), and 0 is
also a pole of t �→ w(t). Therefore,

kerA r( d
dt ) = kerC∞(R,R) r(

d
dt ) = {0},

but, for every interval I ⊂ R with 0 /∈ I,

dim kerM r( d
dt ) = dim kerA|

I

r( d
dt ) = 1 = deg r(D).

In this example, in the meromorphic case the dimension of the solution space
equals the degree of r(D). This is not true in general, as illustrated by the
following example.

(ii) Let r(D) = t2D + 1. Then the function t �→ w(t) = e1/t solves r( d
dt )w = 0.

The point 0 is again the only zero of the leading coefficient t �→ t2 of r(D),
and 0 is also a pole of t �→ w(t). But w is not meromorphic and the singularity
at t = 0 differs from (i) as follows: no matter whether the solution w in (i)
approaches 0 from the left or right, the limit at t = 0 does not exist; whereas,
for the solution w in the present example, we have limt→0− w(t) = 0 and
limt→0+ w(t) = ∞. Hence,

kerM r( d
dt ) = {0}.

For every interval I ⊂ R with 0 /∈ I we have

dim kerM|
I

r( d
dt ) = 1 = deg r(D).

(iii) Let r(D) = tD − 1. Then the function t �→ w(t) = t solves r( d
dt )w = 0 and

dim kerA r( d
dt ) = 1 = deg r(D).

Note that again the point t = 0 is the only zero of the leading coefficient
t �→ t of r(D), but this time the zero does not produce a pole of the solution,
the solution w is even a real analytic function on R. However, the solution
is not as arbitrary as for time-invariant systems, since w(0) = 0 is the only
value at t = 0.
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(iv) Let r(D) = 2tD − 1. Then the functions t �→ w+(t) =
√
t and t �→ w−(t) =√

−t solve r( d
dt )w = 0 on (0,∞) and (−∞, 0), respectively. For every interval

I ⊂ R with 0 /∈ I, we have

dim kerA|
I

r( d
dt ) = 1 = deg r(D).

However,

kerM r( d
dt ) = {0}.

The real analytic solution w+ on (0,∞) cannot be continued to (−ε,∞) for
any ε > 0.
This also proves that the attempt to connect real analytic solutions between
critical points by cutting the neighborhood and going into the complex sphere,
as suggested by Ilchmann et al. [13], does not work.1

(v) Let r(D) = (1 − t2)2 D + 2 t. Then the function

t �→ w(t) =

{
exp

{
−(1 − t2)−1

}
, t ∈ (−1, 1),

0, t ∈ R \ (−1, 1),

satisfies w ∈ kerC∞ r( d
dt ), is not real analytic, and has compact support. This

is impossible for time-invariant scalar differential equations.

1.4. An example of a mobile manipulator. Systems of differential-algebraic
equations play an important role in modeling multibody systems, electric circuits, or
coupled systems of partial differential equations; see [1, 10]. We present an application
which first shows that modeling does not necessarily lead to a state space system;
second, it illustrates a simple system where the notion of input, output, and state is
not a priori clear; and third, the example serves to illustrate the concepts introduced
in the following sections. Consider a simplified, linearized model of a two-dimensional,
three-link constrained mobile manipulator [12] as depicted in Figure 1.

The Lagrangian equations of motion take the form

M(θ) θ̈ + D(θ, θ̇) θ̇ + K(θ) = u + FT (θ)μ,

ψ(θ) = 0,
(1.8)

where θ = [θ1, θ2, θ3]
T is the vector of joint displacements, u ∈ R3 is the vector of

control torques applied at the joints, and the maps M : R3 → R3×3, D : R3 × R3 →
R3×3, and K : R3 → R3 model the mass, centrifugal and Coriolis forces, gravity,
respectively. l1, l2, l3, l > 0 are the lengths of the robot arms. The nonlinear constraint
function is ψ : R3 → R2, F = ∂ψ

∂θ , and μ ∈ R2 represents the Lagrange multipliers
and FT (θ)μ is the generalized constraint force. We are interested in the behavior, i.e.,
local solutions t �→ [θ(t)T , u(t)T ] of (1.8). It can be shown that u(·) is a latent variable;
for its definition, see [24, sect. 6.2]. Under suitable smoothness assumptions of the
involved functions, it can be shown (see, for example, [25, p. 62]) that there exists a
local (possibly global) solution θ(·) of (1.8) on some open interval I. Linearizing along
this trajectory [4] and rewriting the system in Cartesian coordinates yields a model
of the form

M0(t) z̈(t) + D0(t) ż(t) + K0(t) z(t) = S0 u(t) + FT
0 (t)μ,

F0(t) z(t) = 0,

1We are indebted to the anonymous referee of an earlier version of the present paper for pointing
out this example to us.
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Fig. 1. Three-link constrained mobile manipulator.

where M0, D0,K0 ∈ Cω(I,R3×3) and S0 ∈ R3×3, FT
0 ∈ R3×2 with S0 having full row

rank. Introducing the eight-dimensional variable x(t) = [z(t)T , ż(t)T , μ(t)T ]T results
in the equivalent descriptor system description of the form

E(t) d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t),
(1.9)

where

E(t) :=

⎡⎣I3 0 0
0 M0(t) 0
0 0 0

⎤⎦, A(t) :=

⎡⎣ 0 I3 0
−K0(t) −D0(t) FT

0 (t)
F0(t) 0 0

⎤⎦, B(t) :=

⎡⎣ 0
S0

0

⎤⎦,
and C(·) denotes a matrix with appropriate format; see [12] for explicit data. Actually,
in this example F0 does not depend on t.

1.5. Literature survey. The crucial difference between time-varying and time-
invariant ordinary, linear differential equations is that the solutions behave qualita-
tively considerably different. Whereas any local solution of a time-invariant system
is always extendable to a global analytic solution, solutions of time-varying systems
may have finite escape times. Simple examples have been presented in subsection 1.3.
All algebraic contributions to time-varying systems struggle with this difficulty.

Early algebraic contributions to time-varying systems in polynomial descriptions
are given in [15, 40, 41]; however, the assumptions on the system classes are rather
restrictive.



TIME-VARYING LINEAR SYSTEMS, PART I 1731

In [7], matrices over the ring of linear differential operators k[D] are considered,
where k is a differential field. Linear dynamics are finitely generated left k[D]-modules.
This contribution is rather on the algebraic side; the solution space is not specified.
In [29] contributions to duality of systems in the setup of [7] for systems in generalized
state space representation are given; however, the solution space is not specified either.

An important contribution by Fröhler and Oberst [8] has the following back-
ground: Consider the simple examples given in subsection 1.3. It can be shown that
the local solution (t �→ 1/t) ∈ ker(t d

dt + 1) can be extended to a distribution be-

longing to D′(R,R); however, (t �→ exp(1/2t2)) ∈ ker(t3 d
dt + 1) cannot be extended

to a distribution belonging to D′(R,R). Hence enlarging the solution space to allow
for distributions on R does not necessarily resolve the problem, even in the simple
case when the coefficients of the time-varying systems are polynomials. However, if
the solution space is enlarged even further to allow for Sato’s hyperfunctions, i.e.,
generalized distributions introduced in [31, 32], then [8] considers systems of the form
(1.1), respectively, behavior in the kernel representation kerR, where the coefficient
matrices of the polynomial R(D) are defined over rational analytic functions

f(·)
g(·) for f, g ∈ C[t] with g(t) �= 0 for all t ∈ I.

Note that by multiplication with a least common multiple of all denominators of
the coefficients, the coefficients of R(D) are polynomials. Based on the seminal pa-
per [22], where an algebraic analytic approach is developed to show a categorical
duality between the solution spaces of linear partial differential equations with con-
stant coefficients and certain polynomial modules associated to them, a generalization
to time-varying but ordinary differential equations is achieved in [8].

The skew polynomial ring M[D] was first exploited by [14] to describe time-
varying linear systems. This ring is nice in the sense that it is simple (i.e., the only
two-sided ideals are the trivial ones) and admits right- and left-Euclidean division.
Hence matrices over the ring can be transformed into the Teichmüller–Nakayama
normal form; see section 2. The latter is the essential tool in [14] to study time-varying
Rosenbrock systems of the form (1.5). The solution space is the set of C∞-functions on
the whole time axis; this is ensured by the assumption that imQ( d

dt ) ⊂ imP ( d
dt ) and,

most importantly, that P (D) is a “full” operator, i.e., every local analytic solution of
P ( d

dt )z = 0 is extendable to a global analytic solution on the whole of R. The latter is
a rather restrictive assumption. To overcome this assumption, in [13] a first approach
in the spirit of the present paper was presented for scalar systems. A behavioral
approach to a certain class of time-varying systems was presented in [3].

A completely different approach results from the study of differential-algebraic
equations introduced in [1, 9]. A general solvability theory for nonsquare linear time-
varying systems was first given in [16] and analyzed for control problems in a behav-
ioral context in [2, 20, 26]; see also [18] for the general nonlinear case, and a latest
monograph [19].

This paper is organized as follows. In section 2, the algebraic tools, such as the
Teichmüller–Nakayama normal form, and some facts on the behavior are collected.
In section 3, we introduce and characterize algebraically the concept of controllable
behavior for the kernel and image representation. The relationship between behavior,
controllable, and autonomous behavior is investigated in section 4. In section 5,
observability is defined, it is related via the adjoint of the kernel representation to the
controllable behavior, and it is characterized algebraically. Finally, in section 6 we
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investigate the elimination of latent variables.

2. Behavior. In this section we present the Teichmüller–Nakayama normal form
for matrices over M[D]. This will be the main tool for analyzing kert R. To this end
we recall some results on matrices over the skew polynomial ring M[D]; a standard
reference for this is [6]. M[D] is simple, i.e., the only ideals which are right and
left ideals at the same time are the trivial ones; the rank of a matrix over M[D] is
unambiguous, since column rank and row rank coincide; the Teichmüller–Nakayama
normal form is the analogue of the Smith normal form for matrices over the commuta-
tive ring R[D]; it is simpler for matrices over M[D], since the class of transformations
is larger. W (D) ∈ M[D]n×n is called unimodular if and only if there exists some
W (D)−1 ∈ M[D]n×n such that W (D)W (D)−1 = In; two elements q1, q2 ∈ M[D] are
similar if and only if q1a = bq2 for some a, b ∈ M[D] for which q1 and b (q2 and a)
are left (right) coprime. For example, a(D) = D and b(D) = D − 1/t are similar:
[D+ (t2 − 1)/t]a(D) = b(D) [D+ t] and D+ (t2 − 1)/t, b(D) are right coprime, a(D),
D + t are left coprime. Moreover, this example shows that a unique factorization
of the ring elements cannot be expected. However, Ore [23] has shown that the de-
gree of similar polynomials coincide. The latter property is crucial for determining
dimensions of solution spaces.

A proof and an interesting historical description of the following normal form can
be found in [6, Chap. 8]. The proof is constructive, using elementary matrices and
Euclidean division. So if the coefficients consist of real polynomials R[t], then it is
possible to calculate a normal form by means of computer algebra.

Theorem 2.1 (Teichmüller–Nakayama normal form). Any R(D) ∈ M[D]g×q

with rkM[D] R(D) = � can be factorized into

R(D) = U(D)−1

⎡⎣I�−1 0 0
0 r(D) 0
0 0 0(g−�)×(q−�)

⎤⎦V (D)−1,(2.1)

where U(D) and V (D) are M[D]-unimodular matrices of sizes g and q, respectively,
and r(D) ∈ M[D] is nonzero, unique up to similarity, and of unique degree.

Remark 1. Let R(D) ∈ M[D]g×q and consider the factorization (2.1).

(i) Then we have, for almost all t ∈ R,

for all w ∈ C∞
t (Rq) :

[
w ∈ kert R ⇐⇒ w ∈ kert

([
I�−1

r

∣∣∣∣ 0�×q

]
V −1

)]
.

Hence we may assume, without restriction of generality, that R(D) has full
row rank.

(ii) The set kert R becomes a real vector space if endowed, for w1, w2 ∈ kert R,
with addition

(w1 + w2)(τ) := w1(τ) + w2(τ) for all τ ∈ domw1 ∩ domw2

and obvious scalar multiplication. The dimension of this vector space is
defined as
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dim kert R

:= sup

{
k ∈ N

∣∣∣∣∣ ∃w1, . . . , wk ∈ kert R linearly independent on

k⋂
i=1

domwi

}
.

Furthermore,

dim kert R =

{
deg r(D) for almost all t ∈ R if rkR(D) = q,

∞ for all t ∈ R if rkR(D) < q.

The latter is a simple consequence of (2.1) and the fact that the set of t where
r( d

dt )ϕ(t) = 0 does not have a solution is a subset of {t ∈ R | rN (t) = 0},
where r(D) =

∑N
i=0 ri(t)D

i, rN �≡ 0. To see this, use the canonical transfor-
mation to a vector-valued differential equation of first order; see, for example,
[34, Chap. IV].

(iii) Let T = T(R,U, V, r) denote the union of all zeros and poles of the meromor-
phic coefficients in all nonzero entries of U(D), U(D)−1, V (D), V (D)−1, and
r(D). Certainly, T is a discrete set which depends on the factorization and
hence is not unique. T encompasses all possible critical points where a finite
escape may occur (see the examples in subsection 1.3); however, T might be
much larger. We gain system theoretic information from the normal form
but may also hide information: consider, for example, a state space system of
the form (1.3). Then this system does not have any critical points; however,
taking it into a normal form may introduce a possibly nonempty set T. It is
an open problem to determine an algorithm for the transformation into the
Teichmüller–Nakayama normal form which produces a “minimal” set T.
However, there are situations where it is possible to determine a set includ-
ing all critical points without invoking algebraic transformations, as in the
Teichmüller–Nakayama normal form: For general linear and nonlinear de-
scriptor systems, it has been shown in [16, 17, 18, 20] that for sufficiently
often differentiable coefficient functions there exist invariants (corresponding
to ranks of submatrices) which are independent of the choice of transforma-
tion matrices, and the set of points where these quantities jump includes all
critical points.

(iv) If R(D) is not left invertible, then the set of points where the local behavior
is nontrivial, i.e., {t ∈ R | kert R �= {0}}, is discrete.

Remark 2. Suppose that R(D) has constant coefficients, i.e., R(D) ∈ R[D]g×q.
(i) If the class of unimodular transformations for the computation of the normal

form (2.1) is restricted to R[D]-unimodular matrices, then we arrive at the
Smith normal form

R(D) = U(D)−1

[
diag{r1(D), . . . , rl(D)} 0�×(q−�)

0(g−�)×� 0(g−�)×(q−�)

]
V (D)−1,(2.2)

where U(D) and V (D) are R[D]-unimodular matrices of sizes g and q, re-
spectively, and ri(D) ∈ R[D] are nonzero monic polynomials with ri|ri+1, i =
1, . . . , � − 1, where � = rkR[D] R(D) and ri(D) = ψi(D)/ψi−1(D), ψ0(·) ≡ 1,
and ψi(D) is the greatest common divisor of minors of order i of R(D); see,
for example, [28, pp. 91–93].
Note that due to the smaller class of transformations, the Smith normal form
is less simple than the Teichmüller–Nakayama normal form.
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(ii) Suppose in addition that rkR[D] R(D) = q. Then every local solution w ∈
CN
t (Rq) of R( d

dt )w = 0, where N is sufficiently large depending on degR(D)
and the degrees of the transformation matrices, can be continued to a global
solution on R and is even real analytic. This follows immediately from the
Smith normal form (2.2) and the theory of linear time-invariant differential
equations. Therefore, we may identify kert R = kerR for any t ∈ R, and it
follows that dim kert R =

∑�
i=1 deg ri(D) for all t ∈ R.

Remark 3. Suppose that R(D) ∈ M[D]g×q has full rank and g ≤ q. Let R(D)
be factorized as in (2.1) and differently into

R(D) = Ū(D)−1

[
Ig−1

r̄(D)

∣∣∣∣ 0g×(q−g)

]
V̄ (D)−1.(2.3)

Then a simple algebraic manipulation shows that

V̄ (D)−1V (D) =

[
W1(D) 0
W3(D) W4(D)

]
,(2.4)

where W1(D) ∈ M[D]g×g and W4(D) ∈ M[D](q−g)×(q−g) are unimodular, and where
W3(D) ∈ M[D](q−g)×g.

3. Controllability. In this section we introduce, study, and characterize the
concept of controllability of systems (1.1). This is a generalization of the behavioral
concept introduced by Willems [35]; see also [24].

Definition 3.1. Let R(D) ∈ M[D]g×q and t ∈ R. A local subbehavior Bt of
kert R, i.e., a subset Bt ⊂ kert R, is called locally controllable at t ∈ R if and only if
for every w1, w2 ∈ Bt and every t0 ∈ (−∞, t)∩domw1 there exist t1 ∈ domw2∩(t,∞)
and w ∈ Bt such that

w(t) =

{
w1(t), t ∈ (−∞, t0] ∩ domw1,

w2(t), t ∈ [t1,∞) ∩ domw2.

A behavior B =
⋃

t∈R
Bt, Bt ⊂ kert R, is called controllable almost everywhere

if and only if Bt is locally controllable for almost all t ∈ R. Since kert R is a
real vector space by Remark 1(ii), the family of its linear subspaces may be partially
ordered by inclusion, and thus constitutes a lattice with respect to + and ∩. Hence
kercontr

t R ⊂ kert R as largest controllable local behavior of kert R is well defined. The
set kercontr R =

⋃
t∈R

kercontr
t R is called the largest controllable behavior of kerR.

This concept is illustrated in Figure 2.
Remark 4.

(i) Loosely speaking, controllability means that any two trajectories w1, w2 ∈
kert R can be connected by another trajectory w ∈ kert R so that in finite time
w1 moves via w into w2. A similar notion of controllability via trajectories
was introduced in [11] for time-invariant Rosenbrock systems of the form
(1.5). For time-invariant state space systems of the form (1.3), the concept
of controllability coincides with the one introduced in [24, sect. 5.2].

(ii) Since kert R is a linear subspace, the trajectory w2 in Definition 3.1 may be
replaced, without restriction of generality, by w2 = 0.

We are now in position to prove the main theorem of this section, which charac-
terizes controllability in algebraic terms. Recall that R(D) is called right invertible
if and only if there exists some R#(D) ∈ M[D]q×g such that R(D)R#(D) = Ig. In
view of Remark 1(i) we assume that R(D) has full row rank.
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Fig. 2. Local controllability at t.

Theorem 3.2. Let R(D) ∈ M[D]g×q have full row rank. Then the behavior
kerR is controllable almost everywhere if and only if R(D) is right invertible.

Proof. Suppose that R(D) is factorized as in (2.1) and let T = T(R,U, V, r) denote
the discrete set given in Remark 1(iii). Then it remains to show that kert R is locally
controllable at t ∈ R \ T if and only if r(D) is a nonzero meromorphic function.

“⇒”: Suppose that deg r(D) ≥ 1 and t ∈ R\T. By [34, Chap. IV] there exists an
open interval I ⊂ R \ T with t ∈ I and some nonzero real analytic solution ϕ : I → R

which solves r( d
dt )ϕ = 0. By the construction of T and letting eg denote the gth

canonical basis vector in Rq, it follows that

ŵ1 := V ( d
dt )ϕeg ∈ Cω(I,Rq)

and solves R( d
dt )ŵ

1 = 0.
Seeking a contradiction, suppose that kert R were locally controllable at t ∈ R.

Let t0 ∈ (−∞, t) ∩ I. Then there exist t1 ∈ (t,∞) and w ∈ kert R such that

w(t) =

{
w1(t), t ∈ (−∞, t0] ∩ domw1,

0, t ∈ [t1,∞).
(3.1)

Therefore,

diag
{
1, . . . , 1, r( d

dt ), 0, . . . , 0
}
V ( d

dt )
−1w = 0 for all t ∈ domw,

which yields

V ( d
dt )

−1w =: [0, . . . , 0, ϕg, . . . , ϕq]
T ∈ Cω(domw,Rq)

and r( d
dt )ϕg(t) = 0 for all t ∈ domw. By (3.1) we have ϕg(t) = 0 for all t ∈ [t1,∞),

and since ϕg is real analytic, the identity property of real analytic functions gives
ϕ ≡ ϕg ≡ 0, which is a contradiction.

“⇐”: Let t ∈ R \ T, let r(D) be meromorphic and nonzero, and let w1 ∈ kert R.
Then there exists some open interval I := (τ0, τ1) ⊂ (R \ T) ∩ domw1 with t ∈ I such
that

w1 =: V ( d
dt ) [0, . . . , 0, ϕg+1, . . . , ϕq]

T ∈ C∞(I,Rq).

Choose δ ∈ C∞(R,R) such that

δ(t) =

{
1, t ≤ τ0,

0, t ≥ τ1.
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Then

w := V ( d
dt ) δ [0, . . . , 0, ϕg+1, . . . , ϕq]

T ∈ C∞(I,Rq)

satisfies R( d
dt )w = 0 and

w(t) =

{
w1(t), t ≤ τ0,

0, t ≥ τ1.

This completes the proof.

For time-invariant systems (1.1), Theorem 3.2 is derived differently in [24, Thm.
5.2.10].

Remark 5. For time-varying systems (1.3) or (1.5), it is well known that con-
trollability of the system yields that it can be controlled in arbitrary short time. The
proof of Theorem 3.2, in particular the choice of (τ0, τ1) and δ, shows that this is
also valid for the behavior kert R: If kert R is controllable, then t0 < t and t1 > t in
Definition 3.1 can be replaced by any t′0 < t < t′1 arbitrary close to t.

In the following remark we recall the classical concept of controllability for time-
varying state space systems and clarify the set of admissible input functions.

Remark 6. Controllability for state space systems (1.3) means (see, for example,
[33, Def. 3.1.6]) that for any x0, x1 ∈ Rn and t0 ∈ R, there exist t1 > t0 and a
continuous function u : [t0, t1] → Rm such that

x(t) = (Lu)(t) := Φ(t, t0)x
0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ, t ∈ [t0, t1],

satisfies x(t1) = x1. Here Φ denotes the transition matrix of the homogeneous system
ẋ = Ax.

Using the fact that the set of C∞-functions with support in [t0, t1] lies dense,
with respect to the L1-norm, in the set of piecewise continuous functions with sup-
port included in [t0, t1], it follows from a straightforward modification of the proof of
Lemma A2 in [14] that, for all t ∈ (t0, t1),{

(Lu)(t)
∣∣ u ∈ C∞((t0, t1),R

m)
}

=
{
(Lu)(t)

∣∣ u : [t0, t1] → Rm piecewise continuous with suppu ⊂ [t0, t1]
}
.

Therefore, although in the original definition u is required to be continuous, we may
choose, without any restriction of generality, u ∈ C∞(R,Rm) with suppu ⊂ [t0, t1].

In the following proposition, it is shown how controllability encompasses other
well-established controllability concepts.

Proposition 3.3. Consider a time-varying Rosenbrock system of the form (1.5)
with corresponding R(D) as defined in (1.7), and suppose that R(D) has full row rank.
Then the following conditions are equivalent:

(i) kerR is controllable almost everywhere.
(ii) [P (D),−Q(D)] is right invertible.
(iii) ker[P,Q] is controllable almost everywhere.
(iv) (1.5) is controllable in the sense defined in [14].
(v) If R(D) represents a time-invariant Rosenbrock system (1.5), then (1.5) is

controllable in the sense defined in [11].
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(vi) If R(D) represents a state space system (1.3) with corresponding R(D) as de-
fined in (1.7), then (1.3) is controllable in the classical sense as, for example,
given in [33, Def. 3.1.6].

Proof. The equivalences “(i) ⇔ (ii) ⇔ (iii)” follow from Theorem 3.2 and simple
algebraic manipulations; “(ii) ⇔ (iv)” follows from [14, Thm. 6.4]. “(ii) ⇔ (v)” follows
from [11, Cor. 7.3]. It remains to prove that the classical concept of controllability as
given in Remark 6 is encompassed in the behavioral setup. It is easy to see that (iii)
implies (vi), and we omit the proof. To prove the converse, suppose that (vi) holds.
Then for given

(xi, ui) ∈ C∞(R,Rn) × C∞(R,Rm) such that d
dtx

i(t) = A(t)xi(t) + B(t)ui(t), i = 1, 2,

and given t0 ∈ R, we need to find

(x, u) ∈ C∞(R,Rn) × C∞(R,Rm), so that d
dtx(t) = A(t)x(t) + B(t)u(t),

and t1 > t0 such that

(x(t), u(t)) =

{(
x1(t), u1(t)

)
for all t ≤ t0,(

x2(t), u2(t)
)

for all t ≥ t1.
(3.2)

Let x̄1 = x1(t0) and, for arbitrary but fixed t1 > t0, let x̄2 = x2(t1). Then by (vi) we
may choose û ∈ C∞(R,Rm) with supp û ⊂ [t0, t1] such that

x(t) = Φ(t, t0)x̄1 +

∫ t

t0

Φ(t, τ)B(τ)û(τ)dτ satisfies x(t2) = x̄2.

Define, for all t ∈ R,

u(t) =

⎧⎪⎨⎪⎩
u1(t) for all t ≤ t0,

û(t) for all t ∈ (t0, t1),

u2(t) for all t ≥ t1

and x(t) = Φ(t, t0)x̄1 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ.

Then (x, u) satisfies ẋ = Ax+Bu and (3.2). The function u is in general not infinitely
many times differentiable at t0 or at t1, but applying Remark 6, one may replace û
so that u ∈ C∞(R,Rm). This completes the proof.

Next we study, for R(D) ∈ M[D]g×q, the relationship between the local kernel
representation kert R and the local image representation at t ∈ R, i.e., for some
M(D) ∈ M[D]q×m, the real vector space

imt M := {w ∈ C∞
t (Rq) | ∃ l ∈ C∞

t (Rm) for all τ ∈ domw ∩ dom l : w(τ) = M( d
dt ) l(τ)}.

Proposition 3.4. Let R(D) ∈ M[D]g×q have full row rank. kerR is controllable
almost everywhere if and only if there exist m ∈ N and M(D) ∈ M[D]q×m such that
kert R = imt M for almost all t ∈ R.

Proof. Suppose R(D) is factorized as in (2.1) and let T denote the discrete set
given in Remark 1. By Theorem 3.2 it remains to show that r(D) is a nonzero
meromorphic function if and only if kert R = imt M for all t ∈ R \ T.

“⇒”: Set

M(D) := V (D)

[
0g×(q−g)

Iq−g

]
.
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Then imt M ⊂ kert R for all t ∈ R \ T is immediate. If w ∈ kert R for t ∈ R \ T, then
r(D) being nonzero and meromorphic yields[

Ig
∣∣ 0g×(q−g)

]
V ( d

dt )
−1w(t) = 0 for all t ∈ domw ∩ (R \ T),

and so there exists l ∈ C∞
t (Rm) such that

V ( d
dt )

−1w =

[
0g×(q−g)

I(q−g)

]
l.

“⇐”: Let t ∈ R \ T and choose an open interval I ⊂ (R \ T) with t ∈ I. Seeking
a contradiction, by Theorem 3.2 one may assume that deg r(D) ≥ 1. Comparing the
gth components of the identical vector spaces{

w ∈ C∞(I,Rq)

∣∣∣∣ [Ig−1

r( d
dt )

∣∣∣∣ 0g×(q−g)

]
V ( d

dt )
−1w = 0

}
and {w ∈ C∞(I,Rq) | ∃ l ∈ C∞(I,Rm) : w = M( d

dt )l} yields that

dim{(V ( d
dt )

−1w(t))g | w ∈ C∞(I,Rq) ∧ r( d
dt )(V ( d

dt )
−1w(t))g = 0}

= dim{(V ( d
dt )

−1M( d
dt )l(t))g | l ∈ C∞(I,Rm)}.

However, the former has finite dimension deg r(D) ≥ 1, while the latter is zero-
dimensional or has infinite dimension. This is a contradiction, and hence the proof of
the proposition is complete.

Proposition 3.4 is known for time-invariant systems; see [24, Thm. 6.6.1]. How-
ever, the different proof presented here might also be of interest in the time-invariant
case.

In the following proposition we show how to present the largest controllable be-
havior in terms of the nonunique factorization (2.1).

Proposition 3.5. If R(D) ∈ M[D]g×q is factorized as in (2.1), then we have

kercontr
t R = {w ∈ kert R | [Ig, 0g×(q−g)]V ( d

dt )
−1w = 0} for almost all t ∈ R.

Proof. Since [Ig, 0g×(q−g)]V (D)−1 is right invertible, it follows from Theorem 3.2
that

kerct R := {w ∈ kert R | [Ig, 0]V ( d
dt )

−1w = 0}

is a controllable behavior almost everywhere. Therefore, we have to show that
kercontr

t R ⊂ kerct R almost everywhere. Let T denote the union of all zeros and poles
of the meromorphic coefficients in all entries of U(D), U(D)−1, V (D), V (D)−1, r(D),
Ū(D), Ū(D)−1, V̄ (D), V̄ (D)−1, and r̄(D). Then T is a discrete set. Let w ∈ kercontr

t R
for t ∈ R \ T. Choose an open interval I ⊂ T with t ∈ I. Then

V ( d
dt )

−1w =: [0, . . . , 0, ϕg, . . . , ϕq]
T ∈ C∞(I,Rq) and r( d

dt )ϕg = 0.

The function ϕg, as a solution of a linear ordinary differential equation with real
analytic coefficients on I, is real analytic on I itself. Therefore, the normal form (2.1)
and the identity property of analytic function yields ϕg ≡ 0. This proves w(t) =
V ( d

dt ) [0, . . . , 0, ϕg+1, . . . , ϕq]
T ∈ kerct R.
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If R(D) is factorized as in (2.3), then by Remark 3 one concludes that

[Ig, 0] V̄ ( d
dt )

−1w = [Ig, 0]

[
W1(

d
dt ) 0

W3(
d
dt ) W4(

d
dt )

]
V ( d

dt )
−1w = [W1(

d
dt ), 0]V ( d

dt )
−1w,

and the result follows, since W1(D) is unimodular. This completes the proof.
Example 1. Revisiting example (1.9), we now can show that this system is locally

controllable almost everywhere.
Without loss of generality, we may assume that the coordinate system for the

Lagrange multipliers is such that F0 = [F1 0] with nonsingular F1 ∈ R2×2, and we
partition

−K0 =

[
K11(t) K12(t)
K21(t) K22(t)

]
, M0 =

[
M11(t) M12(t)
M21(t) M22(t)

]
, −D0 =

[
D11(t) D12(t)
D21(t) D22(t)

]
,

and

S0 =

[
S1

S2

]
,

with K11(t),M11(t), D11(t),∈ R2×2, S1 ∈ R2×3, and all other formats accordingly.
Then the system (1.9), for t ∈ I, may be written as⎡⎢⎢⎢⎢⎣

I2 0 0 0 0
0 1 0 0 0
0 0 M11(t) M12(t) 0
0 0 M21(t) M22(t) 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 0 I2 0 0
0 0 0 1 0

K11(t) K12(t) D11(t) D12(t) FT
1

K21(t) K22(t) D21(t) D22(t) 0
F1 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0
0
S1

S2

0

⎤⎥⎥⎥⎥⎦u.

Since F1 is nonsingular and S1, S2 are constant matrices of full row rank, it follows
that x1 = 0 and ẋ1 = 0, whence x3 = 0. Therefore, (1.9) is equivalent to

⎡⎣ D −1 02×1 0
−K12(t) M12(t) −F1 S1

−K22(t) M22(t) 0 S2

⎤⎦
⎡⎢⎢⎣
x2

x4

x5

u

⎤⎥⎥⎦ = 0,

with corresponding right invertible matrix R(D). By Theorem 3.2, the system (1.9)
is locally controllable almost everywhere on I.

4. Autonomous behavior. In this section we show that the local behavior (in
the sense almost everywhere) can be decomposed into the direct sum of the control-
lability subspace and an autonomous subspace.

Definition 4.1. Let R(D) ∈ M[D]g×q and t ∈ R. A local subbehavior Bt ⊂
kert R is called autonomous if and only if for any w1, w2 ∈ Bt with w1 ≡ w2 on
some open interval I ⊂ domw1 ∩ domw2 with t ∈ I it follows that w1 ≡ w2 on
domw1 ∩ domw2.



1740 ACHIM ILCHMANN AND VOLKER MEHRMANN

A behavior B =
⋃

t∈R
Bt ⊂ kert R is called autonomous if and only if Bt is

autonomous for almost all t ∈ R.

The above definition is a generalization of autonomous subbehavior of time-
invariant systems as, for example, defined in [24, p. 67].

Proposition 4.2. Consider R(D) ∈ M[D]g×q with factorization (2.1) and
rkR(D) = g. Then for any autonomous behavior keraut R, the following properties
hold:

(i) keraut
t R ∩ kercontr

t R = {0} for almost all t ∈ R.
(ii) If w ∈ keraut

t R, then [
Ig−1

r( d
dt )

]
V ( d

dt )
−1w = 0.

(iii) {
w ∈ C∞

t (Rq)

∣∣∣∣ [Ig−1

r( d
dt )

]
V ( d

dt )
−1w = 0

}
is an autonomous behavior for almost all t ∈ R.

(iv) The behavior kerR is autonomous if and only if R(D) has full column rank.

Proof. (i) If w ∈ keraut R and w �≡ 0, then it cannot belong to the controllable
behavior; otherwise Definition 4.1 would be violated.

(ii) By (i) and Proposition 3.5, any w ∈ keraut
t R satisfies [0(q−g)×g, Iq−g]V ( d

dt )
−1w

= 0. Hence (ii) follows from (2.1).

(iii) Let T denote the discrete set given in Remark 1 and let t ∈ R\T. If w ∈ kert R
and satisfies [

Ig−1

r( d
dt )

]
V ( d

dt )
−1w = 0,

then (2.1) yields that w is of the form

w = V ( d
dt ) [0, . . . , 0, ϕg, 0, . . . , 0]

T

for some ϕg ∈ C∞
t (R) with r( d

dt )ϕg = 0. Since r has real analytic coefficients, the
solution is real analytic, too, and the identity property of real analytic functions
ensures local uniqueness of w as in Definition 4.1. This completes the proof.

(iv) This statement follows immediately from the definition and from Theo-
rem 2.1.

Note that the representation of the autonomous behavior in Proposition 4.2(iii)
is not uniquely defined; it depends on the factorization (2.1). This holds true already
for time-invariant systems; see [24, Rem. 5.2.15]. However, the dimension of this
autonomous behavior is unique; this follows from the fact that r(D) is unique up to
similarity, and the latter preserves the degree; see Theorem 2.1. For time-invariant
systems (1.1), the results of Proposition 4.2 can be found in [24, sect. 5.2]. More
importantly, the sum of an autonomous behavior and the controllable behavior is
indeed uniquely defined. In the following we generalize this result to time-varying
systems.
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Theorem 4.3. Consider the system R( d
dt )w = 0 with R(D) ∈ M[D]g×q and

rkR(D) = g, factorizations (2.1), (2.3), and define, for all t ∈ R,

kercontr
t R = {w ∈ kert R |

[
Ig, 0g×(q−g)

]
V ( d

dt )
−1w = 0},

keraut
t R =

{
w ∈ kert R

∣∣∣∣ [Ig−1

r( d
dt )

]
V ( d

dt )
−1w = 0

}
,

ker
aut

t R =

{
w ∈ kert R

∣∣∣∣ [Ig−1

r̄( d
dt )

]
V̄ ( d

dt )
−1w = 0

}
,

where the latter is defined with respect to (2.3). Then

kert R = keraut
t R⊕ kercontr

t R = ker
aut

t R⊕ kercontr
t R for almost all t ∈ R.(4.1)

Proof. Let T denote the union of all zeros and poles of the meromorphic coef-
ficients in all entries of U(D), U(D)−1, V (D), V (D)−1, r(D) and Ū(D), Ū(D)−1,
V̄ (D), V̄ (D)−1, r̄(D). T is a discrete set. In the following we consider t ∈ R \ T and
an open interval I ⊂ T with t ∈ I. We proceed in several steps.

Step 1. By Proposition 4.2(i) the sums in (4.1) are direct sums.
Step 2. The inclusion

kert R ⊃ keraut
t R⊕ kercontr

t R

follows from the definition of keraut
t R and kercontr

t R.
Step 3. We show

kert R ⊂ keraut
t R⊕ kercontr

t R.(4.2)

Let w ∈ kert R and set

[ϕ1, . . . , ϕq]
T

:= V ( d
dt )

−1w ∈ C∞(I; Rq).

Then [
Ig−1

r( d
dt )

]
V ( d

dt )
−1w = 0,

and hence

[ϕ1, . . . , ϕq]
T

= [0, . . . , 0, ϕg, 0, . . . , 0]
T

with r( d
dt )ϕg = 0.

Finally

w1 := V ( d
dt )

−1 [0, . . . , 0, ϕg, 0, . . . , 0]
T ∈ keraut

t R,

w2 := V ( d
dt )

−1 [0, . . . , 0, ϕg+1, . . . , ϕq]
T ∈ kercontr

t R

yields w1 + w2 = w, whence (4.2).
Step 4. We show

keraut
t R⊕ kercontr

t R ⊂ ker
aut

t R⊕ kercontr
t R.

Let w1 ∈ keraut
t R and w2 ∈ kercontr

t R. Then

[0, . . . , 0, ϕg, 0, . . . , 0]
T

:= V ( d
dt )

−1w1 ∈ C∞(I; Rq) with r( d
dt )ϕg = 0,

[0, . . . , 0, ϕg+1, . . . , ϕq]
T

:= V ( d
dt )

−1w2 ∈ C∞(I; Rq).
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Since w := w1 + w2 ∈ kert R, it follows from (2.3) that

V̄ ( d
dt )

−1w = [0, . . . , 0, ϕ̄g, . . . , ϕ̄q]
T ∈ C∞(I; Rq) with r( d

dt )ϕ̄g = 0.

Finally, setting

w̄1 := V̄ ( d
dt )

−1 [0, . . . , 0, ϕ̄g, 0, . . . , 0]
T ∈ ker

aut
R,

w̄2 := V̄ ( d
dt )

−1 [0, . . . , 0, ϕ̄g+1, . . . , ϕ̄q]
T ∈ B

contr

R

shows w = w̄1 + w̄2 ∈ ker
aut

t R⊕ kercontr
t R.

Step 5. The inclusion

keraut
t R⊕ kercontr

t R ⊃ ker
aut

t R⊕ kercontr
t R

follows by symmetry as in Step 4. This completes the proof of the theorem.

5. Observability. In this section, we study how one behavior can be observed
from another. Essential for this are the concepts of adjoints of matrices over M[D]
and the adjoint of a kernel representation kerR.

Definition 5.1. The adjoint for matrices over M[D] is defined as

·ad : Mn×m[D] → Mm×n[D],

k∑
i=0

PiD
i �→

(
k∑

i=0

PiD
i

)ad

:=

k∑
i=0

(−1)iDiPT
i .

Proposition 5.2. The adjoint is an anti-isomorphism; i.e., it is surjective, in-
jective, and satisfies, for arbitrary matrices P (D), Q(D) over M[D] with appropriate
formats,

[P (D) + Q(D)]ad = P (D)ad + Q(D)ad,(5.1)

[P (D) ·Q(D)]ad = Q(D)ad · P (D)ad.(5.2)

Proof. Surjectivity, injectivity, and addition are straightforward. It remains to
prove the antimultiplication rule (5.2). This is well known in the scalar case; see,
for example, [21, p. 25]. To prove the matrix case, denote the entries of P (D) ∈
Mn×m[D], Q(D) ∈ Mm×l[D] by pij(D), qij(D), respectively. Then

P (D)ad =
(
pji(D)ad

)
1≤i≤n, 1≤j≤m

, Q(D)ad =
(
qji(D)ad

)
1≤i≤m, 1≤j≤l

and applying this to

(
P (D) ·Q(D)

)
ij

=

k∑
λ=1

piλ(D)qλj(D)

and using the antimultiplication rule (5.2) for scalar polynomials yield the result. This
completes the proof.

Definition 5.3. Let R(D) ∈ M[D]g×q and let t ∈ R. The local adjoint of the
kernel representation kert R is the image representation imt R

ad, i.e., (kert R)ad =
imt R

ad.
Certainly, the projection onto the first q components of the kernel representation{

(w̃, l) ∈ C∞
t (Rq) × C∞

t (Rg)

∣∣∣∣ for all τ ∈ dom w̃ ∩ dom l :

[
Iq, R( d

dτ )ad
] [

w̃(τ)
l(τ)

]
= 0

}
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yields the image representation imt R
ad.

The following definition is a straightforward generalization of observability for
time-invariant systems in the behavioral setup; see [24, Def. 5.3.2].

Definition 5.4. Let [R1(D), R2(D)] ∈ M[D]g×(q1+q2) and let t ∈ R. Then
w2 ∈ C∞

t (Rq2) is called locally observable at t ∈ R from w1 ∈ C∞
t (Rq1) for t ∈ R if

and only if [
w1

w2

]
,

[
w1

w̃2

]
∈ kert[R1, R2]

implies that

for all τ ∈ domw2 ∩ dom w̃2 : w2(τ) = w̃2(τ).

An algebraic characterization of observability is given in the following theorem.
Theorem 5.5. Let [R1(D), R2(D)] ∈ M[D]g×(q1+q2). Then w2 is locally observ-

able almost everywhere from w1 if and only if R2(D) is left invertible.
Proof. First note that in view of the linearity of the system, it remains to show

that for almost all t ∈ R we have[
w2 ∈ kert R2 =⇒ w2 = 0

]
⇐⇒ R2(D) is left invertible.

“⇐” is immediate.
“⇒”: Let T denote the discrete set of the union of all zeros and poles of the mero-

morphic coefficients in all entries of U2(D), U2(D)−1, V2(D), V2(D)−1, r2(D) which
take R2(D) into a normal form (2.1).

Seeking a contradiction, suppose R2(D) is not left invertible and let t ∈ T. Now
either rkM[D] R2(D) < q2 (in which case the normal form (2.1) applied to R2(D)
yields the existence of some w2 ∈ kert R2 with w2 �= 0) or, again by Theorem 2.1,
there exist r2(D) ∈ M[D] with deg r2(D) ≥ 1 and unimodular U2(D) ∈ M[D]g×g,
V2(D) ∈ M[D]q2×q2 such that

U2(D)−1R2(D)V2(D)−1 =

⎡⎣ Iq2−1 0(q2−1)×1

01×(q2−1) r2(D)
0(g−q2)×(q2−1) 0

⎤⎦.(5.3)

By deg r2(D) ≥ 1 there exists ϕ ∈ C∞
t (R)\{0} such that r2(

d
dt )ϕ = 0. Therefore w2 :=

(0, . . . , 0, ϕ)T ∈ kert R2, which is a contradiction. This completes the proof.
The following theorem relates the concepts of controllability and observability.
Theorem 5.6. For R(D) ∈ M[D]g×q the following two statements are equiva-

lent:
(i) The behavior kerR is locally controllable almost everywhere.
(ii) The variable l is locally observable almost everywhere from w with respect to

the behavior induced by

[
Iq, R

ad
](w

l

)
= 0.

Proof. By Theorem 3.2, statement (i) is equivalent to R(D) being right invertible,
which, by Proposition 5.2, is equivalent to R(D)ad being left invertible. The latter is,
by invoking Proposition 5.5, equivalent to assertion (ii). This completes the proof of
the theorem.



1744 ACHIM ILCHMANN AND VOLKER MEHRMANN

In order to relate the classical concepts of observability known in the literature to
observability as introduced above, we have to permute the columns in the presentation
(1.5), (1.7) in the following proposition.

Proposition 5.7. For a time-varying Rosenbrock system of the form (1.5) rep-
resented in the form

R(D) = [R1(D), R2(D)], R1(D) =

[
−Q(D), 0
W (D), −Ip

]
, R2(D) =

[
P (D)
V (D)

]
,

the following conditions are equivalent:
(i) w2 is locally observable from w1 almost everywhere with respect to the behavior

induced by [
R1(

d
dt ), R2(

d
dt )

](w1

w2

)
= 0.

(ii) R2(D) is left invertible.
(iii) [R1(D), R2(D)] is observable in the sense defined in [14].
(iv) If R(D) represents a time-invariant Rosenbrock system, then it is observable

in the sense defined in [11].
(v) If R(D) represents a state space system (1.3) in the form

R1(D) =

[
−B 0
−F Ip

]
, R2(D) =

[
DIn −A

−C

]
,

then it is observable in the classical sense; see, for example, [30].
Proof. The equivalence “(i) ⇔ (ii)” follows from Theorem 5.5. The equivalences

“(ii) ⇔ (iii)” and “(ii) ⇔ (iv)” follow from [14, Thm. 6.5] and [11, Cor. 7.6], respec-
tively. They all can be shown directly, but only for state space systems we prove
“(i) ⇔ (v)” directly; it shows how observability in the classical sense and in the be-
havioral setup are related. Note that in the case of time-varying state space systems
and time-invariant Rosenbrock systems the set of critical points T is empty, and the
system is defined on the whole time axis.

Complete observability for time-varying state space systems of the form (1.3)
means (see [30, Def. 9.7]) that for any open interval I ⊂ R we have[

d
dtIn −A(t)

−C(t)

]
z(t) = 0 for all t ∈ I =⇒ z(t) = 0 for all t ∈ I.(5.4)

(5.4) is equivalent to R2(D) being left invertible, and hence “(i) ⇔ (v)” follows from
Theorem 5.5. This completes the proof of the theorem.

Example 2. Revisiting Example 1, see also (1.9), with

C =

[
0 0 I2 0 0
0 0 0 1 0

]
(5.5)

corresponding to measuring the positions, we see that the resulting matrix[
E(t)D −A(t)

C

]
is left invertible if and only if the matrix⎡⎣ D −1 0

−K12(t) M12(t)D −F1

−K22(t) M22(t)D 0

⎤⎦
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is left invertible over the ring M[D], which holds if and only if K22(t) is nonzero. The
latter is typically the case in practice, since the stiffness matrix K0(t) is symmetric
and positive definite. An application of Theorem 5.5 yields the following: x is locally
observable from (u, y) at t with respect to the system (1.9), (5.5) if and only if K22(t)
is nonzero.

6. Latent variables and elimination. In [24, sect. 6.2], full and manifest
behavior is considered for time-invariant systems. We do not repeat these definitions
for time-varying systems but show a time-varying version of the crucial Theorem 6.2.6
in [24].

Theorem 6.1. Let [R(D), S(D)] ∈ M[D]g×(q+s). Then there exists R′(D) ∈
M[D]g

′×q such that, for almost all t ∈ R,

kert R
′ = {w ∈ C∞

t (Rq) | ∃ l ∈ C∞
t (Rq)

for all τ ∈ domw ∩ dom l : R( d
dτ )w(τ) = S( d

dτ )l(τ)}.
(6.1)

Proof. By Theorem 2.1, there exists some unimodular U(D) ∈ M[D]g×g such
that

U(D)R(D) =

[
R′(D)
R′′(D)

]
, U(D)S(D) =

[
0

S′′(D)

]
,

where R′(D) ∈ M[D]g
′×q, R′′(D) ∈ M[D]g

′′×q, S′′(D) ∈ M[D]g
′′×s, and rkM[D] S

′′(D)
= g′′.

Applying Theorem 2.1 again, there exist M[D]-unimodular matrices U(D) and
V (D) of sizes g′′ and s, and r(d) ∈ M[D] such that

S′′(D) = U(D)−1

[
Ig′′−1 0

0 r(D)

∣∣∣∣ 0g′′×(q−g′′)

]
V (D)−1.

Choose T as the discrete set of the union of all zeros and poles of the meromorphic
coefficients in all entries of U(D), V (D), U(D)−1, V (D)−1, r(D). Let I be an open
interval with I ⊂ R \ T and t ∈ I.

Then, for all τ ∈ I,

R( d
dτ )w(τ) = S( d

dτ )l(τ) ⇐⇒
[
R′( d

dτ ) 0

R′′( d
dτ ) S′′( d

dτ )

] [
w(τ)
l(τ)

]
.

Hence the inclusion “⊃” in (6.1) is obvious. To show “⊂” in (6.1), let w ∈ kert R
′ for

t ∈ I. Let l̃g′′ ∈ C∞(I,R) denote the solution of

r
(

d
dτ

)
l̃g′′(τ) =

(
U
(

d
dτ

)
S′′( d

dτ

)
w(τ)

)
g′′ on I.

This solution exists; see, for example, [34, Chap. IV]. Setting

l := V [0, . . . , 0, l̃g′′ ]T

yields

U( d
dτ )R′′( d

dτ )w( d
dτ ) =

[
Ig′′−1 0

0 r(D)

∣∣∣∣ 0g′′×(q−g′′)

]
V ( d

dt )
−1l(τ),
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which is equivalent to R( d
dτ )w(τ) = S( d

dτ )l(τ). This completes the proof of the
theorem.

As an “inverse” to Proposition 3.4, we show that any image representation of a
behavior may be written as a kernel representation.

Corollary 6.2. Let M(D) ∈ M[D]q×m. Then there exist g ∈ N and R′(D) ∈
M[D]g×q such that

imt M = kert R
′ for almost all t ∈ R.

Proof. Apply Theorem 6.1 to [R(D), S(D)] = [Iq,M(D)].
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While the results of the present paper were reviewed, Eve Zerz [42] wrote, based
on our findings, a much more elegant algebraic approach where she partially achieves
the present results with shorter proofs and also characterizes behaviors included in
each other.
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1. Introduction. In [12], a behavioral approach was developed for linear time-
varying systems with real analytic coefficients. In this paper, this approach will be
studied for the specific case of linear time-varying descriptor systems described by
differential-algebraic equations of the form

E(t) ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(1.1)

with real analytic matrices A ∈ Al×n, B ∈ Al×m, C ∈ Ap×n, F ∈ Ap×m, where
E ∈ Al×n is allowed to be singular in the sense that rk E(t) < min{l, n} for some
t ∈ R. Throughout this paper, the nomenclature as introduced and listed in [12] will
be used.

As in [12], we make use of the skew-polynomial rings A[D] and M[D] (see [6, 13])
of differential polynomials with coefficients in A, M, respectively, and indeterminate
D representing the differential operator d

dt , and the multiplication rule Df = fD + ḟ .
The algebraic object

R(D) =

n∑
i=0

RiD
i ∈ M[D]

g×q ∼= Mg×q[D]

acts on C∞-functions w via

R( d
dt )w(t) =

n∑
i=0

Ri(t)w
(i)(t) .

In this notation, time-varying descriptor systems (1.1) may be rewritten as

R( d
dt )w = 0,(1.2)
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where

R(D) =

[
ED −A −B 0
−C −F Ip

]
, and w =

[
xT , uT , yT

]T
.

Systems of differential algebraic equations (often called descriptor systems) play
an important role in modelling and control of multibody systems, electric circuits, or
coupled systems of partial differential equations; see [1, 9].

The analysis of the behavior of (1.1) has to cope with three essential difficulties.
First, the solutions of time-varying systems may exhibit critical points, i.e., a finite
escape time. Second, descriptor systems behave quite differently from classical state
space systems (i.e., E = In in (1.1)). For state space systems, the function u(·) can be
considered as an input function free to choose, and initial conditions can be arbitrary.
This is in general not true for descriptor systems (1.1), since descriptor systems may
contain algebraic constraints, which restrict the solutions, the set of possible inputs,
and also the initial values to some manifold. Third, some of the constraints that arise
(the hidden constraints) are not explicit and thus it is not clear how to choose the
underlying spaces for the descriptor variables x, u, y. Finally, the analytic property of
the solution or behavior is local, which is in contrast to the global algebraic properties
of R(D). These difficulties are illustrated by the following example.

Example 1.

(i) The scalar differential equations tẋ = −x, t2ẋ = −x, tẋ = x, have local
solutions t �→ t−1, e1/t, t, respectively. Hence at t = 0 the solution might be
rational with a pole, not even analytic, or does not have any pole, respectively.

(ii) The variables x1, . . . , x4, u1, u2 of the descriptor system (1.1) with

E =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0 0
1 0
0 1
0 0

⎤⎥⎥⎦ ,

C =
[

0 0 0 1
]
, F = 01×2

satisfy the equivalent description

u2 = 0, ẋ2 = x1, y = x4, ẋ3 = x2 + u1 .

Thus, u2 is constrained to be 0 and cannot be freely chosen, as it could in the
case of state space systems. The variables x1 and x4 can be viewed as input
or state variables; the system description does not determine this.
Note also that if we choose the input u1 as a step function, then either x3

is chosen as input as well to compensate the delta distribution in u1 (since
x1 = ẋ2 = ẍ3−u̇1), or we may have to enlarge the solution space to allow that
x1 is a delta distribution. But even if we do so, then we have the problem
that x1 is not observable from the output y, which means that internally
the system has impulsive parts of the solution, which are not observed. For
many types of practical systems, such as, for example, mechanical systems,
this would be a disaster: impulses in the solution cannot be tolerated.

Example 1 indicates that the behavioral viewpoint, where state-, output-, and input-
variables are not distinguished, seems the appropriate concept for the analysis of
descriptor systems. The behavioral approach has been introduced by Willems [25, 26,
27, 28]; see also the textbook [21] and [12] for a general presentation.
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Motivated by Example 1 and as introduced in [12], we study, for R(D) ∈ M[D]
g×q

,
local solutions of R( d

dt )w = 0 belonging to

C∞
t (Rq) :=

{
w ∈ C∞(I,Rq)

∣∣ I ⊂ R an open interval with t ∈ I
}
, t ∈ R ,

as the almost global behavior given by the kernel representation

kerR =
{
w ∈ C∞

pw(Rq)
∣∣R( d

dτ )w(τ) = 0 for almost all τ ∈ R
}
.

The local behavior

kert R =
{
w ∈ C∞

t (Rq)
∣∣R( d

dτ )w(τ) = 0 for all τ ∈ dom w
}
, t ∈ R,

becomes a real vector space if endowed, for w1, w2 ∈ kert R, with addition

(w1 + w2)(τ) := w1(τ) + w2(τ) ∀τ ∈ domw1 ∩ domw2 ,

and obvious scalar multiplication.
We also have to consider those points of the real axis, where the local solution is

no longer extendable.
Definition 1.1. Consider the descriptor system (1.2). The set of critical points,

where the solution is not defined, is given by

Tcrit
R :=

⎧⎪⎪⎨⎪⎪⎩t′ ∈ R

∣∣∣∣∣∣∣∣
there exists, for some ε > 0, a C∞ function
w : (t′ − ε, t′) → Rq or w : (t′, t′ + ε) → Rq

which solves (1.2) and cannot be extended to
(t′ − ε, t′] or [t′, t′ + ε) , respectively.

⎫⎪⎪⎬⎪⎪⎭(1.3)

Note that for the three differential equations in Example 1(i), the sets of critical
points are {0}, {0}, ∅, respectively.

Since E in (1.1) is real analytic, it follows that for almost all t̂ ∈ R, the rank of
the matrix E(t̂) ∈ Rl×m is equal to rkA E, and the set of critical points is a discrete
set. It is an open problem to characterize the set of critical points. However, we will
determine discrete sets which include all critical points.

We define the appropriate behavior, i.e., the solution space, of (1.2) on the time-
axis R\T, where T is discrete and includes the set of critical points of (1.2). Control-
lability and observability are defined in terms of trajectories (descriptor variables),
which is a conceptual generalization of controllability and observability for state space
systems. For these systems in [5] controllability and observability have been studied
in terms of derivative arrays. In [4] a first behavior-like approach for analytic coef-
ficients has been discussed. A more general approach that allows for larger classes
of coefficients and that can also be implemented numerically has been introduced in
[16]. In [11] a first approach in the spirit of the present paper was presented for
scalar systems. A completely different approach results from the study of differential-
algebraic equations; see [1, 8, 17]. A general solvability theory for nonsquare linear
time-varying systems was first given in [15] and analyzed for control problems in a
behavioral context in [4, 18, 22]; see also [16] for the general nonlinear case. In these
papers, however, mainly the concept of regularization has been discussed, i.e., the
problem of finding appropriate feedback that makes the system regular and also de-
creases the index. Here we consider controllability and observability in the behavioral
context.
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This paper is organized as follows. In section 2, we define critical points and fol-
low the concepts of [15, 22] by deriving condensed forms for time-varying descriptor
systems (1.2) to determine sets covering the critical points. In section 3, controllabil-
ity is defined, algebraically characterized, and related to the well-known concepts of
controllability. In section 4, we apply results from [12] and briefly discuss autonomous
behavior and observability for descriptor systems.

2. Condensed forms. In this section, condensed forms with respect to state
and input transformations are studied for time-varying descriptor systems (1.2). The
condensed form allows us to classify the solution sets and to identify the constraint
manifolds for the variables. These forms are akin to the forms derived in [4, 17, 18].

The construction of the condensed forms is based on the computation of analytic
singular value decompositions that were introduced in [2] for analytic matrices and
that are also valid for real analytic matrices. This result states that for a matrix
function A ∈ Al×n there exist real orthogonal matrix functions U ∈ Al×l, V ∈ An×n

and a diagonal matrix Σ ∈ Ar×r, where r = rkA, such that

UTAV =

[
Σ 0
0 0

]
.

It should be noted, though, that, in contrast to the usual singular value decomposition
for matrices, the diagonal elements of Σ(t), in general, cannot be chosen positive or
in descending order. In this way, however, the analytic singular value decomposition
is not uniquely defined. Essentially, there is freedom to perform orthogonal trans-
formations in the spaces associated with multiple singular values. This freedom can
be removed by choosing minimal variation curves or by always choosing the analytic
singular value decomposition to be closest to a reference point [3, 20].

Theorem 2.1. Consider a time-varying descriptor system of the form (1.2) with

R(D) =

[
ED −A −B 0
−C −F Ip

]
∈ A[D](l+p)×(n+m+p) .

(i) There exist orthogonal matrices U1 ∈ Al×l, V1 ∈ An×n so that[
U1 0
0 Ip

]
R(D)

[
V1 0
0 Im+p

]
(2.1)

corresponds to the descriptor system

Σd ẋ1 = A11 x1 + A12 x2 + A13 x3 + B1 u,
0 = A21 x1 + Σa x2 + B2 u,
0 = A31 x1 + B3 u,
0 = A41 x1,
0 = 0l−ν ,
y = C1 x1 + C2 x2 + C3 x3 + F u,

(2.2)

where Σd ∈ Ad×d,Σa ∈ Aa×a are diagonal and invertible over M with d =
rkE, and B3 ∈ Aγ×m, A41 ∈ Af×d with full row rank; i.e., γ = rkB3,
f = rkA41, and ν = d + a + γ + f . All matrices are real analytic and of
conforming formats.
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(ii) There exist orthogonal matrices U2 ∈ Al×l, V2 ∈ An×n,W ∈ Ap×p, Z ∈
Am×m so that

[
U2 0
0 W

]
R(D)

⎡⎣V2 0 0
0 Z 0
0 0 Ip

⎤⎦(2.3)

corresponds to the following descriptor system in condensed form:

Σd ẋ1 = A11x1 + A12x2 + A13x3 + A14x4 + A15x5 + B11u1 + B12u2,

0 = A21x1 + Σax2 + B21u1 + B22u2,

0 = A31x1 + Σγu1,

0 = Σfx5,(2.4)

0 = 0l−ν ,

y1 = C11x1 + C12x2 + Σωx3 + C15x5 + F11u1 + F12u2,

y2 = C21x1 + C22x2 + C25x5 + F21u1 + F22u2,

where Σd,Σa,Σγ ,Σf ,Σω are diagonal matrices that are invertible over M
and have sizes d, a, γ, f, ω, respectively. Furthermore, ν = d + a + γ + f and
all matrices are real analytic and of conforming formats.

(iii) There exist matrices U ∈ A(l−p)×(l−p), V ∈ Mn×n invertible over M, X ∈
Mp×(l−p), W ∈ Ap×p orthogonal, Z ∈ Am×m orthogonal, a scalar function
σ ∈ A, and a permutation matrix P ∈ A(n+m)×(n+m) so that

(2.5) R̃(D) :=

[
U 0
X W

]
R(D)

[
P 0
0 Ip

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σDId − Ã11 −Ã13 −Ã14 −B̃12 0 0 0 0 0

0 0 0 Σ−1
a B̃22 Ia 0 0 0 0

0 0 0 0 0 If 0 0 0

Σ−1
γ Ã31 0 0 0 0 0 Iγ 0 0

0 0 0 0 0 0 0 0 0

0 −Σω 0 −σ−1F̃12 0 0 0 Iω 0

−σ−1C̃21 0 0 −σ−1F̃22 0 0 0 0 Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

corresponds to the meromorphic descriptor system in standard condensed
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form

σIdẋ1 = Ã11x1 + [Ã13, Ã14, B̃12]

⎡⎣ x3

x4

u2

⎤⎦ ,

⎡⎣ x2

x5

u1

⎤⎦ =

⎡⎣ 0 0 0 −Σ−1
a B̃22

0 0 0 0

−Σ−1
γ Ã31 0 0 0

⎤⎦
⎡⎢⎢⎣

x1

x3

x4

u2

⎤⎥⎥⎦ ,

[
y1

y2

]
=

[
0

σ−1C̃21

]
x1 +

[
Σω 0 σ−1F̃12

0 0 σ−1F̃22

]⎡⎣ x3

x4

u2

⎤⎦ ,

(2.6)

where

σ(t) := det Σd(t) det Σa(t) det Σγ(t) det Σf (t) for all t ∈ R ,(2.7)

and all matrices are real analytic and of conforming formats. The integers
d, a, γ, ω, f are invariants of (1.2).

Proof. The proof is constructive using a sequence of real analytic singular value
decompositions. When multiplying with D, we will always use the product rule with-
out saying so.

(i) Consider the first equation of (1.1) and choose orthogonal matrices Ũ ∈
Al×l, Ṽ ∈ An×n so that

[R̃(D),−B̃] = Ũ [ED −A,−B]

[
Ṽ 0
0 Im

]
=

[[
Σd 0
0 0

]
D −

[
Ã11 Ã12

Ã21 Ã22

]
,

[
B̃1

B̃2

]]
,

where Σd ∈ Ad×d with d = rkE is diagonal.
Next, choose orthogonal matrices Ū ∈ A(l−d)×(l−d), V̄ ∈ A(n−d)×(n−d) so that

[R̄(D), −B̄] =

[
Id 0
0 Ū

]
[R̃(D),−B̃]

⎡⎣ Id 0 0
0 V̄ 0
0 0 Im

⎤⎦
=

⎡⎣⎡⎣ Σd 0 0
0 0 0
0 0 0

⎤⎦D −

⎡⎣ Ā11 Ā12 Ā13

Ā21 Σa 0
Ā31 0 0

⎤⎦ ,

⎡⎣ B̄1

B̄2

B̄3

⎤⎦⎤⎦ ,

where Σa ∈ Aa×a is diagonal and invertible over M. Finally, choose an orthog-
onal Û ∈ A(l−d−a)×(l−d−a), so that [

Id+a 0

0 Û
][R̄(D),−B̄] has the form (2.2) with

B3 ∈ Aγ×m, γ = rkB3 = rk B̄3, and A41 ∈ Af×d, f = rkA41. Performing all
the transformations also on C and partitioning analogously shows (2.2).

(ii) We apply the so-called index reduction process as introduced in [18] to (2.4):
Fix f variables of x1, corresponding to some f linearly independent columns of A41,
i.e., choose a unitary matrix Q ∈ Ad×d such that A41Q = [Aα

41, A
β
41] with Aα

41 ∈ Af×f

is invertible over M. Then

0 = A41x1 = Aα
41x

α
1 + Aβ

41x
β
1 ,

[
xα

1

xβ
1

]
:= Qx1,
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and so

ẋα
1 = −(Aα

41)
−1Aβ

41ẋ
β
1 − d

dt

(
(Aα

41)
−1Aβ

41

)
xβ

1 .

Inserting ẋα
1 into the differential equation of (2.2) leaves d− f differential equations.

Note that we may have introduced meromorphic functions by the inverse of Aα
41 and

its derivative. A multiplication from the left with a real analytic function yields a
description in the form (1.1); however, the d differential equations have been reduced
to d− f differential equations and we may apply part (i) again. This index reduction
process stops after finitely many iterations, and we arrive at the following condensed
form:

Σd ẋ1 = Â11x1 + Â12x2 + Â13x3 + Â14x4 + B̂1u,

0 = Â21x1 + Σax2 + B̂2u,

0 = Â31x1 + B̂3u,
0 = + Σfx4,
0 = 0l−ν ,

y = Ĉ1x1 + Ĉ2x2 + Ĉ3x3 + Ĉ4x4 + Fu,

(2.8)

where Σd,Σa,Σf are diagonal matrices, invertible over M, and of sizes d, a, f , respec-

tively, and B̂3 ∈ Aγ×m has full row rank over A.

As a final step we perform an analytic singular value decomposition of Ĉ3, B̂3,
respectively, and derive (2.4).

(iii) Using the fact that the fourth equation in (2.4) implies that x5 ≡ 0, which
can be extended even at points where Σf is singular, we can eliminate all terms
invoking x5 from all the other equations. This corresponds to multiplying (2.4) from
the left first by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id −A12Σ
−1
a −[B11 −A12Σ

−1
a B21]Σ

−1
γ 0 0 0 0

0 Ia −B21Σ
−1
γ 0 0 0 0

0 0 Iγ −A15Σ
−1
f 0 0 0

0 0 0 If 0 0 0
0 0 0 0 Il−ν 0 0
0 −C12Σ

−1
a −F11Σ

−1
γ 0 0 Iω 0

0 −C22Σ
−1
a −F21Σ

−1
γ 0 0 0 Ip−ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and then by [

σΣ−1
d 0

0 Il−d+p

]
and from the right by⎡⎢⎢⎣

Id 0 0 0
−[A21 −B21Σ

−1
γ A31]Σ

−1
a Ia 0 0

−C11Σ
−1
ω 0 Iγ 0

0 0 0 I(n−ν+f+m+p)×(n−ν+f+m+p)

⎤⎥⎥⎦ ,
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yielding the transformed system

σ ẋ1 = Ã11x1 + Ã13x3 + Ã14x4 + B̃12u2,

0 = Σax2 + σ−1B̃22u2,

0 = Ã31x1 + Σγu1,

0 = Σfx5,(2.9)

0 = 0l−v,

y1 = Σωx3 + σ−1F̃12u2,

y2 = σ−1C̃21x1 + σ−1F̃22u2,

where all matrices are real analytic. This proves (2.6).
Remark 1.

(i) If the descriptor system (1.2) is time-invariant, then all transformations in
Theorem 2.1 may be chosen as constant matrices and σ = 1. In this case, the
condensed forms in Theorem 2.1 are well known; see, for example [3].

(ii) To derive (2.2), only an orthogonal transformation on the variables x in (2.1)
has been applied. To derive (2.4), the transformations on the variables x and
u have not been mixed.
To derive (2.6), we have used nonsingular transformations on x and orthogo-
nal transformations on u. If we allow further linear combinations (which for
classical systems where y, x, and u are fixed a priori as outputs, states, and
controls, respectively, correspond to state feedback or output feedback), then
we can simplify (2.6) further by removing blocks such as Ã31 or by intro-
ducing almost everywhere invertible diagonal blocks in diagonal positions of
the transformed matrices E or A. Note that the transformation of derivative
feedback is not an equivalence transformation, because under derivative feed-
back the characteristic quantities d, a, γ, f, w are not invariants and hence the
properties of the system may be altered by this transformation completely;
see [18].

(iii) The description (2.6) is not quite of the form (1.1), since the coefficients of
x1 and u2 in y1 and y2 may have poles at the zeros of σ.

(iv) An immediate consequence of (2.6) is that the variables in x1 represent cou-
plings between algebraic equations and differential equations that are not
influenced by u1. Systems where such couplings between differential equa-
tions and algebraic equations occur are typically called high index systems.
For a detailed discussion of different index concepts see [1, 8, 17]

(v) The transformation leading to (2.6) does not invoke any differentiation of u.
Hence, if the variables denoted by u are classified as inputs a priori, then no
extra differentiability conditions for these variables arise; see [4, 18].

(vi) The condensed forms (2.1), (2.4), and (2.6) allow us to detect candidates for
critical points, given by

Tcrit
R ⊂ TR := {t′ ∈ R |σ(t′) = 0} .(2.10)

As can be seen from the first system considered in Example 1(i), the set
Tcrit
R = ∅ can be a strict subset of TR = {0}.

(vii) The reader may wonder why we display equations of the form 0 = 0 in the
condensed form. These arise typically when automatic modelling systems are
used and describe redundant equations in the system.
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To characterize controllability we will need the following staircase form which
generalizes the staircase form of Van Dooren [24] to systems with analytic coefficient
matrices.

Lemma 2.2. For real analytic matrices A ∈ An×n, B ∈ An×m there exist orthog-
onal matrices P ∈ An×n and Q ∈ Am×m so that

P
[

DIn −A,−B
] [ PT 0

0 Q

]
(2.11)

=

⎡⎢⎢⎢⎢⎢⎢⎣

DIn1 −A11 −A12 · · · −A1,s−1 −A1,s −B1 0

−[Â21, 0]
. . .

...
... 0 0

. . .
. . . −As−2,s−1

...
...

...

−[Âs−1,s−2, 0] DIns−1 −As−1,s−1 −As−1,s 0 0
0 · · · 0 0 DIns −As,s 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where n1 ≥ n2 ≥ · · · ≥ ns−1 ≥ ns ≥ 0, ns−1 > 0, and B1 ∈ An1×n1 and Âi,i−1 ∈
Ani×ni are invertible over M for i = 1, . . . , s− 1.

Proof. A constructive proof is given by the following generalization of the so-
called Staircase Algorithm to systems with real analytic coefficients. Whenever we
use Σ in the following, it denotes a diagonal matrix.

Step 0. Choose orthogonal UB ∈ An×n, VB ∈ Am×m so that

B = UT
B

[
ΣB 0
0 0

]
VB ∈ An×m with invertible ΣB ∈ An1×n1 ,

and set

A0 := UBAUT
B + U̇BU

T
B =

[
A11 A12

A21 A22

]
with A21 ∈ A(n−n1)×n1 ,

B0 := UBBVB =

[
ΣB 0
0 0

]
.

Then, using the product rule, we have

UB

[
DIn −A,−B

] [ UT
B 0
0 V

]
=
[

DIn −A0,−B0

]
.

Step 1. If n1 < n and A21 �= 0, then choose orthogonal U21 ∈ A(n−n1)×(n−n1),
V21 ∈ An1×n1 so that

A21 = U21

[
Σ21 0
0 0

]
V T

21 ∈ A(n−n1)×n1 with invertible Σ21 ∈ An2×n2 ,

and set

P1 :=

[
V T

21 0
0 UT

21

]
,

A1 := P1A0P
T
1 + Ṗ1P

T
1 =

⎡⎢⎢⎣
∗ ∗ ∗

Σ21 0 ∗
0 0 ∗

⎤⎥⎥⎦+

⎡⎣ V̇ T
21V21 0

0 U̇T
21U21

⎤⎦ ,

B1 := V T
21ΣB ,

B̃1 :=

[
B1 0
0 0

]
∈ An×n .
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Using the product rule, for some Ã32 ∈ A(n−n1−n2)×n2 this gives

P1

[
DIn −A0,−B0

] [ PT
1 0
0 Im

]
=
[

DIn −A1,−B̃1

]

=

⎡⎢⎢⎣ DIn −

⎡⎢⎢⎣
∗ ∗ ∗

[Σ21, 0] ∗ ∗
0 Ã32 ∗

⎤⎥⎥⎦ ,−

⎡⎢⎢⎣
B1 0

0 0

0 0

⎤⎥⎥⎦
⎤⎥⎥⎦.

Step 2. If n1 + n2 < n and Ã32 �= 0, then choose orthogonal matrices U32 ∈
A(n−n1−n2)×(n−n1−n2), V T

32 ∈ An2×n2 so that

Ã32 = U32

[
Σ32 0
0 0

]
V T

32 ∈ A(n−n1−n2)×n2 with invertible Σ32 ∈ An3×n3 ,

and set

P2 := diag
{
In1 , V

T
32, U

T
32

}
,

Â21 := V T
32Σ21,

A2 := P2A1P
T
2 + Ṗ2P

T
2

=

⎡⎢⎢⎣
∗ ∗ ∗

V T
32[Σ21, 0] ∗ ∗

0 UT
32Ã32V32 ∗

⎤⎥⎥⎦+

⎡⎢⎢⎣
0 0 0

0 V̇ T
32V32 0

0 0 U̇T
32U32

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗

Â21 0 ∗ ∗ ∗

0 0 Σ32 0 ∗
0 0 0 0 ∗

⎤⎥⎥⎥⎥⎥⎦ .

Then, for some Ã43 ∈ A(n−n1−n2−n3)×n3 ,

P2P1

[
DIn −A0,−B0

] [ PT
1 PT

2 0
0 Im

]
=
[

DIn −A2,−B̃1

]

=

⎡⎢⎢⎢⎢⎢⎢⎣ DIn −

⎡⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗ ∗

Â21 0 ∗ ∗ ∗ ∗

0 0 Σ32 0 ∗ ∗
0 0 0 0 Ã43 ∗

⎤⎥⎥⎥⎥⎥⎥⎦ ,−

⎡⎢⎢⎢⎢⎢⎣
B1 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦ .

Step 3. In the remainder of the proof we proceed analogously as in Step 2
and terminate after finitely many steps with the form (2.11). This completes the
proof.
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Example 2. As an example consider the model of a two-dimensional, three-link
constrained mobile manipulator studied in [10]; see also [12]. This model leads, after
linearization along a trajectory, to a system of the form

M0(t) z̈(t) + D0(t) ż(t) + K0(t) z(t) = S0 u(t) + FT
0 μ(t),

F0 z(t) = 0 ,
(2.12)

where M0, D0,K0 ∈ Cω(I,R3×3) and S0, F
T
0 ∈ R3×2 with S0 having full rank. In-

troducing the eight-dimensional variable x(t) = [z(t)T , ż(t)T , μ(t)T ]T results in the
equivalent descriptor system description (1.1) with F ≡ 0,

E(t) =

⎡⎣I3 0 0
0 M0(t) 0
0 0 0

⎤⎦ , A(t) =

⎡⎣ 0 I3 0
−K0(t) −D0(t) FT

0

F0 0 0

⎤⎦ , B ≡

⎡⎣ 0
S0

0

⎤⎦ ,(2.13)

and the specification of C is left open for the time being.

The critical points of (2.13) include those values of t where the mass matrix M0(t)
changes rank. This happens, for example, when two arms of the manipulator are in
one straight line.

Without loss of generality (by using an appropriate permutation of the basis),
we may assume that the coordinate system for the Lagrange multipliers is such that
F0 = [F1 0] with nonsingular F1 ∈ R2×2 and if we partition

−K0 =

[
K11(t) K12(t)
K21(t) K22(t)

]
, M0 =

[
M11(t) M12(t)
M21(t) M22(t)

]
,

−D0 =

[
D11(t) D12(t)
D21(t) D22(t)

]
, S0 =

[
S1

S2

]
,

with K11(t),M11(t), D11(t), S1 ∈ R2×2 and all other formats accordingly, then system
(2.13) may be written as

⎡⎢⎢⎢⎢⎣
I2 0 0 0 0
0 1 0 0 0
0 0 M11(t) M12(t) 0
0 0 M21(t) M22(t) 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 0 I2 0 0
0 0 0 1 0

K11(t) K12(t) D11(t) D12(t) FT
1

K21(t) K22(t) D21(t) D22(t) 0
F1 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0
0
S1

S2

0

⎤⎥⎥⎥⎥⎦u.

Since F1 is constant and nonsingular, we obtain x1 = 0 and ẋ1 = 0. Inserting this
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and changing the order of equations and blocks leads to⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 M11(t) M12(t) 0 0
0 M21(t) M22(t) 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ẋ2

ẋ3

ẋ4

ẋ5

ẋ1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 0 1 0 0

K12(t) D11(t) D12(t) FT
1 0

K22(t) D21(t) D22(t) 0 0
0 0 0 0 F1

0 I2 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x2

x3

x4

x5

x1

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0
S1

S2

0
0

⎤⎥⎥⎥⎥⎦u.

We can repeat the reduction process once more by using that x3 = 0, and hence
ẋ3 = 0, which gives a system⎡⎢⎢⎢⎢⎣

1 0 0 0 0
0 M22(t) 0 0 0
0 M12(t) 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ẋ2

ẋ4

ẋ3

ẋ5

ẋ1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 1 0 0 0

K22(t) D22(t) 0 0 0
K12(t) D12(t) 0 FT

1 0
0 0 0 0 F1

0 0 I2 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x2

x4

x3

x5

x1

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0
S2

S1

0
0

⎤⎥⎥⎥⎥⎦u.

Since the mass matrix M0 is positive definite almost everywhere, we can eliminate
the block M12 and obtain the system⎡⎢⎢⎢⎢⎣

1 0 0 0 0
0 M22(t) 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ẋ2

ẋ4

ẋ3

ẋ5

ẋ1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0

K22(t) D22(t) 0 0 0

K̃12(t) D̃12(t) 0 FT
1 0

0 0 0 0 F1

0 0 I2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x2

x4

x3

x5

x1

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
S2

S̃1

0
0

⎤⎥⎥⎥⎥⎥⎥⎦u.(2.14)

This system is essentially (apart from diagonal matrices Σ) in the condensed form
(2.2), with

Σd =

[
1 0
0 M22(t)

]
, Σa =

⎡⎣ 0 FT
1 0

0 0 F1

I2 0 0

⎤⎦ , B2 =

⎡⎣ S̃1

0
0

⎤⎦ .

It is then obvious how the more refined forms (2.4) and (2.6) can be determined.
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3. Controllability. In this section we discuss the concept of controllability for
descriptor systems of the form (1.2). Recall that (local) controllability for general sys-
tems of the form R( d

dt )w = 0, where R(D) ∈ M[D]g×q, is introduced in [12, Def. 3.1]
and discussed in [12, Rem. 3.2].

Remark 2. For descriptor systems with constant coefficients, several different
controllability concepts have been introduced; see [3, 7, 19].

(i) System (1.1) with constant coefficients is called
R-controllable iff rk [λE −A,B] is full for all λ ∈ C ,

I-controllable iff rk [E,AS∞, B] is full,
where S∞ spans the kernel of E ,

strongly controllable iff the system is R-controllable and I-controllable.
We stress that these algebraic characterizations are sometimes misleading in
the literature, since it is sometimes assumed that the rank of [E,B] is full
and sometimes not.
It follows that if system (1.1) is square and time-invariant (thus, in particular,
l = n), then system (1.1) is I-controllable if and only if n−(d+a+γ+f) = 0.
The constants a, d, f, γ are defined in Theorem 2.1(ii). I-controllability is
related to regularization and index reduction; i.e., in particular it is needed
to avoid impulsive solutions in the case of nondifferentiable input functions.
In our framework this concept is not relevant.

(ii) If the descriptor system (1.2) is time-varying, then [12, Def. 3.1] is new; see
[5, 22, 18] for a discussion of different controllability concepts for time-varying
descriptor systems.

(iii) For time-invariant state-space systems, i.e. (1.1) with E = In, the algebraic
conditions can be checked numerically via the Staircase Algorithm of [24]. In
a similar fashion Lemma 2.2 may be used to check controllability for time-
varying systems.

(iv) For time-invariant systems (1.2), [12, Def. 3.1] corresponds to the concept of
R-controllability. This follows from Theorem 3.1 below.

Theorem 2.1 and Lemma 2.2 put us in a position to characterize controllability of
time-varying descriptor systems (1.2).

Theorem 3.1. Consider a time-varying descriptor system (1.2) and assume that
R(D) has full row rank over M[D]. Consider the condensed form (2.6) and σ as
defined in (2.7). Set, for notational convenience,

G(t) := Ã11(t) , S(t) := [Ã13(t), Ã14(t), B̃12(t)] , v(t) := [x3(t)
T , x4(t)

T , u2(t)
T ]T .

Then the following conditions are equivalent:

(i) (1.2) is locally controllable almost everywhere.
(ii) R(D) is right invertible over M[D].
(iii) (2.3), respectively (2.4), is locally controllable almost everywhere.
(iv) R̂(D) := [σDId −G, S] is right invertible over M[D].
(v) In the staircase form (2.11) of the pair [DId − G, S], the lower block is not

present; i.e., ns = 0.
(vi) There exists a discrete set T ⊂ R such that for every[

x0
1

v0

]
,

[
x1

1

v1

]
∈ kert R̂
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and for every open interval I ⊂ R\T and all t0 ∈ I, there exists t1 > t0, t1 ∈ I,
and [xT

1 , v
T ]T ∈ kert R̂, such that

[
x1(t)
v(t)

]
=

⎧⎪⎪⎨⎪⎪⎩
[

x0
1(t)

v0(t)

]
if t ∈ (−∞, t0] ∩ R \ T,[

x1
1(t)

v1(t)

]
if t ∈ [t1,∞) ∩ R \ T.

Proof.
(i) ⇔ (ii): This is proved in [12, Prop. 3.6].
(ii) ⇔ (iii): The equivalence of local controllability almost everywhere of (1.2)

and (2.4), respectively (1.1) and (2.6), follows from (2.3) by invoking orthogonality of
U2, V2,W,Z.

(ii) ⇔ (iv): By (2.5), there exist invertible matrices Ũ ∈ M(l+p)×(l+p), Ṽ ∈
M(n+m+p)×(n+m+p) so that (1.1) is related to (2.6) in the form (1.2) by the transfor-
mation

Ũ

[
E D −A −B 0

−C −F Ip

]
Ṽ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σDId − Ã11 0 −Ã13 −Ã14 0 0 −B̃12 0 0

0 −Σa 0 0 0 0 −B̃22 0 0

−Ã31 0 0 0 0 −Σγ 0 0 0
0 0 0 0 −Σf 0 0 0 0

0(l−ν)×d 0 0 0 0 0 0 0 0

0 0 −σΣω 0 0 0 −F̃12 σIω 0

−C̃21 0 0 0 0 0 −F̃22 0 σIp−ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(3.1)

The right-hand side is right invertible if and only if l − ν = l − d − a − γ − f = 0
(which is a consequence of the full row rank assumption) and [σDId −G, S] is right
invertible over M[D].

(iv) ⇔ (v): By Lemma 2.2 there exist orthogonal matrices P and Q so that

P [σDId − G,S][ P
T 0
0 Q ] is of the staircase form (2.11). Note that σ does not affect

the staircase form. Now the equivalence (iv) ⇔ (v) follows immediately since B1 and
Âi,i−1 are invertible over M for i = 1, . . . , s− 1.

(ii) ⇔ (vi): This equivalence follows readily from [12, Def. 3.1] and from (3.1),
since the set of zeros and poles of the coefficients of Ũ and Ṽ is a discrete set.

Note that the assumption that (1.2) has full row rank over M[D] is equivalent to
l − d− a− γ − f = 0 in (2.6).

Note further that the characterization in Theorem 3.1(ii) does not require a rein-
terpretation of variables as is done in [4]. Moreover, in contrast to the case of con-
trollability of state space systems, here u1(·) in (1.1) is not a “free input” variable.

For standard time-invariant state space systems (i.e., E = In), the right invert-
ibility of R(D) in Theorem 3.1 is derived differently in [21, Thm. 5.2.10].

Remark 3. For time-varying systems (1.1) with E = In, i.e., state space systems,
it is well known that controllability of the system yields that it can be controlled in an
arbitrary short time. The interval I in [12, Def. 3.1] can be replaced by any arbitrary

short open interval Î ⊂ I. This also holds true for descriptor systems (1.2), since
R̂(D) in Theorem 3.1(iv) can be viewed locally as a state space system, namely, at
those t ∈ R where σ(t) �= 0; note that the zeros of σ are a discrete set. An alternative
and constructive proof is given in [12, Thm. 3.3] for general systems of the form
R( d

dt )w = 0.
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Example 3.

(i) R(D) = [t2D + 1, 1] has right inverse [0, 1]T , and hence, by Theorem 3.1,
R( d

dt )w = 0 is controllable.
(ii) Revisit the linearized model (2.13) of the three-link constrained mobile manip-

ulator. In Example 2 it is shown that (2.13) is equivalent to (2.11). Rewriting
(2.11) in the form (1.2) and invoking that M22 is invertible over M and F1 is
nonsingular, it is easy to see that the corresponding R(D) is right invertible.
Therefore, by Theorem 3.1, the linearized model (2.13) is controllable.

4. Observability and autonomous behavior. In [12, sect. 4], the concept of
autonomous behavior keraut

t R also has been introduced, and it has been shown that
the behavior of a system (1.2) (and hence also of (1.1)) can be decomposed into the
direct sum of a controllable and an autonomous behavior. It also immediately follows
from the results in [12] that an autonomous behavior keraut

t R of the system (1.2)
is invariant under all transformations (2.1), (2.2), (2.4), (2.10). Loosely speaking,
an autonomous behavior consists of those solutions which are uniquely determined if
they are known on an arbitrarily small open interval. For systems (1.2) we have to
cope with the problem of finite escape time.

Example 4. Consider a time-varying state space system (1.2) with E = In. By
[14] there exists T ∈ An×n invertible over A so that the coordinate transformation
z := T−1x converts (1.1) into

d
dtz1(t) = A11(t)z1(t) + A12(t)z2(t) + B1(t)u(t),

d
dtz2(t) = A22(t)z2(t),

y(t) = C1(t)z1(t) + C2(t)z2(t) + F (t)u(t),

(4.1)

with all matrices real analytic of conforming formats, and controllable subsystem
d
dtz1(t) = A11(t)z1(t) + B1(t)u(t). Since (4.1) is a state space system, finite escape
time does not occur and the controllable and autonomous subspaces can be described
globally. Set

R̂(D) :=

⎡⎣ DI −A11 −A12 −B1 0
0 DI −A22 0 0

−C1 −C2 −F −Ip

⎤⎦ .

Then, for all t ∈ R,

kercontr
t R̂ =

{
w = [zT1 , z

T
2 , u

T , yT ]T ∈ C∞(R,R(n+m+p))
∣∣∣ R̂( d

dt )w = 0 ∧ z2 = 0
}

and

keraut
t R̂ =

{
w = [zT1 , z

T
2 , u

T , yT ]T ∈ C∞(R,R(n+m+p))

∣∣∣∣ R̂( d
dt )w = 0, z1 = 0,

u = 0, ż2 = A22 z2

}
is an autonomous behavior, and, hence, in the original coordinates, we have

kercontr
t R =

[
T (t) 0

0 Im+p

]
keraut

t R ⊕
[

T (t) 0
0 Im+p

]
kercontr

t R̂ ∀ t ∈ R .

Remark 4. Consider a time-varying descriptor system (1.1) in the condensed form
(2.6). If (2.6) were controllable, then kerautR = {0} would be the only autonomous
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behavior of (2.6). To see this, note that x3, x4, u2 are free to choose and hence
cannot be a nonzero component of an autonomous behavior. Furthermore, since
[σDId−G,S] is controllable by Theorem 3.1(iii), it follows that x1 is uniquely (modulo
initial condition) determined by x3, x4, u2, and hence also not a nontrivial component
of an autonomous behavior. Finally, (2.6) yields that the remaining components
x2, x5, u1, y1, y2 are uniquely determined by x3, x4, u2, x1. This shows kerautR = {0}.

If (2.6) is not controllable but has a nontrivial uncontrollable subspace, then there
exists kerautR �= {0} which is determined by the uncontrollable subspace as for state
space systems; see Example 4.

In [12] it has also been discussed how one behavior can be observed from another.
We refer to this paper for the definition of adjoints and observable behavior which
generalize well-known concepts of observability, such as for time-varying state space
systems (see, for example, [23]) and time-varying Rosenbrock systems (see [13]). It has
also been shown that local observability and local controllability are dual concepts.

An application of [12, Thms. 5.5 and 5.6] to descriptor systems (1.2) yields the
following result.

Theorem 4.1. Consider a descriptor system (1.2) with R(D) = [R1(D), R2(D)]
partitioned as

R1(D) =

[
E D −A

−C

]
, R2(D) =

[
−B 0
−F Ip

]
.

Then the following are equivalent:
(i) The trajectory x is locally observable from (u, y) almost everywhere.
(ii) R1(D) is left invertible over M[D].
(iii) The matrix ⎡⎢⎢⎣

σDId − Ã11 −Ã13 −Ã14

−Ã31 0 0
0 −Σω 0

−σ−1C̃21 0 0

⎤⎥⎥⎦(4.2)

is left invertible over M[D], where the matrices in (4.2) are from the con-
densed form (2.4).

Proof. The equivalence (i)↔ (ii) follows from [12, Thms. 5.5 and 5.6]. To see
(ii)↔ (iii), note that left invertibility of R2(D) is equivalent to

[
U 0
X W

]
R2(D)V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σDId − Ã11 0 −Ã13 −Ã14 0
0 −Σa 0 0 0

−Ã31 0 0 0 0
0 0 0 0 −Σf

0 0 0 0 0
0 0 −Σω 0 0

−σ−1C̃21 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
being left invertible, where U,X, V,W are specified in Theorem 2.1(iii). Since [ U 0

X W ]
and V are invertible over M, the latter holds true if and only if (4.2) is left invertible.
This completes the proof.

Example 5. Consider again the linearized model (2.13) of the three-link con-
strained mobile manipulator. Suppose that the positions can be measured, corre-
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sponding to the additional equation

y =

[
0 0 I2 0 0
0 0 0 1 0

]⎡⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦ .(4.3)

In Example 2 we have shown that x1 = 0 and x3 = 0 and thus ẋ1 = 0 and ẋ3 = 0,
and permuting the variables accordingly to (2.14), we obtain

y =

[
0 0 0 0 0
0 0 0 1 0

]⎡⎢⎢⎢⎢⎣
x2

x4

x3

x5

x1

⎤⎥⎥⎥⎥⎦ .(4.4)

Hence by Theorem 4.1, x is observable from (u, y) with respect to the system (2.13),
(4.3) or, equivalently, system (2.11), (4.4) if and only if⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D − 1 0 0 0 0
−K22 M22D −D22 0 0 0

− K̃12 −D̃12 0 −FT
1 0

0 0 0 0 F1

0 0 −I2 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.5)

is left invertible over M[D]. Since F1 is invertible over M, (4.5) is left invertible if

and only if [ D−1 0

−K22 M22D−D22
] is invertible over M[D]. Summarizing, x is observable

from (u, v) almost everywhere if and only if K22 is invertible over M.

5. Conclusion. We have introduced a general behavioral approach to linear de-
scriptor systems with real analytic coefficients. We have characterized autonomous,
controllable, and observable behavior and have generalized results on time-varying or-
dinary differential equations and on time-invariant linear algebraic-differential equa-
tions. The results have been illustrated by several examples, which demonstrates
that the approach also helps in understanding practical problems such as constrained
multibody systems.
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Abstract. A primal-dual interior point method for optimal control problems is considered.
The algorithm is directly applied to the infinite-dimensional problem. Existence and convergence
of the central path are analyzed, and linear convergence of a short-step path-following method is
established.
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1. Introduction. Numerical methods for solving optimal control problems gov-
erned by ODEs fall into two categories, the indirect methods [2, 3, 4, 6, 14, 15, 31]
relying on Pontryagin’s maximum principle, and the direct methods [7, 17, 21, 30, 37]
based on the Karush–Kuhn–Tucker necessary conditions. Direct methods can be
characterized by several features. Among them are the following:

(i) Position of discretization: Discretize-then-optimize approaches use an a priori
parameterization of the control and possibly the state variables to reduce the
optimal control problem to a finite-dimensional nonlinear program. These
large nonlinear programs can then be solved by standard NLP solvers. Adap-
tive mesh refinement can be performed after the finite-dimensional optimum
has been reached. On the other hand, optimize-then-discretize approaches
formulate the optimization algorithms directly in the infinite-dimensional
function space, employing discretization only for solving linear operator equa-
tions. Adaptive mesh refinement is used to meet the accuracy requirements
imposed on the solution of the linear equations by the optimization algo-
rithm.
Somewhere in between are function space sequential quadratic programming
(SQP) methods where linear-quadratic programs are discretized.

(ii) Type of optimization algorithm: Among the most popular algorithms em-
ployed for solving the optimization problems arising in optimal control are
SQP and interior point methods. A recent alternative are semismooth New-
ton methods [5, 34].

Discretize-then-optimize methods are covered by a vast amount of published literature
using almost any available algorithm for solving the finite-dimensional NLPs. Solu-
tions on consecutive mesh refinement levels or in consecutive SQP steps often exhibit
pronounced similarities. This redundancy can be directly exploited by active set–type
methods. In contrast, interior point methods are considered to benefit less from this
redundancy [20, 40]. Nevertheless, interior point methods are reported to be very
efficient for solving optimal control problems—a fact that is not well explained by
straightforward application of finite-dimensional interior point convergence theory to
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the discretized problems. The best currently known convergence rates of 1−const /
√
n

would instead predict a pronounced mesh dependence of the convergence.
Among the optimize-then-discretize approaches, the SQP methods dominate the

published material [1, 17, 22, 23, 27, 32, 33]. Here, Robinson’s theory of generalized
equations [29] can be used to analyze the function space methods, which leaves, how-
ever, the question of how to solve the infinite-dimensional linear-quadratic programs.
This is implicitly addressed by infinite-dimensional interior point methods, which have
nevertheless attracted less attention [35, 36, 24].

The present paper presents an infinite-dimensional interior point method directly
applied to optimal control problems in function space in section 2. Existence and
convergence of the central path are analyzed in section 3. Finally, linear convergence
of a theoretical short-step path-following algorithm with classical predictor is shown
in section 4. In particular, the rate of convergence does not depend on the size of any
discretization.

Notation. The Lebesgue spaces and Sobolev spaces of functions with values in
Rn are denoted by Ln

p and (Wm
p )n, respectively. S(x, ρ) is the open ball around x

with radius ρ.
Some variables and operators are constructed such that they have a natural block

partitioning corresponding to the components u and y of x. The individual blocks are
denoted by the corresponding component as a superscript, e.g.,

g(x) =

[
gu(u)
gy(y)

]
and Ψ(g(x), η) =

[
Ψu(gu(u), ηu)
Ψy(gy(y), ηy)

]
.

2. Problem setting. On the time interval Ω = [0, 1] we consider the optimal
control problem

minJ(x) subject to c(x) = 0 a.e.,

r(x) = 0,

g(x) ≥ 0 a.e.

(2.1)

with a partitioning of the variable x = (u, y) ∈ X = Lnu
∞ (Ω)×(W 1

∞)ny (Ω) into controls
and states, a Lagrange-type cost functional

J(x) =

∫ 1

0

f̃(u(t), y(t)) dt,

ordinary differential equations with boundary conditions

c(x) =

[
c̄(x)

y(0) − y0

]
, c̄(x)(t) = c̃(x(t)) − ẏ(t),(2.2)

r(x) = r̃(y(1))(2.3)

as equality constraints, and pointwise state and control constraints

g(x)(t) =

[
g̃u(u(t))
g̃y(y(t))

]
.

For the whole paper, we will restrict the discussion to the fixed time interval Ω and,
hence, simplify the notation by omitting it from the function spaces. We assume all the
functions f̃ : Rnu ×Rny → R, c̃ : Rnu ×Rny → Rny , r̃ : Rny → Rnr , g̃u : Rnu → Rnηu ,
and g̃y : Rny → Rnηy to be twice Lipschitz-continuously differentiable.
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For convenience, we give here a theorem on Nemyckii operators in L∞, the
straightforward proof of which can be found in [38].

Theorem 2.1. If f : Rn → Rm is k times differentiable and its kth derivative
satisfies the Lipschitz condition

|f (k)(x) − f (k)(y)| ≤ κ|x− y|,(2.4)

the corresponding Nemyckii operator f defined by f(u)(t) = f(u(t)) maps Ln
∞ into

Lm
∞ and is k times Fréchet differentiable. For 1 ≤ p ≤ ∞ its kth derivative can

be continuously extended to an operator f (k)(u) : (
∏k

j=1 L
n
pk) → Lm

p that inherits

boundedness and Lipschitz continuity from f (k):∥∥∥f (k)(u)
∥∥∥

(
∏k

j=1 Ln
pk)→Lm

p

≤ sup
|x|≤‖u‖Ln∞

|f (k)(x)|,(2.5) ∥∥∥f (k)(u + δu) − f (k)(u)
∥∥∥

(
∏k

j=1 Ln
pk)→Lm

p

≤ κ ‖δu‖Ln
∞
.(2.6)

If in addition f is k + 1 times differentiable and its k + 1st derivative satisfies the
Lipschitz condition

|f (k+1)(x) − f (k+1)(y)| ≤ κ|x− y|,

then f maps (W 1
∞)n into (W 1

∞)m and is k times differentiable. For p ≥ 1 its kth

derivative can be continuously extended to an operator f (k)(u) : (
∏k

j=1(W
1
pk)

n) →
(W 1

p )m that inherits boundedness and Lipschitz continuity from f (k) and f (k+1):∥∥∥f (k)(u)
∥∥∥

(
∏k

j=1(W
1
pk)n)→(W 1

p )m
≤ sup

|x|≤‖u‖Ln∞

(k + 1)|f (k)(x)| + |f (k+1)(x)|,(2.7) ∥∥∥f (k)(u + δu) − f (k)(u)
∥∥∥

(
∏k

j=1(W
1
pk)n)→(W 1

p )m
≤ (k + 2)κ ‖δu‖(W 1

∞)n .

If the derivatives of f : Rn → Rn and g : Rn → Rn commute, then so do the
derivatives of the corresponding Nemyckii operators f ′ and g′.

With Theorem 2.1 earlier, we conclude that

J :Lnu
∞ × (W 1

∞)ny → R,

c :Lnu
∞ × (W 1

∞)ny → Lny
∞ , and

g :Lnu
∞ × (W 1

∞)ny → L
nηu∞ × L

nηy
∞

are twice Lipschitz-continuously differentiable operators.
The aim of the interior point method discussed here is to approximate Kuhn–

Tucker points x∗. These are feasible points characterized by the existence of Lagrange
multipliers λc ∈ Rny × (L

ny
∞ )∗, λr ∈ Rnr , and η ∈ (L

nηu∞ )∗ × ((W 1
∞)nηy )∗ such that

the following conditions are satisfied:

J ′(x∗) − c′(x∗)
∗λc − r′(x∗)

∗λr − g′(x∗)
∗η = 0,(2.8)

c(x∗) = 0, r(x∗) = 0,

g(x∗) ≥ 0, η ≥ 0, 〈η, g(x∗)〉 = 0.
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Under certain assumptions (see, e.g., [26, 28]) these conditions are necessary for x∗ to
be a local solution of (2.1). Thus, Kuhn–Tucker points are promising candidates for
solutions.

Unfortunately, the unwieldy complementarity condition (2.8) is difficult to handle
numerically. The idea of primal-dual interior point methods is to relax the comple-
mentarity condition by

η · g(x) = μ, η ≥ 0, g(x) ≥ 0(2.9)

and to consider the homotopy μ → 0. Alternatively, complementarity functions
ψ(a, b;μ) : R2 × R → R can be used to construct Nemyckii operators Ψ such that

Ψ(g(x), η;μ) = 0

is more or less equivalent to the classical interior point relaxation (2.9).

These relaxations, however, are only well defined if η ∈ L1, and are continuously
differentiable only in case η ∈ L∞. Note that this is required to hold only during
the homotopy for μ > 0, not at the Kuhn–Tucker point itself. We will prove in
Theorem 3.4 that the homotopy can indeed be performed in the more regular setting
of η ∈ L

nηu∞ × L
nηy
∞ ⊂ (L

nηu∞ )∗ × ((W 1
∞)nηy )∗ for μ > 0.

Define the Lagrangian

L(x, λc, λr, η) = J(x) − 〈λc, c(x)〉 − 〈λr, r(x)〉 − 〈η, g(x)〉.

Let

F (x, λc, λr, η;μ) =

⎡⎢⎢⎣
∂xL(x, λc, λr, η)

−c(x)
−r(x)

Ψ(η, g(x);μ)

⎤⎥⎥⎦ .(2.10)

As will be shown in Theorem 3.2 later, F maps

V × R+ = (Lnu
∞ × (W 1

∞)ny ) × (Rny × Lny
∞ ) × Rnr × (L

nηu∞ × L
nηy
∞ ) × R+(2.11)

into

Z = (Lnu
∞ × (W 1

1 )ny∗) × (Rny × Lny
∞ ) × Rnr × (L

nηu∞ × L
nηy
∞ ).

3. The central path. The main object of analytical interest is the central path
defined by the homotopy (2.9) in μ. First we consider its actual existence in the
regular setting given by (2.11) before discussing convergence.

Throughout the paper, we will use the Fischer–Burmeister function [18]

ψ(a, b;μ) = a + b−
√
a2 + b2 + 2μ(3.1)

as an example from a large class of different complementarity functions (see [11, 12,
13, 25]).

3.1. Existence. We begin with establishing some bounds on derivatives of the
complementarity function and their inverses.
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Lemma 3.1. The complementarity function Ψ defined via (3.1) maps Ln
∞×Ln

∞×R

continuously into Ln
∞. Its derivative ∂gΨ(g, η;μ) is symmetric positive semidefinite,

bounded by

‖∂gΨ‖L∞→L∞
≤ 2,(3.2) ∥∥(∂gΨ)−1

∥∥
L∞→L∞

≤ max

(
3,

2

μ
‖g‖2

L∞

)
,(3.3)

and Lipschitz continuous with a Lipschitz constant of μ−1/2. The corresponding holds
for ∂ηΨ(g, η;μ). Furthermore, the derivatives commute.

Proof. The claimed properties of the Nemyckii operator Ψ are directly inherited
from ψ due to Theorem 2.1. From (1+φ)−1/2 ≤ max(1−φ/4, 2/3) for φ > 0 we infer

min

(
μ

2a2
,
1

3

)
= 1 − max

(
1 − μ

2a2
,
2

3

)
≤ 1 − 1√

1 + 2μ
a2

(3.4)

≤ 1 − 1√
1 + b2

a2 + 2μ
a2

= 1 − |a|√
a2 + b2 + 2μ

≤ ∂aψ(a, b;μ)

≤ 1 +
|a|√

a2 + b2 + 2μ
≤ 2.

Thus, ∂aψ is uniformly positive definite. Due to Theorem 2.1, the derivative
∂gΨ(g, η;μ) of the Nemyckii operator Ψ is bounded by (3.2) and has an inverse that
is bounded by (3.3).

As for the Lipschitz continuity, we estimate

|∂2
aψ| =

∣∣∣∣∣∣∣
√
a2 + b2 + 2μ− a2√

a2+b2+2μ

a2 + b2 + 2μ

∣∣∣∣∣∣∣ ≤
1 − a2

a2+b2+2μ√
a2 + b2 + 2μ

≤ 1√
2μ

and

|∂abψ| =

∣∣∣∣ ab

(a2 + b2 + 2μ)3/2

∣∣∣∣ ≤ |ab|
(2|ab| + 2μ)3/2

≤ 2

3
√

6μ

such that ‖ψ′′‖ ≤ μ−1/2. This Lipschitz constant for ∂aψ is inherited by ∂gΨ. Because
of symmetry, the same holds for ∂ηΨ, which commutes with ∂gΨ.

Theorem 3.2. The complementarity formulation (2.10) is a continuously differ-
entiable mapping from V × R+ to Z. Moreover, for any bounded set D ⊂ V there is
a constant c(D) such that the derivative ∂vF satisfies the Lipschitz condition

‖∂vF (v + δv;μ) − ∂vF (v;μ)‖V→Z ≤ c(1 + μ−1/2) ‖δv‖V(3.5)

on D.
Proof. The image spaces and differentiability of the second to fourth component

of F have already been established in section 2 and Lemma 3.1. Only the adjoint
expression

J ′(x) − c′(x)∗λc − r′(x)∗λr − g′(x)∗η
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remains to be discussed. We consider the terms separately.
First we write J(x) = 〈1, f̃(x)〉 with f̃ ′(x) ∈ L(Lnu

1 × (W 1
1 )ny , L1) due to Theo-

rem 2.1 and thus obtain

J ′(x) = f̃ ′(x)∗1 ∈
(
Lnu

1 × (W 1
1 )ny

)∗
.(3.6)

With δ0 denoting the point evaluation of the y component at t = 0, we have

c′(x) =

[
c̄′(x) − ∂t

δ0

]
∈ L

(
Lnu

1 × (W 1
1 )ny → L

ny

1 × Rnr
)

again by Theorem 2.1 such that

c′(x)∗λc ∈
(
Lnu

1 × (W 1
1 )ny

)∗
.(3.7)

Similarly, we obtain

r′(x)∗λr ∈
(
Lnu

1 × (W 1
1 )ny

)∗
and g′(x)∗η ∈

(
Lnu

1 × (W 1
1 )ny

)∗
.(3.8)

Collecting (3.6)–(3.8), F (v;μ) ∈ Z is verified. Continuous differentiability is inherited
from J , c, g, and ψ.

As for the Lipschitz continuity of the derivative, we have to estimate the differ-
ences of

∂vF (v;μ) =

⎡⎢⎢⎣
∂2
xL(v) −c′(x)∗ −r′(x)∗ −g′(x)∗

−c′(x)
−r′(x)

∂gΨ(g(x), η;μ)g′(x) ∂ηΨ(g(x), η;μ)

⎤⎥⎥⎦
for arguments v1 and v2. We cover the blocks separately. First we see that

c′(x1) − c′(x2) = c̃′(x1) − c̃′(x2).

Since x1 and x2 are bounded in terms of D, the derivative of the Nemyckii operator
c̃ inherits the Lipschitz constant κc(D) of c̃′ due to (2.6) of Theorem 2.1 with p = ∞.
Thus, we conclude

‖c′(x1) − c′(x2)‖X→L
ny
∞ ×R

ny ≤ κc(D)‖x1 − x2‖X .

Analogously, we obtain

‖g′(x1) − g′(x2)‖X→L
nη
∞

≤ κg(D)‖x1 − x2‖X .

Concerning the dual operators c′(x)∗ and g′(x)∗, we apply Theorem 2.1 with p = 1
in (2.6) and obtain

‖c′(x1)
∗ − c′(x2)

∗‖Lny
∞ ×R

ny→Lnu∞ ×((W 1
1 )ny )∗ ≤ κc(D)‖x1 − x2‖X

and

‖g′(x1)
∗ − g′(x2)

∗‖Lnη
∞ →Lnu∞ ×((W 1

1 )ny )∗ ≤ κg(D)‖x1 − x2‖X .

Similar estimates for r′(x) and r′(x)∗ are straightforward. As for ∂2
xL(v), we estimate

‖J ′′(x1) − J ′′(x2)‖X→Lnu∞ ×((W 1
1 )ny )∗ ≤ κf (D)‖x1 − x2‖X ,

‖c′′(x1)
∗ − c′′(x2)

∗‖X×L
ny
∞ ×R

ny→Lnu∞ ×((W 1
1 )ny )∗ ≤ κc(D)‖x1 − x2‖X ,

‖g′′(x1)
∗ − g′′(x2)

∗‖X×L
nη
∞ →Lnu∞ ×((W 1

1 )ny )∗ ≤ κg(D)‖x1 − x2‖X
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as before. In view of

c′′(x1)
∗λc1 − c′′(x2)

∗λc2 = c′′(x1)
∗(λc1 − λc2) + (c′′(x1)

∗ − c′′(x2)
∗)λc2

and the boundedness of c′′(x1)
∗ due to (2.5) of Theorem 2.1, we derive a constant

κ(D) for

‖c′′(x1)
∗λc1 − c′′(x2)

∗λc2‖X→Lnu∞ ×((W 1
1 )ny )∗ ≤ κ̄c(D)‖v1 − v2‖X .

Treating r′′(x)∗λr and g′′(x)∗η similarly, we obtain the desired estimate

‖∂2
xL(v1) − ∂2

xL(v2)‖X→Lnu∞ ×((W 1
1 )ny )∗ ≤ κL(D)‖v1 − v2‖X .

Up to now, the Lipschitz constants have been completely independent of μ. For the
blocks ∂gΨ(v)g′(x) and ∂ηΨ(v) we obtain a Lipschitz constant of κΨ ≤ const(1 +
μ−1/2). Combining the Lipschitz constants of the individual blocks finally veri-
fies (3.5).

In order to prove the existence of the central path via an implicit function theorem,
we first have to establish bounds on the inverse of ∂vF .

Theorem 3.3. Suppose there exist an open bounded set D ⊂ V and constants
β > 0 and α > 0 such that the following conditions hold uniformly for all v ∈ D and
μ > 0:

1. The state equation satisfies the following inf-sup condition:

inf
ξ∈Rnr

sup
δu∈Lnu

2

ξT∂yr(x)∂yc(x)−1∂uc(x)δu

|ξ| ‖δu‖Lnu
2

≥ β.

(The linearized state equation is controllable.)
2. A strengthened Legendre–Clebsch-type condition holds:

ξTMu(t)ξ ≥ α|ξ|2

for all ξ ∈ Rnu and almost all t ∈ Ω. Here,

Mu(t) := ∂2
uf̃(x(t)) − ∂2

uc̃(x(t))Tλc(t) − (g̃u)′′(u(t))T ηu(t)

+ (g̃u)′(u(t))T∂ηψ(g̃u(u(t)), ηu(t);μ)−1∂gψ(g̃u(u(t)), ηu(t);μ)(g̃u)′(u(t)).

3. The augmented second derivative of the Lagrangian is uniformly positive def-
inite on the nullspace of the state equation:

〈ξ, (∂2
xL(v) + g′(x)∗∂ηΨ(g(x), η)−1∂gΨ(g(x), η)g′(x))ξ〉 ≥ α‖ξ‖2

Lnu
2 ×(W 1

2 )ny

for all ξ ∈ ker c′(x).
Then ∂vF (v;μ) has an inverse which is bounded by∥∥∂vF (v;μ)−1

∥∥
Z→V

≤ const(1 + μ−3)(3.9)

uniformly for v ∈ D.
Proof. We show that there is a unique solution of ∂vF (v;μ)Δv = z with ‖Δv‖V ≤

const(1 + μ−3) ‖z‖Z .
In order to simplify the notation, let C = −c′(x), Cu = −∂uc(x), Cy = −∂yc(x),

and analogously G,Gu, Gy, R, and Ry. Define Ψη = ∂ηΨ(g(x), η), Ψg = ∂gΨ(g(x), η),
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Ψu
η = ∂ηuΨu(gu(u), ηu), Ψu

g = ∂guΨu(gu(u), ηu), and analogously Ψy
η and Ψy

g . More-
over, let Mu = ∂2

uL(v) + G∗
u(Ψu

η)−1Ψu
gGu, and analogously My. Finally, let Muy =

∂uyL(v) and Myu = ∂yuL(v).
The state derivative Cy represents the linearization of the initial value prob-

lem (2.2) and has a bounded solution for any right-hand side. Thus, Cy has a bounded
inverse. More precisely, for any p ≥ 1,

C−1
y : Lny

p → (W 1
p )ny is bounded uniformly for v ∈ D.(3.10)

Therefore, we can define the solution operator S = C−1
y Cu.

In the following, we will refrain from writing the number of components of the
function spaces, which should be clear from context.

In a first step, we reduce the system

∂vF (v;μ)(Δx,Δλc,Δλr,Δη)T = [za, zc, zr, zp]
T

to a simple saddle point problem. Elimination of the inequality constraints’ multipliers
Δη = Ψ−1

η (zp − ΨgGΔx) by Lemma 3.1 yields the equivalent system⎡⎢⎢⎣
Mu Muy C∗

u

Myu My C∗
y R∗

y

Cu Cy

Ry

⎤⎥⎥⎦
⎡⎢⎢⎣

Δu
Δy
Δλc

Δλr

⎤⎥⎥⎦ =

⎡⎢⎢⎣
z̄ua
z̄ya
zc
zr

⎤⎥⎥⎦ ,

where (z̄ua , z̄
y
a)T = z̄a = za − G∗Ψ−1

η zp. Then, Δy = C−1
y zc − SΔu and Δλc =

C−∗
y (z̄ya −MyC

−1
y zc − (Myu −MyS)Δu−R∗

yΔλr) can be eliminated, which yields[
Mu + S∗MyS − (MuyS + S∗Myu) −S∗R∗

y

−RyS

] [
Δu
Δλr

]
=

[
ẑua
ẑr

]
.(3.11)

Here we set ẑua = z̄ua −MuyC
−1
y zc − S∗(z̄ya −MyC

−1
y zc) and ẑr = zr −RyC

−1
y zc.

In the second step, we establish the existence of a bounded solution of (3.11), first
in Lnu

2 ×Rnr and then in Lnu
∞ ×Rnr . Due to Theorem 2.1 and the observation (3.10),

Mu, S∗MyS, MuyS, and S∗Myu can all be continuously extended to L2. Then,
Mu+S∗MyS−(MuyS+S∗Myu) : Lnu

2 → Lnu
2 is positive definite due to assumption 3.

Moreover, RyS satisfies the inf-sup-condition of assumption 1. Therefore, Brezzi’s
splitting theorem [10, 8] guarantees the existence of a solution (Δu,Δλr) ∈ Lnu

2 ×Rnr

of (3.11) with

‖Δu‖L2 ≤ const
(
‖ẑua‖L2 + κ|ẑr|

)
and(3.12)

|Δλr| ≤ const
(
κ‖ẑua‖L2 + κ2|ẑr|

)
,

where

κ = 1 + ‖Mu + S∗MyS − (MuyS + S∗Myu)‖L2→L2
,

and the constants depend on α and β. Using Lemma 3.1 and, again, the exten-
sion of Nemyckii operators to L2 provided by Theorem 2.1, we obtain the following
dependencies on μ:

‖Mu‖L2→L2
= ‖∂2

uL‖L2→L2
+ ‖G∗

u

(
Ψu

η

)−1
Ψu

gGu‖L2→L2

≤ const +‖G∗
u‖L2→L2

‖
(
Ψu

η

)−1
Ψu

g‖L2→L2
‖Gu‖L2→L2

≤ const(1 + ‖
((

Ψu
η

)−1
Ψu

g‖L2→L2

)
≤ const(1 + μ−1),
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‖My‖W 1
2 →(W 1

2 )∗ = ‖∂2
yL‖W 1

2 →(W 1
2 )∗ + ‖G∗

y

(
Ψy

η

)−1
Ψy

gGy‖W 1
2 →(W 1

2 )∗

≤ const +‖G∗
y‖L2→(W 1

2 )∗‖Ψ
(y
η

)−1
Ψy

g‖L2→L2‖Gy‖W 1
2 →L2

≤ const
(
1 + ‖

(
Ψy

η

)−1
Ψy

g‖L2→L2

)
≤ const(1 + μ−1),(3.13)

κ ≤ 1 + ‖Mu‖L2→L2
+ const ‖My‖W 1

2 →(W 1
2 )∗ + const

≤ const(1 + μ−1).

As for Δu and Δλr, we first observe

‖z̄ua‖L2 ≤ ‖za‖L2 + ‖G∗
u

(
Ψu

η

)−1
zup ‖L2 ≤ const(1 + μ−1)‖z‖Z ,

‖S∗MyC
−1
y zc‖L2 ≤ ‖S∗‖(W 1

2 )∗→L2
‖My‖W 1

2 →(W 1
2 )∗‖C−1

y zc‖W 1
2

≤ const(1 + μ−1)‖zc‖L2 ≤ const(1 + μ−1)‖z‖Z ,

and hence

‖ẑua‖L2 ≤ const(1 + μ−1)‖z‖Z .(3.14)

From this we conclude that

‖Δu‖L2
≤ const(1 + μ−1)‖z‖Z and |Δλr| ≤ const(1 + μ−2).

Moreover, |ẑr| ≤ const ‖z‖Z is evident from (3.10). Observing that S : Lnu
2 → (W 1

2 )ny

and S∗ : (W 1
1 )ny∗ → Lnu

∞ due to (3.10), and additionally R∗
y : Rnr → (W 1

1 )ny∗, we
infer

(S∗MyS −MuyS − S∗Myu) : Lnu
2 → Lnu

∞ and S∗R∗
y : Rnr → Lnu

∞

such that (3.11) implies

MuΔu = ẑua − (S∗MyS −MuyS − S∗Myu)Δu + S∗R∗
yΔλr ∈ Lnu

∞ .

Using assumption 2, the desired regularity Δu ∈ Lnu
∞ is readily established

‖Δu‖L∞ ≤ const ‖ẑua − (S∗MyS −MuyS − S∗Myu)Δu + S∗R∗
yΔλr‖L∞ .(3.15)

In order to estimate the right-hand side of (3.15), we first note that since ẏ appears
linearly in c, My is a Nemyckii operator. We thus infer

‖My‖L∞→L∞ ≤ ‖∂2
yL‖L∞→L∞ + ‖G∗

y‖L∞→L∞‖(Ψy
η)

−1Ψy
g‖L∞→L∞‖Gy‖L∞→L∞

≤ const(1 + μ−1),

where we used Theorem 2.1 to obtain Gy ∈ L(L1, L1), which implies G∗
y ∈ L(L∞, L∞).

Then we derive upper bounds for the individual terms in (3.15) as follows:

‖S∗MyS −MuyS − S∗Myu‖L2→L∞‖Δu‖L2

≤ ‖S∗‖L∞→L∞‖My‖L∞→L∞‖S‖L2→L∞ const(1 + μ−1)‖z‖Z
≤ const(1 + μ−2)‖z‖Z ,

‖S∗R∗
y‖Rnr→L∞ |Δλr| ≤ const(1 + μ−2)‖z‖,
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and ‖ẑua‖L∞ ≤ const(1 + μ−1) analogously to (3.14). Thus, we conclude

‖Δu‖L∞ ≤ const(1 + μ−2)‖z‖Z .(3.16)

In the final step of the proof, we will now trace back the elimination chain from
the beginning. First we get

‖Δλc‖Rnr×L∞ = ‖C−∗
y

(
z̄ya −MyC

−1
y zc − (Myu −MyS)Δu−R∗

yΔλr

)
‖Rnr×L∞

(3.17)

≤ const ‖z̄ya −MyC
−1
y zc − (Myu −MyS)Δu−R∗

yΔλr‖(W 1
1 )∗

≤ const
(
‖z̄ya‖(W 1

1 )∗ + ‖My‖L∞→L∞‖C−1
y zc‖W 1

1

+ ‖Myu −MyS‖L∞→L∞‖Δu‖L∞

+ ‖R∗
y‖Rnr→(W 1

1 )∗ |Δλr|
)

≤ const
(
‖zya −G∗

y(Ψ
y
η)

−1
(
zyp − Ψy

wz
y
s

)
‖(W 1

1 )∗ + (1 + μ−1)‖z‖Z

+ (1 + μ−1)‖Δu‖L∞ + |Δλr|
)

≤ const
(
‖z‖Z + ‖G∗

y‖L∞→(W 1
1 )∗‖

(
Ψy

η

)−1‖L∞→L∞‖zyp − Ψy
wz

y
s‖L∞

+ (1 + μ−3)‖z‖Z
)

≤ const(1 + μ−3)‖z‖Z .

The state Δy is bounded by

‖Δy‖W 1
∞

≤ ‖C−1
y zc‖W 1

∞
+ ‖S‖L∞→W 1

∞
‖Δu‖L∞ ≤ const(1 + μ−2)‖z‖Z .(3.18)

Finally, we obtain for the Lagrange multiplier Δη the estimate

‖Δη‖L∞ ≤ ‖Ψ−1
η ‖L∞→L∞

(
‖zp‖L∞ + ‖ΨgGΔx‖L∞

)
(3.19)

≤ const(1 + μ−3)‖z‖Z .

Collecting (3.12) and (3.16)–(3.19) we obtain the claim (3.9).
Now we are ready to prove that the central path exists locally, and that it can be

continued up to μ = 0 unless it leaves its bounded set of definition.
Corollary 3.4. Suppose the assumptions of Theorem 3.3 are satisfied. If there

are v0 ∈ D and μ0 > 0 with F (v0;μ0) = 0, then there exists a maximal open interval
Iμ ⊂ R+ around μ0 and a continuously differentiable central path v : Iμ → D with the
following properties:

1. v(μ0) = v0.
2. F (v(μ);μ) = 0 for all μ ∈ Iμ.
3. Either dist(v(Iμ), ∂D) = 0 or inf Iμ = 0 holds.

Proof. Due to Theorems 3.2 and 3.3 there is an open neighborhood of (v0, μ0)
on which F and ∂vF are continuous and ∂vF is bijective. The implicit function the-
orem (cf. [41, Thm. 4.B]) guarantees the existence of a continuously differentiable
central path v(μ) with F (v(μ), μ) = 0 on an open interval around μ0. A closer in-
spection of the proof of the implicit function theorem and using the bounds derived in
Theorems 3.2 and 3.3 shows that there is a constant ε = ε(dist(v0, D)) independent
of μ such that v(μ) exists on the open interval ]μ0 − εμ−4, μ0 + εμ−4[.
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Let Iμ ⊂ R+ be a maximal open interval around μ0, such that property 2 holds.
Now assume that property 3 does not hold, i.e., dist(v(Iμ), ∂D) ≥ ε > 0 and δ =
inf Iμ > 0. We consider μ = δ + εδ−4/2 with ε = ε(ε). Again, due to the implicit
function theorem, there is an open interval Jμ = ]μ−εμ−4, μ+εμ−4[ such that property
2 holds on Jμ and hence on Jμ ∪ Iμ. Since μ− εμ−4 < δ, this consequence contradicts
the maximality of Iμ, and property 3 must be true.

3.2. Convergence. Corollary 3.4 does not guarantee the existence of the cen-
tral path for all μ > 0, since the path may reach the boundary of D for some
μlim > 0. Moreover, the upper bound for ‖∂vF (v;μ)−1‖ which has been established in
Theorem 3.3 is useless for proving convergence of the path towards a Kuhn–Tucker
limit point. The two reasons are the possible occurrence of Dirac parts in the state
constraints’ multipliers at the beginning or end of constrained arcs, and the naive
block elimination of the multipliers Δη in the proof of Corollary 3.4.

Under more restrictive assumptions, in particular, the restriction to purely control
constrained problems, a splitting into nearly active and nearly inactive constraints
can be used to show both boundedness of the central path and independence of
‖∂vF (v;μ)−1‖ with respect to μ.

Definition 3.5. For some ρ > 0 and functions u ∈ Lnu
∞ and η ∈ L

nu
η

∞ (Ω), de-
fine the characteristic function χA = χA(t;u, η, μ) of the nearly active set vector ΩA

componentwise as

χA
i (t) =

{
1, g̃ui (ui(t)) ≤ ρηui (t),

0 otherwise.

The corresponding characteristic function χI of the nearly inactive set vector ΩI is

defined as 1 − χA, where 1 ∈ L
nu
η

∞ is the constant function with value 1.
Note that pointwise multiplication with χA defines an orthogonal projector onto

the corresponding L∞ space over the nearly active set vector ΩA.
First we address the issue of the central path leaving a bounded domain of def-

inition. Assuming a suitable constraint qualification for nearly active constraints of
points on the central path, we establish a priori bounds for the central path.

Theorem 3.6. Suppose ny
η = 0; i.e., there are no state constraints. Assume that

the following conditions are satisfied:
(i) The feasible region Du := {u ∈ Lnu

∞ : g(u) ≥ 0} is bounded.
(ii) The state contribution function in the state equation is linearly bounded:

|c̃(u, y)| ≤ const(1 + |y|) for all y ∈ Rny and u ∈ Du.

Then there is a bounded set Dy ⊂ (W 1
∞)ny such that for all μ > 0 every solution v of

F (v;μ) = 0 satisfies u ∈ Du and y ∈ Dy.
If, in addition, there is a constant β > 0 such that the equality constraints and

nearly active control constraints satisfy the inf-sup condition

inf
h∈Rnr ,ξ∈L

nu
η

∞

sup
δu∈Lnu

1

hT∂yr(x)∂yc(x)−1∂uc(x)δu + 〈χAξ, g′(u)δu〉
(|h| + ‖χAξ‖

L
nu
η

∞
) ‖δu‖Lnu

1

≥ β(3.20)

uniformly for central path solutions v with x ∈ Du ×Dy, then there is a bounded set
D0 ⊂ V such that v ∈ D0.

Proof. Suppose v = (u, y, λc, λr, η) is a central path solution of F (v;μ) = 0 for
some μ > 0. Since Ψ(g(u), η) = 0 implies g(u) ≥ 0, we have u ∈ Du by assumption (i).
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Assumption (ii) then guarantees the existence of a constant γy < ∞ such that y ∈
S(0, γy) =: Dy.

Now consider the state part of the adjoint equation

∂yJ(x) − ∂yc(x)∗λc − ∂yr(y)
∗λr = 0.

Due to the formulation of c as initial value problem, the inverse of ∂yc(x) : (W 1
1 ) →

L1 × Rny is uniformly bounded on Du ×Dy. Thus, we can conclude that

‖λc‖L∞×R
ny ≤ ‖∂yc(x)−∗‖(W 1

∞)∗→L∞×R
ny ‖∂yJ(x) − ∂yr(y)

∗λr‖(W 1
∞)∗

≤ const ‖∂yJ(x) − ∂yr(y)
∗λr‖(W 1

∞)∗ .

Since ∂y f̃(x) is uniformly bounded in L
ny
∞ for x ∈ Du×Dy, so is ‖∂yJ(x)‖(W 1

∞)∗ , and
we obtain

‖λc‖L∞×R
ny ≤ const(1 + |λr|).(3.21)

Inserting λc = ∂yc(x)−∗(∂yJ(x) − ∂yr(y)
∗λr) into the control part of the adjoint

equation

∂uJ(x) − ∂uc(x)∗λc − g′(u)∗η = 0,

and splitting the Lagrange multiplier η into nearly active and nearly inactive parts
yields

∂uJ(x) − ∂uc(x)∗∂yc(x)−∗∂yJ(x) − g′(u)∗χIη

= (∂yr(y)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη.

Then the inf-sup condition of assumption (3.20) provides the estimate

β(|λr| + ‖χAη‖L∞) ≤ sup
u∈L1

〈(∂yr(x)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη, u〉
‖u‖L1

≤ ‖(∂yr(x)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη‖L∞

= ‖∂uJ(x) − ∂uc(x)∗∂yc(x)−∗∂yJ(x) + g′(u)χIη‖L∞ .

Note that ‖χIη‖L∞ is bounded by ρ−1‖g(u)‖L∞ and ‖∂yc(x)−∗∂yJ(x)‖L∞×R
ny is

bounded as shown earlier. Similarly, ‖∂uJ(x)‖L∞ is bounded. ‖g′(u)‖L∞→L∞ and
‖∂uc(x)‖L1→L1×R

ny are bounded by Theorem 2.1. Thus, we conclude that

|λr| + ‖χAη‖L∞ ≤ constβ−1.

Combining this with x ∈ Du ×Dy verifies the boundedness of v.
The splitting of the domain into nearly active and inactive regions leads also

to improved estimates for the dependency of the complementarity function on the
homotopy parameter μ.

The reason for the dependence of ‖∂vF (v;μ)−1‖ on μ in Theorem 3.3 is the in-
crease of ‖∂ηΨ−1‖ as μ → 0. This can be overcome by more sophisticated elimination
of variables in the proof. As a preparation, we first prove a refinement of Lemma 3.1.

Lemma 3.7. The Fischer–Burmeister complementarity function satisfies the
following estimates:

‖χA∂gΨ(g(u), η)−1‖L∞→L∞ ≤
(

1 − ρ√
1 + ρ2

)−1

,(3.22)

‖χI∂ηΨ(g(u), η)−1‖L∞→L∞ ≤
(

1 − 1√
1 + ρ2

)−1

.(3.23)
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In particular, both bounds are independent of μ.
Proof. In the relevant inequality (3.4) we now assume that a ≤ ρb. This leads to

∂aψ(a, b;μ) ≥ 1 − 1√
1 + b2

a2 + 2μ
a2

≥ 1 − 1√
1 + 1

ρ2 + 2μ
a2

≥ 1 − 1√
1 + 1

ρ2

.

On the nearly active region, this assumption holds, such that due to the projection
onto the nearly active region the estimate transfers to χA∂gΨ(g(u), η)−1. Thus, (3.22)
is verified. By symmetry, (3.23) is verified using the complementary assumption a >
ρb.

Theorem 3.8. Assume ny
η = 0; i.e., only control constraints are present. Suppose

there exist a bounded set D ⊂ V and constants β > 0 and α > 0 such that the
following conditions hold uniformly for all central path solutions v = v(μ) ∈ D with
F (v(μ);μ) = 0 and μ > 0.

1. State equation and nearly inactive control constraints satisfy the inf-sup con-
dition

inf
h∈Rnr ,ξ∈L

nu
η

p

sup
δu∈Lnu

q

hT∂yr(x)∂yc(x)−1∂uc(x)δu + 〈χAξ, g′(u)δu〉
(|h| + ‖χAξ‖

L
nu
η

p

) ‖δu‖Lnu
q

≥ β

for both (p, q) = (∞, 1) and (p, q) = (2, 2).
2. The augmented second derivative of the Lagrangian

M = ∂2
xL(v) + g′(x)∗∂ηΨ(g(x), η)−1χI∂gΨ(g(x), η)g′(x)

is positive semidefinite on the nullspace of the linearized state equation:

〈ξ,Mξ〉 ≥ 0 for ξ ∈ ker c′(x),(3.24)

〈ξ,Mξ〉 ≥ α‖ξ‖2
Lnu

2 ×(W 1
2 )ny for ξ ∈ ker c′(x) ∩ kerχAg′(u).(3.25)

Then ∂vF (v;μ) has an inverse which is bounded uniformly for (v, μ) ∈ D × R+.
Before delving into the proof, let us briefly discuss the assumptions of Theo-

rem 3.8. Mostly, they have counterparts in well-known optimality conditions, but
they need to be extended a priori to a neighborhood of the central path in order to
be able to show convergence.

Assumption 1 is a direct generalization of the linear independence constraint qual-
ification (LICQ; see, e.g., [19, Def. 2.9]) from nonlinear programming to the infinite-
dimensional setting. It is also a reinterpretation of regular points (cf. [28, (2.1)]) in
the setting of interior points. It provides uniqueness of the Lagrange multipliers and
is therefore necessary for proving invertibility of ∂vF .

Convexity of the Lagrangian on the nullspace of the linearized state equation
is generally required for sufficient second order optimality conditions. In particular,
requirement (3.25) can be interpreted as an adaptation of the convexity condition
given by Maurer [28, Thm. 3.5], whereas (3.24) is only technically necessary for in-
voking a certain saddle point lemma in the proof. In the control constrained setting,
the Legendre–Clebsch condition that has been assumed explicitly in Theorem 3.3 is
implied by the earlier convexity assumption.

Lemma 3.9. Assumption 2 of Theorem 3.8 implies a strengthened Legendre–
Clebsch-type condition for almost all t ∈ Ω:

Mu(t) := ∂2
uf̃(x(t)) − ∂2

uc̃(x(t))Tλc(t) − g̃′′(u(t))T η(t)

+g̃′(u(t))T∂ηψ(g̃(u(t)), η(t);μ)−1χI∂gψ(g̃(u(t)), η(t);μ)g̃′(u(t))
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satisfies

ξTMu(t)ξ ≥ 0 for ξ ∈ Rnu ,(3.26)

ξTMu(t)ξ ≥ α|ξ|2 for ξ ∈ kerχA(t)g̃′(u(t)).(3.27)

Proof. Let ξ ∈ Rnu be arbitrary and define δu = ξχ[t−ε,t+ε] for arbitrary
t ∈ int(Ω) and sufficiently small ε > 0. Defining Myu, Muy, and S as in The-
orem 3.3, we introduce δy = Sδu such that (δu, δy) ∈ ker c′(x). From standard
ODE theory we know that ‖δy‖L∞ ≤ const ‖δu‖L1 ≤ const ε. Let Mu = ∂2

uL(v) +
g′(u)∗χIΨη(g(u), η)−1Ψg(g(u), η)g′(u), My = ∂2

yL(v), and

M =

[
Mu Muy

Myu My

]
.

Since My, Myu, and Muy are uniformly bounded Nemyckii operators, we have by (3.24)

〈δu,Muδu〉 = 〈(δu, δy),M(δu, δy)〉 − 〈δy,Myδy〉 − 〈δy,Muyδu〉 − 〈δu,Myuδy〉
≥ 0 − const ‖δy‖2

L∞ − 2 const ‖δy‖L∞‖δu‖L1

≥ − const ε2

for all t and ε > 0, and hence ξTMu(t)ξ ≥ 0 for all ξ and almost all t ∈ Ω, which
verifies (3.26). Restricting ξ to kerχA(t)g̃′(u(t)) and using (3.25) instead of (3.24)
finally proves (3.27).

Proof of Theorem 3.8. The structure and line of argument is similar to the
proof of Theorem 3.3. We, therefore, concentrate on the differences and exten-
sions. Define C,Cu, Cy, R,Ry,Muy,Myu, and S as before. Let G = −g′(u). Define
Ψg = ∂gΨ(g(u), η) and analogously Ψη. Finally, define Mu and My as in Lemma 3.9.

As before, the first step consists of eliminating the Lagrange multiplier, but here
only the nearly inactive part χIη = χIΨ−1

η (zp−ΨgGΔu). In order to symmetrize the
remaining system, the nearly active part of the complementarity equation is multiplied
by Ψ−1

g : ⎡⎢⎢⎢⎢⎣
Mu Muy C∗

u G∗χA

Myu My C∗
y R∗

y

Cu Cy

Ry

χAG −χAΨ−1
g Ψη

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Δu
Δy
Δλc

Δλr

χAΔη

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
z̄ua
zya
zc
zr

χAΨ−1
g zp

⎤⎥⎥⎥⎥⎦
with z̄ua = zua −G∗χIΨ−1

η zp. Note that χA, Ψ−1
g , and Ψη commute. Continuing with

the elimination of Δy and λc as in the proof of Theorem 3.3, we end up with⎡⎣ T −(RyS)∗ G∗χA

−RyS
χAG −χAΨ−1

g Ψη

⎤⎦⎡⎣ Δu
Δλr

χAΔη

⎤⎦ =

⎡⎣ ẑua
ẑr

χAΨ−1
g zp

⎤⎦ ,

where T = Mu+S∗MyS−(MuyS+S∗Myu), ẑua = z̄ua−MuyC
−1
y zc−S∗(z̄ya−MyC

−1
y zc),

and ẑr = zr −RyC
−1
y zc. Due to assumption 2, T is positive definite on the nullspace

of χAG and positive semidefinite on the whole space. Assumption 1 provides the
inf-sup condition for the combined operator[

−RyS
χAG

]
,
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and χAΨ−1
g Ψη is positive semidefinite. In this situation, the application of Brezzi’s

splitting theorem is substituted by a theorem of Braess and Blömer [9] on sad-
dle point problems with penalty term. This guarantees the existence of a solution
(Δu,Δλr, χ

AΔη) ∈ Lnu
2 × Rnr × L2(Ω

A) with

‖Δu‖L2 + |Δλr| + ‖ΔηA‖L2
≤ constκ(‖ẑua‖L2

+ |ẑr| + ‖χAΨ−1
g zp‖L2

),

where κ = ‖T‖+‖RyS‖+‖GA‖+‖χAΨ−1
g Ψη‖+α+β. Note that due to Lemma 3.7 the

operators χAΨ−1
g Ψη and χIΨ−1

η Ψg are bounded independently of μ. This property is

inherited by κ and ‖χAΨ−1
g zp‖, such that ‖Δu‖L2 , |Δλr|, and ‖χAΔη‖L2 are bounded

independently of μ.
Subsequently, the L∞-regularity of Δu and χAΔη is established. As in the proof

of Theorem 3.3, we have

(S∗MyS −MuyS − S∗Myu)Δu + S∗R∗
yΔλr ∈ Lnu

∞

such that for almost all t ∈ Ω the finite-dimensional linear equation system[
Mu(t) g̃′(u(t))TχA(t)

χA(t)g̃′(u(t)) −B

] [
Δu(t)

χAΔη(t)

]
=

[
a

χA(t)b

]
(3.28)

holds, with B = χA(t)∂gψ(g(u(t)), η(t))−1∂ηψ(g(u(t)), η(t)). Here, a and b denote
generic right-hand side vectors the norm of which is bounded by a constant inde-
pendent of μ. By Lemma 3.9, Mu(t) is positive definite on the nullspace of g̃′(u(t)),
such that we can again apply the lemma by Braess and Blömer, now for the finite-
dimensional equation (3.28). This yields

|Δu(t)| + |χAΔη(t)| ≤ const(‖Mu(t)‖ + ‖g̃′(u(t))‖ + ‖B‖ + α + β)(|a| + |b|)(3.29)

for almost all t ∈ Ω, and hence

‖Δu‖L∞ ≤ const,(3.30)

‖χAΔηA‖L∞ ≤ const(3.31)

independently of μ. Finally, tracing back the elimination stack as in Theorem 3.3
verifies the claim.

As in Corollary 3.4, local existence of the central path can be shown. Moreover,
the a priori bound of the solution given by Theorem 3.6 eliminates the possibility of
premature termination of the path. Finally, the fact that the inverse of ∂vF can be
bounded independently of μ limits the length of the path and thus ensures conver-
gence.

Theorem 3.10. Assume Theorem 3.6 holds, providing a bounded set D0 ⊂ V
containing the central path. Define D =

⋃
v∈D0

S(v, ε) for some ε > 0. Suppose the
assumptions of Theorem 3.8 hold on D.

If there are v0 ∈ D0 and μ0 > 0 with F (v0;μ0) = 0, then the central path v(μ)
exists for all 0 < μ ≤ μ0 and converges to a Kuhn–Tucker point v(0):

‖v(μ) − v(0)‖V ≤ const
√
μ.

Proof. First we notice that due to Theorem 3.2, there is some ε > 0 such that
∂vF (v;μ)−1 is uniformly bounded on the neighborhood

U =
⋃

(v;μ) with F (v;μ)=0

S((v, μ), ε)
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of the central path solutions v(μ). As in the proof of Theorem 3.4, the central path
exists on a maximal interval Iμ containing μ0. Since due to Theorem 3.6 this central
path is bounded away from ∂D, we have inf Iμ = 0. Thus, the central path exists for
all 0 < μ ≤ μ0.

Next we estimate ∂μF (v(μ);μ). Since only the complementarity function Ψ de-
pends on μ, this is given by ∂μΨ(g(u), η;μ) = −(g(u)2 +η2 +2μ)−1/2. On the central
path, we have g(u) · η = μ a.e. and thus

‖∂μΨ(g(u), η;μ)‖L∞ ≤ (4μ)−1/2.

Now the derivative of the central path is given by

v′(μ) = ∂vF (v(μ);μ)−1∂μF (v(μ);μ).

Theorem 3.8 yields

‖v′(μ)‖V ≤ ‖∂vF (v(μ);μ)−1‖Z→V ‖∂μF (v(μ);μ)‖Z ≤ constμ−1/2.(3.32)

Therefore, the central path is uniformly continuous and converges to some limit point
v(0) ∈ D at a rate of

‖v(μ) − v(0)‖V ≤
∫ μ

0

‖v′(s)‖V ds ≤ const

∫ μ

0

s−1/2 ds = const
√
μ.

The continuity of F on D× [0,∞[ implies that F (v(0); 0) = 0, such that v(0) satisfies
the first order necessary conditions (2.8).

In the remainder of the section, we will apply the preceding theorems to a class
of prototypical optimal control problems. We consider

min

∫ 1

0

(
f̃y(y(t)) +

α

2
|u(t)|2

)
dt

subject to ẏ(t) = Ay(t) + Bu(t),

y(0) = y0,

a ≤ u(t) ≤ b.

Theorem 3.11. Suppose that f̃y is convex and twice Lipschitz-continuously dif-
ferentiable, α > 0, a < b, A ∈ Rny×ny , and B ∈ Rny×nu . Assume there are v0 and
μ0 > 0 such that F (v0;μ0) = 0. Then the central path v(μ) converges to a Kuhn–
Tucker point v(0) ∈ D at a rate of

‖v(μ) − v(0)‖ ≤ const
√
μ.

Proof. We restrict the discussion to a scalar control, i.e., nu = 1. The extension
to vector valued controls is straightforward but notationally more involved. We start
with Theorem 3.6, choosing

ρ <
1

μ0

(
b− a

2

)2

(3.33)

for separating nearly active and nearly inactive constraints. Due to the box constraints
and the linearity of the state equation, conditions (i) and (ii) are satisfied. Since no
terminal boundary conditions are given, the inf-sup condition (3.20) simplifies to

inf
ξ∈L2

p

sup
δu∈L1

q

〈χAξ, g′(u)δu〉
‖χAξ‖L2

p
‖δu‖L1

q

≥ β with g′(u) =

(
I
−I

)
.
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Assume that for a central path solution (v, μ) with μ ≤ μ0, the lower constraint
u ≥ a is nearly active at t, i.e., ρηa(t) ≥ u(t) − a. For simplicity, we will omit the
argument t in the following. Together with (3.33) and the interior point condition
ηa(u− a) = μ = ηb(b− u) holding for all central path solutions, this implies

b− u = b− a− (u− a) ≥ b− a−
√
ρηa(u− a) = b− a−√

ρμ

≥ b− a− b− a

2
=

b− a

2
>

√
ρμ =

√
ρηb(b− u).

Squaring and dividing by b−u finally yields b−u > ρηb, which implies that the upper
constraint u ≤ b is nearly inactive whenever the lower constraint is nearly active.
Analogously, the converse can be shown, such that at most one of the two constraints
is active. Since in χAξ at least one component vanishes, we see that

inf
ξ∈L2

p

sup
δu∈L1

q

〈χAξ, g′(u)δu〉
‖χAξ‖L2

p
‖δu‖L1

q

≥ inf
ξ∈L1

p

sup
δu∈L1

q

〈ξ, δu〉
‖ξ‖L1

p
‖δu‖L1

q

≥ 1(3.34)

for both (p, q) = (∞, 1) and (p, q) = (2, 2), which confirms the inf-sup condition.
Now we verify the assumptions of Theorem 3.8 on the whole space D = V . As-

sumption 1 is again the inf-sup condition (3.34). The Legendre–Clebsch condition 2
is satisfied due to α > 0 and the linearity of the constraints, as is the positive defi-
niteness condition 3 for ∂2

xL(v). Since Theorem 3.8 thus holds on V , we can apply
Theorem 3.10, which yields the claim.

Remark 3.12. The main conditions to verify are the inf-sup constraint qualifi-
cation and the convexity. While the latter has been explicitly assumed, the former
is a direct consequence of the box constraints. More complex optimization problems
require more work to verify the assumptions of Theorem 3.10. Nonlinearity of the
state equation needs to be compensated by convexity and an a priori bound on λ as
given by Theorem 3.6 in order to obtain convexity of the Lagrangian with respect to
x. The inf-sup constraint qualification can be shown for more general constraints, e.g.,
pointwise convex polyhedric admissible sets for the control. It needs to be verified
that at most nu constraints are nearly active.

Numerical results for a specific problem of this class are given in [39].

4. A short-step path-following method. With the refined estimates from
section 3.2, we can show linear convergence of a short-step path-following method.
Note that this is a purely theoretical algorithm, since it relies on the exact solution of
operator equations in function space and on knowledge of global Lipschitz constants.
For an implementable approximation via inexact Newton corrector and inexact tan-
gential predictor, we refer to [39].

We consider the following simple algorithm.
Algorithm 4.1.

1 initialize v0, μ0 such that F (v0;μ0) = 0
2 choose σ < 1 sufficiently large
3 while μk > 0
4 advance μk+1 ← σμk

5 compute one corrector step ∂vF (vk;μk+1)δvk = −∂μF (vk;μk+1)
6 advance vk+1 ← vk + δvk, k ← k + 1
The sequence vk of iterates converges to the Kuhn–Tucker point v(0).
First, we recall the essentials of an affine covariant Newton–Mysovskikh theorem

from [16].
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Theorem 4.2. Assume F : X → Y is a differentiable mapping with F (x∗) = 0.
Assume the derivative F ′(x) is invertible on D = S(x∗, δ) and satisfies

‖F ′(x)−1(F ′(y) − F ′(x))‖ ≤ ω‖y − x‖(4.1)

for x, y ∈ D. Let the ordinary Newton sequence xk starting at x0 ∈ D be defined by
xk+1 = xk − F ′(xk)−1F (xk). Then xk converges to x∗ at a rate of

‖xk+1 − x∗‖ ≤ ω

2
‖xk − x∗‖2.

Theorem 4.3. Suppose that F satisfies the assumptions of Theorem 3.10, pro-
viding a bounded set D. Let v0 ∈ D and μ0 > 0 be given such that F (v0;μ0) = 0.
Then there is a constant σ < 1 such that the sequence vk of iterates generated by
Algorithm 4.1 converges linearly to the limit point v(0) of the central path.

Proof. To begin with, we verify the assumptions of Theorem 4.2. By Theo-
rems 3.2 and 3.8 there are constants γ1 and γ2 independent of μ ≤ μ0, such that
‖∂vF (v;μ) − ∂vF (v(μ);μ)‖V→Z ≤ γ1μ

−1/2 and ‖∂vF (v(μ);μ)−1‖Z→V ≤ γ2. Omit-
ting the argument μ from F , we use the Banach perturbation lemma to derive

‖∂vF (v)−1‖Z→V

≤ ‖∂vF (v(μ))−1‖Z→V ‖(I − (∂vF (v(μ)) − ∂vF (v))∂vF (v(μ))−1)−1‖Z→Z

≤ γ2

1 − γ1μ−1/2‖v − v(μ)‖V γ2
≤ 2γ2

for v ∈ D = S
(
v(μ),

√
μ/(2γ2γ1)

)
. For v1, v2 ∈ D we thus obtain

‖∂vF (v1)
−1(∂vF (v2) − ∂vF (v2))‖V→V

≤ ‖∂vF (v1)
−1‖Z→V ‖(∂vF (v2) − ∂vF (v1))‖V→Z

≤ 2γ2γ1μ
−1/2‖v2 − v1‖V ,

which establishes the Lipschitz condition (4.1) with

ω(μ) ≤ 2γ2γ1√
μ

.

As in (3.32) in the proof of Theorem 3.10, we obtain a bound on the derivative of the
central path in the form of

‖v′(μ)‖V ≤ β
√
μ

with β < ∞ independent of μ. Define

δ = (2γ2γ1)
−1 and σ ≥

(
1 − δ

2(δ + β)

)2

.(4.2)

Let us assume by induction that ‖vk − v(μk)‖V ≤ δ
√
μk/2. Then we have

‖vk − v(σμk)‖V ≤ ‖vk − v(μk)‖V + (1 − σ)μk sup
μ∈[σμk,μk]

‖v′(μ)‖V

≤
δ
√
μk

2
+ (1 − σ)μkβ(σμk)

−1/2

=
√
μk

(
δ

2
+

β√
σ

+ β
√
σ

)
.
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With σ given by (4.2), some tedious calculation verifies

δ

2
+

β√
σ

+ β
√
σ ≤ δ

√
σ

and hence

‖vk − v(σμk)‖V ≤ δ
√
μkσ.

Now the corrector step, which is a Newton step for the problem F (v;σμk) = 0, leads
to

‖vk+1 − v(μk+1)‖V ≤ ω(μ)

2
‖vk − v(μk+1)‖2

V ≤ ω(μ)

2
δ2μk+1

≤ δ

2

√
μk+1,

which completes the induction. As for the convergence of the iterates, we observe
that by Theorem 3.10

‖vk − v(0)‖V ≤ ‖vk − v(μk)‖V + ‖v(μk) − v(0)‖V

≤ δ

2

√
μk + const

√
μk

≤ constσk/2√μ0,

which proves linear convergence of vk → v(0).
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A SEARCH ALGORITHM FOR A CLASS OF OPTIMAL
FINITE-PRECISION CONTROLLER REALIZATION PROBLEMS

WITH SADDLE POINTS∗

JUN WU† , SHENG CHEN‡ , GANG LI§ , AND JIAN CHU†

Abstract. With game theory, we review the optimal digital controller realization problems that
maximize a finite word length (FWL) closed-loop stability measure. For a large class of these optimal
FWL controller realization problems which have saddle points, a minimax-based search algorithm
is derived for finding a global optimal solution. The algorithm consists of two stages. In the first
stage, the closed form of a transformation set is constructed which contains global optimal solutions.
In the second stage, a subgradient approach searches this transformation set to obtain a global
optimal solution. This algorithm does not suffer from the usual drawbacks associated with using
direct numerical optimization methods to tackle these FWL realization problems. Furthermore,
for a small class of optimal FWL controller realization problems which have no saddle point, the
proposed algorithm also provides useful information to help solve them.

Key words. closed-loop stability, digital controller, finite word length, game theory, optimiza-
tion, saddle points
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1. Introduction. There has been a growing awareness that finite-precision con-
troller implementation can have a serious influence on the actual performance of a
digital closed-loop control system [1], [2], [3]. Due to the finite word length (FWL)
errors, a casual controller implementation may degrade the designed closed-loop per-
formance, or even destabilize the designed stable closed-loop system, if the controller
implementation structure is not carefully chosen. The FWL effect has become more
critical with the growing popularity of robust controller design methods which focus
only on dealing with large plant uncertainty and result in controllers of much higher
order and complexity than traditional classical control [2]. There are generally two
types of FWL errors in the digital controller implementation. The first one is the
rounding errors that occur in arithmetic operations [4], [5], and the second one is
the controller parameter representation errors which have critical influence on closed-
loop stability [6], [7], [8], [9], [10], [11], [12]. Typically, these two types of errors are
investigated separately for the reason of mathematical tractability.

In general, there exist two different strategies, called the direct and indirect strate-
gies, for constructing digital controllers that can tolerate FWL implementation errors.
For the indirect strategy, the transfer function of the digital controller has been de-
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signed by some controller synthesis methods. It is well known that a transfer function
can be fulfilled with different realizations, and different realizations possess different
degrees of robustness to FWL errors. This property can be utilized to select “opti-
mal” realizations that optimize some FWL performance measures. Various FWL per-
formance measures have been investigated, and these include the averaged roundoff
noise gain [5], the complex stability radius measure [6], the transfer function sensitiv-
ity measure [7], the l1-based stability measure [8], the Frobenius-norm pole sensitivity
measure [9], and the 1-norm pole sensitivity measure [10], [11]. In the direct strat-
egy, controller design involves explicitly the considerations of FWL implementation.
By extending the standard H∞ control design to include FWL controller parameter
perturbations, the work of [12] developed a Riccati inequality approach, which di-
rectly obtains optimal controller realizations satisfying both the H∞ robustness and
FWL closed-loop stability requirements. Similarly, by extending the standard linear
quadratic Gaussian (LQG) control design to include the effects of FWL roundoff noise,
the work of [4] developed a FWL-LQG controller design method. The direct strategy
appears to be better than the indirect strategy, since the former does not make spe-
cific assumptions on the controller, and in theory it should be a preferred approach.
However, except for a few methods, such as H∞ and LQG, it is very difficult to ex-
tend various controller design methods to this direct strategy. But this difficulty does
not exist in the indirect strategy, where controller synthesis and controller realization
are two separate steps. Various existing controller design methods can be used to
attain a transfer function or an initial realization of the controller, which can then be
optimized to satisfy FWL implementation requirements.

This paper adopts the indirect strategy with the Frobenius-norm pole sensitivity
measure proposed in [9]. Our motivation is as follows. The Frobenius-norm pole
sensitivity measure was derived in [9], and the optimal controller realization problem
was defined as the maximization of this measure over all the possible controller re-
alizations. An analytical solution to this class of optimal realization problems was
attempted in [9]. However, it was pointed out that the conditions presented in [9]
are not sufficient to provide an optimal realization [13]. Consequently, the solution
expression presented in [9] is in general a suboptimal solution, and numerical op-
timization methods have to be adopted [14] to find optimal solutions. Since these
optimal FWL realization problems are highly complicated nonlinear and nonconvex
optimization problems, especially when the order of the controller is large, a direct nu-
merical optimization is computationally very expensive. Moreover, chances of search
being trapped at some bad local solutions increase for large-scale problems, and it is
impossible to tell whether or not a solution obtained is a global optimum. In this pa-
per, these optimal FWL controller realization problems are reviewed with game theory
[15], [16]. They are consequently divided into two types: optimization problems which
have saddle points and optimization problems which do not have a saddle point.

For the class of optimal FWL realization problems with saddle points, this pa-
per derives a minimax-based search algorithm for finding global optimal solutions.
Our search algorithm is computationally much more efficient than usual numerical
optimization for tackling this class of complicated optimization problems. Moreover,
when this algorithm attains a solution, it is guaranteed to be a global optimal realiza-
tion. Comments are made regarding why in practice the class of these optimization
problems with saddle points is much larger than the class having no saddle point. It is
shown that our proposed search algorithm is also useful in helping to solve the small
class of these optimal FWL realization problems which have no saddle point. The
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remainder of the paper is organized as follows. Section 2 defines the optimal FWL
controller realization problem considered in this study and introduces some necessary
mathematical preliminaries. In section 3, the proposed two-stage search algorithm is
derived. Section 4 discusses the practical value of this algorithm. Section 5 presents
several design examples, and the paper concludes with section 6.

2. Problem definition and preliminaries. For a complex-valued matrix M =
[mij ], MT is the transposed matrix of M, MH is the Hermitian adjoint matrix of M,
M∗ is conjugate to M,

‖M‖max
�
= max

i,j
|mij |,(1)

and the Frobenius norm is defined as

‖M‖F
�
=

(∑
i,j

|mij |2
)1/2

.(2)

Let Vec(·) be the column stacking operator such that Vec(M) is a vector. For a real-
valued positive semidefinite matrix D ≥ 0, the matrix D1/2 satisfies D1/2(D1/2)T =
D. For two real-valued matrices M = [mij ] and N = [nij ] of the same dimension,
denote

〈M,N〉 =
∑
i,j

mijnij .(3)

2.1. Problem definition. Consider the discrete-time closed-loop control sys-
tem, consisting of a linear time-invariant plant P (z) and a digital controller C(z).
The plant model P (z) is assumed to be strictly proper with a state-space description{

xP (t + 1) = APxP (t) + BPu(t),
z(t) = CPxP (t),

(4)

where AP ∈ Rm×m, BP ∈ Rm×l, and CP ∈ Rq×m. The digital controller C(z) is
described by {

xC(t + 1) = ACxC(t) + BCz(t),
u(t) = CCxC(t) + DCz(t),

(5)

with AC ∈ Rn×n, BC ∈ Rn×q, CC ∈ Rl×n, and DC ∈ Rl×q. Denote the realization
of C(z) as

X
�
=

[
DC CC

BC AC

]
.(6)

Assume that an initial realization of C(z),

X0
�
=

[
D0

C C0
C

B0
C A0

C

]
,(7)

has been given by some controller synthesis method. Then all the realizations of C(z)
form a set

SC
�
=

{
X : X = X(T) =

[
I 0
0 T−1

]
X0

[
I 0
0 T

]}
,(8)
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where the transformation T ∈ Rn×n is an arbitrary nonsingular matrix, and 0 and I
denote the zero and identity matrices of appropriate dimensions, respectively. SC is
not a convex set, as

λ

[
I 0
0 T−1

1

]
X0

[
I 0
0 T1

]
+ (1 − λ)

[
I 0
0 T−1

2

]
X0

[
I 0
0 T2

]
(9)

may not belong to SC for any nonsingular T1,T2 ∈ Rn×n and 0 < λ < 1. The
stability of the closed-loop control system depends on the eigenvalues of the closed-
loop transition matrix

A(X) =

[
AP + BPDCCP BPCC

BCCP AC

]
(10)

=

[
AP 0
0 0

]
+

[
BP 0
0 I

]
X

[
CP 0
0 I

]
�
= M0 + M1XM2.

All the different realizations X in SC have exactly the same set of closed-loop poles if
they are implemented with infinite precision. Since the closed-loop system has been
designed to be stable, all the eigenvalues λk(A(X)), 1 ≤ k ≤ m + n, of A(X) are
within the unit disk.

When X is implemented with an FWL digital processor of fixed-point format, it
is perturbed to X+ΔX. Each element of ΔX is bounded by ±ε; that is, ‖ΔX‖max ≤
ε, where ε is the maximum representation error of the digital processor. With the
perturbation ΔX, λk(A(X)) is moved to λk(A(X+ΔX)). If an eigenvalue of A(X+
ΔX) is outside the open unit disk, the closed-loop system, designed to be stable,
becomes unstable with the finite-precision implemented X. It is therefore critical to
know when the FWL error will cause closed-loop instability. This means that we
would like to know the largest open “hypercube” in the perturbation space within
which the closed-loop system remains stable. The size of this perturbation hypercube
quantifies the FWL characteristics of X and is therefore a true FWL closed-loop
stability measure for X [17].

Computing the size of this largest stable perturbation hypercube, however, is an
unsolved open problem. An approximation to this true FWL closed-loop stability
measure is the following Frobenius-norm pole sensitivity measure defined in [9]:

f(X)
�
= min

k∈{1,...,m+n}

1 − |λk(A(X))|√
(l + n)(q + n)

∥∥∥∂λk(A(X))
∂X

∥∥∥
F

.(11)

Rigorous discussions regarding the rationality of f(X) as an FWL closed-loop stability
measure can be found in [9], [11]. Basically, under some mild assumptions and using
a first-order approximation, it can be shown that the closed-loop system remains
stable if ‖ΔX‖max < f(X). It has been argued in [18] that estimates obtained from
first-order perturbation theory are often more realistic than rigorous bounds obtained
by other means. Thus, the larger f(X) is, the larger an FWL error ΔX that the
closed-loop system can tolerate. Moreover, f(X) is computationally tractable, as is
summarized in the following lemma given by [19].

Lemma 1. Let A(X) = M0 + M1XM2 given in (10) be diagonalizable. De-
note pk a right eigenvector of A(X) corresponding to the eigenvalue λk(A(X)). The



SEARCH ALGORITHM FOR OPTIMAL FWL CONTROLLERS 1791

reciprocal left eigenvector yk related to pk is obtained from [y1,y2, . . . ,ym+n] =

[p1,p2, . . . ,pm+n]
−H

. Then

∂λk(A(X))

∂X
= MT

1 y∗
kp

T
k MT

2 ∀k ∈ {1, . . . ,m + n}.(12)

As different controller realizations X result in different values of f(X), it is natural
to search for “optimal” controller realizations that maximize the measure defined in
(11). This leads to the following optimal FWL realization problem [9]:

υ
�
= max

X∈SC

f(X).(13)

Numerical optimization methods have been used to attain solutions of this optimal
realization problem (e.g., [14]). In general, the optimization problem (13) is highly
nonlinear and nonconvex. Thus, numerical optimization methods do not guarantee
attaining a global optimal solution and suffer from high costs, particularly for large-
scale systems.

Now, let us define

g(X, k)
�
=

1 − |λk(A(X))|√
(l + n)(q + n)

∥∥∥∂λk(A(X))
∂X

∥∥∥
F

.(14)

Obviously, the optimal FWL realization problem (13) can be viewed as

υ = max
X∈SC

min
k∈{1,...,m+n}

g(X, k).(15)

2.2. Saddle points and minimax theorem. This subsection introduces with-
out proofs some properties of saddle points and the minimax theorem, which are useful
in solving the optimization problem (15). The detailed discussion of this topic can be
found in the standard game theory textbooks, such as [15], [16].

Definition 1. (X′, k′) ∈ SC × {1, . . . ,m + n} is said to be a saddle point of
g(X, k) if

g(X, k′) ≤ g(X′, k′) ≤ g(X′, k) ∀X ∈ SC , ∀k ∈ {1, . . . ,m + n}.(16)

Theorem 1. If both (X′, k′) and (X′′, k′′) are saddle points of g(X, k), then

g(X′, k′) = g(X′′, k′′).(17)

The following theorem is the well-known minimax theorem in game theory.
Theorem 2. If and only if there exists at least a saddle point (X′, k′) of g(X, k),

then

max
X∈SC

min
k∈{1,...,m+n}

g(X, k) = min
k∈{1,...,m+n}

max
X∈SC

g(X, k) = g(X′, k′).(18)

A direct corollary of Theorem 2 is stated as follows.
Corollary 1. If g(X, k) has no saddle point, then

max
X∈SC

min
k∈{1,...,m+n}

g(X, k) < min
k∈{1,...,m+n}

max
X∈SC

g(X, k).(19)



1792 JUN WU, SHENG CHEN, GANG LI, AND JIAN CHU

 g
( 

X
, k

)

 X

 g( X,1)
 g( X,2)
 g( X,3)

ρ
1
 

ρ
2
 

ρ
3
 

 q
1
  q

2
  q

3
  q

4
 

Fig. 1. A simple illustration of ρk, X , and saddle points.

Theorems 1 and 2 show that for the optimal FWL realization problem (15) which
has saddle points, any saddle point of g(X, k) is a global optimal solution of (15).
Define

ρk
�
= max

X∈SC

g(X, k)(20)

for k ∈ {1, . . . ,m + n} and the index

k′ = arg min
k∈{1,...,m+n}

ρk.(21)

There exist an infinite number of X ∈ SC such that g(X, k′) = ρk′ . Define

X �
= {X : g(X, k′) = ρk′ ,X ∈ SC}.(22)

Figure 1 depicts a simple illustration for a case of ρk with k ∈ {1, 2, 3}. It is easily
seen that in this case X is the segment between q1 and q4 on the X-axis. It can
also be observed in Figure 1 that the points between q2 and q3 (a subset of X ) are
the realizations corresponding to saddle points. This observation accords with the
following theorem, which provides a method for finding a saddle point.

Theorem 3. If and only if X′ ∈ X satisfies

g(X′, k) ≥ ρk′ ∀k ∈ {1, . . . ,m + n} \ {k′},(23)

then (X′, k′) is a saddle point of g(X, k).

3. Search algorithm. A main objective of this paper is how to find a global
optimal solution to the optimal FWL realization problem (15) which has saddle points.
In other words, we assume that there exist saddle points for g(X, k) in the problem
(15). What happens if the problem has no saddle point and how to deal with it will be
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discussed in section 4. Based on Theorem 3, a two-stage algorithm is developed to find
a saddle point of the optimal FWL controller realization problem (15). The first stage
focuses the attention on solving the optimization problem (20) for k ∈ {1, . . . ,m+n},
and the index k′ and the closed-form expression of X are obtained in this stage. The
second stage searches X for a controller realization Xopt that meets the condition
g(Xopt, k) ≥ ρk′ ∀k ∈ {1, . . . ,m+n}\{k′}. Such an Xopt is a global optimal solution
to the optimal FWL controller realization problem (13). We now discuss this two-
stage algorithm in detail.

3.1. Stage 1 of the algorithm. It is known easily from (8) and (10) that

A(X) =

[
I 0
0 T−1

]
A(X0)

[
I 0
0 T

]
.(24)

This means that ∀X ∈ SC , λk(A(X)) = λk(A(X0)). Thus, from (14), solving the
maximization problem (20) is equivalent to solving the following minimization prob-
lem:

ηk
�
= min

X∈SC

∥∥∥∥∂λk(A(X))

∂X

∥∥∥∥
F

.(25)

Combining Lemma 1 with the definition of ‖·‖F , one has∥∥∥∥∂λk(A(X))

∂X

∥∥∥∥
F

= ‖MT
1 yk‖F ‖M2pk‖F .(26)

Let pk and yk be partitioned into

pk =

[
pk(1)
pk(2)

]
, yk =

[
yk(1)
yk(2)

]
, pk(1),yk(1) ∈ Cm, pk(2),yk(2) ∈ Cn.(27)

Then it follows from (24) that[
pk(1)
pk(2)

]
=

[
I 0
0 T−1

] [
p0k(1)
p0k(2)

]
,

[
yk(1)
yk(2)

]
=

[
I 0
0 TT

] [
y0k(1)
y0k(2)

]
,(28)

where
[
pT

0k(1) pT
0k(2)

]T
and

[
yT

0k(1) yT
0k(2)

]T
are the right and reciprocal left eigen-

vectors of A(X0) corresponding to λk(A(X0)), respectively. Combining (10) and
(26)–(28), we have∥∥∥∥∂λk(A(X))

∂X

∥∥∥∥2

F

= ‖T−1p0k(2)‖2
F ‖TTy0k(2)‖2

F

(29)
+α2

k‖TTy0k(2)‖2
F + β2

k‖T−1p0k(2)‖2
F + α2

kβ
2
k,

where the constants αk = ‖CPp0k(1)‖F and βk = ‖BT
Py0k(1)‖F . It is easy to see

that, in order to attain ρk, we need to minimize the function

ξ(T, α, β,p,y)
�
= ‖T−1p‖2

F ‖TTy‖2
F + α2‖TTy‖2

F + β2‖T−1p‖2
F + α2β2.(30)

There are three different cases on minimizing ξ(T, α, β,p,y), depending on whether
p and y are real-valued or complex-valued.
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Case 1. p,y ∈ Rn and yTp 	= 0.
Case 2. p,y ∈ Cn and det((Υ(y))TΥ(p)) > 0, where

Υ(y)
�
= [Re(y) Im(y)](31)

with Re(y) and Im(y) denoting the real and imaginary parts of y, respectively.
Case 3. p,y ∈ Cn and det((Υ(y))TΥ(p)) < 0.
Let ei denote the ith coordinate vector, and define

r
�
=

{
y for Case 2,
y∗ for Case 3.

(32)

The following theorem gives the results on minimizing ξ(T, α, β,p,y) for Cases 2 and
3. Case 1 is much simpler than Cases 2 and 3, and the result for Case 1 can easily be
obtained in a similar way.

Theorem 4. Given positive α, β ∈ R, p and y being of Case 2 or 3, we have

min
T∈Rn×n

detT�=0

ξ(T, α, β,p,y) = (|rHp| + αβ)2,(33)

and ξ(T, α, β,p,y) achieves the minimum if and only if

T = Q

[
H1/2 0

F(H1/2)−T Ω

]
V,(34)

where V ∈ Rn×n is an arbitrary orthogonal matrix, and Ω ∈ R(n−2)×(n−2) is an
arbitrary nonsingular matrix; the orthogonal matrix Q can be obtained from the QR
factorization of Υ(r), that is,

Υ(r) = Q

[
γ11 0 0 · · · 0
γ12 γ22 0 · · · 0

]T

;(35)

and the matrices H and F are determined by

H =
β

α

[
γ11 γ12

0 γ22

]−T

(Υ(r))TΥ(p)

[
cos θ sin θ
− sin θ cos θ

] [
γ11 γ12

0 γ22

]−1

(36)

and

F =
β

α

⎡⎢⎣ eT3
...

eTn

⎤⎥⎦QTΥ(p)

[
cos θ sin θ
− sin θ cos θ

] [
γ11 γ12

0 γ22

]−1

(37)

with θ ∈ [0, 2π) which is solved from{
tan θ = a21−a12

a11+a22
,

a11 cos θ − a12 sin θ > 0
(38)

and [
a11 a12

a21 a22

]
�
= (Υ(r))TΥ(p).(39)

Proof. See the appendix.
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Using Theorem 4, the single-pole peak ρk for k ∈ {1, . . . ,m+n} can be computed.
For example, when p0k(2),y0k(2) ∈ Cn, and det((Υ(y0k(2)))TΥ(p0k(2))) > 0, we have

ρk =
1 − |λk(A(X0))|√

(l + n)(q + n)(|yH
0k(2)p0k(2)| + ‖CPp0k(1)‖F ‖BT

Py0k(1)‖F )
.(40)

Thus, the index k′ is readily given from ρk′ = mink∈{1,...,m+n} ρk. In addition, Theo-
rem 4 with (34)–(39) provides the closed-form transformation set

T �
=

{
T : g(X(T), k′) = ρk′ ,T ∈ Rn×n,detT 	= 0

}
.(41)

Since X depends on T as is defined in (8), the realization set X given in (22) is defined
on the transformation set T as

X =

{
X : X =

[
I 0
0 T−1

]
X0

[
I 0
0 T

]
,T ∈ T

}
.(42)

3.2. Stage 2 of the algorithm. This stage searches in T for an optimal trans-
formation Topt that satisfies g(X(Topt), k) ≥ ρk′ ∀k ∈ {1, . . . ,m+n}\{k′}. According
to Theorem 3, the corresponding realization Xopt = X(Topt) is a global optimal solu-
tion for the optimal realization problem (13). Without any loss of generality, we will
assume that pk′ and yk′ is of Case 2. From Theorem 4, the transformation set (41)
is specified by

T =

{
T : T = Q

[
H1/2 0

F(H1/2)−T Ω

]
V

}
,(43)

where Q, H, and F are determined in Theorem 4 by setting α = ‖CPp0k′(1)‖F ,
β = ‖BT

Py0k′(1)‖F , p = p0k′(2), and r = y = y0k′(2), Ω ∈ R(n−2)×(n−2) is an
arbitrary nonsingular matrix, and V ∈ Rn×n is an arbitrary orthogonal matrix. From
(14), (29), and the definition of ‖ · ‖F , it can be seen that g(X(T), k) = g(X(TV), k)
for any orthogonal V ∈ Rn×n and nonsingular T ∈ Rn×n. This means that V plays
no role in computing the value of g(X, k), and hence we simply set V = I. Thus we
explore only those

T = T(Ω) = Q

[
H1/2 0

F(H1/2)−T Ω

]
,(44)

and the objective becomes to search for a nonsingular Ωopt ∈ R(n−2)×(n−2) such that
g(X(T(Ωopt)), k) ≥ ρk′ ∀k ∈ {1, . . . ,m + n} \ {k′}. The detailed search procedure is
as follows.

Initialization: Arbitrarily select a nonsingular Ω ∈ R(n−2)×(n−2) to obtain an initial
point X(T(Ω)), let N be a large enough integer and τ a small positive number,
and set Nt = 1.

Step 1: Find out

e = arg min
k∈{1,...,m+n}

g(X, k).

If g(X, e) = ρk′ , which means that (23) holds, then Ωopt = Ω and terminate
the routine. If g(X, e) > ρk′ but Nt ≥ N , which means that no saddle point
is found after a large number of iterations, then the routine is also terminated
for practical consideration.
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Step 2: Ω = Ω + τ ∂g(X,e)
∂Ω ‖∂g(X,e)

∂Ω ‖−1
F , Nt = Nt + 1, and go to Step 1.

For calculating ∂g(X(T(Ω)),e)
∂Ω , let ei denote the ith coordinate vector. The follow-

ing well-known fact is useful: given any element yij in a nonsingular Y ∈ Rn×n with
i ∈ {1, . . . , n} and j ∈ {1, . . . , n},

∂Y

∂yij
= eie

T
j and

∂Y−1

∂yij
= −Y−1eie

T
j Y−1.(45)

From (10), (14), (28), and Lemma 1, we know that

g(X(T(Ω)), e) =
(1 − |λe|)/

√
(l + n)(q + n)∥∥∥∥[

I 0
0 TT (Ω)

]
MT

1 y∗
0ep

T
0eM

T
2

[
I 0
0 T−T (Ω)

]∥∥∥∥
F

.(46)

From (44), we have∥∥∥∥[
I 0
0 TT (Ω)

]
MT

1 y∗
0ep

T
0eM

T
2

[
I 0
0 T−T (Ω)

]∥∥∥∥
F

=
∥∥UT

1 ΦeU
−T
2

∥∥
F
,(47)

where U1, U2, and Φe are given, respectively, by (I in U1 and U2 have different
dimensions)

U1 =

⎡⎢⎣ I 0

0 H1/2 0
F(H1/2)−T Ω

⎤⎥⎦,(48)

U2 =

⎡⎢⎣ I 0

0 H1/2 0
F(H1/2)−T Ω

⎤⎥⎦,(49)

Φe =

[
I 0
0 QT

]
MT

1 y∗
0ep

T
0eM

T
2

[
I 0
0 Q−T

]
.(50)

For any element ψts in Ψe = UT
1 ΦeU

−T
2 , where t ∈ {1, . . . , l+n} and s ∈ {1, . . . , q+

n}, and any ωij in Ω, where i ∈ {1, . . . , n− 2} and j ∈ {1, . . . , n− 2},

∂ψts

∂ωij
= eTt

∂UT
1

∂ωij
ΦeU

−T
2 es + eTt UT

1 Φe
∂U−T

2

∂ωij
es

= eTt el+2+je
T
l+2+iΦeU

−T
2 es − eTt UT

1 ΦeU
−T
2 eq+2+je

T
q+2+iU

−T
2 es(51)

= eTt el+2+je
T
l+2+iΦeU

−T
2 es − eTt Ψeeq+2+je

T
q+2+iU

−T
2 es.

That is,

∂ψts

∂Ω
=

⎡⎢⎣ eTt
. . .

eTt

⎤⎥⎦
⎛⎜⎝

⎡⎢⎣ el+3e
T
l+3Φe · · · el+ne

T
l+3Φe

... · · ·
...

el+3e
T
l+nΦe · · · el+ne

T
l+nΦe

⎤⎥⎦
(52)

−

⎡⎢⎣ Ψeeq+3e
T
q+3 · · · Ψeeq+ne

T
q+3

... · · ·
...

Ψeeq+3e
T
q+n · · · Ψeeq+ne

T
q+n

⎤⎥⎦
⎞⎟⎠

⎡⎢⎣U−T
2 es

. . .

U−T
2 es

⎤⎥⎦.
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Since

g(X(T(Ω)), e) =
(1 − |λe|)/

√
(l + n)(q + n)√∑l+n

t=1

∑q+n
s=1 ψ∗

tsψts

,(53)

we can readily calculate

∂g(X(T(Ω)), e)

∂Ω
= − 1 − |λe|√

(l + n)(q + n) ‖Ψe‖3
F

Re

[
l+n∑
t=1

q+n∑
s=1

ψ∗
ts

∂ψts

∂Ω

]
.(54)

Comment 1. In a way, the above search procedure solves

min
Ω∈R(n−2)×(n−2)

max
k∈{1,...,m+n}

(−g(X(T(Ω)), k)) .(55)

The function h(Ω) = maxk∈{1,...,m+n} (−g(X(T(Ω)), k)) to be minimized has cor-
ners where differentiability fails, although g(X(T(Ω)), k) is differentiable for any
k ∈ {1, . . . ,m + n}. In fact, the problem (55) is a classical optimization problem
which requires nondifferentiable optimization approaches, such as subgradient meth-
ods [22]. Subdifferentiation of h at Ω is defined as

ℵh(Ω) = Conv

{
J ∈ R(n−2)×(n−2)

∣∣∣∣∣ J = lim ∂h(Ωi)
∂Ωi

,Ωi → Ω,
∂h(Ωi)
∂Ωi

exists, ∂h(Ωi)
∂Ωi

converges

}
,(56)

where Conv denotes the convex hull. The elements of ℵh(Ω) are called subgradients.
Denote the directional derivative

h◦(Ω,Γ) = lim
t→0
t>0

h(Ω + tΓ) − h(Ω)

t
(57)

in every direction Γ ∈ R(n−2)×(n−2). A relationship between subgradients and the
directional derivative is given in [22], which is restated in the following lemma.

Lemma 2. h◦(Ω,Γ) = maxJ∈ℵh(Ω) 〈J,Γ〉 .

It is seen that −∂g(X,e)
∂Ω is a subgradient of h(Ω) and our method is a subgradient

algorithm. Since h(Ω) is differentiable almost everywhere when Ω is not a local op-
timal point, there exists a neighborhood Br =

{
Θ ∈ R(n−2)×(n−2) | ‖Θ − Ω‖F < r

}
such that

h◦(Ω,Ξ − Ω) < 0(58)

and

Ξ = min
Θ∈Br

h(Ω).(59)

Then we have the following theorem.
Theorem 5. There exists τm > 0 such that for Step 2 of the above search

algorithm ∥∥∥∥∥Ω + τ
∂g(X, e)

∂Ω

∥∥∥∥∂g(X, e)

∂Ω

∥∥∥∥−1

F

− Ξ

∥∥∥∥∥
F

< ‖Ω − Ξ‖F(60)

∀τ ∈ (0, τm).
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Proof. By the definition of Frobenius norm,∥∥∥∥∥Ξ − Ω − τ
∂g(X, e)

∂Ω

∥∥∥∥∂g(X, e)

∂Ω

∥∥∥∥−1

F

∥∥∥∥∥
2

F
(61)

= ‖Ξ − Ω‖2
F + 2τ

〈
−∂g(X, e)

∂Ω

∥∥∥∥∂g(X, e)

∂Ω

∥∥∥∥−1

F

,Ξ − Ω

〉
+ τ2.

Since −∂g(X,e)
∂Ω is a subgradient, from Lemma 2 and (58), one has〈

−∂g(X, e)

∂Ω

∥∥∥∥∂g(X, e)

∂Ω

∥∥∥∥−1

F

,Ξ − Ω

〉
≤ h◦(Ω,Ξ − Ω)

∥∥∥∥∂g(X, e)

∂Ω

∥∥∥∥−1

F

< 0.(62)

Thus, for 0 < τ < τm = 2
〈∂g(X,e)

∂Ω

∥∥∂g(X,e)
∂Ω

∥∥−1

F
, Ξ − Ω

〉
,

2τ

〈
−∂g(X, e)

∂Ω

∥∥∥∥∂g(X, e)

∂Ω

∥∥∥∥−1

F

,Ξ − Ω

〉
+ τ2 < 0.(63)

This together with (61) proves the assertion.

The above result shows that, for sufficiently small τ > 0, ∂g(X,e)
∂Ω is a good direc-

tion along which to update Ω so that it becomes closer to Ξ, although occasionally
the updated h(Ω) may be worse. Therefore, h(Ω) will be improved significantly after
some iterations. Our numerical examples listed in section 5 show that this simplest
subgradient optimization algorithm behaves satisfactorily in practice, provided that
τ is chosen appropriately. Of course, if this simplest subgradient algorithm fails in
some cases, various enhanced subgradient algorithms [22], [23], [24] can be adopted
to tackle the problem.

Comment 2. The termination at Nt ≥ N does not mean that the problem (55)
has no saddle point. As h(Ω) may be nonconvex, our subgradient search sequence
may possibly oscillate around a local optimum which is worse than ρk′ . Regardless of
whether or not the problem (55) has saddle points, when the routine does not find a
saddle point, we can further increase the value of mink∈{1,...,m+n} g(X, k) by a direct
numerical optimization. This is further discussed in the next section.

4. Discussions. The function g(X, k) having saddle points is the main assump-
tion in this paper. Here we explain heuristically that for many practical control
systems this assumption is valid. First, from section 3.1, it is known that k′, ρk′ , and
X exist regardless of whether or not g(X, k) has saddle points. Second, Theorem 3
shows that if and only if there exist T ∈ T satisfying

g(X(T), k) ≥ ρk′ ∀k ∈ {1, . . . ,m + n} \ {k′},(64)

the saddle points of g(X, k) exist. From the definition of g(X, k) in (14), g(X, k)
is proportional to the single-pole stability margin 1 − |λk(A(X))|, which is a fixed
value, and inverse proportional to its eigenvalue sensitivity, which depends on X. For
practical digital closed-loop control systems, there exist usually only a few dominant
poles which are near the unit circle and/or have relatively high eigenvalue sensitivities,
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compared with all the other nondominant poles. For this reason, the index k′ defined
in (21) is usually the index of a dominant pole, and the values of g(X, k) for those
nondominant poles at X(T) are larger than ρk′ for most T ∈ T . Therefore, to satisfy
condition (64), one needs only to consider the few dominant poles whose indices are not
k′. It should be observed that T in T has a fairly large degree of freedom. Specifically,
the free parameter Ω in (44) can be any nonsingular matrix in R(n−2)×(n−2). This
large degree of freedom, together with the fact that there are typically just a few
dominant poles to consider, means that most likely there exist T ∈ T satisfying
(64). Thus g(X, k) has saddle points for many practical problems. We conjecture
without a rigorous proof that the class of optimal FWL controller realization problems
(15) which have saddle points is much larger than the class having no saddle point.
Empirically, we have tested a total of six FWL controller design examples that we
found in the FWL controller design literature. Only one example, which is given in
[14], was shown to possibly have no saddle point.

The routine presented in section 3.2 is computationally much more attractive
than a direct numerical optimization of (13). Actually, all that is needed is to find a
T ∈ T such that g(X(T), k) ≥ ρk′ for k ∈ {1, . . . ,m+n}\{k′}, rather than to directly
maximize f(X(T)) over Rn×n (and, of course, detT 	= 0). The former objective can
be attained often easily even for large-scale problems. In addition, the number of
saddle points is infinite when g(X, k) has saddle points. Hence our algorithm can
find global optimal solutions for most practical problems which have saddle points
even though we do not strictly prove the convergence of the subgradient routine. An
additional advantage of the algorithm presented, which is particularly important in
practical applications, is that when the algorithm attains a solution the user knows
for sure that it is a global optimal solution to the optimal realization problem (13).
This should be compared with direct numerical optimization of (13) where even when
it converges to a solution, there is no way to tell whether or not the solution is a
global optimal one.

It should be pointed out that our algorithm, presented for the problems having
saddle points, is also useful in helping to solve those optimal FWL realization problems
which do not have a saddle point. Actually, the algorithm given in section 3 can
be executed even for the problems which do not have a saddle point. Using the
results of section 3.1, k′ and ρk′ can be computed, and X is obtained in closed form.
Corollary 1 tells us that ρk′ is an upper bound of the optimal value of the realization
problem having no saddle point. After executing N iterations of the routine given in
section 3.2, the resulting realization Xt obviously does not satisfy (64). But through
these N iterations, mink∈{1,...,m+n} g(X, k) has been increased to as close to ρk′ as
possible under X ∈ X . Therefore, the value of f(Xt) is not much less than ρk′ .
This provides a small region [f(Xt), ρk′ ] within which the optimal value of the FWL
controller realization problem lies. Of course, this also provides an excellent guess
from which a direct numerical optimization approach can be used to find a (local)
optimal solution for those optimization problems having no saddle point.

Obviously, the same idea is equally applicable to the problems whose saddle points
are not found after N iterations of the search routine. In fact, when the subgradient
routine is terminated after N iterations but the condition (64) is not met, one cannot
answer the question of whether or not the problem (55) has any saddle point. However,
one knows the small region within which the global optimal value lies, and the solution
obtained after N iterations provides an excellent initial guess for a direct numerical
optimization.
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5. Design examples. Six examples are used to illustrate the effectiveness of
the proposed design algorithm.

Example 1. The example in [25] is discretized with a sampling frequency of 5 Hz
to obtain the discrete-time plant model

AP =

⎡⎢⎢⎢⎢⎣
3.2439e− 1 −4.5451e + 0 −4.0535e + 0 −2.7003e− 3 0
1.4518e− 1 4.9477e− 1 −4.6945e− 1 −3.1274e− 4 0
1.6814e− 2 1.6491e− 1 9.6681e− 1 −2.2114e− 5 0
1.1889e− 3 1.8209e− 2 1.9829e− 1 1.0000e + 0 0
6.1301e− 5 1.2609e− 3 1.9930e− 2 2.0000e− 1 1.0000e + 0

⎤⎥⎥⎥⎥⎦,

BP = [ 1.4518e− 1 1.6814e− 2 1.1889e− 3 6.1301e− 5 2.4979e− 6 ]
T
,

CP = [ 0 0 1.6188e + 0 −1.5750e− 1 −4.3943e + 1 ]

and the initially designed digital controller

A0
C =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 −4.7086e− 1
1 0 0 0 0 2.6885e + 0
0 1 0 0 0 −6.6649e + 0
0 0 1 0 0 9.4410e + 0
0 0 0 1 0 −8.2537e + 0
0 0 0 0 1 4.2600e + 0

⎤⎥⎥⎥⎥⎥⎥⎦, B0
C =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎦, D0
C = [4.6000e− 2],

C0
C = [ 2.1187e− 1 9.4498e− 2 1.0887e− 2

−4.4171e− 2 −7.6000e− 2 −8.8562e− 2 ] .

The corresponding closed-loop transition matrix A(X0) is then formed using (10),
from which the eigenvalues and the eigenvectors of the ideal closed-loop system are
computed. These 11 eigenvalues and their absolute values are⎡⎢⎢⎢⎢⎢⎣

λ1,2

λ3,4

λ5,6

λ7,8

λ9,10

λ11

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
4.8368e− 1 ± j8.5569e− 1
4.8135e− 1 ± j8.5363e− 1
9.9993e− 1 ± j3.7887e− 4
8.3967e− 1 ± j1.6514e− 1
8.0884e− 1 ± j1.2026e− 1

8.1905e− 1

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣

|λ1,2|
|λ3,4|
|λ5,6|
|λ7,8|
|λ9,10|
|λ11|

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
9.8293e− 1
9.7999e− 1
9.9993e− 1
8.5575e− 1
8.1774e− 1
8.1905e− 1

⎤⎥⎥⎥⎥⎥⎦.

This closed-loop system has five pairs of conjugate complex-valued eigenvalues and
one real-valued eigenvalue. Using the method developed in section 3.1, the single-pole
peak for each eigenvalue is computed, and they are⎡⎢⎢⎢⎢⎢⎣

ρ1,2

ρ3,4

ρ5,6

ρ7,8

ρ9,10

ρ11

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
2.5072e− 3
2.1295e− 3
6.7344e− 6
2.8586e− 3
3.0832e− 3
4.3181e− 3

⎤⎥⎥⎥⎥⎥⎦.
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Fig. 2. The values of g(X, k) in each iteration of the algorithm for Example 1.

Obviously, the minimum value of all the ρk’s is ρ5 (or ρ6). Therefore, k′ = 5 and the
corresponding matrices Q, H, and F in the set (44) are given by

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
−6.6011e− 2 −8.4915e− 2 −4.3670e− 1
−3.7006e− 1 −4.3518e− 1 −4.9156e− 1
−5.0566e− 1 −3.8025e− 1 7.1063e− 1
−5.2127e− 1 −8.6900e− 2 −2.2452e− 1
−4.5786e− 1 3.1775e− 1 −1.0190e− 1
−3.4878e− 1 7.4183e− 1 4.3249e− 2

−5.1206e− 1 −5.2972e− 1 −5.0490e− 1
−2.2314e− 1 1.7033e− 1 5.9434e− 1
−2.5387e− 1 −1.6560e− 1 −5.3367e− 2

7.4814e− 1 −2.4759e− 1 −2.2204e− 1
−2.0850e− 1 6.8322e− 1 −4.1079e− 1
−1.4270e− 1 −3.6725e− 1 4.1345e− 1

⎤⎥⎥⎥⎥⎥⎥⎦,

H =

[
2.6322e + 0 −3.9258e + 2

−3.9258e + 2 6.9856e + 6

]
, F =

⎡⎢⎢⎣
4.8432e + 4 −8.8104e + 8

−5.2079e + 4 9.4682e + 8
2.4998e + 4 −4.5374e + 8

−2.4644e + 4 4.4816e + 8

⎤⎥⎥⎦.
Set τ = 0.1 and the initial Ω = I. Figure 2 illustrates the changes of g(X, k) in
each iteration. From Figure 2, it can be seen that at the 37th iteration, the optimal
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controller realization is found, since at this iteration the conditions of Theorem 3 are
met and the algorithm terminates. The resulting matrix Ωopt is

Ωopt =

⎡⎢⎢⎣
2.3184e + 0 −1.6411e + 0 5.5681e− 1 −7.6953e− 1

−1.6411e + 0 2.4047e + 0 −8.2094e− 1 7.0079e− 1
5.5680e− 1 −8.2095e− 1 1.2097e + 0 −3.7643e− 1

−7.6954e− 1 7.0078e− 1 −3.7643e− 1 1.3454e + 0

⎤⎥⎥⎦
and the corresponding global optimal transformation matrix is

Topt =

⎡⎢⎢⎢⎢⎢⎢⎣
−6.9470e + 1 −3.2765e + 4 −7.8507e− 2

3.0977e + 2 1.5431e + 5 −1.1360e + 0
−6.0267e + 2 −3.0945e + 5 2.0130e + 0

6.5537e + 2 3.4747e + 5 −1.7153e + 0
−4.1530e + 2 −2.2683e + 5 8.0247e− 1

1.1931e + 2 6.9580e + 4 −1.8821e− 1

−4.3363e− 1 −2.7354e− 1 −5.0267e− 1
5.4680e− 1 −1.0820e− 1 9.5739e− 1

−1.6781e + 0 4.2386e− 1 −7.3423e− 1
2.2151e + 0 −9.5513e− 1 4.9153e− 1

−1.1829e + 0 1.0956e + 0 −8.7755e− 1
1.7712e− 1 −4.5868e− 1 5.6121e− 1

⎤⎥⎥⎥⎥⎥⎥⎦.

Example 2. The second example is taken from [14]. In this example, m = 4,
n = 10, l = 2, and q = 2, and hence it is a closed-loop system of order 14. The initial
controller realization X0 of C(z) has been given [20]. The corresponding closed-loop
transition matrix A(X0) is formed using (10), from which the eigenvalues and the
eigenvectors of the ideal closed-loop system are computed. This closed-loop system
has six pairs of conjugate complex-valued eigenvalues and two real-valued eigenvalues
given by ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1,2

λ3,4

λ5

λ6,7

λ8,9

λ10,11

λ12

λ13,14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8.4482e− 1 ± j7.8204e− 2
−3.7557e− 1 ± j3.3602e− 1

2.1624e− 1
7.1567e− 1 ± j9.6631e− 3
9.2895e− 1 ± j1.2923e− 1
9.8506e− 1 ± j7.5831e− 2

8.3133e− 1
8.8267e− 1 ± j3.7235e− 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the method developed in section 3.1, the single-pole peaks for every eigenvalues
are computed, and they are ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1,2

ρ3,4

ρ5

ρ6,7

ρ8,9

ρ10,11

ρ12

ρ13,14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.3118e− 3
4.0562e− 2
6.2954e− 2
8.0984e− 3
3.7768e− 3
5.4246e− 3
5.8442e− 3
8.0773e− 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Fig. 3. The values of g(X, k) in each iteration of the algorithm for Example 2.

Obviously, the minimum value of all the ρk’s is ρ8 (or ρ9). Therefore, k′ = 8 and the
corresponding matrices Q, H, and F in (44) are computed according to Theorem 4.
With T in (44), the second stage of our algorithm can be executed. Figure 3 illustrates
the changes of g(X, k) in each iteration of the second stage. From Figure 3, it can be
seen that after the N = 50000 iteration, we still cannot find a realization satisfying
(64). This suggests that this example most likely has no saddle point (although one
cannot be sure). So we terminate the algorithm at the 50000 iteration and obtain a
realization Xt. Although this Xt is not an optimal realization, it is much better than
X0, since f(Xt) = 2.1539e−3 while f(X0) = 1.1734e−4. In particular, we notice that
Xt is also better than the “optimal” realization given in [14], which was found by a
direct numerical optimization search using the simulated annealing algorithm and has
a FWL measure value of 1.5844e− 3 [14]. At this stage, we are sure that the optimal
solution given in [14] is not a global optimal one at all. Using the realization Xt

obtained by our search algorithm as the initial point, we then use a direct numerical
optimization method to solve for the optimization problem (13) and obtain a new
optimal realization whose FWL measure value is 3.1929e − 3. This optimal value is
more than double the one given in [14]. Obviously, we cannot tell whether or not
this new optimal realization is a global optimal one. However, we know that the
optimal value of the FWL realization problem for this example lies in the range of
[3.1929e − 3, 3.7768e − 3]. For this example, no other design has found a controller
realization whose FWL closed-loop stability measure f(X) is larger than 3e− 3. Our
algorithm is the first one to achieve a f(X) > 3e− 3.

The saddle points (or the global optimal solutions) of the following four examples
are found successfully by our proposed method.
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Example 3. This example is a fluid power speed controller given in [8], where
m = 4, n = 4, l = 1, and q = 1.

Example 4. This example is a discretized version of an H∞ robust controller
given in [26] with a sampling frequency of 250 Hz, where m = 2, n = 3, l = 1, and
q = 1.

Example 5. This example is taken from [6], where m = 3, n = 2, l = 1, and
q = 1.

Example 6. This example is a steel rolling mill proportional-integral-derivative
controller given in [8], where m = 3, n = 2, l = 1, and q = 1.

As mentioned previously, the realizations of C(z) are not unique. For instance,
in Example 1, the initially designed controller (A0

C ,B
0
C ,C

0
C ,D

0
C) is the controllable

companion-form realization for

C(z) =
0.046z6 + 0.0159z5 − 0.4284z4 + 0.9227z3 − 1.0043z2 + 0.5983z − 0.1503

z6 − 4.26z5 + 8.2537z4 − 9.441z3 + 6.6649z2 − 2.6885z + 0.4709
.

Apart from the controllable companion form, denoted as Xc, a controller is also often
implemented in the parallel or series form in practice. Denote these two realizations
of C(z) as

Xp =

[
Dp

C Cp
C

Bp
C Ap

C

]
(65)

and

Xs =

[
Ds

C Cs
C

Bs
C As

C

]
,(66)

respectively. The parallel-form realization of C(z) for Example 1 is given by

C(z) = 0.046 +
1.8921e− 7

z − 1
+

−0.0024z + 0.0013

z2 − 0.9670z + 0.9589

+
0.1056z − 0.1487

z2 − 1.6016z + 0.7103
+

0.1087

z − 0.6913

with

Ap
C =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 0 1 0 0 0
0 −9.5886e− 1 9.6700e− 1 0 0 0
0 0 0 0 1 0
0 0 0 −7.1030e− 1 1.6016e0 0
0 0 0 0 0 6.9134e− 1

⎤⎥⎥⎥⎥⎥⎥⎦,

Bp
C =

[
1 0 1 0 1 1

]T
, Dp

C =
[
4.6000e− 2

]
,

Cp
C =

[
1.8921e− 7 1.2816e− 3 −2.3654e− 3 −1.4868e− 1 1.0555e− 1

1.0869e− 1
]
,
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while the series-form realization is

C(z) = 0.046

(
0.1812

z − 1
+ 1

) (
0.6344z + 0.2556

z2 − 1.6016z + 0.7103
+ 1

)
×

(
4.8231

z − 0.6913
+ 1

) (
−1.0329z + 0.0410

z2 − 0.9670z + 0.9589
+ 1

)
with

As
C =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1.8120e− 1 1.8120e− 1 0 1.8120e− 1
0 0 −7.1030e− 1 2.5562e− 1 0 2.5562e− 1
0 1 1.6016e0 6.3442e− 1 0 6.3442e− 1
0 0 0 6.9134e− 1 0 4.8231e0
0 0 0 0 0 −9.5886e− 1
0 0 0 0 1 9.6700e− 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Bs
C =

[
1.8120e− 1 2.5562e− 1 6.3442e− 1 4.8231e0 4.1007e− 2

−1.0329e0
]T

,

Cs
C =

[
4.6000e− 2 0 4.6000e− 2 4.6000e− 2 0 4.6000e− 2

]
,

Ds
C =

[
4.6000e− 2

]
.

The above three realizations, Xc, Xp, and Xs, are sparse because they contain
many trivial parameters (0, 1, or −1). For Example 1, X0 has 13 nontrivial parame-
ters, while Xp and Xs have only 12 nontrivial parameters (the repeated values, such
as 1.8120e− 1 in Xs, are counted as one nontrivial parameter). Clearly, a trivial pa-
rameter requires no arithmetic operation in a fixed-point implementation and does not
cause any computational error. A sparse controller realization has computational ad-
vantages in practical implementations. An FWL closed-loop stability measure, which
is similar to the one defined in (11) but takes into account the sparsity of controller
realization, is defined in [9] as

fsp(X)
�
= min

k∈{1,...,m+n}

1 − |λk(A(X))|√
Ns

∑
i,j

δ(xij)
∣∣∣∂λk(A(X))

∂xij

∣∣∣2 ,(67)

where

δ(xij) =

{
1, xij is nontrivial,

0, xij is trivial,
(68)

and Ns is the number of nontrivial parameters in X. Comparing the definitions of
fsp(X) and f(X), it follows that

fsp(X) ≥ f(X).(69)

Table 1 lists the values of f(X), fsp(X), and Ns for Xopt, Xp, Xs, and Xc of
every example except for Example 2. Example 2 is a multiple-input multiple-output
system for which no parallel-form or series-form realization is defined. It can be seen
that the optimal realization Xopt found by the proposed method has the best FWL
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Table 1

Comparison of performance measures for different realizations.

Xc Xp Xs Xopt

f(X) 3.1797e− 11 8.0156e− 9 2.8727e− 9 6.7344e− 6
Example 1 fsp(X) 7.4944e− 11 1.8464e− 8 7.1095e− 9 6.7344e− 6

Ns 13 12 12 49

f(X) 5.0963e− 10 1.5234e− 5 3.0949e− 6 2.7321e− 4
Example 3 fsp(X) 8.5965e− 10 2.7908e− 5 5.4711e− 6 2.7321e− 4

Ns 9 8 8 25

f(X) 1.6555e− 10 8.3351e− 10 1.4611e− 7 5.0786e− 5
Example 4 fsp(X) 6.1068e− 10 1.5627e− 7 3.0905e− 7 5.0786e− 5

Ns 7 7 7 16

f(X) 1.6699e− 4 5.4326e− 4 4.8802e− 4 3.2716e− 3
Example 5 fsp(X) 2.5956e− 4 2.4426e− 3 7.3417e− 4 3.2716e− 3

Ns 5 4 4 9

f(X) 6.7163e− 4 1.0775e− 3 1.0774e− 3 4.8968e− 3
Example 6 fsp(X) 9.5044e− 4 3.5239e− 3 1.6347e− 3 4.8968e− 3

Ns 5 4 4 9

closed-loop stability robustness as measured by either f(X) or fsp(X), compared
with the other three realizations. It can also be seen that the optimal realization
obtained by the proposed search algorithm is a fully parameterized nonsparse one.
The other three sparse realizations have similar numbers of nontrivial parameters,
and thus have the same lighter computational load than that of the optimal one given
here. However, it is worth pointing out that Xopt is not unique since V in (43) is an
arbitrary orthogonal matrix. By choosing V in an appropriate way, one can obtain a
sparse optimal realization Xopt. The topic of how to make Xopt sparse is beyond the
scope of this paper, and interested readers are referred to the work [1] for details.

6. Conclusions. We have developed an efficient search algorithm for solving the
class of optimal FWL controller realization problems based on the Frobenius-norm
pole sensitivity measure, which have saddle points. Our approach first constructs the
closed form of a transformation matrix set which contains global optimal solutions
and then searches this set with a subgradient routine to find a global optimal solu-
tion. The proposed algorithm has considerable advantages over using direct numerical
optimization methods to tackle this class of optimal FWL realization problems. In
particular, when the subgradient routine converges to a solution, it is guaranteed to
be a global optimal solution. It has been conjectured with some empirical support
that for many practical control systems the assumption of having saddle points is a
valid one and the cases of optimal FWL controller realization problems which do not
have saddle points are less common. It has been demonstrated that for this smaller
class of optimal FWL realization problems without saddle points our algorithm also
provides useful information to help solve them.

Appendix. Proof of Theorem 4. We present the proof for Case 2. The proof
for Case 3 is similar and hence is omitted.

Lemma 3 (see [21]). Let real-valued matrices M22, M21, and M11 > 0 be given
with appropriate dimensions. Then[

M11 MT
21

M21 M22

]
> 0(70)

if and only if M22 − M21M
−1
11 MT

21 > 0.
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Lemma 4. Given positive α, β ∈ R, p,y ∈ Cn, and for any nonsingular T ∈
Rn×n, we have

ξ(T, α, β,p,y) ≥ (|yHp| + αβ)2.(71)

The equality occurs if and only if there exist W ∈ Rn×n, W > 0, and θ ∈ [0, 2π)
satisfying

WΥ(y) =
β

α
Υ(p)

[
cos θ sin θ
− sin θ cos θ

]
.(72)

When (72) has solutions, the equality in (71) occurs only at the transformation matrix
T = W1/2V, where V ∈ Rn×n is an arbitrary orthogonal matrix.

Proof. First,

‖T−1p‖2
F ‖TTy‖2

F + α2‖TTy‖2
F + β2‖T−1p‖2

F + α2β2

(73)
≥ (‖T−1p‖F ‖TTy‖F + αβ)2.

The equality holds if and only if

α‖TTy‖F = β‖T−1p‖F .(74)

Using the Cauchy–Schwarz inequality, we have

(‖T−1p‖F ‖TTy‖F + αβ)2 ≥ (‖(TTy)HT−1p‖F + αβ)2 ≥ (|yHp| + αβ)2.(75)

The equality holds if and only if

TTy = cT−1p(76)

for some complex number c.
To achieve (73) and (75) with equality, one needs to satisfy both of the conditions

(74) and (76). This implies that c = (cos θ + j sin θ)β
α and θ ∈ [0, 2π). Thus,

TTy = (cos θ + j sin θ)
β

α
T−1p.(77)

As T is nonsingular, equality (77) is equivalent to

Wy = (cos θ + j sin θ)
β

α
p(78)

with W > 0 and T = W1/2V. Noticing the map Υ defined in (31), condition (78)
can be viewed as

WΥ(y) =
β

α
Υ(p)

[
cos θ sin θ
− sin θ cos θ

]
.(79)

This completes the proof.
Lemma 5. Given positive α, β ∈ R, p,y ∈ Cn, and rank(Υ(y)) = 2, (79) has

solutions if and only if det((Υ(y))TΥ(p)) > 0. Moreover, any solution to (79) can be
expressed as

tan θ =
a21 − a12

a11 + a22

a11 cos θ − a12 sin θ > 0

W = Q

[
H FT

F G

]
QT

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,(80)
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where [
a11 a12

a21 a22

]
= (Υ(y))TΥ(p);(81)

the orthogonal matrix Q can be obtained from the QR factorization of Υ(y), that is,

Υ(y) = Q

[
γ11 0 0 · · · 0
γ12 γ22 0 · · · 0

]T

;(82)

H and F are determined by

H =
β

α

[
γ11 γ12

0 γ22

]−T

(Υ(y))TΥ(p)

[
cos θ sin θ
− sin θ cos θ

] [
γ11 γ12

0 γ22

]−1

,(83)

F =
β

α

⎡⎢⎣ eT3
...

eTn

⎤⎥⎦QTΥ(p)

[
cos θ sin θ
− sin θ cos θ

] [
γ11 γ12

0 γ22

]−1

;(84)

and G is given as

G = FH−1FT + U(85)

with U ∈ R(n−2)×(n−2) being an arbitrary positive definite matrix.
Proof. If det((Υ(y))TΥ(p)) > 0, it is easy to verify that W and θ given by (80)–

(85) are a solution to (79). If, on the other hand, (79) has a solution W and θ, it can
be seen that

(Υ(y))TWΥ(y) =
β

α
(Υ(y))TΥ(p)

[
cos θ sin θ
− sin θ cos θ

]
.(86)

On account of (Υ(y))TWΥ(y) > 0, we have

(Υ(y))TΥ(p)

[
cos θ sin θ
− sin θ cos θ

]
> 0.(87)

A necessary condition to satisfy (87) is that

det

(
(Υ(y))TΥ(p)

[
cos θ sin θ
− sin θ cos θ

])
> 0.(88)

Since the left side of the above inequality is equal to det((Υ(y))TΥ(p)), the condition
(88) becomes det((Υ(y))TΥ(p)) > 0. This completes the proof of the first part of
Lemma 5.

Now, when (81) is given, (87) holds if and only if all of the following three condi-
tions are satisfied:

a21 cos θ − a22 sin θ = a11 sin θ + a12 cos θ
a11 cos θ − a12 sin θ > 0
det((Υ(y))TΥ(p)) > 0

⎫⎬⎭ .(89)

From the first line of (89), we directly obtain tan θ = a21−a12

a11+a22
. Denote

S = QTWQ.(90)
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Then, from (79), (82), and (90), one has

S [ e1 e2 ]

[
γ11 γ12

0 γ22

]
= S

[
γ11 0 0 · · · 0
γ12 γ22 0 · · · 0

]T

(91)

=
β

α
QTΥ(p)

[
cos θ sin θ
− sin θ cos θ

]
.

Partition S into

S =

[
H FT

F G

]
,(92)

where H ∈ R2×2, F ∈ R(n−2)×2, and G ∈ R(n−2)×(n−2). Then from (91) and noticing

(Υ(y))T =

[
γ11 γ12

0 γ22

]T

[ e1 e2 ]
T

QT ,(93)

we have

H =

[
eT1
eT2

]
S [ e1 e2 ]

(94)

=
β

α

[
γ11 γ12

0 γ22

]−T

(Υ(y))TΥ(p)

[
cos θ sin θ
− sin θ cos θ

] [
γ11 γ12

0 γ22

]−1

,

F =

⎡⎢⎣ eT3
...

eTn

⎤⎥⎦S [ e1 e2 ] =
β

α

⎡⎢⎣ eT3
...

eTn

⎤⎥⎦QTΥ(p)

[
cos θ sin θ
− sin θ cos θ

] [
γ11 γ12

0 γ22

]−1

.(95)

From Lemma 3 and S > 0, it is known that G = FH−1FT + U, where U ∈
R(n−2)×(n−2) is an arbitrary positive definite matrix.

Combining Lemmas 4 and 5 leads to Theorem 4 for Case 2.
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RISK SENSITIVE PORTFOLIO MANAGEMENT WITH
COX–INGERSOLL–ROSS INTEREST RATES: THE HJB EQUATION∗

TOMASZ R. BIELECKI† , STANLEY R. PLISKA‡ , AND SHUENN-JYI SHEU§

Abstract. This paper presents an application of risk sensitive control theory in financial decision
making. The investor has an infinite horizon objective that can be interpreted as maximizing the
portfolio’s risk adjusted exponential growth rate. There are two assets, a stock and a bank account,
and two underlying Brownian motions, so this model is incomplete. The novel feature here is that the
interest rate for the bank account is governed by Cox–Ingersoll–Ross dynamics. This is significant
for risk sensitive portfolio management because the factor process, unlike in the Gaussian and all
other cases treated in the literature, cannot be negative (under appropriate parameterization).

Key words. risk sensitive control, optimal portfolios, Cox–Ingersoll–Ross interest rates, incom-
plete model
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1. Introduction. Beginning with the pioneering work by Merton [22], [23], [24]
and continuing through the recent books by Karatzas and Shreve [18] and Korn [20],
some very sophisticated stochastic control methods have been developed for portfolio
management. Virtually all of these studies make use of an expected utility criterion.
But recently a new criterion has emerged from the control theory literature. Called
the risk sensitive criterion, this was originally used (see, for example, Whittle [27]) for
a decision maker seeking to maximize some (random) cash reward (or minimize some
cash payment) while simultaneously being concerned about the risk or uncertainty
in the size of the reward. Essentially, this criterion equals the expected value of the
reward minus a penalty term that is proportional to the variance of the reward. The
constant of proportionality is a parameter whose value can be chosen to achieve for
the decision maker an appropriate trade-off between the expectation of the reward
and its variance.

Recognizing its relevance to portfolio management, Bielecki and Pliska [5] applied
the risk sensitive idea to a version of Merton’s [23] intertemporal capital asset pricing
model. The result was an infinite horizon criterion that they called the risk adjusted
growth rate and viewed as being analogous to the classical Markowitz single-period
approach except that instead of trading off single-period criteria the investor is trading
off the portfolio’s long run growth rate versus its average volatility (see Bielecki and
Pliska [9] for a detailed study of various economic and mathematical properties of this
criterion). Bielecki and Pliska also showed in [5] and subsequent work (see [2], [3], [4],
[6], [7], [8], and [10]) that the resulting models usually have the virtue of being more
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tractable than corresponding models which use traditional expected utility criteria.
Other studies of the risk sensitive criterion for portfolio management include Bagchi
and Kumar [1], Fleming and Sheu [14], [15], [16], Kuroda and Nagai [21], Nagai
[25], and Nagai and Peng [26]. Kaise and Sheu [17] discuss the solution of a general
equation (in Rn) that is related to the Hamilton–Jacobi–Bellman (HJB) equation in
this paper.

Throughout all this work on risk sensitive portfolio management the underlying
factor process, if any, was taken to be Gaussian or, at least (see Nagai [25]), a process
whose domain is all of some Euclidean space. The aim of this paper is to provide
some initial results on risk sensitive portfolio management for a case where this kind
of condition does not hold. Since interest rate processes are commonly taken as
factor processes and since the so-called Cox–Ingersoll–Ross [12] interest rate process
(a popular one in the finance literature) cannot be negative, this model of the factor
process was chosen for our object of study.

The result is a risk sensitive portfolio optimization model having a factor process
whose domain is the nonnegative portion of the real line. Since this is a model of
interest rates, it is more realistic than, say, Gaussian models, but it comes with a
price: the resulting analysis is exceptionally lengthy, complex, and technical. This
is true even though our model is rather simple, having just this scalar-valued factor
process, two assets (the usual bank account and a risky stock), and two underlying
Brownian motions. Consequently, this paper will study only the associated HJB
equation, saving the verification of optimality and related issues for a future, separate
paper.

After formulation of our model in section 2, the main results are presented in
section 3. Chief among these is Theorem 3.1, which asserts the HJB equation has
a unique solution. Needed for its proof and of separate interest are some results
pertaining to a related, “truncated” problem: for some fixed number M the investor
is required to keep all of his or her money in the bank account whenever the interest
rate exceeds M . Existence of a unique solution to the HJB equation for this truncated
problem is established by Theorem 3.2. Intuitively, one should expect the solution of
the truncated HJB equation to converge to the solution of the original one as M → ∞;
this is indeed the case, as stated in Theorem 3.3. The rest of the paper is devoted to
the proofs of these three theorems. Theorem 3.2 is proved in section 4, while the other
two are proved in section 5. Various technical results are relegated to an appendix.

2. Formulation of the optimal risk sensitive asset management prob-
lem. In this section we formulate an optimal dynamic asset management problem
featuring a risk sensitive optimality criterion. Let (Ω, {Ft}t≥0,F ,P) be the under-
lying probability space. The securities market involves a single factor, namely, an
interest rate r that is subject to the so-called Cox–Ingersoll–Ross [12] dynamics

drt = −c(rt − r̄)dt + λ
√
rtdWt,(1)

where c, r̄, and λ are three specified positive scalar parameters. In order to ensure
that the interest rate process is always strictly positive (not only is absorption at zero
unrealistic, but with the interest rate fixed at zero our investment problem becomes
trivial: continuously rebalance to some fixed proportion), we make the following as-
sumption (see Feller [13]).

Assumption 2.1. 2cr̄ > λ2.
There are two assets. One is the customary bank account:

dS0(t)

S0(t)
= rtdt;(2)
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here S0(t) represents the time-t amount of money in the bank account assuming none
is added or withdrawn after time 0. The other asset is a stock (or stock index) whose
price process satisfies

dS1(t)

S1(t)
= μ(rt)dt + σdWt + ρdW̄t.(3)

Here Wt and W̄t are two independent Brownian motions, σ and ρ are two specified
scalar parameters, and

μ(r) := μ1 + μ2r,(4)

where μ1 and μ2 are two specified scalar parameters. Note that with μ2 �= 0 we can
allow the level of interest rates to affect the return properties of the stock, and with
σ �= 0 the residuals of the interest rate process will be correlated with the residuals of
the stock’s return process. For instance, with suitable values of σ and ρ this correlation
is negative.

Trading strategies will be adapted real-valued stochastic processes that are de-
noted h. We shall interpret ht as the proportion of the investor’s time-t wealth that
is invested in the stock. In general, for each time t we allow ht to be any real number;
that is, we do not impose any constraints on ht, such as short selling restrictions.

Remark 2.1. For a well posed optimization problem one needs additional assump-
tions about admissible trading strategies to the effect that the SDE (5) below admits
a unique, strong solution. In particular, we need to require that for any admissible
strategy the measure transformations used throughout the paper are well defined. It
follows from the results of Bielecki, Pliska, and Yong [11] that a strategy that is a
feedback strategy in the state variable rt and grows linearly in rt satisfies the above
requirements of admissibility under appropriate parameterization. Other choices are
also possible. Since the main concern of this paper is analysis of the HJB equation,
and since derivation of the equation is done by a formal argument, then the choice of
a class of admissible trading strategies is not an issue here. Of course, when one turns
to studying the optimality of a strategy, the choice of the class of admissible trading
strategies will be an important and, frequently, a quite delicate issue. This issue will
be addressed in a future work.

The investor’s time-t wealth will be denoted Vt. Under the trading strategy h,
the corresponding wealth process V will satisfy

dVt

Vt
= [(1 − ht)rt + htμ(rt)]dt + ht(σdWt + ρdW̄t).(5)

By standard results, there exists a unique, strong, and almost surely positive solution
to this equation; it is given by

Vt = V0exp

(∫ t

0

htσdWt +

∫ t

0

htρdW̄t +

∫ t

0

[
−1

2
(σ2 + ρ2)h2

t + (1 − ht)rt + htμ(rt)

]
dt

)
.

(6)
In this paper we consider the following family of risk sensitized optimal investment

problems, labeled as Pθ:

for θ ∈ (0,∞), maximize the risk sensitized expected growth rate

Jθ(v, r;h) := lim inf
t→∞

(−2/θ)t−1ln Eh [e−(θ/2)lnVt |V0 = v, r0 = r]

over the class of all admissible investment processes h,

(7)
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where Eh is the expectation with respect to P. The notation Eh emphasizes that the
expectation is evaluated for the wealth process V corresponding to the investment
strategy h.

The parameter θ here is interpreted as the measure of the investor’s attitude
toward risk; the bigger the value of θ, the more risk averse the investor. This is
because the criterion can be interpreted, at least approximately, as the portfolio’s
exponential growth rate minus a penalty term which equals θ/4 times the portfolio’s
asymptotic variance. A comprehensive interpretation of this risk sensitive objective
for portfolio management can be found in Bielecki and Pliska [9].

We note that the techniques used in this paper can also be used to study problems
Pθ for negative values of θ, corresponding to risk seeking investors. The risk null case,
for θ = 0, can be studied independently or as the limit of the risk averse situation
when the risk sensitivity parameter θ goes to zero. However, in this paper we shall
not consider cases where θ ≤ 0.

For much of what follows we find it convenient to introduce the scalar parameter

γ := −θ/2.(8)

Since θ is always strictly positive, the parameter γ should always be regarded as
strictly negative. Moreover, the reader should keep in mind that corresponding to
any appearance of the parameter γ is θ = −2γ.

3. Analysis of the Hamilton–Jacobi–Bellman equation. In this section we
formulate our model and present our main results concerning the HJB equation cor-
responding to the investor’s portfolio optimization problem Pθ. We not only establish
existence and uniqueness of a solution, but also establish some important properties
of this solution. This analysis is rather involved, and so the balance of this paper is
devoted to the proof of the results in this section.

In view of our risk sensitive objective, we are interested in computing the expec-
tation of quantities like V γ

t for some γ < 0. Since by (6)

V γ
t = V γ

0 exp

(
γ

∫ t

0

htσdWt + γ

∫ t

0

htρdW̄t +

∫ t

0

γ

[
− 1

2
(σ2 + ρ2)h2

t

+ (1 − ht)rt + htμ(rt)

]
dt

)
,(9)

we recognize that it is convenient to make a Girsanov-type change of probability
measure. In particular, it is straightforward to show for each trading strategy h and
T > 0 that

E[V γ
T ] = Ẽ

[
V γ

0 exp

(
γ

∫ T

0

L(rt, ht)dt

)]
,(10)

where we have introduced the notation Ẽ for expectation under the new probability
measure and the additional functions

L(r, u) := −1

2
(1 − γ)(σ2 + ρ2)u2 + μ̄(r)u + r,(11)

and

μ̄(r) := μ(r) − r.(12)
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Moreover, under this new probability measure the dynamics for the interest rate
process r are given by

drt = (−c(rt − r̄) + γσλ
√
rtht)dt + λ

√
rtdW̃t,(13)

where W̃ denotes a (scalar-valued) Brownian motion under this new probability mea-
sure.

Using standard methods of risk sensitive control theory (see, for example, [8],
[15], and [21]), it is now straightforward to specify the HJB dynamic programming
equation:

Λ =
1

2
λ2r

d2Φ

dr2
− c(r − r̄)

dΦ

dr
+

1

2
λ2r

(
dΦ

dr

)2

(14)

+ inf
{u∈R}

[
γσλ

√
ru

dΦ

dr
+ γL(r, u)

]
, r > 0.

We seek a solution in terms of the scalar Λ and the bias function Φ such that Λ
is the optimal risk adjusted growth rate in problem Pθ and such that the minimal
selector identifies an optimal (or, at least, an ε-optimal) trading strategy.

It is convenient to transform this equation into a simpler form. Since the stock
proportion ht is unrestricted, we see that the minimizing value of u in the HJB
equation must satisfy the first order condition γσλ

√
rΦ′+γ[−(1−γ)(σ2+ρ2)u+μ̄(r)] =

0. In other words, our candidate h∗ for the optimal trading strategy will satisfy the
expression h∗

t = u∗(rt), where

u∗(r) :=
1

1 − γ

1

σ2 + ρ2

(
μ̄(r) + σλ

√
r
dΦ

dr

)
.(15)

Remark 3.1. In view of Theorem 3.1 below, the candidate optimal strategy
has a linear growth in the state variable rt. Thus it is an admissible strategy (cf.
Remark 2.1).

Substituting the preceding expression for u in the HJB equation, introducing the
function

g :=
dΦ

dr
,

and doing a little algebra enables one to see that the original HJB equation is equiv-
alent to

Λ =
1

2
λ2r

dg

dr
+

1

2
λ2r

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
g2 + b(r)g + d(r), r > 0,(16)

where we have introduced for convenience the functions

b(r) := −c(r − r̄) +
γ

1 − γ

σλ

σ2 + ρ2

√
rμ̄(r)(17)

and

d(r) :=
1

2

γ

1 − γ

1

σ2 + ρ2
[μ̄(r)]2 + γr.(18)

The following theorem is our main result about the HJB equation.
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Theorem 3.1. The HJB equation (16) has a unique solution (Λ∗, g∗) satisfying
the following two properties:

lim
r→0

g∗(r) =
1

cr̄

[
Λ∗ − 1

2

γ

1 − γ

μ2
1

σ2 + ρ2

]
(19)

and either

lim
r→∞

g∗(r)√
r

= −
(

1 +
γ

1 − γ

σ2

σ2 + ρ2

)−1 [ |μ2 − 1|
λ

√
−γ

1 − γ

1

σ2 + ρ2
(20)

+
γ

1 − γ

σ

σ2 + ρ2

μ2 − 1

λ

]
for μ2 �= 1 or

(21)

lim
r→∞

g∗(r) = −
(

1 +
γ

1 − γ

σ2

σ2 + ρ2

)−1 (
c

λ2
−
(
c2

λ4
− 2

γ

λ2

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)) 1
2
)

for μ2 = 1. Moreover, Λ∗ is characterized as the smallest Λ such that the HJB
equation has a solution defined for all r.

In order to study problem Pθ, as well as to investigate a related problem of sepa-
rate interest, consider exactly the same problem except that now, for some arbitrary
positive number M , we impose the trading strategy constraint that ht = 0 if rt > M .
Analogous to the unconstrained problem, the dynamic programming equation for this
constrained, truncated problem is

ΛM =
1

2
λ2r

dg

dr
+

1

2
λ2r

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
g2 + b(r)g + d(r), 0 < r ≤ M,(22)

ΛM =
1

2
λ2r

dg

dr
+

1

2
λ2rg2 − c(r − r̄)g + γr, r > M.(23)

In addition, our candidate for the optimal trading strategy is now given by

u∗
M (r) :=

1

1 − γ

1

σ2 + ρ2

(
μ̄(r) + σλ

√
rg(r)

)
, r ≤ M,(24)

u∗
M (r) := 0, r > M.

Moreover, for this constrained problem we have the following important result.
Theorem 3.2. The HJB equation (22), (23) for the constrained problem has a

unique solution (Λ∗
M , g∗M ) satisfying the following two properties:

lim
r→0

g∗M (r) =
1

cr̄

[
Λ∗
M − 1

2

γ

1 − γ

μ2
1

σ2 + ρ2

]
(25)

and

lim
r→∞

g∗M (r) =
c

λ2
−
√

c2

λ4
− 2γ

λ2
.(26)
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As our next main result indicates, the solutions of the two kinds of investment
problems are related in an intuitive manner.

Theorem 3.3. The following hold:

lim
M→∞

g∗M (r) = g∗(r) ∀r > 0(27)

and

lim
M→∞

Λ∗
M = Λ∗.(28)

Remark 3.2. For (16), there is a smallest Λ such that (16) has a smooth solution
g. This follows from the argument in [17]. We can show that Λ∗ in Theorem 3.1 is this
smallest value of Λ; see Theorem 5.1. The argument in [17] is applicable to equations
in multidimensional spaces, and therefore it can be applied to a model with several
assets and multiple factor processes. However, it is difficult to fully understand and
analyze the solutions in such multidimensional cases.

These three theorems are proved in the following two sections. We now conclude
this section by suggesting a procedure for computing the solution (Λ∗, g∗) of (16).
Suppose that for a given number Λ we can solve our equation (16) for a function g
satisfying (19). Since Λ∗ is characterized as the smallest Λ such that this solution g
is finite for all r > 0, if some value Λ gives a finite solution, then Λ∗ ≤ Λ. On the
other hand, if some value Λ does not correspond to a finite g, then Λ < Λ∗. Hence a
suitable iterative procedure should converge to (Λ∗, g∗). To be more precise, we first
choose Λ1 ≤ Λ∗ ≤ Λ2 by some rough estimate and follow this procedure:

1. Λ = (Λ1 +Λ2)/2 and solve (16) and (19). If the solution g exists for all r > 0,
go to step 2. Otherwise, go to step 3.

2. Save the solution (Λ, g), redefine Λ1 := Λ1, Λ2 := Λ, and go to step 1.
3. Redefine Λ1 := Λ, Λ2 := Λ2, and go to step 1.

The solution (Λ, g) in step 2 will give a good approximation of (Λ∗, g∗) after a sufficient
number of iterations.

4. Proof of Theorem 3.2. We begin by transforming the constrained HJB
equation (22) to a version that will be more convenient for some proofs. Denoting

A := 1 +
γ

1 − γ

σ2

σ2 + ρ2
,

Λ̄ := AΛ,

d̄(r) := Ad(r),

and

ḡ := Ag,(29)

we see by simple substitution that (22) is equivalent to

Λ̄ =
1

2
λ2r

dḡ

dr
+

1

2
λ2rḡ2 + b(r)ḡ + d̄(r), 0 < r ≤ M.(30)

We would like to know that this equation has a (possibly unique) solution ḡ for an
arbitrary Λ̄, but establishing this is not so easy because the second term on the right-
hand side is nonlinear and the coefficient of the first derivative term is degenerate at
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r = 0 (so one cannot proceed with the analysis by considering the solution for all
r ≥ 0 and specifying the value of ḡ(0)). Our approach will be to address these issues
by studying the function

g̃(r) := ḡ(r)e(r),

where

e(r) := r
2cr̄

λ2 exp

(
− 2c

λ2
r +

2γσ

(1 − γ)λ(σ2 + ρ2)

∫ r

0

μ̄(s)√
s
ds

)
.

This is because ḡ satisfies (30) if and only if g̃ satisfies

dg̃

dr
+

1

e(r)
g̃2 =

2

λ2r
e(r)[Λ̄ − d̄(r)],(31)

and this latter differential equation will be easier to analyze. Also, note for future
arguments that (1) e(r) > 0 for all r > 0 and (2) equation (31) is equivalent to

g̃(r) = −
∫ r

0

1

e(s)
g̃2(s)ds +

∫ r

0

2

λ2s
e(s)[Λ̄ − d̄(s)]ds.(32)

Using the preceding transformations we can prove (see Appendix A) the following
initial key result in the proof of Theorem 3.2.

Proposition 4.1. If (ΛM , g) is a solution of (22) defined on (0, r0] for some
r0 > 0, then either g satisfies (25), with g∗M replaced with g, or

lim
r→0

rg(r) =
1

A

(
−2cr̄

λ2
+ 1

)
.(33)

Note that there is a trading strategy given by (15) associated with each solution
g, where g = dΦ/dr. Moreover, note that the asymptotic behavior stated in (33)
implies that a solution satisfying (33) might not be compatible with our portfolio
optimization problem. So from now on we shall focus on solutions of (22) that satisfy
(25) rather than (33). The reason will become apparent below. In particular, see
Corollary 4.1, which gives special properties of the solution satisfying (25).

Our next key result shows that there exists a unique solution g of (22) satisfying
(25), at least a solution in some neighborhood of r = 0.

Proposition 4.2. Fix Λ = ΛM . For small enough r0 > 0 there exists a unique
g satisfying (22) and (25) for all r ∈ (0, r0]. It also satisfies

|g(r)e(r)| ≤ c1r
2cr̄
λ2 , r ≤ r0,(34)

for some positive number c1. In addition, we have

g(r)e(r) ≤
∫ r

0

2

λ2s
e(s)[Λ − d(s)]ds, r ≤ r0.(35)

Proof. Since there is a correspondence between solutions of (22) and solutions of
(32), it suffices to focus on the latter. For some suitable positive numbers r0 and c1
(to be decided later), consider the operator T defined for f ∈ Fc1 , where

Tf(r) := −
∫ r

0

f2(s)
1

e(s)
ds +

∫ r

0

2

λ2s
e(s)[Λ̄ − d̄(s)]ds
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and

Fc1 := {f : |f(r)| ≤ c1r
2cr̄
λ2 , 0 ≤ r ≤ r0}.

In order to show that Tf ∈ Fc1 we need to estimate |Tf(r)|. The first term in the
definition of T is bounded by

c21c̄2

∫ r

0

sḡds = c21c2r
δ+1,

where δ := 2cr̄
λ2 and 1/e(s) ≤ c̄2s

−δ, c2 = c̄2/(1 + δ). The second term is bounded by

c1(Λ̄)c̄3

∫ r

0

sδ−1ds = c1(Λ̄)c3r
δ,

where c3 = c̄3/δ and e(r) ≤ c̄3r
δ for r small, and where

c1(Λ̄) := max
0<r≤1

∣∣∣∣ 2

λ2
[Λ̄ − d̄(r)]

∣∣∣∣ .
Therefore

|Tf(r)| ≤ [c21c2r + c1(Λ̄)c3]r
δ ≤ [c21c2r0 + c1(Λ̄)c3]r

δ

if r ≤ r0. It now follows by taking c1 = 2c1(Λ̄)c3 and r0 = 1/[4c2c3c1(Λ̄)] that

|Tf(r)| ≤ c1r
2cr̄
λ2 ,

and so T : Fc1 → Fc1 .
On the other hand, for r ≤ r0

|Tf1(r) − Tf2(r)| ≤
∫ r

0

|f1(s) + f2(s)||f1(s) − f2(s)|
1

e(s)
ds

≤ ||f1 − f2||2c1
∫ r0

0

s
2cr̄
λ2

1

e(s)
ds ≤ 2c1c̄2r0||f1 − f2||, r ≤ r0,

where || · || denotes the supnorm on [0, r0] and

c̄2 := max
r≤1

1

e(r)
r

2cr̄
λ2 .

Hence by taking r0 small enough so that 2c1c̄2r0 < 1, we see that T will be a con-
traction mapping from Fc1 into Fc1 . Hence T has a unique fixed point, say g̃, which
means that g̃ satisfies (32).

If we define g(r) = g̃(r)/(Ae(r)), then g is a solution of (22) defined on (0, r0].
Therefore, in view of Proposition 4.1, either one of (33) or (25) holds. Since g̃ is
in Fc1 , it follows that we have (34). Then (33) cannot be true. Finally, (35) is a
consequence of (32). This completes the proof of the proposition.

The next main step is to show that one can choose Λ so that the value of r0 in
Proposition 4.2 can be taken to be M , that is, so that a solution of (22) will exist on
all of (0,M ]. The following result will be used in this step.

Lemma 4.1. Let g1 and g2 be the two solutions of (22) and (25) corresponding to
values of ΛM equal to Λ1 and Λ2, respectively. If Λ1 < Λ2, then g1 < g2.
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Proof. Because of the correspondence between solutions of (22) and solutions of
(31), it suffices to study the latter. Since g̃1 and g̃2 both satisfy (31) (with their
respective values of Λ̄) we can subtract one equation from the other to obtain

d

dr
(g̃1 − g̃2) +

1

e(r)
[g̃1 + g̃2][g̃1 − g̃2] =

2

λ2r
e(r)[Λ̄1 − Λ̄2].

We thus have

g̃1(r) − g̃2(r) =

∫ r

0

2e(s)

λ2s
[Λ̄1 − Λ̄2] exp

(
−
∫ r

s

g̃1(u) + g̃2(u)

e(u)
du

)
ds.

This is strictly negative if Λ̄1 < Λ̄2, so Lemma 4.1 is established.
Corollary 4.1. For fixed Λ, suppose g defined on (0, r0] is the solution of (22)

satisfying (25). Let y < g(r0), and suppose g0 is a solution of (22) such that g0(r0) = y.
Then g0(r) exists for r ∈ (0, r0] and g0 satisfies (33).

Remark 4.1. We omit a proof of this corollary since the argument is very similar
to what was used for the proof of Lemma 4.1. While this corollary does not play a
crucial role in the proof of Theorem 3.2, it sheds some light on why we are concerned
with the boundary condition (33).

We note that if g(r0) is finite, then g is well defined for r > r0, up to a (possibly
infinite) point denoted r(Λ̄), where limr→r(Λ̄) g(r) = −∞ (if g explodes, then by (35)
it explodes in the negative direction). For each M > 0 we now define

Λ̄∗(M) := inf{Λ : the corresponding solution g of (22) satisfying (25)

is finite for all r ≤ M}.

We then have the following proposition.
Proposition 4.3. Fix arbitrary 0 < M < ∞. Then Λ̄∗(M) < ∞ and, for each

Λ ≥ Λ̄∗(M), the corresponding solution g of (22) and (25) is finite for all r ≤ M .
Moreover, g(M) → ∞ as Λ → ∞, and g(M) → −∞ as Λ → −∞.

Remark 4.2. Note that in Lemma 5.2 below we prove that Λ̄∗(M) > −∞.
Proof. We prove Λ̄∗(M) < ∞. The rest is a consequence of either Lemma 4.1 or

a similar argument.
We first take an r0 small enough and a finite Λ̄0, and

g̃0(r) =

∫ r

0

2

λ2s
e(s)(Λ̄0 − d̄(s))ds−

∫ r

0

1

e(s)
g̃2
0(s)ds, r ≤ r0.

We know that g̃0(r) is finite for r ∈ [0, r0]. Now for θ > 0 we consider

g̃θ(r) =

∫ r

0

2

λ2s
e(s)(Λ̄0 + θ − d̄(s))ds−

∫ r

0

1

e(s)
g̃2
θ(s)ds, r ≤ r0.

This has solution g̃θ(·) in a neighborhood of 0 as given in Lemma 4.2 with Λ̄ = Λ̄0 +θ.
We know that g̃θ(r) is finite for r ∈ [0, r0] and that

g̃θ(r) ≥ g̃0(r), r ≤ r0.

Let us fix 0 < r1 < r0, a large K > 0,K > ‖g̃0‖[r1,r0], where ‖g̃0‖[r1,r0] is the
maximum of |g̃0(r)|, r ∈ [r1, r0]. There is a θ0 such that for θ > θ0, g̃θ(·) is increasing
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for r1 ≤ r ≤ r0 if |g̃θ(r)| ≤ K. This is due to the following calculation:

d

dr
g̃θ(r) =

2

λ2r
e(r)(Λ̄0 + θ − d̄(r)) − 1

e(r)
g̃2
θ(r)

≥ 2

λ2r0
inf

[r1,r0]
{e(r)(Λ̄0 + θ0 − ‖d̄‖[r1,r0])} −

∥∥∥∥ 1

e(·)

∥∥∥∥
[r1,r0]

K2 > 0,

where the last inequality holds if θ0 is large enough.
From this, for a fixed K, we must have g̃θ(r0) > K if θ is large enough. Suppose

not. Then using the fact that g̃θ(r) > g̃0(r), r1 ≤ r ≤ r0, and the above monotonicity
result, we can conclude that

|g̃θ(r)| < K, r1 ≤ r ≤ r0.

Thus

d

dr
g̃θ(r) ≥

(
2

λ2r0
inf

[r1,r0]
{e(r)(Λ̄0 + θ − ‖d̄‖[r1,r0])} −

∥∥∥∥ 1

e(r)

∥∥∥∥
[r1,r0]

K2

)

is larger than a given number (say L) for r1 ≤ r ≤ r0 if θ is large enough. For such θ,

g̃θ(r0) = g̃θ(r1) +

∫ r0

r1

d

dr
g̃θ(r)dr ≥ g̃0(r1) + L(r0 − r1),

and this is larger than K if L is large enough. This gives a contradiction.
Next, for a fixed K > 0, if θ is large enough, then g̃θ(r0) > K implies g̃θ(r) >

K, r0 ≤ r ≤ M . This follows by using the properties that

inf
r0≤r≤M

1

r
e(r) > 0, sup

r0≤r≤M

1

e(r)
< ∞

and the estimate

d

dr
g̃θ(r) ≥

2

λ2
inf

r0≤r≤M

{
1

r
e(r)(Λ̄0 + θ0 − ‖d̄‖[r0,M ])

}
−
∥∥∥∥ 1

e(r)

∥∥∥∥
[r0,M ]

K2 > 0

for an r0 ≤ r ≤ M satisfying g̃θ(r) = K if θ is large enough.
We conclude from the above analysis that for a K > ‖g̃0‖[r1,r0], there is a

θ sufficiently large such that g̃θ(M) > K. This implies Λ̄∗(M) ≤ Λ̄0 + θ < ∞.
As a consequence of this argument, we also have that g̃θ(M) tends to ∞ as θ tends
to ∞. This ends the proof of this proposition.

We now know there exists a solution of (22) and (25) on all of (0,M ], so we turn
to the study of the solution of the constrained dynamic programming equation for
r > M , that is, (23). But the solution of this differential equation must satisfy the
boundary condition at r = M that has g(M) taking the value that comes from the
solution of (22) and (25) for r ≤ M . Hence the solution of (23) is well defined for
r > M , at least in some neighborhood of M .

Lemma 4.2. Given a specified value of g(M), (23) has a unique solution g on
[M, r1), where r1 := sup{r > M : g(r) > −∞}. Also, there exists some K < ∞,
which does not depend on r1 (but may depend on g(M)), such that g(r) ≤ K on
[M, r1).
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Proof. It is sufficient to prove the existence of K. The existence of r1 follows from
the theory of ordinary differential equations.

First note that (23) can be rewritten as

dg

dr
− 2c

λ2

[
1 − r̄

r

]
g + g2 =

2

λ2r
[ΛM − γr], r ≥ M.(36)

It suffices to show that if a solution is such that g(r0) < c2, then g(r) < c2 for all
r > r0, where r0 and c2 here are large. Suppose, on the contrary, that there is some
r1 > r0 such that g(r) < c2 for r0 ≤ r < r1 and g(r1) = c2. Then by differential
equation (36) we must have dg

dr (r1) < 0. But this is a contradiction, so Lemma 4.2 is
established.

For fixed M and any Λ > Λ̄∗(M) we know by Proposition 4.3 that (22) with
ΛM = Λ has a solution g on (0,M ] with g(M) finite. So corresponding to each such Λ
we can, as in the following lemma, consider the solution g of (23) on [M, r1) that takes
this corresponding value of g(M) at r = M . In other words, for each Λ > Λ̄∗(M) we
have a solution of (22) and (23) that is continuous on (0, r1) for some r1 > M .

Lemma 4.3. Fix M and let g1 and g2 be two solutions of (22), (23), and (25) cor-
responding to values of ΛM equal to Λ1 and Λ2, respectively, where Λ1,Λ2 > Λ̄∗(M).
Then Λ1 < Λ2 implies g1(r) < g2(r) if g1 is defined at r.

Proof. First consider two differential equations (36), one satisfied by (g1,ΛM =
Λ1) and the other by (g2,ΛM = Λ2). Subtracting one from the other gives

d

dr
(g2 − g1) +

[
− 2c

λ2
(1 − r̄/r) + g2 + g1

]
(g2 − g1) =

2

λ2r
[Λ2 − Λ1],

in which case

g2(r) − g1(r) = exp

(
−
∫ r

M

(
− 2c

λ2
(1 − r̄/s) + g1(s) + g2(s)

)
ds

)
[g2(M) − g1(M)]

+

∫ r

M

2

λ2s
(Λ2 − Λ1) exp

(
−
∫ r

s

(
− 2c

λ2
(1 − r̄/u) + g1(u) + g2(u)

)
du

)
ds.

Since g2(M) − g1(M) > 0 by Lemma 4.1, Lemma 4.3 follows from this.

For each M > 0 we now define

Λ∗
M := inf{ΛM : the corresponding solution g of (22), (23) satisfying (25)

is finite for all r > 0},

and we observe that Λ∗
M ≥ Λ̄∗(M). We now have the following key result.

Proposition 4.4. For each fixed number M < ∞ we have Λ∗
M < ∞.

Proof. We need to prove the existence of a ΛM such that g(r) is finite for all
r > 0, where g is the solution for (22), (23), and (25). By (36), if g(M) > 0 and
ΛM > 0, then g(r) > 0 for all r > M . We can show by the argument in the proof of
Lemma 4.3 that g(M) > 0 if ΛM is sufficiently large. This completes the proof.

By Lemma 4.3 we know for ΛM ≥ Λ∗
M that there exists a solution of (22), (23),

and (25) on all of (0,∞). In order to identify the “correct” solution we now investigate
the limiting behavior of these solutions g as r → ∞.
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Proposition 4.5. Fix M < ∞ and arbitrary ΛM ≥ Λ∗
M , and consider the

solution g of (22), (23) satisfying (25). Then exactly one of the following two conditions
will hold; that is, either

lim
r→∞

g(r) =
c

λ2
−
√

c2

λ4
− 2γ

λ2
(37)

or

lim
r→∞

g(r) =
c

λ2
+

√
c2

λ4
− 2γ

λ2
.(38)

Proof. Denote

α :=
c

λ2
−
√

c2

λ4
− 2γ

λ2
,

and note that α is negative and satisfies

α2 − 2c

λ2
α +

2γ

λ2
= 0.

Next, define

ĝ(r) = g(r) − α,

and note that, in view of (23), we must have

dĝ

dr
+

(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1

r

)
ĝ + ĝ2 =

(
2ΛM

λ2
− 2cr̄

λ2
α

)
1

r
, r > M.(39)

We now claim there is c1 large enough such that

ĝ(r) > −c1/r, r ≥ M.(40)

Denote f(r) = ĝ(r) + c1/r. Then (40) is equivalent to

f(r) > 0, r ≥ M.

To prove this, we have the following observation. By (39), we easily see that

df(r)

dr
< 0

if f(r) = 0. This implies that if f(r0) ≤ 0 for some r0 > 0, then

f(r) < 0, r > r0.

We shall show that this cannot be true. Otherwise, using (39), we have

dĝ

dr
+

1

2
ĝ2 < 0, r ≥ r0.

This, in turn, implies

− 1

ĝ(r)
+

1

ĝ(r0)
+

1

2
(r − r0) < 0, r ≥ r0.
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But this cannot be true for all r ≥ r0, a contradiction that implies (40).
We now consider two cases, depending upon whether or not

2ΛM

λ2
− 2cr̄

λ2
α > 0.(41)

If (41) is true and ĝ(r0) > 0 for some r0 > M , then ĝ(r) > 0 for all r ≥ r0. From this,
we conclude that one of the following two possibilities holds: either there is r0 > M
such that

ĝ(r) > 0, r ≥ r0,(42)

or there is r0 > M such that

ĝ(r) < 0, r ≥ r0.(43)

We have the same conclusion if the opposite of (41) holds, so it suffices to consider
(42) and (43) separately. First we assume (43). This together with (40) implies

lim
r→∞

ĝ(r) = 0.

In other words,

lim
r→∞

g(r) = α,(44)

which is equivalent to (37) in this case.
For the rest of this proof we shall assume (42). We consider (41) only (the analysis

for other case is similar). We rewrite (39) as follows:

dĝ

dr
=

((
2

√
c2

λ4
− 2γ

λ2
− 2cr̄

λ2

1

r

)
− ĝ

)
ĝ +

(
2ΛM

λ2
− 2cr̄

λ2
α

)
1

r
, r > M.(45)

Denote

f̄(r) = ĝ(r) +

(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1

r

)
.

Assuming (42), by using (45) it is easy to see that

df̄(r)

dr
> 0

if r ≥ r0 and f̄(r) < 0. Moreover, if f̄(r) < 0, then

dĝ(r)

dr
>

(
2ΛM

λ2
− 2cr̄

λ2
α

)
1

r
.

These two observations imply that we cannot have f̄(r) < 0 for all r ≥ r0, so there
must exist some r1 > r0 such that

ĝ(r) +

(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1

r

)
> 0, r ≥ r1.(46)
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Using the same argument applied to

ĝ(r) +

(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1

r

)
− c2

r

for a large c2, we can prove the existence of r2 > r1 such that

ĝ(r) +

(
−2

√
c2

λ4
− 2γ

λ2
+

2cr̄

λ2

1

r

)
− c2

r
< 0, r ≥ r2.(47)

From (46) and (47), we have

lim
r→∞

ĝ(r) = 2

√
c2

λ4
− 2γ

λ2
.

This is equivalent to (38). This together with (44) completes the proof of Proposi-
tion 4.5.

Remark 4.3. We shall pay special attention to the limiting behavior (37); (38)
will now be ignored. There are reasons for doing this. It will be shown below that
the solution satisfying (37) is unique and that it characterizes the solution associated
with Λ∗

M . These interesting properties may also be considered as evidence that the
minimality of Λ∗

M will play some special role for the portfolio optimization problem.
A general study of multidimensional problems related to this observation can be found
in [17].

We are now interested in the smallest ΛM such that (22), (23), and (25) have a
solution for all r. The following lemma states that there is at most one value of ΛM

giving a solution of (22), (23), and (25) that also satisfies (37).
Lemma 4.4. Suppose g1 and g2 are two solutions of (22), (23), and (25) corre-

sponding to ΛM = Λ1,Λ2, respectively. If both g1 and g2 satisfy (37), then g1 = g2

and Λ1 = Λ2.
Proof. Subtracting the equation for g2 from the equation for g1 gives

d

dr
(g2 − g1) +

(
− 2c

λ2
+

2cr̄

λ2

1

r
+ g1 + g2

)
(g2 − g1) =

2

λ2r
(Λ2 − Λ1).

By (37) we then have

−(g2 − g1)(r)ē(r) =

∫ ∞

r

2

λ2s
(Λ2 − Λ1)ē(s)ds,(48)

where we have introduced the function

ē(r) := exp

{∫ r

r0

(
− 2c

λ2
+

2cr̄

λ2

1

s
+ g1(s) + g2(s)

)
ds

}
.

Here r0 > M is fixed. The integral on the right-hand side of (48) is finite by (37).
Moreover, (48) implies g2 − g1 > 0 if Λ2 − Λ1 < 0. But we also have g2 − g1 < 0 if
Λ2 − Λ1 < 0. Therefore Λ1 = Λ2 and g1 = g2; that is, the proof of Lemma 4.4 is
completed.

It remains to prove the solution g∗ corresponding to ΛM = Λ∗
M satisfies (37).

In other words, with Lemma 4.4 establishing uniqueness, it remains to establish ex-
istence. This is a consequence of the following lemma, because if for ΛM = Λ̄ the
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corresponding limit is (38), then for all ΛM < Λ̄ in some neighborhood of Λ̄ the cor-
responding limits also satisfy (38). Hence if there exists a solution for ΛM = Λ∗

M (the
infimum of ΛM for which there exists a solution; Λ∗

M is finite by Proposition 4.3 above
and Lemma 5.2 below, and the infimum is attained by the same kind of argument
used below in the proof of Theorem 5.1), this solution must satisfy the other limit,
namely, (37).

Lemma 4.5. If ΛM = Λ̂ is such that the corresponding solution of (22), (23)
satisfies (25) and (38), then there exists some δ > 0 such that for any ΛM > Λ̂ − δ
the solution of (22), (23) exists for all r.

Proof. Let ĝ be the solution corresponding to Λ̂; thus

dĝ

dr
− 2c

λ2

(
1 − r̄

r

)
ĝ + ĝ2 =

2

λ2r
(Λ̂ − γr), r > M.

With g being the solution of (22) and (23) corresponding to Λ, write

ḡ := g − ĝ,

and so

dḡ

dr
+

dĝ

dr
− 2c

λ2

(
1 − r̄

r

)
(ḡ + ĝ) + (ḡ + ĝ)2 =

2

λ2r
(Λ − γr).

This implies

dḡ

dr
+

(
2c

λ2

(
1 − r̄

r

)
+ 2ĝ

)
ḡ + ḡ2 =

2

λ2r
(Λ − Λ̂).(49)

We now seek the solution of (49) such that ||ḡ|| ≤ δ1, where

||ḡ|| := sup
r≥M

|ḡ(r)|.

Here δ1 will be chosen later in a manner which depends on δ, where |Λ− Λ̂| < δ. Note
that (49) can be rewritten as

ḡ(r) = ḡ(M)
1

ē(r)
−
∫ r

M

ē(s)

ē(r)
ḡ2(s)ds +

2

λ2
(Λ − Λ̂)

∫ r

M

ē(s)

ē(r)

1

s
ds,

where we introduce the function

ē(r) := exp

{∫ r

M

(
− 2c

λ2
(1 − r̄/s) + 2ĝ(s)

)
ds

}
.

We use again the fixed-point argument to get a solution g. Denote

F := {f : [M,∞) → R, ||f || ≤ δ1, f(M) = ḡ(M)},

where ḡ(M) = g(M) − ĝ(M), and where g is the solution of (22) corresponding to
ΛM = Λ. We denote for f ∈ F

Tf(r) := ḡ(M)
1

ē(r)
−
∫ r

M

ē(s)

ē(r)
f2(s)ds +

2

λ2
(Λ − Λ̂)

∫ r

M

ē(s)

ē(r)

1

s
ds.
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We know ḡ(M) → 0 if Λ → Λ̂. We consider

|Λ − Λ̂| < δ, δ̄ = |ḡ(M)|max
r≤M

1

ē(r)
,

where δ is small. Then take δ1 > 0 satisfying

δ2
1 sup
r≥M

∫ r

M

ē(s)

ē(r)
ds + δ̄ +

2δ

λ2
sup
r≥M

{∫ r

M

ē(s)

ē(r)

1

s
ds

}
< δ1.

Note that for δ small enough we can take

δ1 = 2

(
δ̄ +

2δ

λ2
sup
r≥M

{∫ r

M

ē(s)

ē(r)

1

s
ds

})
.

Then it is not difficult to show that the operator T : F → F. Moreover, for arbitrary
f1, f2 ∈ F we have

||Tf1 − Tf2|| ≤ 2δ1 sup
r≥M

1

ē(r)

∫ r

M

ē(s)ds||f1 − f2|| = K||f1 − f2||.

By taking δ1 small enough one has the number K < 1. Then T is a contraction with
a unique fixed point in F, which is the unique solution of (23). This completes the
proof of Lemma 4.5.

5. Proofs of Theorems 3.1 and 3.3. The proofs of Theorems 3.1 and 3.3 are
accomplished by the three propositions in this section. The first of these shows that
the solutions of Theorem 3.2 converge as M → ∞ to a solution of the HJB equation
(16) that also satisfies conditions (19) and either (20) (if μ2 �= 1) or (21) (if μ2 = 1).
Later in this section we will show uniqueness, thereby completing the proofs of both
Theorems 3.1 and 3.3.

Proposition 5.1. Let Λ∗
M and g∗M (r) be as in Theorem 3.2. Then Λ∗

M → Λ and
g∗M (r) → g(r) as M → ∞, where Λ and g(r) satisfy (16) and g(r) also satisfies (19)
and either (20) (in the case μ2 �= 1) or (21) (in the case μ2 = 1).

To prove Proposition 5.1 we need the following four lemmas. The first two of
these are based upon the following equation:

Λ =
1

2
λ2r

dg

dr
+

1

2
λ2r

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
g2 + b(r)g + d(r), r ≤ R0 + 1.(50)

Here R0 > 0 is a specified constant, and it is noteworthy that this equation is es-
sentially the same as (22), which is part of the dynamic programming equation in
Theorem 3.2.

Lemma 5.1. Let r0 < R0 be arbitrary. Then there is K > 0, depending on r0, R0,
and Λ, such that if (50) has a solution g, then

|g(r)| ≤ K, r0 ≤ r ≤ R0.

Moreover, K can be chosen to be increasing in Λ. Therefore, for r0, R0,Λ fixed, the
set {|g(r)| : r0 ≤ r ≤ R0; g satisfies (50)} is bounded.

Remark 5.1. If the value of the ODE solution g is specified at r0 < R0, say, then
the values of g for all r will be determined. The most interesting part of this lemma
is the conclusion that regardless of the initial value we choose for g at r0, if g(r) is
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finite in (0, R0 +1], then |g(r)| ≤ K for all r0 ≤ r ≤ R0, where K is independent of g,
although it may depend on R0. Consequently, in order to have a solution of (50) we
cannot arbitrarily assign a value of g at r0 (that is, g(r0) needs to satisfy |g(r0)| ≤ K).
Regarding the dependence of K on Λ, an expression for K is provided at the end of
the proof that follows. This dependence will be used in the proof of Proposition 5.1.

Proof. Let g satisfy (50). Take φ : [0,∞) → [0, 1] smooth such that

φ(r) = 1, r0 ≤ r ≤ R0,
= 0, 0 ≤ r ≤ r0

2 , R0 + 1 < r.
(51)

Without loss of generality, we can take φ such that it satisfies the following property:∣∣∣∣∣ 1√
φ(r)

dφ(r)

dr

∣∣∣∣∣ ≤ K1.

Here K1 is some number that may depend on r0 and R0. To see this, we denote h(r)
by

h(r) :=
1√
φ(r)

dφ(r)

dr
, r ≥ R0,

and so √
φ(r) = 1 + 2

∫ r

R0

h(u)du, r > R0.

We then choose h(·) such that h(·) is bounded and

2

∫ R0+1

R0

h(u)du = −1.

Moreover, we choose h(r) = 0, r ≥ R0 + 1. The derivatives of h of any order at R0

and R0 + 1 are 0. Thus φ satisfies the required property on [R0,∞). We can apply a
similar argument for r ∈ (0, r0].

Consider

f(r) =
1

2
φ(r)g2(r).

Then f(r) takes a maximum at some r1 satisfying r0/2 ≤ r1 ≤ R0 + 1. Denote

X2 = 2f(r1) = 2 max f(r).

Then

df

dr
(r1) = 0;

that is,

φ(r1)g(r1)
dg

dr
(r1) = −1

2
g2(r1)

dφ

dr
(r1).(52)

We multiply (50) at r = r1 by φ(r1)g(r1) and use (52) to get

Λφ(r1)g(r1) = − 1

4
λ2r1g

2(r1)
dφ

dr
(r1) +

1

2
λ2r1

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
φ(r1)g

3(r1)

+ b(r1)φ(r1)g
2(r1) + d(r1)φ(r1)g(r1).
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Assume g(r1) �= 0. Then divide the above relation by g(r1) to obtain

Λφ(r1) = − 1

4
λ2r1g(r1)

dφ

dr
(r1) +

1

2
λ2r1

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
φ(r1)g

2(r1)

+ b(r1)φ(r1)g(r1) + d(r1)φ(r1).

Then

X2 + 2αX = β,(53)

where

α = α(r1) =
1

λ2r1(1 + γ
1−γ

σ2

σ2+ρ2 )

(
b(r1)

√
φ(r1) −

1

4
λ2r1

1√
φ(r1)

dφ

dr
(r1)

)
,

β = β(r1) =
2

λ2r1(1 + γ
1−γ

σ2

σ2+ρ2 )
(−d(r1)φ(r1) + Λφ(r1)).

From (53),

X = −α±
√
α2 + β,

in which case

|X| ≤ |α| +
√
α2 + β.

We see |X| ≤ K, where

K = max
{
|α(r)| +

√
α(r)2 + β(r),

r0
2

≤ r ≤ R0 + 1
}

so that K depends on r0, R0, and Λ. Since

max
r0≤r≤R0

|g(r)|2 ≤ X2,

the result follows.
The next lemma says that the set of all Λ such that (50) has a solution is bounded

below.
Lemma 5.2. For a fixed R0, there is a Λ(R0) such that if (50) has a solution g,

then Λ ≥ Λ(R0).
Proof. We take 0 < r0 < R0 and a smooth function φ as in (51). We can define

b̂(r) for all r > 0 such that

b̂(r) = b(r), r ≤ R0

and such that the diffusion process defined by

dr̂(t) = b̂(r̂(t))dt + λ
√

r̂(t)dB(t)

has an invariant density that we denote by p̂(r). See [19].
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Denote

Φ(r) = exp

((
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
W (r)

)
,

where

W (r) =

∫ r

r0

g(u)du.

Then

L̂Φ(r) = Λ̂Φ(r) − d̂(r)Φ(r), r ≤ R0,

where

Λ̂ =

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
Λ,

d̂(r) =

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
d(r),

L̂f(r) =
1

2
λ2r

d2f

dr2
(r) + b̂(r)

df

dr
(r).

We have ∫
L̂Φ(r)φ(r)p̂(r)dr =

∫
Λ̂Φ(r)φ(r)p̂(r)dr −

∫
d̂(r)Φ(r)φ(r)p̂(r)dr.

The equation for the invariant density p̂ is

1

2

d2

dr2
(λ2rp̂(r)) − d

dr
(b̂(r)p̂(r)) = 0.

In one dimension, we have

1

2

d

dr
(λ2rp̂(r)) − b̂(r)p̂(r) = 0.

From this and the integration by parts formula we then have∫
L̂Φ(r)φ(r)p̂(r)dr = −1

2

∫
λ2r

dΦ

dr
(r)

dφ

dr
(r)p̂(r)dr.

Consequently,

Λ̂

∫
Φ(r)φ(r)p̂(r)dr =

∫
d̂(r)Φ(r)φ(r)p̂(r)dr − 1

2

∫
λ2r

dΦ

dr
(r)

dφ

dr
(r)p̂(r)dr.(54)

By Lemma 5.1 there is some number K, which depends on Λ, such that

1

K
≤ Φ(r) ≤ K,

∣∣∣∣dΦdr (r)

∣∣∣∣ ≤ K
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for r0 ≤ r ≤ R0. From this and (54) we have

|Λ̂|
∫

Φ(r)φ(r)p̂(r)dr ≤ K

(
‖d̂‖ + λ2R0

∥∥∥∥dφdr
∥∥∥∥) .

The left-hand side is larger than

|Λ̂| 1

K

∫
φ(r)p̂(r)dr.

From these inequalities, |Λ̂| has an upper bound depending only on R0. This completes
the proof.

For the following lemma and subsequent use we shall make use of a quantity that
was defined in section 4, namely,

Λ∗
M := inf{ΛM : (22) and (23) has a solution satisfying (25)}.

Lemma 5.3. For each M0 > 0, the set {Λ∗
M ;M ≥ M0} is bounded above.

Proof. It is enough to show that there is Λ such that (22)–(23) has a solution
g = gM satisfying (25) such that g(r) > 0 for all r, for ΛM = Λ with M ≥ M0, since
this will imply Λ∗

M ≤ Λ by the definition of Λ∗
M .

We take Λ large enough such that (22) has a solution g satisfying

lim
r→0

g(r) =
1

cr̄

(
Λ − γ

2(1 − γ)

μ2
1

σ2 + ρ2

)
> 0.

By (22), it is easy to see that g(r) > 0 for 0 < r ≤ M , since in 0 < r ≤ M , g is
increasing at the zeros of g. This argument also applies to M ≤ r. That is, g(r)
cannot be −∞ for finite r. Therefore, we get a unique solution of (22)–(23) satisfying
(25).

Lemma 5.4. Let g = gM be the solution of (22) and (23) satisfying (25) with
Λ = Λ∗

M . Then there is some M0 > 0 such that for M ≥ M0,

g(r) < 0, r > M0.

Proof. By (37), g(r) will be negative if r is large enough. From (23) and the fact
that Λ is bounded below (see Lemma 5.2), it is easy to see that g(r) < 0 for r > M
if M is large enough, since g(r) for r > M is increasing at zeros of g. This argument
also applies to M0 ≤ r ≤ M . Therefore, g(r) < 0 for r > M0 if M is large enough.
This completes the proof.

Armed with these lemmas, we can now prove Proposition 5.1.
Proof of Proposition 5.1. By Lemmas 5.2 and 5.3, for a fixed M0 > 0, {Λ∗

M ,M ≥
M0} is bounded above and below. We can take a sequence Mn → ∞ as n → ∞
such that Λ∗

Mn
converges to some Λ. Boundedness of {Λ∗

Mn
} also implies the uniform

boundedness of {|g∗Mn
(r)|} on compact sets by Lemma 5.1. This further implies

the uniform boundedness of {|dg
∗
Mn

dr (r)|} on compact sets, by using (22) and (23).
Therefore, we can take a subsequence of {Mn} (still denoted by {Mn}), such that
g∗Mn

(r) converges to g(r) uniformly on compact sets.
We know Λ, g satisfy (16) and g satisfies (19). In fact, we need only rule out

the possibility that g satisfies (33). But since the g∗Mn
(r) satisfy (34) for c1 and r0

independent of n (see the proof of Proposition 4.2), it follows that (33) cannot hold
for g.
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It remains to prove that (20) or (21) (depending on the case) holds for g, because
then (Λ∗, g∗) = (Λ, g) satisfies the properties in Theorem 3.1 (see also Theorem 5.1
below). From this it follows that the limit of (Λ∗

M , g∗M ) as M → ∞ is unique, and so
Proposition 5.1 will be proved.

We now prove that (20) holds for g when μ2 �= 1. By Lemma 5.4, there is M0

such that

g(r) < 0, r ≥ M0.(55)

We need to know the behaviors of the solutions of (16) as r → ∞. This will be given
in Proposition 5.2 below. Now g given above is a solution of (16). Define ḡ = Ag,
A = 1 + γσ2/(1 − γ)(σ2 + ρ2). According to this theorem, either (56) or (57) holds.
From (61), we can conclude the following. If (56) holds, then g(r) < 0 for r large.
If (57) holds, then g(r) > 0 for r large. Since (55) holds, we must have (56). This
in turn implies (20) by a simple calculation. The case μ2 = 1 is treated in a similar
manner. This completes the proof.

Proposition 5.2. Let (Λ, g) be a solution of (16) for 0 < r < ∞. Then exactly
one of the following relations holds:
either

lim
r→∞

r(ḡ(r) − ḡ0(r)) = −1

8

(
1 − λ

|λ|

(
−γ

1 − γ

) 1
2 σ√

σ2 + ρ2

)
(56)

or

lim
r→∞

1√
r
(ḡ(r) − ḡ0(r)) = 2

(
− γ

1 − γ

1

σ2 + ρ2

) 1
2 |μ2 − 1|

|λ| , μ2 �= 1,(57)

lim
r→∞

(ḡ(r) − ḡ0(r)) = 2

(
c2

λ4
− 2

γ

λ2

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)) 1
2

, μ2 = 1.(58)

Here

ḡ0(r) := −b(r)

λ2r
−

⎛⎝−
2
(
1 + γ

1−γ
σ2

σ2+ρ2

)
d(r)

λ2r
+

b(r)2

λ4r2

⎞⎠
1
2

,

while b(·), d(·), and ḡ(·) are defined by (17), (18), and (29), respectively.
In order to prove Proposition 5.2 we need three more lemmas. For these we

consider a function g(r) that is finite for all r and satisfies (16) and (19). Using this
and ḡ0(r) as specified in Proposition 5.2, we then define

ĝ := ḡ − ḡ0.

Since ḡ0 satisfies

1

2
λ2rḡ0(r)

2 + b(r)ḡ0(r) + d̄(r) = 0,

it follows that

1

2
λ2r

d

dr
ĝ(r) +

1

2
λ2rĝ(r)2 + b̃(r)ĝ(r) = L(r),
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where

L(r) := Λ − 1

2
λ2r

d

dr
ḡ0(r)

and

b̃(r) := b(r) + λ2rḡ0(r) = −λ2r

(
−2d̄(r)

λ2r
+

b(r)2

λ4r2

) 1
2

= −
(
− 2λ2rd̄(r) + b(r)2

) 1
2 .

Notice this equation can be rewritten as

dĝ

dr
+ ĝ2 +

2b̃(r)

λ2r
ĝ =

2L(r)

λ2r
.(59)

In order to investigate the asymptotic properties of (59) we calculate

−2d̄(r)

λ2r
+

b(r)2

λ4r2
= − 2γ

λ2r

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)(
1

2

1

1 − γ

1

σ2 + ρ2
μ̄(r)2 + r

)

+
1

λ4r2

(
− c(r − r̄) +

γ

1 − γ

σλ

σ2 + ρ2

√
rμ̄(r)

)2

= μ̄(r)2
(
− γ

1 − γ

1

σ2 + ρ2

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
1

λ2r
+

(
γ

1 − γ

)2
σ2

(σ2 + ρ2)2
1

λ2r

)

− 2
cσλ

λ4

1

σ2 + ρ2

r − r̄

r

1√
r
μ̄(r) +

c2

λ4

(r − r̄)2

r2
− 2

γ

λ2

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)

= − γ

1 − γ

1

σ2 + ρ2

1

λ2r
μ̄(r)2 − 2

cσλ

λ4

1

σ2 + ρ2

r − r̄

r

1√
r
μ̄(r) +

c2

λ4

(r − r̄)2

r2

− 2
γ

λ2

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
.

Since

2b̃(r)

λ2r
= −2

(
−2d̄(r)

λ2r
+

b(r)2

λ4r2

) 1
2

,

it follows when μ2 �= 1 that

2b̃(r)

λ2r
∼= −2

(
− γ

1 − γ

1

σ2 + ρ2

) 1
2 |μ2 − 1|

|λ|
√
r + O(1) as r → ∞.(60)

Moreover,

ḡ0(r) ∼= − 1

λ

γ

1 − γ

σ

σ2 + ρ2
(μ2−1)

√
r−

(
−γ

1 − γ

1

σ2 + ρ2

1

λ2

) 1
2

|μ2−1|
√
r+O(1) as r → ∞.

(61)
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On the other hand, if μ2 = 1, then

2b̃(r)

λ2r
∼= −2

(
c2

λ4
− 2

γ

λ2

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)) 1
2

+ O

(
1√
r

)
as r → ∞(62)

and

ḡ0(r) ∼=
c

λ2
−
(
c2

λ4
− 2

γ

λ2

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)) 1
2

+ O

(
1√
r

)
as r → ∞.

From this we see that if μ2 �= 1, then

L(r) ∼=
|λ|
4

((
−γ

1 − γ

1

σ2 + ρ2

) 1
2

+
λ

|λ|
γ

1 − γ

σ

σ2 + ρ2

)
|μ2−1|

√
r+O

(
1√
r

)
as r → ∞,

(63)
whereas if μ2 = 1, then

L(r) ∼= Λ + O

(
1√
r

)
as r → ∞.

We are now ready for the first of the three lemmas that will be used in the proof
of Proposition 5.2.

Lemma 5.5. There exist positive numbers c1 and r1 such that

ĝ(r) > −c1
r

∀r ≥ r1.(64)

Proof. This proof is by contradiction. Suppose it is false. Then for any c1 > 0
and r2 > 0 there exists some r0 > r2 such that

ĝ(r0) ≤ −c1/r0.

From this we shall prove that

ĝ(r) ≤ −c1
r

∀r ≥ r0.(65)

But if this is not true, then without loss of generality there is some r1 > r0 such that
ĝ(r1) = −c1/r1 and

ĝ(r) < −c1/r, r0 < r < r1.

Denoting f(r) := ĝ(r) + c1/r, we then see that

df(r1)

dr
= −ĝ(r1)

2 +
L(r1)

λ2r1
− 2b̃(r1)

λ2r1
ĝ(r1) − c1

1

r2
1

< 0

if we take c1 large enough. This is a contradiction; (65) must be true if this lemma is
false.

By (65) and (59), we have

dĝ

dr
+ ĝ2 < 0.
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Then

dĝ
dr

ĝ2
+ 1 < 0,

which implies

1

ĝ(r0)
− 1

ĝ(r)
+ (r − r0) < 0

for all r > r0. This cannot be true for all r ≥ r0, so (65) leads to a contradiction.
The proof is complete.

Lemma 5.6. Suppose for some large r0 > 0 that with r = r0 we have

c2
r

< ĝ(r) < −2b̃(r)

λ2r
+

c2
r
.(66)

If c2 is large enough, then this inequality also holds for all r ≥ r0.
Proof. Suppose μ2 �= 1. By (59) and (63), ĝ − c2/r is increasing at r ≥ r0 such

that ĝ − c2/r = 0. Therefore,

c2
r

< ĝ(r), r ≥ r0.

Denote

r1 := inf

{
r > r0 : ĝ(r) ≥ −2b̃(r)

λ2r
+

c2
r

}
.

We have shown ĝ(r) > c2/r for r0 < r < r1, so it suffices to show we have r1 = ∞.
Assume not. Then ĝ(r1) = −2b̃(r1)/(λ

2r1) + c2/r1 and

ĝ(r) < −2b̃(r)

λ2r
+

c2
r
, r0 ≤ r < r1.

We now consider

f(r) := ĝ(r) +
2b̃(r)

λ2r
− c2

r

and show that d
drf(r1) < 0, which leads to a contradiction. We have

d

dr
f(r1) =

d

dr
ĝ(r1) +

d

dr

(
2b̃(r)

λ2r

)
(r1) +

c2
r2
1

=
2L(r1)

λ2r1
− c2

r1

(
− 2b̃(r)

λ2r
+

c2
r1

)
+

d

dr

(
2b̃(r)

λ2r

)
(r1) +

c2
r2
1

.

From this, (60), and (63) we can show d
drf(r1) < 0, thereby completing the proof for

the case μ2 �= 1. The case μ2 = 1 is handled in a similar manner.
Lemma 5.7. With r0 and c2 as in the preceding lemma such that c2 is large

enough and (66) holds, for small c1 > 0 there exists some r1 > r0 such that

ĝ(r) +
2b̃(r)

λ2r
≥ −c1
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for all r ≥ r1.
Proof. We first show that there is some r1 > r0 satisfying

ĝ(r1) +
2b̃(r1)

λ2r1
≥ −c1.(67)

Otherwise,

ĝ(r) +
2b̃(r)

λ2r
< −c1 ∀r > r0.(68)

By (59), we have

dĝ

dr
≥ c1ĝ +

2L(r)

λ2r
≥ c1ĝ − c̄

1

r
≥ c1

2
ĝ

if c2 is large enough. Then

ĝ(r) ≥ exp
{c1

2
(r − r0)

}
ĝ(r0).

But this contradicts (68), so (67) must be true.
Denote

f(r) := ĝ(r) +
2b̃(r)

λ2r
.

Using (59), (60), and (63), we can easily see that

df(r)

dr
> 0

if f(r) = −c1 and c1 small. From this and (67), f(r) > −c1 for r > r1. This completes
the proof.

We are now ready for the proof of Proposition 5.2. Recall that ĝ := ḡ− ḡ0 satisfies
(59).

Proof of Proposition 5.2. By Lemmas 5.5–5.7, for positive numbers r0 and c1, c2
(c1 small, c2 large) either

−c2
r

< −ĝ(r) <
c2
r
, r ≥ r0(69)

or

−c1 < ĝ(r) +
2b̃(r)

λ2r
<

c2
r
, r ≥ r0.(70)

We first suppose that (69) holds. Denote

e(r) := exp

(∫ r

r0

2b̃(s)

λ2s
ds

)
,

so that we have for r ≥ r0

ĝ(r) = −
∫ ∞

r

L(s)

λ2s

e(s)

e(r)
ds +

∫ ∞

r

ĝ(s)2
e(s)

e(r)
ds.
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By (60) and l’Hôpital’s rule we then have

lim
r→∞

r

e(r)

∫ ∞

r

L(s)

λ2s
e(s)ds =

1

8

(
1 − λσ

|λ|

(
−γ

1 − γ

) 1
2
(

1

σ2 + ρ2

) 1
2
)

and

lim
r→∞

r

e(r)

∫ ∞

r

ĝ(s)2e(s)ds = 0.

This implies (56).
On the other hand, suppose (70) holds. Our next step is to show that

−c2
1

r
< ĝ(r) +

2b̃(r)

λ2r
<

c2
r
, r ≥ r0.(71)

We do this by first showing that there is some number r1 > r0 satisfying (71) for
r = r1. This is true, for if not, then

−c1 ≤ ĝ(r) +
2b̃(r)

λ2r
≤ −c2

1

r
, r ≥ r0,

where c1 is given in (70). Then (59) implies

dĝ

dr
≥ c2

1

r
ĝ +

2L(r)

λ2r
≥ c2

2

1

r
ĝ.

Integrating this we obtain

ĝ(r) ≥ ĝ(r0) exp

(
c2
2

ln

(
r

r0

))
= ĝ(r0)

(
r

r0

)c2/2

.

But this contradicts the assertion that ĝ(r) + 2b̃(r)
λ2r < − c2

r for all r ≥ r0, so we know
(71) holds for some r1 > r0.

We now consider f(r) : ĝ(r)+ 2b̃(r)
λ2r + c2

r and use (59) to show that f(r) is increasing
at f(r) = 0. Therefore, f(r1) > 0 implies f(r) > 0 for all r ≥ r1. Finally, (57) follows
directly from (71), so this proof is completed.

We now have fully established Proposition 5.1. Thus to complete the proofs of
Theorems 3.1 and 3.3 it remains only to establish uniqueness of the solution of the
HJB equation. This is accomplished by the following proposition.

Proposition 5.3. Let g1 and g2 be solutions of (16) satisfying (19) corresponding
to Λ1 and Λ2, respectively. Let ĝ1 = ḡ1 − ḡ0 and ĝ2 = ḡ2 − ḡ0 with ḡ0 defined as in
Proposition 5.2, and suppose ĝ1 and ĝ2 both satisfy limit (56). Then g1 = g2 and
Λ1 = Λ2.

Proof. Denote

Λ̄1 =

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
Λ1, Λ̄2 =

(
1 +

γ

1 − γ

σ2

σ2 + ρ2

)
Λ2.

We subtract the equation for ĝ2 from the equation for ĝ1, thereby obtaining

d

dr
(ĝ2 − ĝ1) +

(
2b̃(r)

λ2r
+ ĝ1 + ĝ2

)
(ĝ2 − ĝ1) =

Λ̄2 − Λ̄1

λ2r
.
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Denote

ẽ(r) := exp

(∫ r

r0

(
2b̃(s)

λ2s
+ ĝ1(s) + ĝ2(s)

)
ds

)
.

Then

d

dr

((
ĝ2(r) − ĝ1(r)

)
ẽ(r)

)
=

Λ̄2 − Λ̄1

λ2r
ẽ(r),

and so (
ĝ2(r) − ĝ1(r)

)
ẽ(r) = −

∫ ∞

r

Λ̄2 − Λ̄1

λ2s
ẽ(s)ds.

Without loss of generality, suppose Λ2 −Λ1 ≥ 0, in which case ĝ2(r)− ĝ1(r) ≤ 0. But
Lemma 4.1 implies ĝ2(r) − ĝ1(r) ≥ 0. Therefore, ĝ2(r) = ĝ1(r), Λ2 = Λ1, and this
proof is completed.

Remark 5.2. The following result, not crucial for the proofs of Theorems 3.1
or 3.3, says that Λ∗ is the smallest number such that (16) has a solution defined on
[0,∞). For Λ = Λ∗, (16) has a unique solution. A more general result of this kind is
given in the paper by Kaise and Sheu [17].

Theorem 5.1. Let Λ∗ be given in Theorem 3.1. Then there is only one solution
for (16) on [0,∞) with Λ = Λ∗. Moreover, if (16) has a solution on [0,∞) for some
Λ, then Λ ≥ Λ∗.

Proof. We consider only the case μ2 �= 1 since the argument for the case μ2 = 1
is similar. Assume Λ = Λ∗ and g is a solution of (16) on [0,∞). Suppose g �= g∗ with
g∗ as given in Theorem 3.1. Then (33) holds for g. Since g∗ satisfies (25), a simple
comparison argument for an ODE shows that g(r) < g∗(r) for all r. But g satisfies
either one of (56) or (57). Since g∗ satisfies (56), therefore g < g∗ implies that g also
satisfies (56). Now by Proposition 5.3, we conclude g = g∗, a contradiction.

We now consider Λ such that (16) has a solution g0 defined on [0,∞). Then (16)
must have a solution g defined on [0,∞) satisfying (25). If g0 also satisfies (25), then
g = g0. See Corollary 4.1. If g0 satisfies (33), then we have g(r) > g0(r) for small
r > 0, and hence for all r. This implies that g is also defined for all r > 0. Now
if Λ < Λ∗, then g(r) < g∗(r) for all r by Lemma 4.1. By Proposition 5.2, g either
satisfies (56) or (57). We know g∗ satisfies (56). Together with g < g∗, we conclude
that g satisfies (56). By Proposition 5.3, we have g = g∗,Λ = Λ∗, a contradiction to
our assumption that Λ < Λ∗. This completes the proof.

Appendix A. Proof of Proposition 4.1. In view of the equivalence between
differential equations (22) and (30) it suffices to show that any solution ḡ of (30) on
(0, r0] satisfies either

lim
r→0

rḡ(r) = −2cr̄

λ2
+ 1(72)

or

lim
r→0

ḡ(r) =
1

cr̄

(
Λ̄ − 1

2
A

γ

1 − γ

μ2
1

σ2 + ρ2

)
.(73)

To do this we study the solution g̃ of the (equivalent) differential equation (31), from
which we have

dg̃

dr
≤ 2

λ2r
e(r)[Λ̄ − d̄(r)].
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So by Lemma A.1 (see the end of this appendix) we have

g̃(r) ≤
∫ r

0

2

λ2s
e(s)[Λ̄ − d̄(s)]ds.

Substituting for e(s) and so forth, it is apparent that this implies for some number
c1 > 0 that

g̃(r) ≤ c1r
2cr̄
λ2 , 0 < r < r0.(74)

Take a large c2 and consider

f(r) = g̃(r) + c2r
2cr̄
λ2 −1.

Using (31), it is easily seen that

df(r)

dr
< 0 if f(r) = 0.

Therefore, if we take c2 such that f(r0) > 0, then f(r) > 0 for 0 < r ≤ r0. That is,
we have proved

g̃(r) > −c2r
2cr̄
λ2 −1, 0 < r < r0.(75)

By a simple calculation, we have the following two cases:

Λ̄ − d̄(r) > 0 for r in some neighborhood of 0,(76)

or

Λ̄ − d̄(r) < 0 for r in some neighborhood of 0.(77)

First we suppose inequality (76) is true. By (31), g̃(r) is increasing when r is small and
g̃(r) = 0. Using the similar argument for (75), we have the following two possibilities:
there is r1 > 0 such that g̃(r) < 0, r ≤ r1, or g̃(r) > 0, r ≤ r1.

We consider the first possibility. That is, there is r1 such that g̃(r) < 0, r ≤ r1.
Conditions (76) and (31) imply

dg̃
dr

g̃2
≥ − 1

e(r)
,

in which case

1

g̃(r)
− 1

g̃(r1)
≥ −

∫ r1

r

1

e(s)
ds,

that is,

− 1

g̃(r)
≤ − 1

g̃(r1)
+

∫ r1

r

1

e(s)
ds.

It follows that for some constants c1, c̄1, we have

−g̃(r) > c̄1r
2cr̄
λ2 −1,(78)
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since ∫ r1

r

1

e(s)
ds ≤ c1r

− 2cr̄
λ2 +1.

By (31) again we have

1

g̃(r)
− 1

g̃(r1)
= −

∫ r1

r

1

e(s)
ds +

∫ r1

r

2

λ2s
e(s)[Λ̄ − d̄(s)]

1

g̃2(s)
ds.(79)

We use this to study the limiting behavior of g̃(r). For the first term on the right-hand
side we have by l’Hôpital’s rule

lim
r→0

r
2cr̄
λ2 −1

∫ r0

r

1

e(s)
ds =

1
2cr̄
λ2 − 1

.

For the second term on the right-hand side of (79) we have∫ r0

r

2

λ2s
e(s)[Λ̄ − d̄(s)]

1

g̃2(s)
ds ≤ c

∫ r0

r

s−1+ 2cr̄
λ2 −2 2cr̄

λ2 +2ds ≤ cr−
2cr̄
λ2 +2.

Here we use (78). Thus by (79) we have

lim
r→0

g̃(r)

r
2cr̄
λ2 −1

= −2cr̄

λ2
+ 1.(80)

Hence for the first possibility (i.e, g̃(r1) < 0 for some small r1 > 0) and when (76)
holds, we have proved (72).

Now we consider the second possibility: there is r1 > 0 such that g̃(r) > 0 for all
r ≤ r1. In view of (32) it follows by l’Hôpital’s rule and (74) that

lim
r→0

g̃(r)

r
2cr̄
λ2

=
1

cr̄

(
Λ̄ − 1

2
A

γ

1 − γ

μ2
1

σ2 + ρ2

)
.(81)

This, with the relation g̃(r) = ḡ(r)e(r) and the definition of e(·), implies (73).
We summarize what we have shown. Assuming condition (76), we have (80) or

(81). They are equivalent to (72) and (73), respectively.
For the remainder of this proof we consider the case that inequality (77) holds.

Using the similar argument for (75), we consider

g̃(r) + r
2cr̄
λ2 −α,

1 > α > 1/2, and deduce there is r1 > 0 such that

−g̃(r) < r
2cr̄
λ2 −α, r ≤ r1,(82)

or

−g̃(r) > r
2cr̄
λ2 −α, r ≤ r1.(83)

Let 0 < δ < 1/2 and r1 > 0 be small, and consider two situations, depending
upon whether

−g̃(r) > r
2cr̄
λ2 +δ−1, 0 < r ≤ r1.(84)
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For the first situation, assume (84) does not hold. Then by (82), (83) with α = 1− δ,
we have

−g̃(r) ≤ r
2cr̄
λ2 +δ−1, r ≤ r1.

Note that we have already established the property g̃(r) < 0 for r small. From this,
together with the property of e(r) defined in section 4 and (31), we have

g̃(r) = −
∫ r

0

g̃2(s)

e(s)
ds+

∫ r

0

2e(s)

λ2s
[Λ̄− d̄(s)]ds ≥ −c1r

2cr̄
λ2 −1+2δ−c2r

2cr̄
λ2 ≥ −cr

2cr̄
λ2 −1+2δ,

since δ < 1/2. That is,

−g̃(r) ≤ cr
2cr̄
λ2 −1+2δ.

Continuing in an iterative fashion one obtains

−g̃(r) ≤ c1r
2cr̄
λ2 −1+2mδ

if m is such that 2mδ < 1, where c1 may depend on m and δ. In particular, this holds
for m = m0, 2m0δ < 1 ≤ 2m0+1δ. Apply this same procedure once more to obtain

g̃(r) ≥ −c1r
2cr̄
λ2 −1+2δ̄ − c2r

2cr̄
λ2 ≥ −cr

2cr̄
λ2 ,(85)

where δ̄ = 2m0δ. The last step is due to 2δ̄ > 1. We shall now show (81) by the
following calculation. In view of (74) and (75) we have

lim
r→0

r−
2cr̄
λ2

∫ r

0

2e(s)

λ2s
[Λ̄ − d̄(s)]ds =

1

cr̄

(
Λ̄ − 1

2
A

γ

1 − γ

μ2
1

σ2 + ρ2

)
.(86)

In addition, by (74) and (85) we have

lim
r→0

r−
2cr̄
λ2

∫ r

0

1

e(s)
g̃(s)

2
ds = 0.

This with (86) and (32) implies (81), which is equivalent to (73).
Now we consider the opposite situation, namely, there is 0 < δ < 1/2 such that

(84) does hold for some r1. Then

1

g̃(r)
− 1

g̃(r1)
= −

∫ r1

r

1

e(s)
ds +

∫ r1

r

2

λ2s
e(s)[Λ̄ − d̄(s)]

1

g̃2(s)
ds.

Corresponding to the two terms on the right-hand side we have

lim
r→0

r
2cr̄
λ2 −1

∫ r1

r

1

e(s)
ds =

1
2cr̄
λ2 − 1

and

lim
r→0

r
2cr̄
λ2 −1

∫ r1

r

2

λ2s
e(s)[Λ̄ − d̄(s)]

1

g̃2(s)
ds = 0.

Hence

lim
r→0

g̃(r)

r
2cr̄
λ2 −1

= −2cr̄

λs
+ 1;(87)
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thus by the definition of e(·) and the relationship between ḡ and g̃ we see that (72)
holds. This completes the proof of Proposition 4.1.

The lemma that was used in the preceding proof follows.
Lemma A.1. If the differential equation (31) has a solution g̃ on (0, r0] for some

r0 > 0, then g̃(r) → 0 as r → 0.
Proof. We first prove that for any c1 > 0 there are rn, n = 1, 2, . . . , which tend

to 0 as n tends to infinity and which satisfy g̃(rn) > −c1. If not, there is r1 > 0 such
that g̃(r) ≤ −c1 for all 0 < r ≤ r1. Since

dg̃
dr

g̃2
+

1

e(r)
=

2

λ2r
e(r)[Λ̄ − d̄(r)]

1

g̃2(r)
,

we have

1

g̃(r)
− 1

g̃(r1)
= −

∫ r1

r

1

e(s)
ds +

∫ r1

r

2

λ2s
e(s)[Λ̄ − d̄(s)]

1

g̃2(s)
ds.(88)

For small r > 0, the first term on the right-hand side is bounded above by −c2r
− 2cr̄

λ2 +1

for some c2 > 0, and the second term is bounded above by c3/c
2
1 for some c3 > 0.

From this, the right-hand side converges to −∞ as r → 0, in which case g̃(r) → 0 as
r → 0, a contradiction.

By this result we can take a sufficiently small r1 > 0 such that g̃(r1) > −c1. Next
we show that

g̃(r) > −c1, r ≤ r1.(89)

To see this, suppose this is not true. Then there is some r2 < r1 such that g̃(r2) = −c1
and

g̃(r) > −c1, r2 < r < r1.

By (31)

dg̃

dr
(r2) = − 1

e(r2)
c21 +

2

λ2r2
e(r2)[Λ̄ − d̄(r2)] < 0.

This contradicts the specified property of c1.
Finally, it suffices to show that for any c1 > 0 there is some r3 > 0 such that

g̃(r) ≤ c1, r ≤ r3,(90)

because it is easy to see that our lemma would then follow from (89) and (90). To
prove (90), suppose there is r4 > 0 such that g̃(r4) > c1. Then

dg̃

dr
(r4) ≤ − 1

e(r4)
c21 +

2

λ2r4
e(r4)[Λ̄ − d̄(r4)] < 0.

Therefore, g̃(r) is decreasing at r4. This argument also shows that g̃ is decreasing on
the set {g̃(r) > c1}. Then we must have g̃ > c1 on (0, r4]. This leads to a contradiction
since using (88) with r1 = r4 and small r we have the right-hand side tending to −∞
while the left-hand side is bounded. This completes the proof of Lemma A.1.
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A PRIORI ERROR ESTIMATES FOR THE FINITE ELEMENT
DISCRETIZATION OF ELLIPTIC PARAMETER IDENTIFICATION

PROBLEMS WITH POINTWISE MEASUREMENTS∗

R. RANNACHER† AND B. VEXLER‡

Abstract. We develop an a priori error analysis for the finite element Galerkin discretization
of parameter identification problems. The state equation is given by an elliptic partial differential
equation of second order with a finite number of unknown parameters, which are estimated using
pointwise measurements of the state variable.
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1. Introduction. We consider parameter identification problems governed by
an elliptic partial differential equation of second order. The finitely many unknown
parameters are estimated using the measurements of point values of the state variable.
Let Ω ⊂ R2 be a convex polygonal domain; L2(Ω) the corresponding Lebesgue space
with inner product and norm denoted by (·, ·) and ‖ · ‖2, respectively; and Hm(Ω) the
Sobolev space of order m ∈ N. With this notation, we set

V := {v ∈ H1(Ω) ∩ C(Ω) | v = 0 on ∂Ω}.

The state variable u ∈ V is determined by an elliptic partial differential equation (the
state equation)

−∇ · (A(q)∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

for given Hölder continuous f ∈ Cα(Ω), α ∈ (0, 1). Here, Q ⊂ Rnp denotes the
open admissible set of parameters q ∈ Rnp , for which A(q) = (Aij(q)) is a symmetric
and positive definite 2 × 2 matrix with twice continuously differentiable entries Aij :
Q → C1+α(Ω). The above conditions guarantee that, for any admissible value of
the parameter q, the corresponding solution u of the state equation (1.1) is in H2(Ω)
(see, e.g., Grisvard [12]). At the corner points of ∂Ω, the second derivatives of the
solution may become singular. However, u has Hölder continuous second derivatives,
u ∈ C2+α(Ωd), for each subdomain Ωd ⊂ Ω with distance d > 0 to the corner points.

The usual weak formulation of (1.1) is

a(q)(u, φ) = (f, φ) ∀φ ∈ V,(1.2)
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where the bilinear form a(q)(·, ·) is defined by

a(q)(u, φ) := (A(q)∇u,∇φ).(1.3)

Further, the observation operator C(·) describing the mapping of the state variable u
to the space of measurements Z = Rnm is given by

Ci(v) = v(ξi), i = 1, 2, . . . , nm,(1.4)

where {ξi} ⊂ Ω is a finite set of measurement points. We assume that nm ≥ np. The
Euclidean product and norm on Q and Z are denoted by 〈·, ·〉 and ‖ · ‖, respectively,
and the same notation is also used for the corresponding natural norms of matrices.

The values of the parameters are estimated from a given set of measurements
Ĉ ∈ Z using a least squares approach such that we obtain a constrained optimization
problem with the cost functional J : V → R:

Minimize J(u) :=
1

2
‖C(u) − Ĉ‖2(1.5)

under the constraint (1.2). Throughout, we assume the existence of a solution (u, q) ∈
V × Q of the problem (1.2), (1.5). For an analysis of the existence of solutions for
parameter identification problems, see, e.g., Banks and Kunisch [2], Kravaris and
Seinfeld [16], and Litvinov [17].

The state equation is discretized by a conforming finite element Galerkin method
defined on a family {Th}h>0 of shape regular quasi-uniform meshes Th = {K} consist-
ing of closed cells K which are either triangles or quadrilaterals. The straight parts
which make up the boundary ∂K of a cell K are called faces. The mesh parameter h
is defined as a cellwise constant function by setting h|K = hK , and hK is the diameter
of K. Usually we use the symbol h also for the maximal cell size, i.e.,

h = max
K∈Th

hK .(1.6)

For convenience, we assume that 0 < h < 1. On the mesh Th we define finite element
spaces Vh ⊂ V consisting of linear or bilinear shape functions; see, e.g., Brenner and
Scott [5] or Johnson [14]. The corresponding discrete state uh ∈ Vh and parameter
qh ∈ Q are determined by

Minimize J(uh),(1.7)

under the constraint

a(qh)(uh, φh) = (f, φh) ∀φh ∈ Vh.(1.8)

Since Q is finite dimensional, the parameter qh is determined in the same space Q.
The main purpose of this paper is to analyze the behavior of the error in param-

eters ‖q − qh‖ for h tending to zero. There are a number of publications in which
a priori error estimates are derived for optimal control problems governed by partial
differential equations; see, e.g., Falk [8], Arada, Casas, and Tröltzsch [1], Deckelnic
and Hinze [6], and Gunzburger and Hou [13]. However, there are only few published
results on this topic in the context of parameter identification problems; see Falk [9],
Neittaanmäki and Tai [18], and Kärkkäinen [15].

In Vexler [26], an a priori error analysis for the case of V -stable observation
operators Ci(·) is developed and optimal-order convergence is shown,

‖q − qh‖ = O(h2),(1.9)
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essentially under the assumption that |Ci(u) − Ci(uh)| ≤ ch2‖u‖H2 . However, the
generalization of this result to pointwise observations is not straightforward. For this
case, we prove in this paper that, under certain regularity conditions,

‖q − qh‖ = O(h2| log(h)|2).(1.10)

The proof uses the technique for estimating discrete Green functions developed in
Frehse and Rannacher [10]. A complementary result of a posteriori error analysis for
parameter identification problems is given in Becker and Vexler [4].

To the authors’ knowledge, this is the first a priori error analysis for parameter
identification problems with pointwise observations. The consideration of pointwise
observations in determining discrete parameters seems very natural in view of practical
measurement techniques; see [3] for applications in reactive flow analysis.

The paper is organized as follows. In the next section, we describe an algorithm
for solving problem (1.7), (1.8). In section 3, we present a paradigm for a priori error
analysis for discretization of a class of optimization problems. Thereafter, in section 4,
we derive the announced error estimate using an L∞-stability result, which is proven
in section 5. In section 6, we present a numerical example confirming the asymptotic
sharpness of our error estimate. Possible extensions are addressed in the last section.

2. Optimization algorithm. In this section, we reformulate the problem un-
der consideration as an unconstrained optimization problem and describe a solution
algorithm for it. Since the coefficient matrix A(q) is assumed to be positive definite
for parameters q ∈ Q ⊂ Rnp , the relation

a(q)(S(q), φ) = (f, φ) ∀φ ∈ H1
0 (Ω)(2.1)

defines an operator S : Q → H1
0 (Ω). By the assumptions on the data of the problem

and the Sobolev embedding theorem,

S : Q → H1
0 (Ω) ∩H2(Ω) ⊂ V.(2.2)

The solution operator S can be shown to possess first and second derivatives which
are continuous with respect to the norm of V ; see Theorem 2.1 below. We recall that
the existence of a solution q ∈ Q of problem (1.5) is assumed. Let Q0 ⊂ Q be an open
bounded set containing the optimal parameter q on which the coefficient matrix A(q)
is uniformly positive definite; i.e., there exists γ ∈ R+ such that

p∗A(q)p ≥ γ‖p‖2 ∀p ∈ Q, ∀q ∈ Q0,(2.3)

uniformly with respect to x ∈ Ω. We introduce the reduced observation operator
c : Q0 → Z by

c(q) := C(S(q)).(2.4)

This allows us to reformulate the problem under consideration as an unconstrained
optimization problem with the reduced cost functional j : Q0 → R:

Minimize j(q) :=
1

2
‖c(q) − Ĉ‖2, q ∈ Q0.(2.5)

Denoting by G = c′(q) ∈ Rnp×nm the Jacobian matrix of the reduced observation
operator c(·), the first-order necessary optimality condition j′(q) = 0 for (2.5) reads

G∗(c(q) − Ĉ) = 0,(2.6)
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where G∗ denotes the transpose of G. The positive semidefiniteness of the Hessian
matrix H := ∇2j(q) is the second-order necessary optimality condition. A solution q
of problem (2.5) is called stable if the sufficient optimality condition holds, i.e., if the
Hessian H is positive definite. Throughout, we will assume the solution q to be stable.
The stability of the solution is given, for instance, if the value of the cost functional
‖C(u) − Ĉ‖ is small enough and the matrix G has full rank np; see, e.g., [26] for
details.

Since by assumption the matrix coefficient A(·) is twice continuously differen-
tiable, there holds

sup
ξ∈Q0

|||A(ξ)|||1,∞ + sup
ξ∈Q0

|||A′
qj (ξ)|||1,∞ + sup

ξ∈Q0

|||A′′
qjqk

(ξ)|||1,∞ < ∞,(2.7)

where |||B|||1,∞ := maxi,j=1,2 ‖Bij‖1,∞ for a matrix function B = (Bij) ∈ C1(Ω)2×2.
In the following propositions, we give representations of the Jacobian G of c(·),

the Hessian H of j(·), and the Hessian of ci(·).
Theorem 2.1. Let the reduced observation operator c(·) and the reduced func-

tional j(·) be defined as in (2.4) and (2.5), respectively.
(i) The elements of the Jacobian of c(·) at some q ∈ Q0 are given by

Gij =
∂ci
∂qj

(q) = Ci(wj), i = 1, . . . , nm, j = 1, . . . , np,(2.8)

where wj ∈ V are the solutions of the problems

a(q)(wj , φ) = −(A′
qj (q)∇u,∇φ) ∀φ ∈ V,(2.9)

with u = S(q). The functions wj ∈ V depend continuously on q ∈ Q.
(ii) The Hessian of j(·) can be expressed by

H = G∗ G + M,(2.10)

where the matrix M ∈ Rnp×np is given by

M =

nm∑
i=1

c′′i (q)(ci(q) − Ĉi).(2.11)

The Hessian of ci(q) is given by

∂2

∂qj ∂qk
ci(q) = Ci(vjk),(2.12)

where the vjk ∈ V are the solutions of the problems

a(q)(vjk, φ) = −(A′
qj (q)∇wk,∇φ) − (A′

qk
(q)∇wj ,∇φ)

− (A′′
qjqk

(q)∇u,∇φ) ∀φ ∈ V,
(2.13)

with wj as defined in (2.9). The functions vjk ∈ V depend continuously on q ∈ Q.
Proof. The derivation of the derivatives of c(·) uses the chain rule,

∂ci
∂qj

(q) =
∂

∂qj
Ci(S(q)) = S′

qj (q)(ξi) =: wj(ξi),
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for i = 1, . . . , nm, j = 1, . . . , np, where the functions wj are determined by the
relations (2.9). This is seen by considering the limit of difference quotients

0 = lim
t→0

1

t
(a(q + tqj)(S(q + tqj), φ) − (f, φ) − a(q)(S(q), φ) + (f, φ))

= a(q)(S′
qj (q), φ) + a′qj (q)(S(q), φ) = a(q)(wj , φ) + a′qj (q)(u, φ).

Analogously, we obtain

∂2ci
∂qj∂qk

(q) =
∂2

∂qj∂qk
Ci(S(q)) = S′′

qjqk
(q)(ξi) =: vjk(ξi),

where the functions vjk are determined by the relations (2.13). To see this, we consider
the limit of the difference quotient

0 = lim
t→0

1

t
(a(q + tqk)(S

′
qj (q + tqk), φ) + a′qj (q + tqk)(S(q + tqk), φ)

− a(q)(S′
qj (q), φ) − a′qj (q)(S(q), φ))

= a(q)(S′′
qjqk

(q), φ) + a′qk(q)(S′
qj (q), φ) + a′qj (q)(S

′
qk

(q), φ) + a′′qkqj (q)(S(q), φ).

In Lemma 2.2 below, we will show that all the functions u, wj , vjk are in V ∩H2(Ω).
This is due to the fact that they are determined by second-order elliptic boundary
value problems on a convex domain, with smooth coefficients and right-hand sides
in L2(Ω) which depend continuously on the parameter q ∈ Q. This implies that
also their solutions depend continuously on q ∈ Q with respect to the norm of the
solution space H1

0 (Ω)∩H2(Ω) ⊂ V . Hence, the solution operator S : Q → V is twice
continuously differentiable. This completes the proof.

In practice the Hessian H of j(·) is computed using the representation

Mjk = −(A′
qj (q)∇wk,∇z) − (A′

qk
(q)∇wj ,∇z) − (A′′

qjqk
(q)∇u,∇z),(2.14)

with the function z determined by the dual equation

(A(q)∇φ,∇z) = 〈C(u) − C̄, C(φ)〉.(2.15)

For later purposes, we provide some a priori bounds for the solutions of the boundary
value problems introduced in Theorem 2.1, which follow by standard results of elliptic
regularity theory.

Lemma 2.2. For the solutions of the elliptic boundary value problems (2.9) and
(2.13) there hold the global L2 a priori estimates

‖u‖2,2 + ‖wj‖2,2 + ‖vjk‖2,2 ≤ c,(2.16)

where c is a generic constant depending only on the data of the problem. Further, for
each subdomain Ωd ⊂ Ω with distance d > 0 to the corner points, there hold the L∞

a priori estimates

‖u‖C2+α(Ωd) + ‖wj‖C2+α(Ωd) + ‖vjk‖C2+α(Ωd) ≤ cd(2.17)

with a generic constant cd ≈ d−1.
Proof. The variational equations defining u as well as wj and vjk can be rewritten

in such a form that they represent second-order elliptic boundary value problems with



FINITE ELEMENTS IN PARAMETER IDENTIFICATION 1849

smooth coefficients and right-hand sides which are bounded functionals on L2(Ω) and
Cα

loc(Ω), respectively, as follows:

a(q)(u, φ) = (f, φ) ∀φ ∈ V,(2.18)

a(q)(wj , φ) = (∇ ·A′
qj (q)∇u, φ) ∀φ ∈ V,(2.19)

a(q)(vjk, φ) = (∇ ·A′
qj (q)∇wk, φ) + (∇ ·A′

qk
(q)∇wj , φ)(2.20)

+ (∇ ·A′′
qjqk

(q)∇u, φ) ∀φ ∈ V.

By assumption the coefficient functions A′
qj (q) and A′′

qjqk
(q) are smooth. In view of

the convexity of the polygonal domain Ω, the H2-regularity estimates then follow
by results from Grisvard [12]. A reference for the corresponding C2+α-estimates is
Gilbarg and Trudinger [11]. In the first step, from (2.18), we get

‖u‖2,2 ≤ c‖f‖2 ≤ c,

‖u‖C2+α(Ωd) ≤ cd
{
‖f‖Cα(Ωd/2)

+ ‖u‖2,2

}
≤ cd.

Then, using this in (2.19), we conclude that

‖wj‖2,2 ≤ c‖u‖2,2 ≤ c,

‖wj‖C2+α(Ωd) ≤ cd
{
‖u‖C2+α(Ωd/2)

+ ‖u‖2,2

}
≤ cd.

Finally, this is used in (2.20) and allows us to conclude that

‖vjk‖2,2 ≤ cmax
{
‖wj‖2,2, ‖wk‖2,2

}
+ c‖u‖2,2 ≤ c,

‖vjk‖C2+α(Ωd) ≤ cd
{
‖wj‖C2+α(Ωd/2)

+ ‖u‖C2+α(Ωd/2)
+ ‖wj‖2,2

}
≤ cd.

This completes the proof.
Similar to the continuous case, we introduce a discrete solution operator Sh:

Q0 → Vh by the equation

a(qh)(Sh(qh), φh) = (f, φh) ∀φh ∈ Vh, qh ∈ Q0.(2.21)

As before, we turn the discrete problem (1.7), (1.8) into an unconstrained minimiza-
tion problem,

Minimize jh(qh) :=
1

2
‖ch(qh) − Ĉ‖2, qh ∈ Q0,(2.22)

where the discrete reduced observation operator ch is defined by

ch(qh) = C(Sh(q)).(2.23)

Denoting the corresponding Jacobian by Gh = c′h(qh), the necessary optimality con-
dition j′h(qh) = 0 reads

G∗
h(ch(qh) − Ĉ) = 0.(2.24)

The derivatives of the discrete observation operator ch can be computed in a way
analogous to that in Theorem 2.1.

Problem (2.22) is solved iteratively starting with an initial guess q0
h and using the

recursive setting qk+1
h = qkh + δqh. The update δqh is obtained as the solution of the

system of linear equations

Hk δqh = G∗
h(Ĉ − ch(qkh)),(2.25)
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where Gh = c′h(qkh), and Hk is an appropriate symmetric approximation of the Hessian
∇2jh(qkh). The most widely used choice of the matrix Hk = G∗

h Gh leads us to the
Gauß–Newton algorithm; see, e.g., Nocedal and Wright [21].

For one step of the Gauß–Newton algorithm the state equation and np tangent
problems (2.9) have to be solved, which involves the same linear operator but with
different right-hand sides. Due to the small dimension np of the parameter space Q,
the solution of (2.25) is uncritical. For discussing other Newton-type methods and
trust-region techniques for globalization of the convergence in this context, see [26].

3. A paradigm for a priori error analysis. In this section we present a
general approach to the error analysis of a class of optimization problems such as are
considered in this paper. The main result is stated in the following theorem. It is
a variant of well-known perturbation theorems for differentiable mappings, which is
particularly tailored to the present situation. However, it seems easier to include the
elementary proof than to search for the precise reference.

Theorem 3.1. Let F, Fh : Rn → Rn, for a discretization parameter h ∈ R+, be
continuously differentiable operators, and x ∈ Rn be a solution of F (x) = 0. Let the
following conditions be fulfilled:

(i) The derivative F ′(x) is positive definite; i.e., there is a constant γ > 0 such
that

p∗F ′(x)p ≥ γ‖p‖2, p ∈ Rn.(3.1)

(ii) There is a neighborhood U of x and a positive number L(h) ∈ R+ such that

‖F ′
h(ξ) − F ′

h(η)‖ ≤ L(h)‖ξ − η‖ ∀ξ, η ∈ U.(3.2)

(iii) With the h-dependent constant L(h), there holds

lim
h→0

L(h)‖F (x) − Fh(x)‖ = 0.(3.3)

(iv) There holds

lim
h→0

‖F ′(x) − F ′
h(x)‖ = 0.(3.4)

Then, for h small enough, there exists xh ∈ U such that Fh(xh) = 0, and F ′
h(xh) is

positive definite uniformly in h. Further, there holds the a priori error estimate

‖x− xh‖ ≤ 2

γ
‖F (x) − Fh(x)‖.(3.5)

Proof. Due to condition (iv), we can choose a positive number h1 ∈ R+ such that
for h ≤ h1 there holds

‖F ′(x) − F ′
h(x)‖ ≤ 1

4
γ.(3.6)

Moreover, for ρ = ρ(h) = γ
kL(h) , with some k ≥ 4 sufficiently large, there holds

Bρ(x) = {ξ ∈ Rn, ‖x− ξ‖ ≤ ρ} ⊂ U.(3.7)

For this choice, we obtain that, for h ≤ h1, F
′
h(·) is positive definite on Bρ(x):

p∗F ′
h(ξ)p = p∗F ′(x)p + p∗(F ′

h(x) − F ′(x))p + p∗(F ′
h(ξ) − F ′

h(x))p

≥ γ‖p‖2 − ‖F ′
h(x) − F ′(x)‖ ‖p‖2 − ‖F ′

h(ξ) − F ′
h(x)‖ ‖p‖2

≥
(
γ − 1

4
γ − L(h)ρ

)
‖p‖2 ≥ 1

2
γ‖p‖2.
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In a similar way, we conclude that, for h ≤ h1, F
′
h(·) is also bounded on Bρ(x):

‖F ′
h(ξ)‖ ≤ β := ‖F ′(x)‖ +

1

2
γ.

Next, we prove that there exists a unique xh ∈ Bρ(x) with Fh(xh) = 0. To this end,
we define an operator Ds : Rn → Rn, for s ∈ R+, by

Ds(ξ) = ξ − sFh(ξ).

For a certain choice of s, we show that Ds is a contraction on Bρ(x), and we use the
Banach fixed point theorem. For ξ ∈ Bρ(x), h ≤ h1, and an arbitrary p ∈ Rn, there
holds

‖D′
s(ξ)p‖2 = ‖p− sF ′

h(ξ)p‖2 = ‖p‖2 − 2sp∗F ′
h(ξ)p + s2‖F ′

h(ξ)p‖2

≤ (1 − sγ + s2β2)‖p‖2.

For the choice s = γ(2β2)−1, we obtain

‖D′
s(ξ)p‖2 ≤

(
1 − γ2

4β2

)
‖p‖2,

and consequently,

‖D′
s(ξ)‖ ≤

(
1 − γ2

4β2

)1/2

< 1.

Moreover, for arbitrary ξ ∈ Bρ(x), there holds

‖x−Ds(ξ)‖ = ‖Ds(x) −Ds(ξ) + sFh(x)‖
≤ ‖Ds(x) −Ds(ξ)‖ + s‖Fh(x) − F (x)‖
≤ ‖D′

s(η)‖ ‖x− ξ‖ + s‖Fh(x) − F (x)‖

for a certain η ∈ Bρ. Hence, the above estimate implies

‖x−Ds(ξ)‖ ≤
(
1 − γ2

4β2

)1/2

ρ + s ‖Fh(x) − F (x)‖

= ρ

{(
1 − γ2

4β2

)1/2

+ s
k

γ
L(h)‖Fh(x) − F (x)‖

}
.

Due to condition (iii), there is a number h2 ∈ R+ such that, for h ≤ h2, there holds

L(h)‖Fh(x) − F (x)‖ ≤ γ

ks

{
1 −

(
1 − γ2

4β2

)1/2
}
.

Hence, for h < h0 := min{h1, h2},

‖x−Ds(ξ)‖ ≤ ρ,

and consequently Ds(ξ) ∈ Bρ(x). For h ≤ h0, by the Banach fixed point theorem,
we obtain the existence of xh ∈ Bρ(x) with Fh(xh) = 0. By construction of Bρ(x),
the derivative F ′

h(xh) is positive definite with the h-independent constant 1
2γ. This

implies that, for a certain ξ ∈ Bρ(x),

(x− xh)∗(Fh(x) − Fh(xh)) = (x− xh)∗F ′
h(ξ)(x− xh) ≥ γ

2
‖x− xh‖2.
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Hence, using F (x) = Fh(xh) = 0,

‖x− xh‖2 ≤ 2

γ
(x− xh)∗(Fh(x) − Fh(xh)) =

2

γ
(x− xh)∗(Fh(x) − F (x))

≤ 2

γ
‖Fh(x) − F (x)‖ ‖x− xh‖.

This completes the proof.

4. A priori error estimation. In this section we apply the paradigm presented
in section 3 to the problem under consideration. We prove the following theorem.

Theorem 4.1. Let q ∈ Q be a stable solution of (2.5). Then, for h small enough,
there exists a stable solution qh ∈ Q of (2.22), and there holds the following a priori
error estimate:

‖q − qh‖ = O(h2| log(h)|2).(4.1)

On the basis of the estimate (4.1), we can also derive optimal-order estimates for
the error u − uh in the corresponding states. However, since this would be a simple
exercise using the arguments developed below, and since the optimal states are of
only minor practical interest in parameter estimation problems, we do not state these
estimates.

The proof of Theorem 4.1 is given by checking the conditions from Theorem 3.1
for the operators

F (ξ) := ∇j(ξ), Fh(ξ) := ∇jh(ξ).

The constant in (4.1) turns out to depend in a reciprocal way on the distance

δ := min
i=1,...,nm

dist(ξi,Σ)

of the set of measurement points ξi to the set Σ of corner points of ∂Ω. Therefore,
we will use generic constants c and cδ, where c depends only on the domain Ω, the
force f , and the characteristics of the mesh family {Th}h, while cδ may additionally
depend on the distance δ like cδ ≈ δ−1. Further, by Lp(Ω) and Wm,p(Ω), for m ∈ N

and 1 ≤ p ≤ ∞, we denote the standard Lebesgue and Sobolev spaces, respectively,
and by ‖ · ‖p and ‖ · ‖m,p the corresponding norms. The restriction of such a norm to
a subset Ω′ ⊂ Ω is indicated by ‖ · ‖m,p;Ω′ .

By ih : C(Ω) → Vh we denote the usual (linear) operator of nodal interpolation
for which the following cellwise estimate is well known (see Brenner and Scott [5]):

h−2
K ‖v − ihv‖p;K + h−1

K ‖∇(v − ihv)‖p;K + ‖∇2ihv‖p;K ≤ c‖∇2v‖p;K ,(4.2)

for 1 ≤ p ≤ ∞, with constants c independent of h.
An important ingredient of the proof of Theorem 4.1 is the following L∞-stability

theorem. For d > 0, we define the subset Ωd ⊂ Ω by

Ωd := {x ∈ Ω, dist(x,Σ) > d}.

Theorem 4.2 (stability theorem). Let q ∈ Q0, ψ ∈ H1
0 (Ω)∩C(Ω̄), and a matrix

B = B(x) ∈ W 1,∞(Ω)2×2 be given. Moreover, let vh ∈ Vh be a solution of

a(q)(vh, φh) = (B∇ψ,∇φh) ∀φh ∈ Vh.(4.3)
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Then, there hold the L2-stability estimate

‖vh‖2 + h‖∇vh‖2 ≤ c |||B|||1,∞
{
‖ψ‖2 + h‖∇ψ‖2

}
(4.4)

and the local L∞-stability estimate

‖vh‖∞;Ωd
≤ cd |||B|||1,∞

{
| log(h)| ‖ψ‖∞;Ωd/2

+ ‖ψ‖2 + h‖∇ψ‖2

}
,(4.5)

with a constant cd ≈ d−1.
The L2 estimate (4.4) is a standard result from finite element analysis, while the

L∞ estimate (4.5) can be concluded by estimates of discrete Green functions such as
these developed in Frehse and Rannacher [10] and Rannacher and Scott [24] (see
also Brenner and Scott [5, Chapter 7]). The proof for this is given in section 5
below. A similar L∞-stability result has been proven in Rannacher [22] in the time-
dependent parabolic case. For the solution q of problem (2.5), we introduce ūh ∈ Vh

determined by

a(q)(ūh, φh) = (f, φh) ∀φh ∈ Vh.(4.6)

Further, we define wj,h ∈ Vh and vjk,h ∈ Vh, for j, k = 1, 2, . . . , np, as the solutions
of the problems

a(q)(wj,h, φh) = −(A′
qj (q)∇ūh,∇φh) ∀φh ∈ Vh(4.7)

and

a(q)(vjk,h, φh) = −(A′
qj (q)∇wk,h,∇φh) − (A′

qk
(q)∇wj,h,∇φh)

− (A′′
qjqk

(q)∇ūh,∇φh) ∀φh ∈ Vh,
(4.8)

respectively. The next lemma provides necessary estimates for the errors u − ūh,
wj − wj,h, and vjk − vjk,h. We recall the notation δ := mini=1,...,nm

dist(ξi,Σ).
Lemma 4.3. Under the above assumptions the following estimates hold:

‖C(u− ūh)‖ ≤ cδh
2| log(h)|,(4.9)

‖C(wj − wj,h)‖ ≤ cδh
2| log(h)|2, j = 1, 2, . . . , np,(4.10)

‖C(vjk − vjk,h)‖ ≤ cδh
2| log(h)|3, j, k = 1, 2, . . . , np.(4.11)

Proof. The proof uses the a priori bounds (2.16) and (2.17) provided in Lemma 2.2
for u, and the auxiliary functions wj , vjk, j, k = 1, . . . , np, corresponding to arbitrary
q ∈ Q0.

(i) By definition, ūh is the Ritz projection of u corresponding to the energy form
a(q)(·, ·), i.e.,

a(q)(ūh, φh) = a(q)(u, φh) ∀φh ∈ Vh.

By the standard L2-error estimate for finite elements, there holds

‖u− ūh‖2 + h‖∇(u− ūh)‖2 ≤ ch2.(4.12)

Further, applying the L∞-stability estimate (4.5) of Theorem 4.2 for the equation

a(q)(ihu− ūh, φh) = a(q)(ihu− u, φh) ∀φh ∈ Vh,
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with the nodal interpolant ihu ∈ Vh of u, yields the estimate

‖ihu− ūh‖∞;Ωδ
≤ cδ

{
| log(h)| ‖ihu− u‖∞;Ωδ/2

+ ‖ihu− u‖2 + h‖∇(ihu− u)‖2

}
.

From this, using the approximation properties (4.2) of ih, we conclude the error
estimate

‖u− ūh‖∞;Ωδ
≤ ‖u− ihu‖∞;Ωδ

+ ‖ihu− ūh‖∞;Ωδ
≤ cδh

2| log(h)|.(4.13)

Here, the constant cδ depends on the global H2 norm and the local W 2,∞ norm of the
solution, which are both known to be bounded in view of the a priori bounds (2.16)
and (2.17). Since ξi ∈ Ωδ, we obtain the estimate (4.9).

(ii) For proving (4.10), we introduce an additional discrete variable w̄j,h deter-
mined by the equation

a(q)(w̄j,h, φh) = −(A′
qj (q)∇u,∇φh) ∀φh ∈ Vh.

The error e = wj−wj,h is split like e = e1+e2, with e1 = wj−w̄j,h and e2 = w̄j,h−wj,h.
For the Ritz-projection error e1, as before, there holds the L2-error estimate

‖e1‖2 + h‖∇e1‖2 ≤ ch2‖wj‖2,2 ≤ ch2

and the pointwise error estimate

‖e1‖∞;Ωδ
≤ cδh

2
{
| log(h)| ‖∇2wj‖∞;Ωδ/2

+ ‖wj‖2,2

}
≤ cδh

2| log(h)|.

For e2 ∈ Vh, we have

a(q)(e2, φh) = −(A′
qj (q)∇(u− ūh),∇φh) ∀φh ∈ Vh.

Hence, the L2-stability estimate (4.4) of Theorem 4.2 and the estimate (4.12) imply

‖e2‖2 + h‖∇e2‖2 ≤ c
{
‖u− ūh‖2 + h‖∇(u− ūh)‖2

}
≤ ch2.

This shows that, for j = 1, . . . , np,

‖wj − wj,h‖2 + h‖∇(wj − wj,h)‖2 ≤ ch2.(4.14)

Further, the L∞-stability estimate (4.5) of Theorem 4.2 yields

‖e2‖∞;Ωδ
≤ cδ

{
| log(h)| ‖u− ūh‖∞;Ωδ/2

+ ‖u− ūh‖2 + h‖∇(u− ūh)‖2

}
,

which, by (4.12) and (4.13), implies ‖e2‖∞;Ωδ
≤ cδ| log(h)|2h2. We obtain

‖wj − wj,h‖∞;Ωδ
≤ cδ| log(h)|2h2, j = 1, . . . , np,(4.15)

which implies the desired estimate (4.10).
(iii) The proof of (4.11) uses the same line of argument as before. Using the

additional discrete variable v̄jk,h determined by the equation

a(q)(v̄jk,h, φh) = −(A′
qj (q)∇wk,∇φh) − (A′

qk
(q)∇wj ,∇φh)

− (A′′
qjqk

(q)∇u,∇φh) ∀φh ∈ Vh,
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the error e = vjk − vjk,h is split like e = e1 + e2, with e1 = vjk − v̄jk,h and e2 =
v̄jk,h − vjk,h. For the Ritz-projection error e1, as before, we conclude the pointwise
error estimate

‖e1‖∞;Ωδ
≤ cδh

2
{
| log(h)| ‖∇2vjk‖∞;Ωδ/2

+ ‖vjk‖2,2

}
≤ cδh

2| log(h)|.

For e2 ∈ Vh, we have

a(q)(e2, φh) = −(A′
qj (q)∇(wk − wk,h),∇φh) − (A′

qk
(q)∇(wj − wj,h),∇φh)

−(A′′
qjqk

(q)∇(u− ūh),∇φh) ∀φh ∈ Vh,

and therefore, again by the L∞-stability estimate (4.5) of Theorem 4.2,

‖e2‖∞;Ωδ
≤ cδ| log(h)|

{
max

j=1,...,np

‖wj − wj,h‖∞;Ωδ/2
+ ‖u− ūh‖∞;Ωδ/2

}
+ c max

j=1,...,np

{
‖wj − wj,h‖2 + h‖∇(wj − wj,h)‖2

}
+ c

{
‖u− ūh‖2 + h‖∇(u− ūh)‖2

}
.

Then, by the foregoing error estimates, we obtain ‖e2‖∞;Ωδ
≤ cδh

2| log(h)|3, and
consequently,

‖vjk − vjk,h‖∞;Ωδ
≤ cδ| log(h)|3h2, j, k = 1, . . . , np.(4.16)

This eventually yields the desired estimated (4.11).
A direct application of Lemma 4.3 leads to the following result.
Lemma 4.4. Under the above assumptions, there holds∣∣∣ ∂

∂qj
(j − jh)(q)

∣∣∣ ≤ cδh
2| log(h)|2, j = 1, 2, . . . , np,(4.17) ∣∣∣ ∂2

∂qj∂qk
(j − jh)(q)

∣∣∣ ≤ cδh
2| log(h)|3, j, k = 1, 2, . . . , np.(4.18)

Proof. We have the representation

∂

∂qj
(j − jh)(q) = 〈C(u) − Ĉ, C(wj)〉 − 〈C(ūh) − Ĉ, C(wj,h)〉

= 〈C(u) − Ĉ, C(wj − wj,h)〉 + 〈C(u− ūh), C(wj,h)〉,

from which we obtain∣∣∣ ∂

∂qj
(j − jh)(q)

∣∣∣ ≤ ‖C(u) − Ĉ‖ ‖C(wj − wj,h)‖ + ‖C(u− ūh)‖ ‖C(wj,h)‖.

By the a priori bounds (2.16) and (2.17) and the Sobolev embedding theorem, we see
that

‖C(u)‖ + ‖C(wj)‖ + ‖C(vjk)‖ ≤ c.(4.19)

Combining this with the error estimate (4.10) implies ‖C(wj,h)‖ ≤ c. Then, we can
conclude the first estimate (4.17) from the error estimates of Lemma 4.3. To prove
(4.18), we write
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∂2

∂qjqk
(j − jh)(q) = 〈C(wj), C(wk)〉 + 〈C(u) − Ĉ, C(vjk)〉

− 〈C(wj,h), C(wk,h)〉 − 〈C(ūh) − Ĉ, C(vjk,h)〉
= 〈C(wj − wj,h), C(wk)〉 + 〈C(wj,h), C(wk − wk,h)〉

+ 〈C(u− ūh), C(vjk)〉 + 〈C(ūh) − Ĉ, C(vjk − vjk,h)〉.

Using as before the bounds (4.19) and the error estimates of Lemma 4.3 completes
the proof.

For the application of Theorem 3.1 it remains to check the Lipschitz condition
(3.2). For two arbitrary parameter sets ξ, η ∈ Q0, we set uξ = Sh(ξ) and uη = Sh(η).
Correspondingly, we define wj,ξ, wj,η ∈ Vh and vjk,ξ, vjk,η ∈ Vh similarly to wj,h and
vj,h for q = ξ and q = η, respectively.

Lemma 4.5. For ξ, η ∈ Q0, there hold

‖C(uξ − uη)‖ ≤ cδ| log(h)| ‖ξ − η‖,(4.20)

‖C(wj,ξ − wj,η)‖ ≤ cδ| log(h)|2 ‖ξ − η‖,(4.21)

‖C(vjk,ξ − vjk,η)‖ ≤ cδ| log(h)|3 ‖ξ − η‖.(4.22)

Proof. Due to the definition of uξ and uη, we have

(A(ξ)∇(uξ − uη),∇φh) = −((A(ξ) −A(η))∇uη,∇φh) ∀φh ∈ Vh.

Using Theorem 4.2, with d = δ, we obtain

‖C(uξ − uη)‖ ≤ c |||(A(ξ) −A(η)|||1,∞
{
| log(h)| ‖uη‖∞;Ωδ/2

+ ‖uη‖2 + h‖∇uη‖2

}
.

Since uη is the Ritz projection of an H2 function, all its norms occurring on the right-
hand side are bounded independent of h and η ∈ Q0 by standard estimates from finite
element analysis. This implies (4.20) since

|||A(ξ) −A(η)|||1,∞ ≤ c‖ξ − η‖.

The estimates (4.21) and (4.22) are obtained in a similar way.

Lemma 4.6. For ξ, η ∈ Q0, there holds∣∣∣∣ ∂2

∂qjqk
jh(ξ) − ∂2

∂qjqk
jh(η)

∣∣∣∣ ≤ L(h)‖ξ − η‖,(4.23)

where L(h) = cδ| log(h)|3.
Proof. We have

∂2

∂qjqk
jh(ξ) − ∂2

∂qjqk
jh(η) = 〈C(wj,ξ), C(wk,ξ)〉 + 〈C(uξ) − Ĉ, C(vjk,ξ)〉

− 〈C(wj,η), C(wk,η)〉 − 〈C(uη) − Ĉ, C(vjk,η)〉
= 〈C(wj,ξ − wj,η), C(wk,ξ)〉 + 〈C(wj,η), C(wk,ξ − wk,η)〉

+ 〈C(uξ − uη), C(vjk,ξ)〉 + 〈C(uη) − Ĉ, C(vjk,ξ − vjk,η)〉,
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and, consequently,∣∣∣ ∂2

∂qjqk
jh(ξ) − ∂2

∂qjqk
jh(η)

∣∣∣ ≤ ‖C(wj,ξ − wj,η)‖ ‖C(wk,ξ)‖

+ ‖C(wj,η)‖ ‖C(wk,ξ − wk,η)‖ + ‖C(uξ − uη)‖ ‖C(vjk,ξ)‖
+ ‖C(uη) − Ĉ‖ ‖C(vjk,ξ − vjk,η)‖.

Now, the assertion follows by the estimates of Lemma 4.5 if we can bound the terms
C(uη), C(wj,η), and C(vjk,ξ). This is achieved by using the bounds for C(u), C(wj),
and C(vjk) in (4.19) together with the error estimates of Lemma 4.3.

To complete the proof of Theorem 4.1 we check the conditions of Theorem 3.1.
Condition (3.1) is fulfilled due to the stability of the solution q of the problem (2.5).
Condition (3.2) is shown in Lemma 4.6. Condition (3.3) is obtained by Lemma 4.4
and Lemma 4.6 using limh→0 h

2| log(h)|5 = 0. Finally, condition (3.4) holds due to
Lemma 4.4. Hence, the estimate (3.5) of Theorem 3.1 completes the proof.

5. Proof of Theorem 4.2. (i) We begin with the L2-stability estimate. Taking
φh := vh in (4.3), we obtain

‖∇vh‖2 ≤ c|||B|||1,∞‖∇ψ‖2.(5.1)

To estimate ‖vh‖2, we use the solution z ∈ V ∩H2(Ω) of the auxiliary equation

a(q)(φ, z) = (φ, vh)‖vh‖−1
2 ∀φ ∈ V.

Taking φ := vh as test function and integrating by parts, we have

‖vh‖2 = a(q)(vh, z) = a(q)(vh, z − ihz) + a(q)(vh, ihz)

= a(q)(vh, z − ihz) + (B∇ψ,∇ihz)

= a(q)(vh, z − ihz) + (B∇ψ,∇(ihz − z)) − (ψ,∇ ·BT∇z).

Then, using the approximation properties (4.2) of the interpolant ihz ∈ Vh, we con-
clude that

‖vh‖2 ≤ c‖∇vh‖2‖∇(z − ihz)‖2 + |||B|||1,∞‖∇ψ‖2‖∇(z − ihz)‖2

+ |||B|||1,∞‖ψ‖2‖z‖2,2

≤ c
{
h‖∇vh‖ + |||B|||1,∞h‖∇ψ‖2 + |||B|||1,∞‖ψ‖2

}
‖z‖2,2.

Hence, observing (5.1) and the bound ‖z‖2,2 ≤ c, we obtain

‖vh‖2 ≤ c|||B|||1,∞
{
‖ψ‖2 + h‖∇ψ‖2

}
.(5.2)

(ii) Next, we prove the L∞-stability estimate. Let a ∈ Ωδ be an arbitrary point
lying in a cell K. For any fixed h, there exists a cellwise polynomial function δh with
supp(δh) ⊂ K such that

(φh, δh) = φh(a) ∀φh ∈ Vh.

The function δh plays the role of an approximate Dirac function. Correspondingly,
we introduce a regularized Green function g ∈ V ∩H2(Ω) by

(A(q)∇φ,∇g) = (δh, φ) ∀φ ∈ V,
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and the corresponding Ritz projection gh ∈ Vh by

(A(q)∇φh,∇gh) = (δh, φh) ∀φh ∈ Vh.

For functions which are only cellwise defined, we will use the “broken” norm ‖v‖′p :=∑
K∈Th

‖v‖p;T . The following three lemmas provide the key estimates for the proof
of the theorem.

Lemma 5.1. The following global L2 estimates hold:

‖g‖2 + | log(h)|−1/2‖∇g‖2 + h‖∇2g‖2 ≤ c,(5.3)

h−1‖g − gh‖2 + ‖∇(g − gh)‖2 + h‖∇2gh‖′2 ≤ c.(5.4)

Proof. The assertion follows by standard L2 a priori and error estimates for g
and g − gh, respectively. We skip the details and refer to [10]. Note that ‖∇2gh‖′2
vanishes for linear finite elements. In the case of bilinear elements, we estimate using
the interpolant ihg as follows:

‖∇2gh‖′2 ≤ ‖∇2(gh − ihg)‖′2 + ‖∇2(g − ihg)‖′2 + ‖∇2g‖2.

For the first term, we obtain, using an inverse inequality,

‖∇2(gh − ihg)‖′2 ≤ ch−1‖∇(gh − ihg)‖2

≤ ch−1
{
‖∇(g − ihg)‖2 + ‖∇(g − gh)‖2

}
and obtain by the interpolation estimate (4.2), with p = 2, and by the other estimates
derived before,

‖∇2gh‖′2 ≤ c
{
h−1‖∇(g − gh)‖2 + ‖∇2g‖2

}
≤ ch−1.

This completes the proof.
Lemma 5.2. For sufficiently small h � δ, the following local L2 estimate holds:

‖∇(g − gh)‖2;Ω\Ωδ/2
+ h‖∇2g‖2;Ω\Ωδ/2

≤ cδh,(5.5)

with a constant cδ ≈ δ−1 but independent of h.
Proof. The assertion follows by standard local elliptic a priori estimates and by

arguments from the local L2 error analysis for finite elements, as provided in Nitsche
and Schatz [20]:

‖∇2g‖2;Ω\Ωδ/2
≤ c‖Δg‖2;Ω\Ω3δ/4

+ cδ‖g‖2,

‖∇(g − gh)‖2;Ω\Ωδ/2
≤ c‖∇(g − ihg)‖2;Ω\Ω3δ/4

+ cδ‖g − gh‖2,

with constants cδ ≈ δ−1. Now, the assertion follows by the interpolation estimate
(4.2) and the other estimates already proven.

Lemma 5.3. The following L1 a priori and error estimates hold:

‖∇g‖1 + ‖∇2g‖′1 ≤ c| log(h)|,(5.6)

‖∇(g − gh)‖1 + h‖∇2(g − gh)‖′1 ≤ ch| log(h)|,(5.7)

with a constant c independent of h and δ.
Proof. The proof can be found in [10].
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For the point a ∈ Ωd, there holds

vh(a) = (vh, δh) = (A(q)∇vh,∇gh) = (B∇ψ,∇gh).

We employ a standard localization argument. Let ω ∈ C∞
0 (Ω) be a smooth function

with the properties

0 ≤ ω ≤ 1, ω|Ωδ/2
≡ 1, ω|Ω\Ωδ/4

≡ 0.

With this notation, we have

(B∇ψ,∇gh) = (B∇(ωψ),∇gh) + (B∇((1 − ω)ψ),∇gh) =: Σ1 + Σ2.

First, we estimate the term Σ1. By integration by parts and observing that ψ|∂Ω = 0,
we obtain

(B∇(ωψ),∇gh) =
∑

K∈Th

{
(ωψ,−∇ · (B∇gh))T + (ωψ, n ·B∇gh)∂K\∂Ω

}
,

where n is the outward unit normal vector to ∂K. Let [∇gh] denote the jump of the
gradient across the interior faces Γ ⊂ ∂K. Using this notation, we obtain

Σ1 ≤ ‖ψ‖∞;Ωδ/2

∑
K∈Th

{
‖∇ · (B∇gh)‖1;K +

1

2
‖n · [B∇gh]‖1;∂K\∂Ω

}
.

First, the estimates of Lemma 5.3 yield∑
K∈Th

‖∇ · (B∇gh)‖1;K ≤ c |||B|||1,∞
{
‖∇gh‖1 + ‖∇2gh‖′1

}
≤ c |||B|||1,∞ | log(h)|.

Next, observing that g ∈ H2(Ω) and therefore [B∇g] = 0, we obtain by a trace
theorem ∑

K∈Th

‖n · [B∇gh]‖1;K\∂Ω =
∑

K∈Th

‖n · [B∇(gh − g)]‖1;∂K\∂Ω

≤ c |||B|||1,∞
∑

K∈Th

{
h−1‖∇(g − gh)‖1;K + ‖∇2(g − gh)‖′1;K

}
.

Hence, collecting the foregoing estimates,

Σ1 ≤ c |||B|||1,∞ ‖ψ‖∞;Ωδ/2

{
| log(h)| + h−1‖∇(g − gh)‖1 + ‖∇2(g − gh)‖′1

}
.

Again using the estimates of Lemma 5.3, we obtain

Σ1 ≤ c |||B|||1,∞ ‖ψ‖∞;Ωδ/2
| log(h)|.(5.8)

For the term Σ2, we estimate as follows:

Σ2 = (B∇((1 − ω)ψ),∇(gh − g)) + (B∇((1 − ω)ψ),∇g)

≤ |||B|||1,∞
{
‖∇ψ‖2 ‖∇(gh − g)‖2;Ω\Ωδ/2

+ cδ‖ψ‖2 ‖∇(gh − g)‖2

}
+ c |||B|||1,∞‖ψ‖2

{
‖∇2g‖2;Ω\Ωδ/2

+ ‖∇g‖2;Ω\Ωδ/2

}
.
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Then, by the L2 estimates of Lemmas 5.1 and 5.2, it follows that

Σ2 ≤ cδ|||B|||1,∞
{
‖ψ‖2 + h‖∇ψ‖2

}
.(5.9)

This completes the proof of the theorem.

6. Numerical results. In this section, we discuss a sample problem confirming
the a priori error estimate of Theorem 4.1. The state equation is given by

−∇ · (A(q)∇u) = 2 in Ω,

u = 0 on ∂Ω,
(6.1)

where Ω is the unit square. The matrix A(q) is a function of the parameter q =
(q1, q2) ∈ Q = R2, given by

A(q) =

(
q2
1 q1q2

q1q2 exp(q2)

)
.

In this case the admissible set of parameters is Q0 = {(q1, q2) ∈ Q : q1 �= 0, eq2 > q2
2}.

The parameters are estimated from the measurements of the state variable at nine
different points ξi ∈ Ω; see Figure 6.1.

Fig. 6.1. The computational domain with measurement points marked by circles.

The vector of measurements Ĉ is given by

Ĉi = Ci(S(q̂))(1 + εi), i = 1, . . . , 9,

where the reference parameter is q̂ = (5, 6) and ε = (εi) describes the data perturba-
tion. We consider two cases:

(a) ε ≈ 0, (b) ε ≈ (0.12,−0.26, 0.29,−0.37,−0.49, 0.13,−0.04,−0.45, 0.20).

Since the values of Ci(S(q̂)) are not available analytically, they are computed approx-
imately by solving state equation (6.1) on a very fine mesh with about 106 degrees
of freedom. For case (a) the solution q(a) of the parameter identification problem
matches the reference parameter q̂, and hence the cost functional J(u) almost van-
ishes in q(a). Case (b) is more realistic because of the “measurement errors” modeled
by a randomly chosen ε. Moreover, in this case in contrast to case (a), the solution q(b)

of the corresponding parameter identification problem and the reference parameter q̂
differ.

The parameter identification problem is discretized using bilinear finite elements
on uniformly refined meshes. The results are listed in Tables 6.1 and 6.2. For both
cases the theoretically predicted orders of convergence are achieved.
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Table 6.1

Case (a): the error and the order of convergence with respect to the components of q without
data perturbation; N ∼ h−2 number of unknowns.

N q
(a)
1 − q

(a)
1,h q

(a)
2 − q

(a)
2,h

81 5.955e-1 9.902e-4

289 1.407e-1 1.731e-4

1089 3.436e-2 4.343e-5

4225 8.509e-3 1.080e-5

16641 2.098e-3 2.668e-6

66049 4.993e-4 6.352e-7

Order 2.05 2.04

Table 6.2

Case (b): the error and the order of convergence with respect to the components of q with data
perturbation, N ∼ h−2 number of unknowns.

N q
(b)
1 − q

(b)
1,h q

(b)
2 − q

(b)
2,h

81 2.059e-0 1.874e-2

289 5.172e-1 2.999e-3

1089 1.467e-1 8.341e-4

4225 3.771e-2 2.111e-4

16641 9.832e-3 5.640e-5

66049 2.350e-3 1.348e-5

Order 2.01 1.98

7. Conclusions and extensions. In this paper we have derived an a priori
error estimate for the finite element discretization of an elliptic discrete parameter
identification problem with pointwise measurements. The crucial point in our argu-
ment is the stability estimate of Theorem 4.2. The result of Theorem 4.1 can be
extended to situations in which such a stability estimate is available. We list some
possible directions of generalization.

1. More general meshes. For simplicity, we have assumed a quasi-uniform mesh
family {Th}h. The analysis can be extended to locally refined meshes, provided that
the ratio of hmin and h = hmax is polynomial, hmin ≈ hp, with some p ≥ 1. For such
meshes the stability result of Theorem 4.2 holds true with | log(hmin)| ≈ p| log(h)|.
This will be shown in the forthcoming paper [23]. Related results for L∞-error esti-
mates can be extracted (with some work) from Schatz and Wahlbin [25].

2. More general domains. Our argument uses that the solution operator S(·)
maps Q into H1

0 (Ω) ∩ H2(Ω), which is guaranteed on smoothly bounded or convex
domains. In the case of a domain with reentrant corners or edges this regularity
property is lost. This lack of regularity of the solution can be compensated by an
appropriate refinement of the mesh near the critical corner points or edges. The
stability estimate of Theorem 4.2 also holds in this situation, in two as well as in
three dimensions. This will be shown in a forthcoming paper.

3. Higher-order approximation. The result of Theorem 4.1 can be also extended
to the case of higher-order finite elements, similar to the analysis of Nitsche [19].
In this case the logarithmic factor | log(h)| can be dropped in the stability Theo-
rem 4.2.
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4. More general equations. Theorem 4.1 can also be extended to more general
elliptic equations or systems of the form

−∇ · (A(q)∇u + b1(q)u) + b2(q)u = f,

with parameter-dependent coefficients A(q), b1(q), b2(q). Corresponding L∞-error es-
timates for very general (nonlinear) elliptic systems have been derived in Dobrowolski
and Rannacher [7].
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Abstract. Associated with a skew-symmetric linear operator on the spatial domain [a, b] we
define a Dirac structure which includes the port variables on the boundary of this spatial domain.
This Dirac structure is a subspace of a Hilbert space. Naturally, associated with this Dirac structure
is an infinite-dimensional system. We parameterize the boundary port variables for which the C0-
semigroup associated with this system is contractive or unitary. Furthermore, this parameterization
is used to split the boundary port variables into inputs and outputs. Similarly, we define a linear
port controlled Hamiltonian system associated with the previously defined Dirac structure and a
symmetric positive operator defining the energy of the system. We illustrate this theory on the
example of the Timoshenko beam.

Key words. port Hamiltonian systems, strongly continuous semigroup, boundary control sys-
tems, Dirac structures
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1. Introduction. Port Hamiltonian systems have been introduced in the finite-
dimensional case as an analytical frame for the modeling and control of open physical
systems [12, 14, 18, 28]. The key concepts are the definition of pairs of power conju-
gated variables and the geometric structure defined on them. This geometric structure
is called the Dirac structure [2, 5]. These Dirac structures also define the internal ge-
ometric structure of the physical system as the structure of their interaction with
the environment [12, 29]. It reflects the (discrete) topology and the geometry of the
physical system under consideration such as the port connection graph, constraints,
or interdomain coupling [4, 15, 18]. Furthermore, it is the geometric structure which
allows us to define implicit Hamiltonian systems and Hamiltonian systems with port
variables [4, 27, 28]. Port Hamiltonian systems have been used for the design of
stabilizing control laws; see, e.g., [13, 21, 22].

Recently, an extension of port Hamiltonian systems to infinite-dimensional sys-
tems has been proposed for distributed parameter systems with energy flow at their
boundary; see [16, 30]. The state space is a vector space of differential forms defined
on the spatial domain and the port variables are defined on the boundary of the spatial
domain. The port Hamiltonian system is defined with respect to a so-called Stokes–
Dirac structure, which in turn is uniquely defined by the exterior derivatives and the
order of the differential forms. The Stokes–Dirac structure represents the canonical
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interdomain coupling in physical systems [19]. Finally, the Stokes–Dirac structures
have been extended in order to encompass fluid dynamics and beam models [30].

Associated with linear skew-symmetric differential operators, we define Dirac
structures and port Hamiltonian systems. Our definition extends the definition of
Stokes–Dirac structures in which the operator needed to have differential degree one.
We use an alternative definition of a Dirac structure on Hilbert spaces as proposed in
[23] and [7]. In [7] Dirac structures on Hilbert spaces have also been used for the study
of their composition (interconnection) and the definition of scattering representations.
In this paper, we are restricting ourselves to one-dimensional spatial domains.

A major motivation of this work is to provide a theoretic formulation of open
Hamiltonian systems, i.e., systems which are subject to some energy flow at their
boundary. This formulation is acausal, i.e., a priori there is no distinction between
inputs and outputs. The acausal formulation is obtained by first introducing boundary
port variables. Second, these boundary port variables together with the (formal)
skew-symmetric operator lead to the Dirac structure associated with the system.

The second motivation of this paper is to study the existence of solutions for
our class of systems. This immediately implies some causality conditions among the
port variables. Namely, for a (more or less) free choice of inputs there should exist a
solution and the outputs should follow from it. In order to show existence of solutions,
we relate our system to the class of boundary control systems. We remark that there
are other general system classes which we could have chosen, e.g., system nodes [26].
We have chosen the class of boundary control systems, since this fits most naturally
to our class of PDEs with their control at the boundary. As a result, we derive
a parameterizing of the port variables such that the semigroup associated with the
boundary control system is a contraction semigroup.

This paper is organized as follows. In section 2 we recall the definition of Dirac
structures on Hilbert spaces. In section 3 we define Dirac structures associated with
skew-symmetric linear differential operators and its conjugated port variables on the
boundary of the spatial domain. In section 4 we associate with our Dirac structure
a family of boundary control systems. The input of this boundary control system
is chosen to lie in a subspace of the boundary port variables. The semigroup asso-
ciated with this system is a contraction semigroup. By choosing the output to lie
in the complementary of the “input subspace” we get a power balance system. The
above construction gives the parameterization of all systems for which the associated
semigroup is contractive and/or unitary. In section 5 we define a port Hamiltonian
system associated with a skew-symmetric differential operator and with a Hamilto-
nian function. This Hamiltonian is a function defined by a symmetric and coercive
linear operator and represents the energy in the system.

2. Dirac structures defined on Hilbert spaces. In this section, we recall the
definition of Dirac structures defined on Hilbert spaces proposed by Parsian and Shafei
Deh Abad in [23] and by Golo and coauthors in [7, 8]. We shall follow the definitions
and notation of [7, 8] for the purpose of analyzing and treating the composition of
Dirac structures in the frame of port-based modeling and control. This notation is
borrowed partially from the bond graph language, which has been a major source of
inspiration for the model definition of port Hamiltonian systems [7, 19, 18].

Let us first define the space of bond variables which is constituted of pairs of
conjugated variables endowed with a pairing. For models of physical systems this
corresponds to an associated instantaneous power; see [1, 11]. Let the space of flow
variables, denoted by F , and the space of effort variables, denoted by E , be real Hilbert
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spaces endowed with the inner products 〈. , .〉F and 〈. , .〉E , respectively. Assume
moreover that F and E are isometrically isomorphic, that is, there exists an isometry:
rF,E : F −→ E . Denote furthermore its inverse by rE,F . Define now the space of bond
variables as the Hilbert space B = F × E endowed with the natural inner product

〈b1, b2〉 = 〈f1, f2〉F + 〈e1, e2〉E , b1 = (f1, e1), b2 = (f2, e2) ∈ B.

In order to define a Dirac structure, let us endow the bond space B with a canonical
symmetrical pairing, i.e., a bilinear form defined as follows:

〈b1, b2〉+ = 〈f1, rE,Fe
2〉F + 〈e1, rF,Ef

2〉E , b1 = (f1, e1), b2 = (f2, e2) ∈ B.(2.1)

We define a Dirac structure on the bond space B using this canonical pairing. Denote
by D⊥ the orthogonal subspace to D with respect to the symmetrical pairing (2.1):

D⊥ = {b ∈ B|〈b, b′〉+ = 0 for all b′ ∈ D}.(2.2)

Definition 2.1. A Dirac structure D on the bond space B = F ×E is a sub-
space of B which is maximally isotropic with respect to the canonical symmetrical
pairing (2.1), i.e.,

D⊥ = D.(2.3)

One may find different examples of such Dirac structures as well as some proper-
ties concerning their representations and their composition in [7, Chapter 5]. We shall
now give a canonical example of a Dirac structure in the context of the port-based
modeling of physical systems. Therefore, we consider the example of a lossless vibrat-
ing string. First, we recall the port-based model structure [19, 30] which gives rise to
the definition of a Stokes–Dirac structure on Hilbert spaces of functions with a one-
dimensional domain [7]. Second, we recall the formulation of the evolution equation
as a port Hamiltonian system.

Example 2.2. Consider an elastic string defined on the one-dimensional spatial
domain Z = [a, b] ⊂ R and subject to boundary conditions which allow some energy
flow. Let us denote by u(t, z) the displacement of the string at time t and position z.
Let us first recall the port Hamiltonian formulation of its dynamics. This differs from
the classical formulation based on the displacement u(t, z) by the choice of the state
variables [17, 30]. In this frame, the state variables are called energy variables and
are chosen in such a way that the total energy of the string does not depend on their
derivatives. The elastic potential energy is a function of the strain, and the energy
variable is defined by

ε(t, z) =
∂u

∂z
(t, z).(2.4)

The associated coenergy variable is the stress given by

σ(t, z) = T (z) ε(t, z)(2.5)

with T denoting the elasticity modulus. Hence the potential energy is the quadratic
function of the strain:

U(ε(t, ·)) =
1

2

∫ b

a

T (z) ε(t, z)2 dz.(2.6)
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The kinetic energy K is a function of the kinetic momentum, p(t, z), and it is defined
by the quadratic function

K(p(t, ·)) =
1

2

∫ b

a

p2(t, z)

μ(z)
dz.(2.7)

The associated coenergy variable is the velocity given by

v(t, z) =
1

μ(z)
p(t, z),(2.8)

where μ denotes the mass density.
The dynamical model of the vibrating string is obtained by coupling the elastic

energy domain and the kinetic domain through the following relations. Consider the
time variation of the energy variables, called flow variables,

∂

∂t

(
p
ε

)
=

(
fK
fU

)
.(2.9)

The canonical interdomain coupling between the elastic-potential energy and the ki-
netic energy relates the flow variables with the coenergy variables. This interdomain
coupling is given by the differential operator [19](

fK
fU

)
=

(
0 ∂

∂z
∂
∂z 0

)(
v
σ

)
.(2.10)

Finally, the interaction of the vibrating string through its boundary is expressed by the
definition of the boundary port variables, i.e., the velocity and stress at the boundaries
of the string (

wK

wU

)
=

(
I 0
0 I

)(
v|a,b
σ|a,b

)
.(2.11)

The canonical interdomain coupling equation (2.10) and the boundary coupling
equation (2.11) actually define a Dirac structure [7, Chapter 5] called the Stokes–
Dirac structure. Let us explain this in more detail. Consider the Hilbert spaces of the
flow variables F = L2 ([a, b] ,R) × L2 ([a, b] ,R) × R2 � (fK , fU , wK) and of the effort
variables E = L2 ([a, b],R) × L2 ([a, b],R) × R2 � (v, σ, wU ). Furthermore, endow the
bond space B = F × E with the following pairing:〈(

f1
K , f1

U , w
1
K , v1, σ1, w1

U

)
,
(
f2
K , f2

U , w
2
K , v2, σ2, w2

U

)〉
+

=

∫ b

a

f1
K v2 dz +

∫ b

a

f2
K v1 dz

+

∫ b

a

f1
U σ2 dz +

∫ b

a

f2
U σ1 dz + w1

K
T

Λw2
U + w2

K
T

Λw1
U ,

where Λ =
(
I 0
0 −I

)
.

This pairing on the bond space corresponds to the general definition given in
(2.1) where both the flow and the effort vector space is a product space given by
F = F(a,b) × F∂ and E = E(a,b) × E∂ , respectively. The subspace of flow variables
defined on the domain [a, b] is F(a,b) = L2 ([a, b],R) × L2 ([a, b],R) � (fK , fU ) and



1868 Y. LE GORREC, H. ZWART, AND B. MASCHKE

the conjugated subspace of variables is E(a,b) = L2 ([a, b],R) × L2 ([a, b],R) � (v, σ).
These Hilbert spaces are equal and hence the isometry rF(a,b),E(a,b)

is the identity. On
the contrary, for the pairing on the boundary port variables, the matrix Λ actually
corresponds to the definition of an isometry rF∂ ,E∂

between the boundary port spaces
F∂ = R2 � wK and E∂ = R2 � wU endowed with the canonical Euclidean metric.

It has been shown in [7, 8] that (2.10) and (2.11) define a Dirac structure, namely,
the Stokes–Dirac structure on B associated with the differential operator given in
(2.10). We shall denote this Dirac structure by D1.

The system of two conservation laws (2.10), with the closure equations (2.5),
(2.8), and (2.9), may be rewritten as the following Hamiltonian system [20]:

∂

∂t

(
p
ε

)
=

(
0 ∂

∂z
∂
∂z 0

)(
δpH
δεH

)
,(2.12)

where H = U+K denotes the Hamiltonian function corresponding to the total energy
of the system and δpH(x) = v, δεH(x) = σ denote the variational derivatives [20] of H
with respect to the momentum p and the strain ε, respectively. This system is indeed
a Hamiltonian system [20] if the differential operator in (2.12) is skew-symmetric, i.e.,
if the boundary variables are such that there is no energy flow at the boundary of the
system:

w1
K

T
Λw2

U + w2
K

T
Λw1

U = 0.(2.13)

In order to account for some energy flow at the boundary, the evolution equation (2.12)
may be completed using the port boundary variables defined in (2.11), i.e., the velocity
and the strain at the boundary(

wK

wU

)
=

(
I 0
0 I

)(
δpH |a,b
δεH |a,b

)
.(2.14)

The system composed of (2.12) and (2.14) defines a port Hamiltonian system with
respect to the Stokes–Dirac structure. This port Hamiltonian system is generated by
the Hamiltonian H [7, 8, 30] and it may be written in the following implicit way:(

∂p

∂t
,
∂ε

∂t
, wK , δpH, δεH, wU

)
∈ D1.(2.15)

Let us briefly compare the port Hamiltonian formulation with the formulation as
a PDE. The evolution equations (2.12), with the closure equations (2.9), (2.5), may
also be written in the form of the wave equations (in terms of the displacement of the
string):

μ
∂2u

∂t2
=

∂

∂z

(
T
∂u

∂z

)
.(2.16)

The relation between the boundary conditions of this PDE and the port variables is
given by (

wK

wU

)
=

(
v|a,b
σ|a,b

)
=

(
∂
∂tu|a,b

T (z) ∂u
∂z |a,b

)
.(2.17)

This shows clearly that the PDE (2.16) does not reflect the physical structure of
the system in the sense that it is not written as a system of conservation laws and
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that the total energy appears clearly. Relation (2.17) shows the difference between
port variables and boundary control systems in terms of physical elementary interface
variables. One may not express the static equilibrium σ|a,b(stress) in terms of ∂u

∂z
without knowing T (z).

Finally, we compare very briefly the port Hamiltonian formulation with a classical
symplectic Hamiltonian formulation (see also [17]). Using the displacement u(z, t)
and the velocity v(z, t) = ∂u

∂t as state variables, one obtains the following infinite-
dimensional Hamiltonian system (with energy flows being zero at the boundary):

∂x

∂t
=

(
0 1

μ

− 1
μ 0

) (
δH
δu
δH
δv

)
=

(
0 1

μ

− 1
μ 0

) (
− ∂

∂z

(
T ∂u

∂z

)
μv

)
,(2.18)

where the Hamiltonian function is

H(u, v) =

∫ b

a

(
1

2
T

(
∂u

∂z

)2

+
1

2
μv2

)
dz.(2.19)

Contrary to the port Hamiltonian formulation, this formulation does not make the
physical structure of conservation laws appear. One may furthermore note that the
Hamiltonian system is defined with respect to a symplectic Poisson bracket. This
bracket is not canonical (it depends on the mass distribution of the string) and cannot
be extended in a canonical way to a Dirac structure including boundary variables.

This example has shown that the Stokes–Dirac structure D1, associated with the
canonical interdomain coupling, is derived from a skew-symmetric differential operator
of order one. In section 3, we consider a generalization of this differential operator
by considering skew-symmetric operators of any order and we derive Dirac structures
on Hilbert spaces from them. In Example 2.2, we have also seen how the dynamics
can be defined by using the canonical Dirac structure and the Hamiltonian; namely,
the dynamics lives on the Dirac structure D1 and the total energy is defined by a
Hamiltonian function. In section 4, we consider energy functions which are equal
to the norm of the Hilbert space. Hence there the coenergy variables and the state
variables are identical. We show how to parameterize the contractive semigroups
associated with the Dirac structures defined in section 3. In section 5, finally, we
distinguish between the state and the coenergy variables by introducing more general
Hamiltonian functions and define port Hamiltonian systems associated with skew-
symmetric differential operators of any order.

3. Dirac structure associated with a skew-symmetric operator. In this
section, we extend the definition of Stokes–Dirac structures to skew-symmetric dif-
ferential operators of any order. Therefore, we first recall how one may extend the
Stokes theorem to such operators and how the Stokes theorem induces a symmetric
pairing on the boundary variables. Second, we define boundary port variables as a
linear combination of the boundary variables associated with the differential operator.
Using these boundary port variables, we define a bond space and a Dirac structure
associated with the differential operator.

Consider the differential operator J of order N

J e =

N∑
i=0

P (i)
die

dzi
(z), z ∈ [a, b],(3.1)
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where e ∈ C∞((a, b); Rn) and P (i), i = 0, . . . , N , is an n× n real matrix. The formal
adjoint J ∗ of J is given by

J ∗e =

N∑
i=0

P (i)T (−1)i
die

dzi
(z), z ∈ [a, b] .

Now assume that J is skew-symmetric, i.e., J = −J ∗. From the above expression of
J ∗ we see that this is equivalent to

P (i) = P (i)T (−1)i+1.(3.2)

Using this property, we show that the bilinear symmetric pairing of e and J e
depends only on the boundary values. Thus if the boundary values are zero, then
〈e1,J e2〉 + 〈e2,J e1〉 = 0, which corresponds to the fact that J is (formally) skew-
symmetric.

Theorem 3.1. Let J be a skew-symmetric operator defined by (3.1), and let
HN ((a, b); Rn) denote the Sobolev space of N times differentiable functions on the
interval (a, b). Then for any two functions ei ∈ HN ((a, b); Rn), i ∈ {1, 2}, we have
that ∫ b

a

eT1 (z)(J e2)(z) + eT2 (z)(J e1)(z)dz(3.3)

=

⎡⎢⎣(eT1 (z) , . . . ,
dN−1eT1
dzN−1

(z)

)
Q

⎛⎜⎝ e2(z)
...

dN−1e2
dzN−1 (z)

⎞⎟⎠
⎤⎥⎦
b

a

,

where

Q = (Qij) , i, j = 1, . . . , N,

with

Qij =

{
0, i + j > N + 1,

P (k)(−1)i−1, i + j − 1 = k.
(3.4)

Furthermore, Q is a symmetric matrix.
Proof. The result can easily be derived from iterative integration by parts; see

[10] for details.
The above theorem shows that any skew-symmetric differential operator J gives

rise to a symmetric bilinear product on the space of boundary conditions e(a), . . . ,
dN−1e
dzN−1 (a), e(b), . . . , dN−1e

dzN−1 (b). The coefficients of this symmetric product, captured in
the matrix Q, are uniquely defined by the coefficients of the skew-symmetric differen-
tial operator J . In what follows, we shall define port boundary variables and a bond
space in such a way that the Stokes theorem applied to the differential operator may
be expressed using the canonical symmetric pairing defined in (2.1). Therefore, let us
focus, in a first step, on the properties of Q and define the matrix Rext which is used
for defining the port variables. First of all, note that Q has the following form:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

P (1) P (2) P (3) · · · P (N − 1) P (N)
−P (2) −P (3) −P (4) · · · −P (N) 0

P (3) P (4) · · · · · · 0 0

−P (4) · · · · · · · · ·
...

... · · ·
...

(−1)N−1P (N) 0 · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(3.5)
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From the form of Q, the proof of the following lemma is immediate.
Lemma 3.2. The matrix Q introduced in Theorem 3.1 is symmetric and

kerQ = {0}

if and only if kerP (N) = {0}.
From now on we assume that Q is nonsingular.
Definition 3.3. The matrix Qext in R2nN×2nN associated with the differential

operator J is defined by

Qext =

(
Q 0
0 −Q

)
.(3.6)

Looking at (3.1), one can easily see that it is necessary to proceed to an appro-
priate change of variables to make this relation equivalent to the desired canonical
symmetrical pairing defined in (2.1). This change of variables is done using the matrix
Rext detailed in Lemma 3.4.

Lemma 3.4. The matrix Rext defined as

Rext =
1√
2

(
Q −Q
I I

)
(3.7)

is invertible and satisfies (
Q 0
0 −Q

)
= RT

extΣRext,(3.8)

where

Σ =

(
0 I
I 0

)
.(3.9)

All possible matrices R which satisfy (3.8) are given by the formula

R = URext

with U satisfying UTΣU = Σ.
Proof. We have that

1√
2

(
Q I
−Q I

)(
0 I
I 0

)(
Q −Q
I I

)
1√
2

=

(
Q 0
0 −Q

)
.

Thus using the fact that Q is symmetric Rext := 1√
2
(Q −Q
I I

) satisfies (3.8). Since Q is
invertible, the invertibility of Rext follows from (3.8).

Let W be another solution of (3.8). Hence

WTΣW =

(
Q 0
0 −Q

)
= RT

extΣRext.

This can be written in the equivalent form

R−T
extW

TΣWR−1
ext = Σ.

Calling WR−1
ext = U , we have that UTΣU = Σ and W = URext, which proves the

assertion.
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The crucial step in defining the Dirac structure associated with the operator J
is to define the boundary port variables. These are the following linear combinations
of the boundary conditions.

Definition 3.5. The boundary port variables associated with the differential
operator J are the vectors e∂ , f∂ ∈ RnN defined by

(
f∂
e∂

)
= Rext

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e(b)
...

dN−1e
dzN−1 (b)
e(a)

...
dN−1e
dzN−1 (a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(3.10)

where Rext is defined by (3.7).
Consider the effort and flow spaces E = F = L2((a, b); Rn) × RnN with their

natural inner product. We define the bond space B as F × E with the canonical
symmetrical pairing〈(

f1, f1
∂ , e

1, e1
∂

)
,
(
f2, f2

∂ , e
2, e2

∂

)〉
+

(3.11)

= 〈e1, f2〉L2 + 〈e2, f1〉L2 − 〈e1
∂ , f

2
∂ 〉 − 〈e2

∂ , f
1
∂ 〉,

where

(f i, f i
∂ , e

i, ei∂) ∈ B, i = {1, 2}.
Let us emphasize that this pairing on the bond space corresponds to the general

definition given in (2.1), where the pairing on the bond space is defined modulo an
isometry rF,E . The space of flow variables is the product space F = L2((a, b); Rn) ×
RN . Thus every flow element is a pair with the top element a function, and the bottom
element is a part of the (boundary) port variable. The same description holds for the
space of effort variables. The spaces F and E are equal and the natural isometry
would be the identity. However, we choose

rF,E =

(
I 0
0 −I

)
.

It is easy to see that this is an isometry, which is equal to its own inverse. Furthermore,
with this choice (2.1) equals (3.11).

On the bond space B with the symmetrical pairing (3.11) we define the Dirac
structure, DJ , associated with the linear skew symmetric operator J .

This Dirac structure is nothing else but the expression of the Stokes theorem
(recalled in Theorem 3.1) with respect to the port variables defined in Definition 3.5.

Theorem 3.6. Let HN ((a, b); Rn) denote the Sobolev space of N times differen-
tiable functions on the interval (a, b). The subspace DJ of B defined as

DJ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝
f
f∂
e
e∂

⎞⎟⎟⎠∣∣∣ e ∈ HN ((a, b); Rn),J e = f,

(
f∂
e∂

)
= Rext

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e(b)
...

dN−1e
dzN−1 (b)
e(a)

...
dN−1e
dzN−1 (a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.12)
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is a Dirac structure.
Proof. The Dirac structure is defined by the fact that DJ = D⊥

J .
Step 1. Recall that DJ ⊂ D⊥

J is equivalent to the canonical product 〈b, b〉+ being
zero for all b ∈ DJ . From (3.11) we have that

〈(f, f∂ , e, e∂ , ) , (f, f∂ , e, e∂)〉+
= 〈e,J e〉L2 + 〈e,J e〉L2 − eT∂ f∂ − eT∂ f∂

=

⎡⎢⎣(eT (z) , . . . ,
dN−1eT

dzN−1
(z)

)
Q

⎛⎜⎝ e(z)
...

dN−1e
dzN−1 (z)

⎞⎟⎠
⎤⎥⎦
b

a

− 2eT∂ f∂

=

(
eT (b) , . . . ,

dN−1eT

dzN−1
(a)

)(
Q 0
0 −Q

)⎛⎜⎝ e(b)
...

dN−1e
dzN−1 (a)

⎞⎟⎠− 2eT∂ f∂

=
(
fT
∂ , eT∂

)
Σ

(
f∂
e∂

)
− 2eT∂ f∂ = 0,

where we have used Theorem 3.1 and (3.8).
Step 2. Let (φ, φ∂ , ε, ε∂) ∈ D⊥

J . Choose e ∈ HN ((a, b); Rn) with compact support
strictly included in (a, b). Thus dke

dzk , k ∈ {0, . . . , N − 1}, are zero in a and b. Then it
is easy to see that (J e, 0, e, 0) ∈ DJ . Using (3.11) we have

0 = 〈e, φ〉 + 〈ε, f〉 = 〈e, φ〉 + 〈ε,J e〉
for all such e. This implies that ε ∈ HN ((a, b); Rn) and J ε = φ.

Step 3. Let (φ, φ∂ , ε, ε∂) ∈ D⊥
J and let (f, f∂ , e, e∂) ∈ DJ . From Step 2 and (3.11)

we obtain

0 = 〈e,J ε〉 + 〈ε,J e〉 − eT∂ φ∂ − εT∂ f∂

=

⎡⎢⎣(eT (z) , . . . ,
dN−1eT (z)

dzN−1
(z)

)
Q

⎛⎜⎝ ε(z)
...

dN−1ε(z)
dzN−1 (z)

⎞⎟⎠
⎤⎥⎦
b

a

− eT∂ φ∂ − εT∂ f∂

=
(
fT
∂ , eT∂

)
ΣRext

⎛⎜⎝ ε(b)
...

dN−1ε
dzN−1 (a)

⎞⎟⎠− eT∂ φ∂ − εT∂ f∂

=
(
eT∂ , f

T
∂

)⎡⎢⎣Rext

⎛⎜⎝ ε(b)
...

dN−1ε
dzN−1 (a)

⎞⎟⎠−
(
φ∂

ε∂

)⎤⎥⎦ .
By a proper choice of e, we can let the vectors e∂ and f∂ have arbitrary values. Thus
the above equality has to hold for all e∂ ∈ RnN and f∂ ∈ RnN . Consequently, we
have that

Rext

⎛⎜⎝ ε(b)
...

dN−1ε
dzN−1 (a)

⎞⎟⎠ =

(
φ∂

ε∂

)
.

In conclusion, we have that DJ = D⊥
J , and so DJ is a Dirac structure.
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4. Contraction semigroups, boundary control systems, and their pa-
rameterization. In the previous section we have associated with the skew-symmetric
operator J a Dirac structure DJ . In this section, we shall define dynamic systems
with inputs, states, and outputs with respect to this Dirac structure. These systems
will be boundary control systems in the sense of the semigroup theory [3], which im-
plies that the controls and observations act on the boundary of the spatial domain.
With respect to the Dirac structure DJ it is possible to define many systems. How-
ever, we consider only those systems for which the energy does not grow when the
input is zero. This implies that the associated semigroup is contractive. We param-
eterize all these systems by nN -dimensional linear subspaces of the port variables.
As a consequence of this parameterization, we identify those systems for which the
associated semigroup is unitary.

We begin by showing that J is the infinitesimal generator of a contraction semi-
group for appropriate choices of the boundary conditions.

4.1. Contraction semigroups associated with DJ . We begin by studying
the differential operator J for different boundary conditions. As stated above, we
want to characterize those boundary conditions for which the associated differential
operator is the infinitesimal generator of a strongly continuous semigroup. Further-
more, this semigroup must be contractive, i.e., ‖T (t)e‖ ≤ ‖e‖ for all t ≥ 0 and
e ∈ L2((a, b); Rn). We obtain this characterization of the boundary conditions by us-
ing Theorem 3.1.6 of [9]. For the history of this result, we refer to the bibliographical
comments at the end of [9].

Before stating this result, we recall the following parameterization. Let Σ = ( 0 I
I 0 ).

A full rank matrix W of size nN × 2nN satisfies

WΣWT ≥ 0(4.1)

if and only if

W = S
(
I + V I − V

)
(4.2)

with S an invertible matrix, and V satisfying V V T ≤ I; see the appendix for a proof.
In the following theorem it is shown that if the port variables are restricted to

the kernel of W , then this defines the domain of a contraction semigroup associated
with the operator J .

Theorem 4.1. Let W be a full rank matrix of size k× 2nN . Define the operator
JW and its domain, D(JW ), as

JW e = J e(4.3)

and

D(JW ) =

{
e ∈ L2((a, b),Rn) | the port variable associated with e,(4.4) (

f∂
e∂

)
, is in kerW and there exists

an f ∈ L2((a, b); Rn) such that (f, f∂ , e, e∂) ∈ DJ

}
.

Then JW generates a contraction semigroup (T (t))t≥0 on L2((a, b); Rn) if and only if
k = nN and (4.1) holds.
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Furthermore, JW is the infinitesimal generator of a unitary semigroup on
L2((a, b); Rn) if and only if k = nN and WΣWT = 0.

Proof. It is well known that operator A is the infinitesimal generator of a con-
traction semigroup if and only if it is maximally dissipative, i.e., it is dissipative:

Re〈Az, z〉 ≤ 0

for all z ∈ D(A), and it is not a proper restriction of any other dissipative operator
[24].

In [9] a characterization of maximal dissipative differential operators in terms of
their boundary conditions is given. However, their formulation is not precisely the
one we are using. Hence in the next step we relate their notation with ours. Once
that is done, the proof of the theorem is straightforward.

Step 1. Define on D(J ) = HN ((a, b),Cn) the operator

A∗
0 = iJ .

Then it is easy to see that A0 = iJ with D(A0) = {e ∈ HN ((a, b),Cn) | dN−1e
dzN−1 (b)

= · · · e(b) = 0 and dN−1e
dzN−1 (a) = · · · e(a) = 0}.

Using Theorem 3.1 and Definition 3.6 we have for all e1, e2 ∈ D(J )

〈A∗
0e1, e2〉 − 〈e1,A∗

0e2〉 = i〈J e1, e2〉 + i〈e1,J e2〉

= i

〈⎛⎜⎝ e1(b)
...

dN−1e1
dzN−1 (a)

⎞⎟⎠ , Qext

⎛⎜⎝ e2(b)
...

dN−1e2
dzN−1 (a)

⎞⎟⎠〉
C2nN

= i

〈(
f1,∂

e1,∂

)
,Σ

(
f2,∂

e2,∂

)〉
C2nN

= i [〈f1,∂ , e2,∂〉CnN + 〈e1,∂ , f2,∂〉CnN ] ,

where we have used (3.10). Define operators Γ1 and Γ2 from HN ((a, b),Cn) to CnN

as

Γ1e = if∂ , Γ2e = e∂ .(4.5)

It is clear that these mappings are onto. Furthermore, we have that

〈A∗
0e1, e2〉 − 〈e1,A∗

0e2〉 = 〈Γ1e1,Γ2e2〉CnN − 〈Γ2e1,Γ1e2〉CnN .(4.6)

Step 2. Using (4.6), Theorem 3.1.6 of [9] characterizes all maximally accumulative
extensions of A0. An operator A is defined to be accumulative if Im〈Az, z〉 ≤ 0 for
all z ∈ D(A). It is maximally accumulative, when it has no nontrivial accumulative
extension. It is easy to see that A is a maximal accumulative extension of A0 if and
only if −iA is a maximal dissipative extension of J with the domain D(A0).

Step 3. Theorem 3.1.6 of [9] states that any maximally accumulative extension
of A0 is given by

AK = A∗
0

with

D(AK) = {e ∈ D(A∗
0) | (K − I)Γ1e− i(K + I)Γ2e = 0},
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where K : CnN �→ CnN with ‖K‖ ≤ 1. Using the result obtained in the previous step
and (4.5), we see that any maximal dissipative extension of J , D(A0), is given by

−iAK = −iA∗
0 = J

with the domain

D(AK) = {e ∈ D(A∗
0) | (K − I)Γ1e− i(K + I)Γ2e = 0}

= {e ∈ HN ((a, b),Cn) | (K − I)f∂ − (K + I)e∂ = 0},

where K : CnN �→ CnN with ‖K‖ ≤ 1. Using Lemma A.1 we see that −iAK = JW
with W = S(I − K, I + K), where S is an arbitrary, invertible matrix. Since we
are interested only in real conditions, we have to take K real valued. Hence we
have obtained a complete characterization of all boundary conditions for which the
differential operator is the infinitesimal generator of a contraction semigroup.

Step 4. The proof of the unitary case is done very similarly.
One may wonder why we have parameterized the boundary port variables using

the W instead of the V , since if two W ’s have the same V , then the associated
semigroups are the same. In the following subsection, the boundary variables are
decomposed into inputs and outputs. For this splitting the W is important. More
specifically, different W ’s lead to different systems, although the semigroup may be
the same.

4.2. Boundary control system and port conjugated output. In the pre-
vious subsection we have derived the family of contraction semigroups from the Dirac
structure DJ associated with a skew-symmetric differential operator J . More pre-
cisely, we have parameterized these semigroups by a family of subspaces of the port
boundary variables defined as the kernel of a class of matrices W (matrices of size
nN ×2nN satisfying (4.1)). In the following theorem, we use this W to define bound-
ary inputs/controls. Since the rank of W is nN and since we have 2nN boundary
variables, we see that we use half of the set of boundary variables to define inputs. We
show that the other half may be regarded as outputs. Note that the terms input and
output are used here to make the relation with infinite-dimensional systems theory.
It does not necessarily mean that the input is completely free, i.e., it can be chosen
arbitrarily in L2

loc((0,∞); RnN ), nor does it imply that for every initial condition in
L2((a, b); Rn) the output is well defined. The system class which is considered is the
class of boundary control systems. For more information on this class, we refer the
reader to section 3.3 of [3].

Using the splitting of the boundary ports into inputs and outputs, we consider
in Theorems 4.4 and 4.6 some special choices which lead to classical power balance
equations in the so-called impedance and scattering variables form.

Theorem 4.2. For the differential operator J and the associated Dirac structure
DJ (see Theorem 3.6), we consider the dynamical system

(ẋ(t), f∂(t), x(t), e∂(t)) ∈ DJ , t ≥ 0,(4.7)

where (f∂(t), e∂(t)) are the boundary port variables associated with x(t); see Defini-
tion 3.5.

Let W be a full rank matrix of size nN × 2nN satisfying (4.1), and define B :
HN ((a, b),Rn) → RnN as

Bx(t) := W

(
f∂(t)
e∂(t)

)
.(4.8)
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Then system (4.7) with the input defined as

u(t) = Bx(t)(4.9)

is a boundary control system.
Furthermore, let W̃ be a full rank matrix of size nN × 2nN with (W

W̃
) invertible.

If we define the linear mapping C : HN ((a, b),Rn) → RnN as

Cx(t) := W̃

(
f∂(t)
e∂(t)

)
(4.10)

and the output as

y(t) = Cx(t),(4.11)

then for u ∈ C2((0,∞); RnN ), x(0) ∈ HN ((a, b),Rn), and Bx(0) = u(0), the following
balance equation is satisfied:

1

2

d

dt
‖x(t)‖2 =

1

2

(
uT (t)yT (t)

)
PW,W̃

(
u(t)
y(t)

)
,(4.12)

where

P−1

W,W̃
=

(
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

)
.(4.13)

Furthermore, we have that the matrix (WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T ) is invertible if and only if (W
W̃

)
is invertible.

Remark 4.3. The system defined by (4.7)–(4.9) may be equivalently written in
the more usual form of a boundary control system:

ẋ(t) = J x(t),

Bx(t) = u(t).
(4.14)

Proof of Theorem 4.2. In Steps 1 and 2 we show that we have a boundary control
system. In Steps 3 and 4, we prove (4.12) and (4.13), respectively. For a boundary
control system we have to show that for zero inputs, the system is a C0-semigroup,
and furthermore that there exists a bounded operator B mapping onto the domain of
B and such that BBu = u for all u ∈ RnN .

Step 1. As mentioned above, we have to show that JW defined as

JWx = J x

on

D(JW ) = D(J ) ∩ kerB

is an infinitesimal generator. This follows directly from Theorem 4.1.
Step 2. We have to find a bounded linear operator B such that Bu ∈ D(B) =

HN ((a, b); RnN ) and BBu = u for all u ∈ RnN .
Let {u1, . . . , unN} be the standard basis of the input space RnN , i.e., ui =

(δij)
T
j=1,...,nN . Since Rext is invertible, and since W has rank nN there exists for

every ui a vi ∈ R2nN such that

WRextv
i = ui.(4.15)
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Let vik denote the kth block of vi, k = 1, . . . , 2N . Using functions fr,j and fl,j
introduced in Lemma A.3, we define the ith column of B as

Bi =

N∑
k=1

vikfr,k−1(z) +

N∑
k=1

vik+Nfl,k−1(z).

It is straightforward that B is a bounded operator mapping onto the domain of J .
Furthermore, by Definition 3.5 we have that

BBi = WRext

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bi(b)
...

dN−1Bi(b)
dzN−1

Bi(a)
...

dN−1Bi(a)
dzN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now by definition

dpBi

dzp
(z) =

N∑
k=1

vikf
(p)
r,k−1(z) +

N∑
k=1

vik+Nf
(p)
l,k−1(z).

From (A.3) and (A.4) of Lemma A.3, we have that

dpBi

dzp
(b) = vip+1 and

dpBi

dzp
(a) = vip+N+1,

and so B satisfies

BBu = WRext

⎛⎜⎝ vi1
...

vi2N

⎞⎟⎠ = ui.

Step 3. By the definition of B and D(JW ), we see that the conditions stated in
the theorem are the same as x(0) − Bu(0) ∈ D(JW ). Hence by Theorem 3.3.3 of
[3] we have that there exists a classical solution of (4.7)–(4.9). Hence, in particular,
x(t) ∈ HN ((a, b),Rn) holds pointwise in t, x(t) is differentiable as a function of t, and
ẋ(t) = J x(t). Using this, we obtain

d

dt
‖x(t)‖2 =

d

dt
〈x(t), x(t)〉

= 〈ẋ(t), x(t)〉 + 〈x(t), ẋ(t)〉
= 〈J x(t), x(t)〉 + 〈x(t),J x(t)〉

=
(
fT
∂ (t) eT∂ (t)

)
Σ

(
f∂(t)
e∂(t)

)
.(4.16)

On the other hand, we have that(
u
y

)
=

(
W

W̃

)(
f∂
e∂

)
.(4.17)
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Combining this with (4.16) gives that

d

dt
‖x(t)‖2 =

(
uT (t) yT (t)

)(W
W̃

)−T

Σ

(
W

W̃

)−1(
u(t)
y(t)

)
=
(
uT (t) yT (t)

)
PW,W̃

(
u(t)
y(t)

)
.(4.18)

Hence we have proved (4.12).
Step 4. By the definition of PW,W̃ , we see that

P−1

W,W̃
=

(
W

W̃

)
Σ

(
W

W̃

)T

=

(
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

)
,

which shows (4.13). From this equality the last assertion of the theorem follows
directly.

Now we consider two particular cases which are canonical. For the first choice
of inputs and outputs, the system becomes a lossless system. For the second choice
of inputs and outputs, the balance (4.12) becomes canonical for scattering variables.
We begin by characterizing the case when the boundary control system becomes a
lossless system.

Theorem 4.4. Let W and W̃ be nN × 2nN matrices with W having full rank
and satisfying (4.1). Associate with these matrices the following system:

ẋ(t) = J x(t),(4.19)

u(t) = W

(
f∂(t)
e∂(t)

)
,(4.20)

y(t) = W̃

(
f∂(t)
e∂(t)

)
,(4.21)

where (f∂(t), e∂(t)) are the boundary port variables associated with x(t); see Defini-
tion 3.5.

The above system is a boundary control system. Furthermore, it satisfies for all
u ∈ C2((0,∞); RnN ), x(0) ∈ HN ((a, b); Rn) with u(0) = W (

f∂(0)
e∂(0)

) the balance equa-
tion

1

2

d

dt
‖x(t)‖2 = u(t)T y(t)(4.22)

if and only if the following conditions are satisfied:

W = S
(
I + V I − V

)
with S invertible and V unitary,(4.23)

W̃ = S̃
(
I + Ṽ I − Ṽ

)
with S̃ invertible and Ṽ unitary,(4.24)

I = 2S̃(I − Ṽ V T )ST .(4.25)

Furthermore, under condition (4.23) the associated semigroup is unitary.
Proof. Looking at Theorem 4.2 we see that we only have to check that PW,W̃

equals ( 0 I
I 0 ). By (4.13) this is equivalent to WΣWT = W̃ΣW̃T = 0 and W̃ΣWT = I.

By Lemma A.1 we see that the first conditions are equivalent to (4.23) and (4.24),
respectively. Direct calculation gives that W̃ΣWT = I is the same as (4.25).
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Taking in the above theorem, V = I, Ṽ = −I, and S = S̃ = 1
2I, we obtain the

following special case.
Corollary 4.5. Under the general conditions as stated in Theorem 4.4 consider

the system defined by

ẋ(t) = J x(t),(4.26)

u(t) = f∂(t),(4.27)

y(t) = −e∂(t),(4.28)

where (f∂(t), e∂(t)) are the boundary port variables associated with x(t); see Defini-
tion 3.5.

The above system is a boundary control system with the associated semigroup
unitary. Furthermore, it satisfies for all u ∈ C2((0,∞); RnN ), x(0) ∈ HN ((a, b); Rn),
and u(0) = f∂(0) the following balance equation:

1

2

d

dt
‖x(t)‖2 = u(t)T y(t).(4.29)

In the following theorem we characterize the scattering case.
Theorem 4.6. Let W and W̃ be nN × 2nN matrices with W having full rank

and satisfying (4.1). Associate with these matrices the following system:

ẋ(t) = J x(t),(4.30)

u(t) = W

(
f∂(t)
e∂(t)

)
,(4.31)

y(t) = W̃

(
f∂(t)
e∂(t)

)
,(4.32)

where (f∂(t), e∂(t)) are the boundary port variable associated with x(t); see Defini-
tion 3.5.

The above system is a boundary control system. Furthermore, it satisfies for all
u ∈ C2((0,∞); RnN ), x(0) ∈ HN ((a, b); Rn) with u(0) = W (

f∂(0)
e∂(0) ) the balance equa-

tion

1

2

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2(4.33)

if and only if the following conditions are satisfied:

W = S
(
I + V I − V

)
with 4S(I + V V T )ST = I,(4.34)

W̃ = S̃
(
−I − V T I − V T

)
with 4S̃(I − V TV )S̃T = I.(4.35)

Proof. Looking at Theorem 4.2 we see that we only have to check that PW,W̃

equals ( 2I 0
0 −2I ). By (4.13) this is equivalent to WΣWT = 1

2I, W̃ΣW̃T = − 1
2I, and

WΣW̃T = 0.
It is easy to show that if both (4.34) and (4.35) hold, then (4.33) holds. So it

remains to show the converse. Using the standard representation of W (see (4.2)), we
get that WΣWT = 1

2I is equivalently written as (4.34).
Since W̃ΣW̃T = − 1

2I, we see that W̃ is of full rank. Furthermore, from the
relation WΣW̃T = 0, we obtain that the range of ΣW̃T is contained in the kernel of
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W . By Lemma A.2 we have that the kernel of W equals the range of ( I−V
−I−V ). Since

both the range of this matrix and that of ΣW̃T is of dimension nN , we find that

ΣW̃T =

(
I − V
−I − V

)
S̃T

for some invertible S̃. Hence we have shown that the representation of (4.35) holds.
The last part of this equation follows directly from the fact that W̃ΣW̃T =
− 1

2I.

Choosing in the above theorem V = 0 and S = S̃ = 1
2I gives the following

corollary.
Corollary 4.7. Consider the system defined as

ẋ(t) = J x(t),(4.36)

u(t) =
1

2
(f∂(t) + e∂(t)) ,(4.37)

y(t) =
1

2
(f∂(t) − e∂(t)) ,(4.38)

where (f∂(t), e∂(t)) are the boundary port variable associated with x(t); see Defini-
tion 3.5.

The above system is a boundary control system with the associated semigroup
a contraction. Furthermore, for u ∈ C2((0,∞); RnN ), x(0) ∈ HN ((a, b); Rn), and
u(0) = 1

2 (f∂(0) + e∂(0)) we have that

1

2

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2.(4.39)

In the previous theorems we have seen that for the same Dirac structure the prop-
erties of the PDE, obtained by a choice of the inputs and outputs, can be completely
different. Hence for the same underlying Dirac structure, many different system the-
oretic properties are possible. It is even possible that the PDE has no solution for
the trivial input signal. Let us illustrate this situation in more detail in the following
simple example.

Example 4.8. Consider the PDE on [a, b]

∂x

∂t
(t, z) =

∂x

∂z
(t, z).(4.40)

Following section 3, we see that N = n = 1, and P (1) = 1. The boundary port
variables (see Definition 3.5) are(

f∂(t)
e∂(t)

)
=

1√
2

(
x(t, b) − x(t, a)
x(t, b) + x(t, a)

)
.

A short calculation gives that the PDE as discussed in Theorem 4.2 is (4.40) with the
boundary input

u(t) = s
√

2 [x(t, b) − vx(t, a)](4.41)

and output

y(t) =
1√
2

(w̃2 + w̃1)x(t, b) +
1√
2

(w̃2 − w̃1)x(t, a),(4.42)
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where s is a nonzero scalar, v is an element of [−1, 1], and w̃1, w̃2 are such that
w̃2(1 + v)− w̃1(1− v) �= 0. As shown in Theorem 4.2 for any choice of v ∈ [−1, 1], we
have that the PDE (4.40) with input (4.41) and output (4.42) has a unique classical
solution provided the initial condition and the input are sufficiently smooth. Although
the underlying Dirac structure stays the same, the system theoretic properties may be
different for different choices of v. For instance, if v = 1, then the associated semigroup
is unitary, whereas for v = 0, the associated semigroup is zero for t ≥ (b − a); see
also [31].

Now one may wonder which (linear combination) of the boundary port variables
may serve as an input, by which we only mean that it may be chosen in some suffi-
ciently large (linear) space. Note that the choice, u(t) = f∂(t) − e∂(t), gives that the
input is located at z = a. Since (4.40) represents the left shift, it may be clear that
the value of x at a cannot be an input. Even more, for u ≡ 0, the PDE does not have
a solution.

5. Port Hamiltonian system. In this section, we define port Hamiltonian
systems associated with (constant) skew-symmetric matrix operators. These systems
are defined in terms of network-based modeling [1, 18, 28] which is based on the
definition of two objects: the interconnection structure defined by a Dirac structure
and the Hamiltonian function representing the total energy of the system. First,
using the definition of the Dirac structure associated with a skew-symmetric operator
given in section 3, we define a port Hamiltonian system with boundary port variables.
Second, using the results of section 4, we formulate these port Hamiltonian systems
as boundary control systems. In subsection 5.2 we treat extensively the example of
the Timoshenko beam.

5.1. Linear port Hamiltonian systems with boundary port variables.
We now extend the definition of linear port Hamiltonian systems as defined for finite-
dimensional state spaces [28] to infinite-dimensional state spaces. The interconnection
structure is defined by a Dirac structure associated with the skew-symmetric differ-
ential operator according to Theorem 3.6. The Hamiltonian function, generating this
port Hamiltonian system, is defined by a coercive operator relating the state variable
to the effort variable.

In the introductory example of the section 2, the skew-symmetric operator was the
2×2 matrix differential operator of differential order 1 corresponding to the canonical
interdomain coupling, and the Dirac structure was the Stokes–Dirac structure. The
symmetric operator was defined by the elasticity modulus and the mass distribution
defining the elastodynamic energy of the string.

Definition 5.1. Consider the domain Z = (a, b) ⊂ R. Let the space of flow
variables FZ be equal to L2((a, b); Rn) and let the space of effort variables EZ be
equal to FZ . Consider an n × n matrix skew-symmetric differential operator of dif-
ferential order N denoted as J defined by (3.1) and (3.2). Define the bond space
B = FZ × RnN × EZ × RnN and the Dirac structure DJ associated with the skew-
symmetric differential operator J as defined in Theorem 3.6. Let L be a coercive-
symmetric operator on EZ . The port Hamiltonian system with the boundary port
variables associated with J and generated by L is defined by

(ẋ(t), f∂(t),Lx(t), e∂(t)) ∈ DJ , t ≥ 0,(5.1)

where ( f∂
e∂ ) is the boundary port associated with e := Lx according to Definition 3.5.

Remark 5.2. It may be noted that the system in Definition 5.1 corresponds to
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the abstract system ẋ(t) = A x(t) defined by the differential operator

A = JL(5.2)

which need not be skew-symmetric nor have constant coefficients.
It is also worth making explicit the Hamiltonian function representing the energy

of the system

H(x) =
1

2
〈x, Lx〉,(5.3)

where 〈·, ·〉 denotes the natural inner product on the space EZ . The port Hamiltonian
system of section 4 may hence be seen as a particular case with L = I.

Noting that dH(x(t))
dt = 〈ẋ(t), Lx(t)〉, by the definition of Dirac structure, one

obtains the following energy balance equation:

dH(x(t))

dt
=

1

2

(
fT
∂ (t), eT∂ (t)

)
Σ

(
f∂(t)
e∂(t)

)
.

This expresses that the variation of the energy of the boundary port Hamiltonian
system is equal to the flow of energy at the boundary of the system’s domain.

This also motivates us to take the state space equal to those x for which the
Hamiltonian is finite. Since L is coercive on EZ = L2((a, b); Rn), we see that the state
space X is L2((a, b); Rn) with the new inner product

〈x1, x2〉X = 〈x1,Lx2〉L2((a,b);Rn).(5.4)

In the previous definition we have defined linear port Hamiltonian systems with
boundary port variables using the definition of Dirac structure for which the port
variables are not split into input and output variables. However, we have seen in
section 4 that using a specific subspace of the port variables, one may define input
and output variables as belonging to complementary subspaces of the boundary port
variables. Moreover, by choosing in an appropriate way these subspaces, one may
define a boundary control system with its associated semigroup being a contraction.
In the following, we reformulate the boundary port Hamiltonian system of Definition
5.1 as a boundary control system. We use the parameterization of the input and
output variables and the contractive semigroups associated with the Dirac structure
DJ given in section 4. The state variables have become the image of the effort
variables through the coercive operator L−1.

Theorem 5.3. The port Hamiltonian system of Definition 5.1 may be formulated
as a boundary control system on the state space X :

(ẋ(t), f∂(t),Lx(t), e∂(t)) ∈ DJ , t ≥ 0,(5.5)

with the input variables defined by choosing some full rank matrix W of size nN×2nN
satisfying (4.1) and the map

Bx(t) = W

(
f∂(t)
e∂(t)

)
= u(t)(5.6)

on the domain

D(B) = D(J ).(5.7)
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Furthermore, define the port conjugated output

y(t) = W̃

(
f∂(t)
e∂(t)

)
with W̃ a full rank matrix of size nN × 2nN with (W

W̃
) invertible. Then for u ∈

C2((0,∞); RnN ), x(0) ∈ HN ((a, b),Rn), and u(0) = Bx(0), the following balance
equation is satisfied:

d

dt
H(x(t)) =

1

2
(uT (t) yT (t))PW,W̃

(
u(t)
y(t)

)
,(5.8)

where PW,W̃ is defined in (4.13).
The proof is a straightforward extension of the proof of Theorem 4.1 using the

following lemma.
Lemma 5.4. Assume that W satisfies (4.1). The differential operator AW = JL

with the domain D(AW ) = {x ∈ X | Lx ∈ D(JW )} (see (4.4)) generates a contraction
semigroup on X .

Proof. We first show that AW is dissipative. For x ∈ D(AW ), we have that

〈x,AWx〉X = 〈x,JLx〉X = 〈x,LJLx〉L2 = 〈e,J e〉L2 ,

where e = Lx. Since e ∈ D(JW ) and since JW is a restriction of J , we find that

〈x,AWx〉X = 〈e, JW e〉L2
,

which is nonpositive, since JW generates a contraction semigroup on L2((a, b); Rn).
It is not hard to show that A∗

W = J∗
WL with D(A∗

W ) = {x ∈ X | Lx ∈ D(J∗
W )}.

Using an argument similar to that above, we find that on D(A∗
W )

〈x,A∗
Wx〉X ≤ 0.

Hence we conclude that AW generates a contraction semigroup on X .

5.2. Example: The Timoshenko’s beam model. Timoshenko’s beam model
describes the infinitesimal planar deformations of a flexible beam reduced to its neutral
fiber with some particular geometrical assumptions. We briefly recall the Hamiltonian
formulation as proposed by Golo, Talasila, and van der Schaft [6]. Note that this
corresponds to taking the Legendre transform of the usual Lagrangian formulation.
Consider the spatial domain Z = [a, b]. Denote the angular displacement by qθ, the
transversal displacement of the beam by qy, and the conjugated momenta by pθ and
py. The elastic potential energy density is given by U(q) = 1

2

∫
Z
FT q dz, where the

strain wrench (torque and force) is F = Kq. Let K = diag (cθ, cy) denote the positive
definite compliance matrix which depends on the elasticity properties of the material
and its geometry. The kinetic energy is given by K(p) = 1

2

∫
Z
vT p dz, where the

coenergy variable is the velocity v = M−1 p. M denotes the positive definite inertia
matrix which is given as M = diag (ι, μ) with ι the momentum of inertia of the beam
per unit length and μ the mass per unit length. It is immediate that F = δqU(q) and
v = δpK(q), where δ denotes the variational derivative [20].

Choose the state vector x as

x =

⎛⎜⎜⎝
qθ
qy
pθ
py

⎞⎟⎟⎠ =

(
q
p

)
.
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The Timoshenko beam model may be expressed as the following Hamiltonian evolu-
tion equations [6, 7]:

∂x

∂t
= J

(
∂H
∂q

∂H
∂p

)
,(5.9)

where H(q, p) = U(q) + K(p) is the total elastodynamic energy of the beam, and the
skew-symmetric differential operator J is

J =

⎛⎜⎜⎝ 02

(
∂
∂z 0
−1 ∂

∂z

)
(

∂
∂z 1
0 ∂

∂z

)
02

⎞⎟⎟⎠ .(5.10)

We now derive the port Hamiltonian formulation of this system. The time varia-
tion of the energy variables is defined as flow variables:

∂

∂t

(
q
p

)
:=

(
fq
fp

)
.

The variational derivative of the total energy δxH defines the effort variables:(
eq
ep

)
:= L

(
q
p

)
=

(
K 0
0 M−1

)(
q
p

)
.(5.11)

Note that

L
(
q
p

)
=

(∂H
∂q

∂H
∂p

)
.

More precisely,

eq =

(
cθ 0
0 cy

)(
qθ
qy

)
=

(
T
Fy

)
(5.12)

is the vector composed of the torque and the force, and

ep =

(
ι−1 0
0 μ−1

)(
pθ
py

)
=

(
ω
vy

)
(5.13)

is the vector composed of the angular and longitudinal velocities.

Hence, according to the evolution equation (5.9), the flow variables are related to
the coenergy variables by the skew-symmetric differential operator J defined in (3.1)(

fq
fp

)
= J

(
eq
ep

)
.

This differential operator may be written as

J = P (0) + P (1)
∂

∂z
,
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where

P (0) =

⎛⎜⎜⎝ 02

(
0 0
−1 0

)
(

0 1
0 0

)
02

⎞⎟⎟⎠ , P (1) =

⎛⎜⎜⎝ 02

(
1 0
0 1

)
(

1 0
0 1

)
02

⎞⎟⎟⎠ .

The symmetric matrix Q corresponding to the bilinear term on the boundary variables
in Theorem 3.1 and given in (3.5) reduces to Q = P (1). The matrix Rext defining the
boundary port variables equals (see (3.7))

Rext =

√
2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(5.14)

According to Definition 3.5 the port variables are

(
f∂
e∂

)
= Rext

(
L 0
0 L

)⎛⎜⎜⎝
q(b)
p(b)
q(a)
p(a)

⎞⎟⎟⎠ .

Considering relations (5.11), (5.12), and (5.13),

(
f∂
e∂

)
=

√
2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω(b) − ω(a)
vy(b) − vy(a)
T (b) − T (a)
Fy(b) − Fy(a)
T (b) + T (a)
Fy(b) + Fy(a)
ω(b) + ω(a)
vy(b) + vy(a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The associated Dirac structure is given by

DJ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
fq
fp
f∂
eq
ep
e∂

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ (eqep

)
∈ H1((a, b); R4),J

(
eq
ep

)
=

(
fq
fp

)
,

(
f∂
e∂

)
= Rext

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T (b)
Fy(b)
ω(b)
vy(b)
T (a)
Fy(a)
ω(a)
vy(a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We now illustrate the derivation of boundary control systems from the port Hamil-
tonian system using two different choices of the matrix W defining them according
to Theorem 5.3. The first choice corresponding to the boundary control system is
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associated with a unitary semigroup and in the other choice corresponds to a system
in the scattering representation.

For the unitary case let us choose the matrix W given in (4.2) with the invertible
matrix S and matrix V satisfying V V T = I chosen as follows:

S =
1

2
√

2

(
−I2 I2
I2 I2

)
and V =

(
0 I2

−I2 0

)
.

This choice corresponds to define the inputs

u = S
(
I4 + V I4 − V

)(f∂
e∂

)

=
1√
2

(
−I2 0 0 I2
0 I2 I2 0

)(
f∂
e∂

)
=

⎛⎜⎜⎝
ω(a)
vy(a)
T (b)
Fy(b)

⎞⎟⎟⎠ .

The unitary semigroup associated with the boundary control u = 0 corresponds to
the following boundary conditions:

ω(a, t) = vy(a, t) = M(b, t) = Fy(b, t) = 0,

which are the so-called clamped-free boundary conditions. According to Theorem 4.4
the output conjugated to this input is

y = S̃(I4 + Ṽ I4 − Ṽ )

(
f∂
e∂

)
with Ṽ unitary, S̃ invertible, and

2S̃
(
I4 − Ṽ V T

)
S = I4.

For example, choosing Ṽ = −V = ( 0 −I2
I2 0 ) and S̃ = S = 1

2
√

2
(−I2 I2

I2 I2
) we obtain

y =

⎛⎜⎜⎝
−T (a)
−Fy(a)
ω(b)
vy(b)

⎞⎟⎟⎠ .

For the contractive case, let us choose the matrix W given in (4.2) with the
invertible matrix S and matrix V , satisfying V V T ≤ I, chosen as follows:

S =

√
2

4

(
I2 I2
−I2 I2

)
and V =

(
0 0
0 0

)
.

According to Theorem 5.3 the inputs are

u =

√
2

4

(
I2 I2 I2 I2
−I2 I2 −I2 I2

)(
f∂
e∂

)
=

1

2

⎛⎜⎜⎝
ω(b) + T (b)
vy(b) + Fy(b)
ω(a) − T (a)
vy(a) − Fy(a)

⎞⎟⎟⎠ .
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For S̃ (see Theorem 4.6) we choose S and so the outputs are

y =

√
2

4

(
I2 I2 −I2 −I2
−I2 I2 I2 −I2

)(
f∂
e∂

)
= −1

2

⎛⎜⎜⎝
ω(a) + T (a)
vy(a) + Fy(a)
ω(b) − T (b)
vy(b) − Fy(b)

⎞⎟⎟⎠ .

In this case, the boundary inputs and outputs correspond to the scattering variables
and 1

2‖x(t)‖2
X = ‖u(t)‖2 − ‖y(t)‖2.

6. Conclusion and further work. The work presented in this paper relates
the structure of a class of linear infinite-dimensional dynamical models induced by
the physical modeling (existence of energy function, power continuous interconnection
structure) with system theoretical properties (passivity, etc.). More precisely, we have
defined a class of infinite-dimensional linear systems associated with skew-symmetric
differential operators and we have related them to boundary control systems. Knowing
the underlying physical structure and the system theoretical notions will be very
useful in the further analysis and design for our class of infinite-dimensional systems,
for instance, in the construction of stabilizing feedbacks.

Therefore, we have, in the first instance, defined a Dirac structure on a Hilbert
space associated with skew-symmetric differential operators with constant coefficients.
Using the Stokes theorem, we have defined port boundary variables as the image of the
boundary values under a linear map, which is derived from the differential operator.
Then we have shown that the differential operator together with the boundary port
variables defines a Dirac structure on a vector space (the space of bond variables)
endowed with a canonical symmetric pairing. This defines the geometrical structure
associated with the initial PDE.

In the second instance, we have shown that one may derive from the Dirac struc-
ture infinitesimal generators of contraction semigroups. These infinitesimal generators
are obtained by restricting the domain of the skew-symmetric operator to parameter-
ized subspaces. More precisely, we have shown that we have obtained a parameteriza-
tion of all the contraction semigroups which are associated with the skew-symmetric
operator.

In the third instance, we have derived a formulation of our class of infinite-
dimensional systems as boundary control systems associated with the class of con-
traction semigroups obtained from the Dirac structure. We have defined outputs
conjugated to the inputs of the boundary control systems in such a way that the
system satisfies a power balance equation in a way similar to dissipative systems [25].

In the fourth instance, these results are used to define infinite-dimensional port
Hamiltonian systems. These systems are defined with respect to the Dirac structure
associated with a skew-symmetric differential operator and a coercive operator defin-
ing the Hamiltonian functional, i.e., the total energy of the system. Again from such
a port Hamiltonian system one may derive a class of boundary control system associ-
ated with contraction semigroups. This is illustrated by the example of Timoshenko’s
beam.

A natural question is the relation of our class of systems, especially the Hamilto-
nian systems with the systems nodes (see [26]), and with the class of well-posed linear
systems. This has been partially done in [31] for the system nodes and in [32] for
well-posed systems (using the idea of feedback). Another issue is the generalization
of this work to PDEs on an n-dimensional spatial domain.
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Finally, this works also opens the way for the generalization to infinite-dimensional
systems of the synthesis of stabilizing controllers using the immersion and Hamiltonian
reduction proposed in [13, 22].

Appendix. Technical lemmas.
Lemma A.1. Let W be an nN × 2nN matrix and let Σ = ( 0 I

I 0 ). Then W has
rank nN and WΣWT ≥ 0 if and only if there exist a matrix V ∈ RnN×nN and an
invertible matrix S ∈ RnN×nN such that

W = S(I + V I − V )(A.1)

with V V T ≤ I.
Furthermore, WΣWT = 0 if and only if V is unitary.
Proof. If W is of the form (A.1), then we find

WΣWT = S
(
I + V I − V

)
Σ

(
I + V T

I − V T

)
ST = S[2I − 2V V T ]ST ,

which is nonnegative, since V V T ≤ I.
Now we prove that if W is of full rank and is such that WΣWT ≥ 0, then (A.1)

holds. Writing W as W = (W1 W2), we have that WΣWT ≥ 0 is equivalent to
W1W

T
2 + W2W

T
1 ≥ 0. Hence

(W1 + W2)(W1 + W2)
T ≥ (W1 −W2)(W1 −W2)

T ≥ 0.(A.2)

If x ∈ ker((W1 +W2)
T ), then the above inequality implies that x ∈ ker((W1 −W2)

T ).
Thus x ∈ ker(WT

1 )∩ ker(WT
2 ). Since W has full rank, this implies that x = 0. Hence

W1 + W2 is invertible.
Using (A.2) once again, we see that

(W1 + W2)
−1(W1 −W2)(W1 −W2)

T (W1 + W2)
−T ≤ I

and thus V := (W1 + W2)
−1(W1 −W2) satisfies V V T ≤ I. Summarizing, we have

(W1 W2) =
1

2
(W1 + W2 + W1 −W2 W1 + W2 −W1 + W2)

=
1

2
(W1 + W2)(I + V I − V ).

Defining S := 1
2 (W1 + W2), we have shown the representation (A.1).

If instead of inequality we have equality for W , then it is easy to show that we
have equality in the equation for V as well. Thus V is unitary.

Lemma A.2. Suppose that the nN × 2nN matrix W can be written in the format
of (A.1), i.e., W = S(I+V I−V ) with S and V square matrices, and S is invertible.
Then the kernel of W equals the range of ( I−V

−I−V ).
If V is unitary, then the kernel of W equals the range of ΣWT .
Proof. Let ( x1

x2
) be in the range of ( I−V

−I−V ). By equality (A.1), we have that

W

(
x1

x2

)
= S

(
I + V I − V

)(x1

x2

)
= S

(
I + V I − V

)( I − V
−I − V

)
l = 0.
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Hence we see that the range of ( I−V
−I−V ) lies in the kernel of W . It is easy to show

that W has rank nN , and so the kernel of W has dimension nN . Thus, if we can
show that the 2nN × nN matrix ( I−V

−I−V ) has full rank, then we have proved the first
assertion. If this matrix would not have full rank, then there should be a nontrivial
element in its kernel. It is easy to see that the kernel consists of zero only, and so we
have proved the first part of the lemma.

Suppose now that V is unitary, then(
I − V
−I − V

)
=

(
−I + V T

−I − V T

)
V = −ΣWTS−TV.

Since the range of ΣWT equals the range of −ΣWTS−TV , we have proved the second
assertion.

Lemma A.3. Given the interval [a, b] and a positive number N ∈ N. There exist
polynomials flj(z), frj(z), j = 0, . . . , N − 1, such that

dkfl,j
dzk

(a) = δkj , k = 0, . . . , N − 1,

dkfl,j
dzk

(b) = 0, k = 0, . . . , N − 1,

(A.3)

and

dkfr,j
dzk

(a) = 0, k = 0, . . . , N − 1,

dkfr,j
dzk

(b) = δkj , k = 0, . . . , N − 1.

(A.4)

Proof. Since the construction of fr,j is very similar to that of fl,j , we show only
how fl,j is constructed. These functions are constructed using backward induction.
It is easily seen that

fl,N−1(z) :=
1

(N − 1)!
(z − a)N−1(z − b)N

1

(a− b)N

satisfies condition (A.3). Suppose next that we have constructed the functions fl,j(z)

for j = j0 + 1, . . . , N − 1. We next construct fl,j0(z). Define f̃l,j0(z) as

f̃l,j0(z) =
1

j0!
(z − a)j0(z − b)N

1

(a− b)N
.

It is easy to see that

dkf̃l,j0
dzk

(a) = δkj0 , k = 0, . . . , j0,

and

dkf̃l,j0
dzk

(b) = 0, k = 0, . . . , N − 1.

If we define the function fl,j0(z) as

fl,j0(z) = f̃l,j0(z) −
N−1∑

i=j0+1

difl,j0
dzi

(a)fl,i(z),

then it is straightforward to see that it satisfies (A.3).
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MEAN-VARIANCE HEDGING WHEN THERE ARE JUMPS∗

ANDREW E. B. LIM†

Abstract. In this paper, we consider the problem of mean-variance hedging in an incomplete
market where the underlying assets are jump diffusion processes which are driven by Brownian
motion and doubly stochastic Poisson processes. This problem is formulated as a stochastic control
problem, and closed form expressions for the optimal hedging policy are obtained using methods
from stochastic control and the theory of backward stochastic differential equations. The results we
have obtained show how backward stochastic differential equations can be used to obtain solutions to
optimal investment and hedging problems when discontinuities in the underlying price processes are
modeled by the arrivals of Poisson processes with stochastic intensities. Applications to the problem
of hedging default risk are also discussed.
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1. Introduction. Much of the literature on asset price modeling is motivated by
the observation that simple models, like Black–Scholes, fail to account for important
features of price processes that are observed in data. For example, the log-returns
process of real-world asset prices are not normally distributed but exhibit higher
peaks and heavier tails, implying a greater probability of extreme price movements
than predicted by Black–Scholes. In addition, the price processes of real-world assets
are typically not continuous, but may jump (in a nonpredictable way) in response to
news or other surprise events. For a number of years, researchers have focused on
developing a richer class of asset price models that include jumps as well as stochas-
tic parameters; see, for example, [3, 12, 20]. While the adoption of these models in
asset pricing (where simulation can be used) is fairly widespread, their use in dy-
namic optimization problems like hedging and optimal investment, when the market
is incomplete, has been quite limited. This paper is concerned with the problem of
dynamic mean-variance hedging in an incomplete market when there are random pa-
rameters and discontinuities in the price processes. We assume that uncertainty is
modeled by Brownian motion and a doubly stochastic Poisson process with intensity
that is predictable with respect to the Brownian filtration. We derive expressions for
the optimal hedging strategy using methods from stochastic control and the theory
of backward stochastic differential equations (BSDEs).

While the theory of BSDEs has played an important role in the analysis and
solution of mean-variance hedging problems with random parameters (see [25, 27]),
it is typically assumed that price processes are continuous and driven by Brownian
motion. (We note, however, that generalizations to the continuous semimartingale
setting have recently appeared; see Bobrovnytska and Schweizer [6].) One contribution
of this paper is to show how BSDEs can be used when there are jumps. In this regard,
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we determine conditions under which the relevant BSDEs have unique solutions, and
derive an expression for the optimal hedging strategy in terms of these. In particular,
we show how the hedging strategy should respond to news that indicates a higher or
lower probability of a sudden price change (i.e., an increase or decrease in the intensity
of the jump process).

An alternative approach to mean-variance hedging uses the projection theorem
and convex duality and typically assumes that price processes are continuous semi-
martingales; see, for example, [9, 14, 23, 30, 32]. Exceptions include [22], which
considers the problem of local risk minimization for a model with jumps under the
assumption that the stochastic intensity is independent of the processes driving the
stock price processes, and the recent paper by Arai [1], which generalizes the methods
in [30] to the discontinuous case. Some key differences between [1] and this paper
include the generality of the price processes (discontinuous semimartingales v’s pro-
cesses driven by Brownian motion and a doubly stochastic Poisson process) and the
methods that are used to solve the problem (duality v’s stochastic control). A key
issue in both [1] and this paper concerns the so-called variance optimal (signed) mar-
tingale measure. In the continuous semimartingale case, the variance optimal signed
martingale measure is actually a probability measure, but this is not necessarily the
case when there are jumps. (We show this in our example.) For this reason, additional
assumptions are needed when dealing with discontinuous problems. In the context
of this paper, some of these assumptions are required to prove solvability of one of
the BSDEs. On the other hand, the additional structure in our model allows us to
dispense with some of the assumptions imposed in [1]. Furthermore, under additional
assumptions on the liability, we also prove solvability of the hedging problem, even
when the variance optimal martingale measure is not a probability measure.

The bulk of the literature on optimal portfolio choice and dynamic hedging has
focused, primarily, on market models with continuous price processes, and relatively
little has been done using models with price discontinuities (some recent exceptions
include [2, 15, 18, 26, 28, 29]). This paper may be regarded as a contribution to this
literature. In the papers [2, 18], the problem of utility maximization when there are
discontinuous price processes is solved using convex duality. Unlike the model in [29]
as well as in the present paper, however, the market models in [2, 18] are complete.
Similar methods are used in [28] to solve a continuous time mean-variance problem
with a bankruptcy prohibition when there are price discontinuities, but once again,
market completeness is assumed. Finally, the paper [15] discusses the issues of model
calibration and optimal portfolio computation in a discontinuous price setting while
the recent paper [26] solves a portfolio choice problem with regime switching and price
discontinuities.

Finally, the results in this paper may also be regarded as a contribution to
the literature on hedging default risk in an incomplete market. In particular, dou-
bly stochastic Poisson processes have recently been used to model events default
[4, 11, 21] and for this reason, the problem of optimal investment or hedging with
default sensitive assets and/or liabilities may be formulated as an optimal invest-
ment/hedging problem with asset prices modeled as jump-diffusions. (For further
discussion on this issue, the reader can consult [24].) The problem of hedging in a
complete market with default risk is studied in Blanchet-Scalliet and Jeanblanc [5].
It should be noted, however, that the market model in [5] is different from ours in a
number of ways, and for this reason our result cannot really be regarded as a faithful
generalization of theirs. For example, we assume that parameters (and in particular
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the default intensity) are predictable with respect to Brownian motion, whereas the
results in [5] allow for a more general class of parameters. Also, we are assuming that
assets remain tradable after a jump occurs, whereas the results in [5] apply to the case
when the underlying asset (a zero-coupon bond) ceases to be tradable the instant a
jump (i.e., default) occurs.

The outline of this paper is as follows. In section 2, we present the model for the
financial market, and formulate the hedging problem as a stochastic control problem.
In section 3, the optimal hedging portfolio is derived. In particular, the results in
this section depend on the solvability of a certain BSDE that is driven by Brownian
motion and the Poisson process. In section 4, solvability of this backwards equation is
discussed in greater detail. In particular, we prove solvability under the assumption
that a certain local martingale is a positive martingale (the “martingale condition”),
and derive necessary and sufficient conditions for this to hold. This condition is diffi-
cult to check, however, due to its complicated dependence on the problem parameters,
which motivates our analysis in section 5 where simple conditions under which the
“martingale condition” can be checked are derived. In particular, we show that the
“martingale condition” holds when the market is complete, and it is easy to check
when the parameters are deterministic. In addition, we also derive conditions on the
liability under which the hedging problem will still have a solution, even if the “mar-
tingale condition” is not satisfied. In particular, we show in section 5.4 that solvability
can be guaranteed, irrespective of the “martingale condition,” whenever the liability is
measurable with respect to the Brownian motion, which is the case for the continuous
time version of Markowitz’s mean-variance portfolio selection problem. In section 6,
we compare the assumptions made in Arai [1] with those in this paper. In section 7,
we present an example where an explicit expression of the optimal hedging strategy
can be calculated. We conclude in section 8.

This paper is a substantially expanded version of the conference paper [24]. In
particular, the detailed proof of optimality, existence of solutions of the associated
BSDEs, necessary and sufficient conditions for the “martingale condition” to be sat-
isfied, comparisons with the paper [1], and the example are not found in the earlier
version.

2. Formulation. Let (Ω, F , P) be a complete probability space. We assume
throughout that all stochastic processes are defined on a finite time horizon [0, T ].
Suppose that W (t) � (W1(t), . . . ,Wd(t))

′ is a d-dimensional standard Brownian mo-
tion on this space defined on [0, T ] and F � {Ft}t≥0 is the filtration generated by
W (t) augmented by the null sets of P. Let N(t) � (N1(t), . . . , Nn(t))′, where Ni(t)
is a doubly stochastic Poisson process (or a Cox process) with an F-predictable non-
negative intensity λi(t). In relation to N(t), we denote by D � {Dt}t≥0 the filtration
generated by N(t) augmented by the P-null sets. We assume throughout that con-
ditional on FT , Ni(·) is a nonhomogeneous Poisson process with intensity λi(t), and
(conditional on FT ) Ni(·) and Nj(·) are independent when i �= j. It should be noted
that the construction of such processes Ni(t) is fairly standard; see, for example, [4].
Finally, let G denote the filtration {Gt}t≥0, where Gt � Ft∨Dt, the smallest filtration
containing F and D. Here, Gt may be regarded as the information available to the
investor at time t. The filtrations F and G satisfy the following property (see [7] for
a detailed study).

Proposition 2.1 (martingale invariance property). Every F-martingale under
P is also a G-martingale under P.
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Proof. By the construction of doubly stochastic Poisson processes with F-predic-
table intensity, Gt and FT are independent, given Ft. The result now follows from
the observation that this property is equivalent to E[X|Ft] = E[X|Gt] for every FT -
measurable random variable X.

The martingale invariance property is studied in detail in [7] and is a common
assumption in the literature on default risk modeling [4, 13] as well as hedging and
portfolio choice with jumps [5]. It holds in the setting of this paper due to the structure
of our stochastic model.

We introduce the following notation.
• P2(G, Rm): the set of G-predictable, Rm-valued processes on [0, T ] under P

with norm

‖f‖2 :=

(
EP

∫ T

0

|f(t)|2 dt
) 1

2

< ∞.

• L∞(G, Rm): the set of G-adapted P-essentially bounded Rm-valued processes
on [0, T ].

We refer to processes belonging to P2(G, Rm) as being square integrable, while those
that belong to L∞(G, Rm) are uniformly bounded.

Suppose that there are m + 1 tradable assets with prices B(t), P1(t), . . . , Pm(t),
where B(t) is the price of the money market account with interest rate r(t), and Pi(t)
is the price of the ith risky asset. We assume throughout that B(t) and Pi(t) are
solutions of the following stochastic differential equations:{

dB(t) = r(t)B(t) dt, B(0) = 1,

dPi(t) = Pi(t)μi(t) dt + Pi(t)σi(t)dW (t) + Pi(t)θi(t)dN(t), Pi(0) = P 0
i .

(2.1)

The process θij(t) determines the relative change in the price Pi(t) given an arrival
of the jth doubly stochastic Poisson process Nj(t). On the other hand, since the sum
of doubly stochastic Poisson processes is itself a doubly stochastic Poisson process,
an equivalent interpretation of (2.1) replaces N(t) = [N1(t), . . . , Nn(t)]′ with a sin-
gle doubly stochastic Poisson process N̄(t) with intensity λ̄(t) � λ1(t) + · · · + λn(t).
Conditional on an arrival of N̄(t), the relative change in the price of asset j is θij(t)
with probability λj(t)/λ̄(t). In this regard, the components of θi(t) represent pos-
sible “jump sizes” with the distribution of the jumps determined by the intensities
λ1(t), . . . , λn(t). The F-predictability of the θi(t) and λi(t) implies that the possi-
ble jump sizes as well as their distributions depend on “available information,” as
captured by F.

We assume that the investor in this financial market faces some liability, which we
model by a random variable ξ. (For example, ξ may be a contingent claim written on a
default event, which itself affects the price of the underlying asset.) Broadly speaking,
the investor would like to reduce the uncertainty by investing in the financial market
to minimize his/her risk. We shall assume throughout that the following assumptions
are satisfied.

Assumption (A).
• r(t), μi(t), σik(t), θij(t), and λj(t) are uniformly bounded and F-predictable

on [0, T ] for i = 1, . . . , m, j = 1, . . . , n, and k = 1, . . . , d. That is, there is
a constant K such that |μi(t)| ≤ K for all t ∈ [0, T ], P-a.s. (and likewise for
the other parameters).

• There exists a constant δ > 0 such that λi(t) ≥ δ for all t ∈ [0, T ], P-a.s.
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• ξ ∈ L∞(GT ), where

L∞(GT ) = {Y : Ω → R |Y is GT -measurable

and |Y | < K P-a.s. for some constant K < ∞}.

Throughout this paper, random variables satisfying this property are said to
be uniformly bounded.

• There exists a constant δ > 0 such that

Σ(t) � σ(t)σ(t)′ + θ(t)D(t)θ(t)′ ≥ δI for all t ∈ [0, T ],(2.2)

where D(t) � diag(λ1(t), . . . , λn(t)).

The uniform bound on λi(t) implies that E(
∫ t

0
λi(s)ds) < ∞ for all t ∈ [0, T ] from

which it follows that the compensated Poisson process Mi(t) � Ni(t) −
∫ t

0
λi(s) ds

is a G-martingale (see Lemma 6.6.3 in [4]). We define the vector process M(t) �
[M1(t), . . . , Mn(t)]′.

We emphasize again the parameters in our market model (2.1), and in particular
the arrival rate intensities λi(t) of the Poisson processes, are F-predictable processes.
Such an assumption is common in the literature on default risk modeling (and partic-
ularly in pricing applications) and the reader may consult [4, 11, 21] for more details.
Finally, since the market (2.1) is incomplete, perfect replication is generally not pos-
sible. For this reason, as in [6, 9, 14, 25, 28, 32], we adopt the mean-square error as a
measure of closeness between the terminal wealth and the liability; see (2.6) below.

Observing that the price of the risky assets can also be written in the form

dPi(t) = Pi(t)[μi(t) + θi(t)λ(t)] dt + Pi(t)σi(t) dW (t) + Pi(t)θi(t) dM(t),(2.3)

where λ(t) � [λ1(t), . . . , λn(t)]′, and denoting by π(t) � [π1(t), . . . , πm(t)]′ the vector
of dollar amounts invested in the risky assets at time t, it is easy to show that the
wealth process associated with self-financing investment in (2.3) is{

dx(t) = [r(t)x(t) + π(t)′b(t)] dt + π(t)′σ(t) dW (t) + π(t)′θ(t) dM(t),

x(0) = x0,
(2.4)

where

b(t) � [b1(t), . . . , bm(t)]′, bi(t) � μi(t) + θi(t)λ(t) − r(t),

σ(t) � [σ1(t)
′, . . . , σm(t)′]′,

θ(t) � [θ1(t)
′, . . . , θm(t)′]′.

Note that π0(t), the amount invested in the bond B(t), does not need to be specified
since it is determined by the amounts π1(t), . . . , πm(t) invested in the risky asset and
the wealth x(t) at time t through the equation π0(t) = x(t) −

∑m
i=1 πi(t). The class

of admissible policies is

U =

{
π : [0, T ] × Ω → Rm

∣∣∣π(t) is G-predictable and E

∫ t

0

|π(t)|2 dt < ∞
}
.(2.5)

Consider an agent who faces a time T liability ξ. Throughout this paper, we
assume that the value of ξ is contingent on the history of the Poisson processes N(t)
as well as the Brownian motion W (t). By virtue of this dependence, the investor
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faces uncertainty in the value of the liability ξ. One method of reducing this risk is
to invest in assets (or hedging instruments) that depend, as much as possible, on the
same sources of uncertainty N(t) and W (t) that affect the liability. In doing this, a
natural objective is to find a hedging/investment portfolio π(t) such that the terminal
value of this investment x(T ) is as “close as possible” to the value of ξ. This motivates
our model of asset prices (2.1) which are driven by N(t) and W (t), and the following
stochastic control problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
π(·)∈U

E[ξ − x(T )]2

subject to
dx(t) = [r(t)x(t) + π(t)′b(t)] dt + π(t)′σ(t) dW (t) + π(t)′θ(t) dM(t),
x(0) = x0,
π(·) ∈ U .

(2.6)

In a complete market (see section 5.1), an investor with the appropriate initial wealth
x0 can eliminate all the risk by replicating ξ; that is, there is a unique value of x0

and an associated trading strategy π(·) such that an investor, starting with x0 and
investing according to π(·), will have a terminal wealth satisfying x(T ) = ξ, P-a.s.; see,
for example, [5], which deals with this issue in the context of hedging default risk in a
complete market. In the case of an incomplete market, however, perfect replication is
usually not possible, no matter what the value of the investor’s initial wealth. On the
other hand, superreplication (i.e., finding a portfolio such that x(T ) ≥ ξ, P-a.s.) may
be possible, but is typically infeasible since the initial wealth required to superreplicate
a claim is often too large to be of practical use. As a compromise, an investor in an
incomplete market (or, for that matter, in a complete market but with insufficient
initial capital to replicate the claim) may seek to solve (2.6).

3. Optimal hedging portfolio. Our solution of the optimal hedging problem
(2.6) will involve, in an essential way, the following backward stochastic differential
equations1 (BSDEs):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dp(t) = −p(t)

[
2r(t) −

(
b(t) +

σ(t)Λ(t)

p(t)

)′

Σ(t)−1

(
b(t) +

σ(t)Λ(t)

p(t)

)]
dt

+ Λ(t)′ dW (t),

p(T ) = 1,

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dh(t) =

{
r(t)h(t) +

(
b(t) +

σ(t)Λ(t)

p(t)

)′

Σ(t)−1
(
σ(t)η(t) + θ(t)D(t)κ(t)

)
−η(t)′Λ(t)

p(t)

}
dt + η(t)′ dW (t) + κ(t)′ dM(t),

h(T ) = ξ.

(3.2)

Throughout this paper, a solution of (3.1) denotes a pair of processes (p(t), Λ(t))
such that p(t) is G-adapted, strictly positive, and uniformly bounded, and Λ(t) =

1Although in common use, the term backward stochastic differential equation is somewhat mis-
leading in that these equations do not involve time reversal in any way. Furthermore, parameters of
these equations as well as the solutions are constrained to be adapted to the “forward” filtration.
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(Λ1(t), . . . , Λd(t))
′ is G-predictable and square integrable under P; that is,

(p(t), Λ(t)) ∈ L∞(G, R) × P2(G, Rd).

In this paper, we define a solution of (3.2) as a triple (h(t), η(t), κ(t)) such that
h(t) is G-adapted and uniformly bounded and η(t) = (η1(t), . . . , ηd(t))

′ and κ(t) =
(κ1(t), . . . , κn(t))′ are G-predictable and square integrable under P; that is,

(h(t), η(t), κ(t)) ∈ L∞(G, R) × P2(G, Rd) × P2(G, Rn).(3.3)

Note that standard existence and uniqueness results for linear BSDEs driven by Brow-
nian motion and jump processes (such as [31]) do not apply in (3.2) since the coef-
ficient of the component η(t) in the drift may be unbounded due to dependence on
the square integrable term Λ(t). In the case of (3.1), however, there are no terms
involving the increment dM(t) since the parameters are assumed to be F-predictable.
For this reason, the results obtained in Lim [25] can be applied to establish existence
of this equation. This can be summarized as follows.

Proposition 3.1. Suppose that Assumption (A) holds. Then there exists a
unique solution (p(t), Λ(t)) of (3.1) Moreover, there are finite constants 0 < δ1 <
δ2 < ∞ such that δ1 ≤ p(t) ≤ δ2 for all t ∈ [0, T ], P-a.s. Finally, the stochastic
differential equation {

dρ(t) = −ρ(t)γ(t)′ dW (t),

ρ(0) = 1,
(3.4)

where

γ(t) � σ(t)′Σ(t)−1

(
b(t) +

σ(t)Λ(t)

p(t)

)
− Λ(t)

p(t)
,

has a unique solution ρ(t) = e−
1
2

∫ t
0
|γ(s)|2ds−

∫ t
0
γ(s)′dW (s) and ρ(t) is a strictly positive

square integrable martingale.
Proof. Existence and uniqueness of a solution (p(t), Λ(t)) ∈ L∞(G, R)×P2(G, Rd)

of (3.1) follows from Theorem 5.1 of [25]. The existence of positive constants δ1 and
δ2 such that δ1 ≤ p(t) ≤ δ2 is shown in the proof of this same theorem. That ρ(t) is a
strictly positive square integrable martingale follows from Theorem 4.1 in [25].

The (martingale) density process ρ(t) in Proposition 3.1 is related to the
Radon–Nikodým derivative that defines the P-equivalent probability measure known
as the variance optimal martingale measure (VMM), which is a fundamental object
associated with the mean-variance hedging problem; see, for example, [9, 14, 23, 32]
for more on the VMM, and see [25] for the connection between the nonlinear BSDE
(3.1) and the VMM in the case of Brownian information. In this regard, the density
process associated with the hedging problem (2.6) (introduced below in (4.2)) may
be regarded as a generalization of (3.4) in the case when there are jumps. Further
discussion on this point follows Theorem 4.3.

The remainder of this section will be devoted to proving optimality of the portfolio

π(t) = Σ(t)−1

[
σ(t)η(t) + θ(t)D(t)κ(t) +

(
b(t) +

σ(t)Λ(t)

p(t)

)
(h(t−) − x(t−))

]
(3.5)

under the assumption that (3.2) has a solution. (Solvability of (3.2) will be addressed
in section 4.) In order to prove optimality, a number of issues need to be resolved.
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First, we need to show that the stochastic differential equation (2.6) for the wealth
process x(t) has a solution under (3.5). This is not immediately obvious since the
coefficients of x(t) in (2.6) under (3.5) are generally unbounded due to dependence
on the square integrable process Λ(t). As a consequence, standard existence and
uniqueness results from the theory of linear stochastic differential equations do not
immediately apply since boundedness of coefficients is usually required for these results
to hold. (See, for example, [19].)

A second important issue concerns the admissibility (and in particular square
integrability) of (3.5) (see the definition (2.5)), which is an important part of the
proof of optimality in Theorem 3.5. Once again, however, square integrability of (3.5)
is not immediately apparent since the product of the square integrable process Λ(t)
and the wealth process x(t) is not necessarily square integrable.

The following results resolve the technical issues discussed above. Proposition 3.2
shows that the wealth process (2.6) under (3.5) has a solution x(t). Proposition 3.3 is a
technical result concerning the integrability of solutions of linear BSDEs which is used
in the proof of Proposition 3.4 where square integrability (and hence admissibility)
of (3.5) is established. Optimality of (3.5) is proven in Theorem 3.5. (A similar
optimality proof is given in Hu and Zhou [16], though for a problem that involves
neither jumps nor a random terminal condition.) We mention again that the results
below are based on the assumption that (3.2) has a solution. Solvability of (3.2) is
discussed in a later section.

Proposition 3.2. Suppose that (3.2) has a solution (h(t), η(t), κ(t)) satisfying
the conditions (3.3). Then the stochastic differential equation (2.6) under the portfolio
π(t) given by (3.5) has a solution x̄(t).

Proof. A solution of (2.6) under (3.5) can be constructed as follows. Define⎧⎪⎨⎪⎩
dY (t) = −r(t)Y (t) dt− {A(t) + γ(t)Y (t)}′ dW (t)

−{B(t) + ψ(t)Y (t)}′ dM(t),

Y (0) = p(0)[h(0) − x(0)],

(3.6)

where γ(t) and ψ(t) are defined by

γ(t) � σ(t)′Σ(t)−1

(
b(t) +

σ(t)Λ(t)

p(t)

)
− Λ(t)

p(t)
,(3.7)

ψ(t) � θ(t)′Σ(t)−1

(
b(t) +

σ(t)Λ(t)

p(t)

)
,(3.8)

and

A(t) � p(t)
[
σ(t)Σ(t)−1

(
σ(t)η(t) + θ(t)D(t)κ(t)

)
− η(t)

]
,

B(t) = p(t)
[
θ(t)′Σ(t)−1

(
σ(t)η(t) + θ(t)D(t)κ(t)

)
− κ(t)

]
.

Observe that γ(t) and ψ(t) are square integrable. We denote the components of
γ(t) and ψ(t) by γi(t) and ψi(t); that is, γ(t) � [γ1(t), . . . , γn(t)]′ and ψ(t) �
[ψ1(t), . . . , ψn(t)]′. Denoting ΔNj(t) � Nj(t) −Nj(t

−), it can be shown (using Ito’s
formula) that Y (t) = Φ(t){Y (0) + Z(t)}, where

Φ(t) = e
∫ t
0
[−r(s)− 1

2 |γ(s)|2+ψ(s)′λ(s)] ds−
∫ t
0
γ(s)′ dW (s)

×
n∏

i=1

∏
0<si≤t

(1 − ψi(si)ΔNi(si))(3.9)
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and

Z(t) � −
∫ t

0

Φ(s)−1

[
γ(s)′B(t) +

n∑
i=1

ψi(s)

1 − ψi(s)
λi(s)Ai(s)

]
ds

−
∫ t

0

Φ(s)−1B(s)′ dW (s) −
n∑

i=1

∫ t

0

Φ(s)−1 Ai(s)

1 − ψi(s)
dMi(s).(3.10)

Note that (3.9) and (3.10) are well-defined processes. Finally, it can be shown using
Ito’s formula that x̄(t) � h(t) − Y (t)/p(t) is a solution of (2.6) when the portfolio is
(3.5), which implies in turn that the wealth process under (3.5) is well defined.

The following technical result is required in the proof of Proposition 3.4.
Proposition 3.3. Suppose that r(t), α(t), β(t), and λ1(t), . . . , λn(t) are uni-

formly bounded G-predictable processes on [0, T ], τ is a G-stopping time, and Y ∈ Gτ

satisfies E|Y |2 < ∞. Then the BSDE⎧⎨⎩dy(t) =
[
r(t)y(t) + α(t)′q(t) + β(t)′z(t)

]
dt + q(t)′ dW (t) + z(t)′ dM(t),

y(τ) = Y
(3.11)

has a unique solution

(y(t), z(t), q(t)) ∈ L2(G, R) × P2(G, Rd) × P2(G, Rn).

Moreover, there is a constant c<∞ that depends only on r(t), α(t), β(t), and λ1(t), . . . ,
λn(t) (but not the stopping time τ) such that

E

∫ τ

0

[
|q(t)|2 +

n∑
i=1

λi(t)|zi(t)|2
]
ds ≤ 2E|Y |2e2c[1+c(n+1)]T .(3.12)

Proof. Existence and uniqueness for (3.11) can be shown as in Theorem 1 of [31]
and the bound (3.12) can be derived along the lines of Lemma 1 in [31]. Because of
constraints on the length of this paper, details have not been provided but can be
obtained from the author upon request.

The following result establishes admissibility of (3.5).
Proposition 3.4. Suppose that (3.2) has a solution (h(t), η(t), κ(t)) such that

(3.3) is satisfied. Then the portfolio π(t) given by (3.5) is square integrable and hence
admissible.

Proof. Throughout this proof, π(t) denotes the portfolio (3.5) and x̄(t) denotes
the solution of the wealth process (2.6) under (3.5). (Recall, by Proposition 3.2, that
(2.6) has a solution under (3.5).) Since (3.1) and (3.2) have solutions, the process
p(t)[h(t) − x̄(t)]2 is well defined and Ito’s formula gives

p(t)(h(t) − x̄(t))2 = p(0)(h(0) − x̄(0))2

+

∫ t

0

p(t)
{
κ(t)′D(t)κ(t) + η(t)′η(t)

−[σ(t)η(t) + θ(t)D(t)κ(t)]′Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)]
}
dt

+

∫ t

0

[
(h(t) − x̄(t))2Λ(t) + 2p(t)(h(t) − x̄(t))(η(t) − σ(t)′π(t))

]′
dW (t)
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+

∫ t

0

n∑
i=1

p(t)(κ(t) − θ(t)′π(t))2i dMi(t)

+

∫ t

0

2p(t)(h(t−) − x̄(t−))(κ(t) − θ(t)′π(t))′ dM(t).

(A similar calculation for the case of general π(t) is given in (3.21) below.) Noting
that the stochastic integrals are local martingales, there exists an increasing sequence
of stopping times {τi} such that τi ↑ T as i → ∞ and

E{p(T ∧ τi)(h(T ∧ τi) − x̄(T ∧ τi))
2} = p(0)(h(0) − x̄(0))2(3.13)

+ E

∫ T∧τi

0

p(t)
{
κ(t)′D(t)κ(t) + η(t)′η(t)

− [σ(t)η(t) + θ(t)D(t)κ(t)]′Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)]
}
dt.

Since there is a constant δ > 0 such that p(t)≥ δ for all t ∈ [0, T ], P-a.s. (Proposi-
tion 3.1), it follows that

δE[h(T ∧ τi) − x̄(T ∧ τi)]
2(3.14)

≤ E[p(T ∧ τi)(h(T ∧ τi) − x̄(T ∧ τi))
2]

≤ p(0)(h(0) − x(0))2 + E

∫ T

0

p(t)
{
κ(t)′D(t)κ(t) + η(t)′η(t)

−[σ(t)η(t) + θ(t)D(t)κ(t)]′Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)]
}
dt

(where the second inequality follows from (3.13), the nonnegativity of the integrand,
and the fact that T ∧ τi ≤ T ). In other words, h(T ∧ τi) − x̄(T ∧ τi) ∈ L2(G, R).
Finally, noting (by assumption) that h(t) is uniformly bounded (since, by assumption,
(3.3) is satisfied), it follows that

x̄(T ∧ τi) = h(T ∧ τi) − [h(T ∧ τi) − x̄(T ∧ τi)] ∈ L2(G, R).

We have shown that the wealth-portfolio pair (x̄(t), π(t)) given by (2.6) and (3.5)
satisfy the system of equations{

dy(t) = {r(t)y(t) + b(t)′π(t)} dt + π(t)′σ(t) dW (t) + π(t)′θ(t) dM(t),

y(T ∧ τi) = x̄(τi ∧ T ),
(3.15)

where x̄(T ∧ τi) is a square integrable GT∧τi-measurable random variable. Setting

q(t) = σ(t)′π(t), z(t) = θ(t)′π(t)

or, equivalently,

π(t) = Σ(t)−1[σ(t)q(t) + θ(t)D(t)z(t)](3.16)

and substituting into (3.15), it follows that (y(t), q(t), z(t)) = (x̄(t), σ(t)′π̄(t), θ(t)′π̄(t))
is the solution of the following BSDE on the random time horizon [0, T ∧ τi]:⎧⎪⎪⎨⎪⎪⎩

dy(t) =
[
r(t)y(t) + b(t)′Σ(t)−1σ(t)q(t) + b(t)′Σ(t)−1θ(t)D(t)z(t)

]
dt

+ q(t)′ dW (t) + z(t)′ dM(t), t ∈ [0, T ∧ τi),

y(T ∧ τi) = x̄(T ∧ τi).

(3.17)
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In particular, (3.17) is a linear BSDE with a square integrable terminal condition
y(T ∧ τi) = x̄(T ∧ τi) at the stopping time T ∧ τi with (by Assumption (A)) uniformly
bounded parameters r(t), b(t)′Σ(t)−1σ(t), b(t)′Σ(t)−1θ(t)D(t), and λ1(t), . . . , λn(t).
It follows immediately from Proposition 3.3, and particularly the bound (3.12), that
there is a constant c < ∞ (which depends only on the parameters r(t), b(t), σ(t), θ(t),
and λi(t) but not the stopping time τi) such that

E

{∫ T∧τi

0

|q(s)|2 ds +

n∑
i=1

∫ T∧τi

0

λi(s)|zi(s)|2 ds
}

(3.18)

≤ 2E|x̄(T ∧ τi)|2e2c[1+c(1+n)]T .

Furthermore, since

E|x̄(T ∧ τi)|2 ≤ 2E|h(T ∧ τi)|2 + 2E|x̄(T ∧ τi) − h(T ∧ τi)|2 ≤ K,(3.19)

where K < ∞ is a constant independent of i (by virtue of the uniform bound on h(t)
and the bound (3.14)), it follows from (3.18) and (3.19) that

E

{∫ T∧τi

0

|q(t)|2 dt +

n∑
i=1

∫ T∧τi

0

λi(t)|zi(t)|2 dt
}

≤ 2Ke2c[1+c(1+n)]T < ∞,

and the monotone convergence theorem gives

E

{∫ T

0

|q(t)|2 dt +

n∑
i=1

∫ T

0

λi(t)|zi(t)|2 dt
}

< ∞.

The square integrability of (3.5) follows from the relationship (3.16) between π(t) and
(q(t), z(t)).

The following result establishes optimality of (3.5).
Theorem 3.5. Assume that (3.2) has a solution

(h(t), η(t), κ(t)) ∈ L∞(G, R) × P2(G, Rd) × P2(G, Rn).

Then (3.5) is the optimal hedging portfolio for (2.6). The optimal cost is

J∗ = p(0)(h(0) − x(0))2 + E

∫ T

0

p(t)
{
η(t)′η(t) + κ(t)′D(t)κ(t)

−[σ(t)η(t) + θ(t)D(t)κ(t)]′Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)]
}
dt.(3.20)

Proof. Let π(t) be an arbitrary admissible policy and x(t) the associated wealth
process. From Ito’s formula,

d{p(t)(h(t) − x(t))2}

=

{
(h(t) − x(t))2

×
[
− 2r(t)p(t) + p(t)

(
b(t) +

σ(t)Λ(t)

p(t)

)′
Σ(t)−1

(
b(t) +

σ(t)Λ(t)

p(t)

)]
+ 2r(t)p(t)(h(t) − x(t))2 + 2p(t)(h(t) − x(t))
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×
[(

b(t) +
σ(t)Λ(t)

p(t)

)′
Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)] − η(t)′Λ(t)

p(t)

]
+ p(t)[κ(t)′D(t)κ(t)] + p(t)π(t)Σ(t)π(t)

− 2p(t)π(t)′[σ(t)η(t) + θ(t)D(t)κ(t) + b(t)(h(t) − x(t))](3.21)

+ 2(h(t) − x(t))(η(t) − σ(t)′π(t))′Λ(t)

}
dt

+
[
(h(t) − x(t))2Λ(t) + 2p(t)(h(t) − x(t))(η(t) − σ(t)′π(t))

]′
dW (t)

+

n∑
i=1

p(t)(κ(t) − θ(t)′π(t))2i dMi(t)

+ 2p(t)(h(t−) − x(t−))(κ(t) − θ(t)′π(t))′dM(t).

Since the stochastic integrals are local martingales, there is a sequence of stopping
times {τi} such that τi ↑ T as i ↑ ∞ and

E [p(T ∧ τi)(h(T ∧ τi) − x(T ∧ τi))
2]

= p(0)(h(0) − x(0))2 + E

∫ T∧τi

0

p(t)
{
κ(t)′D(t)κ(t) + η(t)′η(t)

−[σ(t)η(t) + θ(t)D(t)κ(t)]′Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)]
}
dt

+ E

∫ T∧τi

0

p(t)
[
π(t) − Σ(t)−1

(
σ(t)η(t) + θ(t)D(t)κ(t)

+
(
b(t) +

σ(t)Λ(t)

p(t)

)
(h(t−) − x(t−))

)]
×Σ(t)

[
π(t) − Σ(t)−1

(
σ(t)η(t) + θ(t)D(t)κ(t)

+
(
b(t) +

σ(t)Λ(t)

p(t)

)
(h(t−) − x(t−))

)]
dt,

where the integrand in the expression above is obtained, after several (long!) lines
of algebra, from the integrand for the finite variation term in (3.21). Finally, noting
that p(t) is uniformly bounded (Proposition 3.1), h(t) is uniformly bounded (by as-
sumption), and E[supt∈[0, T ] |x(t)|2] < ∞, it follows from the dominated convergence
theorem (on the left-hand side) and the monotone convergence theorem (on the right)
that

Ep(T )(h(T ) − x(T ))2

= p(0)(h(0) − x(0))2 + E

∫ T

0

p(t)
{
κ(t)′D(t)κ(t) + η(t)′η(t)

−[σ(t)η(t) + θ(t)D(t)κ(t)]′Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)]
}
dt

+E

∫ T

0

p(t)
[
π(t) − Σ(t)−1

(
σ(t)η(t) + θ(t)D(t)κ(t)

+
(
b(t) +

σ(t)Λ(t)

p(t)

)
(h(t−) − x(t−))

)]
Σ(t)

[
π(t) − Σ(t)−1

(
σ(t)η(t) + θ(t)D(t)κ(t)

+
(
b(t) +

σ(t)Λ(t)

p(t)

)
(h(t−) − x(t−))

)]
dt.
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The claim in Theorem 3.5 follows immediately from this equation and the fact that
p(T ) = 1 and h(T ) = ξ.

4. Existence of solutions for (3.2): General results. The solution of (2.6),
as stated in Theorem 3.5, depends on the solvability of (3.1)–(3.2). While solvability
of (3.1) can be established using the results from [25], which can be applied since the
parameters are F-predictable and bounded (see Proposition 3.1), solvability of (3.2) is
not so clear. In particular, (3.2) may have unbounded parameters (due to dependence
on the component Λ(t) of the solution of (3.1)), and for this reason standard existence
results for BSDEs driven by jump processes (such as [31]) do not apply.

In the following two sections, we address the question of existence of solutions of
(3.2). We begin by presenting a general “martingale condition” under which solvability
of (3.2) can be guaranteed (Theorem 4.3). This condition (which can be stated in
terms of a certain local martingale being a strictly positive martingale) is required
in order to construct a solution of (3.2), and is analogous to the assumption in [1]
that the variance optimal (signed) martingale measure is a P-equivalent probability
measure. Following this, we show in Theorem 4.4 that strict positivity of the local
martingale in the “martingale condition” is not only necessary, but also sufficient for
the “martingale condition” to hold.

Recall the processes γ(t) and ψ(t) defined in (3.7)–(3.8). Observe that γ(t) and
ψ(t) are square integrable G-predictable processes under P. We can rewrite (3.2) as{

dh(t) = r(t)h(t) dt + η(t)′[γ(t) dt + dW (t)] + κ(t)′[D(t)ψ(t) + dM(t)],

h(T ) = ξ.
(4.1)

We can construct a solution of (4.1) using the Girsanov transformation and the martin-
gale representation theorem for jump-diffusion processes driven by Brownian motion
and doubly stochastic Poisson processes (see Propositions 4.1 and 4.2). In this regard,
consider the following stochastic differential equation:⎧⎨⎩dY (t) = −Y (t−)

{
γ(t)′ dW (t) + ψ(t)′ dM(t)

}
,

Y (0) = 1.
(4.2)

It is easy to show that Y (t) = ρ(t)ζ(t), where

dρ(t) = −ρ(t−)γ(t)′ dW (t), ρ(0) = 1,

dζ(t) = −ζ(t−)ψ(t)′ dM(t), ζ(0) = 1.

We can write the solution of these equations as

ρ(t) = e−
1
2

∫ t
0
|γ(s)|2ds−

∫ t
0
γ(s)′dW (s),

ζ(t) = e
∫ t
0
ψ(s)′λ(s)ds

n∏
i=1

∏
0<si≤t

(
1 − ψi(si)ΔN(si)

)
,

where ln(1 − ψ(s)) is an n-dimensional column vector with entries ln(1 − ψi(s)).
Assuming that Y (t) is a positive G-martingale under P, we can define a probability
measure Q equivalent to P on (Ω, GT ) by

dQ

dP

∣∣∣
GT

= Y (T ), P-a.s.(4.3)



1906 ANDREW E. B. LIM

The following is taken from [4, Proposition 6.6.8] (see also [10, Proposition 6, p. 361]).
Proposition 4.1 (Girsanov). Assume that Y (t) is a positive G-martingale under

P and that the Radon–Nikodým density of Q with respect to P is given by (4.2)–(4.3).

Then the process W̄ (t) = W (t) +
∫ t

0
γ(s) ds is a G-Brownian motion under Q, and

M̄(t) = M(t)+
∫ t

0
D(s)ψ(s) ds = N(t)−

∫ t

0
D(s)[1−ψ(s)] ds is a G-martingale under

Q. In addition, if ψ(t) is F-predictable, then N(t) is an F-conditional Poisson process
with respect to G under Q with intensity D(t)[1 − ψ(t)].

The following result can be obtained by a fairly straightforward extension of the
proof of martingale representation theorem for continuous martingales with respect
to a Brownian filtration (see, for example, [33]). For more results on martingale
representation for processes other than Brownian motion, see [34].

Proposition 4.2 (martingale representation). Let {Z(t)}t∈[0, T ] be a square in-
tegrable G-martingale under P. Then, there are unique square integrable G-predictable
processes f(t) and g1(t), . . . , gn(t) such that

Z(t) = Z(0) +

∫ t

0

f(s)′ dW (s) +

n∑
i=1

∫ t

0

gi(s)
′ dMi(s).(4.4)

The following result gives general conditions under which (3.2) can be solved.
Theorem 4.3. Suppose that Assumption (A) is satisfied. If the solution Y (t) of

(4.2) is a strictly positive G-martingale under P, then the BSDE (3.2) has a unique
solution (h(t), η(t), κ(t)) such that h(t) is uniformly bounded and

E

∫ T

0

{
|η(t)|2 +

n∑
i=1

λi(t)|κi(t)|2
}
dt < ∞.(4.5)

Before presenting the proof of Theorem 4.3, the following remarks are in order.
Recall that the set of all P-equivalent probability measures Q can be represented by
(4.3) and a pair of G-predictable processes (γ(t), ψ(t)) such that Y (t) is a positive
martingale. The equivalent martingale measures (EMMs) is the set of P-equivalent
measures under which discounted price processes Pi(t)/B(t) obtained from (2.1) are
martingales. Using this characterization and the model (2.1) for the price processes,
it can be shown that any pair (γ(t), ψ(t)) associated with an EMM can be written in
the form [

γ
ψ

]
=

[
σ′Σ−1b + (I − σ′Σ−1σ)Z1 − σ′Σ−1θD

1
2Z2

θ′Σ−1b− θ′Σ−1σZ1 −D
1
2 (I −D

1
2 θ′Σ−1θD

1
2 )Z2

]
(4.6)

for some choice of G-predictable processes (Z1(t), Z2(t)), where D(t)
1
2 � diag(λ1(t)

1
2 ,

. . . , λn(t)
1
2 ). In particular, the (nonempty) set of EMMs is not a singleton when there

are no arbitrage opportunities and the market is incomplete. Comparing (4.6) with
(3.7)–(3.8) we see that the SRE chooses the EMM corresponding to

Z1(t) = −Λ(t)

p(t)
, Z2(t) = 0.

When θ ≡ 0, which corresponds to the case when the price processes (2.1) are
driven by Brownian motion and are independent of the jump processes, the EMM
induced by (p(t), Λ(t)) coincides with the so-called variance optimal martingale mea-
sure associated with the mean-variance hedging when the price processes are driven
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by Brownian motion; see [9, 14, 23, 25, 32] as well as the remarks following Proposi-
tion 3.1.

The proof of Theorem 4.3 is as follows.
Proof. We prove this result by constructing the solution of (4.1).
By assumption, we have Y (T ) > 0 a.s. and EP[Y (T )] = 1 so we can define

a probability measure Q that is equivalent to P with Radon–Nikodým derivative
(4.3). Moreover, it follows from the Girsanov theorem (Proposition 4.1) that W̄ (t) =

W (t) +
∫ t

0
γ(s) ds is a G-Brownian motion under Q and, from the F-predictability of

ψi(t), that Ni(t) is a doubly stochastic Poisson process under Q with F-predictable
intensity λi(t)(1 − ψi(t)).

Define

h(t) = B(t) EQ

[
ξ

B(T )

∣∣∣ Gt

]
.

It follows that h(t)/B(t) is a G-martingale with respect to the probability measure
Q. Furthermore, since ξ is uniformly bounded, it follows that h(t)/B(t) is uniformly
bounded. The uniform boundedness of h(t) now follows from the fact that B(t) is
uniformly bounded. From the martingale representation theorem (Proposition 4.2)
there are G-predictable Q-square integrable processes η̄(t) and κ̄(t) such that

h(t)

B(t)
= EQ

[ ξ

B(T )

]
+

∫ t

0

η̄(s)′ dW̄ (s) +

∫ t

0

κ̄(s)′ dM̄(s),(4.7)

where M̄i(t) � Ni(t) −
∫ t

0
λi(s)(1 − ψi(s)) ds is a G-martingale with respect to Q.

Applying Ito’s formula to (4.7), we obtain{
dh(t) = r(t)h(t) dt + η(t)′ dW̄ (t) + κ(t)′ dM̄(t),

h(T ) = ξ,

where η(t) � B(t)η̄(t) and κ(t) � B(t)κ̄(t). Changing measure from Q back to P

shows that (h(t), η(t), κ(t)) is the solution of (4.1), as required. Uniqueness can be
seen by carrying out the reverse of this procedure and using the uniqueness of the
representation (4.7).

Next we show the integrability properties (4.5) are satisfied. (Note that (4.5)
involves an expectation under P, whereas η̄(t) and κ̄(t) are only Q-square integrable.)
Since B(t) is uniformly bounded, (4.5) can be shown by establishing the inequality

EP

∫ T

0

{
|η̄(t)|2 +

n∑
i=1

λi(t)|κ̄i(t)|2
}

dt < ∞.

Let Z(t) � h(t)/B(t). Since ξ is uniformly bounded under Q and P is equivalent to
Q, there is a constant C < ∞ such that |Z(t)| < C for all t ∈ [0, T ], P-a.s. It follows
from (4.7) that

Z(t) = Z(0) +

∫ t

0

[η̄(s)′γ(s) + κ̄(s)′D(s)ψ(s) − κ̄(s)′λ(s)] ds

+

∫ t

0

η̄(s)′ dW (t) +

∫ t

0

κ̄(s)′ dN(s).
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From Ito’s formula,

Z(t)2 = Z(0)2 +

∫ t

0

{
2Z(s−)

[
η̄(s)′γ(s) +

n∑
i=1

λi(s)κ̄i(s)ψi(s)

]
+ |η̄(s)|2

+

n∑
i=1

λi(s)κ̄i(s)
2

}
ds+

∫ t

0

2Z(s−)η̄(s)′ dW (s)

+

n∑
i=1

∫ t

0

[2κ̄i(s)Z(s−) + κ̄i(s)
2] dMi(s).

The stochastic integrals above are local martingales, and hence there is a sequence of
stopping times {τi} such that

E[Z(T ∧ τn)2] = Z(0)2

+ E

[∫ T∧τn

0

{
2Z(s−)

[
η̄(s)′γ(s) +

n∑
i=1

λi(s)κ̄i(s)ψi(s)

]

+ |η̄(s)|2 +

n∑
i=1

λi(s)κ̄i(s)
2

}
ds

]
.

That is,

E

∫ T∧τn

0

[
|η̄(s)|2 +

n∑
i=1

λi(s)κ̄i(s)
2

]
ds + Z(0)2(4.8)

= E[Z(T ∧ τn)2] − E

∫ T∧τn

0

2Z(s−)

[
η̄(s)′γ(s) +

n∑
i=1

λi(s)κ̄i(s)ψi(s)

]
ds

≤ E[Z(T ∧ τn)2] + E

∫ T∧τn

0

2C|η̄(s)| |γ(s)| ds

+

n∑
i=1

∫ T∧τn

0

2Cλi(s) |κ̄i(s)| |ψi(s)| ds,

where we have used the fact that |Z(t)| ≤ C to obtain the inequality in (4.8). Next,
using the inequality 2ab ≤ a2 + b2, it follows that

E

∫ T∧τn

0

2C|η̄(s)| |γ(s)| ds(4.9)

= E

∫ T∧τn

0

2C

(
|η̄(s)|
δ

)
δ|γ(s)| ds

≤ E

∫ T∧τn

0

C

{
|η̄(s)|2
δ2

+ δ2|γ(s)|2
}
ds

= E

∫ T∧τn

0

{
1

2
|η̄(s)|2 + 2C2|γ(s)|2

}
ds,

where the last equality follows from choosing the constant δ =
√

2C. A similar
calculation again with δ =

√
2C gives
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E

∫ T∧τn

0

2Cλi(s) |κ̄i(s)| |ψi(s)| ds(4.10)

≤ E

∫ T∧τn

0

{
λi(s)

2
|κ̄i(s)|2 + 2C2λi(s)|ψi(s)|2

}
ds.

Substituting (4.9) and (4.10) into (4.8) it follows that

E

∫ T∧τn

0

[
|η̄(s)|2 +

n∑
i=1

λi(s)κ̄i(s)
2

]
ds + Z(0)2

≤ E[Z(T ∧ τn)2] + 2C2E

∫ T∧τn

0

{
|γ(s)|2 +

n∑
i=1

λi(s)|ψi(s)|2
}
ds

+
1

2
E

∫ T∧τn

0

[
|η̄(s)|2 + λi(s)|κ̄i(s)|2

]
ds.

Rearranging and letting n → ∞ it follows from Fatou’s lemma that

1

2
E

∫ T

0

[
|η̄(s)|2 +

n∑
i=1

λi(s)κ̄i(s)
2

]
ds + Z(0)2

≤ E|ξ|2 + 2C2E

∫ T

0

{
|γ(s)|2 +

n∑
i=1

λi(s)|ψi(s)|2
}
ds < ∞,

which implies (4.5).
By Theorem 4.3, (3.2) has a unique solution if the local martingale Y (t) is a

strictly positive martingale. For this to hold, it is clearly necessary that −∞ <
ψi(t) < 1 for a.e. t ∈ [0, T ], P-a.s. The following result shows that this condition is
also sufficient.

Theorem 4.4. Suppose that Assumption (A) is satisfied. Then the solution Y (t)
of (4.2) is a strictly positive G-martingale with respect to P if and only if

ψi(t) < 1 for a.e. t ∈ [0, T ], P-a.s.(4.11)

In particular, there is a unique solution (h(t), η(t), κ(t)) of (3.2) such that h(t) is
uniformly bounded and (η(t), κ(t)) satisfy the integrability conditions (4.5) if (4.11) is
satisfied.

Proof. For notational convenience we assume that W (t) and N(t) are one-dimen-
sional processes. The extension to the multidimensional case can be done using the
same approach (at the cost of more cumbersome notation).

By Ito’s formula it can be shown that Y (t) = ρ(t)ζ(t), where ρ(t) and ζ(t) denote
the solutions of

dρ(t) = −ρ(t−)γ(t) dW (t), ρ(0) = 1,

dζ(t) = −ζ(t−)ψ(t) dM(t), ζ(0) = 1.

By Proposition 3.1, ρ(t) = e−
1
2

∫ t
0
|γ(s)|2ds−

∫ t
0
γ(s)′dW (s) is a strictly positive F-martingale

under P and hence, by the martingale invariance property (Proposition 2.1), is also a
strictly positive G-martingale under P. In addition, it is easy to show that

ζ(t) = e
∫ t
0
ψ(s)λ(s)ds

∏
0<s≤t

(
1 − ψ(s)�N(s)

)
.
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It follows that strict positivity of Y (t) = ρ(t)ζ(t) implies that (4.11) is satisfied.
Conversely, suppose that (4.11) is satisfied. This implies that Y (t) = ρ(t)ζ(t) is

strictly positive, so we need only show that Y (t) is a martingale. Observe first that

1−ψ(t) > 0 for a.e. t ∈ [0, T ], P-a.s. Furthermore, we have 0 <
∫ T

0
(1−ψ(t))λ(t) dt <

∞, P-a.s. Indeed, this follows from the square integrability of ψ(t) (which implies in

turn that
∫ T

0
(1−ψ(t)) dt < ∞) and the uniform bound on λ(t) (see Assumption (A)).

We now show that EP[ζ(t)|Gs ∨ FT ] = ζ(s) for s < t. First,

EP[ζ(t)|Gs ∨ FT ](4.12)

= e
∫ t
0
ψ(u)λ(u)du

∏
0<u≤s

(1 − ψ(s)�N(s))EP

[ ∏
s<u≤t

(1 − ψ(u)�N(u))
∣∣∣Gs ∨ FT

]

= ζ(s)e
∫ t
s
ψ(u)λ(u)duEP

[ ∏
s<u≤t

(1 − ψ(u)�N(u))
∣∣∣FT

]
,

where the second equality follows from the definition of ζ(t) and the observation that
conditional on FT , σ{N(u) −N(s), s < u ≤ t} is independent of Gs by virtue of the
independent increment property of Poisson processes. On the other hand, conditioning
on N(t) −N(s) we obtain

EP

[ ∏
s<u≤t

(1 − ψ(u)�N(u))
∣∣∣FT

]
(4.13)

= EP

[
EP

{ ∏
s<u≤t

(1 − ψ(u)�N(u))
∣∣∣σ{N(t) −N(s)} ∨ FT

}∣∣∣FT

]
.

By Lemma 3.1 in [8], the arrival times of N(u) on (s, t], conditional on FT and
N(t) −N(s) = k, are distributed like k independent random variables on (s, t] with

density λ(u)/
∫ t

s
λ(v) dv. It follows that

EP

{ ∏
s<u≤t

(1−ψ(u)�N(u))
∣∣∣σ{N(t)−N(s)} ∨ FT

}
=

[∫ t

s
(1−ψ(u))λ(u) du∫ t

s
λ(u) du

]N(t)−N(s)

,

where the right-hand side is finite since 0 <
∫ T

0
(1 − ψ(t))λ(t) dt < ∞ P-a.s. Substi-

tuting this into (4.13) we obtain

EP

[ ∏
s<u≤t

(1 − ψ(u)�N(u))
∣∣∣FT

]
= e−

∫ t
s
ψ(u)λ(u)du

and (4.12) gives EP[ζ(t) | Gs ∨ FT ] = ζ(s). Finally, since

EP[Y (t)|Gs] = EP[ρ(t)EP{ζ(t) | Gs ∨ FT } | Gs] = EP[ρ(t)ζ(s)|Gs]

= EP[ρ(t)|Gs]ζ(s) = ρ(s)ζ(s) = Y (s),

it follows that Y (t) is a martingale, as claimed.
The existence and uniqueness of solutions of (3.2) satisfying the boundedness and

integrability conditions follows from Theorem 4.3.
From the proof of Theorem 4.4, it is easy to show that ζ(t) is a strictly positive

G-martingale under P if and only if the condition (4.11) is satisfied.
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5. Solvability of (3.2): Special cases. The conditions in Theorems 4.3 and 4.4
for solvability of (3.2) are cumbersome because they involve the solution (p(t),Λ(t))
of (3.1) in the definition of ψ(t); see (3.8). We now consider some simple special
cases where the condition in Theorem 4.4 can be expressed explicitly in terms of
the parameters of the problem or otherwise easily checked. Whether there are easily
verifiable general conditions remains an open question. In the case of continuous
price processes, the simplifications resulting from the assumption of a complete market
(section 5.1) or deterministic parameters (section 5.2) are well known, being situations
where the VMM coincides with the so-called minimal martingale measure; see [14, 23,
30]. In sections 5.3 and 5.4, we show that (3.2) and the hedging problem (2.6) may
still be solvable even when the martingale condition is not satisfied, so long as the
liability ξ is suitably restricted.

5.1. Complete market. In this section, we assume conditions which guarantee
completeness of the financial market (2.1) and show, under these assumptions, that
(3.2) is solvable. More specifically, we shall assume that m+d = n (that is, the number
of risky assets m is equal to the number of independent sources of uncertainty n+ d)
and that the matrix

Γ(t) �
[
σ(t) θ(t)D(t)

1
2

]
(5.1)

is invertible. These assumptions imply that the linear equation

b(t) = σ(t)γ∗(t) + θ(t)D(t)ψ∗(t) = Γ(t)

[
γ∗(t)

D(t)
1
2ψ∗(t)

]
(5.2)

has a unique solution (γ∗(t), ψ∗(t)). In addition, we shall assume that the unique
solution Y ∗(t) of the stochastic differential equation{

dY ∗(t) = −Y ∗(t−){γ∗(t)′ dW (t) + ψ∗(t)′ dM(t)},
Y ∗(0) = 1,

(5.3)

where (γ∗(t), ψ∗(t)) is the solution of (5.2), is a positive martingale. Under these
assumptions, one can show that the market is complete. More specifically, since ρ∗(t)
is a positive martingale, we can define a P-equivalent probability measure Q via the
Radon–Nikodým derivative

dQ

dP
= Y ∗(T )(5.4)

such that W ∗(t) � W (t) +
∫ t

0
γ∗(s) ds is a G-Brownian motion and M∗(t) � M(t) +∫ t

0
D(s)ψ∗(s) ds is a G-martingale under Q (Proposition 4.1). Moreover, it is easy

to show that the discounted price processes Pi(t)/B(t) are G-martingales under Q,
and hence Q is a P-equivalent martingale measure (EMM). To see that this Q is
unique, observe that any positive martingale Y ∗(t) satisfying EPY ∗(T ) = 1 is also
the solution of an equation of the form (5.3) for appropriately chosen G-predictable
processes (γ∗(t), ψ∗(t)). (See [17, Proposition 6.20] and also p. 162 of [4].) In addi-
tion, (γ∗(t), ψ∗(t)) is necessarily a solution of (5.2) in order for the discounted price
processes Pi(t)/B(t) to be martingales. The invertibility of Γ(t) implies that there is
exactly one solution of (5.2) and hence at most one EMM. That is, invertibility of Γ(t)
together with the property that the solution Y ∗(t) of (5.3) is a positive martingale
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imply that the market is complete. The following result shows that these conditions
imply that (3.2) with parameters (3.7)–(3.8) has a unique solution.

Proposition 5.1. If Assumption (A) holds, Γ(t) is invertible, and the solution
Y ∗(t) of (5.3) is a positive martingale, then (3.2) has a unique solution.

Proof. Denoting

X(t) =

[
γ∗(t)

D(t)
1
2ψ∗(t)

]
(5.5)

and noting the invertibility of D(t)
1
2 = diag(λ1(t)

1
2 , . . . , λn(t)

1
2 ) (see Assumption (A))

it follows that the unique solution (γ∗(t), ψ∗(t)) of (5.2) can be constructed from (5.5)
and the solution X(t) of the linear equation

b(t) = Γ(t)X(t), a.e. t ∈ [0, T ], P-a.s.(5.6)

Hence, we shall focus on (5.6) and construct the solution of (5.2) once the solution of
(5.6) has been found.

The solution X(t) of (5.6) can be written in the form

X(t) = Γ(t)′K(t) +
[
I − Γ(t)(Γ(t)Γ(t)′)−1Γ(t)

]
Z(t)(5.7)

for appropriate choices of K(t) and Z(t). In particular, Γ(t)′K(t) is the projec-
tion of X(t) into the space spanned by the columns of Γ(t)′, while the vector [I −
Γ(t)(Γ(t)Γ(t)′)−1Γ(t)]Z(t) is the projection of X(t) onto its orthogonal complement.
Invertibility of Γ(t) implies that

I − Γ(t)(Γ(t)Γ(t)′)−1Γ(t) = 0.(5.8)

Substituting (5.7) into (5.6) (and noting (5.8)) gives

b(t) = Γ(t)Γ(t)′K(t) = Σ(t)K(t),

implying in turn that

K(t) = Σ(t)−1b(t),

where Σ(t) is defined by (2.2). It follows from (5.7) that

X(t) = Γ(t)′Σ(t)−1b(t) =

[
σ(t)′Σ(t)−1b(t)

D(t)
1
2 θ(t)′Σ(t)−1b(t)

]
,

and hence, by (5.5), we have

γ∗(t) = σ(t)′Σ(t)−1b(t), ψ∗(t) = θ(t)′Σ(t)−1b(t).(5.9)

On the other hand, substituting (5.1) into (5.8) and using the definition (5.1) of Γ(t)
implies [

σ′Σ−1σ σ′Σ−1θD
1
2

D
1
2 θ′Σ−1σ D

1
2 θ′Σ−1θD

1
2

]
=

[
I 0
0 I

]
and hence

σ(t)′Σ(t)−1σ(t) = I, θ(t)′Σ(t)−1σ(t) = 0.
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It follows from (3.7)–(3.8) that

γ(t) = σ(t)′Σ(t)−1b(t), ψ(t) = θ(t)′Σ(t)−1b(t).(5.10)

Comparing (5.10) with (5.9) it is clear that (γ(t), ψ(t)) = (γ∗(t), ψ∗(t)). In other
words, the density process Y (t) defined by (4.2) and (3.7)–(3.8) coincides with the
density process Y ∗(t) corresponding to the unique EMM. Therefore, Y (t) is a positive
martingale (since Y ∗(t) is a positive martingale) and hence, by Theorem 4.3, (3.2)
has a solution.

The following result gives a condition for solvability of (3.2) in terms of the pa-
rameters of the problem.

Proposition 5.2. If Assumption (A) holds and Γ(t) is invertible, then γ(t) and
ψ(t), given by (3.7) and (3.8), respectively, simplify to

γ(t) = σ(t)′Σ(t)−1b(t), ψ(t) = θ(t)′Σ(t)−1b(t).(5.11)

Furthermore, if ψi(t) < 1 for a.e. t ∈ [0, T ], P-a.s., i = 1, 2, . . . , n, then (3.2) has a
unique solution.

Proof. We have already shown in the proof of Proposition 5.1 that invertibility of
Γ(t) implies (5.11); see (5.10). By Corollary 4.4 and Theorem 4.3, the boundedness
assumption of ln(1 − ψi(t)) implies solvability of (3.2).

5.2. Deterministic parameters. If the coefficients r(t), μi(t), σi(t), θi(t), and
λi(t) are all deterministic, then Λ(t) ≡ 0, and (3.1)–(3.2) become{

ṗ(t) = −p(t)[2r(t) − b(t)′Σ(t)−1b(t)],

p(T ) = 1,
(5.12)

⎧⎪⎪⎨⎪⎪⎩
dh(t) =

{
r(t)h(t) + b(t)′Σ(t)−1[σ(t)η(t) + θ(t)D(t)κ(t)]

}
dt

+ η(t)′ dW (t) + κ(t)′ dM(t),

h(T ) = ξ.

In addition, it follows from (3.7)–(3.8) that

γ(t) = σ(t)′Σ(t)−1b(t), ψ(t) = θ(t)′Σ(t)−1b(t).

The following result is an immediate consequence of Theorems 4.3 and 4.4.
Proposition 5.3. Suppose that the coefficients r(t), μi(t), σi(t), θi(t), and λi(t)

are all deterministic. If ψi(t) < 1 for a.e. t ∈ [0, T ], P-a.s. for i = 1, . . . , n, then
(3.2) has a unique solution.

Although the solvability condition in Proposition 5.3 resembles that in Proposi-
tion 5.2, Proposition 5.3 applies to complete and incomplete markets (with determin-
istic parameters), while Proposition 5.2 applies to complete markets (with possibly
random parameters).

5.3. Case Y (t) is not a positive martingale. If the process Y (t) defined by
(4.2) is not a strictly positive martingale, which occurs for instance if ψi(t) ≮ 1, as
required in Theorem 4.4, then the construction in the proof of Theorem 4.3 cannot
be used in general to obtain a solution of (3.2). In this section, we show that while
(3.2) may not be solvable for arbitrary ξ, it may nevertheless have a solution if ξ is
restricted to an appropriate class of random variables.
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Suppose that the vector ψ(t) given by (3.8) is partitioned such that ψ(t) =[
ψ1(t)′, ψ2(t)′

]′
, where ψ1(t) = [ψ1(t), . . . , ψL(t)]

′
denotes the first L entries of ψ(t),

and ψ2(t) = [ψL+1(t), . . . , ψn(t)]
′
denotes the remaining n − L entries. Let N(t) =[

N1(t), N2(t)
]

and M(t) =
[
M1(t), M2(t)

]
be partitioned similarly. Throughout this

section (as well as in the next), Di = Di
t denotes the filtration generated by N i(t)

augmented by the P-null sets of F , and Gi = {Gi
t}t≥0, where Gi

t � Di
t ∨ Ft is the

smallest σ-algebra containing Di
t and Ft for i = 1, 2.

Suppose that Y (t) is not a positive G-martingale, but that Y 1(t) defined by{
dY 1(t) = −Y 1(t−){γ(t)′ dW (t) + ψ1(t)′ dM1(t)},
Y 1(0) = 1

(5.13)

is a positive G-martingale under P. Such a situation may arise, for instance, if ψi(t) <
1 and is uniformly bounded away from 1 for i = 1, . . . , L, while ψi ≮ 1 for i =
L + 1, . . . , n. While (3.2) will not generally be solvable in this situation, there is a
solution if ξ is restricted as follows.

Proposition 5.4. If Y 1(t) is a positive G-martingale under P and ξ ∈ G1
T , then

there exists a solution (h(t), η(t), κ(t)) of (3.2) such that h(t) is G1-adapted (and
hence G-adapted), η(t) and κ(t) are G1-predictable (and hence G-predictable), and
κ(t) = [κ1(t), κ2(t)], where κ2(t) ≡ 0.

Proof. Since by assumption Y 1(t) is a positive G-martingale under P, we can
define a P-equivalent measure Q1 via

dQ1

dP
= Y 1(T ).

By the Girsanov theorem, W̄ (t) � W (t) +
∫ t

0
γ(s) ds is a G-Brownian motion un-

der Q1 and the components Ni(t) of N(t) are doubly stochastic Poisson process
with F-predictable intensities λi(t)(1 − ψi(t)) when i = 1, . . . , L, and λi(t) when
i = L + 1, . . . , n (see Proposition 4.1); in particular, this implies that M1(t) =

N1(t) −
∫ t

0
D1(s)(1 − ψ1(s)) ds = M1(t) +

∫ t

0
D1(s)ψ1(s) ds is a G-martingale un-

der Q.
Let h(t) be the G1-adapted process defined via

h(t)

B(t)
= EQ

1

[
ξ

B(T )

∣∣∣G1
t

]
.(5.14)

Since h(t)/B(t) is a G1-martingale under Q1 and G1 is generated by {W (t), 0 ≤ t ≤
T} and {N1(t), 0 ≤ t ≤ T}, it follows from the martingale representation theorem
that there are G1-predictable processes η̄(t) and κ̄1(t) such that

h(t)

B(t)
= EQ

1
[ ξ

B(T )

]
+

∫ t

0

η̄(s)′ dW̄ (s) +

∫ t

0

κ̄1(s)′ dM̄1(s).

Substituting η(t) � B(t)η̄(t) and κ1(t) � B(t)κ̄1(t) and changing measure from Q1

back to P gives ⎧⎪⎨⎪⎩
dh(t) = r(t)h(t) dt + η(t)′[γ(t) dt + dW (t)]

+κ1(t)′[D1(t)ψ1(t) dt + dM1(t)],

h(T ) = ξ,

(5.15)
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where D1(t) � diag{λ1(t), . . . , λL(t)}. Setting κ(t) = [κ1(t)′, κ2(t)′]′, where the
components κ2(t) = [κL+1(t), . . . , κn(t)]′ ≡ 0, it follows from (5.15) that the triple
(h(t), η(t), κ(t)) is also a solution of (3.2). Square integrability of (η(t), κ(t)) can be
proven along the same lines as in the proof of Theorem 4.3.

The following necessary and sufficient condition for Y i(t) to be a strictly positive
martingale can be shown along the lines of Theorem 4.4.

Proposition 5.5. Suppose that Assumption (A) is satisfied. Then Y 1(t) is a
strictly positive G-martingale under P if and only if for i = 1, . . . , L, ψ1

i (t) < 1 for
a.e. t ∈ [0, T ], P-a.s.

5.4. “No common jumps.”. We say that the liability ξ and the asset prices
P1(t), . . . , Pm(t) have no common jumps if there is no jump component Nj(t) that
affects both the value of the liability ξ and the asset prices Pi(t) (i = 1, . . . ,m). The
extreme case of this corresponds to the liability ξ being constant, which arises in the
problem of mean-variance portfolio selection, but is also satisfied if ξ is measurable
with respect to the history of the Brownian motion.

More generally, if G1
T denotes the σ-algebra generated by {W (t), 0 ≤ t ≤ T}

and {N1(t), 0 ≤ t ≤ T}, where without loss of generality we take N1(t) to be the
first L components (N1(t), . . . , NL(t)) of N(t), then there are no common jumps
if ξ ∈ G1

T and the price processes Pi(t) given by (2.1) are such that the matrix
θ(t) = [θ1(t), θ2(t)] satisfies

θ1(t) ≡ 0,(5.16)

where θ1(t) = [θ1
1(t), . . . , θ

1
L(t)] and θ2(t) = [θ2

L+1(t), . . . , θ
2
n(t)] are the first L columns

and the remaining n−L columns of θ(t), respectively. Proposition 5.6 states that the
BSDE (3.2) always has a solution when there are no common jumps. (This result is
stronger than existence results established in Theorems 4.3 and 4.4, where strict pos-
itivity of Y (t) (or equivalently that ψi(t) < 1) must be satisfied in order to guarantee
existence.)

Proposition 5.6. Suppose that Assumption (A) holds. If ξ ∈ G1
T and θ1(t) ≡ 0,

then (3.2) has a solution (h(t), η(t), κ(t)) ∈ L∞(G, R) × P2(G, Rd) × P2(G, Rn).

Proof. We prove this result by constructing a solution of (3.2). Consider first the
following BSDE:{

dh(t) = r(t)h(t) dt + η(t)′[γ(t) dt + dW (t)] + κ(t)′ dM(t),

h(T ) = ξ.
(5.17)

Let ρ(t) denote the solution of{
dρ(t) = −ρ(t−)γ(t)′ dW (t),

ρ(0) = 1,

where γ(t) is given by (3.7) (see also (3.4)). By Proposition 3.1, we know that ρ(t)
is a positive F-martingale. It follows from the martingale invariance property (see
Proposition 2.1) that ρ(t) is a positive G-martingale under P and hence defines a
P-equivalent probability measure Q via

dQ

dP
= ρ(T ).
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By the Girsanov theorem, W̄ (t) = W (t) +
∫ t

0
γ(s) ds is a G-Brownian motion under

Q and Ni(t) (i = 1, . . . , n) are doubly stochastic Poisson processes under Q with
(unchanged) F-predictable intensities λi(t); see Proposition 4.1. Therefore, we can
use the same approach as in the proof of Theorem 4.3 to construct a solution of
(5.17). In particular, by the martingale representation theorem (Proposition 4.2), we
can (uniquely) define (h(t), η̄(t), κ̄1(t)) via

h(t)

B(t)
= EQ

[ ξ

B(T )

∣∣∣G1
t

]
= EQ

[ ξ

B(T )

]
+

∫ t

0

η̄(t)′ dW̄ (t) +

∫ t

0

κ̄1(t)′ dM1(t),(5.18)

where η̄(t) and κ̄1(t) are G1-predictable (and hence G-predictable) processes (of di-
mension d and L, respectively) and M1(t) is the compensated Poisson process asso-
ciated with N1(t). Moreover, setting κ̄(t) = [κ̄1(t)′, κ̄2(t)′]′ = [κ̄1(t), 0], where κ̄2(t)
is an (n− L)-dimensional vector of zeros, it is clear that (5.18) implies

h(t)

B(t)
= EQ

[ ξ

B(T )

]
+

∫ t

0

η̄(t)′dW̄ (t) +

∫ t

0

κ̄(t)′dM(t).

By Ito’s formula, it can be shown that

(h(t), η(t), κ(t)) = (h(t), B(t)η̄(t), B(t)κ̄(t))

is a solution of (5.17). Furthermore, this solution is unique due to the uniqueness of
martingale representation. Finally, since κ2(t) = B(t)κ̄2(t) ≡ 0 it follows from (5.16)
that

θ(t)′D(t)κ(t) = θ1(t)D1(t)κ1(t) + θ2(t)D2(t)κ2(t) ≡ 0,(5.19)

and hence, by (3.8), that

κ(t)′D(t)ψ(t) ≡ 0.

Therefore, the solution of (5.17) is also a solution of (3.2), which establishes our
result.

An important special case is the one where the liability ξ is deterministic, which
arises in the problem of mean-variance portfolio selection. Propositions 3.5 and 5.6
imply that (3.2) always has a solution and the mean-variance hedging problem (2.6)
can be solved, with optimal policy (3.5), without having to assume that the solution
of (4.2) is a strictly positive martingale.

Corollary 5.7. Suppose that Assumption (A) holds and ξ is FT -measurable.
(In particular, ξ may be deterministic.) Then (3.2) has a unique solution (h(t), η(t),
κ(t)), where κ(t) ≡ 0.

6. Some remarks about assumptions. In Arai [1], the problem of mean-
variance hedging when underlying prices are discontinuous semimartingales is ad-
dressed. We now comment briefly on the assumptions made in [1] and how these
compare with those in this paper.

Several differences between the problem formulations in [1] and the present paper
should be clarified before comparing the assumptions. First, the price processes in
[1] are discontinuous semimartingales, while those in this paper (2.1) have additional
structure in that they are driven by Brownian motion and a doubly stochastic Poisson
process with F-predictable parameters. Second, it is assumed in [1] that all price
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processes have been discounted using the money market account, so stochastic interest
rates are not addressed explicitly (they are combined with the other prices through the
discounting). This contrasts with (2.1) and (2.6), where price and wealth processes
are not discounted. Third, the contingent claim in [1] (what we call ξ) is square
integrable, whereas we are assuming that it is bounded. (This was used in the proof of
Theorem 4.3. It should be possible to relax this assumption, but this is left for future
work.) Finally, the methods adopted in [1] are different from those in the present
paper. More specifically, [1] extends the analysis in [30], based on convex duality, to
the discontinuous setting, whereas we use stochastic control methods together with
the theory of BSDEs.

These differences being understood, we now examine the relationship between the
assumptions in [1] and those in this paper. Not surprisingly, the additional structure
in our model means that some of the assumptions invoked in [1] are not required here.

Assumptions in Arai [1].
(A1) The variance optimal (signed) martingale measure Q is a P-equivalent mea-

sure; equivalently, Q has a density process Z(t) that is a strictly positive
P-martingale.

(A2) Z(t) satisfies the reverse Hölder inequality; that is, there is a constant C > 0
such that

E

[(
Z(T )

Z(τ)

)2∣∣∣Hτ

]
≤ C

for every H-stopping time τ , where H = {Ht}t≥0 denotes the underlying
filtration.

(A3) There exists a constant C > 0 such that Z(t−) ≤ CZ(t) for all t ∈ [0, T ],
P-a.s.

The density process Y (t) in (4.2) plays an analogous role to the density process
Z(t) in [1]. A priori, neither Z(t) nor Y (t) is positive, and hence, only define signed
measures. This is the reason why (A1) is needed in [1]. The assumption that Y (t) is
a positive martingale in Theorem 4.3 is analogous to this.

Because of the structure of our model, neither (A2) nor (A3) is required in this
paper. In particular, it can be shown that the solution (p(t), Λ(t)) of (3.1) satisfies

1

p(t)
= E

[(
Y (T )

Y (t)

)2∣∣∣Gt

]
.

It follows that the bound δ1 ≤ p(t) ≤ δ2 (Proposition 3.1) guarantees that the reverse
Hölder inequality is automatically satisfied in this paper and does not need to be
assumed. Again, this comes from the structure that we impose on our model.

7. Example. We now present an example with constant parameters (but ran-
dom liability) for which explicit solutions of (3.1)–(3.2) can be obtained. In particular,
we show how formulas for the solution (h(t), η(t), κ(t)) of (3.2) can be derived, and
the insights that this gives into the structure of the optimal hedging portfolio.

For this example, we assume that the interest rate r for the money market account
B(t) is constant, and a single underlying risky asset

dP (t) = P (t){μdt + σ dW (t) + θ dN(t)}(7.1)

with deterministic parameters μ, σ, and θ. We assume that the arrival rate λ is
constant.
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Observe first that the market is arbitrage free: the measure Q̄ that makes

W̄ (t) � − t

σ
[r − μ− θλ] + W (t)

a Brownian motion but leaves the rate λ of N(t) unchanged is an equivalent martingale
measure. On the other hand, it follows from Proposition 5.3 that (3.2) has a solution
if ψ < 1, where

γ = σ′Σ−1b =
σb

σ2 + θ2λ
, ψ = θΣ−1b =

θb

σ2 + θ2λ
.

In particular, it is possible for the market to be arbitrage free but for ψ < 1 not to
be satisfied. We assume for the remainder that ψ < 1.

Consider a liability of the form ξ = 1τ≤T [A− y(τ)]+er(T−τ), where τ denotes the
first arrival time of N(t) and y(t) is the solution of the stochastic differential equation

dy(t) = y(t){r dt + q dW̄ (t)} = y(t){(r + qγ) dt + q dW (t)},

where W̄ (t) = W (t) + γt is a Brownian motion under the equivalent probability
measure Q associated with (γ, ψ) via (4.2)–(4.3). In this model, we assume that
“default” occurs at a random time τ that corresponds to the arrival time of the
first Poisson event, and that the value of the liability is determined by the value of
[A− y(t)]+ at the time of this arrival (i.e., the default event). In particular, if y(t) is
significantly smaller than A, then the event of default is more costly for the investor.

By Theorem 3.5 the optimal policy is given by (3.5). Since the parameters μ, σ,
θ, and λ of the price process (7.1) in this example are deterministic, it follows that
Λ ≡ 0, so computing the optimal policy (3.5) boils down to finding (h(t), η(t), κ(t)) by
solving (3.2). As in the proof of Theorem 4.3, the solution of (3.2) can be represented
in the form

h(t) = e−r(T−t)EQ[ξ | Gt] = e−r(T−t)EQ

[
1τ≤T (A− y(τ))+er(T−τ)

∣∣∣Gt

]
.(7.2)

To get something more explicit for h(t), it is convenient to introduce the process

z(t) =

∫ t

s=0

er(t−s)[A− y(s)]+1N(s−)=0 dN(s).

Note that

z(t) = 1τ≤t[A− y(τ)]+er(t−τ) = 1N(t)≥1[A− y(τ)]+er(t−τ),

which coincides with the value of the liability given that default occurred before time
t. Observing that

1τ≤T [A− y(τ)]+er(T−τ) = 1τ≤t(A− y(τ))+er(T−τ) + 1t<τ≤T (A− y(τ))+er(T−τ),

we see from (7.2) that

h(t) = 1τ≤te
−r(τ−t)(A− y(τ))+ + 1τ>te

−r(T−t)EQ

[
1t<τ≤T (A− y(τ))+er(T−τ)

∣∣∣Gt

]
.
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Observing that

e−r(T−t)EQ

[
1t<τ≤T (A− y(τ))+er(T−τ)

∣∣∣Gt

]
= e−r(T−t)EQ

[
EQ

{
1t<τ≤T (A− y(τ))+er(T−τ)

∣∣∣Gt ∨ FT

} ∣∣∣Gt

]
= e−r(T−t)EQ

[∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)(A− y(s))+er(T−s) ds
∣∣∣Gt

]

=

∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)P (t, s, y(t)) ds,

where

P (t, s, y) = Ae−r(s−t)Φ
( log(A/y) − (r − 1

2q
2)(s− t)

q
√
s− t

)
− yΦ

( log(A/y) − (r + 1
2q

2)(s− t)

q
√
s− t

)
,

denotes the price of a European put option on y(·) with strike A maturing at s > t,
when y(t) = y. It follows that

h(t) = 1τ≤t e
r(t−τ)(A− y(τ))+ + 1τ>t

∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)P (t, s, y(t)) ds

or, equivalently,

h(t) = 1N(t)≥1 e
r(t−τ)(A− y(τ))+

+1N(t)=0

∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)P (t, s, y(t)) ds

= z(t) + 1N(t)=0

∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)P (t, s, y(t)) ds(7.3)

= f(t, y(t), z(t), N(t)),

where

f(t, y, z, i) = z + 1i=0

∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)P (t, s, y) ds.

In order to compute the optimal portfolio, we need to find the components (η(t), κ(t))
of the solution of (3.2) or (4.1), which in this example is{

dh(t) = rh(t) dt + η(t) dW̄ (t) + κ(t) dM̄(t),

h(T ) = 1τ≤T [A− y(τ)]+er(T−τ).
(7.4)

Applying Ito’s formula to h(t) = f(t, y(t), z(t), N(t)) gives

dh(t) =

{
ft(t, y(t), z(t

−), N(t−)) + ry(t)fy(t, y(t), z(t
−), N(t−))

+
1

2
σ2y2fyy(t, y(t), z(t

−), N(t−))
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+λ(1 − ψ)
[
1N(t−)=0

(
f(t, y(t), (A− y(t))+, 1) − f(t, y(t), 0, 0)

)
+1N(t−)≥1

(
f(t, y(t), z(t), N(t−) + 1) − f(t, y(t), z(t−), N(t−))

)]}
dt

+σyfy(t, y(t), z(t
−), N(t−)) dW̄ (t)

+

{
1N(t−)=0

[
f(t, y(t), (A− y(t))+, 1) − f(t, y(t), 0, 0)

]
+1N(t−)≥1

[
f(t, y(t), z(t), N(t−) + 1) − f(t, y(t), z(t−), N(t−))

]}
dM̄(t).

Comparing coefficients with (7.4) we obtain

η(t) = η(t, y(t), z(t−), N(t−)) = σyfy(t, y(t), z(t
−), N(t−))

κ(t) = κ(t, y(t), z(t−), N(t−))

= 1N(t−)=0

[
f(t, y(t), (A− y(t))+, 1) − f(t, y(t), 0, 0)

]
+1N(t−)≥1

[
f(t, y(t), z(t), N(t−) + 1) − f(t, y(t), z(t−), N(t−))

]
.

In particular, by (7.3) we have

η(t) =

⎧⎪⎨⎪⎩σy(t)

∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)Py(t, s, y(t)) ds, N(t−) = 0,

0, N(t−) ≥ 1,

κ(t) =

⎧⎪⎨⎪⎩(A− y(t))+ −
∫ T

s=t

λ(1 − ψ)e−λ(1−ψ)(s−t)P (t, s, y(t)) ds, N(t−) = 0,

0, N(t−) ≥ 1.

Finally, it follows from Theorem 3.5 that the optimal portfolio is

π(t) = Σ−1
[
ση(t) + θλκ(t) + b(h(t−) − x(t−))

]
.

The term σ η(t) hedges the uncertainty due to the Brownian motion fluctuations,
while θλκ(t) hedges the loss at the instant of a jump. The last term which involves
f(t−, y(t−), N(t−))− x(t−) is concerned with minimizing the difference between the
value of the portfolio at x(t−) and the value of the liability h(t−). Note that κ(t) ≡ 0
immediately after the first jump occurs. This is natural since the value of the liability
ξ does not depend on jumps that may occur after the first. On the other hand, prior
to the first jump, the “size” of κ(t) depends both on the time to maturity T − t as
well as P (t, y(t)), the (stochastic) cost of default. In particular, if y(t) is “close to”
(or bigger than) A, then the impact of default is small and (A − y(t))+ = 0 and
P (t, y(t)) ≈ 0. In such a case, θλκ(t) will also be small.

8. Conclusion. In recent years, much effort has gone into the task of developing
more sophisticated asset price models which are capable of reproducing some of the
empirical features of price processes that are observed in data. One product of this
endeavor has been the introduction of processes with jumps and stochastic parameters
as an alternative to the Black–Scholes model. In this paper, we consider the problem of
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mean-variance hedging in an incomplete market where the price processes have jumps
(modeled by a doubly stochastic Poisson process) and parameters may be stochastic.
This differs from almost all papers in the literature on mean-variance hedging where
continuity of the tradable asset prices is usually assumed. We formulate this problem
as a stochastic control problem and derive closed form expressions for the optimal
hedging portfolio using the theory of backward stochastic differential equations. In
particular, we show how the BSDE theory can be extended from the Brownian motion
setting to handle problems with jumps.

Another application of this work relates to the problem of hedging default risk
when the default is modeled in the reduced form setting. Considered in this way, the
results of this paper extend, in some sense, those of Blanchet-Scalliet and Jeanblanc
[5], where the problem of hedging default risk in a complete market is discussed.
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CONTROLLER DESIGN VIA NONSMOOTH MULTIDIRECTIONAL
SEARCH∗

PIERRE APKARIAN† AND DOMINIKUS NOLL‡

Abstract. We propose an algorithm which combines multidirectional search (MDS) with non-
smooth optimization techniques to solve difficult problems in automatic control. Applications in-
clude static and fixed-order output feedback controller design, simultaneous stabilization, H2/H∞-
synthesis, and much else. We show how to combine direct search techniques with nonsmooth descent
steps in order to obtain convergence certificates in the presence of nonsmoothness. Our technique
is efficient when small and medium size controllers for plants with large state dimension are sought.
Our numerical testing includes several benchmark examples. For instance, our algorithm needs 0.41 s
to compute a static output feedback stabilizing controller for the Boeing 767 flutter benchmark prob-
lem [E. E. J. Davison, IFAC Technical Committee Reports, Pergamon Press, Oxford, 1990], a system
with 55 states. The first static controller without performance specifications for this system was
obtained in [J. Burke, A. Lewis, and M. Overton, SIAM J. Optim., 15 (2003), pp. 751–779].

Key words. NP-hard design problems, static output feedback, fixed-order synthesis, simultane-
ous stabilization, mixed H2/H∞-synthesis, pattern search algorithm, moving polytope, nonsmooth
analysis, spectral bundle method, ε-subgradients, bilinear matrix inequality (BMI)
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1. Introduction. Pattern search or moving polytope methods belong to a large
class of derivative-free optimization methods referred to as direct search (DS) tech-
niques. In this paper, we present a nonsmooth modification of Virginia Torczon’s mul-
tidirectional search (MDS) [66, 67] algorithm and apply it to a broad class of problems
in automatic control. We aim at several nonconvex and even NP-hard problems, for
which LMI techniques or algebraic Riccati equations are impractical. In particular,
we propose algorithmic solutions for static and fixed-order output feedback control,
simultaneous stabilization problems, and mixed H2/H∞-control.

1.1. Direct search methods. The idea of DS methods can be traced back
to the pioneering work of Box [11] and Hook and Jeeves [37], who first coined the
term “direct search.” The MDS algorithm is due to Torczon [66, 67] and is directly
inspired by the work of Spendley, Hext, and Himsworth [63], and the popular method
of Nelder and Mead [55]. MDS significantly revived the interest in DS methods,
because it came with a sound convergence theory [66]. This is in contrast with the
Nelder–Mead algorithm, which may fail to converge even for smooth convex objective
functions; see [52]. Later, Torczon generalized her work to the entire class of DS
techniques [67].
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DS methods compute local minima of unconstrained optimization programs:

minimize f(x), x ∈ Rn,(1)

where f : Rn → R is a C1 function. DS techniques are derivative-free in the sense
that they do not require gradient information in order to compute descent steps.
This is a convenient feature if derivatives or their finite difference approximations are
not available and/or too expensive to compute or when automatic differentiation is
hindered by the presence of for loops in the function evaluation.

However, contrary to what the name suggests, the term derivative-free does not
mean that derivatives do not altogether exist. On the contrary, DS methods are
designed for C1 functions, and their convergence theory is heavily based on differen-
tiability [67]. Problems encountered when search methods are used with genuinely
nonsmooth criteria are discussed in [46].

DS techniques can also be used for constrained optimization programs. The ideas
to attack those range from quadratic or exact penalty techniques over barrier functions
to the augmented Lagrangian method.

1.2. Nonsmoothness. In the present paper, we apply the ideas of MDS to
several constrained and unconstrained optimization problems in automatic control,
where nonsmooth functions like the maximum eigenvalue function, the spectral ab-
scissa, the distance to instability, and the H∞-norm arise naturally. Due to the failure
of convergence under nonsmoothness, DS methods may not be applied in their original
form and additional tools from nonsmooth optimization are required. An algorithm
combining both ideas is what will eventually emerge. Using nonsmooth techniques in
control design is not altogether a new idea; see, e.g., [62, 61, 44, 53, 40]. What has
not been tried before is combining nonsmooth techniques with DS strategies.

The lack of a convergence certificate under nonsmoothness has not prevented
practitioners from applying DS methods in such cases. It is often argued that the
contingency of a failure due to nonsmoothness is a remote one. The argument on
which such reasoning is usually based is that even nonsmooth functions are, as a rule,
almost everywhere differentiable, so that nonsmooth points are never encountered
in practice. Our present work reveals this as an illusory argument. Nonsmoothness
may and will cause failure of DS techniques, as we demonstrate by several striking
examples.

In response, we show how MDS can be combined with nonsmooth descent steps
in order to avoid the typical failure, where simplices shrink and iterates converge to
a nonstationary point, which we also call a dead point. It is crucial to be able to
distinguish dead points from local minima, and this is done by adding a nonsmooth
stopping test to the usual hand tools of MDS. Such a test either indicates success or
allows one to escape from a dead point, keeping the search algorithm moving.

However, this is not the end of the story. Calling for a nonsmooth stopping
test whenever the simplex shrinks below a certain threshold may keep MDS moving,
but it is not strong enough to ensure convergence. In order to get a convergence
certificate in the presence of nonsmoothness, we need to supply MDS with quantified
descent steps similar to those employed by nonsmooth optimization techniques to
ensure convergence. We will refer to these two types of nonsmooth substrata to
MDS as crisis intervention and crisis prevention. While crisis intervention is done
only occasionally, being therefore less costly, crisis prevention is more complex, as it
requires that the nonsmooth technique assists the search during the whole process.
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We will indicate in which way crisis intervention and crisis prevention should be
organized for application in automatic control, but our approach is in principle open
to more general nonsmooth objectives.

We mention that a different approach to integrate nonsmoothness into MDS was
recently proposed by Audet and Dennis [7, 1] for general locally Lipschitz functions.
Their approach and ours are somewhat complementary. While we are more specific
as far as the applications are concerned, our combined method can accommodate
composite functions with the spectral abscissa, which are not even locally Lipschitz
smooth. Also, our intervention technique is applicable to other derivative-free method,
like for instance the wedge algorithm of Marrazzi and Nocedal [51].

The paper is organized as follows. We start with an introductory section 2, where
three nonsmooth criteria are discussed. We proceed with the central sections 3 and 4,
where we indicate why and in which form nonsmoothness arises in automatic control.
In section 5 we briefly recall the mode of operation of MDS, including the possibility
of the two types of intervention steps, by which the failure at dead points can be
avoided. In section 6 we proceed to the implementation of crisis intervention and
crisis prevention for nonsmooth objectives like the maximum eigenvalue function, the
spectral abscissa, and the H∞-norm. Crisis intervention is discussed in section 6,
while the more sophisticated crisis prevention is discussed in section 7. Numerical
experiments to validate the proposed tools and techniques are discussed in section 8
for a rich set of control applications.

1.3. Notation. Notation from convex and nonsmooth analysis are covered by
[35] and [22]. We let Sm denote the set of m × m symmetric matrices, equipped
with the scalar product 〈X,Y 〉 = X · Y = Tr (XY ). Let Mn be the space of real
n× n matrices, Mn,m the space of n×m matrices, equipped with the corresponding
scalar product 〈X,Y 〉 = Tr(XTY ), where XT is the transpose of the matrix X, TrX
its trace. For complex matrices XH stands for its transconjugate. For Hermitian or
symmetric matrices, X � Y means that X−Y is positive definite, X � Y that X−Y
is positive semidefinite. We shall use superscripts for the iteration index, lower scripts
to indicate vector components. Our notation from feedback control is standard and
follows, e.g., [14].

2. Examples of nonsmooth functions in control. In this section we briefly
discuss several nonsmooth functions arising in automatic control applications.

Our first example is the maximum eigenvalue function λ1 : Sm → R, defined on
the space Sm of symmetric m ×m matrices. We will use composite functions of the
form f(x) = λ1 (B(x)), where B : Rn → Sn is usually a bilinear, quadratic, or class
C2-operator. The interest in f = λ1 ◦B stems from the fact that the matrix inequality
B(x) 	 0 is equivalent to the scalar constraint f(x) ≤ 0. Notice that λ1 is convex,
which gives f a lot of structure. For instance, the Clarke subdifferential of f (cf. [22])
is the set

∂f(x) = B′(x)�[∂λ1 (B(x))] = {B′(x)�Z : Z = QY QT, Y � 0,Tr(Y ) = 1},(2)

where the columns of the matrix Q form an orthonormal basis of the eigenspace of
λ1 (B(x)). Here and in what follows, B′(x) denotes the derivative of B at x, understood
as a linear operator Rn → Sm, while B′(x)� denotes its adjoint, mapping Sm → Rn.
A case of special interest is when B is quadratic:

B(x) = A0 +

n∑
i=1

xiAi +

n∑
i,j=1

xixjBij .
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Then B′(x)d =
∑n

i=1 diAi +
∑n

i,j=1 (xidj + xjdi)Bij , and the adjoint is obtained as

(B′(x)�Z)i =

⎛⎝Ai +

n∑
j=1

xjBij + xjBji

⎞⎠ · Z.

Our second example of a nonsmooth function is the pseudospectral abscissa. Fol-
lowing Trefethen [68], the pseudospectral abscissa of a matrix A ∈ Mm is defined
as

αε(A) = max {Reλ : λ ∈ Λε(A)} ,

where Λε is the ε-pseudospectrum of A, that is, the set of all eigenvalues of matrices
A + E with euclidean norm ‖E‖ ≤ ε. For ε = 0 we recover α = α0, the spectral
abscissa, Λ = Λ0 the spectrum of A. Our second class of nonsmooth functions is
now of the form g(x) = α (A(x)) or g(x) = αε (A(x)), where A is a smooth operator
defined for x ∈ Rn with values in the matrix space Mm. Use of this function for static
feedback synthesis was first proposed by Burke, Lewis, and Overton in [17, 18]. We
will discuss this particular application in sections 6 and 8.1. The interest in g = α◦A
is obviously due to the fact that A(x) ∈ Mm is Hurwitz if and only if g(x) < 0. Notice
that g = α ◦ A is smooth at x when α(A(x)) = Reλi(A(x)) for a single eigenvalue,
where complex conjugate pairs are counted once. On the other hand, g is nonsmooth
in general for multiple eigenvalues. What is worse is that neither g = α ◦ A nor
g = αε ◦ A is locally Lipschitz function in general [17], which makes the functions
somewhat delicate to handle.

Notice that function evaluation for αε may be based on the criss-cross method
in [19], a generically globally quadratically convergent algorithm, which bears some
resemblance with the Hamiltonian algorithm [12] to compute the H∞-norm. For
smooth points x, the criss-cross algorithm computes the gradient, while it still gives
a subgradient of αε ◦ A at x if x is a nonsmooth point.

Our third example is the H∞-norm. Notice that the stability requirement αε(A) <
0 is equivalent to the estimate ‖(sI − A)−1‖∞ < ε−1. This means that αε could be
avoided and replaced by composite functions of the H∞-norm.

Consider the H∞-norm of a nonzero transfer matrix function G(s):

‖G‖∞ = sup
ω∈R

σ (G(jω)) ,

where G is stable and σ(X) is the maximum singular value of X. Suppose ‖G‖∞ =
σ (G(jω)) is attained at some frequency ω, where the case ω = ∞ is allowed. Let
G(jω) = UΣV H be a singular value decomposition. Pick u the first column of U , v
the first column of V , that is, u = G(jω)v/‖G‖∞. Then the linear functional

φ(H) = Re
(
uHH(jω)v

)
= ‖G‖−1

∞ Re Tr vvHG(jω)HH(jω)

= ‖G‖−1
∞ Re TrG(jω)HuuHH(jω)

is continuous on the space H∞ of stable transfer functions and is a subgradient of
‖ · ‖∞ at G [13]. More generally, assume the columns of Qu form an orthonor-
mal basis of the eigenspace of G(jω)G(jω)H associated with the largest eigenvalue
λ1

(
G(jω)G(jω)H

)
= σ(G(jω))2, and assume the columns of Qv form an orthonormal
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basis of the eigenspace of G(jω)HG(jω), associated with the same eigenvalue; then
for every Yv � 0, Yu � 0 with Tr (Yv) = 1 and Tr (Yu) = 1,

(3)

φ(H) = ‖G‖−1
∞ Re TrQvYvQ

H
v G(jω)HH(jω) = ‖G‖−1

∞ Re TrG(jω)HQuYuQ
H
uH(jω)

are subgradients of ‖ · ‖∞ at G, where Yv and Yu are (complex) Hermitian matrices.
Finally, assume that G(s) is rational, and that there exist finitely many frequencies
ω1, . . . , ωp where the supremum ‖G‖∞ = σ(G(jων)) is attained. Then the subgradi-
ents of ‖ · ‖∞ at G are precisely of the form

φ(H) = ‖G‖−1
∞ Re

p∑
ν=1

TrG(jων)
HQνYνQ

H
ν H(jων),

where the columns of Qν form an orthonormal basis of the eigenspace of G(jων)
G(jων)

H associated with the leading eigenvalue ‖G‖2
∞, and where Yν � 0,

∑p
ν=1

Tr(Yν) = 1. See [22, Prop. 2.3.12 and Thm. 2.8.2] for this.

Suppose now we have a smooth operator G, mapping Rn onto the space H∞ of
stable transfer functions G. Then the composite function n(x) = ‖G(x)‖∞ is Clarke
subdifferentiable at x with

∂n(x) = G′(x)�[∂‖ · ‖∞ (G(x))],

where ∂‖ · ‖∞ is the subdifferential of the H∞-norm above. In section 6 we will
compute this adjoint G′(x)� in a more specific situation. Suitable chain rules for this
case are covered by [22, sect. 2.3].

3. Nonsmoothness in control. In automatic control, difficulties with comput-
ing derivatives arise frequently. This happens, for instance, when design specifications
include time-domain constraints (settling-time, overshoot) and function evaluations
depend on simulations or experiments. But even genuine nonsmoothness arises when
criteria like the maximum eigenvalue function, the spectral abscissa, or the H∞-norm
are optimized. For a large class of problems in robust control theory, these nonsmooth
criteria can be avoided since a smooth reformulation is available. The price to pay
is a significant increase of the number of variables. There are situations where this
becomes the major impediment to currently available optimization codes.

The situation we have in mind occurs for problems where bilinear matrix inequal-
ities (BMIs) arise:

minimize aTx + bTy, x ∈ Rr, y ∈ Rs

subject to A0 +

r∑
i=1

xiAi +

s∑
j=1

yjBj +

r∑
�=1

s∑
k=1

x�ykC�k 	 0,(4)

with a ∈ Rr, b ∈ Rs and Ai, Bj , C�k ∈ Sm given. Typically in (4) the decision vector
splits into x ∈ Rr, which gathers all free components or gains in the controller to be
designed, while y ∈ Rs regroups the Lyapunov variables. All our examples discussed
in section 8 may be brought to this form. In order to understand the problem better,
let us discuss an application of particular importance.
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3.1. Static output-feedback synthesis. It is well known that static output
H2- or H∞-synthesis are NP -hard problems (cf. [56]), which may be cast as BMI-
optimization programs. Given the plant

⎡⎣ ẋ
z
y

⎤⎦ =

⎡⎣ A B1 B2

C1 D11 D12

C2 D21 0

⎤⎦⎡⎣ x
w
u

⎤⎦
with x ∈ Rn1 , u ∈ Rm2 , w ∈ Rm1 , y ∈ Rp2 , z ∈ Rp1 , we ask for a static feedback
control law u = Ky such that the closed-loop system is internally stable and, moreover,
a suitable operator norm of the performance channel w → z is minimized. For the
H∞-norm, the existence of such a K with the norm estimate ‖Tw→z(K)‖∞ < γ is
equivalent to the existence of a Lyapunov matrix Y ∈ Sn1 satisfying Y � 0 and

(5)⎡⎣ (A + B2KC2)
TY + Y (A + B2KC2) Y (B1 + B2KD21) (C1 + D12KC2)

T

∗ −γI (D11 + D12KD21)
T

∗ ∗ −γI

⎤⎦ ≺ 0.

If we optimize the gain γ, we obtain a BMI program (4) with unknown variables
γ ∈ R, K ∈ Rm2×p2 , and Y ∈ Sn1 . We may identify x ∈ Rr with the true decision
variables γ and K, so r = 1 + m2p2, while y ∈ Rs gathers the Lyapunov variables
Y , so s = n1(n1 + 1)/2. If the system size n1 is large, the number of Lyapunov
variables is dominant. A somewhat extreme example is the Boeing 767 under flutter
condition (AC10), treated in section 8, where n1 = 55, while m2 = p2 = 2. Here the
BMI problem has 1490 variables, while there are only 4 true decision parameters (see
[47, 24] for details).

The BMI problem (4) can be handled via smooth techniques by exploiting station-
arity conditions [41] or via interior-point methods [36] and [49, 48]. An alternative is
to use augmented Lagrangian techniques like Mosheyev and Zibulevsky [54]; see also
[45] and [65]. Their approach extends naturally to nonlinear SDPs like (4). Unfortu-
nately, all these approaches lead to large-size optimization problems even for control
problems of moderate sizes due to the presence of Lyapunov variables y. One way to
partly alleviate the difficulty in the nonlinear case is to use the projection lemma [27],
whenever possible, to reduce at least the number of variables in x. The new cast is
then a program with LMI constraints in tandem with nonlinear equality constraints:

min

{
cTy : A0 +

r∑
i=1

yiAi 	 0, h(y) = 0

}
(6)

where h : Rn → Rp represents a finite number of nonlinear equality constraints.
As suggested by our notation, the projection lemma reduces the x part in (4) to
size r = 1 (to size r = 0 for pure stabilization), but gives only a slight reduction
of the number s of Lyapunov variables y. The additional benefit of the projection
lemma is that it avoids the redundancies of the controller state-space representations.
For static output-feedback stabilization (northwest (1, 1) block in inequality (5)), a
controller-free version is as follows: A stabilizing static controller K exists if there
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exist Lyapunov matrices Y1, Y2 ∈ Sn1 such that

NT
Q

(
ATY1 + Y1A

)
NQ ≺ 0,

NT
P

(
AY2 + Y2A

T
)
NP ≺ 0,[

Y1 I
I Y2

]
� 0, Y1Y2 − I = 0,

where NP and NQ are bases of the nullspaces of C and BT, respectively. A version
including H∞-norm performance has the same form and may be found, e.g., in [59].

Different techniques have been developed to solve problems (5), (6) or problems
with more general matrix inequality and equality constraints. Leibfritz and Mustafa
[49, 48] use interior-point techniques in tandem with ideas from sequential quadratic
programming to separate Lyapunov and true decision variables in the tangent pro-
grams. A successive SDP approach is given in [25] and an augmented Lagrangian
approach in [6]. These techniques are supported by local and global convergence
theory [59], but have shown some limitations:

• Our experiments have revealed size limitations to about 1500 variables [5].
This allows solving problems with up to n1 = 40 states.

• The transformation of (4) into (6) is not always possible. Only a restricted
and well-identified class of problems is amenable to the projection lemma.
A prominent case where this is not possible is simultaneous stabilization,
considered in section 8.

In our testing, we have compared the nonsmooth MDS method to the BMI-based
methods in [5, 65] (see the corresponding column in Table 2).

4. Nonsmoothness by avoiding Lyapunov variables. For large systems,
the number s = n1(n1 + 1)/2 of Lyapunov variables y is a serious obstacle to the
BMI-optimization approach (4) or (6). It seems natural to consider alternatives where
Lyapunov variables y can be avoided, so that the optimization concentrates on the true
decision variables x = (γ,K). This is possible if one accepts nonsmooth optimization
programs. Here we propose to replace (5) by the following constrained program:

minimize ‖Tw→z(K, s)‖∞
subject to αε (A + B2KC2) ≤ 0,

K ∈ Rm2×p2 ,
(7)

for fixed ε ≥ 0, where the performance channel w → z is specified by the transfer
function

Tw→z(K, s) = C(K) (sI −A(K))
−1 B(K) + D(K),

A(K) := A + B2KC2, B(K) := B1 + B2KD21, C(K) := C1 + D12KC2,
D(K) := D11 + D12KD21.

(8)

An alternative is the constrained program

minimize ‖Tw→z(K, s)‖∞
subject to

∥∥(sI −A(K))−1
∥∥
∞ ≤ ε−1,

K ∈ Rm2×p2 .
(9)

Notice that in both programs, the controller K has to be stabilizing, or what is the
same, iterates have to be feasible. This requires a feasible initial point K0, which we
compute by the unconstrained optimization program (with ε ≥ 0 fixed):

minimize αε (A + B2KC2) ,K ∈ Rm2×p2 .(10)
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Using (10) for static feedback control has first been proposed in [17, 19].

Remark. Notice an important difference between programs like (7), (9) and pro-
gram (10), used to initialize the others. While all programs encountered are nonconvex
and often exhibit multiple local minima, it is usually satisfactory to accept a local
minimum of the H∞-norm in (7), (9), because the controller K is always stabilizing.
This is different in program (10), where a local minimum K is useless as long as it
satisfies α (A + B2KC2) ≥ 0, because it does not provide a stabilizing controller. In
such a case, we have to restart the algorithm. Notice, however, that this does not
mean that we require the full machinery of a global optimization technique, because
we are not interested in the global minimum of (10). A value α < 0 is all what is
wanted.

Similar nonsmooth formulations can be obtained for various other robust control
problems, such as static and fixed-order stabilization, H2- and H∞-synthesis problems,
simultaneous (multimodel) synthesis problems, control design with fixed structure
controllers, robust synthesis and synthesis problems involving scaling and multipliers,
and linear parameter-varying syntheses, to cite just a few.

Some of these problems are investigated in section 8. Our experiments seem to
indicate that as soon as Lyapunov variables y in (4) dominate, nonsmooth programs
like (7), (9) in conjunction with nonsmooth techniques are very attractive. The MDS
algorithm and more general DS or pattern search techniques, supplemented by non-
smooth techniques, are serious alternatives to BMI- or LMI-based methods. This is
most promising when the number of controller variables x = (γ,K) is small. In our
experiments, small means not more than 30–35 controller variables x. This situation
occurs when simple controllers for large systems are sought. For problems with high-
order controllers, a pure nonsmooth approach is inevitable. This is investigated in [3].

Remark. We end this paragraph by pointing the reader to a very important feature
of optimization programs (7), (9), (10), which seem to invite techniques like MDS.
Namely, in MDS and other search algorithms exact function evaluations can often be
avoided. All that is needed is that we be able to compare the value of the objective
at the different nodes to the current best value. This is in perfect agreement with
function evaluations for αε, λ1 and the H∞-norm, which are all based on iterative
procedures. For instance, the bisection algorithm for the H∞-norm [12] need not
be run to completion, a premature stopping criterion can be exploited to enhance
efficiency. This renders our present approach open to larger problem sizes.

5. The MDS algorithm with nonsmooth steps. In this section we give a
description of the MDS algorithm and indicate in which way a nonsmooth step may
be added to cope with nonsmoothness. For an in-depth discussion of MDS in the
smooth case the interested reader is referred to [66].

The MDS algorithm requires a “seed” or base point v0 and an initial simplex S in
Rn with vertices v0, v1, . . . , vn. The vertices are then relabeled so that v0 becomes the
best vertex, that is, f(v0) ≤ f(vi) for i = 1, . . . , n. The initial S is chosen from one of
three different shapes; see Figure 1. The scaled simplex is used when prior knowledge
on the problem scaling is available, but right-angled and regular simplices are generally
preferred in the absence of information. The algorithm updates the current simplex
S into a new simplex S+ by performing three types of operations, which drive the
search for a better point: reflection, expansion, and contraction; see Figure 2. First
vertices v1, . . . , vn are reflected through the current best vertex v0 to give r1, . . . , rn.
If a reflected vertex ri gives a better function value than v0, the algorithm tries
an expansion step. This is done by increasing the distance between v0 and ri for
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scaledregularright -angled
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v2v2

v1

v1

v1 v0v0v0

Fig. 1. Selection of initial simplex.
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e1

e2

r2

r1

v2

v1

v0

Fig. 2. Reflection, expansion, and contraction of current simplex.

i = 1, . . . , n and yields new expansion vertices ei for i = 1, . . . , n. The current
simplex S is then replaced by either S+ = {v0, r1, . . . , rn} or S+ = {v0, e1, . . . , en},
depending on whether the best point was among the reflection or expansion vertices.
If neither reflection nor expansion provide a point better than v0, a contraction step
is performed. This is done by decreasing the distances from v0 to v1, . . . , vn. If a
point better than v0 is found among the contraction vertices c1, . . . , cn, the simplex
S is replaced by S+ = {v0, c1, . . . , cn}. To complete one iteration (or sweep) of the
algorithm, v+

0 is taken to be the best vertex of S+.

In the presence of nonsmoothness, we endow the MDS algorithm with a fourth
element. MDS may take a nonsmooth step w away from the current best node v0

under consideration. In our applications, w will typically be the result of a nonsmooth
descent step away from v0, computed at the beginning of each sweep of MDS. If the
sweep produces a new vertex v+

0 better than w, MDS ignores w and keeps moving as
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1. Select initial simplex S = {v0, . . . , vn}, where v0 is the best vertex. Fix an
expansion factor μ ∈ (1,∞) and a contraction factor θ ∈ (0, 1), and an
intervention tolerance ω > 0.

2. Given the current simplex S with best vertex v0, call for a nonsmooth step
w if the size of S is below threshold ω. If w = v0 stop at critical point v0.

3. Perform a reflection step ri = v0 − (vi − v0). Compute f(ri).
4. If improvement f(ri) < f(v0)

perform expansion step ei = (1 − μ)v0 + ri. Compute f(ei).
If improvement f(ei) < f(v0)

put S+ = {v0, e1 . . . , en}. Goto step 5.
else

put S+ = {v0, r1 . . . , rn}. Goto step 5.
else

perform contraction step ci = (1 + θ)v0 − θri. Compute f(ci). Put
S+ = {c0, . . . , cn}.

5. Compare best vertex in S+ to f(w). If w is better, replace S+ by new
simplex containing w as a vertex. Otherwise accept S+. Go back to
step 2 to loop on.

Fig. 3. MDS with nonsmooth steps.

planned. On the other hand, if w is better than all the nodes tested by MDS during
reflection, expansion, and contraction, we include w among the vertices of the new
simplex S+. In that event, we have to decide in which way the old vertices produced
by MDS are recycled, or whether new nodes need to be created. This will obviously
depend on geometrical properties. One possibility is to abandon the worst among the
nodes of S+ found by MDS and add the new node w as best point. If this produces
angles below a certain threshold, one has to (partly) abandon S+ and add new vertices
to avoid bad geometry. In such a case, one can also build a completely new simplex
with right-angled or regular geometry, using w as seed point. In our tests, we have
observed that it is beneficial in such a situation to switch between the geometries
(regular, right angled) in order to give MDS some additional help to move on. But
all these considerations are clearly heuristic, depend on the context, and will need
further testing.

In order to avoid serious slowdown of MDS, the nonsmooth step w is only solicited
when the size of the simplex is below a certain threshold ω. Large S indicate that
MDS is making good progress, so a costly nonsmooth step should be avoided. The
situation we expect is that most of the time the point w is not better than the new
best point v+

0 of S+ found by MDS. In that case, w plays a role similar to the Cauchy
point in trust region methods. That is, it is hardly ever taken as the new iterate, but
gives a convergence certificate. In our case, this will be made precise in Theorem 1.
The different ways in which w may be computed will be explained subsequently. We
sum up the above discussion in the pseudocode shown in Figure 3.

The following sections will show how the nonsmooth steps v0 → w may be com-
puted. From step 2 of the algorithm it is clear that the minimal requirement any
w should satisfy is that 0 �∈ ∂f(v0) should give f(w) < f(v0), so when w = v0, the
algorithm stops with 0 ∈ ∂f(v0).
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The choice of the intervention tolerance ω should be compared to the usual stop-
ping tests for smooth versions of MDS. Modern implementations use the relative size
of the current simplex as a stopping test:

1

max(1, ‖v0‖)
max

1≤i≤n
‖vi − v0‖ < ε,(11)

where v0 is the current best vertex of S = {v0, . . . , vn} and ε > 0 is a prescribed
tolerance. If a crisis intervention strategy is used, ω should be chosen slightly larger
than the size (11). In the case of crisis prevention, an even larger ω is chosen.

The choice of the initial simplex S is a relatively unexplored topic. The conver-
gence proof in [66] requires only that S be nondegenerate, which means that the n+1
points {v0, v1, . . . , vn} defining the simplex must span Rn. Otherwise, MDS would
only search over the subspace spanned by the degenerate simplex.

6. Nonsmooth stopping tests. Our first strategy is crisis intervention and
uses a very small threshold ω. This means that the nonsmooth descent step v0 → w
is called for only when MDS gets stalled. What this essentially amounts to is a
nonsmooth optimality test, which will either show that we are at a local minimum
(or critical point) or give us a descent step v0 → w to escape from the current point
v0, allowing MDS to move on. This strategy is preferable if nonsmooth descent steps
are expensive. During the following we compute these steps for the criteria presented
in section 2 and for the programs in section 4.

6.1. Maximum eigenvalue function. This case is well known. From the for-
mula (2) of the Clarke subdifferential of f = λ1 ◦B we see that 0 ∈ ∂f(x∗) if and only
if the value t of the following semidefinite program is zero:

min{t : QT[B′(x∗)d]Q 	 tI, ‖d‖ ≤ 1}.

On the other hand, when the value is negative, the optimal solution (t, d) of this
SDP gives the steepest descent direction d for f = λ1 ◦ B at x∗. If x∗ is the current
best vertex v0 in MDS, then the nonsmooth stopping test either shows 0 ∈ ∂f(x∗) or
produces w with f(w) < f(x∗) of the form w = x∗ + τd, where τ > 0 is found by a
suitable line search.

6.2. Spectral abscissa. This is a more difficult case. Consider the minimization
program

min
x∈Rn

g(x) = α (F(x)) ,

where F : Rn → Mm is smooth. Since α is not even locally Lipschitz in general, we
need a more elaborate way to obtain a stopping test.

Suppose MDS gets stalled at x∗ and we want to know whether x∗ is a local
minimum of g or a dead point. We use the following lemma.

Lemma 1. Let F ∈ Mm. Then α(F ) ≤ t if and only if there exists Y ∈ Sm,
0 ≺ Y ≺ I, such that FTY + Y F − 2tY 	 0.

For a bounded set of matrices F , the condition number of Y is bounded. The
inequality Y � 0 can therefore be replaced by Y � θI for a fixed small enough θ > 0,
uniformly over all F in that bounded set. Assume now that we have chosen an initial
iterate x0 such that L = {x ∈ Rn : g(x) ≤ g(x0)} is bounded. Since we use a
method of descent type, all our iterates x lie in L, so that the condition number of the
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Lyapunov matrices Y arising at the corresponding F = F(x) are uniformly bounded:
θI 	 Y 	 I for some 0 < θ � 1. This allows us to consider the optimization program

minimize t
subject to Y � θI, Y 	 I,

F(x)TY + Y F(x) − 2tY 	 0,
(P)

with decision vector (x, t, Y ) ∈ Rn × R × Sm. Let x∗ ∈ L. Define F ∗ = F(x∗) and
t∗ = α(F ∗). Correspondingly, compute Y ∗ with θI 	 Y ∗ 	 I such that F ∗TY ∗ +
Y ∗F ∗ − 2t∗Y ∗ 	 0. As a consequence of Lemma 1 we have the following proposition.

Proposition 1. x∗ ∈ L is a local minimum of g = α◦F if and only if (x∗, t∗, Y ∗)
is a local minimum of program (P).

In order to decide whether the latter is the case, we use a general result from [9].
Define f(x, t, Y ) = t and

G(x, t, Y ) =

⎡⎣ Y − I 0 0
0 θI − Y 0
0 0 F(x)TY + Y F(x) − 2tY

⎤⎦ .(12)

Then (P) is equivalent to the abstract program

min f(x, t, Y ) subject to G(x, t, Y ) ∈ S3m
− .

Assume that Robinson’s constraint qualification [9] is satisfied for this program. Then
if (x∗, t∗, Y ∗) is a local minimum, the tangent program

minimize f ′(x∗, t∗, Y ∗)T(δx, δt, δY )
subject to G′(x∗, t∗, Y ∗)(δx, δt, δY ) ∈ T (S3m

− ,G(x∗, t∗, Y ∗))
(13)

has the unique solution (δx, δt, δY ) = (0, 0, 0). Here T (S3m
− , G) is the Clarke tangent

cone, which according to [9] is T (S3m
− , G) = {Z ∈ S3m : QTZQ 	 0} if λ1(G) = 0,

where the columns of the matrix Q are an orthonormal basis of the eigenspace of
G associated with the maximum eigenvalue λ1(G) = 0, while T (S3m

− , G) = S3m if
λ1(G) < 0, T (S3m

− , G) = ∅ if λ1(G) > 0.
It turns out that optimality of (0, 0, 0) in (13) is a condition which may be checked

by solving an SDP. Indeed, observe that

f ′(x∗, t∗, Y ∗)T(δx, δt, δY ) = δt

and

G′(x∗, t∗, Y ∗)(δx, δt, δY ) =

⎡⎣ δY 0 0
0 −δY 0
0 0 δZ

⎤⎦ ,
where as before G′ denotes the differential of the operator G, and where we use the
shorthand notation

Z∗ := F(x∗)TY ∗ + Y ∗F(x∗) − 2t∗Y ∗,

δZ := [F ′(x∗)δx]TY ∗ + F(x∗)TδY + Y ∗[F ′(x∗)δx] + δY F(x∗) − 2t∗δY − 2δtY ∗.

Clearly, the tangent cone in question is

T (S3m
− ,G(x∗, t∗, Y ∗)) = T (Sm

− , Y ∗ − I) × T (Sm
− , θI − Y ∗) × T (Sm

− , Z∗),
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so we have to compute these three tangent cones.

Let Q1 be an orthonormal basis of the eigenspace of Y ∗ − I associated with the
eigenvalue 0, and let Qθ be a basis of the eigenspace of θI − Y ∗ associated with the
eigenvalue 0. Finally, let P be a basis of the eigenspace of Z∗ associated with the
eigenvalue 0. Then the tangent program becomes

minimize δt

subject to QT
1 δY Q1 	 0,

QT
θ δY Qθ � 0,

PTδZP 	 0,

‖δx‖ ≤ 1, |δt| ≤ 1, ‖δY ‖ ≤ 1.

(14)

This is an SDP in the unknown variable (δx, δt, δY ). The decision is now as follows. If
our tangent program reveals (x∗, t∗, Y ∗) as a critical point, we stop and thereby accept
the solution proposed by MDS. Otherwise, δx will show us the way to escape from
the current point x∗. In terms of the MDS algorithm, when x∗ = v0, the nonsmooth
descent step will be w = x∗ + τδx for some τ > 0 found by a line search.

6.3. Stopping test for the H∞-norm. For constrained programs like those
in section 4, the situation is principally the same as in the unconstrained case. When
we get stalled at some iterate K∗, we would like to know whether we have a local
minimum (a KKT point), or whether we could keep making progress by avoiding a
dead point.

In this section, we consider a stopping test for the nonsmooth program (9), which
is based on the frequency domain representation of the H∞-norm.

Suppose we have reached an iterate K∗ such that ‖Tw→z(K
∗)‖∞ = γ∗ and

‖(sI −A(K∗))
−1‖∞ = ε−1. We want to decide whether K∗ is a critical point of

the program

min{‖Tw→z(K)‖∞ : ‖(sI −A(K))−1‖∞ ≤ ε−1}.

This may be based on a nonsmooth stationarity test, which checks whether or not 0 ∈
∂n(K∗)+R+∂m(K∗), where n(K) = ‖Tw→z(K)‖∞, m(K) = max(0, ‖ (sI−A(K))−1

‖∞ − ε−1) (see [22, Thm. 6.1.1, Prop. 3.3.1]). We therefore need to compute the
subdifferentials ∂n(K∗) and ∂m(K∗).

Let us start with ∂n(K∗), which is more general. The subdifferential ∂m(K∗)
will then follow as a special case. Recall that Tw→z(K, s) is of the form

Tw→z(K, s) = C(K)(sI −A(K))−1B(K) + D(K),

where A(K), B(K), C(K), and D(K) are given in (8). Defining F(K, s) = (sI −
A(K))−1, we obtain the derivative T ′

w→z of Tw→z at K∗ as

T ′
w→z(K

∗) δK(s) = D12 δK C2F(K∗, s)B(K∗)(15)

+ C(K∗)F(K∗, s)B2 δK C2F(K∗, s)B(K∗)

+ C(K∗)F(K∗, s)B2 δK D21 + D12 δK D21.

Now let φ = φY be a subgradient of ‖ · ‖∞ at Tw→z(K
∗) of the form (3), specified

by Y � 0, Tr(Y ) = 1 and with ‖Tw→z(K
∗)‖∞ attained at frequency ω. We wish
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to compute ΦY := T ′
w→z(K

∗)�φY ∈ Mm2,p2
. The adjoint T ′

w→z(K
∗)� acts on φY

through

〈T ′
w→z(K

∗)�φY , δK〉
= 〈T ′

w→z(K
∗)δK, φY 〉

= ‖Tw→z(K
∗)‖−1

∞ Re Tr
(
Tw→z(K

∗, jω)HQY QHT ′
w→z(K

∗)δK (jω)
)

= ‖Tw→z(K
∗)‖−1

∞ Re Tr
[
C2F(K∗, jω)B(K∗)Tw→z(K

∗, jω)HQY QHD12

+C2F(K∗, jω)B(K∗)Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+D21Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+ D21Tw→z(K
∗, jω)HQY QHD12

]
δK.

In consequence, the Clarke subgradients of n = ‖ · ‖∞ ◦ Tw→z at K∗ are of the form

ΦY = ‖Tw→z(K
∗)‖−1

∞ Re
[
C2F(K∗, jω)B(K∗)Tw→z(K

∗, jω)HQY QHD12

+C2F(K∗, jω)B(K∗)Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+D21Tw→z(K
∗, jω)HQY QHC(K∗)F(K∗, jω)B2

+D21Tw→z(K
∗, jω)HQY QHD12

]T
,

or more simply,

ΦY = ‖Tw→z(K
∗)‖−1

∞ Re
{
G21(K

∗, jω)Tw→z(K
∗, jω)HQY QHG12(K

∗, jω)
}T

,

where

G21(K
∗, jω) := C2F(K∗, jω)B(K∗) + D21,

G12(K
∗, jω) := C(K∗)F(K∗, jω)B2 + D12.

The subdifferential of the function m(.) is obtained through similar calculations.
We first note that up to a constant term, the second component of m(.) is ‖F(K)‖∞,
a simplification of Tw→z(K) with C(K) = I, B(K) = I, and D(K) = 0. Assuming
this time that the supremum is attained at frequency ω′, the Clarke subgradients of
‖F(K)‖∞ at K∗ are of the form

Ψ
Ŷ

:= ‖F(K∗)‖−1
∞ Re

{
C2F(K∗, jω′)F(K∗, jω′)HQ̂Ŷ Q̂HF(K∗, jω′)B2

}T

,

with Ŷ � 0, Tr (Ŷ ) = 1. Since both components of the max function m(·) are
active at K∗, the subdifferential of m at K∗ is the convex hull of the origin with the
subdifferential of ‖F(K)‖∞ at K∗ [22]. Those subgradients are therefore of the form

Ψ
Ŷ

, Ŷ � 0, and Tr (Ŷ ) ≤ 1. These formulae are easily adapted if the first H∞-norm
is attained at frequencies ω1, . . . , ωp, and the second at ω′

1, . . . , ω
′
q.

Suppose ‖Tw→z(K
∗)‖∞ is attained at a single ω, and ‖F(K∗)‖∞ at a single ω′.

Then the optimality test leads to solving the optimization program

min{‖ΦY + Ψ
Ŷ
‖2 : Y � 0,Tr (Y ) = 1, Ŷ � 0 }

which is a low-dimensional SDP. If the value of this program is 0, then K∗ is a critical
point.
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7. Crisis prevention. The nonsmooth stopping tests developed in the previous
section could be adapted to many other programs. We should be aware, however, that
the steps v0 → w they generate are steepest descent steps, which cannot guarantee
convergence under nonsmoothness (see [50] for a discussion). Put differently, even
though the stopping test may allow us to move on, we have no guarantee that an
accumulation point of the sequence so generated would not be another dead point.
In order to exclude this categorically, a more sophisticated strategy, crisis prevention,
is required. Here we get a convergence certificate, which is built on the possibility to
quantify descent.

A well-known tool of convex nonsmooth analysis which allows us to quantify de-
scent is ε-subgradients (see [35, Thm. 1.1.5]). Since our present criteria are nonconvex,
those may not be used directly and some modifications are required (see [57, 58]). But
the idea is essentially the same.

7.1. Quantitative descent for f = λ1 ◦ B. To begin with, let us examine
a strategy suited for eigenvalue optimization, used in the simultaneous stabilization
problem section 8.3. We consider a nonconvex maximum eigenvalue function of the
form

f(x) = λ1 (B(x))(16)

with a bilinear (or more generally C2) operator B. We solve the unconstrained opti-
mization problem:

minimize f(x) = λ1 (B(x)) , x ∈ Rn.

We follow [57, 58], which extends previous work by Cullum, Donath, and Wolfe [23]
and Oustry [60], where affine operators were used, to more general functions f = λ1◦B.
We use an approximation δεf(x) of the ε-subdifferential ∂εf(x) of f at the current
x, called the ε-enlarged subdifferential. We compute the approximate subgradient
g ∈ δεf(x), which gives rise to the so-called steepest ε-enlarged descent direction. Let
us define

δεf(x) =
{
B′(x)�Z : Z = QεY QT

ε , Y � 0, tr(Y ) = 1, Y ∈ Sr(ε)
}
,

where the first r(ε) eigenvalues of B(x) ∈ Sm are those which satisfy λi > λ1 − ε,
and where the columns of the r(ε) ×m-matrix Qε form an orthonormal basis of the
invariant subspace associated with these eigenvalues. Then

∂f(x) ⊂ δεf(x) ⊂ ∂εf(x),

and δεf(x) is an inner approximation of ∂εf(x), which has the advantage of being
computable. Namely, the direction of steepest ε-enlarged descent d is obtained as

d = − g

‖g‖ , g = argmin {‖g‖ : g ∈ δεf(x)} .(17)

The solution g of (17) is the projection of the origin onto the compact convex set
δεf(x). This is in complete analogy with the direction of steepest descent, which
is obtained by projecting the origin onto the subdifferential ∂f(x) = δ0f(x). What
would be the most useful is the direction of steepest ε-descent, obtained by projecting
0 onto ∂εf(x), but this quantity is difficult to compute (see, however, [35] for some
ideas how this may be tried).
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1. Given iterate x, stop if 0 ∈ ∂f(x) = δ0f(x), because x is a critical point.
Otherwise choose ε > 0.

2. Given ε > 0, compute the direction d of steepest ε-enlarged descent by
solving (19). Let (t, d) be the solution.

3. If d = 0 (and hence t = 0), then 0 ∈ δεf(x). Decrease ε and go back to
step 2.

4. If d �= 0, then 0 �∈ δεf(x) and we obtain x+ = x + τd with f(x+) < f(x)
using a line search like in [57]. Let w = x+ be the intervention step for
MDS and quit.

Fig. 4. Quantified descent v0 → w for f = λ1 ◦ B.

Contrary to ∂εf(x), the support function of the compact convex set δεf(x) is
known explicitly. We have (cf. [23, 60, 57])

f̃ ′
ε(x; d) := max{gTd : g ∈ δεf(x)} = λ1

(
QT

ε [B′(x)d]Qε

)
,

where f̃ ′
ε(x; d) is the directional derivative considered in [23, 60]. Therefore, the

direction of steepest ε-enlarged descent is found by solving the program

min
‖d‖≤1

λ1

(
QT

ε [B′(x)d]Qε

)
,(18)

and the solution d = −g/‖g‖ satisfies

−‖g‖ = −dist (0, δεf(x)) = f̃ ′
ε(x; d) < 0.

Notice that (18) is equivalent to the SDP

minimize t
subject to QT

ε [B′(x)d]Qε 	 tI,
‖d‖ ≤ 1.

(19)

A descent direction d for f = λ1 ◦B at x is therefore found as soon as the value of (19)
is negative, and the corresponding d gives even a quantifiable descent in the sense of
Theorem 1 below. The appealing feature of this method is that the size of the LMI
in (18) and (19) is r(ε), which is usually small. An important consequence is that it
can be solved very cheaply if a dual SDP formulation is used. Altogether we have the
crisis prevention method shown in Figure 4.

The possible decrease f(x+) < f(x) is quantified by the following result, whose
proof is given in [57] for a spectral bundle algorithm which generates descent steps as
above. Since the convergence properties of the nonsmooth MDS method hinge on the
properties of the sequence of Cauchy points w, the result carries over to our present
situation.

Theorem 1. Consider the minimization of f = λ1 ◦ B. Suppose x0 is such that
{x ∈ Rn : f(x) ≤ f(x0)} is compact. Let the sequence xk with starting point x0 be
generated by the MDS method with nonsmooth descent step. Suppose at stage k the
parameter εk is chosen according to the ε-management of [57, 58]. Then there exists
a constant C > 0 such that the nonsmooth MDS method achieves a decrease of at
least f(xk+1) − f(xk) ≤ −C Δεk |f̃ ′

εk
(xk; dk)|2, where dk is the direction of steepest

εk-enlarged descent at xk and Δεk = λr(εk) − λr(εk)+1. Moreover, some subsequence

of xk converges to a critical point of f .
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7.2. Quantifiable descent for g = α ◦ F . In this section we discuss the dif-
ficult case of the spectral abscissa. Due to its highly nonsmooth character, quantified
decrease for g = α ◦ F is more difficult to guarantee than for f = λ1 ◦ B.

Let us again take recourse to the SDP formulation of α. Suppose g(x∗) =
α (F(x∗)) = t∗. We wish to decrease the value of g in a neighborhood U of x∗.
Following Lemma 1, for fixed 0 < θ � 1, there exists Y ∗ ∈ [θI, I] such that
λ1 (B(x∗, Y ∗, t∗)) = 0, where we define B(x, Y, t) := F(x)TY + Y F(x) − 2tY 	 0.
Finding Y ∗ amounts to solving an SDP. Now let us introduce

B̃(x, Y, t) =

⎡⎣Y − I 0 0
0 θI − Y 0
0 0 B(x, Y, t)

⎤⎦ .
Then decreasing the value g(x) = t below t∗ is equivalent to decreasing the value t of
the program

minimize t

subject to B̃(x, Y, t) 	 0

below t∗. We obtain such a decrease t < t∗ using Kiwiel’s progress function [43],
which in our situation may be written as

κ(x, Y, t; t∗) = λ1

[
t− t∗ 0

0 B̃(x, Y, t)

]
=: λ1

(
B̂(x, Y, t; t∗)

)
.

We have the following.
Lemma 2. Suppose g(x∗) = α (F(x∗)) = t∗. Then decrease t = g(x) < g(x∗) = t∗

is achieved for some x in a neighborhood U of x∗ if and only if κ(x, Y, t; t∗) < 0 for
suitable Y .

What we are interested in is quantified decrease in the same sense as used before,
so we use the ε-enlarged subdifferential δεκ of the maximum eigenvalue function κ =
λ1 ◦ B̂. The procedure, whose convergence theory is covered by [57], is shown in
Figure 5.

Notice that the costly part here is computing Y ∗. The second SDP in step 3
is of small size, since the corresponding LMI is in the space of r(ε) × r(ε) matrices.
Repeating this step to identify a suitable ε is therefore not expensive. This has
the interesting feature that as long as ε-steepest descent steps are taken, the large
SDP need not be solved at all. This makes a pure nonsmooth descent method seem
attractive. Such an approach is developed in [32] for large SDPs arising as relaxations
of integer programs. Similar to that reference, solving the SDP dual of (7.2) is more
efficient. Finally, we stress that extending the quantified descent step for the spectral
abscissa to a broader class of problems like those in (4) is straightforward and left to
the reader.

Remark. As soon as search directions based on the ε-enlarged subdifferential
are used, a good choice of ε is required. Based on extensive numerical testing, we
have used a very small ε = 1e−9 for stopping tests, while good progress in a descent
step seems to ask for moderate values ε ∈ [0.01 ; 0.1]. This is what has been used in
section 8.

8. Numerical experiments. In this section, we test the MDS algorithm with
nonsmooth descent steps on a wide range of synthesis problems from the literature.
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1. Given g(x∗) = α (F(x∗)) = t∗, quit if the stopping test (14) indicates
a critical point. Otherwise:

2. Solve an SDP to compute Y ∗ such that λ1 (B(x∗, Y ∗, t∗)) = 0. Choose
ε > 0.

3. Given ε > 0, compute d = (δx, δY, δt), the direction of steepest ε-en-
larged descent of κ(·, ·, ·; t∗) at the point (x∗, Y ∗, t∗) by solving the SDP:

minimize ρ

subject to Q̂T
ε

[
B̂′(x∗, Y ∗, t∗; t∗) d

]
Q̂ε 	 ρI,

‖δx‖ ≤ 1, ‖δY ‖ ≤ 1, |δt| ≤ 1.

Here the r(ε) columns of Q̂ε are an orthonormal basis of the invariant

subspace of B̂(x∗, Y ∗, t∗; t∗) associated with its ε-largest eigenvalues.
Let d = (δx, δY, δt) be the solution.

4. If d = 0, then 0 ∈ δεκ(x∗, Y ∗, t∗; t∗). Decrease ε and go back to step 3.
6. Having found d �= 0, decrease the value of κ using a line search as

in [57]. The corresponding step x+ = x∗ + τδx decreases g accordingly.
Let w = x+ be the intervention step for MDS, and quit.

Fig. 5. Quantified descent step v0 → w for g = α ◦ F .

Computations were performed on a (low-level) SUN-Blade Sparc with 256 RAM and a
650 MHz sparcv9 processor. LMI-related computations needed for nonsmooth descent
steps were performed using either the LMI Control Toolbox [28] or our homemade
SDP code [5]. The contraction and expansion parameters were set to θ = 0.5 and
μ = 2.0 throughout.

8.1. Static output-feedback stabilization. We start with static output-
feedback stabilization without any performance specification. Solving (10) is a pure
feasibility problem and somewhat simpler than the problems examined in what fol-
lows. It is used to initialize the constrained problem (9).

In our implementation, the MDS code was stopped as soon as a strictly negative
spectral abscissa was obtained. Restarts were used as soon as the nonsmooth opti-
mality test indicated a local minimum x̄ of g = α ◦ F with positive value g(x̄) > 0.
We also encountered dead points, where the nonsmooth stopping test indicated a way
to move on. What helps in this case is to restart MDS with the new seed proposed by
the spectral bundling step, and change the geometry of the simplex. In all tests, the
initial seed point was chosen to be the origin of the variable space. The vertices of
the initial S are then relabeled so that v0 is the best vertex. Contrary to what might
seem plausible, MDS frequently encounters dead points and fails when run in default
mode without nonsmooth steps. We discuss some of these at the end of this section.

As emphasized in the introductory section, the nonsmooth MDS is fairly insen-
sitive to the number of states, since Lyapunov variables are not involved. A striking
example is the Boeing 767 flutter problem (AC10), which our algorithm solved in
0.41-s cpu, starting from the initial point K = 0. This indicates that this problem
is not as difficult as the size would suggest. (In fact, some of our smaller problems
turned out more difficult.) The nonsmooth MDS technique appears surprisingly ef-
ficient compared to the gradient sampling algorithm proposed in [18], which for this
problem required hours of cpu time and several hundreds of restarts. This example is
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Table 1

Static output-feedback stabilization right-angled simplex.

Problem (n,m, p) Iteration cpu (s) Reference
Transport airplane (9, 1, 5) 3 0.05 [29]
Horisberger’s example (9, 1, 4) 13 0.12 [38]
VTOL helicopter (4, 2, 1) 1 0.01 [42]
Chemical reactor (4, 2, 2) 2 0.02 [39]
Piezoelectric actuator (5, 1, 3) 2 0.17 [21]
AC10 (55, 2, 2) 3 0.41 [47]
HF1 (130, 1, 2) Stable – [47]

also included in the library [47] and has been solved by the technique of [49, 48].

Example. Let us illustrate a typical difficulty related to nonsmoothness of the
spectral abscissa, when MDS stops at an iterate K∗ where several eigenvalues of the
closed-loop spectrum are active. This happens, e.g., in Horisberger’s example with
seed point at the origin and with the regular simplex geometry. When nonsmooth
descent is switched off, MDS eventually hits such a nonsmooth iterate and starts
contracting the simplex. This yields the static (nonstabilizing) gain

K = [−5.9176e−01 7.1864e+00 −3.1396e+01 3.5870e+01 ] ,

with closed-loop spectrum

Λ(A + B2KC2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−6.6646e−01 ± 6.2303e+01j
−3.9851e+00 ± 1.8336e+01j
−7.8086e+00 ± 4.0906e+00j
5.4005e−01 ± 8.3040e−01j

5.4005e−01

.

The question is now whether we are at a dead point or at a local minimum. If the
technique discussed in section 6 is switched on, a nonsmooth descent step v0 → w is
performed, which reduces the spectral abscissa from 5.4005e−01 to 5.183e−01. This
is followed by a number of reflection/expansion/contraction steps of MDS, yielding
the iterate

K = [−2.0595e− 01 6.4949e+ 00 −3.1503e+ 01 3.6173e+01 ]

with closed-loop spectrum

Λ(A + B2KC2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−6.7523e−01 ± 6.2320e+01j
−4.1595e+00 ± 1.8393e+01j
−7.5240e+00 ± 4.9624e+00j
4.7250e−01 ± 3.8239e−01j

4.7250e−01

.

The nonsmooth stopping test now clearly identifies this as a local minimum (a critical
point), since no descent direction exists. At this stage a restart of MDS is inevitable,
because α(A + B2KC2) = 4.7250e−01 > 0.

Our testing has shown that the following simple trick is successful when a restart
is due. We keep the current best point but switch geometries, for instance from regular
to right-angled or vice versa. In the example, we switched from regular to right-angled
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simplices, which generated different search directions. MDS was now successful and
reached a stabilizing gain:

K = [ 3.1794e+01 6.4949e+00 4.3250e+02 5.1173e+01 ] ,

with corresponding spectral abscissa α(A + B2KC2) = −4.1442e−01 < 0.

8.2. Static and fixed-order output-feedback H∞-synthesis. This section
reports experiments with static and fixed-order output-feedback H∞-synthesis. The
out-set is from section 3, the extension to fixed-order problems is standard [6]. We
solve program (9), using the corresponding controllers K0 computed via (10) as initial
value.

Results achieved with nonsmooth MDS are based on the infinite barrier

B(K) =

{
‖Tw→z(s,K)‖∞ if α(A + B2KC2) ≤ −τ,
+∞ otherwise,

(20)

where τ > 0 is some small fixed threshold. The infinite barrier function works sur-
prisingly well with the MDS technique, as also witnessed by [10] in different contexts.
Function evaluation for the H∞-norm is based on the efficient bisection algorithm in
[12]. See also the MATLAB implementation described in [26]. A catalog of results
is displayed in Table 2. The H∞ performance achieved with the MDS method “H∞
MDS” as well as with the spectral quadratic SDP method “H∞ AL” in [5] are de-
scribed. For completeness, in column “H∞ full” the performance of the full-order H∞
controller (computed by LMIs or algebraic Riccati equations) is shown and gives a
lower bound for the H∞-gain.

Table 2

Static and fixed-order H∞-synthesis with MDS algorithm best results with right-angled and
regular simplices stopping tolerance ε = 1e−9.

Problem Order Iteration cpu (s) H∞ MDS H∞ AL H∞ full
Transport airplane Static 37 20 2.34 2.22 1.60
VTOL helicopter Static 10 2.69 0.190 0.157 0.096
Chemical reactor Static 38 16.96 1.183 1.202 1.141
Piezoelectric actuator Static 112 8.62 1.76e−4 3.05e−3 9.63e−5
AC10 Static 72 612 14.22 Intractable 0.052
HF1 Static 11 1100 0.447 Intractable 0.449

The choice of the simplex geometry, right-angled or regular, may influence the
computed solution. Contrary to what might be guessed, the regular geometry is not
always better than the right-angled geometry. We have therefore decided to test both
and report the best result. This is reasonably affordable with regard to cpu time, as
seen in Table 2 even for high-order systems. The initial seed point was the origin in all
examples. As already discussed in [5], the augmented Lagrangian (AL) technique is no
longer operational for systems with roughly more than 40 states. Again, we would like
to stress the good results obtained with the MDS method for the Boeing 767 problem
(AC10). Actually, the projective SDP code of MATLAB ran into difficulties to solve
the LMI problem corresponding to the (convex) full-order problem and diagnosed the
problem as infeasible after more than 4 hours of execution time in default mode.

The computed static controller obtained by the MDS method for the Boeing 767
flutter problems (AC10) is

Kstatic =

[
−0.0966 0.0000
3.1681 0.0000

]
.
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The large-size HF1 problem is taken from the library [47]. It does not require
prior stabilization as the plant is open-loop stable. Hence, K = 0 may serve as
a starting point for the H∞-optimization in Table 2. Here the static gain K =
[ 1.9943 −3.4943 ] is found.

8.3. Simultaneous stabilization problems. Simultaneous stabilization is a
longstanding problem in the automatic control literature. It consists in the search
of a single controller which stabilizes a finite set of plants. This is of great practical
interest in different situations. A system may have several modes of operation, but
the controller is required to stabilize all modes. A more challenging situation is when
the system may be subject to different failures such as actuator/detector breakdown,
which often result in drastic deviations of the plant from its nominal description.
The controller is then required to stabilize normal and abnormal operating modes.
Unfortunately, the simultaneous stabilization problem has no analytical solution for
more than two plants and is classified as NP -hard [8]. Existing techniques usually try
to verify sufficient conditions. If successful, this leads to high-order controllers. Our
experiments indicate that local optimization techniques and in particular DS methods
may be of interest for designing simpler controllers, which is crucial for applications.

For single-input single-output systems {Gi(s), i = 1, . . . , q}, the simultaneous
stabilization problem can be formulated as follows:

• find a controller with transfer function

K(s, x) =
NK(s, x)

DK(s, x)
=

x1s
m + · · · + xms + xm+1

sn + xm+2sn−1 + · · · + xm+ns + xm+n+1
,(21)

where as before x := [x1 · · ·xm+n+1]
T gathers the decision variables,

• such that the closed-loop characteristic polynomials

pi(s, x) := NGi(s)NK(s, x) + DGi(s)DK(s, x)

have only stable roots for i = 1, . . . , q.

This may be addressed by the optimization program

minimize
x∈Rm+n+1

max
i=1,...,q

Re (roots of pi(s, x))(22)

and a simultaneous stabilizing controller is found as soon as the value of this pro-
gram is < 0. Program (22) resembles the static stabilization formulation discussed in
section 8.1 and we follow a similar line of attack.

A challenging variant of this problem is the strong stabilization problem, where
the controller itself is required to be stable. This is incorporated into the cast (22) by
just adding DK(s, x) to the family of plant polynomials.

Table 3

Simultaneous stabilization with MDS right-angled simplex ∗ strong stabilization problem.

Problem Order Iteration cpu (s) Restart Reference
F4e aircraft Static 2 0.71 None [2]
cao Static 13 0.28 None [20]
cao 1 1 0.25 3 [20]
henrion 1 2 0.51 None [34]
bredemann1∗ 1 6 2.05 3 [16, p. 68]
bredemann2∗ 1 3 0.82 3 [15]
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In this testing, the nonsmooth MDS was again successful on a list of applications
from the literature. Restarts have been used with a different initial seed point when an
unsatisfactory local minimum was encountered. Often we obtained simpler controllers
than those previously published and derived from constructive sufficient conditions.
For example, the method in [16] yields a fifth-order controller for example bredemann1,
whereas the MDS technique was able to show that first-order strong simultaneous
stabilization is possible. A similar comment applies to example bredemann2.

An alternative cast for simultaneous stabilization is via Hermite–Fujiwara matri-
ces. In this setting, the nonsmooth program (22) reduces to a finite set of quadratic
matrix inequality constraints [33]:

H(x) :=
m+n+1∑

i=1

m+n+1∑
j=i

xixjHij ≺ 0,

where the decision vector x comprises controller parameters in (21). Here MDS is
applied to the eigenvalue optimization program

min
x

λ1 (H(x)).(23)

We apply MDS to a problem from [33], which consists in the simultaneous stabi-
lization of four plants. Hence, x is required to be strictly feasible for four quadratic
matrix inequalities of the form (23). This problem is of special interest because nu-
merous dead points and unsatisfactory local minima were found if different seed points
were used.

Table 4

Simultaneous stabilization using Hermite–Fujiwara BMI characterization final spectrum of
quadratic SDP results with two starting points and regular simplices.

Seed 1, 1,−1,−1 −1,−1, 1, 1

Final iterate 3.5068, 4.2139, 0.0925, 0.0925 −4.4420, 0.4275, 0.5059, 0.1618

Final spectrum

of quadratic SDP (23)

−1.3846e+03

−1.0473e+03

−8.0116e+02

−3.9982e+02

−3.8359e+02

−2.0603e+02

−1.3928e+02

−8.4586e+01

−2.6890e+00

−1.4544e+00

−7.6821e−01

−6.3137e−01

−2.2926e+03

−3.7468e+02

−3.1919e+02

−2.1174e+01

−6.7302e+00

−6.1145e+00

−2.3900e+00

−2.3453e+00

−5.0609e−02

1.8472e−01

1.8528e−01

1.8528e−01

Controller
3.5068s + 4.2139

9.2540e−02s + 9.2540e−02
none

Example. For the purpose of testing, MDS was first run without nonsmooth steps.
Table 4 shows two scenarios with default MDS. In column 2 the nonsmooth stopping
test from section 7.1 was switched on as soon as MDS got stalled. It reveals that we are
at a dead point and not at a local minimum. While nonsmooth steps v0 → w allowed
MDS to move on, crisis intervention ultimately did not lead to a stabilizing controller
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in this case. The procedure gets again stalled and this time achieves convergence to
an infeasible local minimum.

Example (continued). In a second testing, we examined this case more closely.
As it is too late to shut the stable door after the horse has gone, we opted to used
the ε-descent nonsmooth technique of section 7.1 in order to avoid failure. We call
for a nonsmooth step as soon as the MDS simplex shrinks below ω = 0.1 in relative
size. Starting with the same initial point, the simultaneous stabilization problem is
now satisfactorily solved in a few iterations: four MDS iterations and a single call for
the nonsmooth intervention technique of section 7.1. The evolution of the maximum
eigenvalue of the quadratic SDP in (23) as a function of the iteration index is the
five-element sequence

{6.5072e+01, 1.5172e+01, 5.1720e+00, 2.868e+00, −1.4778e+00} ,

where the nonsmooth descent step v0 → w corresponds to the decrease from
5.1720e+00 to 2.868e+00. Note that since sole stabilization is of interest, the al-
gorithm has been stopped as soon as the maximum eigenvalue was found negative.
The associated first-order controller solution is described by the transfer function

K(s) =
4.9843s− 4.2577

4.2783e−01s + 6.2861e−01
.

Example (continued). In our third experiment, we assess the performance of the
nonsmooth descent technique alone. We no longer sample the space using MDS.
Instead we follow descent steps v0 → w proposed by the nonsmooth technique in
section 7.1. This option corresponds to a pure spectral bundle method [57]. With the
same starting point causing failure of the default MDS, the problem is now solved in
seven calls according to the sequence

{65.0718, 43.0862, 39.8725, 20.1852, 19.9853, 3.5719, 2.8877, −0.0228} .

The resulting stabilizing controller is

K(s) =
0.6029s + 1.115

0.03361s + 0.1064
.

All controllers computed in this application have significantly different pole/zero pat-
terns, but all stabilize the four-plant family.

8.4. Mixed H2/H∞ state-feedback synthesis. Mixed H2/H∞-synthesis
with state- or output-feedback is one of those archetype problems which cannot be
simplified using the projection lemma and resist to linearizing changes of variable like
[30]. What remains are special BMI techniques or algorithmic approaches like the one
we propose here. The mixed H2/H∞ state-feedback synthesis problem is as follows.
Given a synthesis state-space representation⎧⎨⎩

ẋ = Ax + B1,2w2 + B1,∞w∞ + B2u,
z2 = C1,2x + D12,2u,
z∞ = C1,∞x + D11,∞w∞ + D12,∞u,

the goal is to compute a state-feedback control law u = Kx such that
• the closed-loop system is asymptotically stable, i.e., α(A + B2K) < 0,
• the H2-norm of the channel ‖Tw2→z2(K, s)‖2 is minimized subject to an H∞-

norm constraint on the channel ‖Tw∞→z∞(K, s)‖∞ ≤ γ.
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An example of this type is given in [31], and we reexamine it here using our
nonsmooth MDS. We proceed as follows. First a state-feedback gain satisfying both
stability and the H∞ constraint is computed as in section 8.2. In a second phase, the
H2-norm is added and minimized, using an infinite barrier

(24)

B(K) =

{
‖Tw2→z2(K, s)‖2 if α(A + B2K) ≤ −τ and ‖Tw∞→z∞(K, s)‖∞ ≤ γ,
+∞ otherwise,

now maintaining the constraints of phase 1.
With data imported from [31] and γ = 2, MDS computed a gain K in 25 MDS

iterations within 11.1 s of cpu time. The solution found is

K = [ 1.8236, 2.5648e−01, −2.0453e−01 ]

with ‖Tw2→z2(K, s)‖2 = 7.502e−01. The H∞-norm constraint was of course active at
this point. Note en passant that this result outperforms those achieved via the spectral
augmented Lagrangian method in [65], which gave ‖Tw2→z2(K, s)‖2 = 0.8384, and
the successive linearization approach in [31], which found ‖Tw2→z2(K, s)‖2 = 0.8930.
Since this problem has multiple local minima, this fact does not imply that any one
of those methods is better than any other, except perhaps for cases where a solution
without optimality certificate is presented. The solution in [65] is a local minimum,
and we checked optimality of our present K by adapting the nonsmooth frequency
domain test for program (9) from section 6. This requires not much extra work, as
the H2-norm is smooth (see [13]). We observed that the H∞-norm is attained at a
single frequency, which seems to be rather the rule than the exception.

9. Conclusion. We have proposed a new algorithmic strategy for difficult and
even NP -hard synthesis problems in automatic control, which are inaccessible via
convexity methods. Our algorithm combines DS methods like Torczon’s MDS with
spectral bundle techniques, imported from nonsmooth optimization, in order to cope
with typical nonsmooth criteria in control like the spectral abscissa, the maximum
eigenvalue function, or the H∞-norm. Our approach is a serious alternative to non-
linear programming algorithms based on bilinear matrix inequalities, as long as the
number of controller decision variables is not too large. Since our approach avoids
Lyapunov variables, it may be used to design small- or medium-size controllers even
for very large systems, as witnessed by the Boeing 767 and Heat Flow (HF1) bench-
mark examples, systems with 55 and 130 states, respectively. As soon as the number
of controller gain parameters gets sizable, the search method is often too slow, and
pure nonsmooth approaches like spectral bundling perform better. How those should
be organized for control applications is discussed in [3]. In a similar vein, a pure non-
smooth and frequency-domain approach for solving multidisk problems is proposed
in [4]. A nonsmooth spectral bundle method for solving state-space BMI programs is
developed in [64].

Our approach combines MDS with suitable nonsmooth descent steps. This gives
a convergence certificate toward critical points, an important feature lacking in all the
heuristic approaches proposed to date. We have observed that MDS is fairly insensi-
tive to noise corrupting the function evaluation. This makes it particularly useful in
control applications, where objective functions typically result from iterative proce-
dures to compute the H∞- or H2-norm. We have noticed that in the neighborhood
of nonsmooth surfaces, gradient directions behave irregularly and are often distorted
and unreliable, while progress is still achievable with MDS.
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In conclusion, we believe the proposed framework is very versatile and can accom-
modate a vast array of design problems, expanding on those discussed in this paper.
Structured feedback design is near at hand, while robust control is currently under
investigation.
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ON THE CONTROLLABILITY OF A FRACTIONAL ORDER
PARABOLIC EQUATION∗

SORIN MICU† AND ENRIQUE ZUAZUA‡

Abstract. The null-controllability property of a 1 − d parabolic equation involving a fractional
power of the Laplace operator, (−Δ)α, is studied. The control is a scalar time-dependent function
g = g(t) acting on the system through a given space-profile f = f(x) on the interior of the domain.
Thus, the control g determines the intensity of the space control f applied to the system, the latter
being given a priori. We show that, if α ≤ 1/2 and the shape function f is, say, in L2, no initial
datum belonging to any Sobolev space of negative order may be driven to zero in any time. This
is in contrast with the existing positive results for the case α > 1/2 and, in particular, for the heat
equation that corresponds to α = 1. This negative result exhibits a new phenomenon that does not
arise either for finite-dimensional systems or in the context of the heat equation.

On the contrary, if more regularity of the shape function f is assumed, then we show that there
are initial data in any Sobolev space Hm that may be controlled. Once again this is precisely
the opposite behavior with respect to the control properties of the heat equation in which, when
increasing the regularity of the control profile, the space of controllable data decreases.

These results show that, in order for the control properties of the heat equation to be true,
the dynamical system under consideration has to have a sufficiently strong smoothing effect that is
critical when α = 1/2 for the fractional powers of the Dirichlet Laplacian in 1 − d. The results we
present here are, in nature and with respect to techniques of proof, similar to those on the control
of the heat equation in unbounded domains in [S. Micu and E. Zuazua, Trans. Amer. Math. Soc.,
353 (2000), pp. 1635–1659] and [S. Micu and E. Zuazua, Portugal. Math., 58 (2001), pp. 1–24].

We also discuss the hyperbolic counterpart of this problem considering a fractional order wave
equation and some other models.
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1. Introduction. It is generally considered that, due to the strong dissipative
effect on the high modes, parabolic equations behave like ordinary differential equa-
tions (i.e., finite-dimensional dynamical systems) from a control theoretical point of
view. This is true for instance for the heat equation concerning the problem of null
controllability, i.e., that of driving solutions from a given initial configuration to equi-
librium, in several respects: (a) both finite-dimensional systems and the heat equation
are controllable in an arbitrarily short time; (b) the controls may be taken to be ar-
bitrarily smooth. In this way, for instance, the heat equation in bounded domains is
controllable with L2-controls for initial data in a Sobolev space of arbitrary negative
order, in an arbitrarily short time and with controls supported in an arbitrarily small
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subdomain. Recently it was proved, however, that this is not true in unbounded
domains (see [17] and [18]).

The object of this article is to further investigate to what extent this analogy
is systematically true or whether it is related to the intrinsic properties of the heat
equation.

To do this we consider the following null-controllability problem: Given T > 0
and f ∈ L2(0, π), for any u0 ∈ L2(0, π) find a control g ∈ L2(0, T ) such that the
solution u of the problem⎧⎪⎨⎪⎩

ut + (−Δ)αu = g(t)f(x), x ∈ (0, π), t ∈ (0, T ),

u = 0, x ∈ {0, π}, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, π),

(1.1)

satisfies

u(T, · ) = 0.(1.2)

Here and in what follows (−Δ)α denotes the fractional power of order α > 0 of
the Dirichlet Laplacian that we shall denote by Aα. More precisely,

Aα : D(Aα) ⊂ L2(Ω) → L2(Ω),

D(Aα) =

⎧⎨⎩u ∈ L2(0, π) : u =
∑
n≥1

an sin(nx) and
∑
n≥1

|an|2n4α < ∞

⎫⎬⎭ ,

u(x) =
∑
n≥1

an sin(nx) −→ Aαu(x) =
∑
n≥1

ann
2α sin(nx).

(1.3)

Equation (1.1) is of parabolic type for any α > 0. In the absence of control,
solutions of (1.1) decay exponentially as t → ∞ in, say, L2. When α = 1 we recover
the classical heat equation.

When 0 < α < 1, (1.1) is a model example of parabolic dynamical system with
weaker diffusivity (subdiffusion). Fractional equations of diffusion type are useful
models for the description of transport processes in complex systems, slower than the
Brownian diffusion. The list of systems displaying such anomalous dynamic behavior
is quite extensive: charge carrier transport in amorphous semiconductors, nuclear
magnetic resonance diffusometry in percolative and porous media, transport on fractal
geometries, diffusion of a scalar tracer in an array of convection rolls, dynamics of a
bead in a polymeric network, transport in viscoelastic materials, etc. (see [16] and
[12]).

The state of system (1.1) is u and the control, which acts on its right-hand side
term as an external source, is given by g(t)f(x), where the shape function f = f(x)
is given and the intensity g = g(t) is at our disposal. Such types of controls are
sometimes called “lumped” or “bilinear” (see, for instance, [1] and [11]).

The null-controllability problem (1.1)–(1.2) has been considered and solved in [7]
for the case α > 1/2. The proof in [7] is based on the fact that the null-control problem
may be rewritten as a problem of moments of the following form: Find g ∈ L2(0, T )
such that ∫ T

0

g(t)eλntdt = βn ∀n ≥ 1,(1.4)
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where βn = −πan/2fn depend on the Fourier coefficients (an)n≥1 of the initial data
to be controlled and those of the control profile (fn)n≥1.

Here λn is the sequence of the (real) eigenvalues of the equation under consider-
ation: λn = n2α.

It is by now well known—and this is the second ingredient in the proof of [7]—that
if

λn ∼ cnγ as n → ∞(1.5)

for some γ > 1 and a positive constant c > 0, then (1.4) has L2-solutions if the values
βn do not increase too much.

This result may be proved by means of a careful evaluation of the norm of a
biorthogonal sequence to the family of exponentials {eλnt}n≥1 and it is related to the
Müntz theorem (see [20]), guaranteeing that the family of exponentials {eλnt}n≥1 is
linearly independent in L2(0, T ) if and only if

∞∑
n=1

1

|λn|
< ∞.(1.6)

In the context of system (1.3), condition (1.5) and, implicitly, (1.6) are verified if
and only if α > 1/2.

According to this analysis, it was proved in [7] that, when α > 1/2, and when the
control profile f satisfies the condition

lim
n→∞

(∣∣∣∣∫ π

0

f(x) sin(nx)dx

∣∣∣∣ eηλn

)
> 0 ∀η > 0,(1.7)

system (1.1) is null controllable in the sense above for an arbitrarily short time and
with smooth time-dependent controls g.

It is important to note that, according to condition (1.7), the shape function f is
not “too regular.” In particular, its Fourier coefficients may not decay faster than a
suitable exponential function. Obviously, one can find control profiles f with such a
property in any Sobolev space Hs(0, π) and, in particular, in L2(0, π).

The present paper deals with the case α ≤ 1/2. As we shall see, the behavior
of the system from the control theoretical point of view is, surprisingly, the opposite
one.

Concerning the growth condition (1.5) on the spectrum, the case α = 1/2 is
critical and the condition, clearly, does not hold when 0 < α < 1/2. The same can
be said about the summability condition (1.6). In this sense, the situation we are
dealing with is similar to that in [17] and [18], where the heat equation in the half-line
and half-space was considered. Indeed, in [17] it was proved that when λn = n, the
corresponding moment problem (1.4) has a solution only if the βn grows very fast as n
tends to infinity.1 Since βn is, essentially, the ratio between the Fourier coefficients of
the initial data to be controlled and those of the control profile f , we concluded that
no regular nontrivial initial data allow a L2-solution of the moment problem, when
the profile is not too smooth. Accordingly L2-controls may not exist either. The same
can be said about the control problem (1.1) in the whole range 0 < α ≤ 1/2.

1Recently, the results of [17] and [18], and more precisely its consequences in the context of
unique continuation, were generalized in [5] to the case of parabolic equations with a potential, by
means of Carleman inequalities.
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This negative result shows that the parabolic nature of the equation and the
infinite velocity of propagation do not suffice to guarantee the controllability of the
system. On the contrary, we see that, in order for the control properties of the
heat equation to be true, very much like in the finite-dimensional theory, the under-
lying semigroup is required to have a very strong dissipative effect that fails when
α ≤ 1/2.

To be more precise, we shall show that
• if the shape function f satisfies (1.7), no initial data in any negative Sobolev

space may be controlled to zero;
• if this function is more regular, for instance, if it satisfies∣∣∣∣∫ π

0

f(x) sin(nx)dx

∣∣∣∣ ≤ e−ηλn(1.8)

for some η > T , then there are initial data in any Sobolev space Hm(0, π)
that are null controllable in time T with L2-controls.

As we said above, and contrary to intuition, this behavior is in opposition to the
control properties of the heat equation corresponding to α = 1.

Let us mention that the property

∞∑
n=1

1

|λn|
> ∞(1.9)

of the eigenvalues of the differential operator leads to a result of no spectral con-
trollability in the case of the heat equation in multidimensional problems (see [1,
Theorem IV.1.3, p. 178]). On the other hand, under hypothesis (1.9), Fattorini [6]
shows that for any T > 0 there exist a shape function f ∈ L2(0, π) and an initial
datum u0 ∈ L2(0, π) which cannot be driven to zero in time T by means of a control
of type f(x)g(t). The proofs of these results are based on the fact that an entire
function which vanishes at every λn is identically zero and are related to the methods
we use in our article. However, note that, given a shape function f , we describe the
space of the initial data which cannot be controlled to zero in finite time.

It is also interesting to compare the results we obtain in this paper with those that
one could expect from the application of the methodology in the articles by Lebeau
and Robbiano [13] and Lebeau and Zuazua [14]. In [13] and [14] an iterative method
was developed to prove the null controllability of the heat equation when the control
acts in an open subset of the domain where the equation holds. The same method
can be used to deal with control mechanisms as in (1.1). Their main idea was to split
the time interval into a sequence of decreasing consecutive subintervals. In each of
these intervals an increasing finite number of Fourier components (determined by a
diadic decomposition) is controlled to zero, the control being applied in two steps.
In a first step (in half of the subinterval) where a nontrivial control is applied, an
estimate based on Carleman inequalities guarantees that the size of the control does
not grow faster than an exponential factor, in which the maximal eigenfrequency of
the eigenfunctions under consideration enters. It was then shown that the dissipative
property of the heat equation in the remaining half of the subinterval was able to
compensate this exponential growth. A careful analysis of the method of proof in [13]
and [14] shows that it works if α > 1/2. The results of the present paper show that
the results this method yields are sharp in the sense that completely opposite results
hold when α ≤ 1/2. This fact confirms once more that the control theoretical results
of the heat equation do hold because of its very strong dissipative properties.
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The paper is organized as follows. In section 2 we present the controllability
problem and some equivalent formulations. Some known results are also mentioned.
In section 3 our main controllability results for the case α ≤ 1/2 are stated. They are
based on two propositions concerning entire functions that are proven in section 4. In
section 5 we give a negative result concerning the dual observability inequality (with
respect to the control problem). In section 6 we analyze the controllability properties
of a hyperbolic equation involving the same operator (−Δ)α:

utt + (−Δ)αu = g(t)f(x).

In this case the situation is even worse since the classical control properties of the
1− d wave equation (that correspond to the exponent α = 1) fail for all α < 1. Some
comments and open problems are included in section 7.

2. Problem formulation and existing results. We first observe that the
operator Aα in (1.3) is well defined since (

√
2 sin(nx)/

√
π)n≥1 forms an orthonormal

basis in L2(0, π). Moreover, the operator Aα is densely defined and is self-adjoint in
L2(0, π).

The eigenvalues of the operator Aα are given by

λn = n2α ∀n ≥ 1(2.1)

with eigenfunctions

ϕn = sin(nx) ∀n ≥ 1.(2.2)

With this notation the control problem for system (1.1) can be formulated as
follows: Given T > 0, f ∈ L2(0, π) and u0 ∈ L2(0, π) find g ∈ L2(0, T ) such that the
solution u of problem⎧⎪⎨⎪⎩

ut + Aαu = g(t)f(x), x ∈ (0, π), t ∈ (0, T ),

u = 0, x ∈ {0, π}, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, π),

(2.3)

satisfies

u(T, · ) = 0.(2.4)

An initial datum u0 with such property is said to be null controllable in time T .
If all initial data in L2(0, π) are null controllable we say that (2.3) is null controllable
in L2(0, π).

The goal is to drive the initial datum u0 to rest by using a control with a given
shape f(x) in space at each time. Then the control g(t) determines the intensity of
the control profile applied to the system.

Let us first give the following variational characterization of controllable initial
data.

Lemma 2.1. The initial datum u0 ∈ L2(0, π) is null controllable in time T with
control g ∈ L2(0, T ) if and only if the identity

−
∫ π

0

u0(x)ϕ(0, x)dx =

∫ T

0

g(t)

(∫ π

0

f(x)ϕ(t, x)dx

)
dt(2.5)
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holds for any ϕT ∈ L2(0, π) with ϕ(t, x) solution of the adjoint equation⎧⎪⎨⎪⎩
−ϕt + Aαϕ = 0, x ∈ (0, π), t ∈ (0, T ),

ϕ = 0, x ∈ {0, π}, t ∈ (0, T ),

ϕ(T, x) = ϕT (x), x ∈ (0, π).

(2.6)

Proof. The proof follows immediately by multiplying (2.3) by ϕ, the solution of
(2.6), integrating in (0, T )×Ω, and taking into account that Aα is self-adjoint.

Since (sin(nx))n≥1 is complete in L2(0, π), considering ϕT (x) = sin(nx) for each
n ≥ 1 in Lemma 2.1, the following equivalent condition for the null-controllability
results.

Lemma 2.2. An initial datum u0 ∈ L2(0, π) of the form

u0(x) =
∑
n≥1

an sin(nx)(2.7)

is null controllable in time T if and only if there exists g ∈ L2(0, T ) such that, for any
n ≥ 1,

fn

∫ T

0

g(t)eλntdt = −π

2
an,(2.8)

where

fn =

∫ π

0

f(x) sin(nx)dx.(2.9)

Note that (2.8) is a moment problem.
Note also that, given an arbitrary initial datum u0, a necessary condition for this

moment problem to have a solution is that

fn =

∫ π

0

f(x) sin(nx)dx �= 0 ∀n ≥ 1.(2.10)

Indeed, if there exists k ≥ 1 such that fk = 0, the kth equation in (2.8) does not
hold except for the case ak = 0. In fact, if fk = 0, it is easy to see that the kth Fourier
component of the solution of the controlled problem (1.1) is invariant in time. This
makes the controllability property impossible unless ak = 0.

From now on we shall suppose that f verifies (2.10).
Let us now recall the following result from [7].
Theorem 2.1. Let α > 1/2 and suppose that the Fourier coefficients of f

satisfy (2.10) and the following additional condition:

lim inf
n→∞

|fn|eηn
2α

> 0(2.11)

for any η > 0.
Then, the initial state u0 =

∑
n≥1 an sin(nx) is null controllable in time T > 0 by

means of a control g ∈ L2(0, T ) if, for some M,η > 0,

|an| ≤ Men
2αT e−(π+η)n, n = 1, 2, . . . .(2.12)
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Moreover, when this holds, the control g may be chosen to be in Cm([0, T ]) for all
m ≥ 1.

Remark 2.1. The right-hand side term in (2.12) tends to infinity as n → ∞.
Thus, Theorem 2.1 implies, for instance, that any initial data in L2(0, π) are null
controllable in any time T > 0. This result is in contrast with which we shall prove
for the case α ≤ 1/2 that no initial data in a negative Sobolev space may be driven to
zero in finite time with an L2-control g.

Remark 2.2. Condition (2.11) requires the shape function f = f(x) to be not
“too regular.” Obviously, one can find control profiles f with such a property in any
Sobolev space Hs(0, π), but a too fast exponential decay rate of the Fourier coefficients
of f is incompatible with (2.11). In particular, when f is a Gaussian function, (2.11)
fails for α = 1, i.e., for the classical heat equation.

3. Controllability results in the case α ≤ 1/2. Let us now address the case
0 < α ≤ 1/2. Throughout this section we will assume that 0 < α ≤ 1/2. However,
some of the results we present here are valid for all α > 0. This will be indicated
explicitly when it is the case.

3.1. The main negative result. The following result is completely different
from that obtained in Theorem 2.1.

Theorem 3.1. Let 0 < α ≤ 1/2 and suppose that the Fourier coefficients of
f satisfy (2.11). Then any nontrivial initial state u0 =

∑
n≥1 an sin(nx) with the

property that for any μ > 0 there exists a constant Cμ > 0 such that

|an| ≤ Cμe
μn2α ∀n ≥ 1(3.1)

cannot be driven to zero in time T > 0 by means of a control g ∈ L2(0, T ), whatever
T > 0 is.

Remark 3.1. The right-hand side term in (3.1) grows exponentially as n → ∞.
Thus, Theorem 3.1 implies that there is no initial datum in any Sobolev space of
negative order that might be null controllable in any time T > 0 with controls g in
L2(0, T ).

Consequently, this result is in opposition to the positive one in Theorem 2.1 for
the case α > 1/2.

In particular, Theorem 3.1 means that choosing quite irregular control profiles f ,
as one is required to do when α > 1/2 according to (2.11), is a very bad choice when
α ≤ 1/2.

Remark 3.2. From (3.1) it seems that, as α increases, the class of data for which
the null-controllability property fails increases as well. However, a careful analysis of
the proof of the theorem and Proposition 3.2 shows the contrary. Indeed, for the null-
controllability property to fail, not all, but only part, of the Fourier coefficients of the
initial datum must satisfy (3.1). Indeed, instead of (3.1) it is sufficient to have

|ank
| ≤ Cμe

μn2α
k ∀k ≥ 1(3.2)

for a suitable subsequence (nk)k≥1 (see Lemma 4.2 and Remark 4.2) satisfying

|nk+1 − nk| ≥
1

2α
k

1
2α−1 − 2 ∀k ≥ 1.(3.3)

Note that (3.3) shows that the distance between two consecutive terms of the se-
quence (nk)k≥1 decreases when α increases. Hence, the same happens to the class of
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data for which the null-controllability property fails. This agrees with the first intu-
ition that suggests that, as the dissipativity of the system increases, its controllability
properties improve.

A dramatic change in the controllability properties arises when α = 1/2. For α >
1/2 the control problem is very well behaved (see Theorem 2.1). On the contrary, the
controllability properties are very poor when α ≤ 1/2. Note that the same occurs with
the spectral property (1.6). Something similar happens in (3.3) where, when α > 1/2,
the gap condition is fulfilled for all indices k without extracting subsequences.

3.2. Proof of the negative result. According to Lemma 2.2, the property of
null controllability of u0 =

∑
n≥1 an sin(nx) is equivalent to the existence of a function

g ∈ L2(0, T ) such that, for any n ≥ 1, (2.8) is verified.
Before getting into the proof of Theorem 3.1 let us first give an equivalent condi-

tion for the existence of such a control function g.
Proposition 3.1. The following assertions are equivalent:
(a) There exists g ∈ L2(0, T ) such that the following holds:∫ T

0

g(s)en
2αsds = αn ∀n ≥ 1.(3.4)

(b) There exists an entire function F of exponential type ≤ T/2, with∫ ∞

−∞
|F (iy)|2 dy < ∞(3.5)

and such that

F (n2α) = αne
−n2αT/2 ∀n ≥ 1.(3.6)

Recall that an entire function is said to be of exponential type ≤ B if there exists
a positive constant A > 0 such that (see [21])

|F (z)| ≤ AeB|z| ∀z ∈ C.(3.7)

Remark 3.3. Several remarks are in order:
• Proposition 3.1 is a very general result in which the explicit values of the

coefficients αn and the eigenvalues λn = n2α do not matter.
• The proof of Proposition 3.1 uses the Fourier transform and the Paley–Wiener

theorem and will be given in the next section.
• As the proof of this proposition shows, the function F in (b) is uniformly

bounded along the imaginary axis.
• From Proposition 3.1, in order to characterize the null-controllable initial data

it is necessary and sufficient to characterize the sequences {F (n2α)}n≥1 that
may be obtained by means of entire functions F of exponential type ≤ T/2
satisfying (3.5).

The following proposition provides significant information on the rate of growth
of F (n2α) for functions F as above.

Proposition 3.2. Let F : C → C be a function satisfying the following proper-
ties:

(i) F is an entire function of exponential type ≤ T/2;
(ii)

∫∞
−∞ |F (iy)|2 dy < ∞;
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(iii) for any δ > 0 there exists Cδ > 0 such that

|F (n2α)|≤ Cδe
δn2α

e−n2αT/2 ∀n ≥ 1.

Then, necessarily, F ≡ 0.
The proof of Proposition 3.2 is based on a result of Duffin and Schaeffer (see

[4] and also [3, p. 191]) which gives conditions for the boundedness of an analytic
function in a sector of the complex plane if its boundedness on a sequence of complex
numbers is assumed. In our case, the information we have on the behavior of F (n2α)
allows us to construct an analytic function in the right half-plane which is bounded
on a sequence of complex numbers close to n and to apply the mentioned result. The
complete proof of Proposition 3.2 will be given in the next section.

Let us now show how Theorem 3.1 follows from Propositions 3.1 and 3.2.
If u0 is null controllable, then the existence of a function F as in Proposition 3.1 is

ensured with λn = n2α and αn = −an/(2fn). Hence, F satisfies conditions (i)–(ii) in
Proposition 3.2. Then, condition (3.1) on the Fourier coefficients of u0 and condition
(2.11) on the shape function f imply that

|F (n2α)| ≤ Ce(μ+η)n2α

e−n2αT/2.(3.8)

Since μ and η are arbitrary, the function F also satisfies property (iii) from Proposition
3.2.

It follows that F ≡ 0 and, consequently, under the growth condition (3.1) and
with control profiles satisfying (2.11), the only controllable initial datum is the trivial
one.

3.3. Other controllability properties. As we have said before, condition
(2.11) indicates that the shape function f is not “too regular.” Let us now show
that assuming more regularity on f may increase the space of controllable data. This
fact is also in opposition to the behavior of the system in the case α > 1/2, in which
increasing the regularity of the profile f reduces the space of controllable data.

Proposition 3.3. Let α ≤ 1/2 and suppose that there exists η > T such that

|fn| ≤ e−ηn2α ∀n ≥ 1.(3.9)

Then there are initial data in any Sobolev space Hm(0, π) which are null controllable
by means of a control function g ∈ L2(0, T ).

Remark 3.4. It is important to note that the result in Proposition 3.3 holds for
α > 1/2 as well. However, in this case, as mentioned above, one can prove much
better results guaranteeing that all initial data in L2(0, π) are controllable even if
condition (3.9) is not satisfied.

Proof. From Lemma 2.2 and Proposition 3.1, it follows that an initial datum
whose Fourier coefficients are given by

an = −2fnF (n2α)e
T
2 n2α

,

where

F (z) =
sin

(
T
2 zi

)
T
2 zi

,

is null controllable in time T .
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The initial datum with these Fourier coefficients belongs to any Sobolev space
Hm(0, π) with m ≥ 0. Indeed,∑

n≥1

|an|2n2m ≤ 4
∑
n≥1

|fn|2|F (n2α)|2n2meTn2α

.

We now use in an essential way that F is of exponential type ≤ T/2. This is obvious
in this case in view of the explicit form of F . It follows that

∑
n≥1

|an|2n2m ≤ 4
∑
n≥1

e−2ηn2α eTn2α(
Tn2α

2

)2 eTn2α

n2m < ∞.

As we mentioned above, when α > 1/2, if the regularity of the shape function
increases, the space of controllable initial data diminishes. As we have just proved,
this is no longer true if α ≤ 1/2. In this case, some regular initial data may be
controlled only if more regularity is assumed for the shape function f .

Remark 3.5. There exists an alternative proof for the above proposition which
allows us to construct an explicit null-controllable initial datum under hypothesis (3.9).
Indeed, let g ∈ L2(0, T ) such that the solution u1 of the ordinary differential equation{

u′
1 + u1 = g(t)f1, t ∈ (0, T ),
u1(0) = 1

(3.10)

satisfies u1(T ) = 0.
Now, for each n ≥ 2, solve the following backward ordinary differential equation:{

u′
n + n2αun = g(t)fn, t ∈ (0, T ),

un(T ) = 0.
(3.11)

It is easy to see that

|un(0)| ≤
√
T |fn|eTn2α ||g||L2 .

Under hypothesis (3.9) the initial datum

u0 = sin(x) +
∑
n≥2

un(0) sin(nx)

belongs to Hm(0, π) for any m ≥ 0 and it is null controllable.
This example can easily be generalized by choosing first the control corresponding

to a finite number of Fourier components, and then determining the other Fourier
components of the controllable initial datum from the final equilibrium condition in
terms of this control.

More precisely, fix a finite N ≥ 1 and an arbitrary choice of the first N Fourier
components of the initial datum to be controlled: a1, . . . , aN . Let g = g(t) be such that
each of the solutions of{

u′
n + n2αun = g(t)fn, t ∈ (0, T ),

un(0) = an
(3.12)

satisfies un(T ) = 0 for all n = 1, . . . , N . The existence of this control g is guaran-
teed. Indeed, system (3.12) is controllable since the classical Kalman rank condition
is satisfied.
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Once this is done for each n ≥ N + 1 we solve the backward problem{
u′
n + n2αun = g(t)fn, t ∈ (0, T ),

un(T ) = 0.
(3.13)

Under assumption (3.9) the controlled initial datum

u0 =

N∑
n=1

an sin(nx) +
∑

n≥N+1

un(0) sin(nx)

belongs to Hm(0, π) for any m ≥ 0.

3.4. Partial controllability. In order to better explain the previous result it is
convenient to introduce the following definition.

Definition 3.1. The initial datum u0 ∈ L2(0, π) is N -partially controllable in
time T > 0 if there exists g = gN ∈ L2(0, T ) such that the solution u of (2.3) verifies

ΠN (u(T, · )) = 0,(3.14)

where ΠN is the orthogonal projection over the space generated by the first N eigen-
functions (

√
2 sin(nx)/

√
π)1≤n≤N .

Arguing as in Lemma 2.2 we can show that the N -partial controllability problem
is equivalent to a finite moment problem and more precisely to the existence of gN ∈
L2(0, T ) such that

fn

∫ T

0

gN (t)eλntdt = −π

2
an for any 1 ≤ n ≤ N.(3.15)

A function gN with property (3.15) will be called N -partial control. Its existence
is easy to prove since, as mentioned above, the Kalman rank condition is satisfied.
The lack of controllability properties proved above on the case α ≤ 1/2 suggests that
the controls gN should diverge as N → ∞. Let us check this fact in a simple but
illustrative example.

The system is N -partially controllable if and only if, for all k ≥ 1, there exists
gk,N ∈ L2(0, T ) such that∫ T

0

gk,N (t)eλntdt = δkn for any 1 ≤ n ≤ N.(3.16)

If (gk,N )N≥1 is bounded in L2(0, T ), there exists a subsequence which weakly
converges as N → ∞ to gk ∈ L2(0, T ) and∫ T

0

gk(t)e
λntdt = δkn ∀n ≥ 1.(3.17)

But relation (3.17) cannot hold since (eλnt)n≥1,n 	=k is complete in L2(0, T ) (the
divergence property (1.6) still holds if one exponent is eliminated). Hence, (gk,N )N≥1

may not be bounded in L2(0, T ).
A sequence (gk)k≥1 with property (3.17) is called biorthogonal to (eλnt)n≥1.

When α ≤ 1/2 such a biorthogonal sequence does not exist. From the controlla-
bility point of view the fact that, for k fixed, gk,N diverges as N → ∞ means that
it is impossible to control to zero one Fourier mode of the initial datum. This is in
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agreement with the positive result in Proposition 3.3 indicating that taking a more
smooth control profile may increase the space of controllable data. Note that, as the
Fourier components of the control profile f decay faster, the impact of the controls
on the high frequencies decreases. This does help in building smooth data that are
controllable, as the construction of Remark 3.5 shows.

In fact, according to Theorem 3.1, if the Fourier coefficients of the initial datum
are not large enough, the sequence of N -partial controls (gN )N≥1 diverges and no
control exists.

The previous notion of N -partial controllability can be extended as follows: Given
a subset I ⊂ N of indices we introduce the subspace HI of L2(0, π) spanned by the
eigenfunctions of the Laplacian with indices in I. More precisely,

HI =

⎧⎨⎩ϕ ∈ L2(0, π) : ϕ(x) =
∑
j∈I

aj sin(jx),
∑
j∈I

|aj |2 < ∞

⎫⎬⎭ .(3.18)

We then introduce the orthogonal projection ΠI from L2(0, π) into HI .

Definition 3.2. System (2.3) is HI-partially controllable in time T > 0 if for
every initial datum u0 ∈ L2(0, π) there exists a control g ∈ L2(0, T ) such that the
solution u of (2.3) verifies

ΠI(u(T, · )) = 0.(3.19)

This control property is also equivalent to finding gI ∈ L2(0, T ) such that

fj

∫ T

0

gI(t)e
λjtdt = −π

2
aj ∀j ∈ I.(3.20)

Obviously, this generalizes the N -partial controllability problem that corresponds
to the case where I = {1, 2, . . . , N}.

As mentioned in the introduction, the solvability of (3.19) and/or (3.20) depends
on the summability condition

∑
j∈I

1

|λj |
< ∞.(3.21)

In the case under consideration, λj = j2α. Therefore, we see that (3.21) is satisfied
under the following conditions:

1. When α > 1/2 for I = N. In this case partial controllability turns out to be
complete null controllability.

2. When 0 < α ≤ 1/2 for a suitable subsequence Iα of N. It is obvious that
one needs to consider a strict subsequence Iα of N. Moreover, as α decreases,
the subsequence Iα becomes more and more sparse in N and, therefore, the
property of partial controllability weaker and weaker. This result agrees with
a first intuition suggesting that an increase of diffusivity enhances the null-
controllability properties of the system.
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4. Proofs of some technical results.

4.1. Proof of Proposition 3.1. First of all we observe that∫ T

0

g(s)en
2αsds =

∫ T/2

−T/2

g(s + T/2)en
2α(s+T/2)ds

= en
2αT/2

∫ T/2

−T/2

g(s + T/2)en
2αsds = en

2αT/2

∫ T/2

−T/2

h(s)en
2αsds

with h(s) = g(s + T/2).
Hence, statement (a) of Proposition 3.1 is equivalent to the following one:

(4.1)

(a′) ∃h ∈ L2(−T/2, T/2) such that

∫ T/2

−T/2

h(s)en
2αsds = e−n2αT/2αn ∀n ≥ 1.

We now prove that (a′) and (b) are equivalent.

• (a′) ⇒ (b).
Let H be the Fourier transform of h(s)1(−T/2,T/2), i.e.,

H(z) =

∫ T/2

−T/2

h(s)e−izsds,

and let F (z) = H(iz). According to the Paley–Wiener theorem (see, for
instance, [3] or [21]), we know that H : C → C is an entire function of
exponential type ≤ T/2 and such that

∫∞
−∞ | H(x) |2 dx < ∞. Consequently,

F is also an entire function of exponential type ≤ T/2 such that
∫∞
−∞ |

F (ix) |2 dx < ∞.
Moreover, in view of (4.1),

F (n2α) = H(in2α) =

∫ T/2

−T/2

h(s)en
2αsds = e−n2αT/2αn.

This shows that (b) holds.
• (b) ⇒ (a′).

Let F be an entire function of exponential type ≤ T/2, with
∫∞
−∞ | F (ix) |2

dx < ∞ and such that (3.6) holds.
We then set H(z) = F (−iz), which is also an entire function of exponential
type ≤ T/2 with

∫∞
−∞ | H(x) |2 dx < ∞.

From the Paley–Wiener theorem we deduce that there exists h ∈ L2(−T
2 ,

T
2 )

such that

H(z) =

∫ T/2

−T/2

h(s)e−izsds.

We have that∫ T/2

−T/2

h(s)en
2αsds = H(in2α) = F (n2α) = αne

−n2αT/2

and (a′) is verified.
This completes the proof of Proposition 3.1.
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4.2. Properties of the eigenvalues. Let us recall that the operator Aα we are
dealing with has a sequence of eigenvalues λn = n2α, n ≥ 1. Recall also that we are
dealing with the case 0 < α ≤ 1/2. In this section we deduce some properties of these
eigenvalues.

Lemma 4.1. The sequence (λn)n≥1 has the following properties:
1. It is strictly increasing and limn→∞ λn = ∞.
2. For any n ≥ 1,

λn+1 − λn ≤ 2α

n1−2α
.(4.2)

Proof. The first part is obvious. For the second one let us note that

λn+1 − λn = (n + 1)2α − n2α = n2α

[(
1

n
+ 1

)2α

− 1

]
and use the fact that for any x > 0 there exists ξ in [0, x] such that

(x + 1)2α = 1 + 2αx + 2α(2α− 1)
x2

2
(ξ + 1)2α−2 ≤ 1 + 2αx.

It follows that

λn+1 − λn = n2α

[(
1

n
+ 1

)2α

− 1

]
≤ n2α

[(
1 + 2α

1

n

)
− 1

]
=

2α

n1−2α
.

Concerning the distribution of the sequence (λn)n≥1 the following can be said.
Lemma 4.2. There exists an increasing sequence (nk)k∈N∗ in N∗ such that
1. there exists β > 0 such that 0 < β < n2α

k+1 − n2α
k , for any k ≥ 1;

2. for any k ≥ 1, |k − n2α
k | ≤ α.

Proof. If α = 1/2, we may take nk = k and both properties are verified.
Consider now the case α < 1/2. If k = 1, we take nk = 1. Suppose that k ≥ 2.

Let n′
k = inf{n ∈ N∗ : k ≤ n2α}. We have

(n′
k − 1)2α < k ≤ (n′

k)
2α

and n′
k > 1.

Define

nk =

{
n′
k − 1 if k − (n′

k − 1)2α ≤ (n′
k)

2α − k,
n′
k if (n′

k)
2α − k < k − (n′

k − 1)2α.

Taking Lemma 4.1 into account we obtain that

|k − (nk)
2α| = min{k − (n′

k − 1)2α, (n′
k)

2α − k} ≤ 1

2

(
k − (n′

k − 1)2α + (n′
k)

2α − k
)

=
1

2

(
(n′

k)
2α − (n′

k − 1)2α
)

=
1

2
(λn′

k
− λn′

k
−1) ≤

α

(n′
k − 1)1−2α

≤ α

and the second property of the statement of the Lemma is verified. On the other
hand

|n2α
k − n2α

k−1| ≥ 1 −
(
|n2α

k − k| + |n2α
k−1 − (k − 1)|

)
≥ 1 − α

[
1

(n′
k − 1)1−2α

+
1

(n′
k−1 − 1)1−2α

]
≥ 1 − 2α > 0
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and the first property is verified as well.
Remark 4.1. Lemma 4.2 says that there exists a subsequence (λnk

)k≥1 of the
sequence of eigenvalues (λn)n≥1 such that

• |λnk
− k| ≤ α for all k ≥ 1;

• |λnk
− λnk−1

| > β > 0 for all k ≥ 2.
This subsequence (λnk

) will be used to prove Proposition 3.2.
Remark 4.2. The subsequence (nk)k≥1 constructed in the proof of Lemma 4.2

satisfies

|nk+1 − nk| ≥
1

2α
k

1
2α−1 − 2 ∀k ≥ 1.(4.3)

Indeed,

nk+1 − nk ≥ n′
k+1 − n′

k − 1 ≥ (k + 1)
1
2α − k

1
2α − 2 ≥ 1

2α
k

1
2α−1 − 2.

4.3. Proof of Proposition 3.2. We introduce the function G : C → C:

G(z) = eTz/2F (z).(4.4)

In view of properties (i)–(ii) of F it is immediate that

G is an entire function of exponential type ≤ T ;(4.5) ∫ ∞

−∞
| G(iy) |2 dy < ∞;(4.6)

∀δ > 0 :| G(n2α) |≤ Cδe
δn2α ∀n ≥ 1.(4.7)

Moreover, G is bounded on the negative semiaxis, i.e.,

∃L > 0 :| G(−x) |≤ L ∀x ≥ 0.(4.8)

Property (4.8) is an immediate consequence of the fact that F is of exponential type
≤ T/2.

We now introduce

G1(z) = G
(
−zeiπ/4

)
(4.9)

and apply the Phragmén–Lindelöf theorem to G1 in the sector | arg z |< π/4 to deduce
that there exists M1 > 0 such that

| G1(z) |≤ M1 ∀z ∈ C :| arg z |≤ π/4.(4.10)

This is possible since

G1 is analytic on C;(4.11)

G1 is bounded when arg z = ±π/4;(4.12)

| G1(z) |= O
(
e|z|

β
)

for some β < 2, as | z |→ ∞.(4.13)

Note that (4.12) holds because G is bounded along the imaginary axis by (4.6)
and on the negative semiaxis by (4.8). On the other hand, (4.13) holds for any β > 1
since | G1(z) |= O

(
eT |z|), due to (4.5).
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As a consequence of (4.10) we deduce that

| G(z) |≤ M1(4.14)

for all z ∈ C with arg(z) ∈ [π/2, π].
In a similar way we may prove the existence of M2 > 0 such that

| G(z) |≤ M2(4.15)

for all z ∈ C with arg(z) ∈ [π, 3π/2]. Hence, G is bounded in the half complex plane
Re z ≤ 0.

Let us now consider the function

Hδ(z) = G(z)e−δz = eTz/2e−δzF (z)(4.16)

defined on the half-plane Re z ≥ 0. It is easy to see that Hδ satisfies the following
properties:

Hδ is analytic on the closed half-plane Re z ≥ 0;(4.17)

Hδ is of exponential type;(4.18)

∃Cδ > 0 :| Hδ(n
2α) |≤ Cδ ∀n ≥ 1;(4.19)

Hδ is bounded on the imaginary axis.(4.20)

We now introduce the indicator function

hHδ
(θ) = lim sup

r→∞

[
1

r
log

∣∣Hδ

(
reiθ

)∣∣] ∀θ ∈
[
−π

2
,
π

2

]
.(4.21)

Lemma 4.3. For any δ < T , there exists a positive constant A > 0 such that

hHδ
(θ) ≤ A cos θ ∀θ ∈ [−π/2, π/2].(4.22)

Proof of Lemma 4.3. We have

log
∣∣Hδ

(
reiθ

)∣∣ = log
∣∣∣e (T−2δ)reiθ/2F

(
reiθ

)∣∣∣(4.23)

= log
∣∣∣e (T−2δ)reiθ/2

∣∣∣ + log
∣∣F (

reiθ
)∣∣ =

(T − 2δ)r cos θ

2
+ log

∣∣F (
reiθ

)∣∣ .
On the other hand, arguing as in the proof of Proposition 3.1, we deduce from

the Paley–Wiener theorem the existence of a function ψ ∈ L2 (−T/2, T/2) such that

F (z) =

∫ T/2

−T/2

ψ(s)ezsds.

Therefore

∣∣F (
reiθ

)∣∣ ≤ ∫ T/2

−T/2

| ψ(s) | esr cos θds ≤ eTr|cos θ|/2
∫ T/2

−T/2

| ψ(s) | ds.(4.24)

Combining (4.22) and (4.24) we deduce that

log
∣∣Hδ

(
reiθ

)∣∣ ≤ (T − δ)r | cos θ | + log ‖ ψ ‖L1(−T/2, T/2) .(4.25)
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From (4.25) we easily deduce that (4.21) holds with

A = T − δ.(4.26)

Let us now return to the proof of Proposition 3.2. By a result of Duffin and
Schaeffer [4] (see also [3, p. 191]) we have the following theorem.

Theorem 4.1. Let f be analytic in | arg(z) |≤ γ ≤ π/2 and suppose that its
indicator function hf satisfies

| hf (θ) |≤ a | cos θ | +b | sin θ | ∀ | θ |≤ γ(4.27)

with a, b > 0 and b < π.
If (νk)k≥1 is an increasing sequence of real numbers such that

νk+1 − νk ≥ β > 0 ∀k ≥ 1,(4.28)

| νk − k |≤ L ∀k ≥ 1,(4.29)

and f(νk) is bounded, then f(x) is bounded for all x > 0.
We apply Theorem 4.1 to the function Hδ with νk = λnk

= n2α
k , where nk are

given by Lemma 4.2. The sequence (νk)k≥1 satisfies the hypotheses of Theorem 4.1.
Moreover,

|Hδ(νk)| = |G(νk)|e−δνk = |G(λnk
)|e−δn2α

k ≤ Cδ.

We deduce from Theorem 4.1 that Hδ is bounded on the positive real axis. Since,
by (4.20), Hδ is also bounded on the imaginary axis, we deduce, by the Phragmén–
Lindelöf theorem, that Hδ is bounded in the half-plane Re z ≥ 0 for all 0 < δ < S.

Consequently,
• G is bounded on the half-plane Re z ≤ 0;
• | G(z) |≤ C(δ)eδ|z| on the half-plane Re z ≥ 0 for all 0 < δ < S;
• G is entire;
•
∫∞
−∞ | G(iy) |2 dy < ∞.

According to the Paley–Wiener theorem, these properties are sufficient to guar-
antee that G ≡ 0.

5. On the lack of observability estimates. A natural approach to the prob-
lem of null controllability of heat equations consists in dealing with the dual observ-
ability problem for the adjoint system (see, for instance, [8], [22], and [23]).

More precisely, the null controllability of system (2.3) in L2(0, π) with controls in
L2(0, T ) is equivalent to the existence of a positive constant C > 0 such that

‖ ϕ(0) ‖2
L2(0,π)≤ C

∫ T

0

∣∣∣∣∫ π

0

ϕ(t, x)f(x)dx

∣∣∣∣2 dt ∀ϕT ∈ L2(0, π),(5.1)

where ϕ is the solution of (2.6).
As we have shown in Theorem 3.1, when 0 < α ≤ 1/2, the null-controllability

result is false and therefore (5.1) does not hold. In fact, according to the statement of
Theorem 3.1, it turns out that all the possible weaker versions of (5.1) in which the
L2-norm of the left-hand side is replaced by an H−σ-norm for any σ > 0 are false as
well.

In this section we describe how the lack of observability inequalities of form (5.1)
may be proved directly.
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In view of the Fourier series expansion of the solution ϕ of (2.6) we have

ϕ(t, x) =
∑
n≥1

ane
−n2α(T−t) sin(nx).

Thus (5.1) is equivalent to

∑
n≥1

|an|2e−2n2αT ≤ C

∫ T

0

∣∣∣∣∣∣
∑
n≥1

anfne
−n2αt

∣∣∣∣∣∣
2

dt.(5.2)

Inequalities of form (5.2) are well known to be true when α > 1/2 (see, for
instance, [7] and [19]). But they fail when α ≤ 1/2 since the series

∑
n≥1 1/n2α

diverges in that case (see [17]). More precisely, the following negative result holds.
Proposition 5.1. When 0 < α ≤ 1/2 there is no sequence (ρn)n≥1 of positive

weights, i.e., ρn > 0 for all n ≥ 1, such that

∑
n≥1

ρn|bn|2 ≤
∫ T

0

∣∣∣∣∣∣
∑
n≥1

bne
−n2αt

∣∣∣∣∣∣
2

dt(5.3)

for all finite sequence (bn)n≥1.
This result excludes inequality (5.2) and any other weaker version of it. Observe

that an inequality like (5.2) is equivalent to the null controllability in time T of all
initial data in the class

H =

⎧⎨⎩u0 =
∑
n≥1

an sin(nπ) :
∑
n≥1

|an|2/ρn < ∞

⎫⎬⎭ ,

and, according to the result of Theorem 3.1, we know that this is false for all sequences
of weights (ρn)n≥1.

Proposition 5.1 is an immediate consequence of the following one.
Proposition 5.2. Let (νn}n≥1 be an increasing sequence of positive real numbers.

Assume that there exists a sequence of positive weights (ρn)n≥1 such that

∑
n≥1

ρn |an|2 ≤
∫ T

0

∣∣∣∣∣∣
∑
n≥1

ane
−νnt

∣∣∣∣∣∣
2

dt(5.4)

for all finite sequence (an)n≥1. Then, necessarily,∑
n≥1

1

νn
< ∞.(5.5)

We refer to Proposition 3.5 in [17] for a proof.
The proof of Proposition 5.2 provides in fact a stronger result. Namely, it shows

that if the sequence (νn)n≥1 is such that for some n0 and ρ > 0 we have

ρ |an0 |
2 ≤

∫ 1

0

∣∣∣∣∣∣
∑
n≥0

ane
−νnt

∣∣∣∣∣∣
2

dt(5.6)
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for all finite sequence (an)n≥1, then, necessarily,∑
n≥1

1

νn
< ∞.(5.7)

Inequalities of form (5.6) are related to the so-called spectral controllability prob-
lem, which consists in analyzing whether all the eigenfunctions may be driven to zero
in finite time. Theorem 3.1 provides a negative answer.2 Proposition 5.1 provides a
second proof of this negative result in which the effect of the divergence of the series∑

n≥1 1/νn is clearly seen.
Note that spectral controllability also implies that all finite combinations of eigen-

functions are controllable and also show the controllability property in the infinite-
dimensional space generated by the eigenfunctions, with suitable weights as the fre-
quency increases.

The results on partial controllability of section 3.4 can also be understood in
terms of observability inequalities. Indeed, the HI -partial controllability property
is equivalent to the observability property (5.1) in the subspace of solutions of the
adjoint system (2.6) with initial data ϕT in HI , i.e., of solutions ϕ of (2.6) involving
only the Fourier coefficients with indices j ∈ I. This turns out to be equivalent to an
inequality of the form

∑
j∈I

|aj |2 e−2λjT ≤ C

∫ T

0

∣∣∣∣∣∣
∑
j∈I

aje
−λjt

∣∣∣∣∣∣
2

dt(5.8)

for all finite sequence (an)n≥1.
Inequality (5.8) holds provided the subsequence (λj)j∈I fulfills a gap condition

and the summability condition ∑
j∈I

1

|λj |
< ∞.(5.9)

As indicated in section 3.4 these conditions are satisfied provided the sequence I
is sparse enough.

6. A hyperbolic problem. In this section we consider a hyperbolic system
involving the operator Aα and address the corresponding control problem: Given
T > 0, f ∈ L2(0, π), and initial data (u0, u1), find g ∈ L2(0, T ) such that the solution
u of the problem⎧⎪⎨⎪⎩

utt + Aαu = g(t)f(x), x ∈ (0, π), t ∈ (0, T ),

u = 0, x ∈ {0, π}, t ∈ (0, T ),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, π),

(6.1)

satisfies

u(T, · ) = ut(T, · ) = 0.(6.2)

2In fact the lack of (5.6) for any index n0 shows that there is no single eigenfunction that may
be driven to zero in final time with L2(0, T ) controls.
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Note that system (6.1) is a generalization of the wave equation

utt − uxx = g(t)f(x)

that corresponds to the case α = 1. In the absence of control (i.e., when g = 0)
system (6.1) is conservative and generates a group of isometries in the corresponding
energy space.

The eigenvalues corresponding to (6.1) are given by iνn, n ∈ Z∗, where

νn = sgn(n)|n|α ∀n �= 0.

When α ≥ 1 system (6.1) is controllable provided the control profile is such that
all the Fourier components do not vanish. In particular that is the case for the wave
equation in time T = 2π. As we shall see, the situation is even better when α > 1, in
which case the control property holds for an arbitrarily short time T > 0.

More precisely, the following holds.
Theorem 6.1. Let α ≥ 1 and fk given by (2.9) satisfying (2.10). Any initial

state in the space

H =

{
(u0, u1) =

∑
k∈Z∗

ak(
1

kα i
,−1) sin(kx) :

∑
k∈Z∗

|ak|2
|fk|2

< ∞
}

is controllable in time T ≥ 2π if α = 1 and any time T > 0 if α > 1, by means of a
control g ∈ L2(0, T ).

Proof. We first claim that the controllability of all initial data from H is equivalent
to the inequality

C
∑
n∈Z∗

|cn|2 ≤
∫ T

0

∣∣∣∣∣∑
n∈Z∗

cne
iνnt

∣∣∣∣∣
2

(6.3)

for every sequence (cn)n∈Z∗ ∈ �2.
Indeed, as in Lemma 2.2, it is easy to show that the controllability of

(u0, u1) =
∑
k∈Z∗

ak

( 1

kα i
,−1

)
sin(kx)

is equivalent to the following moment problem: Find g ∈ L2(0, T ) such that

fk

∫ T

0

g(t)eiνktdt = ak ∀k ∈ Z∗.(6.4)

The moment problem (6.4) has a solution for any (an/fn)n∈Z∗ ∈ �2 if and only
if3 the sequence (eiνnt)n∈Z∗ is a Riesz–Fischer sequence in L2(0, T ).

On the other hand, from the characterization of the Riesz–Fischer sequences (see
[21, Theorem 3, p. 155]), it follows that the sequence (eiνnt)n∈Z∗ is a Riesz–Fischer
sequence in L2(0, T ) if and only if (6.3) holds. This proves the claim.

We deduce that the moment problem (6.4) has a solution for any (an/fn)n∈Z∗ ∈ �2

if and only if (6.3) holds.

3This is an immediate consequence of the definition of Riesz–Fischer sequence. Recall that a
sequence of vectors (xn)n∈Z∗ belonging to a Hilbert space H is said to be a Riesz–Fischer sequence
if the moment problem (x, xn) = cn for all n ∈ Z∗ has a solution x ∈ H for any (cn)n∈Z∗ ∈ �2.
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This can also be seen by the so-called HUM method by Lions [15] (see Remark
6.1).

Let us now show that, in the case α ≥ 1, (6.3) holds under the restrictions on T
in the statement of the theorem. Indeed, from [2] (see also [9] and [10]), it follows
that (6.3) holds for any T > 2π/γ∞ if

lim inf
|n|→∞

|νn+1 − νn| ≥ γ∞ > 0.(6.5)

Since |νn+1 − νn| = (n + 1)α − nα, it follows that property (6.5) holds for any
T > 2π if α = 1 (since γ∞ = 1) and for any T > 0 if α > 1 (since γ∞ = ∞). Moreover,
when α = 1, in view of the time-orthogonality of the complex exponentials involved
in the Fourier series development of solutions, property (6.5) holds for T = 2π as well.

This completes the proof of the theorem.
Remark 6.1. The controllability of (6.1) with initial data in H and controls in

L2(0, T ) is equivalent to the existence of a positive constant C > 0 such that

||(ϕ0, ϕ1)||2H′ ≤ C

∫ T

0

∣∣∣∣∫ π

0

ϕ(t, x)f(x)dx

∣∣∣∣2 dt,
∀(ϕ0, ϕ1) ∈ H ′ =

{
(ϕ0, ϕ1) =

∑
k∈Z∗

ak

(
1

kα i
,−1

)
sin(kx) :

∑
k∈Z∗

|ak|2|fk|2 < ∞
}
,

(6.6)
where (ϕ,ϕt) is the solution of⎧⎪⎨⎪⎩

ϕtt + Aαϕ = 0, x ∈ (0, π), t ∈ (0, T ),

ϕ = 0, x ∈ {0, π}, t ∈ (0, T ),

ϕ(0, x) = ϕ0(x), ϕt(0, x) = ϕ1(x), x ∈ (0, π).

(6.7)

Inequality (6.6) is usually called the observation inequality.
Using the Fourier expansion of the solutions of (6.7) it is easy to see that (6.6)

may be written as (6.3). Inequality (6.3) may be proved by means of the classical
Ingham inequality (see [21]).

Once inequality (6.6) is known to hold, the control g = g(t) can be built by mini-
mizing the quadratic functional

J(ϕ0, ϕ1) =
1

2

∫ T

0

∣∣∣∣∫ π

0

ϕ(t, x)f(x)dx

∣∣∣∣2 dt + 〈(u1,−u0), (ϕ0, ϕ1)〉(6.8)

in the space H ′. Indeed, under the assumption that (u1,−u0) ∈ H (the dual of H ′)
the functional J is continuous, convex, and coercive in the Hilbert space H ′. Thus
its minimum exists. It is then easy to see that the control g we are looking for is
g(t) =

∫ π

0
ϕ̂(t, x)f(x)dx, where ϕ̂ is the solution of (6.7) with the minimizer of J as

initial datum.
The proof of Theorem 6.1 is based on inequality (6.3), which holds in the case

α ≥ 1. Nevertheless, if α < 1, there exists no uniform gap between two consecutive
eigenvalues and (6.3) does not hold. The controllability properties are very different
in this case.

In fact, when 0 < α < 1 system (6.1) is very badly controllable. Even the spectral
control property fails to hold. We recall that system is said to be spectrally controllable
if all initial data consisting in a single eigenfunction of the system may be controlled.
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Theorem 6.2. If α < 1, equation (6.1) is not spectrally controllable in any time
T > 0.

Proof. Suppose that (6.1) is spectrally controllable. Hence, every eigenfunction
of system (6.1) may be driven to zero by using a control in L2(0, T ).

But an initial datum of the form (u0, u1) = (1/kα i,−1) sin(kx) is controllable if
and only if there exists g ∈ L2(0, T ) such that∫ T

0

g(t)eiνntdt = δnk/fk ∀n �= 0.(6.9)

From the Paley–Wiener theorem we obtain that (6.9) implies the existence of
an entire function G of exponential type T/2, such that

∫∞
−∞ |G(x)|2dx < ∞ and

G(νn) = 0 for all n �= 0, k.
Let nG(r) denote the number of zeros of the function G which belong to the ball

of center zero and radius r,

nG(r) = #{z ∈ C : G(z) = 0 and |z| ≤ r}.

We have

nG(r) = 2#{n ∈ N∗ : nα ≤ r} = 2
[
r

1
α

]
.

Since α < 1 it follows that

lim
r→∞

nG(r)/r = ∞.(6.10)

We need now the following result, which is a consequence of the well-known Jensen
formula (see [21, Theorems 2 and 3, pp. 59–61]): if f is an entire nontrivial function
of exponential type, then nf (r)/r remains bounded as r tends to infinity.

From (6.10) and the previous theorem it follows that G ≡ 0, which contradicts
(6.9).

Our results show that for the hyperbolic equation (6.1) the critical exponent
becomes α = 1, instead of the exponent α = 1/2 we have obtained for the parabolic
equations (2.3).

7. Comments.

7.1. More general 1 − d problems. In this article we have considered the
problem of controllability of a parabolic equation involving the fractional power of
the Laplace operator. The control has a fixed shape, given by the function f . The
problems of distributed control of the form v(t, x)1ω, with ω a subinterval of (0, π),
or of boundary control v(t) may also be considered and will be treated elsewhere by
similar techniques. The 1 − d analysis on the wave equation in section 6 may also be
carried out for the Schrödinger and the beam equations.

7.2. Multidimensional problems. In several space dimensions, N ≥ 2, similar
problems can be analyzed. Consider the Dirichlet problem,⎧⎪⎨⎪⎩

ut + (−Δ)αu = g(t)f(x) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(0, x) = u0(x) in Ω.

(7.1)
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Here Ω is a bounded domain of RN .
By Weyl’s theorem, the spectrum of the Laplacian grows as the frequency in-

creases in the following way: λn ∼ c(Ω)n2/N .
According to this, the spectrum of the α-power of the Laplacian, (−Δ)α, grows

at a rate n2α/N as n → ∞. The critical case is then α = N/2. One can then expect
to obtain positive results for α > N/2 and negative ones, as those presented here, for
α ≤ N/2. An analysis of this multidimensional problem is also to be done.
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STATE FEEDBACK H∞ CONTROL FOR A CLASS OF NONLINEAR
STOCHASTIC SYSTEMS∗

WEIHAI ZHANG† AND BOR-SEN CHEN‡

Abstract. This paper discusses the H∞ control problem for a class of nonlinear stochastic
systems with both state- and disturbance-dependent noise. By means of Hamilton–Jacobi equations,
both infinite and finite horizon nonlinear stochastic H∞ control designs are developed.

Some results on nonlinear H∞ control of deterministic systems are generalized to a stochas-
tic setting. We introduce some useful concepts such as “zero-state observability” and “zero-state
detectability” which, together with the stochastic LaSalle invariance principle, yield some valuable
consequences in infinite horizon nonlinear stochastic H∞ control.

Key words. H∞ control, nonlinear stochastic systems, Hamilton–Jacobi equation, zero-state
observability, zero-state detectability
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1. Introduction. In practice, when the exogenous disturbance enters the sys-
tem, an H∞ control design is often first considered, when a control law is sought
to efficiently eliminate the effect of the disturbance; see [12], [13] and the references
therein. Theoretically, study of H∞ control first starts from the deterministic linear
systems, and the derivation of the state-space formulation of the standard H∞ control
leads to a breakthrough; details can be found in the prize-winning paper [17]. From
the viewpoint of the state space, the linear H∞ control problem can be converted
into the study of a game-theoretic Riccati equation, and the “completion of square
methodology,” similar to the linear quadratic (LQ) and linear quadratic Gaussian
(LQG) theories, can be applied; see [15], [16], [20], [21], [25], and [30].

Soon after the appearance of [17], the nonlinear H∞ control problem (on deter-
ministic systems) was investigated by many authors; see [5], [14], [18], and [19]. From
the time-domain perspective, an H∞ norm of the transfer function is nothing else but
the L2-induced norm of the input-output operator with initial state zero. This im-
portant feature makes it possible to develop nonlinear or stochastic H∞ theory. Van
der Schaft [5] made a contribution to the state feedback H∞ control for nonlinear
deterministic systems with infinite time horizon, where a relatively deep tool, i.e., the
strict relation between Hamilton–Jacobi equations (HJEs) and invariant manifolds of
Hamiltonian vector fields, was applied. Using this tool, he showed that a local solu-
tion to the primal nonlinear H∞ control exists if its linearized H∞ control problem is
solvable. The authors of [18] and [19] dealt with the output feedback H∞ control of
nonlinear deterministic systems with incomplete state information, and a separation
principle was obtained. In [5], [18], and [19], the differential geometric approaches
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were employed, which cannot be directly extended to stochastic H∞ control for tech-
nical reasons. Chen, Tseng, and Vang [14] present a fuzzy treatment for nonlinear
H2/H∞ control, and [11] treats the singular H∞ control of nonlinear systems.

In recent years, stochastic H∞ control systems, such as Markovian jump systems
[22], [23], [24], H∞ Gaussian control design [3], and Itô differential systems (systems
governed by the Itô equation) have received a great deal of attention (see [2], [28],
[30], [33], [34], [35], [36], and the references therein). H∞ control has significant
application in other problems, such as filtering theory [4]. Up to now, most of the
work on stochastic H∞ control for the Itô differential systems concentrated on the
linear case, while for the general nonlinear systems, few results have been reported.

This paper will follow along the lines of [5] to study stochastic H∞ control (in-
cluding infinite and finite time horizons) for a class of affine nonlinear Itô differential
systems, mainly using the completion of square methodology. To achieve our goal,
some essential difficulties must be overcome. For instance, in order to discuss the
relation between external stability and the existence of global solutions of the corre-
sponding HJE, the so-called stochastic dissipative theory is developed, which can be
viewed as a generalized version of [10]. Likewise, to present sufficient conditions for a
closed-loop system to be internally stable, zero-state observability and detectability
are introduced for nonlinear stochastic systems which, combined with the stochastic
LaSalle invariance principle [8], yield some valuable consequences.

Section 2 develops the dissipative theory for stochastic systems paralleling that
of [10]. Theorem 2.1 is an important result of this section, which extends Theorem 1
of [7], and will be used in section 3. Similar to applications of Theorem 1 of [7] in [6],
[7], and [9], we also believe that Theorem 2.1 can be applied to nonlinear stochastic
stability and stabilization, which merits further study. Section 3 is concerned with the
infinite horizon H∞ control of nonlinear affine stochastic systems, where the H∞-norm
is expressed by the norm of the nonlinear perturbation operator L̃zd. Theorem 3.1
and Corollary 3.1 extend Theorem 16 and Corollary 17 of [5], respectively. Lemma 3.2
may be viewed as the “nonlinear stochastic bounded real lemma (SBRL).” Section 4
is devoted to the finite horizon H∞ control of affine nonlinear time-varying stochastic
systems, and necessary and sufficient conditions for nonlinear H∞ control are derived
(Theorems 4.1 and 4.2). It is shown that a finite horizon H∞ control can be con-
verted into solving a stochastic game problem, while (u∗

T , d
∗
T ) is in fact the saddle

point of this game. The relation between finite and infinite time HJEs has also been
clarified, specifically, under some precise conditions; the solution of the finite time
HJE converges to that of the infinite time HJE. Section 5 ends this paper with some
remarks.

For convenience, we adopt the following notation:
Sn: the set of all real n× n symmetric matrices;
A′: the transpose of the corresponding matrix A;
A ≥ 0(A > 0): the positive semidefinite (positive definite) matrix A;
I: the identity matrix;
C2

0 ({t > 0} × U): the class of functions V (t, x) twice continuously differential
with respect to x ∈ U and once continuously differential with respect to t > 0 except
possibly at the point x = 0;

C2(U): the class of functions V (x) twice continuously differential with respect to
x ∈ U .

2. Dissipative stochastic systems. Consider the following nonlinear stochas-
tic controlled system governed by the Itô differential equation (the time variable t is
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suppressed): ⎧⎨⎩
dx(t) = (f(x) + g(x)u)dt + (h(x) + l(x)u)dW,

f(0) = 0, h(0) = 0,
z = m(x), m(0) = 0.

(1)

In the above, f, g, h, l, and m are uniformly continuous and Lipschitz satisfying a
linear growth condition, which guarantees that (1) has a unique strong solution [32].
x(t) ∈ Rn is called the system state, and z(t) ∈ Rnz is the regulated output. W (t)
is the one-dimensional standard Wiener process defined on the complete probability
space (Ω,F ,P), with the natural filter Ft generated by W (·) up to time t. u(t) ∈
Rnu is the control input, which is an adapted process with respect to {Ft}t≥0, and
causes system (1) to have a unique strong solution under the above conditions. The
dissipative dynamic system theory was founded in [10] and has become an important
tool in studying the stability and stabilization of nonlinear systems; see [6], [7], and [9].
In recent years, the theory of [10] has been extended to stochastic systems in various
different ways by many researchers [27], [29], [37]. In the following, we develop a
parallel dissipative theory for stochastic systems which is slightly different from the
previous references and is self-contained.

An admissible control set L2
F ([s, T ],Rnu) consists of all adapted and measurable

processes u(t) with respect to Ft, such that

‖u‖2
L2([s,T ]) := E

∫ T

s

‖u(t)‖2 dt < ∞, s ≥ 0.

In the terminology of [10], a function w(·, ·) : Rnu × Rnz �→ R associated with
system (1) is called the supply rate on [s,∞) if it has the following property: for any
u ∈ L2

F ([s, T ],Rnu), x(s) ∈ Rn, the controlled output z(t) = m(x(t)) of (1) is such
that

E

∫ T

s

|w(u(t), z(t))| dt < ∞ ∀ T ≥ s ≥ 0.

Definition 2.1. System (1) with supply rate w is said to be dissipative on [s,∞),
s ≥ 0, if there exists a nonnegative continuous function V : Rn �→ R+, called the
storage function, such that for all t ≥ s ≥ 0, x(s) ∈ Rn,

EV (x(t)) − V (x(s)) ≤ E

∫ t

s

w(u(τ), z(τ)) dτ.(2)

As in deterministic systems [10], (2) can be called the dissipative inequality.
Proposition 2.1. If there exists a Lyapunov function V defined on Rn (i.e.,

V ∈ C2(Rn) and is positive definite) satisfying

LuV (x) ≤ w(u, z) ∀(u, z) ∈ Rnu ×Rnz ,

then system (1) is dissipative with supply rate w on [s,∞) for any s ≥ 0, where Lu is
the infinitesimal generator of the equation

dx = (f(x) + g(x)u)dt + (h(x) + l(x)u)dW.(3)

Proof. By Itô’s formula, for any t ≥ s ≥ 0, x(s) ∈ Rn,

V (x(t)) − V (x(s)) =

∫ t

s

LuV (x) dt +

∫ t

s

∂V ′(x)

∂x
(h(x) + l(x)u) dW.
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Calculating the above expectation, we get

EV (x(t)) − V (x(s)) = E

∫ t

s

LuV (x) dt ≤ E

∫ t

s

w(u(t), z(t)) dt.

This ends the proof.
Definition 2.2. An available storage with supply rate w on [s,∞), s ≥ 0, is

defined by

Va,s(x) = − inf
u∈L2

F ([s,t];Rnu ),t≥s,x(s)=x∈Rn
E

∫ t

s

w(u(s), z(s)) ds

= sup
u∈L2

F ([s,t];Rnu ),t≥s,x(s)=x∈Rn

−E

∫ t

s

w(u(s), z(s)) ds.(4)

A stochastic version of Proposition 2.3 of [9] is as follows.
Proposition 2.2. If system (1) with supply rate w is dissipative on [s,∞), s ≥ 0,

then the available storage Va,s(x) is finite for each x ∈ Rn. Moreover, for any possible
storage function Vs,

0 ≤ Va,s(x) ≤ Vs(x) ∀x ∈ Rn.(5)

Va,s is itself a possible storage function. Conversely, if Va,s is finite for each x ∈ Rn,
then system (1) is dissipative on [s,∞).

Proof. Va,s ≥ 0 is obvious. Next, by Definition 2.1, if system (1) with supply rate
w is dissipative on [s,∞), then (2) holds for some storage function Vs. So for any
x(s) = x ∈ Rn, t ≥ s ≥ 0,

Vs(x) ≥ −E

∫ t

s

w(u(τ), z(τ)) dτ + EVs(x(t)) ≥ −E

∫ t

s

w(u(τ), z(τ)) dτ,

which yields

Vs(x) ≥ sup
t≥s,u∈L2

F ([s,t],Rnu ),x(s)=x

−E

∫ t

s

w(u(τ), z(τ)) dτ

= − inf
t≥s,u∈L2

F ([s,t],Rnu ),x(s)=x
E

∫ t

s

w(u(τ), z(τ)) dτ = Va,s(x).

Therefore, Va,s is finite and (5) holds. The rest can be done along the lines of [10]
mainly using the relation

Va,s(x) + E

∫ t

s

w(u(τ), z(τ)) dτ ≥ EVa,s(x(t)).(6)

The following general theorem with w(u, z) = z′Qz + 2z′Su + u′Ru will be used
in section 3, where Q ∈ Snz

, S ∈ Rnz×nu , and R ∈ Snu
are constant matrices. The

following assumption is necessary.
Assumption 2.1. The storage function of (4), if it exists, belongs to C2(Rn).
Theorem 2.1. A necessary and sufficient condition for system (1) to be dissipa-

tive on [s,∞) with respect to a supply rate w(·, ·) is that there exists Vs ∈ C2(Rn) :
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Rn �→ R+, Vs(0) = 0, l̃ : Rn �→ Rq, and w̃ : Rn �→ Rq×nu for some integer q > 0,
such that

m′Qm− ∂V ′
s

∂x
f − 1

2
h′ ∂

2Vs

∂x2
h = l̃′ l̃,(7)

R− 1

2
l′
∂2Vs

∂x2
l = w̃′w̃,(8)

2S′m− g′
∂Vs

∂x
− l′

∂2Vs

∂x2
h = 2w̃′ l̃.(9)

Proof. If system (1) is dissipative on [s,∞) with respect to a supply rate w(·, ·),
by Proposition 2.2, Va,s is a possible storage function, which satisfies (6). By (6) with
any x(s) = x ∈ Rn and Assumption 2.1, we have

−EVa,s(x(t)) − Va,s(x)

t− s
+

E
∫ t

s
w(u(τ), z(τ)) dτ

t− s
≥ 0, t > s.

Let t ↓ s in the above and note that (applying Itô’s formula)

EVa,s(x(t)) = Va,s(x) + E

∫ t

s

(
∂V ′

a,s

∂x
(f + gu) +

1

2
(h + lu)′

∂2Va,s

∂x2
(h + lu)

)
dτ,

it follows that

J(x, u) := m′Qm + 2m′Su + u′Ru−
∂V ′

a,s

∂x
(f + gu)

−1

2
(h + lu)′

∂2Va,s

∂x2
(h + lu) ≥ 0(10)

for all x and u. Obviously, by the fact that the right-hand side of (10) is quadratic in
u, there exist l̃ : Rn �→ Rq, and w̃ : Rn �→ Rq×nu (not necessarily unique), such that

J(x, u) = (l̃(x) + w̃(x)u)′(l̃(x) + w̃(x)u).

By comparing the coefficients of the same powers of u, we deduce (7), (8), and (9).
The inverse can be very easily shown by noting that for any x(s) = x ∈ Rn, we have

E

∫ t

s

w(u(τ), z(τ)) dτ = E

∫ t

s

(l̃(x) + w̃(x)u)′(l̃(x) + w̃(x)u) dτ

+EVs(x(t)) − Vs(x) ≥ EVs(x(t)) − Vs(x).

Theorem 2.1 is complete.
Theorem 2.1 will have important applications in stochastic stabilization, which

will be further studied in our future work. In this paper, we mainly study the dissipa-
tive systems with w(u, z) = γ2u′u−z′z called finite gain systems. When w(u, z) = u′z,
it is called a passive system [9], which is very useful in the study of nonlinear stochastic
stability. If (2) is replaced by

EV (x(t)) − V (x(s)) = E

∫ t

s

w(u(s), z(s)) ds ∀(u, z) ∈ Rnu ×Rnz ,(11)

system (1) is said to be lossless.
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Remark 2.1. For stochastic system dx = m(x, u)dt+σ(x)dW , a more general def-
inition for stochastic dissipativeness can be found in [29, Defs. 4.1 and 4.2]. However,
Definition 2.1 above is sufficient for our purposes. In particular, when w(u, z) = u′z,
by using the well-known Dynkin’s formula, it can be seen that Definition 2.1 extends
Definition 4.1 of [27] for stochastic passive systems.

Remark 2.2. If in (2) and (4), s = 0 and t is any bounded stopping time, then
[37] gave Definitions 2.1 and 2.2 for the following general nonlinear stochastic system:

dx = f(x, u)dt + g(x, u)dW, x(0) = x ∈ Rn.

Here, we take the terminal time t to be any fixed scalar only for technical reasons.

3. Infinite horizon H∞ control. To treat the infinite horizon H∞ control
problem, we need the following definitions of stochastic stability and observability.

3.1. Stochastic stability and observability.
Definition 3.1 (see [1]). Consider the stochastic unforced system

dx = f(x) dt + h(x) dW, x(0) = x0 ∈ Rn, f(0) = h(0) = 0.(12)

(a) x ≡ 0 of (12) is said to be stable in probability if for any ε > 0,

lim
x0→0

P

(
sup
t≥0

‖x(t)‖ > ε

)
= 0.(13)

(b) x ≡ 0 of (12) is said to be locally asymptotically stable in probability if (13)
holds and

lim
x0→0

P
(

lim
t→∞

x(t) = 0
)

= 1.

(c) x ≡ 0 of (12) is said to be globally asymptotically stable in probability if (13)
holds and

P
(

lim
t→∞

x(t) = 0
)

= 1.

(d) x ≡ 0 of (12) is said to be asymptotically mean square stable if limt→∞ E‖x(t)‖2 =
0.

(e) x ≡ 0 of (12) is said to be exponentially mean square stable if there exist �
and ρ > 0, such that E‖x(t)‖2 ≤ ρ‖x0‖2 exp(−�t).

It is very well known that for the linear time-invariant stochastic systems (LTISS),
(d) is equivalent to (e) [1]. The following definition can be thought of an extension of
the observability in nonlinear deterministic systems.

Definition 3.2. We say that the following system (or [f(x), l(x)|h(x)])

dx = f(x) dt + l(x) dW, z = h(x),(14)

is locally zero-state detectable if there is a neighborhood N of 0 such that for all
x(0) = x0 ∈ N ,

z(t) = h(x(t)) = 0 a.s. ∀t ≥ 0 ⇒ P
(

lim
t→∞

x(t) = 0, x(0) = x0

)
= 1.

If N = Rn, (14) is called zero-state detectable. Equation (14) is locally (resp., globally)
zero-state observable if there is a neighborhood N of 0 such that for all x0 ∈ N (resp.,
Rn), z(t) ≡ 0 implies x0 ≡ 0.
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Obviously, for the LTISS

dx = Fxdt + LxdW, z = Hx,(15)

the local zero-state observability (detectability) is equivalent to the global zero-state
observability (detectability). In particular, when (15) is observable (detectable), we
also call [F,L|H] observable (detectable).

The following lemma, used in the next subsection, can be called the stochastic
version of LaSalle’s invariance principle [8].

Lemma 3.1. Assume there exists a Lyapunov function V such that

Lu≡0V (x) ≤ 0

for any x ∈ Rn; then the solution x(t) of (12) tends in probability to the largest
invariant set whose support is contained in the locus Υ := {x : Lu≡0V (x) = 0} for
any t ≥ 0.

3.2. Main results. Consider the nonlinear stochastic system⎧⎨⎩
dx = (f(x) + g(x)u + k(x)d)dt + (h(x) + l(x)d)dW, f(0) = 0, h(0) = 0,

z =

[
m(x)
u

]
,m(0) = 0,

(16)

where d(t) stands for the exogenous disturbance, which is an adapted process with
respect to Ft. Under very mild conditions, (16) has a unique strong solution x(t) or, for
clarity, x(t, u, d, x(t0), t0) [32] on any finite interval [t0, T ] with initial state x(t0) ∈ Rn.
Let L2

F (R+,Rny ) denote a space composed of all nonanticipative stochastic processes
y(t)t≥0 with respect to Ft, such that

‖y‖L2(R+) :=

(
E

∫ ∞

0

‖y(t)‖2 dt

)1/2

< ∞.

Obviously, L2
F (R+,Rny ) is a Hilbert space equipped with the inner product

〈y1, y2〉 = E

∫ ∞

0

y′1(t)y2(t) dt ∀y1, y2 ∈ L2
F (R+,Rny ).

Definition 3.3 (infinite horizon nonlinear state feedback H∞ control). Given
γ > 0, we want to find an admissible control u∗

∞, such that for any d �= 0 ∈
L2
F (R+,Rnd), when x(0) = 0, the following inequality holds:

‖z‖L2(R+) ≤ γ‖d‖L2(R+).(17)

Equation (17) is equivalent to ‖L̃zd‖∞ ≤ γ, where the perturbation operator L̃zd is
defined by L̃zd : L2

F (R+,Rnd) �→ L2
F (R+,Rnz ) as

L̃zd(d) = z(x(t, u∗
∞, d, 0, 0)), t ≥ 0, d ∈ L2

F (R+,Rnd),

‖L̃zd‖∞ = sup
d∈L2

F (R+,Rnd ),d 
=0,x(0)=0

||z||L2(R+)

‖d‖L2(R+)

= sup
d∈L2

F (R+,Rnd ),d 
=0

{E
∫∞
0

(‖m(x(t, u∗
∞, 0, 0))‖2 + ‖u∗

∞‖2) dt}1/2

{E
∫∞
0

‖d‖2 dt}1/2
.(18)

Compared with the definition of linear (uncertain) time-invariant stochastic H∞ [2],
we find that the internal mean square stability is required therein. Naturally, in the
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nonlinear case, we expect the closed-loop system to be of some internal stability, which
will be guaranteed by (17) together with zero-state observability or zero-state detectabil-
ity. As pointed out by [5], it is easier to consider first an infinite horizon nonlinear
state feedback H∞ control as in Definition 3.3. More specifically, if we let u ≡ 0,
z = m(x), L̂zd := m(x(t, 0, d, 0, 0)), and take d as a control variable, then when
‖L̂zd‖∞ ≤ γ for some γ > 0, the nonlinear system{

dx = (f(x) + k(x)d)dt + (h(x) + l(x)d)dW, f(0) = 0, h(0) = 0,
z = m(x), m(0) = 0

(19)

is said to be externally stable or L2 input-output stable. We refer the reader to [2] for
the definition of external stability of linear stochastic systems.

Theorem 3.1. Suppose there exists a nonnegative solution V ∈ C2(Rn) to the
HJE⎧⎪⎪⎪⎨⎪⎪⎪⎩

H1
∞(V (x)) := ∂V ′

∂x f + 1
2 (∂V

′

∂x k + h′ ∂2V
∂x2 l)(γ

2I − l′ ∂
2V

∂x2 l)
−1(k′ ∂V∂x + l′ ∂

2V
∂x2 h)

− 1
2
∂V ′

∂x gg′ ∂V∂x + 1
2m

′m + 1
2h

′ ∂2V
∂x2 h = 0,

γ2I − l′ ∂
2V

∂x2 l > 0, V (0) = 0;

(20)

then

u∗
∞ = −g′

∂V

∂x
(21)

is an H∞ control for system (16).
Proof. By Itô’s formula,

dV (x) =

[
∂V ′

∂x
(f + gu + kd) +

1

2
(h + ld)′

∂2V

∂x2
(h + ld)

]
dt

+
∂V ′

∂x
(h + ld) dW (t).(22)

By completing the square together with (20), we have for any T > 0,

EV (x(T )) − V (0) = EV (x(T )) = E

∫ T

0

[
∂V ′

∂x
(f + gu + kd)

+
1

2
(h + ld)′

∂2V

∂x2
(h + ld)

]
dt

=
1

2
E

∫ T

0

(∥∥∥∥u + g′
∂V

∂x

∥∥∥∥2

+ 2H1
∞(V (x))

−‖d−
(
γ2I − l′

∂2V

∂x2
l

)−1 (
k′
∂V

∂x
+ l′

∂2V

∂x2
h

)
‖2
γ,l,V

− ‖z‖2 + γ2‖d‖2

)
dt

=
1

2
E

∫ T

0

(∥∥∥∥u + g′
∂V

∂x

∥∥∥∥2

− ‖z‖2 + γ2‖d‖2

− ‖d−
(
γ2I − l′

∂2V

∂x2
l

)−1 (
k′
∂V

∂x
+ l′

∂2V

∂x2
h

)
‖2
γ,l,V

)
dt,(23)
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where ‖Z(x)‖2
γ,l,V := Z ′(x)(γ2I − l′ ∂

2V
∂x2 l)Z(x). Obviously, when u = u∗

∞, (23) leads
to

E

∫ T

0

‖z‖2 dt = −E

∫ T

0

∥∥∥∥∥d−
(
γ2I − l′

∂2V

∂x2
l

)−1 (
k′
∂V

∂x
+ l′

∂2V

∂x2
h

)∥∥∥∥∥
2

γ,l,V

dt

−2EV (x(T )) + 2V (0) + γ2E

∫ T

0

‖d‖2 dt

≤ γ2E

∫ T

0

‖d‖2 dt.(24)

Let T → ∞ in (24); then ‖L̃zd‖∞ ≤ γ follows because of V ≥ 0 and V (0) = 0. This
ends the proof of Theorem 3.1.

Remark 3.1. From the proof of Theorem 3.1, it can be seen that we have in fact
obtained the identity

Lu,dV (x) =
∂V ′

∂x
(f + gu + kd) +

1

2
(h + ld)′

∂2V

∂x2
(h + ld)

=
1

2
(‖u− u∗

∞‖2 − ‖d− d∗∞‖2
γ,l,V + 2H1

∞(V (x)) − ‖z‖2 + γ2‖d‖2),(25)

which will be used throughout this paper, where Lu,d is the infinitesimal generator of

dx = (f(x) + g(x)u + k(x)d)dt + (h(x) + l(x)d)dW

and

d∗∞ =

(
γ2I − l′

∂2V

∂x2
l

)−1 (
k′
∂V

∂x
+ l′

∂2V

∂x2
h

)
.

We can also see that Theorem 3.1 still holds if HJE (20) is replaced by the Hamilton–
Jacobi inequality

H1
∞(V (x)) ≤ 0, γ2I − l′

∂2V

∂x2
l > 0, V (0) = 0.

Remark 3.2. From inequality (24), it immediately follows that for any d ∈
L2
F (R+,Rnd), we have z ∈ L2

F (R+,Rnz ), u∗
∞ ∈ L2

F (R+,Rnu). However, we can-
not assert d∗∞ ∈ L2

F (R+,Rnd).
The following result generalizes Corollary 17 of [5] to the stochastic case.
Corollary 3.1. Under the condition of Theorem 3.1, if [f, h|m] is zero-state

observable, then any solution to HJE (20) satisfying V (x) > 0 for x �= 0, and the
closed-loop system (with d ≡ 0)

dx = (f(x) + g(x)u∗
∞)dt + h(x)dW(26)

is locally asymptotically stable in probability. If V is also proper (i.e., for each a > 0,
V −1([0, a]) is compact), then it is globally asymptotically stable in probability. More-
over, limt→∞ EV (x(t)) = 0.

Proof. By (25), we have

Lu=u∗
∞,d=0V (x) = −1

2
(‖d∗∞‖2

γ,l,V + ‖m(x)‖2 + ‖u∗
∞‖2)

≤ −1

2

[
m′(x) u∗′

∞
] [ m(x)

u∗
∞

]
.(27)
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If V (x) is not strictly positive definite in Lyapunov’s sense, then there exists x0 �= 0,
such that V (x0) = 0. Integrating from zero to T , and then taking expectation on
both sides of (27), it follows that

0 ≤ EV (x(T )) = −1

2
E

∫ T

0

(‖m‖2 + ‖u∗
∞‖2) dt ≤ 0.(28)

Equation (28) concludes that z(t)|u=u∗
∞ ≡ 0, t ∈ [0, T ], for any T > 0. From the

zero-state observability of [f, h|m], it is easy to prove the zero-state observability of
[f + gu∗

∞, h|[m′ u∗′
∞]′]. According to the definition of zero-state observability, we

must have x(t) ≡ 0 from z(t)|u=u∗
∞,d=0 ≡ 0 a.s., which contradicts x0 �= 0. V > 0 is

proved.

In addition, by the above analysis, we have

Υ = {x : Lu=u∗
∞,d=0V (x) = 0} ⊂ {x : m(x) = 0} = {0}.

Hence, the asymptotic stability is proved by use of Lemma 3.1.

Finally, to show limt→∞ EV (x(t)) = 0, we apply Itô’s formula to system (26);
then for any t > s > 0,

V (x(t)) = V (x(s)) +

∫ t

s

Lu=u∗
∞,d=0V (x(τ)) dτ +

∫ t

s

h′ ∂V

∂x
dW (τ)

= V (x(s)) − 1

2

∫ t

s

(‖d∗∞‖2
γ,l,V + ‖m(x)‖2 + ‖u∗

∞‖2) dt +

∫ t

s

h′ ∂V

∂x
dW (τ).

So

E[V (x(t))|Fs] = E

[
V (x(s))|Fs] −

1

2
E[

∫ t

s

(‖d∗∞‖2
γ,l,V + ‖m(x)‖2 + ‖u∗

∞‖2) dt|Fs

]
+E

[∫ t

s

h′ ∂V

∂x
dW (τ)|Fs

]
= V (x(s)) − 1

2
E

[∫ t

s

(‖d∗∞‖2
γ,l,V + ‖m(x)‖2 + ‖u∗

∞‖2) dt|Fs

]
≤ V (x(s)),

which shows that {V (x(t)),Ft} is a nonnegative supermartingale. By Doob’s conver-
gence theorem and asymptotic stability, V (x(∞)) = limt→∞ V (x(t)) = 0 a.s. More-
over, limt→∞ EV (x(t)) = EV (x(∞)) = 0. The proof of this corollary is
complete.

Remark 3.3. By analogous discussions as in Corollary 3.1, if we replace zero-
state observability with zero-state detectability, then Corollary 3.1 still holds except
for V > 0.

We attempt to give an inverse result of Theorem 3.1; however, there remain some
technical problems that cannot be overcome at present. Despite all that, we believe
the following lemma, which can be called “nonlinear SBRL,” will contribute to the
inverse result of Theorem 3.1.
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Lemma 3.2. For system (19), γ > 0, if there exists a nonnegative solution
V ∈ C2(Rn) : Rn �→ R+ to the HJE⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂V ′

∂x f + 1
2 (∂V

′

∂x k + h′ ∂2V
∂x2 l)(γ

2I − l′ ∂
2V

∂x2 l)
−1

·(k′ ∂V∂x + l′ ∂
2V

∂x2 h) + 1
2m

′m + 1
2h

′ ∂2V
∂x2 h = 0,

γ2I − l′ ∂
2V

∂x2 l > 0 ∀x ∈ Rn, V (0) = 0,

(29)

then ‖L̂zd‖∞ ≤ γ for x(0) = 0. Conversely, (i) if there exists a positive definite func-
tion q : x ∈ Rn �→ R+, q(0) = 0, such that for all x(0) = x ∈ Rn, d ∈ L2

F (R+,Rnd),

‖z‖2
L2(R+) ≤ γ2‖d‖2

L2(R+) + q(x), d �= 0.(30)

(ii) The storage function Va,0 ∈ C2(Rn) exists with γ2I− l′
∂2Va,0

∂x2 l > 0 for all x ∈ Rn,
where

Va,0(x) = − inf
d∈L2

F ([0,T ];Rnd ),T≥0,x(0)=x∈Rn
E

∫ T

0

w(d, z) dt

with w(d, z) = 1
2γ

2‖d‖2 − 1
2‖z‖2. Then Va,0 solves HJE (29). Moreover, for any

solution V of (29),

V ≥ Va,0 ≥ 0, Va,0(0) = 0.(31)

Proof. The first part is an immediate corollary of Theorem 3.1 (g ≡ 0, u ≡ 0). As
to the inverse result, we first note that (30) concludes, for any T ≥ 0, that

‖z‖2
L2([0,T ]) ≤ γ2‖d‖2

L2([0,T ]) + q(x)∀d ∈ L2
F ([0, T ],Rnd).

Actually, for any d ∈ L2
F ([0, T ],Rnd), if we let

d̂(t) =

{
d(t), t ∈ [0, T ],
0, t ∈ (T,∞),

then d̂ ∈ L2
F (R+,Rnd). By (30),

‖z‖2
L2([0,T ]) ≤ ‖z‖2

L2(R+) = ‖z‖2
L2([0,T ]) + ‖z‖2

L2((T,∞))

≤ γ2‖d̂‖2
L2(R+) + q(x)

= γ2‖d‖2
L2([0,T ]) + q(x).(32)

So

0 ≤ Va,0(x) ≤ 1

2
q(x), Va,0(0) = 0.

Take R = 1
2γ

2I, S = 0, Q = − 1
2I, Vs = Va,0, and

w̃ =

√
2

2

(
γ2I − l′

∂2Va,0

∂x2
l

)1/2

.

HJE (29) is derived from Theorem 2.1. It is easy to show that any solution V of (29)
is a possible storage function with supply rate w. Therefore, (31) is followed from
Proposition 2.2.
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For the LTISS ⎧⎨⎩
dx = (Ax + Bu + Kd)dt + (Cx + Dd)dW,

z =

[
Mx
u

]
.

(33)

Take V (x) = 1
2x

′Px; then Theorem 3.1 and Corollary 3.1 lead to the following corol-
lary.

Corollary 3.2. Suppose there exists a solution P ≥ 0 to the generalized alge-
braic Riccati equation (GARE)

⎧⎨⎩
PA + A′P + C ′PC + (PK + C ′PD)(γ2I −D′PD)−1

·(K ′P + D′PC) − PBB′P + M ′M = 0,
γ2I −D′PD > 0

(34)

for some γ > 0, then u∗
∞(x) = k̃x = −B′Px is an H∞ control, which makes the

closed-loop system satisfy ‖L̃zd‖∞ ≤ γ. Additionally, if [A,C|M ] is observable, then
(i) P > 0; (ii) system

dx = (A−BB′P )x dt + CxdW

is asymptotically mean square stable.

Proof. The first part is an immediate corollary of Theorem 3.1. As to the second
part, (i) and (ii) are concluded from Corollary 3.1.

Example 3.1. Consider the following nonlinear stochastic system with state-
dependent noise:

dx =

([
x3

1 − 2x1 − 4x2

x3
2 − 2x2

]
+

[
2x1

2x2

]
u +

[
1
1

]
d

)
dt +

[
x2

2

x1x2

]
dW

z =

[
2(x1 + x2)

u(t)

]
.

Assume the disturbance attenuation γ = 1 for the H∞ control designed for the above
nonlinear stochastic system. Then, by Theorem 3.1 and Remark 3.1, we need to solve
the following Hamilton–Jacobi inequality for H∞ control:

H1
∞(V (x)) =

∂V ′

∂x

[
x3

1 − 2x1 − 4x2

x3
2 − 2x2

]
+

1

2

∂V ′

∂x

[
1
1

] [
1 1

] ∂V
∂x

− 1

2

∂V ′

∂x

[
2x1

2x2

] [
2x1 2x2

] ∂V
∂x

+ 2(x1 + x2)
2

+
1

2

[
x2

2 x1x2

] ∂2V

∂x2

[
x2

2

x1x2

]
≤ 0.

Let us choose the solution as V (x) = x2
1p1 + x2

2p2, for p1 > 0, p2 > 0. Then the
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Hamilton–Jacobi inequality is given by

H1
∞(V (x)) =

[
∂V

∂x1

∂V

∂x2

] [
x3

1 − 2x1 − 4x2

x3
2 − 2x2

]
+

1

2

[
∂V

∂x1

∂V

∂x2

] [
1
1

] [
1 1

] [ ∂V
∂x1

∂V
∂x2

]

− 1

2

[
∂V

∂x1

∂V

∂x2

] [
2x1

2x2

] [
2x1 2x2

] [ ∂V
∂x1

∂V
∂x2

]
+ 2(x1 + x2)

2

+
1

2

[
x2

2 x1x2

] ⎡⎣ ∂2V
∂x2

1

∂2V
∂x1x2

∂2V
∂x2x1

∂2V
∂x2

2

⎤⎦[
x2

2

x1x2

]
,

H1
∞(V (x)) =

[
2x1p1 2x2p2

] [ x3
1 − 2x1 − 4x2

x3
2 − 2x2

]
+

1

2

[
2x1p1 2x2p2

] [ 1
1

] [
1 1

] [ 2x1p1

2x2p2

]
− 1

2

[
2x1p1 2x2p2

] [ 2x1

2x2

] [
2x1 2x2

] [ 2x1p1

2x2p2

]
+ 2(x1 + x2)

2

+
1

2

[
x2

2 x1x2

] [ 2p1 0
0 2p2

] [
x2

2

x1x2

]
= 2x4

1p1 − 4x2
1p1 − 8x1x2p1 + 2x4

2p2 − 4x2
2p2

+ 2[x2
1p

2
1 + 2x1x2p1p2 + x2

2p
2
2]

− 8[x4
1p

2
1 + 2x2

1x
2
2p1p2 + x4

2p
2
2] + 2[x2

1 + x2
2 + 2x1x2] + [x4

2p1 + x2
1x

2
2p2].

If we let p1 = 1, p2 = 1, i.e. V (x) = x2
1 + x2

2, then

H1
∞(V (x)) = 2x4

1 − 4x2
1 − 8x1x2 + 2x4

2 − 4x2
2 + 2[x2

1 + 2x1x2 + x2
2]

− 8[x4
1 + 2x2

1x
2
2 + x4

2]

+ 2[x2
1 + x2

2 + 2x1x2] + [x4
2 + x2

1x
2
2]

= 2x4
1 − 4x2

1 − 8x1x2 + 2x4
2 − 4x2

2 + 4[x2
1 + 2x1x2 + x2

2]

− 8[x4
1 + 2x2

1x
2
2 + x4

2] + [x4
2 + x2

1x
2
2]

= −6x4
1 − 5x4

2 − 15x2
1x

2
2 ≤ 0;

i.e., if we choose u∗
∞(x) = −g′ ∂V∂x = −[2x1 2x2]

[
2x1

2x2

]
= −4x2

1 − 4x2
2, then the H∞

control is achieved.
To end this section, we add a few remarks on our above results.
Remark 3.4. Although in this paper W is assumed to be one-dimensional, all our

results can be extended to the system with multiplicative noise as follows:⎧⎨⎩ dx = (f(x) + g(x)u + k(x)d)dt +
∑N

i=1(hi(x) + li(x)d)dWi,

z =

[
m(x)
u

]
.

In this case, HJE (20) becomes⎧⎪⎪⎨⎪⎪⎩
∂V ′

∂x f + 1
2 (∂V

′

∂x k +
∑N

i=1 h
′
i
∂2V
∂x2 li)(γ

2I −
∑N

i=1 l
′
i
∂2V
∂x2 li)

−1(k′ ∂V∂x +
∑N

i=1 l
′
i
∂2V
∂x2 hi)

− 1
2
∂V ′

∂x gg′ ∂V∂x + 1
2m

′m + 1
2

∑N
i=1 h

′
i
∂2V
∂x2 hi = 0,

γ2I −
∑N

i=1 l
′
i
∂2V
∂x2 li > 0, V (0) = 0.
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Following [33], for the linear part, all our results can also be extended to the system
with W being a multi-dimensional Wiener process.

Remark 3.5. In (16), if l(x)d is replaced by l(x)u, then by the same discussion
as in Theorem 3.1, we can show that Theorem 3.1 still holds if we substitute⎧⎪⎪⎨⎪⎪⎩

∂V ′

∂x f + 1
2γ2

∂V ′

∂x kk′ ∂V∂x − 1
2 (∂V

′

∂x g + h′ ∂2V
∂x2 l)(I + l′ ∂

2V
∂x2 l)

−1

·(g′ ∂V∂x + l′ ∂
2V

∂x2 h) + 1
2m

′m + 1
2h

′ ∂2V
∂x2 h = 0,

I + l′ ∂
2V

∂x2 l > 0, V (0) = 0

and

u∗
∞(x) = k̃(x) = −

(
I + l′

∂2V

∂x2
l

)−1 (
g′
∂V

∂x
+ l′

∂2V

∂x2
h

)
for (20) and (21), respectively.

4. Finite horizon nonlinear H∞ control. In this section, we study the fi-
nite horizon H∞ control problem. Suppose the system is governed by the following
stochastic time-varying equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx = (f(t, x) + g(t, x)u + k(t, x)d)dt + (h(t, x) + l(t, x)d)dW,
f(t, 0) = 0, h(t, 0) = 0,

z(t) =

[
m(t, x)

u

]
, m(t, 0) = 0,

(35)

where d ∈ L2
F ([0, T ],Rnd) represents the exogenous disturbance, and f, g, k, h, and l

are vector-valued functions, jointly continuous in all arguments. The so-called finite
horizon H∞ control is to find, if existing, an u∗

T ∈ L2
F ([0, T ],Rnu), such that for any

given γ > 0, and all d �= 0 ∈ L2
F ([0, T ],Rnd), x(0) = 0, the closed-loop system satisfies

‖z‖L2([0,T ]) ≤ γ‖d‖L2([0,T ]).(36)

Similar to the definition of L̃zd, a perturbation operator LT
zd : L2

F ([0, T ],Rnd) �→
L2
F ([0, T ],Rnz ) can be defined, and (36) is equivalent to

‖L̃T
zd‖[0,T ] = sup

d∈L2
F ([0,T ],Rnd ),d 
=0,x(0)=0

||z||L2([0,T ])

‖d‖L2([0,T ])
≤ γ.

In particular, if we let u ≡ 0 and take d as a control variable in (35), then when
‖LT ‖[0,T ] := ‖LT

zd‖[0,T ] ≤ γ for any given γ > 0, the system is said to have L2-gain
less than or equal to γ.

In analogy with the proof of Theorem 3.1, the following result is easily obtained.
Theorem 4.1. Assume VT (t, x) ∈ C2

0 ([0, T ] ×Rn) satisfies the HJE⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1

T (t, x) := ∂VT

∂t +
∂V ′

T

∂x f + 1
2 (

∂V ′
T

∂x k + h′ ∂2VT

∂x2 l)(γ2I − l′ ∂
2VT

∂x2 l)−1(k′ ∂VT

∂x + l′ ∂
2VT

∂x2 h)

− 1
2
∂V ′

T

∂x gg′ ∂VT

∂x + 1
2m

′m + 1
2h

′ ∂2VT

∂x2 h = 0,

γ2I − l′ ∂
2VT

∂x2 l > 0, VT (T, x) = 0, VT (t, 0) = 0 ∀(t, x) ∈ [0, T ] ×Rn.
(37)
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Then (u∗
T , d

∗
T ) is a saddle point for the following stochastic game problem:

min
u∈L2

F ([0,T ],Rnu )
max

d∈L2
F ([0,T ],Rnd )

E

∫ T

0

(‖z‖2 − γ2‖d‖2) dt,

where u∗
T and d∗T are defined, respectively, as

u∗
T = −g′

∂V T

∂x

and

d∗T =

(
γ2I − l′

∂2V T

∂x2
l

)−1 (
k′
∂V T

∂x
+ l′

∂2V T

∂x2
h

)
.

Moreover, u∗
T is an H∞ control for system (35), and d∗T is the corresponding worst

case disturbance.
Below, we point out the relationship on the solutions between finite and infi-

nite horizon HJEs. Let V (x) and VT (t, x,Q(x)) stand for the solutions of (20) and
(37) with terminal condition VT (T, x) = Q(x) ≥ 0 for all x ∈ Rn, respectively. A
generalized version of Lemma 2.6 of [16] is as follows.

Proposition 4.1. If V (x) ≥ Q(x) for all x ∈ Rn, then V (x) ≥ VT (t, x,Q(x)) ≥
VT (t, x, 0) = VT (t, x) ≥ 0 for all (t, x) ∈ [0, T ] ×Rn.

Proof. For any initial time t ≥ 0 and state x(t) := x ∈ Rn, one only needs to
note the following identities:

1

2
E

∫ T

t

(‖z‖2 − γ2‖d‖2) dt = V (x) − EV (x(T ))

+
1

2
E

∫ T

t

(‖u− u∗
∞‖2 − ‖d− d∗∞‖2

γ,l,V + 2H1
∞(V (x))) dt(38)

and

1

2
E

∫ T

t

(‖z‖2−γ2‖d‖2) dt = VT (t, x,Q(x))−EVT (T, x(T ), Q(x))

+
1

2
E

∫ T

t

(‖u−u∗
T ‖2−‖d−d∗T ‖2

γ,l,VT (t,x,Q(x)) + 2H1
T (t, x)) dt.(39)

The rest is similar to the proof of Lemma 2.6 of [16] and is omitted.
Proposition 4.2. There is at most one solution to (37).

Proof. Otherwise, let V
(1)
T (·, ·) and V

(2)
T (·, ·) be two solutions of (37). Set

JT (x, u, d, x(t0), t0) =
1

2
E

∫ T

t0

(‖z‖2 − γ2‖d‖2) dt,

u∗
i,T = −g′

∂V
(i)
T

∂x
,

and

d∗i,T =

(
γ2I − l′

∂2V
(i)
T

∂x2
l

)−1 (
k′
∂V

(i)
T

∂x
+ l′

∂2V
(i)
T

∂x2
h

)
, i = 1, 2.
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For any x(s) = y, (s, y) ∈ [0, T ) ×Rn, from (39), we have

JT (x, u∗
1,T , d

∗
1,T , y, s) = V

(1)
T (s, y) ≤ JT (x, u∗

2,T , d
∗
1,T , y, s)

≤ JT (x, u∗
2,T , d

∗
2,T , y, s) = V

(2)
T (s, y).

Also, we have V
(2)
T (s, y) ≤ V

(1)
T (s, y), so V

(2)
T (s, y) = V

(1)
T (s, y).

Proposition 4.3. VT (·, ·) is monotonically increasing with respect to T > 0.
Proof. For any 0 ≤ s ≤ T0 ≤ T1 < ∞, x(s) = y ∈ Rn, still by (39), we have

JT0
(x, u∗

T0
, d∗T0

, y, s) = VT0
(s, y) ≤ JT0

(x, u∗
T1
, d∗T0

, y, s)

≤ JT1(x, u
∗
T1
, d∗T0

, y, s) ≤ JT1(x, u
∗
T1
, d∗T1

, y, s),

= VT1(s, y).

This proposition is complete.
If system (35) is time invariant, and

V̄ (t, x) := lim
T→∞

VT (t, x,Q(x))

exists, then V̄ depends only on x and is a solution of (20). We refer the reader
to the proof of Corollary 2.7 of [16]. In particular, if there exists (u∗

∞, d∗∞) ∈
L2
F (R+,Rnu) × L2

F (R+,Rnd), such that J∞(x, u∗
∞, d∗∞, y, s) < ∞, then by making

use of Propositions 4.1, 4.2, and 4.3, V̄ (x) exists due to the monotonicity and uniform
boundedness of VT (t, x).

In general, the inverse of Theorem 4.1 is not true; i.e., ‖LT
zd‖[0,T ] ≤ γ does not

necessarily imply that HJE (37) has a solution. An inverse result will be presented in
the following together with some other conditions. To this end, assume u = k̃(t, x) is
an H∞ control law of (35). We define ṼT,k̃(s, x) : [0, T ] ×Rn �→ R+ as

ṼT,k̃(s, x) = −1

2
inf

d∈L2
F ([s,T ],Rnd ),u=k̃,x(s)=x

E

∫ T

s

(γ2‖d‖2 − ‖z‖2) dt

= sup
d∈L2

F ([s,T ],Rnd ),u=k̃,x(s)=x

−1

2
E

∫ T

s

(γ2‖d‖2 − ‖z‖2) dt.

It is easy to test the following properties of ṼT,k̃: (i) ṼT,k̃ ≥ 0; (ii) ṼT,k̃(T, x) = 0 for
all x ∈ Rn. The following proposition can also be shown in the same way as [9] and
[26].

Proposition 4.4. (i) ‖LT
zd‖[0,T ] ≤ γ implies ṼT,k̃(s, 0) = 0 for all s ∈ [0, T ].

(ii) ṼT,k̃ is finite on [0, T ]×Rn if and only if there exists a nonnegative function

V (s, x) : [0, T ] × Rn �→ R+ satisfying the following integral dissipation inequality
(IDI):

EV (T, x(T )) − V (s, x) ≤ 1

2
E

∫ T

s

(γ2‖d‖2 − ‖z‖2) dt.(40)

Moreover, when ṼT,k̃(s, x) is finite, ṼT,k̃ is itself a solution of (40).

In the literature, such as [5] and [26], to guarantee the finiteness of ṼT,k̃(s, x), an
essential concept on the system theory called “reachability” is introduced. Checking
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the proof of Lemma 2.3 of [26], it can be found that even under the assumption of
reachability, it is not necessary to have ṼT,k̃(0, x) < ∞ for all x ∈ Rn.

Lemma 4.1. If ṼT,k̃(s, x) ∈ C2
0 ([0, T ] ×Rn) is finite with γ2I − l′

∂2ṼT,k̃

∂x2 l > 0 for

some γ > 0, and ‖LT
zd‖[0,T ] ≤ γ, then ṼT,k̃ solves the HJE⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H(VT,k̃) :=
∂VT,k̃

∂t +
∂V ′

T,k̃

∂x (f + gk̃) + 1
2

(
∂V ′

T,k̃

∂x k + h′ ∂
2VT,k̃

∂x2 l

)(
γ2I − l′

∂2VT,k̃

∂x2 l

)−1

×
(
k′

∂VT,k̃

∂x + l′
∂2VT,k̃

∂x2 h

)
+ 1

2 (m′m + k̃′k̃) + 1
2h

′ ∂
2VT,k̃

∂x2 h = 0,

γ2I − l′
∂2VT,k̃

∂x2 l > 0, VT,k̃(T, x) = 0, VT,k̃(t, 0) = 0 ∀(t, x) ∈ [0, T ] ×Rn.

(41)
Proof. We have shown that ṼT,k̃ satisfies the boundary conditions of (41) above.

Now, let V̂ = −ṼT,k̃; then by the dynamic programming principle, V̂ solves the
following HJE [32]:

−∂V̂

∂t
+ max

d∈U
H

(
t, x, d,−∂V̂

∂x
,−∂2V̂

∂x2

)
= 0,(42)

where (U, ρ) is a Polish space, U ⊂ Rnd , and the generalized Hamiltonian function H
is defined as

H

(
t, x, d,−∂V̂

∂x
,−∂2V̂

∂x2

)
:= −1

2
γ2‖d‖2 +

1

2
‖z‖2

−∂V̂
′

∂x
(f + gk̃ + kd) − 1

2
(h + ld)′

∂2V̂

∂x2
(h + ld)

= H(ṼT,k̃) −
∂ṼT,k̃

∂t
− 1

2
‖d− d̂T ‖2

γ,l,ṼT,k̃

with d̂T = (γ2I − l′
∂2ṼT,k̃

∂x2 l)−1(k′
∂ṼT,k̃

∂x + l′
∂2Ṽ T,k̃

∂x2 h). Obviously,

max
d∈U

H

(
t, x, d,−∂V̂

∂x
,−∂2V̂

∂x2

)
= H

(
t, x, d̂T ,

∂ṼT,k̃

∂x
,
∂2ṼT,k̃

∂x2

)

= H(ṼT,k̃) −
∂ṼT,k̃

∂t
.

Therefore, (42) is equivalent to H(ṼT,k̃) = 0. The proof of this lemma is
complete.

Theorem 4.2. If there exists an H∞ control u = k̃(t, x) for system (35), such
that the conditions of Lemma 4.1 hold, then HJE (37) admits a unique solution.

Proof. Apply Lemma 4.1 and note identity (39). We have

E

∫ T

t

(‖z‖2 − γ2‖d‖2) dt = E

∫ T

t

⎛⎝∥∥∥∥∥k̃ + g′
∂ṼT,k̃

∂x

∥∥∥∥∥
2

− ‖d− d̂T ‖2
γ,l,ṼT,k̃

+ 2H(ṼT,k̃)

⎞⎠ dt

= E

∫ T

t

⎛⎝∥∥∥∥∥k̃ + g′
∂ṼT,k̃

∂x

∥∥∥∥∥
2

− ‖d− d̂T ‖2
γ,l,ṼT,k̃

⎞⎠ dt.
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Obviously, in order to have ‖LT
zd‖[0,T ] ≤ γ, we must take k̃ = −g′

∂ṼT,k̃

∂x as an

H∞. Substituting k̃ into (41), (37) is derived. Uniqueness is followed from Proposi-
tion 4.2.

5. Concluding remarks. This paper has discussed the stochastic H∞ control
for nonlinear systems with both state- and disturbance-dependent noise, including
finite and infinite horizon cases. It has been shown that both finite and infinite
horizon stochastic H∞ designs are associated with two kinds of HJEs. Some results
of nonlinear H∞ control [5] for deterministic systems are generalized to the stochastic
case. There are several interesting problems which merit further study, for instance,
the relation between HJEs and invariant manifolds of Hamiltonian vector fields, and
the relation between the primal nonlinear stochastic system and its linearization.
In addition, when the state is not completely available, we must consider the output
feedback H∞ control, as done in [18] and [19]. However, since the nonlinear stochastic
H∞ filtering has been investigated in [31], it is easier to treat the aforementioned
issue using our nonlinear SBRL (Lemma 3.2). Finally, when the control u enters
the diffusion term in (16) and (35), which form would the HJE take? This is a very
interesting topic, but the results in this paper would not shed much light on this
extension. One reason for this is that u and d are no longer separable in the HJE. If
the diffusion term depends only on u (and not also on d), then the problem can be
tractable.

Acknowledgments. The authors would like to thank the Associate Editor and
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ment of the paper.
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1. Introduction. To a large extent the groundwork for the investigation of al-
gebraic Riccati equations by geometric methods was laid by J. C. Willems. In his
study of least squares stationary optimal control [24], he gave a complete description
of the set of symmetric solutions of the real continuous-time algebraic Riccati equation
(CARE)

−FTX −XF + XGGTX −Q = 0.(1.1)

Assuming that (F,G) is controllable and that the associated Hamiltonian matrix

H =

[
F −GGT

−Q −FT

]
has no eigenvalues on the imaginary axis, Willems showed that (1.1) has a greatest
solution X+ and a least solution X−. The eigenvalues of the corresponding closed
loop matrix FX+ = F − GGTX+ lie in the left half-plane and those of FX− are in
the right half-plane. Moreover, according to [24] there is a one-to-one correspondence
of solutions of (1.1) and invariant subspaces of FX+ such that every solution of (1.1)
can be expressed as a combination of X+ and X−. That result was refined by Coppel
[5] and extended further by Shayman [23].

In this paper we consider the complex discrete-time algebraic Riccati equation
(DARE)

X − F ∗XF + (G∗XF + S)∗(R + G∗XG)−1(G∗XF + S) −Q = 0.(1.2)

We shall obtain a classification of solutions of (1.2) that corresponds to the Willems–
Coppel–Shayman parametrization for (1.1).

Let us first recapitulate the parametrization result for the CARE (1.1). It will be
assumed that elementary divisors of H have even degree when they belong to pure
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imaginary eigenvalues. A solution X of (1.1) is called unmixed [23] if the spectrum
of FX = F −GGTX satisfies

σ(FX) ∩ σ(−FT
X) ⊆ iR.(1.3)

It is known (see, e.g., [12]) that there exists an unmixed solution of (1.1) if and
only if the pair (F,G) ∈ Rn×n × Rn×p is sign-controllable, i.e., if λ ∈ σ(F ) and
rank [λI − F,G] < n imply rank

[
−λI − F,G

]
= n. Let X1 be an unmixed solution of

(1.1). Then there exists a unique (unmixed) solution X2 such that FX1 and FX2
have,

at most, pure imaginary eigenvalues in common if and only if (F,G) is controllable.
In that case (X1, X2) is called a pair of opposite unmixed solutions [23]. The extremal
solutions (X−, X+) are an example of such a pair.

Let Inv (F ) denote the set of F -invariant subspaces of Rn. If iα is an eigenvalue
of F on the imaginary axis, we set E±iα = Ker (F 2 + α2I)n and we define

EiR(F ) = ⊕
α∈R

E±iα.

The following theorem can be regarded as an updated version of the Willems–Coppel–
Shayman theory. It combines results of [24], [5], and [23] with an approach by Scherer
[22] and observations on shorted operators in section 3.

Theorem 1.1. Let Γ be the set of real symmetric solutions of (1.1). Assume that
(F,G) is controllable. Let (X1, X2) be a pair of opposite unmixed solutions of

−FTX −XF + XGGTX −Q = 0,(1.1)

and let FX2 = F − GGTX2 be the closed loop matrix corresponding to X2. Set
Δ = X1 −X2. Define

N = {N ∈ Inv (FX2
) | EiR(FX2) ⊆ N}.

If N ∈ N , then

(ΔN)⊥ ⊕ (N ∩ Im Δ) = Rn.

Let PN be the projection on (ΔN)⊥ along (N ∩ Im Δ). Define

κ(N) = X1PN + X2(I − PN ).

Then κ : N → Γ is a bijection. If X ∈ Γ, then

κ−1(X) = Ker (X −X2).

It is not difficult to explain (see also [18]) why direct sum decompositions of the
form

(ΔN)⊥ ⊕N = Rn(1.4)

and associated projections PN should play a role in the theory of the CARE. Consider
(1.1) with Q = 0, i.e.,

C(X) = −FTX −XF + XGGTX = 0.(1.5)
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If (F,G) is controllable and σ(F )∩ σ(−FT ) = ∅, then (1.5) has a unique nonsingular
solution Δ (see, e.g., [22, p. 102]). Let N = Im (I,O)T be invariant under F and let
Δ be partitioned according to F such that

F =

[
F1 F12

0 F2

]
and Δ =

[
Δ1 Δ12

ΔT
12 Δ2

]
.

Then Δ1 is nonsingular [22]. Let Δ̃2 = Δ2 − ΔT
12Δ

−1
1 Δ12 be the Schur complement

of Δ with respect to N . Set

S =

[
I −Δ−1

1 Δ12

0 I

]
.

Then STΔS = diag(Δ1, Δ̃2) and

S−1FS =

[
F1 ∗
0 F2

]
.

It is obvious that

Δ̃ =

[
0 0

0 Δ̃2

]
is a solution of (1.5). In the terminology of [2], [16], or [6], the matrix Δ̃ is a shorted

matrix of Δ. In section 3 we shall give a basis-free description of Δ̃ and we shall see
that Δ̃ = ΔPN , where PN is the projection corresponding to (1.4).

Notation: Let D be the open unit disk and ∂D = {z ∈ C; |z| = 1} be the unit
circle. Let Λ be a set of complex numbers and define

Λ� = {λ̄−1 |λ ∈ Λ, λ 	= 0}.
To a matrix of complex rational functions of the form W (s) = D + C(sI − A)−1B,
we associate W�(s) = D∗ + B∗(s−1I −A∗)C∗. For λ ∈ C put

Eλ(F ) = Ker(λI − F )n.

Then Eλ(F ) is a generalized eigenspace of F if λ ∈ σ(F ). In particular, E0(F ) =
Ker Fn. We set

E∂D = ⊕{Eη(F ), η ∈ ∂D}.
A subspace V of Cn is a spectral subspace of F if V = ⊕{Eλ(F ); λ ∈ T} for some
T ⊆ σ(F ). If K is a hermitian matrix, we write K > 0 (K ≥ 0) when K is positive
(semi)definite. If F is nonsingular, we set F−∗ = (F ∗)−1.

The main result of this paper is Theorem 5.3. It describes a parametrization of
the set of hermitian solutions of the DARE (1.2). The proof of that theorem will
proceed in several stages. In section 2 we review basic facts on the DARE. We recall
that the difference of two solutions of (1.2) satisfies an associated DARE of the form

X − F ∗XF + F ∗XG(R + G∗XG)−1G∗XF = 0.

Such equations, where X = 0 is a solution, will be considered in section 4. We have
indicated before that (1.4) is related to Schur complements and shorted operators.
That subject will be touched upon in section 3.

The geometric theory of Willems [24] and Coppel [5] was carried over to the DARE
(1.2) first by G. Ruckebusch [20], [21, p. 129] and then by Ran and Trentelman [19].
Those papers give a geometric characterization of the set of hermitian solutions in
terms of the pair of extremal solutions.
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2. Basic facts of the DARE: Definitions. There is a wide class of problems
in systems and control theory that require solutions of the DARE

D(X) = X − F ∗XF + (G∗XF + S)∗(R + G∗XG)−1(G∗XF + S) −Q = 0.(2.1)

An important example is the discrete-time linear quadratic problem of optimal control.
Let the system

x(t + 1) = Fx(t) + Gu(t), x(0) = x0

be stabilizable, and let

J(x0, u) =

∞∑
t=0

[x∗(t) u∗(t)]

[
Q S∗

S R

] [
x(t)
u(t)

]
be a positive semidefinite performance index. Then (see, e.g., [9]) there exists an
optimal control u(t) which minimizes J(x0, u). The optimal cost is given by Jopt =
x∗

0Xoptx0, where Xopt is the smallest positive semidefinite solution of (2.1), and the
optimal control is

uopt(t) = −(R + G∗XoptG)−1(S + G∗XoptF )x(t).(2.2)

Thus (2.2) gives rise to the closed loop system

x(t + 1) = [F −G(R + G∗XoptG)−1(S + G∗XoptF )]x(t).(2.3)

The matrices in (2.1) are assumed to be complex, F ∈ Cn×n, G ∈ Cn×m, S ∈
Cm×n, R = R∗ ∈ Cm×m, and Q = Q∗ ∈ Cn×n. We are concerned with hermitian
solutions X of (2.1). In this section we assemble basic facts and concepts related to
(2.1). With regard to (2.3) we define

FX = F −G(R + G∗XG)−1(G∗XF + S)

as the closed loop matrix corresponding to a solution X. We say that a solution X
of the DARE (2.1) is unmixed if FX has the property

σ(FX) ∩ σ(FX)� ⊆ ∂D,(2.4)

i.e., if λ ∈ σ(FX) and λ 	= 0 and |λ| 	= 1, then λ
−1

/∈ σ(FX). We say that (X1, X2) is
a pair of opposite unmixed solutions if the corresponding closed loop matrices satisfy

σ(FX1) ∩ σ(FX2) ⊆ ∂D ∪ {0}.(2.5)

Let

M − sL =

⎡⎣ F 0 G
Q I S∗

S 0 R

⎤⎦− s

⎡⎣ I 0 0
0 F ∗ 0
0 G∗ 0

⎤⎦(2.6)

be the extended symplectic pencil associated with (2.1), and let

Ψ(s) =
[
G∗(s−1I − F ∗)−1 I

] [ Q S∗

S R

] [
(sI − F )−1G

I

]
(2.7)
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be the associated Popov matrix. The following identities and facts can be found in
[11], [13], and [17]. If X is a solution of (2.1), then

det (M − sL) = det (R + G∗XG) det (sI − FX) det (I − sF ∗
X).(2.8)

It follows from (2.8) that there exists a solution of (2.1) only if M−sL is nonsingular,
i.e., if det (M − sL) is not the zero polynomial. In that case we call

σ(M − sL) = {λ ∈ C | det (M − λL) = 0}

the set of characteristic roots of the pencil (2.6). It is obvious from (2.8) that σ(FX) ⊆
σ(M − sL). Hence, if 0 is a characteristic root of M − sL, then we have 0 ∈ σ(FX)
for all solutions X, which accounts for the singleton {0} in (2.5). Let X1 and X2 be
solutions of (2.1) such that (2.5) holds. Then it follows from (2.8) that both X1 and
X2 are unmixed. Each solution X of (2.1) gives rise to a factorization of the Popov
matrix Ψ(s), namely

Ψ(s) = Φ�
X(s)(R + G∗XG)ΦX(s)(2.9)

with

ΦX(s) = I + (R + G∗XG)−1(G∗XF + S)(sI − F )−1G.

If Ψ(s) satisfies

Ψ(η) > 0 for some η ∈ ∂D,(Ψ)

then (2.9) implies

R + G∗XG > 0(2.10)

for all solutions X.

Arguments in section 4 show that the conditions (Ψ) and (2.10) are essential for
the derivation of Theorem 5.3. Hence it is not within the scope of this paper to deal
with DAREs of the form (1.2) where (R + G∗XG)−1 is replaced by a generalized
inverse (R + G∗XG)#.

Existence of unmixed solutions was studied in [4], [25], [3]. We note the following
result of [3]. Suppose that (Ψ) holds, Ψ(η) ≥ 0 for almost all η ∈ ∂D, and rank(F −
λI) = n for all λ 	= 0. Then each unmixed set Λ gives rise to a unique solution X
such that σ(FX) ⊆ Λ. In particular there exists a unique pair (X−, X+) such that

σ(FX−) ⊆ {0} ∪ {λ ∈ C ; |λ| ≥ 1} and σ(FX+
) ⊆ D.(2.11)

It is known that Cayley transformations allow a passage from continuous-time to
discrete-time algebraic Riccati equations [15], [1]. The use of such transformations
requires invertibility assumptions (see, e.g., [1, p. 81]) which are not met by the
general hypotheses in the present paper. We note that in the case of 0 ∈ σ(M − sL)
a computational procedure is available [7] to obtain an equivalent DARE of smaller
order such that the associated closed loop matrices are nonsingular.
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3. Shorted operators and oblique projections. Let N be a subspace of Cn

and Δ be a hermitian n× n matrix.
Lemma 3.1. (i) If

N = Im

[
It
0

]
, and if Δ =

[
Δ1 Δ∗

21

Δ21 Δ2

]
(3.1)

is partitioned conformably, then we have

Cn = (ΔN)⊥ ⊕N(3.2)

if and only if Δ1 is nonsingular.
(ii) Assume (3.2) and let PN be the projection on (ΔN)⊥ along N . Then the

matrix ΔPN is hermitian. If N and Δ are given as in (3.1), then

ΔPN = diag(0, Δ̃2), Δ̃2 = Δ2 − Δ∗
21Δ

−1
1 Δ21.(3.3)

Proof. (i) Suppose det Δ1 = 0. If u1 ∈ Ker Δ1, u1 	= 0, then

u =

[
u1

0

]
∈ N

and

u∗ΔN = [u∗
1 0]

[
Δ1

Δ21

]
= 0.

Hence (ΔN)⊥ ∩N 	= 0. Conversely, if Δ1 is nonsingular, then

ΔN = Im

[
Δ1

Δ21

]
= Im

[
It

Δ21Δ
−1
1

]
and

(ΔN)⊥ = Im

[
−Δ−1

1 Δ∗
21

In−t

]
(3.4)

imply (3.2). (ii) From Im PN = (ΔN)⊥ and Δ Im (I − PN ) = ΔN follows
(I − PN )∗ΔPN = 0. Hence, ΔPN = P ∗

NΔPN is hermitian. Because of (3.4) the
projection matrix PN is given by

PN =

[
0 −Δ−1

1 Δ∗
21

0 In−t

]
,

which yields ΔPN as a shorted operator in block diagonal form (3.3).
The following observation is a special case of a formula for the inverse of a block

matrix [10, p. 18]. It will be needed in the proof of Theorem 4.5, which deals with a
nonsingular solution Δ of a special DARE and its inverse.

Lemma 3.2. Assume that Δ is nonsingular, set W = Δ−1, and let

Δ =

[
Δ1 Δ∗

21

Δ21 Δ2

]
and W =

[
∗ ∗
∗ W2

]
be partitioned accordingly. (i) Then Δ1 is nonsingular if and only if W2 is nonsingular.

(ii) If Δ1 is nonsingular, then Δ̃2 = Δ2−Δ∗
21Δ

−1
1 Δ21 is nonsingular and Δ̃−1

2 = W2.
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Proof. We include a proof which is an application of the preceding lemma. Set
N = Im [It O]

T
and M = N⊥. (i) Assume that Δ1 is nonsingular, or equivalently

(3.2). Because of (ΔN)⊥ = Δ−1N⊥ we can write (3.2) as WM ⊕M⊥ = Cn, which

in turn is equivalent to (WM)⊥ ⊕ M = Cn. Because of M = Im [O In−t]
T

such a

decomposition exists if and only if W2 is nonsingular. (ii) From ΔPN = diag(0, Δ̃2)
follows

ΔPNΔ−1 =

[
0 0

∗ Δ̃2W2

]
.

Obviously ΔPNΔ−1 is the projection on N⊥ along ΔN . Thus we obtain Δ̃2W2 =
I.

Let K = Ker Δ and V = Im Δ. We assume 0 < nc = dimV < n such that the
decomposition Cn = K ⊕ V is nontrivial. Let U ⊆ V . Then U⊥c shall denote the
orthogonal complement of U with respect to V . Set Δc = Δ|V . Then Δc : V → V is
hermitian and nonsingular.

Lemma 3.3. Let N be a subspace of Cn with K ⊆ N . Set Nc = N ∩ V . Then

(ΔcNc)
⊥c ⊕Nc = V(3.5)

if and only if

(ΔN)⊥ ⊕ (N ∩ Im Δ) = Cn.(3.6)

Proof. Note that (ΔN)⊥ = K ⊕ (ΔcNc)
⊥c and N ∩ Im Δ = Nc.

4. A DARE with solution X = 0 . In this section we deal with the equation

H(Y ) = Y − F ∗Y F + F ∗Y G(R + G∗Y G)−1G∗Y F = 0,(4.1)

where R is nonsingular. Set Γ = GR−1G∗. Then

FY = F −G(R + G∗Y G)−1G∗Y F = (I + ΓY )−1F,

and we have H(Y ) = Y − F ∗Y FY = 0. We first note two results on nonsingular
solutions of (4.1).

Lemma 4.1 (see [26, p. 931]). Let Y be a hermitian nonsingular n × n matrix.
Assume that F is nonsingular. Then Y is a solution of (4.1) if and only if W = Y −1

satisfies the discrete-time Lyapunov equation

W − FWF ∗ = −Γ.(4.2)

Lemma 4.2 (see [26, p. 932]). Assume that F is nonsingular, (F,G) is control-
lable, R > 0, and σ(F )∩σ(F−∗) = ∅. Then (4.1) has a unique nonsingular solution.

The subsequent result deals with eigenvalues of F in {0}∪ ∂D and corresponding
generalized eigenspaces.

Lemma 4.3 (see [26, p. 933]). Assume R > 0 and rank(F − ηI, G) = n for all
η ∈ ∂D. If Y is a solution of (4.1), then E0(F ) + E∂D(F ) ⊆ Ker Y.

Corollary 4.4 (see [26, pp. 923–924]). Assume R > 0, rank [F − λI, G] = n if
λ 	= 0, and σ(F ) ∩ σ(F )� ⊆ ∂D. Then (4.1) has a unique solution Δ with Ker Δ =
E0(F ) + E∂D(F ).
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It is easy to show (see also Proposition 5.2) that (0,Δ) is a pair of opposite
unmixed solutions of H(Y ) = 0. Therefore, the following result can already be viewed
as a special case of the main theorem.

Theorem 4.5. The assumptions on the DARE

H(Y ) = Y − F ∗Y F + F ∗Y G(R + G∗Y G)−1G∗Y F = 0(4.1)

are the following: R > 0, σ(F ) ∩ σ(F )� ⊆ ∂D, and rank [F − λI, G] = n if λ 	= 0.
Define

K = E0(F ) + E∂D(F ),

and

T = {Y | H(Y ) = 0}, N = {N ∈ Inv F | K ⊆ N}.(4.3)

Let Δ be the solution of (4.1) with Ker Δ = K. Then the following holds.
(i) If Y is a solution of (4.1), then Ker Y ∈ N .
(ii) If N ∈ N , then

Cn = (ΔN)⊥ ⊕ (N ∩ Im Δ),(4.4)

and if PN is the projection of Cn on (ΔN)⊥ along N ∩ Im Δ, then Ỹ = ΔPN is
the unique solution of (4.1) with Ker Ỹ = N .

(iii) For N ∈ N set κ̃(N) = ΔPN . Then the map κ̃ : N → T is a bijection, and
for Y ∈ T we have κ̃−1(Y ) = Ker Y .

Proof. Let us first prove the theorem under the stronger assumption that F is
nonsingular and σ(F ) ∩ σ(F−∗) = ∅. In that case we have K = 0 and the solution Δ
is nonsingular such that N ∩ Im Δ = N and N = Inv F .

(i) This is obvious since H(Y ) = Y − F ∗Y FY = 0 is equivalent to F−∗
Y Y = Y F .

(ii) Assume N = Im [I O]
T

such that

F =

[
F1 ∗
0 F2

]
.(4.5)

It is known from Lemma 4.1 that W = Δ−1 satisfies

W − FWF ∗ = −GR−1G∗.(4.6)

Let

Δ =

[
Δ1 Δ∗

21

Δ21 Δ2

]
, G =

[
∗
G2

]
, and Δ−1 = W =

[
∗ ∗
∗ W2

]
be partitioned according to (4.5). To establish a decomposition

Cn = (ΔN)⊥ ⊕N,(4.7)

we recall Lemma 3.1 and the fact that (4.7) holds if and only if Δ1 is nonsingular.
Thus, according to Lemma 3.2 we have to show that W2 is nonsingular. From (4.6)
we obtain

W2 − F2W2F
∗
2 = −G2R

−1G∗
2.(4.8)
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In the preceding Stein equation the pair (F2, G2) is controllable, σ(F2)∩σ(F−∗
2 ) = ∅,

and R > 0. Therefore (see, e.g., [14, p. 453]) the matrix W2 is nonsingular.
Now let us show that Ỹ = ΔPN is a solution of (4.1). Since Δ is assumed to be

nonsingular we have Ker Ỹ = Ker PN = N . Hence it follows from Lemmas 3.1 and
3.2 that Ỹ = P ∗

NΔPN = diag(0, Δ̃2), and Δ̃2 = Δ2 − Δ21Δ
−1
1 Δ∗

21 is nonsingular and

Δ̃−1
2 = W2. Consider the equation

H2(Y2) = Y2 − F ∗
2 Y2F2 + F ∗

2 Y2G2(R + G∗
2Y2G2)

−1G∗
2Y2F2.(4.9)

It is easy to check that H(Ỹ ) = diag
(
0,H2(Δ̃2)

)
. Hence Ỹ is a solution of (4.1) if

and only if H2(Δ̃2) = 0. To show that Δ̃2 is a solution of (4.9) we use Lemma 4.1

again, which says that H2(Δ̃2) = 0 is equivalent to

Δ̃−1
2 − F2Δ̃

−1
2 F ∗

2 = −G2R
−1G∗

2.(4.10)

We have seen that the solution Δ gives rise to (4.8). Therefore, because W2 = Δ̃−1
2 ,

(4.10) is satisfied.
To prove uniqueness, take a solution Y of (4.1) with Ker Y = N . Then Y =

diag(0, Y2), and Y2 is nonsingular satisfying (4.9). According to Lemma 4.2 there

exists a unique nonsingular solution of (4.9), namely, Δ̃2. Hence Y = diag(0, Δ̃2) = Ỹ .
Part (iii) is an obvious consequence of (i) and (ii).

We now discard the assumptions about F made at the beginning and consider
the case K = E0(F ) + E∂D(F ) 	= 0. Let V = ⊕{Eλ(F ) | λ 	= 0, λ /∈ ∂D} be the
F -invariant complement of K such that Cn = K ⊕ V. Suppose

K = Im

[
Ina

0

]
and V = Im

[
0
Inc

]
(4.11)

such that

F =

[
Fa 0
0 Fc

]
, G =

[
∗
Gc

]
.

Then σ(Fa) ⊆ {0} ∪ ∂D, Fc is nonsingular, and σ(Fc) ∩ σ(F−∗
c ) = ∅. It follows from

Lemma 4.3 that Y is a solution of (4.1) if and only if Y = diag(0, Yc) and Yc is a
solution of

Hc(Yc) = Yc − F ∗
c YcFc + F ∗

c YcGc(R + G∗
cYcGc)

−1G∗
cYcFc = 0.(4.12)

Set Tc = {Yc | Hc(Yc) = 0} and let ι : Tc → T be the bijection given by ι(Yc) =
diag(0, Yc). Let Δc be the unique nonsingular solution of (4.12). Then Δ = diag(0,Δc)
is the unique solution of (4.1) with Ker Δ = K.

Let N̂c ∈ Inv Fc. We embed N̂c into the space

Nc =

{[
0
xc

]
∈ Cn, xc ∈ N̂c

}
and define τ(N̂c) = K ⊕Nc. Then τ : Inv Fc → N is a bijection. In accordance with
(4.7) we have

Cnc = (ΔcN̂c)
⊥ ⊕ N̂c,(4.13)
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which is equivalent to V = (ΔcNc)
⊥c ⊕Nc. Hence, it follows from Lemma 3.3 that

N = τ(N̂c) ∈ N satisfies (4.4). Let PN̂c
be the projection corresponding to (4.13) and

set κ̃c(N̂c) = ΔcPN̂c
. We know that κ̃c : Inv Fc → Tc is a bijection. Define μc = κ̃−1

c ,
i.e., μc(Yc) = Ker Yc, Yc ∈ Tc. The maps κ̃c and μc can now be extended to bijections
between T and N . For Y ∈ T define μ(Y ) = Ker Y . Then μ = τμcι

−1 : T → N ,
and μ is bijective. Let PN be the projection arising from (4.4). For N ∈ N define
κ̃(N) = ΔPN . In the setting of (4.11) we have PN = diag(I, PN̂c

). Therefore

κ̃(N) = diag(0,ΔcPN̂c
) = ι(ΔcPN̂c

) = ικ̃c(N̂c) = ικ̃cτ
−1(N).

Hence κ̃ : N → T and κ̃ = μ−1.
In order to characterize unmixed solutions of D(X) = 0, we need a discrete-time

counterpart of a result of Scherer [22, p. 106]. Let A ∈ Cn×n and M ∈ Inv A; let
Ā denote the endomorphism of Cn/M induced by A; and let A|M be the restriction
of A to M . We define σi(A,M) = σ(A|M ) and σo(A,M) = σ(Ā). Assumptions and
definitions in the lemma below are those of Theorem 4.5 and its proof.

Lemma 4.6. For N ∈ N let Y = ΔPN be the corresponding solution
of (4.1). (i) Then F = FY on N and N ∈ Inv FY , and we have

σi(FY , N) = σi(F,N) and σo(FY , N) = σo(F,N)�.(4.14)

(ii) The solution Y is unmixed if and only if N ∈ N is a spectral subspace of F .
Proof. Let us assume for simplicity that F is nonsingular and σ(F ) ∩ σ(F−∗) = ∅.
(i) As before, suppose N = Im [I O]

T
and let F be given by (4.5). Then

σi(F,N) = σ(F1) and σo(F,N) = σ(F2). From Y = ΔPN = diag(0, Δ̃2) follows

FY = (I + ΓY )−1F =

[
F1 ∗
0 A2

]
with A2 = (I + Γ2Δ̃2)

−1F2. Thus σi(FY , N) = σ(F1). On the other hand, Y −
F ∗Y FY = 0 implies A2 = Δ̃−1

2 F−∗
2 Δ̃2, and we obtain σ(A2) = σ(F2)

�.
(ii) N is a spectral subspace of F if and only if

σ(F1) ∩ σ(F2) = ∅.(4.15)

The assumption σ(F ) ∩ σ(F−∗) = ∅ together with (4.14) imply

σ(FY ) ∩ σ(F−∗
Y ) = [σ(F1) ∪ σ(F−∗

2 )] ∩ [σ(F−∗
1 ) ∪ σ(F2)] =

[σ(F−∗
2 ) ∩ σ(F−∗

1 )] ∪ [σ(F1) ∩ σ(F2)] = [σ(F1) ∩ σ(F2)]
� ∪ [σ(F1) ∩ σ(F2)].

Hence, the property that Y is unmixed, i.e., σ(FY ) ∩ σ(F−∗
Y ) = ∅, is equivalent to

(4.15).

5. The main result. The passage from the general DARE

D(X) = X − F ∗XF + (G∗XF + S)∗(R + G∗XG)−1(G∗XF + S) −Q = 0(5.1)

to an equation of the form H(Y ) = 0 in (4.1) is a crucial step in the derivation of our
main theorem. It is based on the following lemma for which we refer to [19] and [8,
Lemma 5.2] or [1, Lemma 6.8.9].
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Lemma 5.1. (i) Let X2 be a solution of D(X) = 0. Then X is a solution of
D(X) = 0 if and only if Y = X −X2 is a solution of

(5.2) H2(Y ) = Y − F ∗
X2

Y FX2 + F ∗
X2

Y G[(R + G∗X2G) + G∗Y G]−1G∗Y FX2 = 0.

(ii) Let X2 and X be solutions of D(X) = 0. Set Y = X −X2. Then

FX = FX2
−G(R + G∗XG)−1G∗Y FX2 .(5.3)

Thus, when a solution X2 of (5.1) is at our disposal we can pass from (5.1) to
(5.2) and apply the results of section 4.

Proposition 5.2. Assume (Ψ) and

rank [F − λI, G] = n if λ 	= 0.(5.4)

Let X2 be an unmixed solution of D(X) = 0. Set K = E0(FX2) + E∂D(FX2). Then
there exists a unique solution Δ of (5.2) with Ker Δ = K. Moreover (X,X2) is a
pair of opposite unmixed solutions of D(X) = 0 if and only if X = X2 + Δ.

Proof. The assumption (Ψ) implies R + G∗X2G > 0 in (5.2). Clearly (5.4)
implies the corresponding condition for F = FX2

. The assumption that X2 should be
an unmixed solution of (5.1) is equivalent to

σ(FX2
) ∩ σ(FX2

)� ⊆ ∂D.(5.5)

Hence it follows from Corollary 4.4 that (5.2) has a unique solution Δ with Ker Δ =
K. Again it is no loss of generality to assume

K = Im

[
In−nc

0

]
and FX2 = diag(Fa, Fc). Then Δ = diag(0, Δc), det Δc 	= 0. Obviously (5.5) implies
that Fc is nonsingular and

σ(Fc) ∩ σ(F−∗
c ) = ∅.(5.6)

Let X be a solution of (5.1). Set Y = X −X2. Then H2(Y ) = 0, or equivalently

Y − F ∗
X2

Y FX = 0.(5.7)

Because of Lemma 4.3 we have K ⊆ Ker Y . Hence Y = diag(0, Yc). The identity
(5.3) yields

FX =

[
Fa ∗
0 B

]
.(5.8)

From (5.7) we obtain

Yc − F ∗
c YcB = 0.(5.9)

Let us consider the solution X = X2 + Δ and let FX be as in (5.8). In this case
we have Y = Δ = diag(0, Δc). Thus (5.9) becomes Δc − F ∗

c ΔcB = 0, where Fc and
Δc are nonsingular. Hence B = Δ−1

c F−∗
c Δc, σ(B) = σ(F−∗

c ), and

σ(FX) = σ(Fa) ∪ σ(B) = σ(Fa) ∪ σ(F−∗
c ).
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Thus (5.6) implies σ(FX) ∩ σ(FX2
) = σ(Fa) ⊆ {0} ∪ ∂D, and therefore (X,X2) is a

pair of opposite unmixed solutions.
Now consider a solution X such that Y = X − X2 	= Δ. Then Y = diag(0, Yc)

and Yc is singular. Take w ∈ Ker Yc , w 	= 0. Recall that Fc in (5.9) is nonsingular.
Hence FcBw = 0, and Ker Yc is invariant under B. Therefore we can assume that w
is an eigenvector of B, say Bw = λw. Interchanging the role of X and X2 in (5.3),
we obtain

FX2 = diag(Fa, Fc) = FX −G(R + G∗X2G)−1G∗(−Y )FX .

Hence Fc = B −WYcB with some nc × nc matrix W . Thus Fcw = Bw. Therefore
λ ∈ σ(Fc), and λ /∈ ({0} ∪ ∂D). On the other hand λ ∈ σ(FX) ∩ σ(FX2). Hence
(X,X2) is not a pair of opposite unmixed solutions.

At this point the pieces can be put together.
Theorem 5.3. Let (X1, X2) be a pair of opposite unmixed solutions of the DARE

D(X) = 0 in (5.1). Set Δ = X1 −X2 and

FX2 = F −G(R + G∗X2G)−1(G∗X2F + S).

Let S be the set of hermitian solutions of D(X) = 0, and define

N = {N ∈ Inv FX2 | E0(FX2) + E∂D(FX2) ⊆ N}.(5.10)

Assume (Ψ) and rank [F − λI, G] = n if λ 	= 0. If N ∈ N , then

(ΔN)⊥ ⊕ (N ∩ Im Δ) = Cn.(5.11)

Let PN be the projection on (ΔN)⊥ along N ∩ Im Δ. Define

κ(N) = X1PN + X2(I − PN ).(5.12)

Then κ : N → S is a bijection. If X ∈ S, then

κ−1(X) = Ker (X −X2).

Proof. Let T2 denote the set of hermitian solutions of H2(Y ) = 0 in (5.2). By
Lemma 5.1 we have X ∈ S, if and only if Y = X −X2 ∈ T2. Hence S = X2 + T2. If
(X1, X2) is a pair of opposite unmixed solutions, then it follows from Proposition 5.2
that Δ = X1 −X2 is the solution of (5.2) with Ker Δ = E0(FX2

)+E∂D(FX2
). Hence

we can parametrize the set T2 according to Theorem 4.5. If we set κ̃(N) = ΔPN , then
κ̃ : N → T2 is a bijection with κ̃−1(Y ) = Ker Y . Thus S = X2 + T2 gives rise to a
bijection κ : N → S defined by κ(N) = X2 + κ̃(N). Then κ(N) = X2 +(X1−X2)PN

yields (5.12). Finally, for X ∈ S we have κ−1(X) = κ̃−1(X − X2) = Ker (X −
X2).

Corollary 5.4. A solution X of (5.1) is unmixed if and only if Ker (X −X2)
is a spectral subspace of FX2 .

Proof. Let X be a solution of (5.1) and set Y = X−X2 such that Y is a solution
of H2(Y ) = 0 in (5.2). We claim that X is an unmixed solution of (5.1) if and only
if the corresponding matrix Y is an unmixed solution of (5.2). Let A be the closed
loop matrix associated with Y (with respect to H2 = 0), i.e.,

A = FX2 −G[(R + G∗X2G) + G∗Y G]−1G∗Y FX2
.
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Now the identity (5.3) shows that A = FX . We can apply Lemma 4.6, which tells
us that Y is an unmixed solution of (5.2) if and only if N = κ̃−1(Y ) = Ker Y is a
spectral subspace of FX2 .

The pair of opposite solutions (X−, X+) satisfying (2.11) consists of the smallest
and the greatest solution of (5.1), i.e., for each X ∈ S we have X− ≤ X ≤ X+.
In that particular case, Theorem 5.3 can be obtained from a result on intervals of
solutions in [27].
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1. Introduction and description of the problems. In this paper we show
that, under some conditions, deterministic long run average problems of optimal
control are “asymptotically equivalent” to infinite-dimensional linear programming
problems (LPPs) and we establish that these LPPs can be approximated by finite-
dimensional LPPs, the solutions of which can be used for numerical construction of
the optimal controls.

Infinite horizon problems of optimal control have been studied intensively in both
deterministic and stochastic settings (see Anderson and Kokotovic [3], Arisawa, Ishii,
and Lions [5], Bardi and Capuzzo-Dolcetta [10], Bensoussan [12], Carlson, Haurie,
and Leizarowitz [14], Colonius and Kliemann [17], Fleming and Soner [21], Grüne [29],
Kushner [34], Kushner and Dupuis [35], Vigodner [46], and references therein). In the
stochastic setting, the linear programming formulation is a common tool for treating
the problems (see, e.g., Basak, Borkar, and Ghosh [11], Borkar [13], Hernandez-Lerma
and Lasserre [31], Stockbridge [44], Yin and Zhang [48]). Finite-dimensional approx-
imations of LPPs arising in stochastic optimal control problems were considered by
Helmes and Stockbridge [30] and by Mendiondo and Stockbridge [38]. A linear pro-
gramming approach to long run average optimal control problems in the deterministic
setting appears to be new and, to the best of our knowledge, there are no publications
devoted to this topic (under different assumptions and for a different problem, a linear
programming formulation was discussed in Evans and Gomes [20]). A linear program-
ming approach to deterministic optimal control problems on a finite time interval has
been studied in Rubio [42].

Let us introduce the problems that we will be dealing with. Consider the control
system

ẏ(τ) = f(u(τ), y(τ)), τ ∈ [0, S],(1)
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where the function f(u, y) : U×Rm → Rm is continuous in (u, y) and satisfies Lipschitz
conditions in y; the controls are Lebesgue measurable functions u(τ) : [0, S] → U and
U is a compact metric space.

A pair (u(τ), y(τ)) is called admissible on the interval [0, S] if (1) is satisfied for
almost all τ ∈ [0, S] and y(τ) ∈ Y ∀τ ∈ [0, S], where Y is a given compact subset of
Rm. The pair is called admissible on [0,∞) if it is admissible on any interval [0, S],
S > 0.

Let g(u, y) : U × Rm → R1 be a continuous function. We will be considering the
asymptotics of the optimal control problem

1

S
inf

(u(·),y(·))

∫ S

0

g(u(τ), y(τ))dτ
def

= G(S),(2)

where inf is over all admissible pairs on the interval [0, S]. Along with (2), we will be
referring to the infinite time horizon optimal control problem

inf
(u(·),y(·))

lim
S→∞

1

S

∫ S

0

g(u(τ), y(τ))dτ
def

= G∞,(3)

where inf is over all admissible pairs on the interval [0,∞) such that the limit in the
above expression exists. If this inf is sought over the periodic admissible pairs only,
that is, over the pairs such that

(u(τ), y(τ)) = (u(τ + T ), y(τ + T )) ∀τ ≥ 0(4)

for some T > 0, then (3) becomes equivalent to a so-called periodic optimization
problem (see, e.g., Colonius [15])

inf
(u(·),y(·))

1

T

∫ T

0

g(u(τ), y(τ))dτ
def

= Gper,(5)

where inf is over the length of the time interval T and over the admissible pairs defined
on [0, T ] which satisfy the periodicity condition y(0) = y(T ).

A very special family of admissible pairs on [0,∞) is that consisting of constant
valued controls and corresponding steady state solutions of (1):

(u(τ), y(τ)) = (u, y) ∈ M
def

= {(u, y) | (u, y) ∈ U × Y, f(u, y) = 0}.(6)

If inf is sought over the admissible pairs from this family, the problem (3) is reduced
to

inf
(u,y)∈M

g(u, y)
def

= Gss,(7)

which is called a steady state optimization problem. It is easy to see that the optimal
values of the above introduced problems satisfy the inequalities

limS→∞G(S) ≤ G∞ ≤ Gper ≤ Gss.(8)

The approach that we are developing in the paper is based on a reformulation
of problem (2) as the problem of minimization over the set of occupational measures
generated on the interval [0, S] by the admissible pairs of (1) and on the fact that this
set is proven to converge (as S → ∞) to a set of probability measures characterized by
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linear constraints (as has been recently established in [26]). Note that it is the presence
of this convergence that constitutes the main difference between our approach and a
linear programming approach to deterministic optimal control problems on a finite
time interval developed by Rubio [42].

Note also in conclusion that results obtained in the paper have a potential for
applications in asymptotic and numerical analysis of singularly perturbed control
systems (SPCS), which have been the focus of many researchers (see Alvarez and
Bardi [1, 2], Artstein [6, 7], Colonius and Fabbri [16], Donchev and Dontchev [19],
Gaitsgory [26], Grammel [28], Kabanov and Pergamenshchikov [32], Leizarowitz [36],
Naidu [39], and Quincampoix and Watbled [41] for the most recent developments and
also for references to earlier results in the area). One such application follows directly
from the fact that tending S to infinity in problem (2) is equivalent to tending ε to
zero in the problem

inf
(uε(·),yε(·))

∫ 1

0

g(uε(t), yε(t))dt
def

= G(ε)(9)

considered on the admissible pairs (uε(·), yε(·)) ∈ U × Y of the SPCS

ε
dyε(t)

dt
= f(uε(t), yε(t)),(10)

where (9) and (10) are obtained from (2) and (1) with ε
def

= 1
S and with t = τε, uε(t) =

u( t
ε ), y

ε(t) = y( t
ε ). By formally taking ε = 0 in (9)–(10), one obtains the so-called

reduced problem, which proves to be equivalent to the steady state optimization
problem (7). This implies that the statement about the validity of the equality
limε→0 G(ε) = G(0), which can be interpreted as a weak version of Tichonov’s theorem
for the SPCS under consideration, is true only if the “less than or equal to” inequali-
ties in (8) are satisfied as exact equalities. More elaborate connections between SPCS
and long run average problems of optimal control implying the applicability of results
of this paper in dealing with SPCS have been established in Alvarez and Bardi [1, 2],
Artstein and Gaitsgory [8], and Gaitsgory [24, 25]; different, Tichonov-theorem-type
results can be found in Kokotovic, Khalil, and O’Reilly [33], O’Malley [40], and Veliov
[45].

The paper is organized as follows. In section 2, we give the occupational measures
formulation of problem (2). In section 3, we show that, as S tends to infinity, the
set of occupational measures converges to the set of probability measures with linear
constraints, and we introduce the infinite-dimensional LPP defined on this set, which
determines the asymptotics of problem (2) (Propositions 2 and 5, Corollaries 3 and 6).
In section 4, we establish that the infinite-dimensional LPP can be approximated by a
finite-dimensional LPP (Propositions 7 and 9). In section 5, we discuss the possibility
of using the solution of the latter to construct an approximation to the solution of the
periodic optimization problem (5) and we also illustrate the idea of the construction
with two numerical examples. The proofs for sections 3, 4, and 5 are given in section 6.

2. Occupational measures formulation. Let P(U × Y ) stand for the space
of probability measures defined on the Borel subsets of U ×Y . Given an arbitrary ad-
missible (on the interval [0, S]) pair (u(τ), y(τ)), one can define a probability measure
γ(u(·),y(·)) ∈ P(U × Y ) by taking

γ(u(·),y(·))(Q)
def
=

1

S
meas

{
τ
∣∣ (u(τ), y(τ)) ∈ Q

}
(11)
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for any Borel Q ⊂ U × Y , where meas {·} stands for the Lebesgue measure on [0, S].
Such a probability measure is called the occupational measure generated by the pair
(u(τ), y(τ)). Note that the occupational measure generated by a steady state admis-
sible pair (u(τ), y(τ)) = (u, y) ∈ M (as in (6)) is just the Dirac measure at (u, y).

It is easy to see that (11) is equivalent to the equality∫
U×Y

χQ(u, y)γ(u(·),y(·))(du, dy) =
1

S

∫ S

0

χQ(u(τ), y(τ))dτ,(12)

where χQ(·) is the indicator function of the set Q: χQ(u, y) = 1 ∀(u, y) ∈ Q and
χQ(u, y) = 0 ∀(u, y) /∈ Q. The validity of (12) for any indicator function leads to
the validity of a similar equality for the simple functions (that is, linear combinations
of the indicator functions) and, thus, with the help of a standard approximation
argument, leads to the validity of the equality∫

U×Y

q(u, y)γ(u(·),y(·))(du, dy) =
1

S

∫ S

0

q(u(τ), y(τ))dτ(13)

for any continuous function q(u, y) : U × Rm → R1.
Denote by Γ(S) ⊂ P(U×Y ) the set of all occupational measures generated by the

admissible pairs on the interval [0, S]. Using this notation and (13), one can rewrite
problem (2) in the equivalent form

inf
γ∈Γ(S)

∫
U×Y

g(u, y)γ(du, dy) = G(S).(14)

In what follows, the convergence properties of G(S) (as S tends to infinity) are estab-
lished on the basis of the corresponding convergence properties of Γ(S). To describe
these convergence properties, let us introduce a metric ρ on P(U × Y ) as follows:

ρ(γ′, γ′′)
def

=

∞∑
j=1

1

2j

∣∣∣∣∫
U×Y

qj(u, y)γ
′(du, dy) −

∫
U×Y

qj(u, y)γ
′′(du, dy)

∣∣∣∣(15)

∀γ′, γ′′ ∈ P(U × Y ), where qj(·), j = 1, 2, . . . , is a sequence of Lipschitz continuous
functions which is dense in the unit ball of C(U×Y ) (the space of continuous functions
on U × Y ). Note that this metric is consistent with the weak convergence topology
of P(U × Y ). Namely, a sequence γk ∈ P(U × Y ) converges to γ ∈ P(U × Y ) in this
metric if and only if

lim
k→∞

∫
U×Y

q(u, y)γk(du, dy) =

∫
U×Y

q(u, y)γ(du, dy)(16)

for any continuous q(u, y) : U×Y → R1. Note also that, the space P(U×Y ) is known
to be compact in its weak convergence topology and, hence, being equipped with the
metric (15), it becomes a compact metric space.

Using the metric ρ, one can define the “distance” ρ(γ,Γ) between γ ∈ P(U × Y )
and Γ ⊂ P(U×Y ) and define the Hausdorff metric ρH(Γ1,Γ2) between Γ1 ⊂ P(U×Y )
and Γ2 ⊂ P(U × Y ) as follows:

ρ(γ,Γ)
def

= inf
γ′∈Γ

ρ(γ, γ′), ρH(Γ1,Γ2)
def
= max

{
sup
γ∈Γ1

ρ(γ,Γ2), sup
γ∈Γ2

ρ(γ,Γ1)

}
.

(17)
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The following simple lemma is implied by the definitions above.
Lemma 1. Let Γ be a subset of P(U × Y ).
(i) If limS→∞ supγ∈Γ(S) ρ(γ,Γ) = 0, then, for any continuous q(u, y) : U × Y →

R1,

limS→∞ inf
γ∈Γ(S)

∫
U×Y

q(u, y)γ(du, dy) ≥ inf
γ∈Γ

∫
U×Y

q(u, y)γ(du, dy).

(ii) If limS→∞ ρH(Γ(S),Γ) = 0, then

lim
S→∞

inf
γ∈Γ(S)

∫
U×Y

q(u, y)γ(du, dy) = inf
γ∈Γ

∫
U×Y

q(u, y)γ(du, dy).

Proof. The proof is obvious.

3. Infinite-dimensional LPPs. Define the set W ⊂ P(U ×Y ) by the equation

W
def

= {γ : γ ∈ P(U × Y );

∫
U×Y

(φ′(y))T f(u, y)γ(du, dy) = 0 ∀φ(·) ∈ C1},

(18)

where C1 is the space of continuously differentiable functions φ(y) : Rm → R1 and
φ′(y) is a vector column of partial derivatives (the gradient) of φ(y).

Note that the set W can be empty. It is easy to see, for example, that W is empty
if there exists a continuously differentiable function φ(·) ∈ C1 such that

max
(u,y)∈U×Y

(φ′(y))T f(u, y) < 0.(19)

The set W is not empty if the set of steady state or periodic admissible pairs is
not empty since the occupational measure generated by each such pair is contained
in W . In fact, let (u(·), y(·)) be a periodic admissible pair (that is, (4) is satisfied
with some positive T ) and let γ(u(·),y(·)) be the occupational measure generated by
this pair on the interval [0, T ]. Then, by (13),∫

U×Y

(φ′(y))T f(u, y)γ(u(·),y(·))(du, dy) =
1

T

∫ T

0

(φ′(y(τ)))T f(u(τ), y(τ))dτ

=
φ(y(T )) − φ(y(0))

T
= 0 ∀φ(·) ∈ C1 ⇒ γ(u(·),y(·)) ∈ W.

Proposition 2. If the set W is empty, then there exists S0 > 0 such that Γ(S)
is empty for S ≥ S0. If Γ(S) is not empty for S > 0, then W is not empty and

lim
S→∞

sup
γ∈Γ(S)

ρ(γ,W ) = 0.(20)

Proof. The proof is similar to the corresponding part of the proof of Theo-
rem 2.1(i) in [26]. For the sake of completeness, we have displayed it in section 6.

Assume that W is not empty and consider the problem

min
γ∈W

∫
U×Y

g(u, y)γ(du, dy)
def

= G∗,(21)
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where g(·) is the same as in (14) (and the same as in (2)–(7)). It can be easily seen that
the set W is convex and compact. Moreover, since both the objective function and
the constraints defining W are linear in γ, problem (21) is that of infinite-dimensional
linear programming (see, e.g., [4]).

Corollary 3. The lower limit of the optimal values of (2) satisfies the inequality

limS→∞G(S) = limS→∞ inf
γ∈Γ(S)

∫
U×Y

g(u, y)γ(du, dy) ≥ G∗.

Proof. The proof follows from Lemma 1(i), Proposition 2, and the validity of the
representation (14).

Corollary 4 (criteria of optimality). (i) If an admissible pair (u(·), y(·)) :
[0,∞) → U × Y is such that

lim
S→∞

1

S

∫ S

0

g(u(τ), y(τ))dτ = G∗,

then this pair is a solution of problem (3) and G∞ = G∗.
(ii) If a periodic (with a period T ) admissible pair (u(·), y(·)) is such that

1

T

∫ T

0

g(u(τ), y(τ))dτ = G∗,

then this pair is a solution of problems (3) and (5), and also G∞ = Gper = G∗.
(iii) If a steady state admissible pair (u(τ), y(τ) = (u, y) ∈ M (as defined in (6))

is such that

g(u, y) = G∗,

then this pair is a solution of problems (3), (5), and (7), and also G∞ = Gper = Gss =
G∗.

Proof. The proof follows from inequalities (8) and Corollary 3.
Denote by P(U) the space of probability measures defined on the Borel subsets

of U and consider the system

ẏ(τ) = f̄(ν(τ), y(τ)), τ ∈ [0, S],(22)

where ν(τ) ∈ P(U) are relaxed controls (see [47]) and f̄(ν, u)
def

=
∫
U
f(u, y)ν(du).

A pair (ν(τ), y(τ)) will be called relaxed admissible on the interval [0, S] if (22) is
satisfied for almost all τ ∈ [0, S] and y(τ) ∈ Y ∀τ ∈ [0, S].

Assumption 1. For any Lipschitz continuous function q(u, y) : U × Rm → R1,

∣∣∣∣∣ 1S sup
(u(·),y(·))

∫ S

0

q(u(τ), y(τ))dτ − 1

S
sup

(ν(·),y(·))

∫ S

0

q̄(ν(τ), y(τ))dτ

∣∣∣∣∣ def

= αq(S) → 0

(23)

as S → ∞, where q̄(ν, u)
def

=
∫
U
q(u, y)ν(du), with the first sup being over all admissible

pairs and the second being over all relaxed admissible pairs.
Remark 1. The fulfillment of Assumption 1 is related to the applicability of

Filippov–Wazewski type theorems on Y (see Frankowska and Rampazo [22]). In
particular, it is satisfied with αq(S) ≡ 0 if Y is forward invariant with respect to the
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solutions of system (1), that is, if for an arbitrary control u(τ), any solution y(τ) of (1)
with the initial conditions in Y does not leave Y (see, e.g., Theorem 10.4.4 in Aubin
and Frankowska [9]). Assumption 1 is also satisfied with αq(S) ≡ 0 if f(u, y) ≡ f(y)
(the case of uncontrolled dynamics, with inf’s in (2)–(5) being over the admissible
trajectories having different initial conditions). In this case U can be formally defined
to consist of only one point and systems (1) and (22) are identical.

Assumption 1 is not satisfied if, for example, the set of admissible pairs is empty,
while the set of relaxed admissible pairs is not, as in the case when m = 1, f(u, y) =
−y + u , with U consisting of two points U = {−1, 1}, and Y consisting of one point
Y = {0}.

Proposition 5. Let Γ(S) be nonempty and Assumption 1 be satisfied. Then

lim
S→∞

ρH(coΓ(S),W ) = 0,(24)

where coΓ(S) stands for the convex hull of Γ(S).
Proof. The proof of (24) is similar to the proof of Theorem 1(i) in [26], which was

established under a stronger assumption implying the validity of Assumption 1. The
necessary adjustments for the case under consideration are made in section 6.

Corollary 6. If Assumption 1 is satisfied, then the limit of the optimal value
of (2) exists and is equal to G∗,

lim
S→∞

G(S) = G∗.(25)

Also, if the solution γ∗ of problem (21) is unique, then, for any γS ∈ Γ(S) such that
limS→∞

∫
U×Y

g(u, y)γS(du, dy) = G∗,

lim
S→∞

ρ(γS , γ∗) = 0.(26)

Proof. Since

inf
γ∈coΓ(S)

∫
U×Y

g(u, y)γ(du, dy) = inf
γ∈Γ(S)

∫
U×Y

g(u, y)γ(du, dy),

then, by (14),

inf
γ∈coΓ(S)

∫
U×Y

g(u, y)γ(du, dy) = G(S).

The validity of (25) follows now from Lemma 1(ii) and Proposition 5. The validity of
(26) is, in turn, implied by (25) and Proposition 2.

Note that the solution γ∗ of problem (21) can be unique only if it is an extreme
point of W (since (21) is an LPP) and that, using (24), one can show (although not
shown here) that, for any extreme point γ of W , there exists γS ∈ Γ(S) such that
limS→∞ ρ(γS , γ) = 0.

Let γ∗ be a solution of problem (21) which is an extreme point of W and let
γS ∈ Γ(S) satisfy (26). Assume that there exists an admissible pair (uγ∗

(·), yγ∗
(·)) :

[0,∞) → U×Y that generates γS on any interval [0, S] (we will say that γ∗ is generated
by the pair on [0,∞) in this case). Then, for any continuous q(u, y) : U × Y → R1,

lim
S→∞

1

S

∫ S

0

q(uγ∗
(τ), yγ

∗
(τ))dτ =

∫
U×Y

q(u, y)γ∗(du, dy)(27)
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and, in particular, for q(u, y) = g(u, y),

lim
S→∞

1

S

∫ S

0

g(uγ∗
(τ), yγ

∗
(τ))dτ =

∫
U×Y

g(u, y)γ∗(du, dy) = G∗.

Thus, by Corollary 4(i), this pair will be a solution of problem (3). Also, by Corol-
lary 4(ii), (iii), this pair will be a solution of the periodic optimization problem (5)
(and the steady state problem (7)) if it proves to be periodic (and, respectively, steady
state).

4. Finite-dimensional approximations. Let {φi(·) , i = 1, 2, . . . } be a se-
quence of continuously differentiable functions such that any function φ(·) ∈ C1 and
its gradient φ′(·) can be simultaneously approximated on Y by linear combinations
of functions from {φi(·), i = 1, 2, . . . } and their corresponding gradients. That is, for
any φ(·) ∈ C1 and any δ > 0, there exist β1, . . . , βk (real numbers) such that

max
y∈Y

{∣∣∣∣∣φ(y) −
k∑
1

βiφi(y)

∣∣∣∣∣+
∥∥∥∥∥φ′(y) −

k∑
1

βiφ
′
i(y)

∥∥∥∥∥
}

≤ δ,

with || · || being a norm in Rm. An example of such an approximating sequence is
the sequence of monomials yi11 . . . yimm , i1, . . . , im = 0, 1, . . . , where yj(j = 1, . . . ,m)
stands for the jth component of y (see, e.g., [37]).

Using the system {φi(·), i = 1, 2, . . . }, one can represent the set W in the form of
a countable system of equations:

W =

{
γ | γ ∈ P(U × Y );

∫
U×Y

(φ′
i(y))

T f(u, y)γ(du, dy) = 0, i = 1, 2, . . .

}
.(28)

Let us assume that the gradients φ′
i(·), i = 1, . . . , N, are linearly independent on any

open ball B in Rm (that is, the equality
∑N

i=1 viφ
′
i(y) = 0 ∀y ∈ B can be valid only

with vi = 0, i = 1, . . . , N) and let us define the set WN by truncation of the system
of equations in (28):

WN
def

=

{
γ | γ ∈ P(U × Y );

∫
U×Y

(φ′
i(y))

T f(u, y)γ(du, dy) = 0, i = 1, 2, . . . , N

}
.

(29)

Consider the LPP

min
γ∈WN

∫
U×Y

q(u, y)γ(du, dy)
def

= GN .(30)

Note that WN is a convex and compact subset of P(U×Y ) and that W ⊂ WN , which
implies

G∗ ≥ GN .(31)

Note also that the set WN is empty if (19) is true with φ(y)
def

=
∑N

i=1 viφi(y), where
vi are real numbers.

Proposition 7. The set W is not empty if and only if there exists N0 ≥ 1 such
that WN is not empty for N ≥ N0. If W is not empty, then

lim
N→∞

ρH(WN ,W ) = 0(32)
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and

lim
N→∞

GN = G∗.(33)

Also, if γN is a solution of problem (30) and limN ′→∞ ρ(γN ′ , γ) = 0 for some subse-
quence of integers N ′ tending to infinity, then γ is a solution of (21). If the solution γ∗

of problem (21) is unique, then, for any solution γN of (30), limN→∞ ρ(γN , γ∗) = 0.
Proof. By Lemma 1(ii), the validity of (33) follows from the validity of (32). The

other statements included in the proposition readily follow from (32) and (33). The
validity of (32) is established in section 6.

Let us introduce another assumption which we need to consider.
Assumption 2. The inequality

N∑
i=1

vi(φ
′
i(y))

T f(u, y) ≤ 0 ∀(u, y) ∈ U × Y(34)

is valid only with vi = 0 ∀ i = 1, . . . , N .
This assumption is satisfied if there exists a closed subset Y ∗ of Y with a

nonempty interior such that from the validity of (34) it follows that
∑N

i=1 viφ
′
i(y) =

0 ∀y ∈ Y ∗ (the equality of vi to zero is implied in this case by linear independence of
φ′
i(·)). The existence of such Y ∗ can be guaranteed, for instance, in two cases specified

in the statement below.
Proposition 8. A closed set Y ∗ ⊂ Y with a nonempty interior such that from

the fact that

(φ′(y))T f(u, y) ≤ 0 ∀(u, y) ∈ U × Y(35)

it follows that φ′(y) = 0 ∀y ∈ Y ∗ exists if one of the following conditions is satisfied:

(i) The set f(y, U)
def

= {x ∈ Rm : x = f(y, u), u ∈ U} is convex for y ∈ Y , and
there exists ȳ ∈ int Y such that

0 ∈ int f(ȳ, U),(36)

where “int” stands for the interior of the corresponding set.
(ii) There exists Y 0 ⊂ Y such that the closure of Y 0 has a nonempty interior and

such that any two points in Y 0 are connected by an admissible trajectory. That is, for
any y′, y′′ ∈ Y 0, there exists an admissible pair (u(τ), y(τ)) defined on some interval
[0, S] such that y(0) = y′ and y(S) = y′′.

Proof. The proof is in section 6.
Remark 2. Note that Y 0 in Proposition 8(ii) can be equal to Y in which case Y

is a subset of complete controllability of system (1) (see [29]). Note also that both
Assumptions 1 and 2 can be easily verified if there exist positive definite matrices A1

and A2 such that

(f(u, y′) − f(u, y′′))TA1(y
′ − y′′)

≤ −(y′ − y′′)TA2(y
′ − y′′) ∀y′, y′′ ∈ Rm, ∀u ∈ U.

(37)

The latter is a Liapunov-type stability condition that implies the validity of Assump-
tion 3.1 in [24] and, thus, guarantees the existence of a compact set Y ∗ ⊂ Rm, which
is forward invariant with respect to the solutions of system (1) and which is the
global attractor for the solutions of this system starting outside Y ∗ (Theorem 3.1(ii)
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in [24]). The existence of such Y ∗ leads to the fulfillment of Assumption 1 in case
Y ∗ ⊂ Y . Also, the set Y ∗ contains all periodic and steady state solutions of the
system (Lemma 3.1 in [24]) and, moreover, it can be shown that Y ∗ is equal to the
closure of the set of all points belonging to the periodic orbits. The latter implies the
validity of Proposition 8(ii) (and, hence, the validity of Assumption 2) if the interior of
Y ∗ is not empty. Condition (37) is satisfied, for example, if system (1) is linear (that
is, f(u, y) = Ay+Du, with u ∈ U ⊂ Rn and A,D being matrices of the corresponding
dimensions) and if the eigenvalues of A have negative real parts. The nonemptiness
of the interior of Y ∗ can be guaranteed in this case if U has a nonempty interior and
if the Kalman controllability matrix {D,AD, . . . , Am−1D} has the rank m.

Assume that, for any Δ > 0, Borel sets QΔ
l,k ⊂ U × Y (l = 1, . . . , LΔ, k =

1, . . . ,KΔ) (called cells in what follows) are defined in such a way that two different
cells do not intersect, the union of all cells is equal to U × Y and

sup
(u,y)∈QΔ

l,k

||(u, y) − (ul, yk)|| ≤ cΔ, c = const,(38)

for some point (ul, yk) ∈ QΔ
l,k, where, for simplicity of notation, it is assumed (from

now on) that U is a compact subset of Rn and || · || stands for a norm in Rn+m.
Fix these points (ul, yk) (l = 1, . . . , LΔ, k = 1, . . . ,KΔ) and define a polyhedral set

WΔ
N ⊂ RLΔ+KΔ

by the equation

WΔ
N

def

=

⎧⎨⎩γ = {γl,k} ≥ 0 :
∑
l,k

γl,k = 1,

∑
l,k

(φ′
i(yk))

T f(ul, yk)γl,k = 0, i = 1, 2, . . . , N

⎫⎬⎭,

(39)

where
∑

l,k

def

=
∑LΔ

l=1

∑KΔ

k=1. Consider a finite-dimensional LPP

min
γ∈WΔ

N

∑
l,k

γl,kg(ul, yk)
def

= GΔ
N .(40)

Note that the set WΔ
N is the set of probability measures on U×Y which assign nonzero

probabilities only to the points (ul, yk), and, as such,

WΔ
N ⊂ WN ⇒ GΔ

N ≥ GN .(41)

Proposition 9. Let Assumption 2 be satisfied. Then the set WN is not empty
if and only if there exists Δ0 > 0 such that WΔ

N is not empty for Δ ≤ Δ0. If WN is
not empty, then

lim
Δ→0

ρH(WΔ
N ,WN ) = 0(42)

and

lim
Δ→0

GΔ
N = GN .(43)

Also, if γΔ
N is a solution of problem (40) and limΔ′→0 ρ(γ

Δ′

N , γN ) = 0 for some sequence
of Δ′ tending to zero, then γN is a solution of (30). If the solution γN of problem (30)
is unique, then, for any solution γΔ

N of (40), limΔ→0 ρ(γ
Δ
N , γN ) = 0.

Proof. The proof is in section 6.
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5. Numerical solution of periodic optimization problems. Let us assume
that a solution γ∗ of problem (21) is unique and that it is generated by a T -periodic
admissible pair (uγ∗

(·), yγ∗
(·)) (see Remark 3 about these assumptions below). Note

that, due to Corollary 4(ii), this pair will be a solution of the periodic optimization
problem (5). Let

Θ
def

= {(u, y) : (u, y) = (uγ∗
(τ), yγ

∗
(τ)) for some τ ∈ [0, T ]}.(44)

This set can be considered as the graph of the optimal feedback control function,

which is defined on the optimal state trajectory Y def

= {y : (u, y) ∈ Θ} by the equation

ψ(y)
def

= u ∀(u, y) ∈ Θ. For the definition of ψ(·) to make sense, it is assumed that
the set Θ is such that from the fact that (u′, y) ∈ Θ and (u′′, y) ∈ Θ it follows that
u′ = u′′ (this assumption is satisfied if the closed curve defined by yγ

∗
(τ), τ ∈ [0, T ],

does not intersect itself).

Let γΔ
N

def

= {γΔ
l,k} be a basic solution of the finite-dimensional LPP (40), that is, a

solution of (40) which is an extreme point of WΔ
N . Let

ΘΔ
N

def

= {(ul, yk) : γΔ
l,k > 0}, YΔ

N

def

= {y : (u, y) ∈ ΘΔ
N}, ψΔ

N (y)
def

= u ∀(u, y) ∈ ΘΔ
N ,

(45)

where again it is assumed that from the fact that (u′, y) ∈ ΘΔ
N and (u′′, y) ∈ ΘΔ

N it
follows that u′ = u′′. Note that the set ΘΔ

N (and the set YΔ
N ) can contain no more

than N + 1 elements since γΔ
N , being a basic solution of the LPP (40), has no more

than N + 1 positive elements (see, e.g., [18, p. 81]).

The two propositions below establish that the set ΘΔ
N converges (in the specified

sense) to the set Θ, thus leading to the corresponding convergences of YΔ
N to Y and

of ψΔ
N (y) to ψ(y).

We will be using the following notation. B will stand for the open unit ball in

Rn+m: B
def

= {(u, y) : ||(u, y)|| < 1} and, for any Q ⊂ U × Y , γΔ
N (Q) will denote the

γΔ
N measure of Q: γΔ

N (Q)
def

=
∑

(ul,yk)∈Q∩ΘΔ
N
γΔ
l,k.

Proposition 10. Let Assumptions 1 and 2 be satisfied and let γ∗ be the unique
solution of (21). Then, corresponding to an arbitrary small r > 0 and arbitrary small
δ > 0, there exists N0 such that, for N ≥ N0 and Δ ≤ ΔN (ΔN is positive and may
depend on N),

γΔ
N (ΘΔ

N/(Θ + rB)) < δ,(46)

ΘΔ,δ
N ⊂ Θ + rB,(47)

where ΘΔ,δ
N

def

= {(ul, yk) : γΔ
l,k ≥ δ}.

Proof. The proof is in section 6.

Assumption 3. For any (u, y) ∈ clΘ (the closure of Θ) and any r > 0, the set

Br(u, y)
def

= ((u, y) + rB) ∩ (U × Y ) has a nonzero γ∗-measure: γ∗(Br(u, y)) > 0.

Note that this assumption is satisfied if the optimal control function uγ∗
(·) :

[0, T ] → U is piecewise continuous and at every discontinuity point τ the value of
uγ∗

(τ) is equal to either the limit from the left (uγ∗
(τ) = limτ ′→τ− uγ∗

(τ ′)) or the
limit from the right ( uγ∗

(τ) = limτ ′→τ+ uγ∗
(τ ′)).
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Proposition 11. Let the conditions of Proposition 10 and Assumption 3 be
satisfied. Then, corresponding to an arbitrary small r > 0, there exists N0 such that,
for N ≥ N0 and Δ ≤ ΔN (ΔN is positive and may depend on N),

Θ ⊂ ΘΔ
N + rB.(48)

Proof. The proof is in section 6.
Based on the consideration above, one can propose the following steps to construct

an approximate solution to the periodic optimization problem (5):
(1) Find a basic solution γΔ

N and the optimal value GΔ
N of the LPP (40) for N large

and Δ small enough; the values of N and Δ can be identified as being, respectively,
large enough and small enough if a further increase of N and a reduction of Δ lead
only to insignificant changes of the optimal value GΔ

N and, thus, the latter can be
considered to be approximately equal to G∗ (see Propositions 7 and 9).

(2) Define ΘΔ
N ,YΔ

N , ψΔ
N (y) as in (45). Note that, as follows from Propositions 10

and 11, if γ∗ is the unique solution of (21) and it is generated by a periodic admis-
sible pair, then one can expect that the points of YΔ

N will be concentrated around
a closed curve being the optimal state trajectory, while ψΔ

N (y) will give a pointwise
approximation to the optimal feedback control.

(3) Extrapolate the function ψΔ
N (y) to some neighborhood of YΔ

N and integrate
system (1) starting from an initial point y(0) ∈ YΔ

N and using the extrapolation of
ψΔ
N (y) as the feedback control. One can expect that, thus, the obtained solution of

the system will return to a small vicinity of the starting point y(0) and it will be
possible to identify the end point of the integration period, TΔ, as the moment the
solution enters this vicinity.

(4) Adjust the initial condition and/or control to obtain a periodic admissible
pair (uΔ(τ), yΔ(τ)) defined on the interval [0, TΔ]. Find the integral

1

TΔ

∫ TΔ

0

g(uΔ(τ), yΔ(τ))dτ

and compare its value with GΔ
N . If this value proves to be close to GΔ

N , then, by
Corollary 4(ii), the constructed admissible pair is a “good” approximation to the
solution of the periodic optimization problem (5).

Remark 3. Under certain conditions (e.g., under the conditions mentioned in
Remark 2), the set of occupational measures generated by periodic regimes is dense
in W and G∗ = G∞ = Gper (compare with Corollary 4). If this is the case, then the
assumption that there exists a solution γ∗ of problem (21), which is generated by a
periodic admissible pair, is equivalent to the assumption that there exists a solution
of the periodic optimization problem (5), and the assumption that γ∗ is a unique so-
lution of problem (21) implies that all solutions of (5) generate the same occupational
measure (namely, γ∗). Note that these assumptions are difficult to verify and one
may attempt to use the above steps to find an approximate solution of (5) without
such a verification. If, as the result of executing these steps, a periodic admissible
pair that gives the value of the objective function close to GΔ

N is constructed, then
one can consider this pair as an approximate solution to problem (5) and use it, if
necessary, for further analysis of the existence and structure of the “exact” solution.

Let us illustrate the construction with the following two examples.
Example 1. Let k and ω be positive parameters such that

ω > 1, kω < 1.(49)
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Consider a differential equation

ẍ(τ) + kẋ(τ) + ω2x(τ) = u(τ),(50)

where x(τ) and u(τ) are scalars and u(τ) ∈ [−1, 1]. Via a standard replacement of
variables (i.e., x(τ) = y1(τ) and ẋ(τ) = y2(τ)), equation (50) is reduced to the system
of the form (1) with

y
def

= (y1, y2), f(u, y)
def

= ( y2, −ω2y1 − ky2 + u ), U = [−1, 1].

Since this system is linear and stable, condition (37) is satisfied and, hence, the system
has a forward invariant set Y ∗ ⊂ R2 that is a global attractor for its solutions. The
Kalman controllability matrix of the system has rank 2 and, consequently, the interior
of Y ∗ is not empty. Thus, as follows from Remark 2, both Assumptions 1 and 2 are
satisfied if Y is such that it contains Y ∗ (in what follows this is achieved by choosing
Y large enough). Also, all periodic and steady state solutions of the system are
contained in Y ∗, which means that all such solutions are admissible, with the set of
steady state admissible pairs (see (6)) being, in this case, equal to

M =
{

(u, y) : u ∈ [−1, 1]; y = (y1, y2), y1 =
u

ω2
, y2 = 0

}
.

Take

g(u, y)
def

= u2 − y2
1(51)

and consider the steady state optimization problem (7). By the first inequality in
(49), its solution and the optimal value are u = 0, y1 = y2 = 0, Gss = 0. It is
easy to verify that this steady state solution is not optimal in the corresponding
periodic optimization problem (5). To see this, it is enough to consider the 2π

ω -periodic

admissible pair (u(τ), y(τ)), with u(τ) = cos(ωτ) and y(τ) = ( 1
ωk sin(ωτ), 1

k cos(ωτ)).
The value of the objective function obtained on this pair is

G̃
def

=
ω

2π

∫ 2π
ω

0

(
cos2(ωτ) − 1

ω2k2
sin2(ωτ)

)
dτ =

1

2

(
1 − 1

ω2k2

)
< 0.(52)

The last inequality follows from the second inequality in (49), which postulates small-
ness of the “friction coefficient” k compared to the “proper frequency” ω and, thus,
makes it possible to diminish the value of the objective function via the resonance
oscillations of the state variables (such an interpretation of the example was given by
Pervozvanskii; see Examples 3.2 and 4.2 in [24]).

Let us demonstrate numerical results obtained with the use of the proposed linear
programming approach for the case when k = 0.3 and ω = 2. Note that, for these
values of the parameters, G̃ = 1

2 (1 − 1
0.36 ) ≈ −0.889.

Let us take Y
def

= {(y1, y2) | yi ∈ [−5, 5], i = 1, 2} (it is straightforward to verify
that Y ∗ ⊂ Y in this case) and define

ui
def

= − 1 + iΔ, y1,j
def

= − 5 + jΔ, y2,k
def

= − 5 + kΔ,(53)

where i = 0, 1, . . . , 2
Δ and j, k = 0, 1, . . . , 10

Δ (Δ being chosen in such a way that 2
Δ

is integer). Using a slightly different system of notation (adjusted to the case under
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consideration and to the grid defined by (53)) and using monomials as the functions
defining the constraints in (39), one can rewrite the LPP (40) in the form

min
γ∈WΔ

N

∑
i,j,k

((ui)
2 − (y1,j)

2)γi,j,k
def

= GΔ
N ,(54)

with

WΔ
N

def

=

{
γ = {γi,j,k} ≥ 0:

∑
i,j,k

γi,j,k = 1,
∑
i,j,k

(φ′
l1,l2(y1,j , y2,k))

T f(ui, y1,j , y2,k)γi,j,k = 0,

l1, l2 = 0, 1, . . . , N

}
,

(55)

where φl1,l2(y1, y2)
def

= yl11 yl22 . Problem (54) was solved for N = 7 and N = 10 and
for Δ = 0.2, 0.1, 0.05, 0.025, 0.0125 (note that in both Examples 1 and 2 that follow
we used ILOG CPLEX 8.0. (http://www.ilog.com) as a linear programming solver).
The optimal values of the LPPs obtained with these values of the parameters are
(respectively) G0.2

7 ≈ −1.312, G0.1
7 ≈ −1.329, G0.05

7 ≈ −1.331, G0.025
7 ≈

−1.331, G0.0125
7 ≈ −1.331, and G0.2

10 ≈ −1.280; G0.1
10 ≈ −1.325, G0.05

10 ≈
−1.326, G0.025

10 ≈ −1.327, G0.0125
10 ≈ −1.327. On the basis of these results and

Proposition 9 (see (42)) one may conclude that G10 = limΔ→0 G
Δ
10 ≈ −1.327. Hence,

by (31), G∗ ≥ −1.327 (within the given proximity). From Corollary 4(ii) (see also
(8) and Corollary 3) it now follows that, if for some admissible T -periodical pair
(u(τ), y(τ)),

1

T

∫ T

0

(u2(τ) − y2
1(τ))dτ ≈ −1.327,(56)

then this pair is an approximate solution of problems (3) and (5).

Let {γN,Δ
i,j,k } stand for the solution of problem (54). The sets ΘΔ

N and YΔ
N can then

be represented in the form

ΘΔ
N = {(ui, y1,j , y2,k) : γN,Δ

i,j,k = 0}, YΔ
N =

{
(y1,j , y2,k) :

∑
i

γN,Δ
i,j,k = 0

}
.

Let us mark with dots the points on the plane (y1, y2) which belong to YΔ
N for N = 10

and Δ = 0.0125. The result of such marking is depicted in Figure 1.
Figure 1 clearly identifies a closed curve, which one can expect to be an approxi-

mation to the optimal state trajectory. As can be seen from this figure, the value of
y1 is uniquely determined by the value of y2 for (y1, y2) ∈ YΔ

N with y1 ≥ 0 and for
(y1, y2) ∈ YΔ

N with y1 < 0. Having this in mind, let us mark with dots the points

(ui, y2,k) on the plane (u, y2) for which γN,Δ
i,j,k = 0 and y1,j ≥ 0 (Figure 2) and, also,

the points for which γN,Δ
i,j,k = 0 and y1,j < 0 (Figure 3).

The points marked with the dots in Figure 2 define ψΔ
N (y)

def

= ψΔ
N (y1, y2) as a

function of y2 (denoted as ψ̄Δ
N (y2)) for y1 ≥ 0, and the points marked with the dots

in Figure 3 define ψΔ
N (y)

def

= ψΔ
N (y1, y2) as another function of y2 (denoted as ¯̄ψ

Δ

N (y2))
for y1 < 0. Note that in both cases (y1, y2) ∈ YΔ

N . Let us extend the definition of
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Fig. 1. YΔ
N .
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Fig. 2. ψΔ
N (y1, y2) = ψ̄Δ

N (y2) for y1 ≥ 0 and (y1, y2) ∈ YΔ
N .

ψΔ
N (y1, y2) by connecting the points in Figures 2 and 3 with piecewise linear functions

(we will denote this extension also as ψΔ
N (y1, y2)) and integrate the system with the

feedback control thus obtained and with the initial condition being at one of the points
marked in Figure 1. Denote by ỹΔ(τ) = (ỹΔ

1 (τ), ỹΔ
2 (τ)) the resulting solution of the

system and by uΔ(τ) = ψΔ
N (ỹΔ

1 (τ), ỹΔ
2 (τ)) the corresponding open loop control. The

function ỹΔ(τ) proves to be nonperiodic but it returns to a small vicinity of ỹΔ(0)



LP APPROACH TO LONG RUN AVERAGE OPTIMAL CONTROL 2021

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
u 

y
1
 

Fig. 3. ψΔ
N (y1, y2) = ¯̄ψ

Δ
N (y2) for y1 < 0 and (y1, y2) ∈ YΔ

N .

with τ ≈ 3.16. Take TΔ def

= 3.16 and denote by yΔ(τ) the solution of the system
which is obtained when applying the control uΔ(τ) on the interval [0, TΔ] and which
satisfies the periodicity condition yΔ(0) = yΔ(TΔ). Note that such a solution exists, it
is unique and, for the system under consideration, it can be easily found numerically
(see, e.g., [23, p. 39]). The periodic admissible pair (uΔ(τ), yΔ(τ)) that has been
constructed by following the indicated steps is shown in Figures 4 and 5.

The value of the objective function calculated on this pair is approximately equal
to −1.324. Comparing it with (56), one can see that it is close to the optimal one
and, hence, the pair (uΔ(τ), yΔ(τ)) can be considered to be an approximate solution
to problem (5). Let us emphasize that we have not verified the assumptions that the
solution of the periodic optimization problem (5) exists and that it is unique. Based
on the form of the obtained approximate solution, one may conjecture that these
assumptions are satisfied in the given example.

Example 2. Consider system (1) with

y
def

= (y1, y2), u
def

= (u1, u2), f(u, y)
def

= ( −y1 + u1, −y2 + u2)

(that is, n = 2 and m = 2) and with

U
def

= [−1, 1] × [−1, 1], Y
def

= [−1, 1] × [−1, 1].

As in Example 1, the system under consideration is linear and stable, and, hence,
it has a forward invariant set Y ∗ which is also a global attractor of its solutions.
Moreover, it can be easily verified that Y ∗ coincides with Y introduced above. This
implies that both Assumptions 1 and 2 are satisfied (see Remarks 1 and 2).

Let the function g(u, y) be defined by the equation

g(u, y)
def

= − y1u2 + y2u1(57)
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Fig. 4. uΔ(τ).
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Fig. 5. yΔ
1 (τ) and yΔ

2 (τ).

and let

uΔ
1,i

def

= − 1 + iΔ, uΔ
2,l

def

= − 1 + lΔ, yΔ
1,j

def

= − 1 + jΔ, yΔ
2,k

def

= − 1 + kΔ,(58)

where i, l, j, k = 0, 1, . . . , 2
Δ (Δ is such that 2

Δ is integer). The LPP (40) takes the
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form

min
γ∈WΔ

N

∑
i,l,j,k

(−yΔ
1,ju

Δ
2,l + yΔ

2,ku
Δ
1,i)γi,l,j,k

def

= GΔ
N ,(59)

where

WΔ
N

def

=

⎧⎨⎩γ = {γi,l,j,k} ≥ 0 :
∑
i,l,j,k

γi,l,j,k = 1,

∑
i,l,j,k

(φ′
l1,l2(y1,j , y2,k))

T f(u1,i, u2,l, y1,j , y2,k)γi,l,j,k = 0, l1, l2 = 0, 1, . . . , N

⎫⎬⎭ ,

(60)

with φl1,l2(y1, y2)
def

= yl11 yl22 .
Problem (59) was solved for N = 10 and for Δ = 0.2, 0.1, 0.05, 0.025, 0.0125,

0.00625, and 0.003125. The optimal values of the LPPs obtained with these parame-
ters are G0.2

10 ≈ −0.7035, G0.1
10 ≈ −0.7579, G0.05

10 ≈ −0.7671, G0.025
10 ≈ −0.7678,

G0.0125
10 ≈ −0.7679, G0.00625

10 ≈ −0.7679, G0.003125
10 ≈ −0.7679.

Similarly to Example 1, one may conclude that G∗ ≥ G10 = limΔ→0 G
Δ
10 ≈

−0.7679. Consequently, by Corollary 4(ii), if for some admissible T -periodic pair
(u(τ), y(τ)),

1

T

∫ T

0

(−y1(τ)u2(τ) + y2(τ)u1(τ))dτ ≈ −0.7679,(61)

then this pair is an approximate solution of the periodic optimization problem under
consideration.

Let {γN,Δ
i,l,j,k} be the solution of problem (59). Then

ΘΔ
N = {(uΔ

1,i, u
Δ
2,l, y

Δ
1,j , y

Δ
2,k) : γN,Δ

i,l,j,k = 0}, YΔ
N =

⎧⎨⎩(yΔ
1,j , y

Δ
2,k) :

∑
i,l

γN,Δ
i,l,j,k = 0

⎫⎬⎭ .

Figure 6 represents the result of marking with dots the points on the plane (y1, y2)
which belong to YΔ

N for N = 10 and Δ = 0.003125.
The image created by the points marked in Figure 6 reminds a square. The

analysis of the results of the linear programming solution showed that the function

ψΔ
N (y)

def

= ψΔ
N (y1, y2) is equal to (−1, 1) at every point belonging to the upper side of

the “square,” and it is equal to (−1,−1), (1,−1), and (1, 1) at the points belonging to,
respectively, left, bottom, and right sides of the square. Let us extend the definition
of ψΔ

N (y) as follows:
u1 = −1, u2 = 1 for −0.5 < y1 ≤ 0.9, 0.5 ≤ y2 ≤ 0.9;
u1 = −1, u2 = −1 for −0.9 ≤ y1 ≤ −0.5, −0.5 < y2 ≤ 0.9;
u1 = 1, u2 = −1 for −0.9 ≤ y1 < 0.5, −0.9 ≤ y2 ≤ 0.5;
u1 = 1, u2 = 1 for 0.5 ≤ y1 ≤ 0.9, −0.9 ≤ y2 < 0.5.
Proceeding as in Example 1, we integrate the system with thus defined feedback

control and with the initial condition being at one of the points marked in Figure 6.
The resulting solution of the system ỹΔ(τ) = (ỹΔ

1 (τ), ỹΔ
2 (τ)) remains in the area

of definition of the feedback control and it returns to a small vicinity of ỹΔ(0) with
τ ≈ 6.1.
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Fig. 6. YΔ
N .
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Fig. 7. uΔ
1 (τ).

Take TΔ def

= 6.1. Let uΔ(τ) = (uΔ
1 (τ), uΔ

2 (τ)) be the open loop control defined by
the feedback control on the trajectory specified above and let yΔ(τ) = (yΔ

1 (τ), yΔ
2 (τ))

be the solution of the system obtained with this open loop control which satisfies the
periodicity condition: yΔ(0) = yΔ(TΔ). The components of the constructed periodic
admissible pair (uΔ(τ), yΔ(τ)) are shown in Figures 7, 8, and 9.

The value of the objective function calculated on the pair (uΔ(τ), yΔ(τ)) is ap-
proximately equal to −0.7679 and, hence, this pair is an approximate solution to
problem (5). Note that in this example too the assumptions that the solution of the
periodic optimization problem (5) exists and that it is unique have not been veri-
fied. However, again, based on the form of the obtained approximate solution, one
may conjecture that the solution exists and that it has a form similar to that of the
obtained approximate solution.

Example 2 (continued). The set of steady state admissible pairs in Example 2 is
equal to

M = {(u, y) : u = (u1, u2), y = (y1, y2), yi = ui ∈ [0, 1], i = 1, 2}.

One can see that, for every (u, y) ∈ M , g(u, y) = 0. Hence, Gss = 0 < Gper = G∗ ≈
−0.7679. Consider the periodic optimization problem (5) in which g(u, y) is replaced
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Fig. 8. uΔ
2 (τ).
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Fig. 9. yΔ
1 (τ) and yΔ

2 (τ).

by gλ(u, y),

gλ(u, y)
def

= − y1u2 + y2u1 + λ(u2
1 + u2

2 + y2
1 + y2

2),(62)

where λ ≥ 0. For every (u, y) ∈ M , gλ(u, y) = λ(u2
1+u2

2+y2
1 +y2

2). Consequently, the
optimal value of the corresponding steady state optimization problem (denoted Gλ

ss) is
equal to zero too: Gλ

ss = 0 ∀λ ≥ 0. It is well known (see, e.g., [23]) that, if U and Y are
convex, the system is linear, and the integrand in the objective function is convex, then
the optimal values of the periodic and steady state optimization problems coincide.
One can verify (by direct calculation) that the Hessian of the function gλ(u, y) has
nonnegative eigenvalues for λ ≥ 0.5. That is, this function is convex and, hence,
Gλ

p = Gλ
ss = 0 ∀λ ≥ 0.5, where Gλ

p stands for the optimal value of the periodic

optimization problem (5) considered with gλ(u, y) instead of g(u, y). Consider the
LPP

min
γ∈WΔ

N

∑
i,l,j,k

(−yΔ
1,ju

Δ
2,l + yΔ

2,ku
Δ
1,i + λ((uΔ

1,i)
2 + (uΔ

2,l)
2 + (yΔ

1,j)
2 + (yΔ

2,k)
2))γi,l,j,k

def

= GΔ,λ
N ,

(63)
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Fig. 10. YΔ
N for λ = 0.2.

where WΔ
N is as in (60). As above, the solution of this problem with N = 10 and

Δ = 0.003125 allows one to find an approximation to the solution of the corresponding
periodic optimization problem for different λ. In particular, for λ = 0.2, 0.33, 0.35, the
approximations to the optimal values of the latter are, respectively, G0.2

per ≈ −0.2767,

G0.33
per ≈ −0.0358, G0.35

per ≈ −0.0050 . For λ ≥ 0.36, Gλ
per ≈ Gλ

ss = 0 (for λ ≥ 0.5,

this being due to the convexity of the function gλ(u, y)). Figures 10–13, represent the
results of marking with dots the points on the plane (y1, y2) which belong to YΔ

N for
λ = 0.2, 0.33, 0.35, 0.36 (N = 10, Δ = 0.003125).

6. Proofs for sections 3, 4, and 5.

Proof of Proposition 2. To prove the validity of (20), let us define κ(S) by the
equation

κ(S)
def

= sup
γ∈Γ(S)

ρ(γ,W )(64)

and show that κ(S) tends to zero as S tends to infinity. Assume it is not the case.
Then there exist a positive number δ and sequences Sk → ∞, γk ∈ Γ(Sk), such that
ρ(γk,W ) ≥ δ for k = 1, 2, . . . . Without loss of generality one may assume that there

exists limk→∞ γk def

= γ ∈ P(U × Y ) (since P(U × Y ) is compact). From the continuity
of the metric it follows that

ρ(γ,W ) ≥ δ.(65)

By the definition of the convergence in P(U × Y ) (see (16)),

lim
k→∞

∫
U×Y

(φ′(y))T f(u, y)γk(du, dy) =

∫
U×Y

(φ′(y))T f(u, y)γ(du, dy)(66)
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Fig. 11. YΔ
N for λ = 0.33.
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Fig. 12. YΔ
N for λ = 0.35.

for any φ ∈ C1. Also, from the fact that γk ∈ Γ(Sk) it follows that there exists an
admissible pair (uk(τ), yk(τ)) defined on the interval [0, Sk] such that

∫
U×Y

(φ′(y))T f(u, y)γk(du, dy) =
1

Sk

∫ Sk

0

(φ′(yk(τ)))T f(uk(τ), yk(τ))dτ.
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Fig. 13. YΔ
N for λ = 0.36.

The second integral is apparently equal to

φ(yk(Sk)) − φ(yk(0))

Sk

and tends to zero as Sk tends to infinity (since yk(τ) ∈ Y ∀ τ ∈ [0, Sk] and Y is a
compact set). This and (66) imply that∫

U×Y

(φ′(y))T f(u, y)γ(du, dy) = 0 ∀φ ∈ C1 ⇒ γ ∈ W.

The latter contradicts (65) and, hence, κ(S) defined in (64) tends to zero as S tends
to infinity. This proves (20).

From the consideration above it follows that, if there exists a sequence of Sk

tending to infinity such that Γ(Sk) = ∅, then the set W is not empty. Hence, if the
latter is empty, then Γ(S) = ∅ for all S large enough.

Proof of Proposition 5. Let Ŷ be a compact set which contains Y in its interior
and let ql(u, y) : U × Ŷ → R1, l = 1, 2, . . . , be a sequence of Lipschitz continuous
functions which is dense in C(U × Ŷ ) (the space of continuous functions on U × Ŷ ).
Let

h(u, y) = (q1(u, y), . . . , qj(u, y)), h̄(ν, y) = (q̄1(ν, y), . . . , q̄j(ν, y)), j = 1, 2, . . . ,
(67)

where q̄j(ν, u)
def

=
∫
U
qj(u, y)ν(du). Define the sets Vh(S, y) and V̄h(S, y) by the equa-

tions

Vh(S)
def

=
⋃(

u(·), y(·)
)
{

1

S

∫ S

0

h
(
u(τ), y(τ)

)
dτ

}
,
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V̄h(S)
def

=
⋃(

ν(·), y(·)
)
{

1

S

∫ S

0

h̄
(
ν(τ), y(τ)

)
dτ

}
,

where the unions are over all admissible and relaxed admissible pairs, respectively.
Let dH stand for the Hausdorff metric defined on compact subsets of Rj by the

Euclidean norm. Using a standard argument based on the separability of convex sets
(see, e.g., Lemma 4.2 in [26]), one can verify that Assumption 1 is equivalent to the
statement that, for any h(·) and h̄(·) as in (67),

dH(c̄oVh(S), c̄oV̄h(S))
def

= κh(S) → 0(68)

as S → ∞, where c̄o stands for the closed convex hull of the corresponding set.
From the definition of the metric ρ in the form (15) and the convexity of W it

follows that supγ∈Γ(S) ρ(γ,W ) = supγ∈coΓ(S) ρ(γ,W ). Hence, by (20),

lim
S→∞

sup
γ∈coΓ(S)

ρ(γ,W ) = 0

and, to prove (24), it is enough to show that

sup
γ∈W

ρ(γ, coΓ(S)) ≤ κ(S), lim
S→∞

κ(S) = 0.(69)

Let us take an arbitrary γ ∈ W . From Lemma 5.1 in [26] and Theorem 4.1 in [43]
it follows (see [26]) that there exist a probability space (Ω,F , P ) and a (P(U)×Rm)-
valued random process (ν(τ), y(τ)) = (ν(τ, ω), y(τ, ω)) such that (i) for any h(·) and
h̄(·) defined in (67),

E[h̄(ν(τ, ω), y(τ, ω))] =

∫
U×Y

h(u, y)γ(du, dy) ∀τ ≥ 0;(70)

and (ii) for some Ω′ ⊂ Ω with P (Ω′) = 1 and for any ω ∈ Ω′, the pair (ν(·, ω), y(·, ω))
is relaxed admissible on any interval [0, S].

From (ii) it follows that

1

S

∫ S

0

h̄
(
ν(τ, ω), y(τ, ω)

)
dτ ∈ V̄h(S) ∀ω ∈ Ω′,

while (i) implies that∫
U×Y

h(u, y)γ(du, dy) = E
1

S

∫ S

0

[h̄
(
ν(τ, ω), y(τ, ω)

)
]dτ ∈ c̄oV̄h(S).

Using the above inclusion and taking into account (68) (as well as the fact that γ is
an arbitrary element of W ), one can conclude that

⋃
γ∈W

{∫
U×Y

h(u, y)γ(du, dy)

}
⊂ c̄oVh(S) + κh(S)Bj ,(71)

where Bj is the closed unit ball in Rj (j is the number of components of h(·); see
(67)). Applying now Lemma 3.5 from [27] in exactly the same way as it is done
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on page 335 in [26], one can prove the validity of (69). This completes the proof of
(24).

Proof of Proposition 7 (continued). Since W ⊂ WN , to prove that (32) is valid,
it is enough to show that

lim
N→∞

sup
γ∈WN

ρ(γ,W ) = 0.(72)

Assume it is not true. Then there exist a positive number δ, a subsequence of positive
integers N ′ → ∞, and a sequence of probability measures γN ′ ∈ WN ′ such that
ρ(γN ′ ,W ) ≥ δ. Due to the compactness of P(U × Y ), one may assume (without loss
of generality) that there exists γ̄ ∈ P(U × Y ) such that

lim
N ′→∞

ρ(γN ′ , γ̄) = 0 ⇒ ρ(γ̄,W ) ≥ δ.(73)

From the fact that γN ′ ∈ WN ′ it follows that, for any integer i and N ′ ≥ i,∫
U×Y

(φ′
i(y))

T f(u, y)γN ′(du, dy) = 0 ⇒
∫
U×Y

(φ′
i(y))

T f(u, y)γ̄(du, dy) = 0.

Since the latter is valid for any i = 1, 2, . . . , one can conclude that γ̄ ∈ W , which
contradicts (73). This proves (32).

Proof of Proposition 8. In case (i), from (36) it follows that there exist an open
ball B ⊂ Y centered at ȳ and a number r > 0 such that the closed ball B̄r centered
at 0 and having the radius r > 0 will satisfy the inclusion

B̄r ⊂ f(y, U) ∀y ∈ B.(74)

Let us show that, if φ(·) satisfies (35), then φ′(y) = 0 ∀y ∈ B and, thus, Y ∗ can be
taken to be equal to the closure of B. Assume that φ′(y) = 0 for some y ∈ B. By
(74), there exist u ∈ U such that r

||φ′(y)||φ
′(y) = f(y, u). Hence, by (35),

(φ′(y))Tφ′(y) =
||φ′(y)||

r
(φ′(y))T f(y, u) ≤ 0 ⇒ φ′(y) = 0.

The obtained contradiction proves the statement.
In case (ii), let us show that Y ∗ can be taken to be equal to the closure of Y 0. To

show this, it is enough to establish that from (35) it follows that φ(y) = const ∀y ∈ Y 0

(which leads to that φ(y) = const ∀y ∈ Y ∗ and, hence, to that φ′(y) = 0 ∀y ∈ int Y ∗).
Let y′, y′′ ∈ Y 0 and (u(τ), y(τ)) be an admissible pair such that y(0) = y′ and

y(S) = y′′. Then, by (35),

φ(y′′) − φ(y′) =

∫ S

0

(φ′(y(τ)))T f(u(τ), y(τ))dτ ≤ 0 ⇒ φ(y′′) ≤ φ(y′).

Since y′, y′′ are arbitrary points in Y 0, the latter implies that

φ(y) = const ∀y ∈ Y 0.

Proof of Proposition 9. First, note that, by (41), the set WN is not empty if WΔ
N

is not empty.
Let us assume that the set WN is not empty and show that WΔ

N is not empty and
that (42) is valid (the validity of (43) follows from (42) on the basis of Lemma 1(ii);
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the other statements included in the proposition are immediate consequences of (42)
and (43)).

From (38) and the fact that the functions (φ′
i(y))

T f(u, y) are continuous it follows
that

sup
(u,y)∈QΔ

l,k

|(φ′
i(y))

T f(u, y) − (φ′
i(yk))

T f(ul, yk)| ≤ κ(Δ), i = 1, . . . , N,(75)

for some κ(Δ) such that limΔ→0 κ(Δ) = 0. Define the set ZΔ
N ⊂ RLΔ+KΔ

by the
equation

ZΔ
N

def

=

⎧⎨⎩γ = {γl,k} ≥ 0 :
∑
l,k

γl,k = 1,

∣∣∣∣∣∣
∑
l,k

(φ′
i(yk))

T f(ul, yk)γl,k

∣∣∣∣∣∣ ≤ κ(Δ),

i = 1, 2, . . . , N

⎫⎬⎭ .

(76)

For any Δ, let γΔ ∈ WN be such that ρ(γΔ, ZΔ
N ) = maxγ∈WN

ρ(γ, ZΔ
N ) (γΔ exists

since WN is compact) and show that

lim
Δ→0

max
γ∈WN

ρ(γ, ZΔ
N ) = lim

Δ→0
ρ(γΔ, ZΔ

N ) = 0.(77)

Let γΔ
l,k

def

=
∫
QΔ

l,k
γΔ(du, dy). By (75),∣∣∣∣∣∣

∑
l,k

(φ′
i(yk))

T f(ul, yk)γ
Δ
l,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l,k

(φ′
i(yk))

T f(ul, yk)γ
Δ
l,k −

∫
U×Y

(φ′
i(y))

T f(u, y)γΔ(du, dy)

∣∣∣∣∣∣
≤
∑
l,k

∫
QΔ

l,k

|(φ′
i(yk))

T f(ul, yk) − (φ′
i(y))

T f(u, y)|γΔ(du, dy) ≤ κ(Δ), i = 1, 2, . . . , N.

Hence, denoting γ̃Δ def

= (γΔ
l,k), one obtains that γ̃Δ ∈ ZΔ

N and, consequently,

ρ(γ̃Δ, ZΔ
N ) = 0.(78)

Let q(u, y) : U × Y → R1 be an arbitrary continuous function and let κq(Δ) be
such that

sup
(u,y)∈QΔ

l,k

|q(u, y) − q(ul, yk)| ≤ κq(Δ), lim
Δ→0

κq(Δ) = 0.

Then∣∣∣∣∣∣
∫
U×Y

q(u, y)γΔ(du, dy) −
∑
l,k

q(ul, yk)γ
Δ
l,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
l,k

∫
Ql,k

q(u, y)γΔ(du, dy) −
∑
l,k

∫
Ql,k

q(ul, yk)γ
Δ(du, dy)

∣∣∣∣∣∣ ≤ κq(Δ).
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The fact that the latter inequality is valid for an arbitrary continuous q(u, y) implies
that limΔ→0 ρ(γ

Δ, γ̃Δ) = 0, which, along with (78), implies the validity of (77).
By (41), maxγ∈WΔ

N
ρ(γ,WN ) = 0. Hence, to prove (42), it is enough to establish

that

lim
Δ→0

max
γ∈WN

ρ(γ,WΔ
N ) = 0.(79)

Since (as can be easily verified using the triangle inequality),

max
γ∈WN

ρ(γ,WΔ
N ) ≤ max

γ∈WN

ρ(γ, ZΔ
N ) + max

γ∈ZΔ
N

ρ(γ,WΔ
N )

and since (77) has been already verified, equality (79) will be established if one shows
that

lim
Δ→0

max
γ∈ZΔ

N

ρ(γ,WΔ
N ) = lim

Δ→0
ρ(γ̄Δ,WΔ

N ) = 0,(80)

where γ̄Δ = {γ̄Δ
l,k} ∈ ZΔ

N is such that ρ(γ̄Δ,WΔ
N ) = maxγ∈ZΔ

N
ρ(γ,WΔ

N ) for any Δ > 0.

Let qj(·) be the same as in definition (15) of the metric ρ. Consider the following
finite-dimensional linear program:

FJ(Δ)
def

= min
γ={γl,k}∈WΔ

N

J∑
j=1

1

2j

∣∣∣∣∣∣
∑
l,k

qj(ul, yk)γl,k −
∑
l,k

qj(ul, yk)γ̄
Δ
l,k

∣∣∣∣∣∣ .(81)

To prove that (80) is valid, it is enough to show that

lim
Δ→0

FJ(Δ) = 0, J = 1, 2, . . . .(82)

Below it is shown that the optimal value of the problem dual to (81) tends to zero
as Δ tends to zero. Since the latter coincides with FJ(Δ), this will prove (82). Also,
from (82) it follows that FJ(Δ) is bounded and, hence, WΔ

N is not empty for Δ small
enough (see, e.g., Theorem 2 on page 129 in [18]).

Let us rewrite problem (81) in the equivalent form:

FJ(Δ) = min
γ={γl,k}∈WΔ

N

J∑
j=1

1

2j
θj ,(83)

where

−
∑
l,k

qj(ul, yk)γl,k + θj ≥ −
∑
l,k

qj(ul, yk)γ̄
Δ
l,k,(84)

∑
l,k

qj(ul, yk)γl,k + θj ≥
∑
l,k

qj(ul, yk)γ̄
Δ
l,k.(85)

The problem dual to (83)–(85) is

FJ(Δ) = max
λi,μj ,ηj ,ζ

J∑
j=1

(−μj + ηj)

⎛⎝∑
l,k

qj(ul, yk)γ̄
Δ
l,k

⎞⎠+ ζ,(86)
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where λi, i = 1, . . . , N ; μj , ηj , j = 1, . . . J, and ζ satisfy the following relationships:

N∑
i=1

λi(φ
′
i(y

k))T f(ul, yk) +

J∑
j=1

(−μj + ηj)qj(ul, yk) + ζ ≤ 0,(87)

l = 1, 2, . . . , LΔ, k = 1, 2, . . . ,KΔ, and

μj + ηj =
1

2j
, μj ≥ 0, ηj ≥ 0, j = 1, , 2, . . . , J.(88)

Before proving (82), let us verify that FJ(Δ) is bounded for Δ small enough (which,
by (81), is equivalent to that WΔ

N is not empty). Assume it is not. Then there exist
a sequence Δr, r = 1, 2, . . . , limr→∞ Δr = 0, and sequences λr

i , μ
r
j , η

r
j , ζ

r, satisfying

(87)–(88) with Δ = Δr, r = 1, 2, . . . , such that limr→∞(ζr +
∑N

i=1 |λr
i |) = ∞ and

lim
r→∞

ζr

ζr +
∑N

i=1 |λr
i |

def

= a ≥ 0, lim
r→∞

λr
i

ζr +
∑N

i=1 |λr
i |

def

= vi,

where

a +
N∑
i=1

|vi| = 1.(89)

Dividing (87) by ζr +
∑N

i=1 |λr
i | and passing to the limit as r → ∞, one can obtain

N∑
i=1

vi(φ
′
i(y))

T f(u, y) + a ≤ 0 ∀(u, y) ∈ U × Y,(90)

where it is taken into account that every point (u, y) ∈ U ×Y can be presented as the
limit of (ul, yk) belonging to the sequence of cells QΔr

l,k such that (u, y) ∈ QΔr

l,k .

Two cases are possible: a > 0 and a = 0. If a > 0, then the validity of (90)

implies that the function φ(y)
def

=
∑N

i=1 viφi(y) satisfies (19) which would lead to WN

being empty. The set WN , however, is not empty (by our assumption) and, hence,
the only case to consider is a = 0. In this case, (90) becomes

N∑
i=1

vi(φ
′
i(y))

T f(u, y) ≤ 0 ∀(u, y) ∈ U × Y.(91)

By Assumption 2, (91) can be valid only with all vi being equal to zero. This con-
tradicts (89) and, thus, proves that FJ(Δ) is bounded for Δ small enough (and that
WΔ

N is not empty).

From the fact that FJ(Δ) is bounded it follows that a solution λΔ
i , i = 1, . . . , N ;

μΔ
j , ηΔ

j , j = 1, . . . , J, and ζΔ of the problem (86)–(88) exists. Using this solution,
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one can obtain the following estimates:

0 ≤ FJ(Δ) =

J∑
j=1

(−μΔ
j + ηΔ

j )

⎛⎝∑
l,k

qj(ul, yk)γ̄
Δ
l,k

⎞⎠+ ζΔ

=
∑
l,k

γ̄Δ
l,k

⎛⎝ J∑
j=1

(−μΔ
j + ηΔ

j )qj(ul, yk)

⎞⎠+ ζΔ

≤
∑
l,k

γ̄Δ
l,k

(
−

N∑
i=1

λΔ
i (φ′

i(y
k))T f(ul, yk) − ζΔ

)
+ ζΔ

= −
N∑
i=1

λΔ
i

⎛⎝∑
l,k

(φ′
i(y

k))T f(ul, yk)γ̄
Δ
l,k

⎞⎠ ≤
N∑
i=1

|λΔ
i |κ(Δ),

where the last two relationships are implied by the fact that γ̄Δ = {γ̄Δ
l,k} ∈ ZΔ

N (see
(76)).

To prove (82), it is now sufficient to show that
∑N

i=1 |λΔ
i | remains bounded as

Δ → 0. Assume it is not. Then there exists a sequence Δr, r = 1, 2, . . . , limr→∞ Δr =
0, and sequences λr

i , μ
r
j , η

r
j , ζ

r, satisfying (87)–(88) with Δ = Δr, r = 1, 2, . . . , such
that

lim
r→∞

N∑
i=1

|λr
i | = ∞, lim

r→∞

ζr∑N
i=1 |λr

i |
= 0, lim

r→∞

λr
i∑N

i=1 |λr
i |

def

= vi,

N∑
i=1

|vi| = 1.

(92)

Dividing (87) by
∑N

i=1 |λr
i | and passing to the limit as r → ∞, one obtains that the

inequality (91) is valid, which, by Assumption 2, implies that vi = 0, i = 1, . . . , N .
This contradicts the last equality in (92) and, thus, proves (82).

Proof of Proposition 10. Assume that (46) is not true. Then there exist a number
r > 0 and a sequence Ni tending to infinity as i tends to infinity and there exist
sequences Δi,j , with each Δi,j tending to zero as j tends to infinity (with i being
fixed) such that

γ
Δi,j

Ni
((U × Y )/(Θ + rB)) = γ

Δi,j

Ni
(Θ

Δi,j

Ni
/(Θ + rB)) ≥ δ

⇒ γ
Δi,j

Ni
(Θ + rB) < 1 − δ.

(93)

Due to compactness of P(U × Y ), one may assume (without loss of generality) that

there exists γNi
∈ P(U ×Y ) such that limj→∞ ρ(γ

Δi,j

Ni
, γNi

) = 0. Hence, since Θ+ rB
is an open set,

limj→∞γ
Δi,j

Ni
(Θ + rB) ≥ γNi(Θ + rB).(94)

By Proposition 9, γNi is a solution of problem (30). Consequently, by Proposition 7
and the fact that γ∗ is the unique solution of (21),

lim
i→∞

ρ(γNi , γ
∗) = 0 ⇒ limi→∞γNi

(Θ + rB) ≥ γ∗(Θ + rB) = 1.
(95)

The relationships (94) and (95) imply that, for i and j large enough, γ
Δi,j

Ni
(Θ+ rB) ≥

1 − δ. This contradicts (93) and, thus, proves (46). The inclusion (47) follows from
(46).
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Proof of Proposition 11. Assume that the proposition is not true. Then there
exist a number r > 0 and sequence: (ui, yi) ∈ Θ, Ni, Δi,j , i = 1, 2, . . . , j = 1, 2, . . . ,
with

lim
i→∞

(ui, yi) = (ū, ȳ) ∈ clΘ, lim
i→∞

Ni = ∞, lim
j→∞

Δi,j = 0

such that

d((ui, yi),Θ
Δi,j

Ni
) ≥ r ⇒ d((ū, ȳ),Θ

Δi,j

Ni
) ≥ r

2
,(96)

where d((u, y), Q) stands for the distance between a point (u, y) ∈ U × Y and a set

Q ⊂ U × Y : d((u, y), Q)
def

= inf(u′,y′)∈Q{||(u, y) − (u′, y′)||}. The second inequality in
(96) implies that

(
(ū, ȳ) +

r

2
B
)
∩ Θ

Δi,j

Ni
= ∅ ⇒ γ

Δi,j

Ni

(
(ū, ȳ) +

r

2
B
)

= 0.

Similarly to the proof of Proposition 10, one may assume, without loss of generality,

that there exists γNi ∈ P(U × Y ) such that limj→∞ ρ(γ
Δi,j

Ni
, γNi) = 0. Hence, since

the set (ū, ȳ) + r
2B is open,

0 = lim
j→∞

γ
Δi,j

Ni

(
(ū, ȳ) +

r

2
B
)

≥ γNi

(
(ū, ȳ) +

r

2
B
)
.

As in the proof of Proposition 10, γNi is a solution of problem (30) (see Proposition 9).
Consequently, from Proposition 7 and from the fact that γ∗ is the unique solution of
(21) it follows that

lim
i→∞

ρ(γNi , γ
∗) = 0 ⇒ 0 = lim

i→∞
γNi

(
(ū, ȳ) +

r

2
B
)

≥ γ∗
(
(ū, ȳ) +

r

2
B
)
.

The latter contradicts Assumption 3 and, thus, proves the proposition.
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BIFURCATIONS OF 1-PARAMETER FAMILIES OF
CONTROL-AFFINE SYSTEMS IN THE PLANE∗

BRONISLAW JAKUBCZYK† AND WITOLD RESPONDEK‡

Abstract. We define bifurcations of control-affine systems in the plane and classify all generic
1-parameter bifurcations at control-regular points. More precisely, we classify topological bifurca-
tions of invariants of usual feedback equivalence. Such bifurcations form six different classes: two
bifurcations of equilibrium sets, two bifurcations of critical sets, and two bifurcations of pairs of
invariants. We also classify all generic 1-parameter families of control-affine systems with respect to
orbital feedback equivalence.

Key words. control system, bifurcation, invariants, classification, orbital feedback equivalence,
1-parameter families
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1. Introduction. In this paper we define and study bifurcations of 1-parameter
families of smooth, control-affine systems

Σ : ξ̇ = f(ξ, ε) + g(ξ, ε)u,

where ξ lies in an open subset X ⊂ R2 or in a differential manifold X = M2 and u ∈ R.
We classify the generic bifurcations at control-regular points (i.e., with g(ξ, ε) �= 0).

A local bifurcation of a parameter dependent dynamical system ξ̇ = f(ξ, ε) oc-
curs at an equilibrium if there is a change, when the parameter ε varies, of topological
character of the solution curves nearby the equilibrium (see, e.g., [IJ], [Ku]). Under-
standing bifurcations of such equations is important from several points of view, and
the already known classification is rather rich (see, e.g., [AAIS]).

Analogous definition of bifurcation applied to a control system is not suitable since
the set of trajectories of Σ is rich. (Local invariants of the feedback group include
functional invariants, already for generic systems on R2; see [JR1], [JR2], [Zh].)

Therefore we consider only the most characteristic trajectories: constant tra-
jectories, time-critical trajectories, and so-called, fast (quasi) trajectories. Thus, we
attach to our system three basic invariants (equivariants) of feedback transformations.
Namely, the equilibria set and the critical set are defined, respectively, by

Eε = {p ∈ X | f(p, ε) and g(p, ε) are linearly dependent},

Cε = {p ∈ X | [g, f ](p, ε) and g(p, ε) are linearly dependent},
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where [g, f ] = Df g −Dg f is the Lie bracket of g and f . The canonical foliation Gε

(foliation of fast trajectories) consists of orbits (nonparameterized integral curves) of
the control vector field g(·, ε). Note that the fast trajectories are not true trajectories
of Σ but only “asymptotic trajectories,” corresponding to “arbitrarily large” control.

The choice of these invariants is additionally justified by the following remarks.
Consider a generic system Σ : ξ̇ = f(ξ) + ug(ξ), ξ ∈ X, u ∈ R, and piecewise contin-
uous control. (a) The pair of invariants (E,G) determines the set of unparameterized
trajectories of Σ in the region X, where g(ξ) �= 0. Namely, the trajectories of Σ
are exactly the piecewise C1 curves in X intersecting the leaves of G transversally at
points p ∈ X \E and tangent to the leaves at points in E. If we add to the invariants
the “drift direction transversal to the leaves of G,” then the same remark is valid for
oriented, unparameterized trajectories. (b) It follows from (a) that all controllability
properties of Σ, expressed in terms of oriented unparameterized trajectories, are de-
termined by the pair (E,G) and the “drift direction.” (c) Locally time-minimal and
time-maximal trajectories are contained in C.

We will study bifurcations of these invariants. Roughly speaking (see Definition
2.1 for a rigorous statement), a bifurcation occurs if the triplet of basic invariants
(Eε, Cε,Gε) at ε0 is not topologically conjugated to the triplets at nearby values of ε.
The same definition can be used for any subset of the triplet (Eε, Cε,Gε). In particular,
we define bifurcations of the equilibrium set Eε (E-bifurcations), of the critical set Cε

(C-bifurcations), as well as bifurcations of the pairs (Eε, Cε), (Eε,Gε), and (Cε,Gε).
In our considerations we will use the following local prenormal form of Σ:

Σpre : ẋ = f1(x, y, ε), ẏ = u,

where (x, y) are in a neighborhood of 0 ∈ R2. Namely, every system Σ can be
transformed to Σpre by a family of local diffeomorphisms (x, y) = φε(ξ), which rectify
the vector fields g(ξ, ε) to ∂/∂y, and by a static feedback transformation. For Σpre,

Eε = {(x, y) : f1(x, y, ε) = 0}, Cε =

{
(x, y) :

∂f1

∂y
(x, y, ε) = 0

}
,

and

Gε = {x = const}.

From the last expression for Cε, it is clear that Cε consists of locally time-critical
curves (time-minimal, if f1∂

2f1/∂y
2 < 0, and time-maximal, if f1∂

2f1/∂y
2 > 0).

Our first main result says that, generically, there are only six nonequivalent bi-
furcations of planar systems Σ at control-regular points. Throughout the paper, by
a generic system Σ we mean a 1-parameter family of pairs (f, g) of vector fields that
belongs to a dense set GS, which is a countable intersection of open and dense subsets
in the C∞ Whitney topology of the space of all pairs (f, g) defined on X × I (see [Hi]
for properties of the Whitney topology). The set of generic systems GS is given by
the transversality conditions (G1)–(G6) in Theorem 3.3 and Lemma 4.4.

Theorem 1.1. Let Σ be a smooth, generic, 1-parameter family of control-affine
systems. If g(p, ε0) �= 0 and Σ bifurcates locally at (p, ε0), then the bifurcation is
equivalent to one of the following:

(i) an E-bifurcation, which can be of two types described in section 2.1;
(ii) a C-bifurcation, which can be of two types described in section 2.2;
(iii) an EG-bifurcation (or an EC-bifurcation), described in section 2.3;
(iv) a CG-bifurcation described in section 2.4.
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Here equivalence of bifurcations is understood as equivalence of the triples of
invariants (Eε, Cε,Gε) under smooth, invertible local transformations of the form

(Eq) ξ̃ = φ(ξ, ε), ε̃ = η(ε).

The above theorem is a consequence of our second main result, Theorem 3.3, which
locally classifies generic families Σ under smooth orbital feedback equivalence. This
C∞ classification holds at control-regular points.

Using weaker, topological equivalence (Eq), a classification of generic bifurcations
of (Eε, Cε,Gε) at points where g vanishes is also possible but requires different tech-
niques. As the results in [Ru] show, there are four additional bifurcations in that case.
A generic local topological classification of 1-parameter families, around points where
g vanishes, gives seven nonequivalent families (four that bifurcate and three that do
not).

Clearly, the set of equilibria, the set of (time) critical trajectories, and the set of
fast trajectories have already proved their importance in several problems concerning
control-affine planar systems. In constructing the time-optimal synthesis on R2 for
a system ẋ = f(x) + ug(x) with constraints |u| ≤ 1, both the equilibria set and the
critical set play an important role, while the set of fast trajectories is not significant;
see [Ba1], [Ba2], [BsP], [BP], [Su1], [Su2]. In studying generic controllability problems
and singularities of the boundary of the reachable set for such systems [Da1], [Da2],
the equilibrium set is important, while the other two invariants do not appear. The
main role is played by two vector fields, X+ and X−, X± = f±g, and by two foliations
of oriented orbits of these vector fields, called limiting directions [Da2]. In that case
the problem is reduced to local classification of two generic, oriented foliations. See
[Da2] and [BsP], which summarize deep studies of planar systems with constraints
from controllability and optimal control points of view.

The study of bifurcations of control systems was initiated by Abed and Fu [AF1],
[AF2], in a different setting, for systems of the form ξ̇ = f(ξ, u, ε). They assumed that
the uncontrolled system, defined by taking u = 0, undergoes a bifurcation at ε = ε0,
and they studied stabilizability of the system by quadratic and cubic feedbacks.

Our approach is close in spirit to that of Kang [Ka1], who studied bifurcations of
the set of equilibria and of the linear approximation of the system at an equilibrium.

A control system does not need a parameter to bifurcate—the control can play
the same role. This point of view is presented by Krener, Kang, and Chang [KKC].
They consider systems ξ̇ = f(ξ, u), for which the set of equilibria is conveniently pa-
rameterized by the control u. According to their definition, a control bifurcation takes
place at an equilibrium if the linear approximation of the system looses stabilizability.

2. Bifurcations. We will use the following definition of bifurcation. For a subset
Ω ⊂ X × I and a fixed parameter ε ∈ I = (a, b) we denote Ωε = {ξ ∈ X : (ξ, ε) ∈ Ω}.
Assume 0 ∈ I. We denote the system Σ with a fixed value ε of parameter by Σε.

Definition 2.1. We say that the family Σ does not bifurcate, locally at (ξ0, ε0) =
(p, 0), if there exits a neighborhood Ω ⊂ X × I of (p, 0) and a family of homeomor-
phisms χε : Ωε → Ω0, continuous with respect to (ξ, ε), such that for Σε restricted to
Ωε we have

χε(Eε) = E0, χε(Cε) = C0, and χε(Gε) = G0

for all ε ∈ I close enough to 0. Otherwise we say that Σ bifurcates locally or has a
local bifurcation at (ξ, ε) = (p, 0).
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Analogous definition applies to bifurcations at arbitrary (ξ0, ε0). Strictly speak-
ing, in our definition we should say that the triple (Eε, Cε,Gε) bifurcates or that Σ
bifurcates with respect to (Eε, Cε,Gε). The same definition will be used for any subset
of the triplet (Eε, Cε,Gε). In particular, we define bifurcations of the equilibrium set
Eε, of the critical set Cε, and of the pairs (Eε, Cε), (Eε,Gε), and (Cε,Gε).

In the above definition we use a family of homeomorphisms χε. Another possibil-
ity is to use, instead, a family of smooth diffeomorphisms φε. We will call the corre-
sponding bifurcations topological and differential bifurcations. In turns out, however,
that in both topological and smooth categories the bifurcations of generic 1-parameter
families of control-affine planar systems are the same at control-regular points.

Definition 2.2. We say that two (local) bifurcations of Σε and Σ̃ε are locally
equivalent if there is a local, smooth, invertible transformation (ξ̃, ε̃) = (φ(ξ, ε), η(ε))
which transforms the triple (Eε, Cε,Gε) into the triple (Ẽε̃, C̃ε̃, G̃ε̃

).
Assuming that the families of vector fields f(ξ, ε) and g(ξ, ε) are expressed in

coordinates on X ⊂ R2 as column vectors, we define the functions of (ξ, ε):

e = det (f, g), c = det ([g, f ], g).

For Σ in the prenormal form we have e(x, y, ε) = f1(x, y, ε) and c(x, y, ε) = ∂f1

∂y (x, y, ε).
Below we will describe in detail all generic planar bifurcations. To simplify the

notation, we will denote the state of the transformed system Σ̃ε̃ by ξ̃ = (x, y), its
control by ũ = v, and its parameter by ε̃ = ε. This system will be in the prenormal
form Σpre. Then its canonical foliation will be in the form

Gε = {x = const}.

Let ϕε(x, y) = ϕ(x, y, ε) be a smooth function. We will denote by dϕ the differ-
ential of ϕ in the (x, y)-space and by Dϕ the differential in the (x, y, ε)-space, that is,

dϕ =

(
∂ϕ

∂x
,
∂ϕ

∂y

)
, Dϕ =

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂ε

)
.

By hess (ϕ) we denote the matrix of second order partial derivatives of ϕ with respect
to x, y, and Lgϕ denotes the derivative of ϕ along g.

2.1. E-bifurcations. Consider Σ around a point (p, ε0) ∈ X × I such that
g(p, ε0) �= 0 and assume that the equilibrium set Eε locally bifurcates while the in-
variants Cε and Gε do not bifurcate at ε0. We will call such a phenomenon an equilibria
bifurcation or an E-bifurcation.

Proposition 2.3. For a generic Σ, an E-bifurcation appears at a point (ξ, ε) =
(p, ε0) if and only if the following conditions are fulfilled at this point:

e = 0, c = 0, Lgc �= 0, de = 0, det hess (e) �= 0, and De �= 0.

Such a bifurcation is equivalent to one of the two which are described by the following
families of invariants: Cε = {y = 0}, Gε = {x = const} and

Eε = {x2 + y2 = ε} or Eε = {x2 − y2 = ε}.

Moreover, Eε = {x2+y2 = ε} corresponds to det hess (e) > 0, while Eε = {x2−y2 = ε}
corresponds to det hess (e) < 0.

Description of the E-bifurcations. In the first E-bifurcation, called birth of
equilibria, the equilibrium set Eε is empty, for ε < 0, it consists of a single point
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Fig. 2.1. E-bifurcation (birth of equilibria).
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Fig. 2.2. E-bifurcation (cross of equilibria).

(0, 0) ∈ R2, for ε = 0, and of a circle of equilibria, for ε > 0 (see Figure 2.1). The
arrows in the figures will symbolically denote the direction of the drift f , transverse
to Gε.

In the second E-bifurcation, called cross of equilibria (Figure 2.2), the equilibrium
set Eε consists of two curves that do not intersect, for ε �= 0. The two curves approach
each other when ε tends to zero and, for ε = 0, the set E0 is formed by two curves
which intersect (transversally, if we consider differential bifurcations).

Notice that the fact that Eε bifurcates implies that the pairs (Eε, Cε) and (Eε,Gε)
bifurcate as well (although neither Cε nor Gε, considered separately, bifurcates). For
instance, in the case of the birth of equilibria bifurcation, the curves Eε and Cε do
not intersect for ε < 0 (since Eε is empty), their intersection is one point, for ε = 0,
and consists of two points for ε > 0.

2.2. C-bifurcations. Consider a system Σ around a point (p, ε0) such that
g(p, ε0) �= 0 and assume that the critical set Cε locally bifurcates while the equi-
librium set Eε and the canonical foliation Gε do not bifurcate at ε = ε0. We will call
such a bifurcation critical set bifurcation or C-bifurcation. Generically, only two such
bifurcations are possible.

Proposition 2.4. A generic family Σ has a C-bifurcation at a point (ξ, ε) =
(p, ε0) if and only if the following conditions are fulfilled at this point:

e �= 0, c = 0, dc = 0, L2
gc �= 0, det hess (c) �= 0, Dc �= 0.
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Fig. 2.3. C-bifurcation (birth of critical curve).
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Fig. 2.4. C-bifurcation (cross of critical curves).

Such a bifurcation is equivalent to one of the two which are described by the following
invariants: Eε = ∅ (empty set), Gε = {x = const} and

Cε = {x2 + y2 = ε} or Cε = {x2 − y2 = ε}.

In these bifurcations, the critical curve bifurcates in exactly the same way as
the equilibria curve does in the E -bifurcations, which is illustrated in Figures 2.3
and 2.4 (the first corresponds to det hess (c) > 0, while the second corresponds to
det hess (c) < 0).

2.3. EG-bifurcations or EC-bifurcations. Consider a generic family Σ such
that neither of the invariants Eε, Cε, Gε bifurcates, while the pair (Eε,Gε) bifurcates.
We call this EG-bifurcation. Only one such bifurcation is possible.

Proposition 2.5. A generic family Σ has a local EG-bifurcation at a point (p, ε0)
if and only if the conditions

e = 0, c = 0, Lgc = 0, L2
gc �= 0, de �= 0, dc �= 0

are fulfilled at this point and the differentials De and Dc are linearly independent.
Such a bifurcation is locally equivalent to one with the invariants Gε = {x = const}
and

Eε = {y3 + (x− ε)y + x = 0},

Cε = {3y2 + x− ε = 0}.

Description of the EG-bifurcation. Both the equilibria set Eε = {eε = 0}
and the critical set Cε = {cε = 0} are smooth curves and, considered separately,
they do not bifurcate. The equilibria curve Eε passes, for any value of ε, through the
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Fig. 2.5. EG-bifurcation, γ = 1.

origin (0, 0) (Figure 2.5, with the drift direction chosen so that γ = 1 in Theorem 3.3).
We can equivalently write Eε = {x = y(ε−y2)(y+1)−1}. Thus, the curve Eε intersects
each curve {x = c = const} of Gε at zeros of the function f(y) = y(ε−y2)(y+1)−1−c,
i.e., it intersects it once if ε ≤ 0 and three times if ε > 0 (for x = c small enough).

Observe that the pair (Eε, Cε) also has a bifurcation. Eliminating x from the
equations for Eε and Cε we get 2y3 + 3y2 = ε. For small y, the function on the left
behaves like 3y2, which gives no solutions, if ε < 0, and two solutions, if ε > 0. Thus,
for ε < 0, the curves Eε and Cε do not intersect, for ε = 0 they just intersect at
(0, 0) ∈ R2 (and are tangent), for ε > 0 they intersect at two different points close to
(0, 0). At the points of intersection, the curve Eε is tangent to the curves of Gε. Thus
the above bifurcation can be called either an EG-bifurcation or an EC-bifurcation.

2.4. CG-bifurcations. We will analyze families Σ for which neither of the in-
variants Eε, Cε, Gε, considered separately, bifurcates while the pair (Cε,Gε) bifurcates.
We will call this a CG-bifurcation. For generic Σ only one such bifurcation appears.

Proposition 2.6. For a generic family Σ a local CG-bifurcation appears at a
point (p, ε0) if and only if the conditions

e �= 0, c = 0, Lgc = 0, L2
gc = 0, L3

gc �= 0, dc �= 0, d(Lgc) − (L4
gc/7L

3
gc) dc �= 0

are fulfilled at this point and the differentials Dc and D(Lgc) are linearly independent.
Such a CG-bifurcation is locally equivalent to one having Eε = ∅, Gε = {x = const},
and

Cε = {y3 + (x− ε)y + x = 0}.

Description of the CG-bifurcation. Here, for any ε the critical curve Cε passes
through the origin in R2. We can equivalently write Cε = {x = y(ε − y2)(y + 1)−1}.
Thus, the critical curve Cε intersects each curve {x = c = const} of Gε at zeros of the
function f(y) = y(ε−y2)(y+1)−1−c, i.e., it intersects it once if ε ≤ 0 and three times
if ε > 0 for x = c small enough (Figure 2.6, with θ = 1 and with the drift direction
corresponding to a(0, 0) > 0 in Theorem 3.3).

Observe that neither of the invariants Eε, Cε, Gε, considered separately, bifurcates.
Since E = ∅, there is neither EG-bifurcation nor EC-bifurcation in this case.

When considering differential bifurcations, we can give an alternative description
of the above CG-bifurcation. The critical curve Cε = {cε = 0} is a regular curve
passing through the origin for any value of ε. If ε < 0, the critical curve intersects
transversally all integral curves {x = const} of Gε. For ε = 0 the critical curve C0

is tangent at (0, 0) ∈ R2 to the integral curve {x = 0} of G0. Finally, for ε > 0 it
becomes tangent to exactly two integral curves of Gε at two points close to (0, 0).
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Fig. 2.6. CG-bifurcation, a(0, 0) > 0.

3. Orbital classification of 1-parameter families.

3.1. Equivalence of families. Consider a family of control systems on X ⊂ R2

(3.1) Σ : ξ̇ = f(ξ, ε) + g(ξ, ε)u,

where u ∈ R and ε ∈ I (open interval). Here f(ξ, ε) = fε(ξ) and g(ξ, ε) = gε(ξ) are
families of vector fields on X, C∞-smooth with respect to (ξ, ε).

Consider C∞ local invertible transformations X×R× I → X×R× I of the form

Γ :
ξ̃ = φ(ξ, ε) = φε(ξ),
ũ = ψ(ξ, u, ε) = ψε(ξ, u),
ε̃ = η(ε),

where ψ is affine with respect to u so that u = ψ−1(ξ, ũ, ε) = α(ξ, ε) + β(ξ, ε)ũ.
Invertibility at (ξ0, ε0) means that dφε0(ξ0) is of rank 2 and β(ξ0, ε0) �= 0, η′(ε0) �= 0.

A feedback transformation Γ = (φ, ψ, η) brings Σ into Σ̃:
˙̃
ξ = f̃(ξ̃, ε̃) + g̃(ξ̃, ε̃)ũ,

with f̃ε̃ = f̃(·, ε̃) and g̃ε̃ = g̃(·, ε̃) given by

f̃ε̃ = (φε)∗(fε + αεgε), g̃ε̃ = (φε)∗(βεgε),

where ε̃ = η(ε), αε = α(·, ε), and βε = β(·, ε). Throughout, for any vector field f and
any diffeomorphism ξ̃ = φ(ξ) we denote (φ∗f)(ξ̃) = dφ(ξ) · f(ξ), where ξ = φ−1(ξ̃).

An orbital feedback transformation Γorb = (φ, ψ, h, η) contains additionally a fam-
ily of positive valued smooth functions hε(ξ) = h(ξ, ε) which change the time scale of
the system according to dt/dτ = h(ξ, ε). Thus, by definition, Γorb transforms Σ into
Σ̃ with f̃ε̃ = (φε)∗(hεfε + hεαεgε) and g̃ε̃ = (φε)∗(hεβεgε). We can incorporate the

action of hε on gε by choosing α̂ε = hεαε and β̂ε = hεβε. The transformation becomes

(3.2) f̃ε̃ = (φε)∗(hεfε + α̂εgε), g̃ε̃ = (φε)∗(β̂εgε),

where ε̃ = η(ε). Throughout the paper we assume that the functions hε are positive
valued and constant on the trajectories of gε, i.e., the derivative of hε along gε vanishes:

(3.3) Lgεhε = 0.

We shall suppress the dependence on ε in our notation, writing the relations (3.2),

(3.3) in the form f̃ = φ∗(hf + α̂g), g̃ = φ∗(β̂g), and Lgh = 0.

Definition 3.1. Two families Σ and Σ̃ are called locally orbitally feedback
equivalent (or orbitally equivalent) at (ξ0, ε0) and (ξ̃0, ẽ0), respectively, if there ex-
ists a local, invertible at (ξ0, ε0), C∞-transformation Γorb = (φ, ψ, h, η), satisfying
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(φ, η)(ξ0, ε0) = (ξ̃0, ε̃0), with h(ξ, ε) positive valued and Lgh = 0, transforming Σ into

Σ̃. If h ≡ 1, then we say that Σ and Σ̃ are locally feedback equivalent.

Orbital feedback equivalence, defined by relations (3.2) and (3.3) (introduced in
[J1] as “mild feedback equivalence”), allows one to get a simple classification of generic
families. The equivalence does not change basic features of Σ. Namely, consider again
the functions

e = det (f, g), c = det ([g, f ], g).

Replacing f and g by the orbitally equivalent pair

f̃ = h f + α g, g̃ = β g with Lgh = 0

gives [g̃, f̃ ] = hβ[g, f ] + ϕg, where ϕ = βLg(α) − αLg(β) − hLf (β), and so

(3.4) ẽ = hβ e, c̃ = hβ2c.

The following fact follows then immediately from (3.4) and from the equalities
Eε = {p ∈ X : e(p, ε) = 0 } and Cε = {p ∈ X : c(p, ε) = 0 }.

Proposition 3.2. If Σ and Σ̃ are orbitally feedback equivalent, via the trans-
formation Γorb = (φ, ψ, h, η), then the ideals (e) and (c) generated by the functions
e(ξ, ε) and c(ξ, ε), respectively, are transformed by the map (φ, η) (remain unchanged,
if (φ, η) = id). In particular, with ε̃ = η(ε), we have

φε(Eε) = Ẽε̃, φε(Cε) = C̃ε̃, and φε(Gε) = G̃ε̃.

The above property of E, C, G and of the ideals (e), (c) is called equivariance.
Thus E, C, G are said to be equivariant or, by abuse of language, invariant with
respect to orbital feedback equivalence.

3.2. Classification theorem. Let Σ be a smooth family of systems (3.1). Con-
sider the functions e = det(f, g) and c = det([g, f ], g) depending on (ξ, ε). We intro-
duce the sequence of functions of (ξ, ε):

c0 = e, c1 = c, ck = Lk−1
g c, k ≥ 2.

Denote by j(ci, ci+1) and J(ci, ci+1, ci+2) the Jacobians with respect to ξ and (ξ, ε),

j(ci, ci+1) = det
(
dci, dci+1

)
,

J(ci, ci+1, ci+2) = det
(
Dci, Dci+1, Dci+2

)
,

where dh = (∂h/∂ξ1, ∂h/∂ξ2) and Dh = (∂h/∂ξ1, ∂h/∂ξ2, ∂h/∂ε).

The following theorem classifies generic Σ under the orbital feedback equivalence.
To simplify the exposition, we denote the state of the transformed system by ξ̃ =
(x, y) ∈ R2 and its control by ũ = v. In the last column below we list codes of
invariants (they are defined after the theorem) describing the equivalence class. The
diagrams in Figures 3.1 and 3.2 explain the structure of the classification as well as
relations between the codes and the corresponding invariant conditions expressed in
terms of e, c1, c2, . . . , and their differentials.
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Theorem 3.3. A generic family Σ, given by (3.1), is locally orbitally feedback
equivalent, around any point at which g does not vanish, to one of the following
canonical forms at 0 ∈ R2 and ε = 0, where the code appearing in the last column
characterizes the systems equivalent to the normal form:

(O) ẋ = y + 1, ẏ = v, (11),

(E) ẋ = y, ẏ = v, (01),

(C) ẋ = τy2 + 1, ẏ = v, (101),

(EC) ẋ = y2 + γx, ẏ = v, (0101),

(CG) ẋ = δy3 + xy + 1, ẏ = v, (10101),

(Ebif ) ẋ = σey
2 + x2 − ε, ẏ = v, (00101),

(Cbif ) ẋ = σcy
3 + (x2 − ε)y + 1, ẏ = v, (100101),

(EGbif ) ẋ = y3 + (x− ε)y + γx, ẏ = v, (010101).

(CGbif ) ẋ = y4 + (θx− ε)y2 + xy + a(x, ε), ẏ = v, (1010101)mod.

Above a is a smooth function of (x, ε) satisfying a(0, 0) �= 0 and sgn a(0, 0) = κ. The
integers τ , γ, δ, σe, σc, θ, and κ take values ±1 and are orbitally feedback invariant.

The class of families (3.1), which are locally orbitally equivalent at (p, ε0) to one
of the above canonical forms, is characterized by the following conditions at (p, ε0):

(G1) (ci, ci+1, ci+2, ci+3) �= (0, 0, 0, 0) for i = 0, 1,

(G2) (ci, ci+1, ci+2, dci) �= (0, 0, 0, 0) for i = 0, 1,

(G3) (ci, Dci) �= (0, 0) for i = 0, 1,

(G4) (ci, dci,det hess (ci)) �= (0, 0, 0) for i = 0, 1,

(G5) (ci, ci+1, ci+2, J(ci, ci+1, ci+2)) �= (0, 0, 0, 0) for i = 0, 1,

(G6) (ci, ci+1, ci+2, dci+1
mod) �= (0, 0, 0, 0) for i = 0, 1.

Above, in condition (G6), we use the functions c1mod = c1 and c2mod = c2 − (c5/7c4)c1.
The conditions (G1)–(G5) are equivalent to the following condition:

(G) (ci, ci+1, j(ci, ci+1), J(ci, ci+1, j(ci, ci+1))) �= (0, 0, 0, 0) for i = 0, 1.

Remark 3.1. Notice that any orbital feedback transformation preserving the
prenormal form Σpre : ẋ = f1(x, y, ε), ẏ = u satisfies x̃ = φ(x, ε). Therefore the orbital
feedback classification of families Σ of control-affine systems in the plane reduces to
the classification of families of systems ẋ = f1(x, v, ε) on the line under the invertible
transformations x̃ = φ(x, ε), ṽ = ψ(x, v, ε), ẽ = η(ε) and time rescaling dt = h(x, ε)dτ .
The above theorem can be reformulated as local classification of such systems.

Remark 3.2. For generic families Σ, the sets E = {(p, ε) : e(p, ε) = 0} and
C = {(p, ε) : c(p, ε) = 0} are submanifolds in X × I. Their singularities of contact
with the foliations {ε = const} and {ε = const, x = const} (in the notation of the
above theorem) are very simple. For more degenerated families this aspect of our
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Fig. 3.1. Bifurcation diagram out of equilibria.

Fig. 3.2. Bifurcation diagram at equilibria.

problem is nontrivial. In understanding general singularities of contact of the sets E
and C the results in [Go] and [Za] should be helpful.

To characterize the equivalence classes we encode our invariants (equivariants) in
a compact way by introducing the following notation. We define the code of the first
level of Σ at the point (p, ε0) to be equal to (χ0 χ1 · · · ), where χi = 0 if ci(p, ε0) = 0
and χi = 1 if ci(p, ε0) �= 0. We will need only sequences of finite length, namely, we
cut the sequence χi after 1 appears for the first time, for i ≥ 1 (further χi are not
invariant). Thus codes of the first level are of minimal length 2, of the form

(0 · · · 01) or (10 · · · 01).

Note that if a function ϕ : X → R vanishes at p, then the next invariant fact
about the ideal generated by ϕ is vanishing or not of dϕ at p. This will be encoded
by 00 (meaning ϕ(p) = 0, dϕ(p) = 0) and 01 (meaning ϕ(p) = 0, dϕ(p) �= 0). If ϕ
depends also on ε, we still mean the differential dϕ taken with respect to ξ ∈ X, only.
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We define the code of the second level of the family Σ, at a given point, as its
code of the first level with each zero in it having the subscript 0 or 1, depending on
whether the differential dci of the corresponding ci vanishes. Since for each 0 which is
followed by 1 in the code of the first level we have dci �= 0 (because Lgc

i = ci+1 does
not vanish), we should always place the subscript 1. This subscript will be omitted.
Thus, for example, instead of the code (101011) we write (10101) and this means that,
at the given point, e �= 0, Lgc = L2

gc = 0, L3
gc �= 0, and dc �= 0.

If ϕ : X → R and ϕ(p) = 0, dϕ(p) = 0, then the next invariant fact about the
ideal generated by ϕ is whether the Hessian hess (ϕ) has full rank at p. We write

001 if ϕ(p) = 0, dϕ(p) = 0, and det hess (ϕ)(p) �= 0,

000 if ϕ(p) = 0, dϕ(p) = 0, and det hess (ϕ)(p) = 0.

(The point p is replaced by (p, ε0), if ϕ depends on ε.)
The code of the third level of the system at a given point is defined as its code

of the second level, completed with the information about vanishing or not of the
determinant of the Hessian. We put the subscript 01 to any of the first two or three
functions in the sequence c0, c1, . . . , if it vanishes at the given point, its differential
also vanishes, and the determinant of the Hessian is nonzero. For example, the system
has the code (100101) if and only if, at the given point, e �= 0, c1 = c2 = 0, c3 �= 0,
dc1 = 0, and det hess (c) �= 0. The subscript 00 will not appear in our classification
since it describes singularities of higher codimension.

Finally, the complete code, or simply the code, is the code of appropriate level
completed with the information about linear independence of the differentials Dci

of the functions ci, which is marked by overlying the corresponding zeros. We add
this information only in the cases where it does not follow from the basic code. For
example, the code (10101) is complete because it follows from the code that dc1 �= 0,
Lgc

1 = 0, and Lgc
2 �= 0, which means that dc1 and dc2 are linearly independent and

thus so are Dc1 and Dc2. The complete code (010101) is equivalent to the conditions
c0 = e = 0, c1 = c = 0, c2 = 0, c3 �= 0, dc0 �= 0, dc1 �= 0 and to linear independence of
Dc0, Dc1, and Dc2. They are equivalent to the conditions stated in Proposition 2.5
(linear independence of Dc0, Dc1 is equivalent to linear independence of Dc0, Dc1,
and Dc2, since Lgc

0 = 0, Lgc
1 = 0, and Lgc

2 �= 0).
The complete code (1010101) means that, at the given point, e �= 0, c1 = c2 =

c3 = 0, c4 �= 0, dc1 �= 0, dc2 �= 0, and Dc1, Dc2, Dc3 are linearly independent. The
condition dc2 �= 0 here is not feedback invariant; therefore in the theorem we use a
modified version of this code (1010101)mod, which means that we replace the condition
dc2 �= 0 with the condition dc2mod = dc2− (c5/7c4)dc1 �= 0 (which is orbitally feedback
invariant; cf. Lemma 3.9). The set of conditions defined by (1010101)mod is equivalent
to the condition stated in Proposition 2.6.

We will show in section 3.3 that the following holds.
Proposition 3.4. (i) The conditions (G1)–(G6), as well as (G) and the condi-

tions defined by the codes listed in Theorem 3.3, are invariant under orbital feedback
equivalence. (ii) The conditions (G1)–(G5) are equivalent to the condition (G).

3.3. More about invariants. We will systematize the already introduced in-
variants and describe some new ones which appeared in the classification theorem.
We define them for the system Σ given by ξ̇ = f(ξ)+ug(ξ) and assume that g(p) �= 0.
(Analogous definitions are valid for the family ξ̇ = f(ξ, ε) + ug(ξ, ε), with p replaced
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by (p, ε0) and g(p, ε0) �= 0.) At nonequilibrium points it is convenient to replace the
system with the 1-form ω uniquely defined by the equations (cf., e.g., [Su1])

ω(g) ≡ 0, ω(f) ≡ 1.

Replacing f, g by an equivalent pair f̃ = hf + αg, g̃ = βg gives new ω̃ = h−1ω.
The multiplicity of Σ at p is defined by

μ(p) = min{k ≥ 0 : (Lk
gc)(p) �= 0}.

Here and below we use the functions e = det(f, g) and c = det([g, f ], g). By definition
μ(p) = ∞, if such k does not exist, and μ(p) = 0 if p �∈ C. At nonequilibrium points,
the multiplicity μ can be equivalently defined using the 1-form ω:

μ(p) = min{k ≥ 0 : ω(adk+1
g f)(p) �= 0}, p �∈ E.

If p ∈ C = {c = 0} and dc(p) �= 0, then, geometrically, multiplicity μ(p) is the order
of tangency (plus one) of the critical curve to the trajectory of g at p.

Recall the functions c0 = e, c1 = c, and generally ck = Lk−1
g c, for k ≥ 2. At any

p ∈ X we define two sequences of ideals of function germs at p generated by c1, . . . , ck

and, respectively, by c0, . . . , ck:

Ikp = Ip(c
1, . . . , ck), Jk

p = Ip(c
0, c1, . . . , ck).

At nonequilibrium points p �∈ E, we similarly define

c1 = ω([g, f ]), c2 = ω([g, [g, f ]]), ck = ω(adkgf)

and

Ik,p = Ip(c1, . . . , ck).

Proposition 3.5. The ideals Ikp , Jk
p , Ik,p and the multiplicity μ(p) are invariant

(more exactly, equivariant) under orbital feedback equivalence and Ikp = Ik,p, if p �∈ E.

Proposition 3.6. If p �∈ E and the multiplicity μ(p) = μ is odd, then the index

σμ+1(p) := sgn cμ+1(p) = sgn (e cμ+1)(p)

is well defined and invariant under orbital feedback equivalence.
We first prove the following useful lemma (we define I0

p = I0,p = {0} and c0 = 1).

Lemma 3.7. If f̃ = h f +α g and g̃ = β g, where Lgh = 0, then we have for k ≥ 1

c̃k = hβk+1ck mod Ik−1
p , c̃k = βkck mod Ik−1,p,

c̃k = hβk+1ck + mkhβ
kLgβ ck−1, mod c1, c2, . . . , ck−2,

c̃k = βkck + nkβ
k−1Lgβ ck−1, mod c1, c2, . . . , ck−2,

where m1 = 0, mk = mk−1 + k, and n1 = 0, nk = nk−1 + k − 1, k ≥ 2.
Proof. Recall that (formula (3.4)) replacing f and g by the orbitally equivalent

pair f̃ = h f + α g, g̃ = β g, gives c̃ = hβ2c, ẽ = hβ e, and ω̃ = h−1ω.
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We will use induction with respect to k. For k = 1 we have c̃1 = c̃ = hβ2c = hβ2c1.
Let the first relation hold for k − 1. Since c̃k = Lg̃ c̃

k−1 and c̃k−1 = hβkck−1 +∑
i≤k−2 ϕic

i (the induction assumption), we get from the Leibniz formula Lg(ϕψ) =

ψLg(ϕ) + ϕLgψ that Lg̃ c̃
k−1 = hβkLg̃c

k−1 = hβk+1ck mod Ik−1
p . This implies the

first formula. The third formula can be proved analogously.
The second and the fourth formulas follow from adg̃ f̃ = hβ adgf mod g and the

relation

adkg̃ f̃ = hβkadkgf + nkhβ
k−1Lgβ adk−1

g f mod g, adgf, . . . , adk−2
g f,

which can be easily proved by induction, for k ≥ 2, using the general property of Lie
bracket [ϕf, ψg] = ϕψ[f, g] + ϕ(Lfψ) g − ψ(Lgϕ) f and the property Lgh = 0.

Proof of Proposition 3.5. It is enough to show invariance when the state trans-
formation is φ = id. Then the equality of ideals Ikp = Ĩkp , Jk

p = J̃k
p , and Ik,p = Ĩk,p

follows, by induction with respect to k, from the lemma and nonvanishing of h and β.
Finally, the equality Ikp = Ik,p follows from equivariance of both ideals and the

fact that for the system in the prenormal form Σpre we have

ck =
∂kf1

∂yk
, ck =

1

f1

∂kf1

∂yk
.

(f1 does not vanish at p �∈ E.) Invariance of μ(p) is a consequence of Ikp = Ĩkp and

the fact that μ(p) is the minimal k such that Ikp contains functions nonvanishing at
p.

Proof of Proposition 3.6. Invariance of sgn ck(p) and of sgn (e ck)(p) in Proposition
3.6 follows from the lemma, the fact that the functions in Ik−1

p and Ik−1,p vanish at p,
if μ(p) = k, and from β(p) �= 0, h(p) > 0 (note that ẽ = hβe). The equality sgn ck(p) =
sgn (e ck)(p) follows from the formulas for ck and ck in the proof of Proposition 3.5,
for the system Σpre, and from e = f1.

We introduce new invariants. The signature indices of e and c is defined by

σe(p) = sgn (det hess (e)(p)) if p ∈ E, de(p) = 0,

σc(p) = sgn (det hess (c)(p)) if p ∈ C, dc(p) = 0.

The stability index is defined as

γ(p) = sgnλ(p) if p ∈ C ∩ E, de(p) �= 0,

where λ is the eigenvalue of the uncontrollable mode of the linear part of Σ, at p.
Moreover, the following discrete invariants can be defined at nonequilibrium

points of a given multiplicity (assuming, additionally, dc(p) �= 0 for δ(p)):

τ(p) = sgn (ω(ad2
gf))(p) = sgn (eLgc)(p) = σ2(p), μ(p) = 1,

δ(p) = −sgn (ω(ad2
fg)ω(ad3

gf))(p) = sgn (LfcL
2
gc)(p), μ(p) = 2,

κ(p) = sgn (ω(ad4
gf))(p) = sgn (eL3

gc)(p) = σ4(p), μ(p) = 3.

Proposition 3.8. All the indices τ , δ, κ, σe, σc, γ are well defined and are
invariants of orbital feedback equivalence.
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Proof. Invariance of τ and κ follows from Proposition 3.6.
To show invariance of δ we take f̃ = h f+α g and g̃ = β g. Then [f̃ , g̃] = hβ[f, g]+

ϕg and from our assumption Lgh = 0 we see that [f̃ , [f̃ , g̃]] = [hf+αg, hβ[f, g]+ϕg] =
h2β[f, [f, g]]+αβh[g, [f, g]]−hβ(L[f,g]h)f mod g, adfg. Since μ(p) = 2 and so p ∈ C,
the vectors g, [f, g], and [g, [f, g]] are linearly dependent at p and so L[f,g]h(p) = 0,
by Lgh = 0 and ω([f, g])(p) = 0. This means that the second term in the expression

for [f̃ , [f̃ , g̃]](p) vanishes at p. Thus ω̃(ad2
f̃
g̃)(p) = (hβω(ad2

fg))(p). From Lemma 3.7

we have ω̃(ad3
g̃ f̃)(p) = (β3ω(ad3

gf))(p), which means that the factor (hβ4)(p) appears
in the expression for δ, after the transformation. This factor is positive, and thus
the first formula for δ gives orbital feedback invariant. The invariance of the second
formula for δ follows analogously. Equality of both formulas is easy to see for the
system Σpre.

Invariance of σe and σc follows from det hess (ϕψ))(p) = ϕ2(p) det hess (ψ)(p),
which holds if ψ(p) = 0 and dψ(p) = 0.

Finally, invariance of γ is a consequence of independence of the eigenvalue λ of
the feedback transformations and of the positivity of h. The proof is complete.

For characterizing the last normal form in Theorem 3.3 and defining the invariant
θ appearing there we need the condition dc2 �= 0 which, however, is not feedback
invariant (by Lemma 3.7 we have c̃1 = hβ2c1, c̃2 = hβ3c2 + 2hβ2Lgβ c1, and dc̃2|p =
hβ3dc2|p+2hβ2Lgβ dc1|p, if c1(p) = c2(p) = 0). Thus, we introduce modified versions
of the functions c2 and c2:

c2mod = c2 − c5

7c4
c1, c2mod = c2 −

c5
10c4

c1.

They are defined at p if c4(p) �= 0 (equivalently, c4(p) �= 0) and e(p) �= 0, for c2mod.
Lemma 3.9. If μ(p) = 3 for Σ given by (f, g), and f̃ = hf+αg, g̃ = βg, Lgh = 0,

then

dc̃2mod|p = hβ3dc2mod|p, dc̃2mod|p = β2dc2mod|p.

Thus, with β(p) �= 0, the conditions dc2mod(p) �= 0 and dc2mod(p) �= 0 are invariant.
Proof. We prove only the first equality, using the third formula in Lemma 3.7.

(The proof of the second equality uses the fourth formula in Lemma 3.7 and is anal-
ogous.) Denote a = Lgβ/β. From μ(p) = 3 we have c1(p) = c2(p) = c3(p) = 0. Thus,
by Lemma 3.7,

c̃2 = hβ3(c2 + 2ac1),

c̃4|p = hβ5c4|p,
c̃5|p = hβ6(c5 + 14ac4)|p,

dc̃1|p = hβ2dc1|p,
dc̃2|p = hβ3(dc2 + 2adc1)|p.

Using also c̃1(p) = 0, we get

dc̃2mod|p = dc̃2|p −
c̃5

7c̃4
dc̃1|p = hβ3(dc2 + 2a dc1)|p − hβ3 c

5 + 14ac4

7c4
dc1|p,

thus dc̃2mod|p = hβ3(dc2 − (c5/7c4)dc1)|p = hβ3dc2mod|p, by c1(p) = 0.
If e(p) �= 0, then the condition dc2mod(p) �= 0 is equivalent to (Lfc

2
mod, Lgc

2
mod)|p �=

(0, 0). If, additionally, μ(p) = 3, then c3(p) = Lgc
2(p) = 0 and dc2mod(p) �= 0 is
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equivalent to Lfc
2
mod(p) �= 0. Similarly, dc2mod(p) �= 0 is equivalent to Lfc2mod(p) �=

0. The following definition is then correct if μ(p) = 3, e(p) �= 0, and dc2mod(p) �= 0:

θ(p) = sgn (Lfc2mod)(p) = sgn (eLfc
2
mod)(p).

Proposition 3.10. θ is invariant under orbital feedback equivalence.
Proof. With f̃ = h f + α g, g̃ = βg, we have ẽ = hβe and, by Lemma 3.9 and

dc2mod(g)|p = 0 (since c2(p) = c3(p) = 0), the expression ẽ Lf̃ c̃
2
mod|p = ẽ dc̃2mod(f̃)|p

is equal to h3β4e dc2mod(f)|p = h3β4eLfc
2
mod|p. Since h is positive, sgn (eLfc

2
mod)(p)

does not change. Similarly we check that sgn (Lfc2mod)(p) does not change. Equal-
ity of both expressions for θ(p) can be checked directly for the prenormal form
Σpre.

To prove Proposition 3.4, note that the ideals Ik, Jk introduced earlier are well
defined for the family Σ : ξ̇ = f(ξ, ε) + ug(ξ, ε) and consist of functions of (ξ, ε). We
denote by Ikp,ε0 and Jk

p,ε0 the corresponding ideals of function germs at (p, ε0). They

have the same invariant properties as Ikp and Jk
p .

Proof of Proposition 3.4. (i) To show invariance of conditions (G1), (G2), (G6)
we reformulate them in invariant terms, using the ideals Ikp,ε0 and Jk

p,ε0 , and use
Proposition 3.5. Denote by C∞

p,ε0 the ideal of all smooth function germs at (p, ε0).

From the definition of the ideals Ikp,ε0 and Jk
p,ε0 we easily see that these conditions are

equivalent to

(G1) J3
p,ε0 = C∞

p,ε0 , I4
p,ε0 = C∞

p,ε0 ,

(G2) J2
p,ε0 �= C∞

p,ε0 =⇒ dc0(p, ε0) �= 0, I3
p,ε0 �= C∞

p,ε0 =⇒ dc1(p, ε0) �= 0,

(G3) J2
p,ε0 �= C∞

p,ε0 =⇒ dc1(p, ε0) �= 0, I3
p,ε0 �= C∞

p,ε0 =⇒ dc2mod(p, ε0) �= 0,

and, thus, they are invariant. (In the last implication we use the invariance of the
condition dc2mod(p, ε0) �= 0, implied by Lemma 3.9.) Invariance of each of the condi-
tions (G3) and (G4) is a consequence of the fact that the ideals generated by ci, i = 0,
1, are invariant. Invariance of (G5) follows from the invariance of the ideals J2

p,ε0 and

I3
p,ε0 . Invariance of the ideal generated by ci and ci+1 implies invariance of (G).

Finally, invariance of the conditions defined by each of the codes listed in Theorem
3.3 is easy to show using Proposition 3.5 and Lemma 3.7. In the case of the code
(1010101)mod, the condition dc2mod(p, ε0) �= 0 is invariant by Lemma 3.9.

(ii) Throughout the proof all functions are assumed to be evaluated at (p, ε0). The
symbol ∗ stands for nonzero numbers. For a function h = h(x, y, ε) we will denote
its partial derivatives by hx, hy, hε. We assume Σ in the prenormal form Σpre, then
ci+1 = ciy, i ≥ 0.

(G1)–(G5) =⇒ (G). Assume that (G1)–(G5) hold but (G) does not hold, that is,
for i = 0 or 1,

(ci, ci+1, j, J(ci, ci+1, j)) = (0, 0, 0, 0), where j = j(ci, ci+1) = cixc
i+1
y − ciyc

i+1
x .

We have ci = 0, ciy = ci+1 = 0 and j = cix · ci+1
y = 0. In the subcase cix = 0, we

have dci = 0, jy = 0, jx = hess (ci), and then J(ci, ci+1, j) = ciε · ci+2 · hess (ci) = 0.
Thus either (G2) or (G3) or (G4) is violated. In the subcase ci+1

y = ci+2 = 0 we have

jy = cixc
i+2
y = cixc

i+3 and J(ci, ci+1, j) = −(cix · ci+1
ε − ci+1

x · ciε) · cix · ci+3 = 0. Thus
either (G1) or (G2) or (G5) is violated.
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(G) =⇒ (G1)–(G5). Note that if j(ci, ci+1) �= 0, then we have dci �= 0 �= dci+1

and (ci+1, ci+2) = (ciy, c
i+1
y ) �= (0, 0). Thus, if (G) holds for i = 0 or 1, with

(ci, ci+1, j(ci, ci+1)) �= (0, 0, 0), then it is easy to see that (G1)–(G5) hold for i. So we
can assume that, for i = 0 or 1,

(ci, ci+1, j(ci, ci+1), J(ci, ci+1, j(ci, ci+1))) = (0, 0, 0, ∗).

We have ciy = ci+1 = 0 and thus j(ci, ci+1) = cix · ci+1
y = 0. In the subcase cix = 0,

we have J(ci, ci+1, j(ci, ci+1)) = ciε · ci+1
y · hess (ci) �= 0, in particular, ci+1

y = ci+2 �=
0. It follows that (G1)–(G5) hold for i. In the subcase ci+1

y = ciyy = 0 we have

J(ci, ci+1, j(ci, ci+1)) = −(cix · ci+1
ε − ci+1

x · ciε) · cix · ci+2
y �= 0, in particular, ci+2

y =

ci+3 �= 0. It follows that (G1)–(G5) hold for i.

4. Main proofs. In this section we will prove our main results, Theorems 1.1 and
3.3. We will also prove Propositions 2.3, 2.4, 2.5, and 2.6. When proving these results
we will use the following corollary of the Mather theorem on universal unfoldings (cf.,
e.g., Theorem 14.8 in [BL] or Chapters IV and XI in [Ma]).

Theorem 4.1 (Mather theorem). Let ϕ = ϕ(z, w) be a C∞-function from a
neighborhood of (0, 0) ∈ R × Rp into R. Assume that k ≥ 2 and

∂iϕ

∂zi
(0, 0) = 0

for 1 ≤ i ≤ k − 1 and

∂kϕ

∂zk
(0, 0) �= 0.

Then there exists a local transformation z = ψ(z̄, w) invertible with respect to z̄, such
that

ϕ(ψ(z̄, w), w) = σz̄k +

k−2∑
i=0

ai(w)z̄i,

where σ = 1 if k is odd, σ = ±1 if k is even, and ai(0) = 0 for 1 ≤ i ≤ k − 2.
We consider points where g(p, ε) �= 0; thus we assume Σ in the prenormal form

Σpre : ẋ = f1(x, y, ε), ẏ = u.

The proof of the first part of Theorem 3.3 will be based on the following lemma.
Lemma 4.2. If Σ has finite multiplicity μ = k− 1 ≥ 1 at (0, 0) ∈ R2 × R, then it

is locally feedback equivalent to

Σε spe : ẋ = yk +

k−2∑
i=0

ai(x, ε)y
i, ẏ = u,

where ai(x, ε) are smooth functions and a1(0, 0) = · · · = ak−2(0, 0) = 0. Moreover,
the orbital feedback transformation Γε = (φ, ψ, η, h) of the form

x̃ = φ(x, ε), ỹ = ψ̄(x, ε)y, ε̃ = η(ε), h = h(x, ε)

satisfying h (∂φ/∂x)−1ψ̄k = 1, h(x, ε) > 0, transforms Σ̃ε̃ spe into Σε spe with

(TF) ai = h̄ ψ̄i ãi(φ, η), i = 0, . . . , k − 2,

where h̄ = h (∂φ/∂x)−1.
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Further normalization of the special normal form Σε spe in Lemma 4.2 to the
normal forms in Theorem 3.3 will be done case by case, using the transformation
formula (TF) in the lemma.

The proof of the second part of Theorem 3.3 follows from two lemmas.
Lemma 4.3. Any 1-parameter family Σ of systems which satisfies the conditions

(G1)–(G6) of Theorem 3.3 at a point (ξ, ε) has, at this point, one of the nine codes of
invariants listed in this theorem.

Lemma 4.4. Conditions (G1), (G2), . . . , (G6) are generic. More precisely, the
set of 1-parameter families of pairs (f, g) of vector fields satisfying the conditions
(G1)–(G6) in Theorem 3.3, at every point (ξ, ε) where g(ξ, ε) �= 0, is a countable
intersection of open and dense subsets in the C∞ Whitney topology of the space of
pairs (f, g) defined on X × I (in particular, it is dense).

Proof of Lemma 4.2. Finite multiplicity at (0, 0) implies that g(0, 0) �= 0. Thus, we
can bring Σ to the prenormal form ẋ = f1(x, y, ε), ẏ = u. The fact that multiplicity
is equal to μ = k − 1 is equivalent to

∂kf1

∂yk
(0, 0, 0) �= 0,

∂if1

∂yi
(0, 0, 0) = 0, i = 1, . . . , k − 1

(cf. section 3.3). Using Theorem 4.1 for the function ϕ = f1, with z = y, w =
(x, ε), we find an invertible with respect to ỹ transformation y = ψ(x, ỹ, e) which
brings the function f1 = f1(x, y, ε) into the polynomial form, with respect to ỹ. This
transformation applied to Σε pre gives Σ̃ε of the form ẋ = σỹk +

∑
0≤i≤k−2 aiỹ

i,
˙̃y = (∂ψ/∂y)−1u. Since ∂ψ/∂y does not vanish (by invertibility of ψ), we can define
new ũ = (∂ψ/∂y)−1u. If σ = −1, then we additionally change x �→ −x and obtain
the system equations in the form Σε spe.

Proof of Lemma 4.3. We fix a point of consideration (ξ, ε) = (p, ε0) (all equalities
will be meant at this point, only). Condition (G1) says that there cannot be more
then three consecutive zeros in a code (of the first level) at (p, ε0) of a family Σ which
satisfies condition (G1). Thus the codes of the first level are (11), (01), (101), (001),
(1001), (0001), and (10001). We will call the number of zeros in the code of the first
level “deficiency of the code.” Thus, (G1) admits codes of deficiency 0, 1, 2 and 3.
Below we determine the corresponding complete codes admitted by (G1)–(G6).

The possible codes of the second level are (11), (01), (101) (deficiency 0 or 1),
(0101), (0001), (10101), (10001) (deficiency 2), and the codes of deficiency 3: (010101),
(010001), (000101), (000001), (1010101), (1010001), (1000101), and (1000001). Note
that the codes of deficiency 0 and 1 are complete.

For the codes (0001) and (10001) of deficiency 2 we apply condition (G4), which
says that if ci and dci vanish, then we have det hess (ci) �= 0 This gives the codes
(00101), (100101) of level 3. Thus the codes of level 3, with deficiency 2, which are
admissible are (0101), (10101), (00101), and (100101). Condition (G3) implies that if

ci and dci vanish, we have ∂ci

∂ε �= 0. Thus, among codes of deficiency 2, the complete
admissible codes are (0101), (10101), (00101) and (100101) (by dci = 0 and ci+2 �= 0,

the conditions ∂ci

∂ε �= 0, and “Dci, Dci+1 linearly independent”, are equivalent).
Condition (G2) implies that if there are three zeros in the code of first level, i.e.,

(ci, ci+1, ci+2) = (0, 0, 0), then dci �= 0. Thus all the codes of deficiency 3 satisfying
condition (G2) have the subscript 1 at the first zero. Similarly, condition (G6) implies
that if (ci, ci+1, ci+2) = (0, 0, 0), then dci+1 �= 0 (dc2mod �= 0, if i = 1). Thus, among
all possible codes of the second level, of deficiency 3, only the codes (010101) and
(1010101)mod are admitted by conditions (G1), (G2), and (G6).
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Finally, condition (G5) says that for codes of deficiency 3, the Jacobian is nonzero.
Thus, the admissible complete codes of deficiency 3 are (010101) and (1010101)mod. In
this way we conclude that the codes characterized by conditions (G1)–(G6) are (11),
(01), (101), (0101), (10101), (00101), (100101), (010101), and (1010101)mod.

Proof of Lemma 4.4. We shall use the Thom transversality theorem (cf. [Hi,
Chapter 3, Theorem 2.8]). Consider the space JkΣ of k-jets of pairs of families of
vector fields (f, g) defined on X × I. Let S1, . . . , SN be a family of submanifolds in
JkΣ and codimSi > dim(X×I) = 3. Thom’s theorem says, in particular, that the set
of pairs (f, g) of families of vector fields, whose k-jet extensions do not intersect the
submanifolds S1, . . . , SN , is a countable intersection of open and dense subsets in the
space of C∞ pairs (f, g), with the C∞ Whitney topology. Thus, it is enough to show
that the set of k-jets of (f, g) which do not satisfy one of the conditions (G1)–(G6)
consists of a finite number of submanifolds of codimension not less then 4.

Proposition 3.4 says that each of the conditions (G1)–(G6) is orbitally feedback
invariant. Thus, it is enough to consider the 5-jets of (f, g) for the system in prenormal
form Σpre for which g = ∂/∂y, f = f1∂/∂x, and

ci =
∂if1

∂yi
.

Condition (G1) is not satisfied at some point if either f1 = 0, ∂f1/∂y = 0,
∂2f1/∂y

2 = 0, and ∂3f1/∂y
3 = 0, or ∂f1/∂y = 0, ∂2f1/∂y

2 = 0, ∂3f1/∂y
3 = 0, and

∂4f1/∂
4y = 0. Clearly, both conditions define submanifolds in J4Σ of codimension 4.

Condition (G2) is violated at some point if f1 = 0, ∂f1/∂y = 0, ∂2f1/∂y
2 = 0, and

∂f1/∂x = 0, or ∂f1/∂y = 0, ∂2f1/∂y
2 = 0, ∂3f1/∂y

3 = 0, and ∂2f1/∂x∂y = 0. Again,
both conditions define submanifolds in J4Σ of codimension 4. Similarly negation of
condition (G3) defines two submanifolds in J4Σ of codimension 4.

Negation of condition (G6) gives two submanifolds of codimension 4 in J5Σ:
f1 = 0, ∂f1/∂y = 0, ∂2f1/∂y

2 = 0, ∂2f1/∂y∂x = 0, and ∂f1/∂y = 0, ∂2f1/∂y
2 = 0,

∂3f1/∂y
3 = 0, ∂3f1/∂y

2∂x − (f
(5)
1 /7f

(4)
1 )∂2f1/∂y∂x = 0, f

(4)
1 �= 0, where f

(i)
1 is the

ith partial derivative of f1 with respect to y. (f
(4)
1 �= 0 is implied by (G1).)

Negation of condition (G4) means ci = 0, dci = 0, det hess (ci) = 0 (for each
i = 0, 1), where c0 = f1 and c1 = ∂f1/∂y. The corresponding set in J4Σ is, for each
i = 0, 1, the union of two submanifolds ci = 0, dci = 0, hess (ci) = 0 and ci = 0,
dci = 0, rank hess (ci) = 1, in the space of 2-jets of functions ci (and so in J4Σ).
The first submanifold is given by 6 independent equations, so it is of codimension 6,
and the second is given by 4 independent equations (it has codimension 4). Here we
use the fact that the set of symmetric 2 × 2 matrices of rank 1 is a codimension 1
submanifold in the space of all symmetric 2 × 2 matrices.

Similarly, the negation of condition (G5) defines the set ci = 0, ci+1 = 0, ci+2 = 0,
J(ci, ci+1, ci+2) = 0, for each i = 0, 1. Since, for the prenormal form, ci+1 = ∂ci/∂y
and ci+2 = ∂2ci/∂y2, it follows that the Jacobian matrix has two zero elements and
vanishing of the Jacobian is equivalent to one of the conditions ∂3ci/∂y3 = 0 (which
defines a submanifold S1 of codimension 4) or detA = 0, where A is the 2× 2 matrix
with entries (∂ci/∂x, ∂ci/∂ε) in the first row and (∂2ci/∂y∂x, ∂2ci/∂y∂ε) in the second
row. Again, the set of 2 × 2 matrices with determinant zero consists of matrices of
rank 1, which form a submanifold of codimension 1 in the set of all 2 × 2 matrices,
and of the zero matrix (submanifold of codimension 4). Altogether, this means that
negative of condition (G5) gives three submanifolds (for each i = (0, 1)) in J4Σ: S2

of codimensions 3 + 1 = 4 and S3 of codimension 3 + 4 = 7, and the third one S1, of
codimension 4, which was defined earlier. This completes the proof.
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Proof of Theorem 3.3. From Lemma 4.4 it follows that the class of systems Σ
characterized by the conditions (G1)–(G6), satisfied at every (p, ε), where g(p, ε) �= 0,
is generic. Lemma 4.3 implies that, at every such (p, ε), the system satisfying (G1)–
(G6) fulfils exactly one of the conditions defined by the codes listed in the first part
of the theorem. It is easy to check that for any of the nine normal forms listed in the
theorem the corresponding conditions defined by the codes are satisfied. Moreover,
they are invariant under orbital feedback equivalence (Proposition 3.4). Thus the
conditions defined by the codes are necessary for equivalence of Σ to a given canonical
form.

In the remaining part of the proof we will show their sufficiency. We will call Σ
generic if it satisfies (G1)–(G6). Consider a generic Σ around (p, ε0). Without loosing
generality we can choose (p, ε0) = (0, 0). Since in each code (of the first level) in
Theorem 3.3 we have at most three 0, followed by 1, in each case the multiplicity μ is
finite and equal to 0, 1, 2, or 3. We shall proceed in order of increasing multiplicity.

μ = 0. This appears in the codes (11) and (01). We first bring the system to
the prenormal form ẋ = f1(x, y, ε), ẏ = u. For both codes (11) and (01), the 1 at
the second place means that c(0, 0) = ∂f1/∂y(0, 0, 0) �= 0. Thus we can choose the
new coordinate ỹ = f1(x, y, ε) − f1(0, 0, 0) and applying a feedback transformation
u → ũ = ψ(x, y, u) we bring the system to the form ẋ = y + a, ẏ = u, where
a = f1(0, 0, 0) = e(0, 0, 0). In the case of the code (01) we have a = e(0, 0, 0) = 0,
that is, we get the canonical form (E). In the case (11) we have a �= 0. Changing x,
y for x/a and y/a gives the system equation ẋ = y + 1, i.e., the canonical form (O).

When the multiplicity is μ = 1, 2, or 3 we can apply Lemma 4.2 and bring Σ
to the special normal form Σε spe. Its further simplification will be done case by case
using the transformation formula (TF) in Lemma 4.2. We will write only the first
equation of the system, the second being always ẏ = u, after a suitable feedback
modification.

μ = 1. We have μ = 1 in the codes (101), (0101), (00101). The special normal
form in Lemma 4.2 is

ẋ = y2 + a0(x, ε).

In the case of the code (101) we have e nonvanishing and so a0(0, 0) �= 0. We can
choose the new coordinate x̃ = φ(x, ε) =

∫ x

0
1/a0(s, ε)ds, then a0 becomes 1, i.e., the

first system equation becomes ˙̃x = y2/a0(x, ε) + 1. Choosing τ = sgn a0(0, 0) and
ỹ = y

√
τ/a0(x, ε) we bring the system to the canonical form (C): ẋ = τy2 + 1.

In the case (0101) we have a0(0, 0) = 0 and ∂a0/∂x(0, 0) �= 0. Thus, we can
choose as the new coordinate x̃ = φ(x, ε) = a0(x, ε) and change the time scale by h =
±(∂φ/∂x)−1, with h positive. Then the first system equation becomes ẋ = ±y2 ± x.
Changing possibly x for −x we get the canonical form (EC): ẋ = y2 ± x.

The code (00101) implies a0(0, 0) = 0, da0(0, 0) = 0, and ∂2a0/∂x
2(0, 0) �= 0.

Applying, e.g., Theorem 4.1, we see that we can change the coordinate x for x̃ = φ(x, ε)
so that, taking also h = ±(∂φ/∂x)−1, we get the new coefficient a0 in the form a0 =
±x2 + k(ε), where k is a smooth function. Changing, if necessary, x for −x and k(ε)
for −k(ε) we bring the system to the form ẋ = ±y2 + x2 + k(ε). Linear independence
of De and Dc, implied by the code (00101), gives (∂k/∂ε)(0) �= 0 and thus replacing
k(ε) with ε brings the system to the canonical form (Ebif ): ẋ = ±y2 + x2 + ε.

μ = 2. This concerns the codes (10101), (100101), and (010101). We will treat
the first two cases together. They have the code of the first level (1001) so, in the
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special normal form Σε spe in Lemma 4.2, we have the first system equation

ẋ = y3 + a1(x, ε)y + a0(x, ε)

and a := e(0, 0, 0) = a0(0, 0) �= 0. We change the time scale by h = a−1
0 sgn a to

get the new a0 = ±1 and then change y for ỹ = y h1/3. We obtain the first system
equation ẋ = y3 + a1(x, ε)y ± 1 (with a1 changed). It remains to normalize a1.

In the case (10101) we have dc(0, 0, 0) �= 0, so ∂a1/∂x(0, 0) �= 0. This allows us to
introduce the new coordinate x̃ = a1(x, ε). Changing simultaneously the time scale
with the positive valued function h = ±(∂a1/∂x)−1 we get the system ẋ = ±y3±xy±1.
Changing possibly x for −x we get the last term a0 = 1. Finally, replacing if necessary
y by −y, we obtain a1 = x and the desired canonical form (CG): ẋ = ±y3 + xy + 1.

In the case of the code (100101) we have dc(0, 0, 0) = 0 and det hess (c) �= 0. Since
in this case c = 3y2 + a1(x, ε), we have ∂a1/∂x(0, 0) = 0 and ∂2a1/∂x

2(0, 0) �= 0.
Applying, e.g., Theorem 4.1 we see that we can change the coordinate x for x̃ =
φ(x, ε) so that the function a1 becomes a1 = x2 + k(ε). Changing simultaneously
the time scale with the function h = ±(∂φ/∂x)−1 we bring the system to the form
ẋ = ±y3± (x2±k(ε))y±1. Linear independence of Dc1 and Dc2, implied by the code
(100101), gives ∂k/∂ε(0) �= 0. Thus, we can replace ±k(ε) with new ε, which gives
ẋ = ±y3 ± (x2 − ε)y± 1. Finally, changing possibly x for −x, and y for −y brings the
system to the canonical form (Cbif ): ẋ = ±y3 + (x2 − ε)y + 1.

The last two cases, with the codes (010101) (where μ = 2) and (1010101)mod

(where μ = 3), are more complicated and will be treated together.
The difficulty in reaching the canonical form is reduced to the following lemma

(whose proof is given below after completing the proof of Theorem 3.3) on equivalence
of ratios of smooth 1-parameter families of functions. For ϕ = ϕ(x, y) denote ϕ′

x =
∂ϕ/∂x and ∇ϕ = (∂ϕ/∂x, ∂ϕ/∂y).

Lemma 4.5. Let A(x, y) and B(x, y) be families of smooth functions defined
for (x, y) in a neighborhood of (0, 0) ∈ R2 and assume that (i) A′

x(0, 0) �= 0 and
B′

x(0, 0) �= 0; (ii) ∇A(0, 0) and ∇B(0, 0) are linearly independent. Then there is
a smooth, local, invertible transformation (x̃, ỹ) = χ(x, y) of the form x̃ = φ(x, y),
ỹ = η(y), with χ(0, 0) = (0, 0), such that

A3

B2
◦ χ(x, y) =

(x− y)3

x2
.

We continue the proof of Theorem 3.3. Consider a family Σ with one of the codes
(010101) and (1010101)mod. We transform the system to the special normal form
Σε spe in Lemma 4.2, where k = 3 and k = 4, respectively. Then, bringing the system
to the corresponding canonical form will be done in two steps.

Step 1. We transform x and ε so that the new coefficients of the systems

ẋ = y3 + Ay + B, ẏ = u, and

ẋ = y4 + Ay2 + By + a0, ẏ = u,

satisfy the condition

A3B−2 = (x− ε)3x−2,

where A, B, and a0 are functions of (x, ε). This is possible by Lemma 4.5 (where ε is
changed for y). Indeed, it follows from the conditions defined by the codes (010101)
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and (1010101)mod that the functions A(x, ε) and B(x, ε) satisfy the assumptions of
the lemma, with y replaced by ε. Applying the transformation χ of the lemma and
an appropriate change of the time scale we obtain again the systems in the special
normal forms above, with the new coefficients A = (x − ε)Ā and B = xB̄ satisfying
the condition A3B−2 = (x − ε)3x−2, i.e., Ā3B̄−2 = 1. (Ā and B̄ are nonvanishing
functions of (x, ε).)

Step 2. In the first case we define the orbital transformation

x = x̃, y = B̄1/3ỹ, ε = ε̃, h = ±B̄−1

and check easily that under the condition Ā3B̄−2 = 1, implying Ā = B̄2/3, the system
in the special form is transformed to ẋ = ±(y3 + (x− ε)y + x). Changing, possibly, y
for −y we finally come to the desired canonical form (EGbif ): ẋ = y3 + (x− ε)y ± x.

In the second case the condition Ā3B̄−2 = 1, which gives Ā = B̄2/3, implies that
the orbital transformation x = x̃, y = B̄1/3ỹ, ε = ε̃, h = B̄−4/3 brings the system in
the special form to the last canonical form (CGbif ): ẋ = y4 + (x− ε)y2 +xy+ a(x, ε).
The proof of Theorem 3.3 is complete.

Proof of Lemma 4.5. We will reduce the problem to a special case and apply the
homotopy method. By (i) we can choose new coordinate x̃ = B(x, y) and then assume
that B = x. The equation A(x, y) = 0 has a locally unique solution x = k(y), by
the implicit function theorem (use condition (i)). Moreover, we can write A(x, y) =
(x − k(y))Ā(x, y), where Ā(0, 0) �= 0. From condition (ii) and B = x it follows that
k′(0) �= 0, so we can take ỹ = k(y) as new coordinate. Then

A3

B2
= gb, where g =

(x− y)3

x2
= (x− y)

(
1 − y

x

)2

and b(x, y) = Ā3(x, y), b(0, 0) > 0. (We can assume that Ā(0, 0) > 0 since, in the
contrary, we can change x = B �→ −x = −B, and y �→ −y.)

We include the functions g and g b into the family

F (x, y, t) = g(x, y) a(x, y, t),

where t ∈ [0, 1] and

a(x, y, t) = 1 + t(b(x, y) − 1).

Since b(0, 0) > 0, we have a(0, 0, t) > 0 for t ∈ [0, 1]. We will find a vector field of the
form

Y =
∂

∂t
+ u(y, t)

∂

∂y
+ v(x, y, t)

∂

∂x

such that u(0, t) = 0, v(0, 0, t) = 0, and LY F = 0. (LY F denotes the directional
derivative of F along Y .) This will mean that F is constant on the trajectories of Y .
In particular, if ψt(x, y, 0) is the trajectory of Y after time t, starting from (x, y, 0),
then

F (ψt(x, y, 0)) = F (ψ0(x, y, 0)) = F (x, y, 0).

(The trajectory from (0, 0, 0) is well defined for t ∈ [0, 1], since u(0, t) = v(0, 0, t) = 0;
thus it is also defined for such t from (x, y, 0), for (x, y) small.) It follows from the
definition of the function F that F (x, y, 0) = g(x, y) and F (x, y, 1) = g(x, y) b(x, y).
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Thus, taking in the above equality t = 1 we get the assertion of the proposition with
χ defined by

ψ1(x, y, 0) = (χ(x, y), 1).

It remains to solve the equation LY F = 0. It takes the form

(LF) gb + u(g′ya + ga′y) + v(g′xa + ga′x) = 0

with u = u(y, t) and v = v(x, y, t) unknown. Given that g = (x − y)(1 − y/x)2 we
compute

g′y = −3
(
1 − y

x

)2

, g′x =
(
1 − y

x

)2 (
1 + 2

y

x

)
,

which allows us to divide (LF) over (1 − y/x)2. We get the equivalent equation

(x− y)b + u(3a + (x− y)a′y) + v(a + 2ay/x + (x− y)a′x) = 0.

Since a(0, 0, t) > 0, the coefficient C = −3a + (x − y)a′y at u is invertible in a
neighborhood of (0, 0, t), t ∈ [0, 1]. Dividing the equation over C and replacing b by
b̃ = b/C and v by ṽ = v/(xC) we get the simpler equation

(x− y)b̃ + u + ṽ(xa + 2ya + x(x− y)a′x) = 0.

We note that the coefficient E = xa + 2ya + x(x − y)a′x at ṽ has the property
∂E/∂x(0, 0, t) = a(0, 0, t) > 0. We can thus use it as a local coordinate and introduce
the local coordinates (x̃, y, t) in a neighborhood of the segment (0, 0, t), t ∈ [0, 1],
where x̃ = E(x, y, t). Note that if y = 0, then x̃ = E = 0 if and only if x = 0. The
function (x− y)b̃(x, y, t) =: c(x̃, y, t) can be decomposed into

c(x̃, y, t) = c0(y, t) + x̃c1(x̃, y, t) with c0(0, t) = 0.

(The latter equality follows from the former by putting x̃ = y = 0.) Then our equation
becomes

c0(y, t) + x̃c1(x̃, y, t) + u(y, t) + ṽ(x̃, y, t)x̃ = 0

and it has a solution u(y, t) = −c0(y, t), ṽ(x̃, y, t) = −c1(x̃, y, t). This solution satisfies

u(0, t) = −c0(0, t) = 0, v(0, 0, t) = 0.

(We recall that v = ṽxC and, if y = 0, then x̃ = 0 if and only if x = 0.)
In this way we have constructed the vector field Y satisfying LY F = 0, and the
above conditions guarantee that the trajectory starting from (x, y, t) = (0, 0, 0)
satisfies ψt(0, 0, 0) = (0, 0, t), in particular ψ1(0, 0, 0) = (χ(0, 0), 1) = (0, 0, 1), as
required.

Proof of Theorem 1.1 and Propositions 2.3, 2.4, 2.5, and 2.6. Theorem 1.1 follows
from Propositions 2.3, 2.4, 2.5, and 2.6, thus we only prove the propositions. They
are rather straightforward consequences of Theorem 3.3.

Consider a generic family Σ. By Lemma 4.4 we can assume that genericity means
that Σ satisfies the conditions (G1)–(G6) of Theorem 3.3. Lemma 4.3 implies that Σ
has one of the codes in Theorem 3.3, at a given point (p, ε0). By Theorem 3.3, the
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family Σ is locally orbitally feedback equivalent to one of the normal forms: (O), (E),
(C), (EC), (CG), (Ebif ), (Cbif ), (EGbif ), or (CGbif ).

Observe that the normal forms (O), (E), (C), (EC), and (CG) do not depend on
the parameter ε so neither do the equivariants Iε = (Eε, Cε,Gε). Thus, if the family
Σ is equivalent at (p, ε0) to one of those forms, it does not bifurcate at (p, ε0).

It is straightforward to check that for the remaining four normal forms (Ebif ),
(Cbif ), (EGbif ), and (CGbif ) the invariant condition expressed in the corresponding
code in Theorem 3.3 is equivalent to the condition given in the respective Proposition
2.3, 2.4, 2.5, or 2.6. Thus, it is enough to analyze the invariants Iε = (Eε, Cε,Gε), for
each of the four normal forms, and show two facts: (i) the invariants are of the form
stated in the propositions; (ii) they undergo the corresponding bifurcation described
in the proposition. Statement (ii) was proved in the description of bifurcations given
after the statements of the propositions. Thus we only check statement (i).

Clearly, for all of the normal forms (Ebif ), (Cbif ), (EGbif ), and (CGbif ) we have
Gε = {x = const}. Moreover, for the first one

(Ebif ) ẋ = σey
2 + x2 − ε, ẏ = v,

with σe = ±1, the equilibrium and critical sets are given by

Eε = {x2 + σey
2 = ε}, Cε = {y = 0},

respectively. This together with the description of the corresponding bifurcations of
Eε in section 2.1 proves Proposition 2.3.

In the normal form

(Cbif ) ẋ = σcy
3 + (x2 − ε)y + 1, ẏ = v

(where σc = ±1), the equilibrium set of Eε is empty in a neighborhood of (0, 0) and
the critical set is given (after replacing y by 3−1/2y) by Cε = {x2 + σcy

2 = ε}. Thus
this family has one of C-bifurcations (section 2.2). This proves Proposition 2.4.

In the case of normal form

(EGbif ) ẋ = y3 + (x− ε)y + γx, ẏ = v,

at (0, 0) (where γ = ±1) the equilibrium set Eε and the critical set Cε are given by

Eε = {y3 + (x− ε)y + γx = 0} and Cε = {3y2 + x− ε = 0}.

Replacing y for γy we get the same equation for Cε and Eε = {y3 +(x− ε)y+x = 0}.
Thus, the family (EGbif ) has an EG-bifurcation at (0, 0), as shown in section 2.3.

In the normal form

(CGbif ) ẋ = y4 + (θx− ε)y2 + xy + a(x, ε), ẏ = v,

the equilibrium set Eε is empty and the critical set is Cε = {4y3 +2(θx−ε)y+x = 0}.
Replacing x, y, and ε by θx/2, θy/2, and ε/2 we get Cε = {y3 + (x − ε)y + x = 0}.
This shows Proposition 2.6. The proof is complete.
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Abstract. Markov-modulated models for equity prices have recently been extensively studied in
the literature. In this paper, we apply some old results on the Wiener–Hopf factorization of Markov
processes to a range of option-pricing problems for such models. The first example is the perpetual
American put, where the exact (numerical) solution is obtained without discretizing any PDE. We
then show how the methodology of Rogers and Stapleton [Finance Stoch., 2 (1997), pp. 3–17] can be
used to tackle finite-horizon problems and illustrate the methodology by pricing European, American,
single barrier, and double barrier options under Markov-modulated dynamics.
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1. Introduction. Though outstandingly successful as a leading-order model for
an asset price, the familiar log-Brownian paradigm fails in various ways, such as the
fact that implied volatility is not constant. Among the many attempted variations
and extensions, one of the most natural is to allow the dynamics of the underlying
process to be a log-Brownian motion whose volatility and rate of return are stochastic
in some way. Allowing the volatility to be stochastic is the central theme of the
extensive literature on stochastic volatility modeling, of which [24, 15, 13, 2, 14] make
up a small sample. Allowing the rate of return to be stochastic is of relevance to
portfolio optimization, but not to asset pricing,1 and the literature on risk-sensitive
optimal control develops this theme in various ways; see, for example [5, 6, 3, 20].

Perhaps the simplest way to introduce additional randomness into the standard
log-Brownian model is to let the volatility and rate of return be functions of a finite-
state Markov chain; we can imagine that such a model might describe regime-switching
behavior of some kind, perhaps related to the business cycle, or other economic in-
dicators. The terms regime-switching and Markov-modulated dynamics are used to
describe such models, and there are already interesting contributions here, such as ap-
plications to option pricing [12, 11, 10, 9, 8, 4, 26], portfolio optimization [27, 25], and
optimal trading strategies [28]. In applications, it is likely that the number of states
of the Markov chain will be small (otherwise estimation becomes a problem), and it is
then natural to think of such a model as “nearly” a log-Brownian motion, with occa-
sional parameter shifts. Some explicit solutions can be found for a two-state Markov
chain, but as the problems get harder we are soon led into PDE-related numerical
methods (smoothed approximation of boundary conditions [26], two-point bound-
ary value problems [28], discretization of associated dynamic programming equations
[12]). The coupled PDEs which arise in these models will rarely be soluble in closed
form, though finite-difference methods are still quite competitive.

∗Received by the editors January 25, 2005; accepted for publication (in revised form) June 22,
2005; published electronically January 6, 2006.
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1Of course, for asset pricing we change measure so that the rate of return becomes the riskless

rate.
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This paper approaches such models from a different direction: by viewing the
Markov-modulated asset as nearly a Markov chain. This approach relies on some old
work on Wiener–Hopf factorization of Markov processes (and in particular, Markov
chains) dating back to the paper of Barlow, Rogers, and Williams [1] from 1980; the
focus is on level-crossings of the asset price process. We find a quite different toolkit
applies in this approach, namely, linear algebra; this leads to numerical schemes that
are very efficient and quite able to handle moderate-sized problems, which we will
illustrate by pricing a perpetual American put2 on such an asset. Let us emphasize
immediately a key difference between the present approach and the traditional PDE
approach: here we shall be obtaining (numerically) exact solutions to the problem, not
just approximations. There is no need to solve any dynamic programming equation
or discretize any PDE.

Next, we move to a pricing framework with finite time horizon and Markov
regimes. The approach here extends the methodology developed by Rogers and Sta-
pleton [22] for the standard log-Brownian model and is illustrated by pricing the
European call, the American put, and finally double barrier options.

2. General setup and noisy Wiener–Hopf factorization. The stock price
is modeled as

dSt = St[σ(ξt)dWt + r(ξt)dt],(1)

where Wt is a standard Brownian motion, r denotes as usual the risk-free interest
rate, σ denotes the Markov-modulated volatility of the stock, and ξ is an irreducible
Markov chain with values in the finite set I, |I| = d. Notice that the riskless rate may
vary with the underlying Markov chain. The log price Xt = log(St) then satisfies

dXt = σ(ξt)dWt +

[
r(ξt) −

1

2
σ(ξt)

2

]
dt,(2)

which can be rewritten as, say,

dXt = σ(ξt)dWt + v(ξt)dt.(3)

The idea of the Wiener–Hopf factorization approach is to study the crossings back
and forth over levels of X. To help in this, define for t ≥ 03

τ±t ≡ inf{u : ±Xu > t}.(4)

We aim to characterize the distribution of the times τ±t and the law of the chain at

these times, and to do this we will seek martingales Mf
t of the following form:

Mf
t = exp

(
−
∫ t

0

r(ξu)du

)
f(ξt, Xt)(5)

for some function f . Itô’s formula gives, up to a local martingale part,

dMf
t

.
= exp

(
−
∫ t

0

r(ξu)du

)[
(Q−R)f +

1

2
ΣfXX + V fX

]
dt,(6)

2This problem was solved for a two-state chain by Guo and Zhang [12].
3With the usual convention that inf(∅) = ∞.
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where R is the diagonal matrix whose ith diagonal element is equal to r(i), Σ is the
diagonal matrix whose ith diagonal element is equal to σ(i)2, and V = R − 1

2Σ. We
therefore require

(Q−R)f +
1

2
ΣfXX + V fX = 0.(7)

Seeking separable f of the form f(ξt, Xt) = g(ξt) exp(−λXt) gives rise to the following
equation to be solved in λ and g:

(Q−R)g +
1

2
λ2Σg − λV g = 0,(8)

Now this is just the “quadratic eigenvalue” problem considered by Kennedy and
Williams [17], which can be reduced to a standard eigenvalue problem as follows.
Premultiplying the above equation by 2Σ−1 gives

2Σ−1(Q−R)g + λ2g − 2λΣ−1V g = 0.(9)

This can be reformulated as a system of equations{
λg = h,
λh = 2Σ−1V h− 2Σ−1(Q−R)g,

(10)

which can be rewritten as the following (standard) eigenvalue problem:

A

(
g
h

)
≡

(
0 I

−2Σ−1(Q−R) 2Σ−1R− I

) (
g
h

)
= λ

(
g
h

)
.(11)

If (g, λ) solve (11), then

Mf
t = exp

(
−
∫ t

0

r(ξu)du− λXt

)
g(ξt)(12)

is a martingale. The argument given in [1] serves to show that there are exactly d
eigenvalues of A in the left open half plane, and d in the right open half plane, a fact
that will be needed later.

3. Markov-modulated perpetual American put. Our goal in this section
is to compute the value

v(j, x) ≡ sup
τ

E

[
exp

(
−
∫ τ

0

r(ξs)ds

)
(K − eXτ )+ | ξ0 = j,X0 = x

]
(13)

of the perpetual American put with Markov-modulated dynamics. The special case of
the problem where there is no Markov modulation (that is, |I| = 1) is well known:4 the
optimal rule is to wait until the price of the asset falls below some critical boundary
value L∗, and then immediately exercise. Standard first passage time calculations
for Brownian motion lead to the following closed-form expression for the perpetual
American put:

v(x) =

{
K − exp(x) if x ≤ log(L∗),
(K − L∗)(L∗)γ exp(−γx) if x > log(L∗),

(14)

where γ = 2r/σ2, L∗ = γK/(γ + 1).

4See the original solution of McKean [19] and Karatzas [16] for a discussion in a more general
setting.



2066 A. JOBERT AND L. C. G. ROGERS

When |I| > 1, the optimal rule is to exercise when the price of the asset falls below
some critical level, which depends on the current state of the modulating Markov chain
ξ. This intuitively obvious form of the solution follows immediately from the next
simple result.

Proposition 1. If ϕ(x) ≡ (K − ex)+, then for each j ∈ I the function

x �→ v(j, x) − ϕ(x)

is nondecreasing in (0, log(K)).
Proof. Pick 0 < x < x + δ < log(K) and let τ∗ denote the optimal stopping

time to be used if X0 = x. We consider instead what would happen if we were to use
the stopping rule τ∗ but with initial log-price x + δ. Using the elementary inequality
(a− b)+ ≥ a+ − b+, we get5

v(j, x + δ) ≡ sup
τ

E[e−R(τ)ϕ(Xτ )| ξ0 = j,X0 = x + δ]

≥ E[e−R(τ∗)ϕ(Xτ∗)| ξ0 = j,X0 = x + δ]

= E[e−R(τ∗)ϕ(Xτ∗ + δ)| ξ0 = j,X0 = x]

= E[e−R(τ∗)(K − eX(τ∗)+δ)+| ξ0 = j,X0 = x]

= E[e−R(τ∗)(K − eX(τ∗) − (eδ − 1)eX(τ∗))+| ξ0 = j,X0 = x]

≥ E[e−R(τ∗)
{

(K − eX(τ∗))+ − (eδ − 1)eX(τ∗)
}
| ξ0 = j,X0 = x]

= v(j, x) − (eδ − 1)E[e−R(τ∗)eX(τ∗)| ξ0 = j,X0 = x]

≥ v(j, x) − (eδ − 1)ex

= v(j, x) − ϕ(x) + ϕ(x + δ),

using the fact that e−R(t)+X(t) is a martingale, and therefore a supermartingale.
Immediately from Proposition 1, the optimal stopping time is of the form

τ = inf{t : Xt < b(ξt)},(15)

where the constants (bi)i∈I must be found.
This problem was solved by Guo and Zhang [12] in the simple case of two states,

where a closed-form expression can be derived for the price. Note that −1 is always
an eigenvalue of A, which is a key observation that makes the two-state problem
tractable. However, the current methodology will work for any number of states.
The time-0 value of the stopping rule (15) defined by the levels (bi)i∈I is

v(j, x) = E

[
exp

(
−
∫ τ

0

r(ξt)dt

)
(K − exp(b(ξτ )))

+|S0 = exp(x); ξ0 = j

]
(16)

There are thus two problems:
(1) Given some thresholds bi, derive the value function;
(2) find the optimal bi.
Problem 1. Let us suppose given (bi)i∈I , where without loss of generality6 b1 >

b2 > · · · > bd; our goal is to compute the value function associated with this set of
threshold levels.

5We use the abbreviation R(t) ≡
∫ t
0 r(ξs)ds.

6This assumption amounts to an inessential relabeling of the states and is merely for convenient
discussion. When it comes in practice to identifying the thresholds, no assumption is made on the
ordering, and all possible orderings are considered. We show in Proposition 2 that there is a unique
solution for the thresholds, whose ordering is determined by the parameters of the problem.
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Let us start with x in the interval [b1,∞). Here, the value function is larger
than the payoff function whatever the initial state. Recall that we are looking for a
martingale Mf

t of the form of (5) for some function f which satisfies (7) and which
will be represented as a weighted sum

f(ξ, x) = Σd
i=1wigi(ξ) exp(−λix),(17)

where for each i, (λi, gi) satisfies (8), with λi > 0. We restrict our attention to the d
eigenvalues with positive real part because this means that the martingale

Mt ≡ exp

(
−
∫ t

0

r(ξu)du

)∑
i

wigi(ξt) exp(−λiXt)

is bounded on [0, τ1], where τ1 ≡ inf{t : Xt < b1}. Therefore we may apply the
optional sampling theorem to obtain

E

[
exp

(
−
∫ τ1

0

r(ξu)du

)∑
i

wigi(ξτ1) exp(−λiXτ1)

∣∣∣∣ X0 = x, ξ0 = j

]
=

∑
i

wigi(j) exp(−λix).(18)

This is the expression for the value function over the interval [b1,∞). In particular,
for j = 1, this completes the determination of the time-0 price when the underlying
chain is initially in state 1, provided we impose

(K − exp(b1))
+ =

∑
i

wigi(1) exp(−λib1).(19)

This gives us a first equation satisfied by the d unknown weights w, and

v(1, x) =

{
K − exp(x) if x ≤ b1,∑

i wigi(1) exp(−λix) if x ≥ b1,
(20)

where w still needs to be determined. Continuity at b1 in (19) restricts w to a (d−1)-
dimensional subspace; to go further, we must look at the next interval I2 = [b2, b1]
and match values and slopes of V across b1.

When x ∈ I2, ξ can jump to state 1, causing exercise to happen. So we now
need to modify slightly the Wiener–Hopf argument and the equation for f . Let Σ̃,
R̃, Ṽ be the diagonal matrices defined in the following way: for every i = 2, . . . , d,
Σ̃(i, i) = σ(i)2, R̃(i, i) = r(i) and Ṽ = R̃− 1

2 Σ̃. Let Q̃ be the submatrix derived from
Q by removing its first row and first column.

We still seek a martingale Mf
t of the form of (5) for some function f , which now

satisfies the following modified equation:

(Q̃− R̃)f +
1

2
Σ̃fXX + Ṽ fX + K̃ = 0,(21)

where K̃ is defined so that it accounts for jumps to the payoff function in state 1:
K̃ = q̃(K−exp(x)), where q̃ denotes a (d−1)-dimensional vector, such that q̃(i) = qi1
for every i = 2, . . . , d. The value function over the interval [b2, b1] is characterized by
(21).
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A particular solution to (21) is easily obtained and is of the form B +C exp(x). The
homogeneous equation

(Q̃− R̃)f +
1

2
Σ̃fXX + Ṽ fX = 0(22)

is structurally similar to (7) and is solved similarly. Let λ̃i and g̃i denote the 2(d− 1)
corresponding eigenvalues and eigenvectors for this new problem. For any scalars w̃i,

exp

(
−
∫ t

0

r(ξu)du

)(
Σ

2(d−1)
i=1 w̃i exp(−λ̃iXt)g̃i(ξt) + B + C exp(Xt)

)
(23)

is a martingale, at least if we stop at first exit from I2, and is bounded up to that time.
Provided that we ensure that v(j, ·) joins in a C1 fashion across b1, for j = 2, . . . , d,
we therefore have for any x ∈ I2, and any j = 2 . . . d,

Ex,j

[
exp

(
−
∫ τ2

0

r(ξu)du

)(∑
i

w̃ig̃i(ξτ2) exp(−λ̃iXτ2) + Bj + Cj exp(Xτ2)

)](24)

=
∑
i

w̃ig̃i(j) exp(−λ̃ix) + Bj + Cj exp(x),

where τ2 = min{t : Xt ≤ b2}, and Ex,j denotes the usual expectation conditional
upon X0 = x, ξ0 = j . This is the expression for the value function in the interval
I2; in particular, for j = 2, this completes the determination of the time-0 price when
the underlying chain is initially in state 2, provided we impose continuity at b2.

Notice that at the end of the first step, we were left with d−1 degrees of freedom.
Once we have solved the problem over the interval [b2, b1], matching the values and
the slopes of v(j, ·), j = 2, . . . , d across b1, we have 2 × (d− 1) new linear equations,
for the 2(d − 1) new unknowns w̃i. Continuity across b2 of v(2, ·) provides us with
another equation so that at the end of our second step, we are left with d− 2 degrees
of freedom.

From the above, it is now clear that we can proceed recursively, from b1 to bd,
by solving d successive problems of this type and considering the standard eigenvalue
problem associated with our modified setup and our updated generator for the under-
lying Markov chain. At the end of the dth problem over the interval [bd, bd−1], we no
longer have any degrees of freedom, once we have imposed the continuity of v(d, x)
across bd. Finally, over [0, bd], we have: v(1, x) = · · · = v(d, x) = K − exp(x). This
deals with the first problem, namely, given thresholds to compute the value function.7

Problem 2. The method just presented shows how for any given sequence of
threshold values we may compute the value. For optimality, we need to make v(j, ·)
be C1 at bj for j = 1, . . . , d. This gives us d nonlinear equations to be solved in
d unknowns, which can be solved by standard numerical techniques; we used sequen-
tial quadratic programming. The latter optimization routine is converging efficiently
toward a set of b values which make v to be C1. It remains to check that

(Q−R)v +
1

2
ΣvXX + V vX ≤ 0

7The above procedure leaves us in fact with a linear system to solve in order to determine the
unknown weights on every subinterval: d weights on [b1,∞), 2× (d−1) weights on [b2, b1], 2× (d−2)
weights on [b3, b2], . . . and finally 2 weights on [bd, bd−1]. This gives rise to a linear system with d2

unknowns and d2 equations.
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everywhere; from this, it follows that the solution v found is in fact optimal. The
following results deals with this point.

Proposition 2. Suppose that thresholds (bj) < logK have been found such that
the (unique) bounded solution f to the coupled system of ODEs

1

2
σ2
i fXX(i,X) + VifX(i,X) − rif(i,X) +

∑
j

qijf(j,X) = 0 (X > bi),(25)

f(i,X) = ϕ(X) (X ≤ bi)(26)

is C1 in X at each point (j, bj). Then the (bj) are uniquely determined, and f is the
value of the problem.

Proof. The proof proceeds in a number of steps. Given the thresholds (bj), we
set τ∗ = inf{t : Xt ≤ b(ξt)}, and we observe that

f(ξt∧τ∗ , Xt∧τ∗) exp{−R(t ∧ τ∗)} is a bounded martingale,

and so in particular

f(j, x) = E
[
ϕ(Xτ∗)e−R(τ∗)

∣∣ ξ0 = j,X0 = x
]
.

Since ϕ ≥ 0, it follows that f > 0.
(i) We claim that f(j, x) > ϕ(x) whenever x > bj . To see why, let τ0 ≡ inf{t :

f(ξt, Xt) ≤ ϕ(Xt)} ≤ τ∗, and observe that

f(j, x) = E
[
ϕ(Xτ∗)e−R(τ∗)

∣∣ ξ0 = j,X0 = x
]

= E
[
(K − eX(τ∗))e−R(τ∗)

∣∣ ξ0 = j,X0 = x
]

= E
[
ϕ(Xτ0)e

−R(τ0)
∣∣ ξ0 = j,X0 = x

]
= E

[
(K − eX(τ0))e−R(τ0)

∣∣ ξ0 = j,X0 = x
]
.

The fact that exp(Xt −Rt) is a martingale8 tells us that

E
[
Ke−R(τ∗)

∣∣ ξ0 = j,X0 = x
]

= E
[
Ke−R(τ0)

∣∣ ξ0 = j,X0 = x
]
,

whence immediately τ∗ = τ0, and the claim is proved.
(ii) We claim next that f(j, ·)−ϕ(·) is nondecreasing in (0, log(K)). The proof of

this is in effect a reprise of the proof of Proposition 1. As there, we take two starting
points x, x + δ ∈ (0, log(K)), and let τ denote the stopping time that would be used
if we started from x. Using the fact that f ≥ ϕ, we have

f(j, x + δ) = E[e−R(τ)f(ξτ , Xτ )| ξ0 = j,X0 = x + δ]

≥ E[e−R(τ)ϕ(Xτ )| ξ0 = j,X0 = x + δ]

= E[e−R(τ)ϕ(Xτ + δ)| ξ0 = j,X0 = x]

= E[e−R(τ)(K − eX(τ)+δ)+| ξ0 = j,X0 = x]

= E[e−R(τ)(K − eX(τ) − (eδ − 1)eX(τ))+| ξ0 = j,X0 = x]

≥ E[e−R(τ)
{

(K − eX(τ))+ − (eδ − 1)eX(τ)
}
| ξ0 = j,X0 = x]

= f(j, x) − (eδ − 1)E[e−R(τ)eX(τ)| ξ0 = j,X0 = x]

≥ f(j, x) − (eδ − 1)ex

= f(j, x) − ϕ(x) + ϕ(x + δ).

8It is in fact the discounted stock price.
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(iii) The final step is to prove that

Φ(i, x) ≡ 1

2
σ2
i fXX(i,X) + VifX(i,X) − rif(i,X) +

∑
j

qijf(j,X) ≤ 0(27)

in X ≤ bi. From (26), we have that in fact

Φ(i, x) = −riK +
∑
j �=i

(f(j,X) − ϕ(X)),

which is seen to be nondecreasing in [0, bi], in view of point (ii) proved above. It is
therefore sufficient to prove that Φ(i, bi−) ≤ 0 to establish (27). By the C1 property
of the solution f , we note that all of the terms in Φ(i, ·) are continuous across bi except
perhaps the second derivative term; thus any discontinuity in Φ is entirely accounted
for by the jump in this. But now consider the function f(i, ·) − ϕ(·). Its second
derivative at bi− is zero, and yet its second derivative at bi+ must be nonnegative,
since the function is nonnegative to the right of bi, and the function and its first
derivative both vanish there. We deduce that the change in the second derivative of
f(i, ·) at bi is nonnegative, and the conclusion (27) follows.

(iv) The standard verification argument for optimal control now shows that stop-
ping at τ∗ is optimal and that f is the value function of the problem.

As a check, take the case d = 1, which is the standard perpetual American put
problem mentioned earlier; we have R = r, Σ = σ2, V = r − 1

2σ
2, Q = 0 and set

γ = 2r/σ2. Now the matrix A defined at (11) is simply

A =

(
0 1
γ γ − 1

)
with eigenvalues γ and −1, so the solution is of the form

v(x) =

{
K − exp(x) if x ≤ b,
w exp(−γx) if x > b,

(28)

where the critical level b and the weight w are to be determined. The C1 condition
for v at b becomes {

K − exp(b) = w exp(−γb),
exp(b) = γw exp(−γb),

from which we easily deduce the form given in (14).

3.1. Numerical results.

3.1.1. Two states. First, we check that we recover the results of Guo and Zhang
[12] for the simple case of two states. The strike K is taken to be equal to 5,

R =

(
0.03 0
0 0.03

)
,

Q =

(
−1 1
1 −1

)
,

Σ =

(
0.25 0
0 0.81

)
.
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Fig. 1. Perpetual American put with two states (value function against log price).

This gives optimal thresholds: exp(b) = (0.612, 0.441), which is close to Guo and
Zhang’s solution (0.614, 0.441). Figure 1 plots the price of the Markov-modulated
perpetual American put in every state of the chain and enables us to visualize the cor-
responding smooth pasting conditions. Above the optimal thresholds, where smooth
pasting occurs, the upper curve is the value function for the perpetual American put
and the lower curve is the reward function. Below the optimal thresholds, the value
function is equal to the reward function represented by the lower curve. We keep
drawing the upper curve below the optimal thresholds for the sole purpose of assess-
ing the quality of smooth pasting. All the plots below are drawn using a logarithmic
scale for the stock price.

Decreasing the volatility in the second state,

Σ =

(
0.25 0
0 0.49

)
,

leads to higher optimal thresholds exp(b) = (0.801, 0.646). On the other hand, in-
creasing the jump intensity from state 2 to state 1, where σ2

2 = 0.81 and σ2
1 = 0.25,

decreases the average volatility and we expect therefore our optimal thresholds to be
bigger, which turns out to be the case: exp(b) = (0.633, 0.455).
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Fig. 2. Perpetual American put with three states (value function against log price).

3.1.2. Three states. Consider now the case of an underlying Markov chain with
three states (high, low, and intermediate levels for the volatility):

R =

⎛⎝ 0.03 0 0
0 0.03 0
0 0 0.03

⎞⎠ ,

Q =

⎛⎝ −2 1 1
1 −2 1
1 1 −2

⎞⎠ ,

Σ =

⎛⎝ 0.25 0 0
0 0.50 0
0 0 0.81

⎞⎠ .

This gives the following thresholds: exp(b) = (0.600, 0.544, 0.455). Figure 2 plots the
results.

3.1.3. More states. The methodology specified above enables us to deal with
a moderately large number of states; in this example, there are eight. In each of
the states, r is taken to be equal to 0.03. The jump intensities from one state to
another are taken to be equal to 1, the volatility matrix is given by a diagonal matrix
with diagonal entries (0.35, 0.4, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9), and in Figure 3, we plot
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Fig. 3. Perpetual American put with eight states (value function against log price).

the value functions for the eight states of the chain, with the corresponding optimal
thresholds,

exp(b) = (0.290, 0.239, 0.238, 0.227, 0.220, 0.169, 0.155, 0.140).

As one would expect, the less volatile a state is, the bigger is the corresponding
threshold.

4. Binomial pricing with Markov regimes. The standard binomial pricing
method approximates the log-price process by a random walk, which jumps at the
times Δt, 2Δt, . . . and, at each jump, moves either up or down. The probability of
an up step and the size of the jump are chosen to match the drift and variance to
the Black–Scholes asset. In this section, we will extend the alternative random walk
approximation introduced by Rogers and Stapleton [22] to the case of Markov regimes.

With X still denoting the Markov-modulated log-price (2), the idea of [22] was to
fix some Δx > 0 and view X only at the discrete set of times at which it has moved
by Δx from where we last observed it. Formally, if{

τ0 = 0,
τn+1 ≡ inf{t > τn : |X(t) −X(τn)| > Δx} if n ≥ 0,

(29)

then we take (X(τn)) as the discrete approximation to X, observed for ν steps, where
ν ≡ sup{n : τn < T} (T is the expiry of the option). We need to compute the
distribution of (X(τ1), ξ(τ1)). Take X0 = 0, τ ≡ τ1 for notational simplicity.
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Let λi and gi denote the eigenvalues and the eigenvectors of the eigenvalue prob-
lem (11): (

0 I
−2Σ−1(Q−R) 2Σ−1R− I

) (
g
h

)
= λ

(
g
h

)
.

There are d negative and d positive eigenvalues. For any scalars wi,

exp

(
−
∫ t

0

r(ξu)du

)
Σ2d

i=1wigi(ξt) exp(−λiXt)

is a martingale, so by the optional sampling theorem,

E

[
exp

(
−
∫ τ

0

r(ξu)du

)∑
i

wigi(ξτ ) exp(−λiXτ )|X0 = 0, ξ0 = j

]
=

∑
i

wigi(j).

(30)

The discounted probability of an upwards step from state j to state k is given by

P+
j,k = E

[
exp

(
−
∫ τ

0

r(ξu)du

)
I{Xτ = Δx, ξτ = k}|ξ0 = j

]
(31)

where I denotes the indicator function. Therefore, in order to find P+
j,k we need to

solve the following system:⎧⎨⎩
∑

i
wigi(ξ) exp(−λiΔx) = I{ξ = k} ∀ξ = 1, . . . , d,∑

i
wigi(ξ) exp(+λiΔx) = 0 ∀ξ = 1, . . . , d.

(32)

This leaves us with 2d equations for the 2d unknown weights, from which we calculate
the discounted probability of an upwards step. Similarly, we can compute the proba-
bility of a downwards step from state j to state k by replacing in the above system Δx
with −Δx. When the initial logarithmic price is equal to x, the price of a standard
European call option in this Markov-modulated framework is now computed using
the following dynamic programming equation, written using vector notation:{

V0(x) = (exp(x) −K)+,
Vn+1(x) = P+Vn(x + Δx) + P−Vn(x− Δx),

(33)

where n is the number of time steps to go before expiry T . The matrices P+ and P−

are defined above and denote, respectively, the up and down transition matrices for
the underlying Markov chain.

Observe that (as in Rogers and Stapleton [22]) this approximation is well suited
to pricing barrier options; we merely change appropriately the matrices P± at the
vertices adjacent to the barrier(s).

Once we have computed the discounted probabilities of an upwards and a down-
wards step, it remains for us to deal with the fact that the number ν of time steps is
random. One solution to this problem is to match bond prices so that

E

[
exp

(
−
∫ T

0

r(ξu)du

)
1

]
� E

[
exp

(
−
∫ τν

0

r(ξu)du

)
1

]
.(34)
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Let P = P+ + P−. From the above, it is enough to find ν so that

πP
ν
1 = π exp [T (Q−R)1] ,(35)

where π denotes the invariant distribution of the underlying Markov chain. This sim-
ple approximation turns out to give very satisfactory results for the Markov-modulated
setup.

Notice finally that for the case of the American put, the dynamic programming
equation for the value function now becomes{

V0(x) = (exp(x) −K)+,
Vn+1(x) = max{(K − exp(x))+, P+Vn(x + Δx) + P−Vn(x− Δx)}.(36)

The case of the finite expiry Markov-modulated American put was tackled by
Buffington and Elliott [4] but only in the case of a two-state Markov chain and by
extending the Barone-Adesi–Whaley analytic approximation.

4.1. Numerical results.

4.1.1. Markov-modulated European call. One way of checking our results
is to consider the case when the chain switches between two identical states for the
volatility. The price in each state should then be equal approximately to the Black–
Scholes price for this given volatility. The expiry time is taken to be equal to one
year; the initial stock price is S0 = 95. The strike is K = 100. Finally, the size of the
space grid is taken to be Δx = 0.022. We take

R =

(
0.03 0
0 0.03

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.25 0
0 0.25

)
.

The price in each state of the chain is found to be equal to 17.9667, compared to the
Black–Scholes value of 17.9506 (relative error: 0.0009).

4.1.2. Markov-modulated American put. Here we compare with the prices
tabulated in [21].

(i) Let us first consider the case of two identical states, with T = 0.5, Δx = 0.022,
X0 = log(85), K = 100:

R =

(
0.06 0
0 0.06

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.16 0
0 0.16

)
.

The price in each of the two states is found to be equal to 18.0285, which needs to be
compared with the value 18.0374 found by Rogers [21] (relative error: 0.0005).
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(ii) Let us now decrease the volatility in the second state:

Σ =

(
0.16 0
0 0.10

)
.

The prices in each of the two states are now found to be (17.3070, 16.7677). Decreasing
the volatility decreases the price in the two states, as expected. Correspondingly,
increasing the volatility in one of the states increases the price in the two states, as
shown by

Σ =

(
0.40 0
0 0.16

)
,

where the price is now given by (20.3454, 19.1986).

(iii) Taking example (i) and changing just the start value X0 to log(100) allows us
to compare our values with other values in [22]. We find the price is (9.9279, 9.9279),
to be compared with 9.9458 (relative error: 0.00192). Taking X0 = log(115), the price
is (5.1109, 5.1109), to be compared with 5.1265 (relative error: 0.00304).

It therefore turns out that the random walk approximation provides an accurate
and very quick method for Markov-modulated asset dynamics.

The solution for the finite expiry American put should provide a way of checking
the results of the preceding section for the perpetual American put, by letting T tend
to ∞. For the example of Guo and Zhang [12], where exp(b) = (0.616, 0.441), the
time-0 price of the Markov-modulated perpetual American putm, (4.2239, 4.2758),
compares well with our results for the finite expiry American put when T = 40:
(4.2180, 4.2692) (relative errors: 0.00139, 0.00155).

A similar check can be made for the perpetual American put example with three
states, where the prices are (4.2278, 4.2486, 4.2706), to be compared with (4.2244,
4.2439, 4.2631) for the finite expiry case, where T = 40 (relative errors: 0.0008, 0.0011,
0.0017).

4.1.3. Markov-modulated barrier options. In this section, we price a num-
ber of double knockout barrier options in a Markov-modulated setup.

(i) Let us first consider the case of constant barriers, where we compare our
results with those of Geman and Yor [7]. With two identical states, taking T = 1,
X0 = log(100), K = 100, Δx = 0.022, b∗ = log(150), and b∗ = log(75), and

R =

(
0.05 0
0 0.05

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.25 0
0 0.25

)
.

the price of the double knockout is then found to be (0.8994, 0.8994), to be compared
with the value 0.89 computed by Geman and Yor [7] (relative error: 0.01061).

(ii) Changing K to 87.5 and b∗ to log(50), the price becomes (3.8274, 3.8274), to
be compared with 3.8075 from Geman and Yor (relative error: 0.00519).
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(iii) The next example is the same as the previous one, but now we have two
different volatility levels:

Σ =

(
0.50 0
0 0.25

)
.

The price of the double knockout is now equal to (2.6055, 2.5882).
(iv) We finally consider the case of a double knockout with moving barriers, which

are linear for the log-price b∗ = log(U)+Δx1t and b∗ = log(L)+Δx2t. We compare our
results with those of Kunitomo and Ikeda [18] Let us take: T = 0.5, X0 = log(1000),
K = 1000, Δx1 = 0.1, Δx2 = −0.1, L = 500, and U = 1500:

R =

(
0.05 0
0 0.05

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.04 0
0 0.04

)
.

The price of the double knockout in this Markov-modulated setup is found to be
(67.2596, 67.2596), to be compared with 67.78 from Kunitomo and Ikeda [18] and
67.7834 from Rogers and Zane [23] (relative error: 0.00773).

5. Conclusions. We have shown how to use classical results from the Wiener–
Hopf factorization of Markov processes to price options on a Markov-modulated asset.
Such a model can accommodate “bull” and “bear” markets, as well as changes in
interest rate and volatility. This method has been applied to the optimal stopping
problem of the Markov-modulated perpetual American put. It yields a very efficient
and accurate numerical method, which amounts to computing the eigenvalues and
eigenvectors of some particular matrices. There is no dynamic programming nor
discretization of any PDE. Finally, with a finite time horizon, the approach can be
used to construct a modified binomial lattice methodology, which has been applied
to the European call, the American put, and double barrier options in a Markov-
modulated setup. This modified binomial method turns out to provide an efficient
numerical scheme for Markov-modulated option pricing.
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Abstract. The supervisory control problem of discrete event systems with temporal logic spec-
ifications is studied. The full branching time logic of CTL* is used for expressing specifications of
discrete event systems. The control problem of CTL* is reduced to the decision problem of CTL*.
A small model theorem for the control of CTL* is obtained. It is shown that the control problem
of CTL* (resp., CTL) is complete for deterministic double (resp., single) exponential time. A sound
and complete supervisor synthesis algorithm for the control of CTL* is provided. Special cases of
the control of computation tree logic (CTL) and linear-time temporal logic are also studied.
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1. Introduction. Discrete event systems (DESs) involve discrete-valued quanti-
ties that evolve in response to certain discrete qualitative changes, called events. Ex-
amples of events include arrival of a customer in a queue, termination of an algorithm
in a computer program, loss of a message packet in a communication network, and
breakdown of a machine in a manufacturing system. The theory of supervisory con-
trol of DESs was introduced by Ramadge and Wonham [28] for designing controllers
so that the controlled system satisfies certain desired qualitative constraints, such as
a buffer in a manufacturing system should never overflow, or a message sequence in
a communication network must be received in the same order as it was transmit-
ted. Many extensions of the basic supervisory control problem such as control with
partial observations, decentralized control, modular control, control of nondetermin-
istic systems, and control of infinite behaviors represented by ω-languages, have been
studied [16].

In the supervisory control framework for discrete-event systems, an uncontrolled
discrete event system, called plant, is modeled as a state machine, the event set of
which is finite and is partitioned into the set of controllable and uncontrollable events.
The language generated by such a state machine is used to describe the behavior of
the plant at the logical level. The control task is formulated as that of the synthesis of
a controller, called a supervisor, which exercises control over the plant by dynamically
disabling some of the controllable events so that the plant achieves a certain desired
behavior, called a specification, which is typically expressed as a formal language.
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In this paper, we consider temporal logic [6, 12] as a means to express the control
specification.

Temporal logic was studied initially to investigate the manner in which temporal
operators are used in natural language arguments [11]. It provided a formal way of
qualitatively describing and reasoning about how the truth values of assertions change
over time. In [27], Pnueli first argued that temporal logic is appropriate for reasoning
about nonterminating concurrent programs such as operating systems and network
communication protocols. Now temporal logic is a widely active area of research and
has been used in all aspects of concurrent program design, including specification,
verification, and mechanical program synthesis.

Temporal logic is an effective means of control specification, and researchers have
used it for this purpose. For example, [32, 21, 23, 22, 4] used linear-time temporal logic
(LTL); [25, 24] used real-time temporal logic (RTTL) and [2] used metric temporal
logic (MTL) (both RTTL and MTL are LTL with real time constraints); [1] used
computation tree logic (CTL). Temporal logic was also used in [14, 26, 34, 30, 31] for
the study of discrete event systems.

These works on a temporal logic approach for control of discrete event systems are
limited in one way or other. For example, the main focus in [32, 21, 22, 25] was verifi-
cation and analysis (no synthesis was performed). In [23, 24], methods were given for
the supervisor synthesis for systems with safety specifications only. In [4] supervisory
synthesis for propositional-LTL formulas is considered; no test for the existence of a
supervisor is provided, a supervisor is synthesized based only on a “one-step look-
ahead,” and all controllable events are unobservable. In [2], a sound but not complete
(see Remark 7) algorithm was given for the synthesis of supervisors for systems with
MTL specifications. In [1], the control problem for systems with CTL specifications
was studied. But there are some errors and limitations with the result of [1]. First,
the semantics of CTL is defined by using ∗-languages (languages of finite strings [16])
in [1]. This is incorrect, since CTL has a branching-time structure and it is known
([6], and also Example 1) that CTL and ∗-languages are incomparable. Besides, CTL
can express liveness properties which cannot be expressed by ∗-languages. Second,
only state-based supervisors were considered in [1]. (Such a supervisor determines
its control based only on the present state, ignoring the information about the state
sequence the plant has visited in the past.) Third, the algorithm presented in [1],
which works for a restricted class of CTL formulas and has a linear complexity in the
number of states in the plant and the length of the CTL formulas, is erroneous (see
Remark 6).

The work on “module checking” [20] can be viewed as dual to a supervisory
control problem. The goal there is to have an “open system” (a plant in the setting
of supervisory control) so that the “closed system” (the controlled system in the
setting of supervisory control) satisfies the given CTL* specification for all possible
environments (supervisors in the setting of supervisory control). Dually, in the setting
of supervisory control, the goal is to have an open system so that the closed system
satisfies the given CTL* specification for at least one possible environment. Duality
lies in the following equivalence: an open system has the property that all the closed
systems (that are induced by the various environments) satisfy a CTL* specification
f if and only if it is not the case that there exists an environment so that the closed
system satisfies the specification ¬f . Note that the former is a module-checking
problem whereas the latter is a supervisory control problem.

With the above analogy, our work on supervisory control can be viewed as an
extension of the work presented in the setting of module checking. In the setting of
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module checking, the state set is partitioned into the system states and the environ-
ment states, and any subset of the feasible events can occur when the system is in
one of its environment states. This, in our setting of supervisory control, translates
to having

1. states where either all events are controllable (the environment states of mod-
ule checking) or all events are uncontrollable (the system states of module
checking), and

2. the supervisor (the environment in the setting of module checking) is a de-
terministic system.

Our setting is more general: all states can have some events that are controllable and
others that are uncontrollable, and the supervisor we design can be a nondeterministic
system. (See Example 1.)

The setting of “control of reactive systems” [18] has a more ambitious goal: syn-
thesize a controller (which disables events in system states) so that the controlled
system satisfies the given CTL* specification for all possible environments (which
disables events in environment states). Since it is again possible to disable a set of
feasible events in a system state (through a controller), this, in the supervisory control
setting, translates to having the following:

1. all events are controllable in all states, and
2. the supervisor is a deterministic system.

As explained above, such restrictions are not present in the setting of supervisory
control. It should be noted that in the setting of “control of reactive systems,” there
are two types of “players,” a controller/supervisor and the environment. The super-
visory control setting allows only one type of player, namely, a controller/supervisor,
whereas the environment is always the “maximal” one (that never disables any event).
Thus there are also some differences between the settings.

The work on “robust satisfaction” [19] does consider nondeterministic environ-
ments (i.e., supervisors). But the composition mechanism, through which the system
and the environment interact, brings about additional restrictions, namely,

1. all events in all states are controllable,
2. exactly one controllable event is enabled in each state, and
3. the environment only “observes” the current state of the system (and not the

particular event executed by the system),

The existence of the first two restrictions can be argued as follows: in the setting of
“robust satisfaction,” the environment, based on its present state, generates a unique
output (which is an input for the system) that enables that particular event (and
nothing else) in the system. Note that by outputting a certain event, the environment
can enable that particular event in the system (equivalently, disable others), thereby
making all events controllable in all states of the system. A justification for the
third restriction is that the environment updates its state based on only the output
generated by the system, which is a function of only the system’s state. It should be
noted that the setting of “robust satisfaction” allows a type of partial observation since
the interacting systems only observe each others’ outputs, whereas the supervisory
control setting we consider assumes a complete observation of events. Thus there are
also some differences between the two settings.

In this paper we study the supervisory control problem for plants possessing un-
controllable events with specifications expressed in the full branching time logic of
CTL* and allowing supervisors to be nondeterministic. The reason for allowing non-
determinism is that the class of nondeterministic supervisors is more powerful than
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that of deterministic ones, as is illustrated by Example 1, which makes it possible
for a supervisor to exist for a larger class of CTL* specifications. Our approach to
supervisor synthesis is based on reduction to satisfiability: We show that a supervisor
exists if and only if a certain CTL* specification is satisfiable, and whenever this holds
a corresponding satisfying model serves as a supervisor. A corollary of this result is
that a deterministic supervisor exists if and only if a deterministic satisfying model
exists. Thus the approach developed here can be used to determine the existence of
a general nondeterministic as well as a deterministic supervisor, and furthermore fol-
lowing our approach a supervisor (nondeterministic or deterministic) can be obtained
when one exists.

Note that randomized nondeterministic control is commonly used in the setting
of stochastic systems (see, for example, [15]), whereas the use of nondeterministic
supervisors in context of discrete-event systems was first explored in [13]. A formal
definition of a nondeterministic control policy, its representation as a nondeterministic
state machine, and a means to implement it (also see Remark 2) were first introduced
in [17]. The nondeterminism in a supervisor state machine is represented by non-
deterministic choices and epsilon-transitions. A nondeterministic choice corresponds
to randomly choosing one of the control decisions (from among a set of choices de-
termined off-line) on an observation, whereas an epslion-transition corresponds to
randomly changing the control decision (again in accordance with choices determined
off-line) without any observation. As explained in [17], a nondeterministic choice can
be implemented by a “coin-toss,” whereas an epsilon-transition can be implemented
using a “random-timer.” The results in [17] indicate that when the desired speci-
fication is language based, there is no gain to having nondeterministic control (over
deterministic control) under complete observation of events. However, the situation is
different when there is partial observation—a weaker notion of observability is needed
for the existence of the supervisor. Further, this weaker property is algebraically bet-
ter behaved than observability (such as it is closed under union). The present paper
demonstrates that even under complete observation of events there is a gain to hav-
ing nondeterministic supervisors if the desired specifications are expressed in CTL*
(which is more expressive than the language-based specifications).

The paper is organized as follows. First a brief introduction to CTL* is given.
Next, the control problem of CTL* is reduced to the decision problem of CTL* and
a small model theorem for the control of CTL* is derived. It is further shown that
the control problem of CTL* (resp., CTL) is complete for deterministic double (resp.,
single) exponential time, where a decision problem is said to be complete for a certain
computation complexity if both the lower and upper complexity bounds of the problem
are the same. A sound and complete supervisor synthesis algorithm for the control of
CTL* is provided. Special cases of the control of computation tree logic (CTL) and
linear-time temporal logic (LTL) are also studied. For these special cases we are able
to provide more efficient algorithms. Finally, an illustrative example is given.

2. Introduction to CTL* and tree automaton. CTL* is also called full
branching time logic because of its branching time structure, i.e., at each moment,
there may exist alternate courses representing different possible futures. It was pro-
posed in [7] as an unifying framework, subsuming both CTL and LTL, as well as a
number of other logic systems. Here we give a brief introduction to CTL*. For a
complete introduction to temporal logic, see [6].

Let M = (Q,AP,R,L) be a state transition graph (also called the Kripke struc-
ture [6]), where Q is the set of states (finite or infinite), AP is a finite set of atomic
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proposition symbols, R ⊆ Q × Q is a total transition relation, i.e., for every s ∈ Q
there is a s′ ∈ Q such that R(s, s′), and L : Q → 2AP is a function that labels each
state with a set of atomic propositions that are true at that state. A path in M is
defined as an infinite sequence of states, π = (s0(π), s1(π), . . .) such that for every
i ∈ {0, 1, . . .}, (si(π), si+1(π)) ∈ R.

Using the atomic propositions and boolean connectives such as conjunction, dis-
junction, and negation, we can construct more complex expressions describing proper-
ties of states. However, we are also interested in describing the properties of sequences
(and more generally of tree structures) of states that the system can visit. Temporal
logic is a formalism for describing properties of sequences of states as well as of tree
structures of states. Such properties are expressed using temporal operators and path
quantifiers of the temporal logic. These operators and quantifiers can be nested with
boolean connectives to generate more complex temporal logic specifications.

The following temporal operators are used for describing the properties along a
specific path:

• X (“next time”): requires that a property hold in the next state of the path.
• U (“until”): used to combine two properties. The combined property holds

if there is a state on the path where the second property holds, and at every
preceding state on the path, the first property holds.

• F (“eventually” or “in the future”): used to assert that a property will hold
at some future state on the path.

• G (“always” or “globally”): specifies that a property holds at every state on
the path.

• B (“before”): also combines two properties. It requires that if there is a state
on the path where the second property holds, then there exists a preceding
state on the path where the first property holds.

We have following relations among the above operators, where f denotes a temporal
logic specification:

• Ff ≡ trueUf ,
• Gf ≡ ¬F¬f ,
• fBg ≡ ¬(¬fUg).

Thus one can use X and U to express the other temporal operators.

To describe the branching time structure starting at a particular state, two path
quantifiers are used:

• A : for all paths and
• E : for some paths.

These two quantifiers are used in a particular state to specify that all the paths or
some of the paths starting at that state have some property. The two quantifiers are
related by

• A ≡ ¬E¬.

There are two types of formulas in CTL*: state formulas (which are true in a
specific state) and path formulas (which are true along a specific path). Now we give
the definition of CTL* formulas. In the following we assume that p is an atomic
proposition, f1 and f2 are state formulas, and g1 and g2 are path formulas.

Syntax. We inductively define a class of state formulas using rules S1–S3 below
and a class of path formulas using rules P1–P3 below:

S1 If p ∈ AP , then p is a state formula.
S2 If f1 and f2 are state formulas, then so are ¬f1 and f1 ∧ f2.
S3 If g1 is a path formula, then Eg1 and Ag1 are state formulas.
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P1 Each state formula is also a path formula.
P2 If g1 and g2 are path formulas, then so are ¬g1 and g1 ∧ g2.
P3 If g1 and g2 are path formulas, then so are Xg1 and g1Ug2.

CTL* formulas are the state formulas generated by the above rules. The length of
a formula is the number of boolean, temporal, and path quantifier operators in the
formula.

The restricted logic CTL is obtained by restricting the syntax to disallow boolean
combinations and nestings of temporal operators. Formally, rules P1–P3 are replaced
by

P0 If f1 and f2 are state formulas, then Xf1 and f1Uf2 are path formulas.

Then CTL formulas are the state formulas generated by rules S1–S3 and P0.

The logic LTL is obtained by removing rules S2–S3, i.e., LTL formulas are state
formulas in the form of Ag where g is any path generated by rules S1 and P1–P3.
Note instead of defining LTL as path formulas (g) as in [6], we define LTL as state
formulas (Ag) as in [3]. This is because for the LTL control problem studied in this
paper, we want all paths starting from the initial state of the plant to satisfy some
required property which can be expressed by a LTL formula of the form Ag.

Note that the only restriction in CTL is that every temporal operator in the
formula is immediately preceded by a path quantifier, whereas the only restriction
in LTL is that except for the path quantifier A appearing at the beginning of the
formula no other path quantifiers exist in the formula. CTL and LTL have different
expressive power. For example, the CTL formula AGEFp cannot be expressed by any
LTL formula, and the LTL formula AFGp cannot be expressed by any CTL formula,
but AGp can be viewed as either a CTL formula or an LTL formula.

Semantics. We define the semantics of CTL* with respect to a state transition
graph M = (Q,AP,R,L). For a state formula f , the notation < M, s >|= f (resp.,
< M, s >�|= f) means that f holds (resp., does not hold) at state s in M . For a
path formula g, the notation < M,π >|= g (resp., < M,π >�|= g) means that g holds
(resp., does not hold) along the path π in M . The relation |= is defined inductively
as follows:

1. < M, s >|= p if and only if p ∈ L(s) ∀p ∈ AP .
2. < M, s >|= ¬f1 if and only if < M, s >�|= f1.
3. < M, s >|= f1 ∧ f2 if and only if < M, s >|= f1 and < M, s >|= f2.
4. < M, s >|= Eg1 if and only if there exists a path π starting at s such that

< M,π >|= g1.
5. < M, s >|= Ag1 if and only if for every path π starting at s, we have <

M,π >|= g1.
6. < M,π >|= f if and only if < M, s0(π) >|= f , for any state formula f .
7. < M,π >|= ¬g1 if and only if < M,π >�|= g1.
8. < M,π >|= g1 ∧ g2 if and only if < M,π >|= g1 and < M,π >|= g2.
9. < M,π >|= Xg1 if and only if < M,π1 >|= g1, where π1 = (s1(π), s2(π), . . .).
10. < M,π >|= g1Ug2 if and only if there exists a k such that < M,πk >|= g2 and

for all j ∈ {0, 1, . . . , k− 1}, < M,πj >|= g1, where πk = (sk(π), sk+1(π), . . .).

Remark 1. In the above, the CTL* is interpreted over nonterminating paths. In
some cases, we may need to study the systems with terminating behaviors. So the
definition of CTL* semantics needs to be extended to finite paths. In this paper,
we only consider the systems with nonterminating behaviors and hence use only the
above definition.

The following examples show that temporal logic formulas can be used to express
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properties such as safety, nonblocking, liveness, and stability.

AGp means that “for all paths (A) starting at the present state, globally (G) at every
state along these paths p is true.” It is a safety property.

AGEFp means that “for all paths (A) starting from the present state, globally (G) for
every state along these paths there exists (E) a path starting from that state
such that in future (F ) p holds at a state on that path.” It is a nonblocking
property.

AG(p1 ⇒ AFp2) means that “for all paths (A) starting from the present state, globally
(G) for every state s along these paths, if p1 is true at the state s, then p2

will be true at some subsequent state along every path (AF ) starting from the
state s.” It is a liveness property.

AFGp means that “for all paths (A) starting from the present state, eventually (F ) p
holds globally G”. It is a property of stability which requires that the system
should eventually reach a set of states where p holds and stay there forever.

Definition 1. We say that a state formula f is satisfiable provided that for some
state transition graph M and some state s in M we have < M, s >|= f , in which case
M is called a model for f .

The decision problem of a temporal logic formula is to test whether the given
formula is satisfiable. We have following results for the decision problems of CTL*
and CTL.

Theorem 1 (see [9, 5]). Given a CTL* formula f , f is satisfiable if and only if
it is satisfiable in a finite state transition graph with number of nodes at most double
exponential in the length of the formula f .

Theorem 2 (see [6]). The decision problem of CTL* (resp., CTL) is complete
for deterministic double (resp., single) exponential time.

Theorem 1 is called the small model theorem for the decision of CTL*. It states
that a CTL* formula is satisfiable if and only if it is satisfiable in a small finite
model, where small means that the size of the model is bounded by some function
of the length of the given formula. Theorem 2 states that the lower as well as the
upper bound of the complexity of the decision problem for CTL* (resp., CTL) is
deterministic double (resp., single) exponential in the length of the given formula.
(By double (resp., single) exponential we mean exp(exp(n)) (resp., exp(n)), where
exp(n) is a function cn for some c > 1.)

To test the satisfiability of a CTL* formula f , we have the following sound and
complete decision procedure [6, 9, 8], the complexity of which is double exponential
in the length of the specification CTL* formula.

1. Derive a Rabin tree automaton for the CTL* formula f [9]. The number
of states (resp., acceptance condition pairs) of the Rabin tree automaton is
double (resp., single) exponential in the length of the formula f .

2. Test the emptiness of the Rabin tree automaton [8]. If the Rabin tree au-
tomaton is empty, then the CTL* formula f is not satisfiable; otherwise the
formula f is satisfiable, and a model for f can be extracted from the Rabin
tree automaton. The complexity of this step is polynomial in the number of
states of the Rabin tree automaton and exponential in the number of accep-
tance condition pairs of the Rabin tree automaton.

The notion of Rabin tree automaton is described below. For simplicity, we con-
sider only the finite automaton on infinite binary trees. The infinite binary tree is
the set T = pr({0, 1}ω). The elements of T are called nodes, and the empty word ε
is the root of T . For all x ∈ T , x · 0 and x · 1 are the left and right successors of x,
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respectively. A path π of the tree T is a subset of T such that the root ε is in π, and
∀x ∈ π, one and only one of x · 0 and x · 1 is in π. Note that a path of T corresponds
a unique word in {0, 1}ω. Given an alphabet Σ, a Σ-labeled tree (called Σ-tree) is a
function V : T → Σ that maps each node of T to a letter in Σ.

A Rabin tree automaton (on infinite binary Σ-tree) is A = (Q,Σ, δA, q0, F ), where
Q is a finite state set, Σ is a finite alphabet set, δA : Q×Σ → 2Q×Q is the transition
function, q0 ∈ Q is the initial state, and F = {(Gi, Ri) | Gi ∪ Ri ⊆ Q, i = 1, . . . , k}
is the Rabin acceptance condition. A run r of A on an input Σ-tree V is a Q-labeled
tree r : T → Q such that r(ε) = q0 and ∀ x ∈ T , (r(x · 0), r(x · 1)) ∈ δA(r(x), V (x)).
We say that A accepts an input Σ-tree V if and only if there exists a run r of A on
V such that for each path π of r, there exists a pair (Gi, Ri) in F such that π visits
Gi infinitely often and Ri finitely often.

To test the satisfiability of a CTL (a special case of CTL*) formula f , the following
more efficient sound and complete decision procedure exists [6], the complexity of
which is single exponential in the length of the specification CTL formula:

1. Construct a tableau for the CTL formula f , where a tableau is a state tran-
sition structure derived for the given temporal logic formula from which a
model of the given formula can be extracted as a subtransition structure
whenever that formula is satisfiable. The number of states of the tableau for
the CTL formula f is exponential in the length of f .

2. Test the tableau for the existence of a model for f . If there does not exist
a model for f in the tableau, then the CTL formula f is not satisfiable;
otherwise the formula f is satisfiable, and a model for f can be extracted
from the tableau. The complexity of this step is polynomial in the number
of states of the tableau.

3. Supervisory control for CTL* specification. In this section, we study
the supervisory control problem for systems with CTL* temporal logic specifications.
From now on, we assume that the uncontrolled discrete event plant P is modeled by
a six tuple: P = (X,Σ, δP , x0, AP, LP ), where X is a finite set of states; Σ is a finite
set of event labels that is the disjoint union of Σc, the set of controllable events, and
Σu, the set of uncontrollable events; δP : X × Σ → X is a partial function defined at
each state in X for a subset of Σ; x0 ∈ X is the initial state of P ; AP is the finite set
of atomic proposition symbols with AP ∩X = ∅; and LP : X → 2AP∪{¬p|p∈AP} is a
labeling function such that ∀x ∈ X, ∀p ∈ AP , p ∈ LP (x) ⇒ ¬p �∈ LP (x). Here for a
state x, p ∈ LP (x) means that p holds at x, ¬p ∈ LP (x) means that p does not hold
at x, and if for some atomic proposition p such that neither p nor ¬p is in LP (x), then
it means that p may or may not hold at x. Note from the definition of the transition
function δP that we are assuming P to be deterministic.

A supervisor S is modeled by a six tuple: S = (Y,Σ, δS , y0, AP, LS), where Y
is a set of states (finite or infinite); Σ and AP are the same sets as given in P ;
δS : Y × Σ → 2Y is a total function defined at each state in Y for each event in Σ;
y0 ∈ Y is the initial state of S; and LS : Y → 2AP∪{¬p|p∈AP} is a labeling function
similar to that in P such that ∀y ∈ Y , ∀p ∈ AP , p ∈ LP (y) ⇒ ¬p �∈ LP (y). Note from
the definition of the transition function δS that S is allowed to be nondeterministic.
The class of nondeterministic supervisors is more powerful than that of deterministic
supervisors, as illustrated by Example 1.

The controlled plant is obtained by the strict synchronous composition of P and
S, denoted by P ||S, which is defined as P ||S = (Z,Σ, δP ||S , z0, AP, LP ||S), where Z =
X×Y is the state set; Σ and AP are the same sets as given in P ; and δP ||S : Z×Σ → 2Z
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is the state transition function for P ||S. Let σ ∈ Σ and (x, y) ∈ X × Y = Z; then we
define δP ||S as

δP ||S((x, y), σ) =

{
{(δP (x, σ), z) | z ∈ δS(y, σ)} if δP (x, σ) is defined and δS(y, σ) �= ∅;
∅ otherwise.

z0 = (x0, y0) ∈ Z denotes the initial state of P ||S, and LP ||S : Z → 2AP∪{¬p|p∈AP} is
the labeling function for P ||S, which is defined as LP ||S(x, y) = LP (x) ∪ LS(y).

We use MP ||S = (Z,R,AP,L) to denote the state transition graph of P ||S, where
Z and AP are the same sets as given in P ||S; R ⊆ Z × Z is the transition relation
with R = {(z, z′) | ∃σ ∈ Σ s.t. z′ ∈ δP ||S(z, σ)}; and L : Z → 2AP is the labeling
function which is defined as ∀z ∈ Z, L(z) = LP ||S(z) ∩AP .

We require that all the supervisors derived should be control-compatible and
propositionally consistent with respect to the plant. The control-compatibility of
a supervisor requires that when controlling the plant P , the supervisor should never
disable an uncontrollable transition in P , where a transition is called an uncontrollable
transition if it is labeled by an uncontrollable event. Next, since the propositional
labeling of a state z = (x, y) ∈ Z of P ||S is obtained as LP (x) ∪ LS(y), it is possible
that the label of z contains p ∈ AP as well as its negation (for example, when
p ∈ LP (x) and ¬p ∈ LS(y)). We exclude such state machines from being a supervisor
by requiring the propositional consistency property defined below.

Definition 2. A supervisor S is said to be control-compatible with respect to a
given plant P if for any s ∈ Σ∗, σ ∈ Σu, and z = (x, y) ∈ δP ||S(z0, s) such that σ is
defined at state x of P , it holds that σ is also defined at state y of S. A supervisor
S is said to be propositionally consistent with respect to a given plant P if it holds in
P ||S that for every state z ∈ Z reachable from z0, we have ∀p ∈ AP, p ∈ LP ||S(z) ⇒
¬p �∈ LP ||S(z).

The supervisory control problem for systems with temporal logic specifications is
formulated as follows:

Let P be a deterministic nonterminating plant with Σ = Σc∪Σu. For
a given CTL* formula f , find a control-compatible and proposition-
ally consistent supervisor S for P such that P ||S is nonterminating
and < MP ||S , z0 >|= f , where MP ||S is the state transition graph of
P ||S and z0 is the initial state of P ||S.

Before solving the above control problem, we give the definition of the controlla-
bility of CTL* formulas.

Definition 3. Given a nonterminating plant P , a CTL* formula f is said to
be controllable with respect to P , also called P -controllable, if there exists a control-
compatible and propositionally consistent supervisor S such that P ||S is nonterminat-
ing and < MP ||S , z0 >|= f .

In Definition 3, the supervisor S need not be finite. Through the small model
theorem derived below, we demonstrate that if a CTL* formula f is controllable, then
f can be enforced by a finite supervisor. In other words, we don’t impose the finite-
ness of a supervisor a priori in the definition of controllability. Also, the supervisor
is allowed to be nondeterministic since in some situations only a nondeterministic
supervisor can achieve a given CTL* specification. This is illustrated by the following
example.

Example 1. The plant P is shown in Figure 1(a), where X = {x0, x1, x2, x3},
Σ = Σc = {a, b, c, d, e}, AP = {p1, p2}, LP (x0) = LP (x1) = AP , LP (x2) = {p1,¬p2},
and LP (x3) = {¬p1, p2}. (We adopt the following convention for the figures we draw:
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Fig. 1. Nondeterministic supervisor.

if an atomic proposition p is not labeled at a state x, then it means that p does not
hold at x, i.e., ¬p ∈ LP (x).) The specification is described by the CTL formula
EXAGp1 ∧ EXAGp2, where EXAGpi has the following meaning: “Exists (E) a
path (starting from the initial state) such that from the next (X) state all paths (A)
always (G) satisfy pi.” Note that the given plant does not satisfy the specification since
starting from the only next state x1, all paths do not always satisfy p1 and p2.

Further, there does not exist a deterministic supervisor that can achieve the speci-
fication since AGp1 and AGp2 can not be satisfied simultaneously at state x1. But we
can have a nondeterministic supervisor S to achieve the specification, which is shown
in Figure 1(b).

Also note that the ∗-language as well as ω-language of the controlled plant is the
same as that of the uncontrolled plant, i.e., L(P ||S) = L(P ) = a(bd∗ + ce∗) and
Lω(P ||S) = Lω(P ) = a(bdω + ceω). This implies that the above CTL specification can
not be expressed by a regular ∗-language or a regular ω-language.

Remark 2. A formal treatment of nondeterministic control policy, its representa-
tion as a state machine, and its implementation are given in [17]. The essential idea is
that the control action selection of a nondeterministic supervisor is done on-line non-
deterministically from among a set of choices determined off-line. Also, the control
action can be changed on-line nondeterministically (before any new observation) in
accordance with choices determined off-line. (This feature of nondeterministic control
is not being used in the present paper.) The on-line choices, once made, can be used
to affect the set of control action choices in future. A nondeterministic control map
with above features may be implemented as a control and observation compatible non-
deterministic state machine introduced in [17]. (In the context of the present paper,
we are assuming a complete observation of events and so only control compatibility is
required; observation compatibility is automatically guaranteed.) It is further argued
in [17] that to implement a nondeterministic supervisor a mechanism is needed for
the on-line nondeterministic selection of the control action (from the set of choices
computed off-line), and another mechanism is needed to determine when to nonde-
terministically change the control action. For the first purpose, a “coin toss” (with as
many possible outcomes as the number of control action choices) can be used. For the
second purpose, a “random timer” can be used. In the lack of any new observation,
the control action is changed if and when the timer goes off.

In the following, we reduce the problem of the control of CTL* to that of the
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decision of CTL*, then use the results for the decision of CTL* to solve the control
problem of CTL*. We first encode all the controllable sub-trees embedded in the
“plant-tree” P by a CTL formula fP defined as follows.

Add new fresh atomic propositions. Extend AP to AP ′ := AP ∪X. Each
state of the plant is viewed as a new atomic proposition. For each x ∈ X, the
proposition x holds at state x and at no other state of P .

Encode the initial state of P using formula f0 defined as

f0 := x0.

This says that in a model for f0, the atomic proposition x0 holds at the initial state
of the model.

Encode the state set of P using formula f1 := f11 ∧ f12 defined as

f11 := AG

( ∨
x∈X

x

) ∧
x∈X

AG

(
x ⇒

∧
x′ �=x

¬x′

)
,

f12 :=
∧
x∈X

AG

[
x ⇒

∧
p∈(LP (x)∩AP )

p
∧

¬p∈(LP (x)∩AP )

¬p
]
,

and AP = {¬p | p ∈ AP}. In the above, f11 states that if M is a model for f11,
then every state in M should be labeled with one and only one atomic proposition
x ∈ X; f12 states that if M is a model for f12, then any atomic proposition which
holds (resp., does not hold) at the state x of P should also hold (resp., should not
hold) at states in M which are labeled by the proposition x.

Encode the transitions of P using formula f2 defined as

f2 :=
∧
x∈X

AG

(
x ⇒ AX

( ∨
x′∈Ix

x′

))
,

where Ix = {x′ | ∃σ ∈ Σ such that x′ = δP (x, σ)}. The formula f2 states that if M
is a model for f2, s is a state in M labeled with the atomic proposition x, and s′ is a
successor of s in M labeled with the atomic proposition x′, then there must exist a
transition from x to x′ in P .

Encode the uncontrollable transitions of P using formula f3 defined as

f3 :=
∧
x∈X

AG

(
x ⇒

∧
x′∈Iu

x

EXx′

)
,

where Iux = {x′ | ∃σ ∈ Σu such that x′ = δP (x, σ)}. The formula f3 states that if M
is a model for f3, s is a state in M labeled with the atomic proposition x, and there
exists an uncontrollable transition from state x to another state x′ in P , then there
must exist a successor s′ of s in M such that x′ is labeled at s′.

Encode all uncontrollable sub-trees of P using the formula fP defined
as

fP := f0 ∧ f1 ∧ f2 ∧ f3.

Remark 3. From the above definition it follows that fP encodes some information
of the plant P . It should be noted that fP does not contain all the information of P
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since from a model M of fP we cannot reconstruct the plant state machine P . This
is because when we encode the transitions (resp., uncontrollable transitions) of P by
f2 (resp., f3), we require only that the state x′ is one step reachable from x, and we
ignore all other information such as how many transitions exist between x and x′ in
P and what are the event labels of these transitions. But the information encoded by
fP is enough for the control of P which is shown in Theorem 3 below.

The following lemma shows that fP is satisfied by the plant P .
Proposition 1. Let P be a nonterminating plant and MP = (X,RP , AP ′, L′

P )
be the state transition graph of P with AP ′ = AP ∪X, RP = {(x, x′) ∈ X×X | ∃σ ∈
Σ, x′ = δP (x, σ)}, L′

P (x) = (LP (x) ∩ AP ) ∪ {x} ∀x ∈ X. Then it holds that
< MP , x0 >|= fP , where fP is as defined above.

Proof. Since x0 ∈ L′
P (x0), obviously < MP , x0 >|= f0. Next, for each state x in

MP , we have
• [x ∈ LP (x)]

∧
x′ �=x[x′ �∈ LP (x)] ⇒ < MP , x0 >|= f11;

• [∀p ∈ (LP (x) ∩AP ), p ∈ L′
P (x)] ∧[∀¬p ∈ (LP (x) ∩AP ), p �∈ L′

P (x)]
⇒ < MP , x0 >|= f12;

• [∀x′ ∈ {x′ | (x, x′) ∈ RP },∃σ ∈ Σ, x′ = δP (x, σ)] ⇒ < MP , x0 >|= f2;
• [∀x′ ∈ {x′ | ∃σ ∈ Σu, x

′ = δP (x, σ)}, (x, x′) ∈ RP ] ⇒ < MP , x0 >|= f3.
Combining the above implications, we obtain < MP , x0 >|= fP .

The following theorem reduces the control problem of CTL* to the decision prob-
lem of CTL*.

Theorem 3. Given a CTL* formula f and a deterministic nonterminating plant
P encoded by the CTL formula fP , f is P -controllable if and only if the CTL* formula
f ∧ fP is satisfiable.

Proof. For the necessity, suppose there exists a control-compatible and proposi-
tionally consistent supervisor S = (Y,Σ, δS , y0, AP, LS) such that < MP ||S , z0 >|= f .
Then we can get a model M ′ = (Z,R,AP ′, L′) for f ∧ fP from MP ||S = (Z,R,AP,L)
as follows: ∀z = (x, y) ∈ Z, L′(z) = L(z) ∪ {x}. Since < MP ||S , z0 >|= f , it
is obvious that M ′ is also a model for f , i.e., < M ′, z0 >|= f . For the formula
fP = f0∧f11∧f12∧f2∧f3, we have the following. Since z0 = (x0, y0), x0 ∈ L′(z0), this
implies < M ′, z0 >|= f0. Since MP ||S can be viewed a subgraph embedded in P , M ′ is
also a subgraph embedded in P . This implies that < M ′, z0 >|= f11∧f2. From the def-
inition of LP ||S and the propositional consistency of S, we know that < M ′, z0 >|= f12.
Further, from the control-compatibility of S, we have < M ′, z0 >|= f3. Combining
these, we get < M ′, z0 >|= f ∧ fP , i.e., f ∧ fP is satisfiable.

For the sufficiency, let M = (Q,R,AP ′, L) be a model of f ∧ fP , i.e., ∃q0 ∈ Q,
< M, q0 >|= f ∧ fP . We can get a supervisor S = (Y,Σ, δS , y0, AP, LS) from M as
follows: Y ⊆ Q is the set of states which are reachable from q0 in M ; ∀y ∈ Y, ∀σ ∈ Σ,

δS(y, σ) = {y′ | [(y, y′) ∈ R]∧[x′ = δP (x, σ)], where {x′} = L(y′) ∩X and {x} = L(y) ∩X};

y0 = q0; and ∀y ∈ Y, LS(y) = L(y) ∩ (AP ∪ {¬p|p ∈ AP}). Since M is a model of
fP , it ensures that S is control-compatible with respect to P , and further because P
is deterministic, S is propositionally consistent with respect to P . Also because P
is deterministic, P ||S has the same graph as S, and hence it is nonterminating and
< MP ||S , z0 >|= f . So f is P -controllable.

Now from the small model theorem for the decision of CTL* (Theorem 1), we
have the following small model theorem for the control of CTL*.

Theorem 4. Given a CTL* formula f and a deterministic nonterminating plant
P , f is P -controllable if and only if there exists a finite state control-compatible
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and propositionally consistent supervisor S such that P ||S is nonterminating and
< MP ||S , z0 >|= f .

Proof. The sufficiency is obvious. For necessity, from Theorem 3 we know that
if f is P -controllable, then f ∧ fP is satisfiable. Further, from Theorem 1, we have
that if f ∧ fP is satisfiable, then there exists a finite state transition graph M =
(Q,R,AP ′, L) such that ∃q0 ∈ Q, < M, q0 >|= f ∧ fP . Using the same method as
that in the proof of Theorem 3, we can obtain a finite state control-compatible and
propositionally consistent supervisor S from M such that P ||S is nonterminating and
< MP ||S , z0 >|= f . So the theorem holds.

From Theorem 2, we have the following result for the complexity of control prob-
lem for CTL* (resp., CTL).

Theorem 5. The control problem for CTL* (resp., CTL) is complete for de-
terministic double (resp., single) exponential time in the length of the specification
formula.

Proof. From Theorem 3 and the definition of fP , whose length is polynomial in
the number of states of P , we know that the control problem for CTL* (resp., CTL)
is polynomial-time reducible to the decision problem for CTL* (resp., CTL). From
Theorem 2 we have that the complexity of testing the satisfiability for CTL* (resp.,
CTL) has an upper bound of deterministic double (resp., single) exponential time
in the length of the specification formula. So the control problem for CTL* (resp.,
CTL) is upper bounded by deterministic double (resp., single) exponential time in
the length of the specification formula. This establishes the desired upper bound of
the complexity of the control problem.

To establish the desired lower bound of the complexity of the control problem, in
view of Theorem 2 it suffices to show that the decision problem can be polynomially
reduced to a control problem. For the decision problem of CTL* (resp., CTL), we can
view it as a control problem for the plant P = (X,Σ, δP , x0, AP, LP ) with X = {x0};
Σ = Σc = {σ}; x0 = δP (x0, σ); LP (x0) = ∅, where the goal of the control is to find
a supervisor that the controlled plant satisfies the given CTL* (resp., CTL) formula.
If a supervisor S exists for the above control problem, we can directly use MP ||S
as the model of the given CTL* (resp., CTL) formula. Since the decision problem
for CTL* (resp., CTL) has a lower bound complexity of deterministic double (resp.,
single) exponential time in the length of the specification formula, we must have that
the complexity of the control problem for CTL* (resp., CTL) is lower bounded by
deterministic double (resp., single) exponential time in the length of the specification
formula.

From Theorem 3, we know that an algorithm for the supervisor synthesis for
CTL* control can be obtained from the decision procedure of CTL*. Let f be a
CTL* specification formula and P be a deterministic nonterminating plant; then a
supervisor synthesis algorithm is as follows.

Algorithm 1. Supervisor Synthesis Algorithm for CTL* Control.

1. Test the satisfiability of the CTL* formula f ∧ fP . This step is done by using
the decision procedure for CTL* as follows:
(a) Construct a Rabin tree automaton for the CTL* formula f using the

method given in [9].
(b) Construct a tree-automaton for fP directly from the plant P ; this tree

automaton has the same state set as P and has no acceptance conditions.
(c) Construct the Rabin tree automaton for f ∧ fP from the synchronous

composition of the above two tree automata.
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(d) Test the emptiness of the set of trees accepted by the Rabin tree au-
tomaton for f ∧ fP [8]. The set of trees accepted by the tree automaton
is empty if and only if f ∧ fP is not satisfiable. If f ∧ fP is satisfiable,
then go to next step; otherwise stop the algorithm and output that “no
supervisor exist.”

2. If f ∧ fP is satisfiable, extract a model for the formula f ∧ fP from its non-
empty Rabin tree automaton using the result given in [8].

3. Derive a supervisor from the model for the formula f∧fP by using the method
in the proof of Theorem 3.

Remark 4. From Theorem 3, and using an argument similar to the soundness
and completeness of the decision procedure for CTL* [9, 8], we can conclude that
Algorithm 1 for control synthesis for CTL* is sound and complete. Algorithm 1 has a
worst case complexity of double exponential in the length of the CTL* formula f and
polynomial in the size of the plant P . This is because the Rabin tree automaton for
the specification formula f has a number of states that is double exponential in the
length of f and has a number of acceptance condition pairs which is single exponential
in the length of f , and the tree automaton for fP has the same state set as P and has
no acceptance condition, so the final Rabin tree automaton for f ∧ fP has a number
of states which is double exponential in the length of f and linear in the number of
states of the plant, and it has a number of acceptance condition pairs which is single
exponential in the length of the specification formula f only.

For an easy synchronous composition of tree automata for f and fP , it is re-
quired that the two tree automata have the same branching degree. To compute
the branching degree of a CTL* formula f , we first express it in its positive nor-
mal form by pushing negations as far inward as possible using De Morgan’s law
(¬(f1∨f2) ≡ ¬f1∧¬f2, ¬(f1∧f2) ≡ ¬f1∨¬f2) and the dualities (¬AGf1 ≡ EF¬f1,
¬A[f1Uf2] ≡ E[¬f1Bf2], etc.). Then the branching degree of f , denoted by df , can
be chosen to be the total number of the existential path quantifier “E” in its positive
normal form. Similarly, we can get the branching degree of fP , denoted by dfP . Then
we can choose d = df +dfP as the branching degree of the tree automata models for f
and fP . Next we give an example to illustrate how to compute the branching degree
of a CTL* formula and how to derive a tree automaton with a required branching
degree for the encoding fP of P that has the same state set as P .

Example 2. Consider the encoding fP for the plant P of Example 1 and suppose
now that Σu = {b}. Suppose the specification is given by f = EXAGp1. Then there
is one E in the formula fP because of the uncontrollable transition from x1 to x2 in
P , and there is one E in f . So the required branching degree of the tree automata for
f and fP can be chosen to be 1 + 1 = 2.

A tree automaton for fP with the required branching degree of 2 (i.e., the automa-
ton on binary trees) can be obtained as follows: A = (X, 2AP∪X , δA, x0, {(X,X)}),
where X, AP , and x0 are the same as in P , δA : X × 2AP∪X → 2X

2

is given
as δA(x0, (p1, p2, x0)) = {(x1, x1)}, δA(x1, (p1, p2, x1)) = {(x2, x2), (x2, x3), (x3, x2)},
δA(x2, (p1, x2)) = {(x2, x2)}, δA(x3, (p2, x3)) = {(x3, x3)}. Note that the uncontrol-
lable transition from x1 to x2 in P is captured in A by requiring that x2 be included
in every state pair in δA(x1, (p1, p2, x1)). It can be verified that any infinite binary
tree that is accepted by A satisfies the formula fP .

Remark 5. The supervisory control problem for language-based specifications is
typically of two types: (i) the target control problem (where a supervisor is designed
so that the controlled language equals the specification language) and (ii) the range
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Fig. 2. A counter example to [1].

control problem (where a supervisor is designed so that the controlled language is
bounded by a lower bound and an upper bound specification languages). Obviously
the range control problem is more general since the two bounds can be the same, in
which case it is the same as the target control problem. For the range control problem,
any supervisor is acceptable as long as the controlled language lies in the specified
range. If none exists, then one can consider minimal relaxations of the two bounds so
that a supervisor will exist.

The situation is even more general for a CTL* specification: a pair of LTL for-
mulae f and g may be chosen to serve as lower and upper bounds for the ω-language
of the controlled plant. Then the single LTL formula ¬f ∧ g specifies a range for
the controlled ω-language. Of course, more general specifications can be specified in
CTL* than just the simple range for ω-language. Similar to the approach taken for
the language range control, here we are seeking any supervisor that enforces the given
CTL* specification. (Algorithm 1 finds one such supervisor.) Now if none exists, then
one would like to consider a minimal relaxation of the given CTL* specification for
which a supervisor will exist. This topic is not within the scope of the present paper
but may be addressed by introducing an order relation over the class of all CTL*
formulas defined over a fixed set of atomic propositions using the simulation preorder.
We say f1 ≤ f2 if and only if a model M1 of f1 is simulated by a model M2 of f2.
(A simulation relation is a preorder over the set of all models since it is reflexive and
transitive but not antisymmetric.) Minimal relaxations of a specification formula can
be defined with respect to this order relation.

3.1. Supervisory control for CTL specification. If the specification is given
as a CTL formula, we may view it as a CTL* formula and use Algorithm 1 for a
supervisor synthesis for CTL control. But this method has a double exponential
complexity in the length of the specification formula. From Theorem 3, we know that
the control problem for a CTL formula f can be reduced to the decision problem for
the formula f ∧ fP . Since fP by its definition is also a CTL formula, f ∧ fP is a CTL
formula, and so we can get a supervisor synthesis algorithm for the control of the CTL
formula f from the decision procedure for the CTL formula f ∧ fP with a worst-case
complexity of single exponential in the length of the CTL specification formula (as
opposed to double exponential for the more general case of a CTL* specification). In
the appendix, we present a detailed supervisor synthesis algorithm for CTL control.

Remark 6. In [1], the CTL control problem was also studied. But the author
restricted the problem by only considering the state-based supervisors and a special
class of CTL formulas. Also note that the method in [1] gives wrong results even for
some CTL formulas which do belong to the special class of formulas considered in [1].
To see this, consider the example shown in Figure 2, where a, b, c all are controllable
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Fig. 3. An example for the completeness of LTL control.

events. Then the control action of enabling all a, b, c will let EXp1 hold at the initial
state, and the control action of enabling only b and c will let AXp2 hold at the initial
state. In [1], it was claimed that in order to let EXp1 ∧ AXp2 hold at the initial
state, we may take the conjunction of the control actions for EXp1 and AXp2, i.e.,
enabling b and c would ensure that EXp1 ∧ AXp2 will hold at the initial state. It is
obvious that under this control action, EXp1 does not hold at the initial state. So
the method in [1] gives a wrong result for the above example.

3.2. Supervisory control for LTL specification. Let us next consider the
special case of LTL. Recall that LTL is obtained by restricting CTL* in that except
for the path quantifier A appearing at the beginning of the formula no other path
quantifiers exist in the formula. If the specification f is given as a LTL formula, then
we have two different ways to solve the control problem:

1. View the LTL formula as a CTL* formula and directly use Algorithm 1 for
the supervisor synthesis of LTL control.

2. First use a tableau construction method such as the one given in [10] to
convert the LTL formula into a nondeterministic Buchi automaton; next use
the method in [29] to change the nondeterministic Buchi automaton into a
deterministic Rabin automaton; next derive a new Rabin automaton from the
synchronous composition of the plant automaton and the specification Rabin
automaton; and finally use the approach in [33] to solve the control problem
on this final Rabin automaton.

These two methods have a same worst-case complexity which is polynomial in the size
of the plant and double exponential in the length of the specification LTL formula.

We next propose a supervisor synthesis algorithm for the control of LTL which
has a smaller complexity (single exponential in the length of the LTL formula as
opposed to double exponential) but it is only sound (and not complete). We first
change the LTL formula into a CTL formula by inserting the path quantifier A before
every temporal operator in the formula and removing any repeated A; then we apply
Algorithm 2 (given in the appendix) for the supervisor synthesis for this CTL formula.
From the semantics of CTL and LTL, we know that the supervisor derived does work
for the original LTL formula. The worst-case complexity of this method is the same as
that for Algorithm 2 which is polynomial in the size of the plant and single exponential
in the length of the specification LTL formula.

This method, however, is not complete, i.e., when it answers “no” for the existence
of a supervisor, there may still exist a supervisor that can enforce the given LTL
specification. Consider, for example, the system shown in Figure 3, for which the
specification is given as A[(p1Up3) ∨ (p2Up4)]. Assuming that the event c is the only
controllable event, it is obvious that the specification can be enforced if the supervisor
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disables c at the initial state. But if we transfer the specification into a CTL formula
A(p1Up3)∨A(p2Up4) using the method described above, then it is easy to verify that
no supervisor exists.

Remark 7. The algorithm given in [2] for the control of MTL (LTL together with
real-time constraints) is sound but not complete, which was not clarified there. Since
an LTL formula is also an MTL formula, we can apply the algorithm given in [2] to
the example of Figure 3. The algorithm in [2] will answer “no” for the existence of a
supervisor for the above example. But we know that a supervisor does exist, thereby
demonstrating the incompleteness of the algorithm given in [2].

4. Illustrative example. In this section, we give a simple example to illustrate
our result. This is a traffic control problem of a mouse in a maze. The maze, shown
in Figure 4, consists of five rooms connected by various one-way passages, where
some of them can be closed through control. There is also a cat which alway stays
in room 1. The mouse is initially in room 0, but it can visit other rooms by using
one-way passages. Our task is to design a supervisor to control the passages in order
to guarantee that

Spec 1 The mouse never visits room 1 where the cat stays (this is a safety
property).

Spec 2 The mouse can go to room 0 for play at any time it wants to (this is a
nonblocking property).

Spec 3 The mouse shall visit room 2 for food infinitely often (this is a liveness
property).

Spec 4 The mouse shall never be locked in a room (this is a nonterminating
property).

The above problem can be formulated as a supervisory control problem of a dis-
crete event system with a CTL specification as follows. The system is modeled as
a plant P = (X,Σ, δP , x0, AP, LP ), which is shown in Figure 5, where X = {xi, i =
0, 1, 2, 3, 4}; Σ = {c1, c2, c3, u1, u2}, Σc = {c1, c2, c3}; AP = {p0, p1, p2}; LP (x0) =
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{p0,¬p1,¬p2}, LP (x1) = {¬p0, p1,¬p2}, LP (x2) = {¬p0,¬p1, p2}, LP (x3) = LP (x4) =
{¬p0,¬p1,¬p2}. The specification is given by the CTL formula f = AG¬p1 ∧
AGEFp0∧AGAFp2∧AGEXtrue, where the ith conjunct corresponds to the Spec i.

Now we can use Algorithm 2 for the supervisor synthesis of the above control
problem. We first obtain the tableau T for the formula f ∧ fP , where fP is the
CTL formula encoding the plant P (for brevity fP is omitted here). The tableau
T = (ST , AP

′, RT , LT ) is shown in Figure 6(a), where for 0 ≤ i ≤ 3, LT (si) =
{f} ∪ LT (si+4), and for i > 3,

LT (s4) = {p0,¬p1,¬p2, AG¬p1, AGEFp0, AGAFp2, AGEXtrue,AXAG¬p1, EFp0,

AXAGEFp0, AFp2, AXAGAFp2, EXtrue,AXAGEXtrue,AXAFp2,

x0, EXx2};
LT (s5) = {¬p0,¬p1, p2, AG¬p1, AGEFp0, AGAFp2, AGEXtrue,AXAG¬p1, EFp0,

AXAGEFp0, AFp2, AXAGAFp2, EXtrue,AXAGEXtrue,EXEFp0, x2};
LT (s6) = {¬p0,¬p1,¬p2, AG¬p1, AGEFp0, AGAFp2, AGEXtrue,AXAG¬p1, EFp0,

AXAGEFp0, AFp2, AXAGAFp2, EXtrue,AXAGEXtrue,EXEFp0,

AXAFp2, x3, EXx2, EXx4};
LT (s7) = {¬p0,¬p1,¬p2, AG¬p1, AGEFp0, AGAFp2, AGEXtrue,AXAG¬p1, EFp0,

AXAGEFp0, AFp2, AXAGAFp2, EXtrue,AXAGEXtrue,EXEFp0,

AXAFp2, x4, EXx3}.

Next a model M = (Q,R,AP ′, L) for f ∧ fP is derived and this is shown in
Figure 6(b), where Q = {s0, s1, s4, s5} ⊂ ST , R = RT |Q and L = LT |Q, the restriction
of RT and LT , respectively, to Q.

Finally a supervisor S is obtained from M and is shown in Figure 7. It follows
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that the mouse moves between rooms 0 and 2 only, and hence obviously the controlled
system P ||S satisfies the given specification.

5. Conclusion. We studied the supervisory control problem for systems with
temporal logic specifications. The full branching time logic of CTL* is used for ex-
pressing the control specifications. The main contributions of the paper are summa-
rized as follows:

1. CTL* temporal logic allows the control constraints on the sequences of states
which can be also captured by a regular ∗-language or ω-language, as well as
on the more general branching structures of states which cannot be captured
by a regular ∗-language or ω-language as shown in Example 1.

2. For the first time a sound and complete supervisory synthesis algorithm for
CTL* specifications has been obtained. (Supervisors are allowed to be non-
deterministic as this allows for the existence of a supervisor for a larger class
of CTL* specifications.)

3. By reducing the control problem to the decision problem, a small model
theorem for the CTL* control is derived.

4. The computational complexity of the control algorithms have been derived:
the control problem for CTL* (resp., CTL) is complete for deterministic dou-
ble (resp., single) exponential time in the length of the specification formula.
Further, it is polynomial in the number of plant states.

5. Usage of temporal logic specifications does not increase the computational
complexity of supervisor synthesis (compared to that of formal language/
automata-based specifications).

The last point above requires further clarification. In some cases, a property may
be expressed by either a CTL* formula or by a ∗-language or a ω-language. So for
these cases we can compare our method with that based on finite state automaton. If
we use a finite state automaton accepting a ∗-language to give the specification, then
the supervisor synthesis is polynomial in the product of the number of plant states
and the number of the states of the specification automaton. From the known tableau
construction methods, we know that the number of states in an automaton model of
a temporal logic formula is exponential in the length of the formula (whenever the
formula can be represented by an automaton). So if we start with a temporal logic
specification (that can be also expressed as an automaton) and convert it to an au-
tomaton, and apply the existing supervisory control theory results, then the resulting
computational complexity will be polynomial in the number of plant states and single
exponential in the length of the temporal logic specification formula. This matches
the complexity of our algorithm, and so there is no loss of computational complexity
from the approach developed above, yet there is a gain in expressibility since a tem-
poral logic formula is more compact. The use of temporal logic shifts the burden from
the user (who gives the specification) to the supervisor designer (who computes the
supervisor)—computation of supervisor for a temporal logic specification although
more involved, has the same complexity.

A. Supervisor synthesis for CTL specification. We assume that the given
CTL formula f is in positive normal form. We use ∼ f1 to denote the formula in
positive normal form equivalent to ¬f1. We begin with a few definitions taken from
[6]. The closure of f , cl(f), is the smallest set of formulas containing f and satisfying

• each subformula of f that is a state formula is in cl(f);
• if EFf1, EGf1, E[f1Uf2], or E[f1Bf2] is in cl(f), then, respectively,
EXEFf1, EXEGf1, EXE[f1Uf2], or EXE[f1Bf2] is in cl(f);
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• if AFf1, AGf1, A[f1Uf2], or A[f1Bf2] is in cl(f), then, respectively,
AXAFf1, AXAGf1, AXA[f1Uf2], or AXA[f1Bf2] is in cl(f).

The extended closure of f is defined as ecl(f) = cl(f) ∪ {∼ f1|f1 ∈ cl(f)}. Note that
|ecl(f)| = O(|f |), where |f | denotes the length of f .

We say that a formula is elementary provided that it is a proposition, is the
negation of a proposition, or is in the form of AXf1 or EXf1. Any other formula is
nonelementary. Each nonelementary formula may be viewed as either a conjunctive
α-formula, α = α1 ∧α2, or a disjunctive β-formula, β = β1 ∨β2. Clearly, f1 ∧ f2 is an
α formula and f1 ∨ f2 is a β formula. A formula such as AGf1, A[f1Uf2], A[f1Bf2],
etc., may be classified as an α or β formula based on its fix-point characterization;
e.g., AGf1 = f1∧AXAGf1 is an α formula and EFf1 = f1∨EXEFf1 is a β formula.
The classification for all nonelementary formulas is given as
α− formula α = α1 ∧ α2,

α = f1 ∧ f2, α1 = f1, α2 = f2,
α = A[f1Bf2], α1 =∼ f2, α2 = f1 ∨AXA[f1Bf2],
α = E[f1Bf2], α1 =∼ f2, α2 = f1 ∨ EXE[f1Bf2],
α = AGf1, α1 = f1, α2 = AXAGf1,
α = EGf1, α1 = f1, α2 = EXEGf1;

β − formula β = β1 ∨ β2,

β = f1 ∨ f2, β1 = f1 β2 = f2,
β = A[f1Uf2], β1 = f2, β2 = f1 ∧AXA[f1Uf2],
β = E[f1Uf2], β1 = f2, β2 = f1 ∧ EXE[f1Uf2],
β = AFf1, β1 = f1, β2 = AXAFf1,
β = EFf1, β1 = f1, β2 = EXEFf1.

A state transition graph M = (Q,R,AP,L) is called a structure if the relation
R is required to be total; otherwise M is called a prestructure. An interior node
of a prestructure is one with at least one successor. A frontier node is one with
no successors. A prestructure M1 = (Q1, R1, AP, L1) is said to be contained in a
structure M2 = (Q2, R2, AP, L2) whenever Q1 ⊆ Q2, R1 ⊆ R2, and L1 = L2|Q1,
the restriction of L2 to Q1; M1 is said to be cleanly embedded in M2 provided M1 is
contained in M2, and also every interior node of M1 has the same set of successors as
its corresponding node in M2.

The following consistency requirements are associated with the labeling function
L of a (pre)structure. Since we consider the control of CTL, the definition of L is
extended as L : Q → 2ecl(f), where f is the specification formula. ∀q ∈ Q, we have
zero-step consistency rules,

ZS0 p ∈ L(q) ⇒∼ p �∈ L(q);
ZS1 α ∈ L(q) ⇒ [(α1 ∈ L(q)) ∧ (α2 ∈ L(q))];
ZS2 β ∈ L(q) ⇒ [(β1 ∈ L(q)) ∨ (β2 ∈ L(q))];

one-step consistency rules,
OS0 AXp ∈ L(q) ⇒ [∀q′ ∈ Q, ((q, q′) �∈ R) ∨ (p ∈ L(q′))];
OS1 EXp ∈ L(q) ⇒ [∃q′ ∈ Q, ((q, q′) ∈ R) ∧ (p ∈ L(q))].

A fragment is a prestructure whose graph is a directed acyclic graph (DAG) such
that all its nodes satisfy rules ZS0–ZS2 and OS0 and all its interior nodes satisfy rule
OS1.

A formula of the form A[pUp′] or E[pUp′] is called an eventuality formula. Since
AFp′ and EFp′ are special cases of A[pUp′] and E[pUp′], respectively, they are also
eventuality formulas.
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An eventuality formula (AFp′, A[pUp′], EFp′, or E[pUp′]) is said to be fulfilled
in a structure M = (Q,AP,R,L) if ∀q ∈ Q:

• AFp′ ∈ L(q) (resp., A[pUp′] ∈ L(q)) implies that there is a finite fragment,
called DAG[q,AFp′] (resp., DAG[q,A[pUp′]]), rooted at q and cleanly embed-
ded in M such that for all frontier nodes t of the fragment, p′ ∈ L(t), and for
all interior nodes u of the fragment, true (resp., p) ∈ L(u);

• EFp′ ∈ L(q) (resp., E[pUp′] ∈ L(q)) implies that there is a finite fragment,
called DAG[q, EFp′] (resp., DAG[q, E[pUp′]]), rooted at q and cleanly embed-
ded in M such that for some frontier node t of the fragment, p′ ∈ L(t), and
there exists one path from q to t in the fragment such that for all interior
nodes u along the path, true (resp., p) ∈ L(u).

An eventuality formula (AFp′, A[pUp′], EFp′, or E[pUp′]) is said to be pseudo-
fulfilled in a structure M = (Q,AP,R,L) if ∀q ∈ Q,

• AFp′ ∈ L(q) (resp., A[pUp′] ∈ L(q)) implies that there is a finite fragment,
called DAG[q,AFp′] (resp., DAG[q,A[pUp′]]), rooted at q and contained in
M such that for all frontier nodes t of the fragment, p′ ∈ L(t), and for all
interior nodes u of the fragment, true (resp., p) ∈ L(u);

• EFp′ ∈ L(q) (resp., E[pUp′] ∈ L(q)) implies that there is a finite fragment,
called DAG[q, EFp′] (resp., DAG[q, E[pUp′]]), rooted at q and contained in
M such that for some frontier node t of the fragment, p′ ∈ L(t), and there
exists one path from q to t in the fragment such that for all interior nodes u
along the path, true (resp., p) ∈ L(u).

Now we present a supervisor synthesis algorithm for the control of CTL, which is
based on the decision procedure for CTL [6]. The algorithm differs from the decision
procedure as follows:

• A modular method is used for the tableau construction. It ensures that the
worst-case complexity of the algorithm is polynomial in the size of the plant.

• A supervisor, not a model, is finally synthesized.

Let f be the given CTL specification formula, fP be the CTL formula encoding
the given deterministic nonterminating plant P , and AP ′ = AP ∪X be the extended
atomic proposition set. Since we require the controlled plant to be nonterminating,
we can assume that f is in the form of f = f ′ ∧ AGEXtrue. Then the algorithm is
given as follows.

Algorithm 2. Supervisor Synthesis Algorithm for CTL Specification.

1. Test the satisfiability of the CTL formula f ∧ fP . This step is done by using
the decision procedure for CTL as follows:
(a) Construct a tableau T for the CTL formula f ∧ fP . We use a modular

method to obtain the tableau T as follows:
i. Construct a tableau Tf for the CTL specification formula f . Tf is

constructed from a bipartite graph T0 = (C∪D,RCD∪RDC , AP, L0),
where nodes in C are called states, nodes in D are called prestates,
and each node is uniquely identified by its label defined by L0;
RCD ⊆ C × D and RDC ⊆ D × C are transition relations; L0 :
C ∪ D → ecl(f) is the labeling function. Initially, C, RCD, and
RDC are all empty, and D contains a single prestate d labeled with
f . Repeat the following until no more nodes and transitions can be
added into T0: let e be a frontier node of T0,
• if e ∈ D, then let {Li ⊆ ecl(f) | 1 ≤ i ≤ k} be the set of all

possible labels such that ∀i ∈ {1, 2, . . . , k}, “[Li is a minimal
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superset of L0(e)] ∧ [Li satisfies rules ZS0-ZS2] ∧ [∀p ∈ AP ,
(p ∈ Li) ∨ (¬p ∈ Li)],” and for each Li create a state ci with
L0(ci) = Li, and add ci into C if ci �∈ C, and (e, ci) into RDC ;

• if e ∈ C labeled with the next time formulas

{AXp1, . . . , AXpj , EXp′1, . . . , EXp′k},

then ∀i ∈ {1, . . . , k}, create prestates di labeled with
{p1, . . . , pj , p

′
i}, and add di into D if di �∈ D, and (e, di) into

RCD.
The tableau Tf is obtained as Tf = (Cf , Rf , AP, Lf ), where Cf = C,
Rf = RCD ◦RDC , and Lf = L0|C , the restriction of L0 to C.

ii. Derive the tableau T for f ∧ fP from the synchronous composi-
tion of the plant P = (X,Σ, δP , x0, AP, LP ) and the tableau Tf =
(Cf , Rf , AP, Lf ) as follows: T = (ST , RT , AP ′, LT ), where
• ST ⊆ Cf × X is the state set, ST = {(t, x) ∈ Cf × X| Lf (t)

and LP (x) are propositionally consistent}, where “Lf (t) and
LP (x) are propositionally consistent” means that ∀p ∈ AP , [p ∈
(Lf (t) ∪ LP (x)) ⇒ ¬p �∈ (Lf (t) ∪ LP (x))];

• AP ′ = AP ∪X;
• RT ⊆ ST ×ST is the transition relation, RT = {((t, x), (t′, x′)) ∈

ST × ST | (t, t′) ∈ Rf , and ∃σ ∈ Σ s.t. δP (x, σ) = x′};
• LT is the labeling function defined as ∀(t, x) ∈ ST×ST , LT ((t, x)) =

Lf (t) ∪ LP (x) ∪ {x} ∪ {EXy| y ∈ X, ∃σu ∈ Σu, y = δP (x, σu)}.
(b) Test the tableau T for the existence of a model for f ∧ fP . This is

done by first pruning (see below) the tableau T to ensure that the con-
sistency and pseudofulfillment of eventualities are satisfied in T , then
checking in the pruned tableau T whether there exists a state s0 such
that {f, x0} ⊆ LT (s0). If there exists such a state, then and only then
f∧fP is satisfiable. If f∧fP is satisfiable, then go to next step; otherwise
stop the algorithm and output that “no supervisor exists.”

The pruning of T is achieved by repeatedly applying the following
deletion rules until no more nodes can be deleted from T :
• Delete any state which has no successors.
• Delete any state which violates rule OS1.
• Delete any state s such that ∃r ∈ LT (s), r is an eventuality formula,

and r is not pseudofulfilled at s.
To test the pseudofulfillment of an eventuality formula at each state in
T , the following ranking procedure can be used. For an A[pUq] eventu-
ality, initially assign rank 1 to all nodes labeled with q and rank ∞
to all other nodes. Then for each node s and each formula r such
that EXr ∈ LT (s), define SUCCr(s) = {s′ | (s, s′) ∈ R, r ∈ LT (s′)}
and compute rank(SUCCr(s)) = mins′{rank(s′) | s′ ∈ SUCCr(s)}.
Now for each node s of rank ∞ such that p ∈ LT (s), let rank(s) =
1 + maxr{rank(SUCCr(s))| EXr ∈ LT (s)}. Since AGEXtrue is con-
tained in f , the formula EXtrue is labeled at every node in T . So
the above procedure is well defined. Repeatedly apply the above rank-
ing procedure until stabilization. A node s has a finite rank if and
only if A[pUq] is pseudofulfilled at s in T . Testing for the pseudo-
fulfillment of AFq follows from above since it is a special case of
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A[pUq]. For testing the pseudofulfillment of E[pUq], a similar proce-
dure as above can be applied, with the only modification that rank(s) =
1 + minr{rank(SUCCr(s)) | EXr ∈ LT (s)}. Testing for the pseudoful-
fillment of EFq is again a special case of E[pUq].

2. Extract a model M for the formula f ∧ fP from the tableau T . M =
(Q,R,AP ′, L) is extracted from T = (ST , RT , AP ′, LT ) as follows [6]. For
each state s in ST and each eventuality q in ecl(f), we construct a directed
acyclic graph rooted at s, DAGG[s, q]. If the eventuality q ∈ LT (s), then
DAGG[s, q] = DAG[s, q]; otherwise DAGG[s, q] is taken to be the subgraph
consisting of s and a sufficient set of successors to ensure that one-step con-
sistency rules OS0-1 are satisfied. Next we take each DAGG[s, q] and arrange
them in a matrix by putting DAGG[sj , qi] in the ith row and the jth col-
umn of the matrix. The matrix has a dimension of m × n, where m (resp.,
n) is the number of eventualities (resp., states) in the tableau T . Then we
connect all the DAGGs in the matrix together in the following way: for any
frontier node s in the ith row, merge it with the corresponding root node s
of DAGG[s, qi+1] in the (i+ 1)th row; for any frontier node s in the last row,
merge it with the corresponding root node s of DAGG[s, q1] in the first row.
We use M = (Q,R,AP ′, L) to represent the above finite state transition
graph, where Q is the set of states in the graph, R is the transition relation
of the graph, and L is the labeling function for each state in the graph which
is a natural extension of LT . M defines a model for f ∧ fP , i.e., ∃q0 ∈ Q such
that < M, q0 >|= f ∧ fP .

3. Derive a supervisor S from the model M of f ∧fP . Since M = (Q,R,AP ′, L)
is a model of f ∧ fP , we know that ∃q0 ∈ Q, < M, q0 >|= f ∧ fP . We
can get a control-compatible and propositionally consistent supervisor S =
(Y,Σ, δS , y0, LS) from M using the same method as given in the proof of
Theorem 3 as follows: Y ⊆ Q is the set of states which are reachable from q0
in M ; ∀y ∈ Y, ∀σ ∈ Σ,

δS(y, σ) = {y′ | [(y, y′) ∈ R] ∧ [x′ = δP (x, σ)],

where {x′} = L(y′) ∩X and {x} = L(y) ∩X};

y0 = q0; and ∀y ∈ Y, LS(y) = L(y) ∩ (AP ∪ {¬p|p ∈ AP}).
Remark 8. From Theorem 3, and using an argument similar to the soundness

and completeness of the decision procedure for CTL [6], we can conclude that Algo-
rithm 2 for control synthesis for CTL is sound and complete. It is easy to check that
Algorithm 2 has a worst-case complexity of single exponential in the length of the
specification CTL formula f and polynomial in the number of states of the plant P . It
matches the lower bound complexity of the CTL control problem given in Theorem 5.
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Abstract. Semi-Markov decision processes on Borel spaces with deterministic kernels have many
practical applications, particularly in inventory theory. Most of the results from general semi-Markov
decision processes do not carry over to a deterministic kernel since such a kernel does not provide
“smoothness.” We develop infinite dimensional linear programming theory for a general stochastic
semi-Markov decision process. We give conditions, general enough to allow deterministic kernels,
for solvability and strong duality of the resulting linear programs. By using the developed linear
programming theory we give conditions for the existence of a stationary deterministic policy for
deterministic kernels, which is optimal among all possible policies.
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1. Introduction. A semi-Markov decision process (SMDP) on Borel state and
action spaces is said to have a Dirac’s transition law if the state at the next decision
epoch is uniquely determined by a given function evaluated at the current state-action
pair. Such models are simple to state but turn out to be even more difficult to study
and analyze than their true stochastic counterparts. They have many practical appli-
cations, for example, in inventory routing (Adelman (2003)). In a companion paper,
Adelman and Klabjan (2005) provide a new SMDP formulation for a widely studied,
classical inventory control problem. This problem generalizes the classical economic
order quantity problem to a multi-item setting. Most existing SMDP theory does not
apply to Dirac’s transition laws.

Nearly all approaches to the question of whether there exists an optimal pol-
icy require the transition law to be strongly continuous, but a Dirac’s transition law
is at best only weakly continuous. Strong continuity ensures that “smoothness” is
maintained in the optimality equations. For example, existing approaches are based
on either the vanishing discount rate methodology (Hernández-Lerma and Lasserre
(1990), Vega-Amaya (1993)), or policy iteration (Luque-Vásquez and Hernández-
Lerma (1999), Hernández-Lerma and Lasserre (1997)); see also the series of mono-
graphs by Hernández-Lerma (1989) and Hernández-Lerma and Lasserre (1996b, 1999).
An alternative approach presented by Bhattacharya and Majumdar (1989) is to allow
weak continuity of the kernel but to impose equicontinuity of the discounted value
functions. Unfortunately, Dirac’s transition laws do not provide equicontinuity.

A recent approach in the literature that assumes weak continuity of the transition
law is infinite linear programming, developed for the discrete-time case, i.e., Markov
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decision processes, by Hernández-Lerma and González-Hernández (1998), Hernández-
Lerma and Lasserre (1996a), and Hernández-Lerma and Lasserre (1994). However, ex-
isting theory also requires that the expected transition times between decision epochs
be lower bounded away from zero. The only exception that we are aware of is the
work by Vega-Amaya (2003) in the context of zero-sum semi-Markov games, where
the author assumes the transition time to be positive and not necessarily bounded
away from zero. This condition is trivially satisfied in the case of discrete time periods.
When satisfied in the semi-Markov case it is well known that there exists a transforma-
tion of the problem into discrete-time, employed, for instance, by Bhattacharya and
Majumdar (1989), Vega-Amaya (1993), and Luque-Vásquez and Hernández-Lerma
(1999) although not using linear programming. Unfortunately, for the inventory con-
trol applications we have in mind, this condition is violated. It is possible to have
multiple decision epochs at the same instant of time.

In this paper, we relax both of the above assumptions. We assume instead that the
transition law is weakly continuous, and that the expected transition time plus current
cost, rather than just the former, is lower bounded away from zero. Therefore, all our
results apply to the more restrictive settings in the references above. Instead of seeking
transformations to a discrete-time Markov control setting, we work directly with a
new infinite linear programming formulation of the SMDP, presented in section 3.1,
which extends the formulation of Fox (1966) in finite spaces to Borel spaces and the
infinite linear programming formulation of discrete time MDP by Hernández-Lerma
and Lasserre (1994). For a general stochastic SMDP, we establish a set of conditions
under which this infinite linear program possesses strong duality, i.e., there is no
duality gap and primal-dual optimal solutions are attained. Although the infinite
linear programming approach to the Borel setting leads to the existence of an optimal
policy that is stationary randomized, to date this approach has not been fruitful in
showing the existence of an optimal policy that is stationary deterministic. We provide
this result when the transition law is Dirac’s under a strong recurrence condition. In
a companion paper (Adelman and Klabjan (2005)), we show that all the conditions
in this paper are verifiable in an inventory application.

We owe a debt of gratitude to Hernández-Lerma and González-Hernández (1998),
Hernández-Lerma and Lasserre (1996a), and Hernández-Lerma and Lasserre (1994)
for their key insight that infinite linear programming can handle weakly continuous
transition laws. This was indeed fortuitous, as what originally prompted our interest
in it was one of the authors’ use of it in an approximate dynamic programming
framework to generate near optimal control policies in inventory routing; see Adelman
(2003). In future work, our duality results will prove useful in devising stronger, and
possibly even convergent, approximate dynamic programming methodologies.

In section 2 we formulate a general semi-Markov decision process. In section 3
we formulate our primal-dual pair of infinite linear programs and give conditions for
strong duality. In section 4, we provide results specialized to the case of a Dirac’s
transition law.

2. Semi-Markov control model. The semi-Markov control model is defined
by (X,A, {A(x) : x ∈ X}, Q′, c′), where X is the state space and A is the control
set. We assume that both X and A are Borel spaces. For each x ∈ X we are given
a nonempty Borel subset A(x) ⊆ A, which specifies the set of admissible controls, if
the state of the system is x. We assume that K = {(x, a) : x ∈ X, a ∈ A(x)} is a
Borel subset of X × A. Let Q′ represent the time-dependant transition law. If the
system is in state x ∈ X and control action a ∈ A(x) is taken, then the system’s next
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state is in B after transition time t ∈ T = [0,∞) with probability Q′(t, B|x, a), where
B ⊆ X is a Borel set. If the system is in state x ∈ X and control action a ∈ A(x)
is selected leading to a state x′ after a transition time t, then the system incurs a
cost c′(t, x′, x, a). This cost includes the immediate cost of action a as well as any
additional cost occurring during the transition to the next state.

For any Borel set B ⊆ X, and for any (x, a) ∈ K the function Q′(·, B|x, a) is a
distribution function, i.e.,

• Q′(t, B|x, a) = 0 for every t ≤ 0,
• Q′(t, B|x, a) is a monotone lower semicontinuous function in t, and
• limt→∞ Q′(t,X|x, a) = 1.

We denote by xn the state of the system at the nth decision time tn and by
an ∈ A(xn) the corresponding control action. The transition time δn+1 = tn+1 − tn
has distribution F (·|xn, an) = Q′(·, X|xn, an). For every Borel set B ⊆ X and for
every (x, a) ∈ K let Q(B|x, a) = limt→∞ Q′(t, B|x, a) denote the probability that the
system is in a state from B in the next decision epoch when action a is chosen in state
x. We call Q the transition law. Observe that Q is a stochastic kernel on X.

We denote by Hn the state of all admissible histories until the nth transition. For-
mally, H0 = X and Hn = (K×T )n×X, where hn = (x0, a0, δ1, . . . , xn−1, an−1, δn, xn)
∈ Hn encodes the history of the process.

Definition 1. A policy π is a sequence π = {πn}∞n=0 of stochastic kernels πn

on A satisfying πn(A(xn)|hn) = 1 for every admissible history hn ∈ Hn and for every
n ∈ N. A policy π is a stationary randomized policy if there exists a stochastic kernel
φ such that πn(·|hn) = φ(·|xn) for each hn ∈ Hn and for each n ∈ N. A policy
π = {πn}∞n=0 is a stationary deterministic policy if there exists a measurable function
f : X → A such that πn(·|hn) is concentrated at f(xn) ∈ A(xn) for each n ∈ N. We
denote by Π the set of all policies and by ΠSD the subset of all stationary deterministic
policies.

Every initial distribution ν (which is a probability measure on X) and every policy
π determine a unique probability measure Pπ

ν and a stochastic process {(xn, an, δn),
n = 0, 1, . . . } on Ω = (X ×A× T )∞ (theorem of Ionescu Tulcea; see, e.g., Ash (1972,
pp. 109) for a proof). We denote by Eπ

ν the expectation operator with respect to Pπ
ν

and for x ∈ X let Eπ
x be equal to Eπ

ν , where ν is the Dirac measure concentrated on
x. The mean holding time in state x under a control a ∈ A(x) is

τ(x, a) =

∫
T

t F (dt|x, a) =

∫
T

tQ′(dt,X|x, a).

Definition 2. Given an initial distribution ν and a policy π, the long-run ex-
pected average cost is defined as

J(π, ν) = lim sup
n→∞

Eπ
ν (
∑n−1

k=0 c
′(tk, xk+1, xk, ak)

Eπ
ν (tn)

.

Let J∗ = infν infπ J(π, ν). A pair (ν∗, π∗) is a minimum pair if J(ν∗, π∗) = J∗.
The average cost problem is the problem of finding a minimum pair. For x ∈ X let
J(x) = infπ∈Π J(π, x) be the optimal average cost function. A policy π∗ is average
cost optimal if J(π∗, x) = J(x) for every x ∈ X. It is easy to see that

J(π, ν) = lim sup
n→∞

Eπ
ν (
∑n−1

k=0 c(xk, ak))

Eπ
ν (
∑n−1

k=0 τ(xk, ak))
,
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where

c(x, a) =

∫
X

∫
T

c′(t, x′, x, a)Q′(dt,dx′|x, a).

Note that a Markov control model is a semi-Markov control model with transition
times equal to 1 with probability 1.

A special class of semi-Markov processes includes those with the transition law
concentrated at a single state.

Definition 3. The transition law is a Dirac’s transition law if there exists a
measurable function s : X ×A → X such that

Q(B|x, a) =

{
1 s(x, a) ∈ B,

0 otherwise
(1)

for every Borel measurable set B ⊆ X.

Definition 4. A transition law Q is weakly continuous if h : X×A → R defined
by

h(x, a) =

∫
X

u(y)Q(dy|x, a)

is a continuous bounded function on K for every continuous bounded function u on
X. Kernel Q is strongly continuous if h is a continuous bounded function on K for
every measurable bounded function u on X.

If Q is a Dirac’s transition law, then h(x, a) = u(s(x, a)). In this case Q is weakly
continuous if and only if s is a continuous function (consider u(x) = x for all x ∈ X).
However, Q is typically not strongly continuous.

For this semi-Markov decision process, the average cost optimality equation is

u(x) = inf
a∈A(x)

{
c(x, a) − gτ(x, a) +

∫
X

u(y)Q(dy|x, a)
}
.

In the case of a Dirac’s transition law, this simplifies to

u(x) = inf
a∈A(x)

{c(x, a) − gτ(x, a) + u(s(x, a))}.(2)

3. Linear programming and semi-Markov control models with the av-
erage cost criterion. In this section we develop a linear programming formulation
for the semi-Markov control model. The formulation is based on the prior work on
infinite-dimensional linear programming for Markov control models of Hernández-
Lerma and Lasserre (1999, pp. 203–249). A thorough coverage of infinite-dimensional
linear programs is given by Anderson and Nash (1987).

3.1. Linear programs. Given a Borel space Z and a measurable weight func-
tion f ≥ 1, let Bf (Z) be the Banach space of measurable functions u with finite
f-norm

‖u‖f = sup
Z

|u(s)|
|f(s)| .
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In addition, let Mf (Z) be the Banach space of signed measures μ on the Borel space
on Z with finite f total variation norm

‖μ‖TV
f = sup

‖u‖f≤1

∣∣∣∣∫
Z

u dμ

∣∣∣∣ .
The total variation norm of μ is ‖μ‖TV = ‖μ‖1. It it easy to see that

‖μ‖TV ≤ ‖μ‖TV
f .(3)

See, e.g., Hernández-Lerma and Lasserre (1999, pp. 2–3) for a proof that Bf (Z) and
Mf (Z) are Banach spaces. Let B(Z) be the Borel σ-algebra on Z and let Cb(Z) be
the set of all continuous, bounded functions on Z.

Let w : K −→ R, w0(x) : X −→ R be defined as

w(x, a) = τ(x, a) + c(x, a),(4)

w0(x) = inf
a∈A(x)

w(x, a).(5)

To define linear programs corresponding to the semi-Markov control process, we
need the following assumptions.

Assumption A1. w(x, a) is lower semicontinuous and {a ∈ A(x) : w(x, a) ≤ r}
is compact for every x ∈ X and r ∈ R.

Assumption A2. τ and c are nonnegative measurable functions.
Assumption A3. w(x, a) ≥ 1 for every (x, a) ∈ K.
Assumption A4. There exists a finite constant k ∈ R such that∫

X

w0(y)Q(dy|x, a) ≤ k · w(x, a)

for every (x, a) ∈ K.
Due to Assumption A1, w0 is well defined, the infimum can be replaced by the

minimum, and, in addition, w0 is measurable (Rieder (1978)). Assumption A3 can be
relaxed to τ(x, a)+c(x, a) ≥ ε for every (x, a) ∈ K and a given ε > 0. By Assumption
A3, Bw0(X) is a well-defined Banach space, and, by Assumption A1, Mw0(X) is a
well defined Banach space. Since every lower semicontinuous function is measurable,
it follows from the same two assumptions that Mw(K) is a well-defined Banach space.
Observe also that Assumption A2 implies that τ ∈ Bw(K) and c ∈ Bw(K).

Consider the following primal/dual linear programs on the dual pairs defined as
(Mw(K),Bw(K)), (R × Mw0(X),R × Bw0(X)). The primal problem is

inf

∫
K

c(x, a)μ(d(x, a))(6a) ∫
K

τ(x, a)μ(d(x, a)) = 1(6b)

μ((B ×A) ∩K) −
∫
K

Q(B|x, a)μ(d(x, a)) = 0 for every B ∈ B(X)(6c)

μ ≥ 0, μ ∈ Mw(K),(6d)

and the dual problem reads

sup ρ(7a)

τ(x, a)ρ + u(x) −
∫
X

u(y)Q(dy|x, a) ≤ c(x, a) for every (x, a) ∈ K(7b)

ρ ∈ R, u ∈ Bw0(X).(7c)
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We denote by inf(P ), sup(D) the optimal value of the primal, dual linear program,
respectively.

To see that (6) and (7) are indeed a primal-dual pair consider the following op-
erators. Let L0 : Mw(K) −→ Mw0(X) be defined as

(L0μ)(B) = μ(B ×A) −
∫
K

Q(B|x, a)μ(d(x, a)) for every B ∈ B(X)

and let L : Mw(K) −→ R × Mw0
(X) be

Lμ =

(∫
K

τ(x, a)μ(d(x, a)), L0μ

)
.

The adjoint operator L∗ : R × Bw0(X) −→ Bw(K) is given by

L∗(ρ, u)(x, a) = τ(x, a)ρ + u(x) −
∫
X

u(y)Q(dy|x, a)

for every (ρ, u) ∈ R × Bw0(X) and (x, a) ∈ K. To see that L∗(ρ, u) ∈ Bw(K), let
(ρ, u) ∈ R × Bw0

(X). Then ∣∣∣∣τ(x, a)ρ

w(x, a)

∣∣∣∣ ≤ |ρ|,(8)

∣∣∣∣ u(x)

w(x, a)

∣∣∣∣ =

∣∣∣∣ u(x)

w0(x)

∣∣∣∣ · w0(x)

w(x, a)
≤

∣∣∣∣ u(x)

w0(x)

∣∣∣∣ ≤ ‖u‖w0 ,(9)

∣∣∣∣
∫
X
u(y)Q(dy|x, a)
w(x, a)

∣∣∣∣ ≤ ‖u‖w0

∫
X
w0(y)Q(dy|x, a)

w(x, a)
≤ ‖u‖w0k,(10)

where (8) follows by Assumption A2 and (4), (9) by definition (5), and (10) by As-
sumption A4. It follows that the linear operator L is continuous with respect to the
weak topology—see, e.g., Anderson and Nash (1987, pp. 35–40)—and therefore (7) is
a dual linear program to (6). It implies that under A1–A4 we can apply results from
Anderson and Nash (1987).

3.2. Results. A linear program is consistent if it has a feasible solution and it
is solvable if there is a feasible solution that attains the optimal objective value. If
(6), (7), is solvable, then we can replace inf, sup, in (6a), (7a), by min,max, and
we write the corresponding value as min(P ),max(D), respectively. In this section
we discuss the relation between the linear programs and the underlying semi-Markov
control model and we give no duality gap and solvability results.

Definition 5. A function g on Z is a strictly unbounded function if there is a
nondecreasing sequence of compact sets Zn ↑ Z such that limn→∞ inf{g(x)|x /∈ Zn} =
∞.

If Z is compact, then any function is strictly unbounded by considering Zn = Z
for every n. If Z is open but bounded, then a strictly unbounded function must be
discontinuous at the boundary of Z.

We need the following additional assumptions.
Assumption A5. There is a policy π and an initial distribution ν such that

J(π, ν) < ∞.
Assumption A6. The transition law is weakly continuous.
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Assumption A7. τ is a nonnegative, continuous, bounded function.
Assumption A8. w is strictly unbounded on K.
Note that Assumptions A1 and A7 imply that c is lower semicontinuous and

Assumption A7 yields τ ∈ Cb(K).
Next we give some known results that will be used in subsequent sections. The

following theorem is proved in Dynkin and Yushkevich (1979, pp. 88–89).
Theorem 1. Let μ be a probability measure on X ×A concentrated on K. Then

there exists a stochastic kernel π on A such that

μ(B × C) =

∫
B

π(C|x)μ̂(dx) for every B ∈ B(X), C ∈ B(A),

where μ̂(·) = μ(· ×A) is the marginal of μ on X.
Definition 6. A measure μ on Z is tight if for each ε > 0 there is a compact

set C ⊆ Z such that μ(Z \ C) < ε.
The proofs of the following two theorems are given in Billingsley (1968).
Theorem 2. Let Γ be a bounded family of nonnegative measures on Z. Then

Γ is tight if and only if there is a strictly unbounded function g ≥ 1 such that
supμ∈Γ

∫
Z
g dμ < ∞. If Γ is a set of probability measures, then the condition g ≥ 1

can be relaxed to g ≥ 0.
Theorem 3 (due to Prohorov). Let Γ be a family of probability measures on a

Borel space Z. If Γ is tight, then for each sequence {μn} in Γ there is a subsequence
{μm} and a probability measure μ such that∫

Z

u dμm −→
∫
Z

u dμ(11)

for every u ∈ Cb(Z).
We say that measures {μm}m converge weakly to a measure μ if (11) holds. We

will repeatedly use the following corollary.
Corollary 1. Let Γ be a family of nonnegative measures on a Borel space Z.

Assume that there exists a constant K < ∞ such that 0 < ‖μ‖TV < K. In addition,
let there exist a strictly unbounded function g ≥ 1 such that supμ∈Γ

∫
Z
g dμ < ∞.

Then for each sequence {μn} in Γ there is a subsequence {μm} and a measure μ such
that {μm} converges weakly to μ.

Proof. Let {μn} be a sequence in Γ.
If lim infn ‖μn‖TV = 0, there there exists a subsequence {μm} of {μn} such that

limm ‖μm‖TV = 0. But then for any u ∈ Cb(Z) and any m we have |
∫
Z
u dμm| ≤

M‖μm‖TV, where |u(s)| ≤ M < ∞ for any s ∈ Z. Hence {μm} converges weakly to
the 0 measure.

Let now lim infn ‖μn‖TV > 0. Without loss of generality we assume that ‖μn‖TV >
m > 0 for every n. Consider the set Γ̃ of probability measures defined as {μ/‖μ‖TV :
μ ∈ Γ}. We have

sup
μ̃∈Γ̃

∫
Z

g dμ̃ ≤
supμ∈Γ

∫
Z
g dμ

m
< ∞

by assumption. Therefore by Theorem 2, Γ̃ is tight. By Prohorov’s theorem we
have that there is a weakly convergent subsequence {μ̃p} that converges to a measure
μ̃. There is a subsequence {μm} of {μp} such that limm ‖μm‖TV = Q. Clearly
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0 < Q < K. Now for every u ∈ Cb(Z) we have

lim
m

∫
Z

u dμm = lim
m

(∫
Z

u dμ̃m · ‖μm‖TV

)
= Q lim

m

∫
Z

u dμ̃m = Q

∫
Z

u dμ̃.

Therefore {μm} converges weakly to μ = Qμ̃.

3.2.1. Consistency and solvability. In this section we give results regarding
consistency and solvability of (6) and (7). We first address consistency.

Theorem 4. Assume Assumptions A1–A8 hold. (6) and (7) are consistent, and
inf(P ) = J∗.

The following lemma is proved by Hernández-Lerma and Lasserre (1999, pp. 225).
Lemma 1. Let {μn} be a sequence of measures on S and μ a measure on S such

that {μn} converges weakly to μ. If c ≥ 0 is a lower semicontinuous function on S,
then

lim inf
n

∫
S

cdμn ≥
∫
S

cdμ.

In addition we need the following lemma.
Lemma 2. If {μn}n converges weakly to μ, then for every v ∈ Cb(X) we have

lim
n→∞

∫
X

v dL0(μn) =

∫
X

v dL0(μ).

Proof. We have∫
X

v dL0(μ) =

∫
K

v ·
(

1 −
∫
X

Q(dy|x, a)
)
μ(d(x, a))

= lim
n→∞

∫
K

v ·
(

1 −
∫
X

Q(dy|x, a)
)
μn(d(x, a))

= lim
n→∞

∫
X

v dL0(μn) = 0,

where the first equality follows from the definition of the adjoint operator (see sec-
tion 3.1), and the second equality follows from Assumption A6 and the definition of
weak convergence.

Proof of Theorem 4. (7) is consistent by taking ρ = 0, u = 0.
Next we address consistency of (6). Consider a policy π and an initial distribution

ν such that J(π, ν) < ∞. For every integer n ≥ 1 let us define the probability measure
on K as

μn(Ω) =
1

n

n−1∑
i=0

Pπ
ν ((xi, ai) ∈ Ω).

From Assumption A7 it follows that there exists a constant M < ∞ such that
τ(x, a) ≤ M for every (x, a) ∈ K. Then∫

K

w dμn =

∑n−1
k=0 E

π
ν (w(xk, ak))

n
=

∑n−1
k=0 E

π
ν (w(xk, ak))∑n−1

k=0 E
π
ν (τ(xk, ak))

·
∑n−1

k=0 E
π
ν (τ(xk, ak))

n

≤ (J(π, ν) + 1) ·M < ∞.
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This implies that we can use Corollary 1 since by Assumption A8 w is strictly un-
bounded and ‖μn‖TV = 1. Let {μm}m be a subsequence that convergence weakly
to μ.

Since every μm is a probability measure, so is μ. For a subsequence l of m we
have

J(π, ν) = lim sup
n

∫
K
cdμn∫

K
τ dμn

≥ lim sup
m

∫
K
cdμm∫

K
τ dμm

= lim
l

∫
K
cdμl∫

K
τ dμl

.(12)

In addition, there exists a subsequence k of l such that

lim inf
l

∫
K

cdμl = lim
k

∫
K

cdμk.(13)

It follows from (12) that

J(π, ν) ≥ lim
k

∫
K
cdμk∫

K
τ dμk

.(14)

By Lemma 1 and (13) we obtain limk

∫
K
cdμk ≥

∫
K
cdμ. Since by Assumption A7

τ ∈ Cb(K), we have that limk

∫
K
τ dμk =

∫
K
τ dμ.

We first show that
∫
K
τ dμ > 0. To the contrary, assume that

∫
K
τ dμ = 0. Note

that
∫
K
cdμk =

∫
K
w dμk ≥

∫
K

dμk = 1. Let us fix an ε > 0. There exists an integer
k1 such that for every k ≥ k1 we have

∫
K
τ dμk ≤ ε. Then for any k ≥ k1 it follows∫

K
cdμk∫

K
τ dμk

≥ 1

ε
.

Since ε is an arbitrarily small number, it follows that limk

∫
K

c dμk∫
K

τ dμk
= ∞, which con-

tradicts (14) and the assumption that J(π, ν) < ∞.
We conclude that 0 <

∫
K
τ dμ < M . This in turn implies that

J(π, ν) ≥ lim
k

∫
K
cdμk∫

K
τ dμk

=
limk

∫
K
cdμk

limk

∫
K
τ dμk

≥
∫
K
cdμ∫

K
τ dμ

.

Next we show that μ satisfies (6c). Let X denote the characteristic or the indicator
function of a set. Since for every B ∈ B(X) we have

Pπ
ν (xi ∈ B) = Eπ

ν (XB(xi)) = Eπ
ν (Q(B|xi−1, ai−1))

and for every k ∫
K

Q(B|x, a)dμk =
1

k

k−1∑
i=0

Eπ
ν (Q(B|xi, ai)),

an easy calculation shows that for every k

μk(B ×A) =

∫
K

Q(B|x, a)dμk +
Pπ
ν (xk−1 ∈ B) − ν(B)

k
.

Note that the last equality can be rewritten as L0(μk) = (Pπ
ν (xk−1 ∈ B) − ν(B))/k.

By considering v = 1 in Lemma 2 and the above equality, we obtain that L0(μ) = 0.
Hence μ satisfies (6c).
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Consider now the measure

μ̃ =
μ∫

K
τ dμ

.

Clearly μ̃ satisfies (6b) and by the above argument it satisfies (6c) as well. We also
have ∫

K

w dμ̃ =

∫
K
w dμ∫

K
τ dμ

= 1 +

∫
K
cdμ∫

K
τ dμ

≤ 1 + J(π, ν) < ∞,

showing that μ̃ ∈ Mw(K). Therefore μ̃ is a feasible solution to (6). Note also that∫
K
cdμ̃ ≤ J(π, ν). Since π is an arbitrary policy and ν an arbitrary initial probability

distribution, it follows that inf(P ) ≤ J∗.
It remains to be seen that J∗ ≤ inf(P ). Since (6) is feasible, there exists a

feasible solution μ. If
∫
K
cdμ = ∞, then there is nothing to prove and therefore we

assume that
∫
k
cdμ < ∞. Then by Assumption A3 and feasibility of μ, 0 < μ(K) ≤∫

K
w dμ = 1 +

∫
K
cdμ < ∞ and therefore μ(K) < ∞. By Theorem 1, there exists a

policy π such that

μ(B × C)

μ(X ×A)
=

∫
B

π(C|x)μ̃(dx) for every B ∈ B(X), C ∈ B(A).(15)

For any randomized stationary policy π, n ≥ 2, x ∈ X, B ∈ B(X), and a
measurable function f on K we denote

f(x, π) =

∫
A

f(x, a)π(da|x),

Q(B|x, π) =

∫
A

Q(B|x, a)π(da|x),

Qn(B|x, π) = Pπ
x (xn ∈ B) =

∫
X

Qn−1(B|y, π)Q(dy|x, π),

Q1(B|x, π) = Q(B|x, π).

Then we have∫
K

f dμ/μ(X ×A) =

∫
X

f(x, π)μ̃(dx),(16)

Eπ
μ̃(f(xn, an)) =

∫
X

∫
X

f(y, π)Qn(dy|x, π)μ̃(dx),(17)

μ̃(B) =

∫
X

Qn(B|x, π)μ̃(dx),(18)

where the first two equalities follow from (15) and aforementioned notation, and the
last equality follows by iteratively applying (6c). It follows that

J∗ ≤ J(π, μ̃) =

∫
K
cdμ/μ(X ×A)∫

K
τ dμ/μ(X ×A)

=

∫
K

cdμ.

Since μ is an arbitrary feasible measure to (6), we conclude that J∗ ≤ inf(P ).
Next we discuss solvability.
Theorem 5. If Assumptions A1–A8 hold, then (6) is solvable.
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Proof. Since (6) is consistent by Theorem 4, for every nonnegative integer n there
is a feasible measure μn to (6) such that

inf(P ) ≤
∫
K

c(x, a)μn(d(x, a)) ≤ inf(P ) +
1

n
< ∞.(19)

Since μn is feasible to (6) and from (19) it follows that

‖μn‖TV
w ≤

∫
K

w dμn =

∫
K

(τ + c)dμn = 1 +

∫
K

cdμn ≤ 2 + inf(P ).

If in addition we use (3), we get that 0 < ‖μn‖TV ≤ 2 + inf(P ) < ∞. By Assumption
A8 and since sup

∫
K
w dμn is bounded, we can use Corollary 1. Let μm be a subse-

quence that converges weakly to a measure μ. We claim that μ is an optimal solution
to (6).

From Lemma 1 and (19) it follows that
∫
K
cdμ ≤ inf(P ). If μ is feasible to (6),

then this implies that μ is optimal.
Now we show that μ is feasible to (6). Since by Assumption A7 τ ∈ Cb(K), it

follows

1 =

∫
K

τ dμm −→
∫
K

τ dμ

and therefore τ satisfies (6b). In turns it implies that

‖μ‖TV
w ≤

∫
K

τ dμ +

∫
K

cdμ ≤ 1 + inf(P )

and therefore μ ∈ Mw(K). Since μm are feasible, it follows that L0(μm) = 0 for every
m and in turn we can apply Lemma 2 with v = 1. Therefore μ satisfies (6c).

Next we address solvability of (7). A sequence {(ρn, un)}n of feasible solutions
to (7) is a maximizing sequence if limn→∞ ρn = sup(D).

Theorem 6. Assume that Assumptions A1–A4 hold. If there exists a maximizing
sequence {(ρn, un)}n to (7) such that ‖un‖w0 ≤ r < ∞ for a constant r, then (7) is
solvable.

Proof. Let ρ = sup(D) and let us define

u(x) = lim sup
n→∞

un(x).

By assumption ‖u‖w0 ≤ r and therefore u ∈ Bw0(X). For every y ∈ X we have
|un(y)| ≤ rw0(y) and by Assumption A4

∫
X
w0(y)Q(dy|x, a) ≤ kw(x, a) < ∞, which

justifies using Fatou’s lemma with respect to Q(·|x, a). Since (ρn, un) satisfies (7b),
we have that for every (x, a) ∈ K and every n

τ(x, a)ρn + un(x) ≤
∫
X

un(y)Q(dy|x, a) + c(x, a).

After taking lim sup, using limn ρn = ρ, and applying Fatou’s lemma, we obtain

τ(x, a)ρ + u(x) −
∫
X

u(y)Q(dy|x, a) ≤ c(x, a).

Therefore (ρ, u) is a feasible solution to (7) with value sup(D) and therefore it is an
optimal solution.
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3.2.2. No duality gap. In this section we prove that under our assumptions
there is no duality gap.

Theorem 7. If Assumptions A1–A8 hold, then sup(D) = inf(P ).
Proof. Let

H =

{
(Lμ,

∫
K

cdμ + r) : μ ∈ M+
w(K), r ≥ 0

}
,

where M+
w(K) is the set of all nonnegative measures in Mw(K). By a theorem from

Anderson and Nash (1987, pp. 52), if H is closed in the weak topology of (R ×
Mw0

(X) × R,R × Bw0(X) × R), then there is no duality gap.
To this end, let (D,≥) be a directed set and let {μα, rα}α∈D be a net (see, e.g.,

Ash (1972) for a definition of directed sets and nets) in Mw(K) × R+ such that∫
K

τ dμα → r∗,(20) ∫
X

u dL0(μα) →
∫
X

u dυ∗ for every u ∈ Cb(X),∫
K

cdμα + rα → ρ∗.(21)

By using Corollary 1 we show that there exists a nonnegative measure μ ∈ Mw(X)
and r ∈ R+ such that

r∗ =

∫
K

τ dμ,(22)

υ∗ = L0(μ),(23)

ρ∗ =

∫
K

cdμ + r∗.(24)

Since rα ≥ 0,
∫
K
cdμα ≥ 0 and by (21), it follows that

∫
K
cdμα are bounded

for α ≥ α0 for an α0 ∈ D. Therefore by (20) it follows that there exists α1 ∈
D,α1 > α0 such that

∫
K
w dμα is bounded and positive for α ≥ α1. There exists

a constant K such that ‖μα‖TV
w ≤ K for every α ≥ α1. This in turn implies that

‖μα‖TV ≤ ‖μα‖TV
w ≤ K for every α ≥ α1. We conclude that {μα}α≥α1 is bounded.

By Assumption A8 and by using Corollary 1 we obtain that there is a subsequence
{μm}m that converges weakly to a measure μ.

Since τ ∈ Cb(K) by Assumption A7, it immediately follows that r∗ =
∫
K
τ dμ.

Hence we have (22). By Lemma 1, we have∫
K

w dμ ≤ 1 + lim inf
m

∫
K

cdμm < ∞

and therefore μ ∈ Mw(K). Using again Lemma 1 and taking lim inf in (21) we get

ρ∗ ≥ lim inf
m

∫
K

cdμn + lim inf
m

rm ≥
∫
K

cdμ.

Thus we can define r∗ = ρ∗ −
∫
K
cdμ ≥ 0 and we obtain (24). By using Lemma 2 we

establish (23) and thus we have shown the theorem.
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3.2.3. Randomized optimal policies and optimality equation on a sub-
set of states. In this section we show, under generous assumptions, that there exists
a minimum pair and that that the optimality equation has a solution on a subset of
states.

Theorem 8. Assume that Assumptions A1–A8 hold and that (7) is solvable. Let
μ, (ρ, u) be an optimal solution to (6), (7), respectively, and let μ̂ be the marginal of
μ on X. Then

(a) J∗ = ρ, and there exists a stationary randomized policy π∗ and an initial
distribution μ̂∗ such that (μ̂∗, π∗) is a minimum pair, and

J(x, π∗) = ρ(25)

holds for μ̂∗-almost all x ∈ X;
(b) [complementary slackness] and for μ-almost all (x, a) ∈ K we have

τ(x, a)J∗ + u(x) = c(x, a) +

∫
X

u(y)Q(dy|x, a);(26)

(c) if we denote

S = {x ∈ X : there exists a ∈ A(x) such that (26) holds for (x, a)},(27)

and

S∗ = S ∩ {x ∈ S : u(x) < ∞},

and we assume S∗ �= ∅, then there exists a stationary policy f∗ ∈ ΠSD such
that

u(x) = min
a∈A(x)

{
c(x, a) − τ(x, a)J∗ +

∫
X

u(y)Q(dy|x, a)
}

= c(x, f∗(x)) − τ(x, f∗(x))J∗ +

∫
X

u(y)Q(dy|x, f∗(x))

(28)

for every x ∈ S∗.
Proof. We first prove (a). Note that by Theorem 7 we have ρ = J∗. Since

0 < μ(X × A) ≤
∫
X×A

w dμ = 1 + J∗ < ∞, we use Theorem 1 for μ/μ(X × A)
to decompose this measure into a policy π∗ and initial distribution μ̂∗. It follows
from the proof of Theorem 4 that (μ̂∗, π∗) is a minimum pair. The individual ergodic
theorem (see, e.g., Yosida (1978)) yields (25).

Next we prove (b). Let q be a measurable function defined by

τ(x, a)J∗ + u(x) + q(x, a) = c(x, a) +

∫
X

u(y)Q(dy|x, a).(29)

Since (ρ, u) is feasible to (7), q ≥ 0 for every (x, a) ∈ K. After integrating (29) with
respect to μ we obtain

J∗ +

∫
K

u dμ +

∫
K

q dμ =

∫
K

cdμ +

∫
K

u dμ,(30)

where we have used that μ satisfies (6b) and from (6c) it follows∫
K

(∫
X

u(y)Q(dy|x, a)
)
μ(d(x, a)) =

∫
K

u dμ.
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Since μ, (ρ, u) are optimal for the primal, dual linear programs, respectively, it follows
J∗ =

∫
K
cdμ. This together with∣∣∣∣∫

K

u dμ

∣∣∣∣ ≤ k‖u‖w0

∫
K

w dμ = k‖u‖w0(1 + J∗) < ∞

and (30) yields
∫
K
q dμ = 0. Since q is nonnegative, we get that q(x, a) = 0 for

μ-almost all (x, a), which completes the proof of the first statement.
It remains to show the last statement. For every x ∈ S let Ā(x) be the set of

all a ∈ A(x) such that (x, a) satisfies (26). Note that by definition Ā(x) �= ∅. After
integrating (26) with respect to π∗(da|x) we obtain

u(x) =

∫
Ā(x)

[
c(x, a) +

∫
X

u(y)Q(dy|x, a) − τ(x, a)J∗
]
π∗(da|x).

Since u(x) < ∞ for x ∈ S∗ it follows from the measurable selection theorem of
Blackwell and Ryll-Nardzewski (see, e.g., Dynkin and Yushkevich (1979, pp. 255))
that there exists a stationary deterministic policy f∗ such that∫

Ā(x)

[
c(x, a) +

∫
X

u(y)Q(dy|x, a) − τ(x, a)J∗
]
π∗(da|x)

≥ c(x, f∗(x)) +

∫
X

u(y)Q(dy|x, f∗(x)) − τ(x, f∗(x))J∗.

The other inequality follows from feasibility of u to (7). This establishes the second
part.

4. Dirac’s transition laws. Next we study Dirac’s kernels. Note that in this
case Assumption A4 is equivalent to

w0(s(x, a)) ≤ kw(x, a)

for every (x, a) ∈ K and Assumption A6 requires s to be continuous. Under a Dirac’s
transition kernel the corresponding primal linear program is

inf

∫
K

c(x, a)μ(d(x, a))(31a) ∫
K

τ(x, a)μ(d(x, a)) = 1(31b)

μ((B ×A) ∩K) − μ({(x, a) ∈ K : s(x, a) ∈ B}) = 0 for every B ∈ B(X)(31c)

μ ≥ 0, μ ∈ Mw(K),(31d)

and the corresponding dual problem reads

sup ρ(32a)

τ(x, a)ρ + u(x) − u(s(x, a)) ≤ c(x, a) for every (x, a) ∈ K(32b)

ρ ∈ R, u ∈ Bw0(X).(32c)

By using a stronger version of Theorem 8 and a more stringent assumption we
show the existence of a deterministic stationary optimal policies for all the states.

Assumption A9. There exist constants C < ∞, Γ < ∞ such that for every
measurable subset S ⊆ X there is a measurable function f : X \ S → A with the
property that for every x′ ∈ X \ S there exists a finite integer N and a set of states
x0, x1, . . . , xN with
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• x0 = x′,
• an = f(xn) ∈ A(xn) for every n = 0, . . . , N − 1,
• xn+1 = s(xn, an) for every n = 0, . . . , N − 1,
• xN ∈ S,
•
∑N−1

n=0 c(xn, an) ≤ C, and

•
∑N−1

n=0 τ(xn, an) ≤ Γ.

This assumption requires that any two states communicate (select S to be a single
state) and the cost and the time of the path between any two states must be uniformly
upper bounded.

For Dirac’s kernels, we can strengthen Theorem 8 by showing that there exists
an optimal policy whose sample path satisfies the average cost optimality equation.

Theorem 9. Assume that Assumptions A1–A8 hold and that (32) is solvable with
(ρ, u) being an optimal solution. Furthermore, assume that there exists a constant
N such that N > u(x) > −N for every x ∈ X. Then there exists a stationary
deterministic policy f∗ ∈ ΠSD and a nonempty set L ⊆ X such that the average cost
optimality equation (2) holds for every x ∈ L and

J(x) = J(f∗, x) = J∗

for every x ∈ L, i.e., f∗ is an optimal stationary deterministic policy for all x ∈ L.

The following lemma holds for general kernels.

Lemma 3. If Assumption A3 holds and J(π, ν) < ∞ for a policy π and initial

distribution ν, then limn→∞
∑n−1

i=0 Eπ
ν (τ(xi, ai)) = ∞.

Proof. Suppose that 0 ≤ limn→∞
∑n−1

i=0 Eπ
ν (τ(xi, ai)) < ∞. Then there is a

constant K ≥ 0 such that

n−1∑
i=0

Eπ
ν (τ(xi, ai)) ≤ K

for every n. By assumption we have

J(π, ν) = lim sup
n→∞

Eπ
ν (
∑n−1

k=0 c(xk, ak))

Eπ
ν (
∑n−1

k=0 τ(xk, ak))
= lim sup

n→∞

Eπ
ν (
∑n−1

k=0 w(xk, ak))

Eπ
ν (
∑n−1

k=0 τ(xk, ak))
− 1 < ∞.

From Assumption A3 we obtain

∞ > 1 + J(π, ν) ≥ lim sup
n

n

K
= ∞,

which is a contradiction.

Proof of Theorem 9. We use the same notation as in the proof of Theorem 8. We
first show that there exists a trajectory, whose state-action pairs satisfy the optimality
equation. For any ω ∈ Ω let us define r(ω) =

∑∞
i=1 q(xi, ai). Since u is dual feasible,

we clearly have r ≥ 0. In addition, let rn(ω) =
∑n

i=1 q(xi, ai). We note that r1 ≤
r2 ≤ r3 ≤ · · · and for any ω ∈ Ω we have limn→∞ rn(ω) = r(ω).

Next we show that for every n we have∫
ω∈Ω

rn(ω)Pπ
μ̂ (dω) = 0.(33)
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We show this by induction. We first note that from (16), (18), and complementary
slackness for every n it follows

0 =

∫
K
q dμ

μ(K)
=

∫
X

q(x, π)μ̂(dx) =

∫
X

∫
X

q(y, π)Qn(dy|x, π)μ̂(dx).(34)

For n = 1 we have∫
ω∈Ω

r1(ω)Pπ
μ̂ (dω) = Eπ

μ̂(q(x1, a1)) =

∫
X

∫
X

q(y, π)Q(dy|x, π)μ̂(dx) = 0,

where the second equality follows from (17) and the last one from (34). Assume now
that (33) holds for n− 1. Then∫

ω∈Ω

rn(ω)Pπ
μ̂ (dω) =

∫
ω∈Ω

(rn−1(ω) + q(xn, an))Pπ
μ̂ (dω)

=

∫
ω∈Ω

q(xn, an)Pπ
μ̂ (dω)(35)

= Eπ
μ̂(q(xn, an)) =

∫
X

∫
X

q(y, π)Qn(dy|x, π)μ̂(dx) = 0,(36)

where (35) holds by the induction assumption and (36) follows from (17) and (34).
Thus we have shown (33) for every n.

By the monotone convergence theorem it follows that∫
ω∈Ω

r(ω)Pπ
μ̂ (dω) = lim

n→∞

∫
ω∈Ω

rn(ω)Pπ
μ̂ (dω) = 0.

Hence there exists ω such that r(ω) = 0, i.e., there is a trajectory that satisfies the
optimality equation.

Let L be the set of all x ∈ X with the property that there exists a trajectory ω with
x0 = x and r(ω) = 0. For every x ∈ L let Ā(x) = {a ∈ A(x) : q(x, a) = 0, s(x, a) ∈ L}.
By definition of L, it follows that Ā(x) �= ∅. Now we use the measurable selection
theorem of Blackwell and Ryll-Nardzewski as in the proof of Theorem 8. We obtain
a stationary deterministic policy f∗ satisfying

u(x) = c(x, f∗(x)) − τ(x, f∗(x))J∗ + u(s(x, f∗(x)))(37)

and such that q(x, f∗(x)) = 0 for every x ∈ L. In other words, for every x ∈ L we
have s(x, f∗(x)) ∈ L and (37) holds.

Let now x ∈ L. Then by iteratively applying (37) for every n it follows that

J∗ =

∑n−1
i=0 c(xi, f

∗(xi))∑n−1
i=0 τ(xi, f∗(xi))

+
u(xn) − u(x)∑n−1
i=0 τ(xi, f∗(xi))

.(38)

If τ(xi, f
∗(xi)) = 0 for every i, then

0 =

n−1∑
i=0

c(xi, f
∗(xi)) + u(xn) − u(x)

and in turn by Assumption A3

0 =
n−1∑
i=0

w(xi, f
∗(xi)) + u(xn) − u(x) ≥ n + u(xn) − u(x).



2120 DIEGO KLABJAN AND DANIEL ADELMAN

This can be rewritten as u(xn) ≤ −n + u(x). As n tends to infinity, this yields a
contradiction since by assumption u is lower bounded.

We conclude that there exists ī such that τ(xī, f
∗(xī)) > 0. For n ≥ ī we have that

{
∑n−1

i=0 τ(x, f∗(x))}n is a nondecreasing sequence of positive values and it is therefore
bounded away from 0. This in turn implies by taking lim sup in (38) and considering
u is bounded that J(f∗, x) < ∞. As n goes to infinity, the second term goes to 0
since u is bounded in X and Lemma 3. Therefore J∗ = J(f∗, x) = J(x).

Under the conditions stated in Theorem 9, clearly the conclusions of Theorem 8
hold. Before proving the main result, we need two additional statements.

Proposition 1. Let x̄ ∈ X be a fixed state. If Assumption A9 holds and if u is
feasible to (32), then there exists a constant M such that −M ≤ u(x)−u(x̄) ≤ M for
every x ∈ X.

Proof. Consider x ∈ X and let (u, ρ) be a feasible solution to (32). Then by
Assumption A9 with x′ = x and S = {x̄} there is a sequence of state-action pairs
(xi, ai), ai ∈ A(xi) for i = 0, 1, . . . , N − 1 such that x0 = x, xN = x̄. By iteratively
using (32b) for xi, i = 0, 1, . . . , N −1 and then summing up the inequalities we obtain
that

u(x) ≤
N−1∑
i=0

c(xi, ai) − ρ

N−1∑
i=0

τ(xi, ai) + u(x̄) ≤ C + |ρ| · Γ + u(x̄) ≤ C + J∗ · Γ + u(x̄).

On the other hand, again by Assumption A9 there exists a sequence of state-
action pairs (xi, ai), ai ∈ A(xi) for i = 0, 1, . . . , N with x0 = x̄ and xN = x. Similarly
as above we obtain

u(x̄) ≤
N−1∑
i=0

c(xi, ai) − ρ

N−1∑
i=0

τ(xi, ai) + u(x) ≤ C + |ρ| · Γ + u(x) ≤ C + J∗ · Γ + u(x).

This completes the proof by taking M = C + J∗ · Γ.
We are now ready to prove solvability of (32).
Corollary 2. Under Assumptions A1–A4 and Assumption A9, (32) is solvable.
Proof. Let {ρn, un}n be a maximizing sequence. Note that if (ρ, u) is feasible to

(32), then for every r ∈ R the pair (ρ, u − r) is feasible as well. Therefore {ρn, ûn}n
is a maximizing sequence as well, where ûn = un − un(x̄) and x̄ ∈ X is a fixed state.
By Proposition 1 ûn are bounded since ûn(x̄) = 0. By Theorem 6, we get that (32)
is solvable.

We summarize the linear programming results in the following proposition.
Theorem 10. Assume that Assumptions A1–A9 hold. The problems (31) and

(32) are consistent, solvable, and there is no duality gap. There exists a nonempty set
L ⊆ X, a deterministic stationary policy f∗, and a function u ∈ Bw0(X) such that
the average cost optimality equation

u(x) = min
a∈A(x)

{c(x, a) − J∗τ(x, a) + u(s(x, a))}

= c(x, f∗(x)) − J∗τ(x, f∗(x)) + u(s(x, f∗(x)))
(39)

holds for every x ∈ L and s(x, f∗(x)) ∈ L for every x ∈ L. In addition, for every
x ∈ L, f∗ is the optimal policy and

J∗ = J(f∗, x) = J(x)
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for every x ∈ L.
Proof. The first statement has already been proved. The last statement follows

from Theorem 9 and Corollary 2.
We are now ready to state the main result in the Dirac’s case.
Theorem 11. Under Assumptions A1–A9, for every x0 = x ∈ X there exists

an optimal deterministic stationary policy f∗. For every x ∈ X we have J(x) =
J(f∗, x) = J∗.

Proof. Let L and f∗ be as in Theorem 10 and let f be as in Assumption A9 with
respect to this particular L. Consider the deterministic stationary policy f̂ defined
for any x ∈ X as

f̂(x) =

{
f(x) x ∈ X \ L,
f∗(x) x ∈ L.

We claim that the value of this policy is J∗ for any x0 = x ∈ X, which shows the
statement.

Let x0 = x ∈ X be an initial state. By Assumption A9 policy f̂ leads in
at most N steps to a state in L and then the policy follows f∗. It is clear that∑∞

k=0 τ(xk, f̂(xk)) > 0 and therefore J(f̂ , x) < ∞. By Lemma 3 it follows that

∞∑
k=0

τ(xk, f̂(xk)) = ∞.(40)

For any n ≥ N we have

∑n−1
k=0 c(xk, f̂(xk))∑n−1
k=0 τ(xk, f̂(xk))

= J∗ +

∑n−1
k=0

(
c(xk, f̂(xk)) − J∗τ(xk, f̂(xk))

)
∑n−1

k=0 τ(xk, f̂(xk))

= J∗ +

∑N−1
k=0

(
c(xk, f̂(xk)) − J∗τ(xk, f̂(xk))

)
+ u(x̂) − u(xn)∑n−1

k=0 τ(xk, f̂(xk))
(41)

≤ J∗ +
2M∑n−1

k=0 τ(xk, f̂(xk))
,

where M is as in Proposition 1. (41) follows since for xk, k ≥ N we have c(xk, f̂(xk))−
J∗τ(xk, f̂(xk)) = c(xk, f

∗(xk)) − J∗τ(xk, f
∗(xk)) = u(xk) − u(xk+1) by using (39).

Taking the lim sup over n on both sides and considering (40) we obtain J(f̂ , x) ≤
J∗, which completes the proof.
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O. Hernández-Lerma and J. González-Hernández, Infinite linear programming and multichain

Markov control processes in uncountable spaces, SIAM J. Control Optim., 36 (1998), pp. 313–335.
O. Hernández-Lerma and J. B. Lasserre, Average cost optimal policies for Markov control pro-

cesses with Borel state space and unbounded costs, Systems Control Lett., 15 (1990), pp. 349–356.
O. Hernández-Lerma and J. B. Lasserre, Linear programming and average optimality of Markov

control processes on Borel spaces-unbounded costs, SIAM J. Control Optim., 32 (1994), pp. 480–
500.

O. Hernández-Lerma and J. B. Lasserre, Average optimality in Markov control processes via
discounted cost problems and linear programming, SIAM J. Control Optim., 34 (1996a), pp. 295–
310.

O. Hernández-Lerma and J. B. Lasserre, Discrete-Time Markov Control Processes: Basic Opti-
mality Criteria. Springer-Verlag, New York, 1996b.

O. Hernández-Lerma and J. B. Lasserre, Policy iteration for average cost Markov control pro-
cesses on Borel spaces, Acta Appl. Math., 47 (1997), pp. 125–154.

O. Hernández-Lerma and J. B. Lasserre, Further Topics on Discrete-Time Markov Control
Processes, Springer-Verlag, Berlin, 1999.

F. Luque-Vásquez and O. Hernández-Lerma, Semi-Markov control models with average costs,
Appl. Math., 26 (1999), pp. 315–331.

U. Rieder, Measurable selection theorems for optimization problems, Manuscripta Math., 24 (1978),
pp. 115–131.

O. Vega-Amaya, Average optimality in semi-Markov control models on Borel spaces: Unbounded
cost and controls, Bol. Soc. Mat. Mexicana, 38 (1993), pp. 47–60.

O. Vega-Amaya, Zero-sum average semi-Markov games: Fixed-point solutions of the Shapley equa-
tion, SIAM J. Control Optim., 42 (2003), pp. 1876–1894.

K. Yosida, Functional Analysis, Springer-Verlag, Berlin 1978.



SIAM J. CONTROL OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 6, pp. 2123–2188

A REPRESENTATION THEOREM FOR THE ERROR
OF RECURSIVE ESTIMATORS∗
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Abstract. The ultimate objective of this paper is to develop new techniques that can be used
for the analysis of performance degradation due to statistical uncertainty for a wide class of linear
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shown to tend to zero with rate N−1/2−ε with some ε > 0. This is a significant extension of
previous results for the recursive prediction error or RPE estimator of ARMA processes given in
[L. Gerencsér, Systems Control Lett., 21 (1993), pp. 347–351]. Two useful corollaries will be derived.
In the first a standard transform of the estimation-error process for the basic recursive estimation
method, Algorithm CR, will be shown to be L-mixing, while in the second the asymptotic covariance
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1. Introduction. The ultimate objective of this paper is to develop new tech-
niques for the analysis of performance degradation due to statistical uncertainty for
a wide class of linear stochastic systems. Performance degradation due to statistical
uncertainty, called regret, following [46], can be computed at a single time moment,
yielding instantaneous regret, or it can be summed over time, yielding cumulative
regret. The objective of the paper is to develop new techniques that can be used for
analyzing the pathwise (almost sure) asymptotics of the cumulative regret for a class
of adaptive prediction and stochastic adaptive control problems.

A number of examples on the interaction of identification and control are available
in the identification for control literature, see [29, 40, 41]. While those papers contain
fundamentally new ideas, the analysis they present contains heuristic elements. In
particular, they assume the independence of actually weakly dependent quantities in
order to simplify the computation of the instantaneous regret. The present paper
lays the foundations for a rigorous discussion of these heuristic arguments. Special
examples of these new technical tools have been developed in the context of adaptive
prediction of ARMA processes in [24].
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The immediate technical objective is a detailed analysis of the Djereveckii–Fradkov–
Ljung (DFL) scheme with enforced boundedness, given as Algorithm DFL, (3.53)–
(3.54). This is a practically useful recursive estimation method introduced in [11, 12,
51] with a wide range of applications; see [3, 53]. The algorithm in its original form is
given under (3.50) and (3.51) which is a potentially divergent procedure. To ensure
convergence the original method is modified by enforced boundedness, a device that
has been widely used in practice and rigorously analyzed in [19]. The study of the
DFL scheme is reduced to the study of two related stochastic approximation methods,
Algorithm DR (discrete-time recursion) and Algorithm CR (continuous-time recur-
sion), described in section 3. The conditions under which these methods are analyzed
are very close to what we had in [19]. However, a critical condition imposed on the
initialization of the process has been significantly simplified. Our conditions will be
compared with other conditions used in the literature, in particular with those in [3],
with emphasis on the so-called “boundedness condition.”

Asymptotic properties of recursive estimation processes are established in classical
theory by using a series of approximations (see, e.g., [54]). Thus we get a standard
approximation of the error term, see, e.g., [65] for a lucid exposition, for which limit
results are easily established. Tight control of the difference between the estimation
error and its standard approximation, that will be referred to as residuals, is crucial
in the analysis of performance degradation due to statistical uncertainty; see [24].

The main technical advance of the present paper is a set of strong approximation
theorems for three closely related recursive estimation algorithms, given as Theorems
4.1–4.3, in which, for any q ≥ 1, the Lq-norms of the residual terms are shown to
tend to zero with rate N−1/2−ε with some ε > 0. This is a significant extension of a
previous result given in [19], where only the rate of convergence for the Lq-norms of the
estimation error has been established and the explicit approximation of the estimation
error and the residual term is not discussed at all. It extends also the result of [22]
on the residual of the recursive prediction error estimator for ARMA processes. The
proof is quite demanding: in addition to some basic inequalities developed in [17]
the proof relies on [19] and uses a nontrivial moment inequality for weighted multiple
integrals of L-mixing processes given in [21]. Preliminary versions of the results of
section 4 have been formulated in [20].

In comparison the material of sections 5 and 6 are relatively straightforward
corollaries demanding numerous small steps, though. In Theorem 5.1 a standard
transform of the estimation-error process for the basic recursive estimation method,
Algorithm CR, will be shown to be L-mixing, while in Theorem 6.2 the asymptotic
covariance matrix of the estimator for the same method will be given.

The significance of the results of the present paper is demonstrated by describing
two applications in section 7. In the first example the pathwise cumulative regret is
quantified for an online adaptive predictor of multivariable linear stochastic systems.
In the second example a similar measure of performance degradation for the minimum-
variance self-tuning regulator is computed. Both applications follow the arguments
of [24], but heavily rely on the results of the present paper. A further application
for indirect adaptive control of multivariable linear stochastic systems is given in [27].
We think that the results are tailored to the needs of the users and they will pave the
way to many further applications.

To motivate the studies carried out in this paper we will first give an illuminative
application of less known technical results on off-line prediction error identification
methods for ARMA processes. The application, given as Theorem 2.1, provides the
answer to a basic problem of the theory of stochastic complexity, developed by Rissa-
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nen; see [58]: the performance degradation of adaptive predictors. The extension of
this results to adaptive predictors using online estimation requires the extension of the
relevant technical tools. First, a strong approximation result for recursive prediction
error identification methods for ARMA processes will be given as Theorem 2.4, this
is also the starting point for the investigations of the present paper. Two important
corollaries are Theorems 2.5 and 2.6. The relevance of these results in analyzing per-
formance degradation in the context of online adaptive prediction of ARMA processes
will be described, culminating in Theorem 2.7. This theorem will be considered as a
benchmark in future applications.

2. Adaptive prediction. Basic notions and conditions. An adaptive pre-
dictor for ARMA processes is obtained if we use estimated system-parameters in the
prediction equation at time n as if it was the true value. Then we may ask, how much
do we lose in prediction accuracy due to the inexact knowledge of the parameters.
First, we consider adaptive predictors using off-line estimation and indicate the nature
of technical results that are needed for the analysis. Then, using the strong approxi-
mation result (2.23) we arrive at analogous technical results for recursive estimation,
which in turn can be applied to derive interesting properties of real-time adaptive
predictors.

The set of real numbers will be denoted by R, the p-dimensional Euclidean space
will be denoted by Rp. The Euclidean norm of x ∈ Rp will be denoted by |x|. We
shall often use subscripts to indicate partial derivatives.

Let (yn), 0 ≤ n < ∞, be a wide-sense stationary ARMA (p, q) process satisfying
the difference equation

p∑
i=0

b∗i yn−i =

q∑
j=0

c∗jen−j ,

or in shorthand notation B∗y = C∗e, where B∗ and C∗ are polynomials of the
backward-shift operator of degree p and q, respectively. Define the polynomial B∗(z−1)
=

∑p
i=0 b

∗
i (z

−i) and similarly C∗(z−1). To estimate the system-parameters b∗i , c
∗
j from

observed data (yn) using the prediction error method the following technical assump-
tion is assumed.

Condition 2.1. The polynomials B∗, C∗ are stable and relative prime, b∗0 = c∗0 =
1 and b∗p �= 0, c∗q �= 0.

The condition b∗p �= 0, c∗q �= 0 has been assumed to allow the extension of our
results to cases when the degree of one of the polynomials B∗ or C∗, but not both, is
overestimated. The relevant work that we use is [1]. To characterize the noise process
we shall need the following definition that has been introduced in [17].

Definition 2.1. We say that a discrete-time Rp-valued stochastic process (un)
is M -bounded if, for all 1 ≤ q < ∞,

Mq(u) := sup
n≥0

E1/q|un|q < ∞.(2.1)

In this case we also write un = OM (1). For a stochastic process (zn), n ≥ 0, and
a positive sequence (cn) we write zn = OM (cn) if un = zn/cn = OM (1).

A basic tool that we will use is the theory of L-mixing processes, elaborated in [17]
and used to solve some hard problems in system identification; see [18, 19, 22, 38, 43].
This concept is a generalization of what is called “exponentially stable processes” in
the system identification literature, see Definition 3.1 in Section 8.3 of [6] or [53]. We
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give the definition here for discrete-time processes. Let a probability space (Ω,F , P )
be given together with a pair of families of σ-algebras (Fn,F+

n ), n = 0, 1, . . . , such
that (i) Fn ⊂ F is monotone increasing, (ii) F+

n ⊂ F is monotone decreasing, and
(iii) Fn and F+

n are independent for all n. For n < 0 we set F+
n = F+

0 .
Definition 2.2. A stochastic process u = (un), n = 0, 1, . . . , is L-mixing with

respect to (Fn,F+
n ) if it is Fn-adapted, M -bounded, and for all q ≥ 1, with τ = 0, 1, . . .

and

γq(τ, u) = γq(τ) = sup
n≥τ

E1/q|un − E (un|F+
n−τ )|q,

we have

Γq = Γq(u) =

∞∑
τ=0

γq(τ) < ∞.(2.2)

The process u is L+-mixing if, in addition, for all q ≥ 1 there exist Cq, cq > 0 such
that for all nonnegative integers τ ,

γq(τ, u) ≤ Cq(1 + τ)−1−cq .

Discussion of L-mixing. The prime example for L-mixing processes is a sequence
of i.i.d. random variables with finite moments of all orders. The response of an ex-
ponentially stable linear filter, with an L-mixing process as its input, is L-mixing.
Products of L-mixing processes are also L-mixing. These properties make sure that
the verification of L-mixing is typically easy in problems of system identification. The
same invariance properties hold for the class of L+-mixing processes. For “exponen-
tially stable processes” we would require that γq(τ) converges to 0 geometrically fast,
at least for some values of q, typically for q = 4. We shall need conditions for higher
order moments to derive sharp bounds for the error terms in certain uniform laws of
large numbers.

Condition 2.2. The system-noise process (en), 0 ≤ n < ∞, defined over an
underlying probability space (Ω,F , P ), is an M -bounded process. Moreover there is
an increasing sequence of σ-fields (Fn), 0 ≤ n < ∞, (Fn) ⊂ F , such that (en) is a
martingale difference process with constant conditional variance:

E(en|Fn−1) = 0, E(e2
n|Fn−1) = σ2 = const.

almost surely. Finally, we assume that (en) is L-mixing with respect to a pair of
families of σ-algebras (Fn,F+

n ).
It follows that (en) is a wide-sense stationary orthogonal process. Conditions 2.1

and 2.2 together will be called the standard conditions for ARMA processes.
Discussion of the moment condition. The difference between our conditions and

the conditions given in standard works such as [6] or [35] is that, there only the
condition

M4(e) := sup
n≥0

E1/4|en|4 < ∞

is required. See the comment to Definition 3.1 in Section 8.3 of [6], or condition
(4.1.20) of [35]. Thus our condition is much stronger, but our conclusions given in
Theorem 2.2 will be also significantly stronger than the results of [6, 35] given in
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terms of classical concepts such as strong consistency, central limit theorem, or the
law of iterated logarithm, which all follow from our result and the corresponding
result for martingales. M -boundedness could be relaxed by requiring the uniform
boundedness of moments of sufficiently high order, however the order of the moments
would depend on the order of the ARMA process, i.e., on p and q. This is due to
the fact that in our proof we rely on Kolmogorov’s continuity theorem for random
fields to get sharp bounds for the error terms in uniform laws of large numbers, which
requires the existence of finite moments up to an order strictly greater than (p + q)
in the present application; see Theorem 8.3.

Set θ∗ = (b∗1, . . . , b
∗
p, c

∗
1, . . . , c

∗
q)

T . Let DC ⊂ Rq denote the set of vectors (c1, . . . , cq)
such that the corresponding polynomial C∗ is stable, let DB = Rp and let

Dθ = DB ×DC ⊂ Rp+q.

Let Dθ0 ⊂ Dθ be a compact domain such that θ∗ ∈ intDθ0. Then the prediction error
method for estimating the parameter θ∗ is defined as follows (cf., e.g., [6, 35]): first
take an arbitrary θ ∈ Dθ0 and define an estimated prediction error process ε = (εn(θ))
by the inverse equation

Cε = By(2.3)

using zero initial conditions. Define the cost function

VN (θ) =
1

2

N∑
n=1

ε2
n(θ).

Minimizing VN (θ) over Dθ0 yields an estimate θ̂N .

A precise definition of θ̂N taking into account the possibility of the existence of
several local minima can be given as follows: let Ω′ ⊂ Ω be a measurable set such
that the equation

∂

∂θ
VN (θ) = 0

has a unique solution in the interior of Dθ0 denoted by intDθ0 on the event Ω′ ⊂ Ω.
Then this solution will be accepted as θ̂N on Ω′, while θ̂N is defined as an arbitrary
Dθ0-valued random variable on Ω \ Ω′. It can be shown that we can take Ω′ so that
P (Ω′) > 1−CqN

−q for any q > 0, see [18, Lemma 2.1], the proof of which is partially
based on [1].

Remark. The uniqueness result of [1] remains valid if we redefine Dθ so that the
degree of one of the polynomials B∗ or C∗, but not both, is overestimated. This is
why b∗p �= 0, c∗q �= 0 has been assumed in Condition 2.1.

The quantity to be studied in the context of adaptive prediction is the prediction

error εn(θ̂n−1). We ask how much do we lose in prediction accuracy due to the

statistical uncertainty present in θ̂n−1. A basic result says that, assuming that the
standard conditions, Conditions 2.1 and 2.2, are satisfied then the excess in mean
prediction error, also called the regret, see [46], satisfies

E(ε2
n(θ̂n−1) − e2

n) =
σ2(e)

n
(p + q)(1 + o(1)).(2.4)
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This result is given in [24] and, under different conditions in [64]. It extends the result
of [8] for AR processes. A similar result for the cumulative regret for Gaussian linear
regression was proved in [56] (see also Theorem 5.3 in [58]).

Summation over n in (2.4) gives that the left-hand side is asymptotically equiv-
alent to σ2(e)(p + q) logN . It has been shown in Theorem 1.1. of [24] that we can
remove the expectation operator and we get the following pathwise result for the
cumulative regret.

Theorem 2.1. Assume that the standard conditions, Conditions 2.1 and 2.2, are
satisfied. Then

lim
N→∞

1

logN
lim

N→∞

N∑
n=1

(ε2
n(θ̂n−1) − e2

n) = σ2(e)(p + q) a.s.(2.5)

This result, under different conditions, was given for AR processes in [36, 37].
The much more difficult ARMA case was solved in [24, 64], using different conditions
and different methods. Note that classical limit theorems are not suitable to derive
(2.5). Both results, (2.4) and (2.5), play prominent role in the theory of stochastic
complexity. The quantity

C1,N =

N∑
n=1

ε2
n(θ̂n−1)(2.6)

is called a predictive stochastic complexity in [58].
Technical tools: Strong approximations. Now we come to some technical details

that are essential in the proof of the above results. A key point is a characterization
of the estimation error process which is more accurate than previously known results.
Define the asymptotic cost function by

W (θ) = lim
n→∞

1

2
E ε2

n(θ).

In the Gaussian case this is the asymptotic log-likelihood function modulo constants.
It is easy to see that Wθ(θ

∗) = 0, where θ denotes differentiation with respect to θ.
Also it is well known that

R∗ = Wθθ(θ
∗) = lim

n→∞
E εθn(θ∗)εθn(θ∗)T

is nonsingular and in fact positive definite. Then we have the following representation
of the estimation error (cf. [18]).

Theorem 2.2. Assume that the standard conditions for ARMA processes, Con-
ditions 2.1 and 2.2, are satisfied, then we have

θ̂N − θ∗ = −(R∗)−1 1

N

N∑
n=1

εθn(θ∗)en + OM (N−1).(2.7)

The main contribution of Theorem 2.2 is that the residual term has been shown
to be of the order of magnitude OM (N−1). This is an improvement over the classical
results of [50, 59] in the ARMA case. The significance of this improvement is easily
demonstrated: the residual term is sufficiently small so that limit theorems such as the
law of iterated logarithms (LIL) and invariance principles for the estimator process
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can be immediately derived using martingale limit theory (cf. [33]). But the real
motivation behind Theorem 2.2 had been the need to verify Rissanen’s tail condition
for Gaussian ARMA processes, introduced in the seminal paper [57], which in turn
can be used to derive a lower bound for the cumulative loss in performance of any
adaptive predictor for Gaussian ARMA processes (cf. [26]).

Discussion of mixing conditions. There are a number of other notions of mixing.
The best known notion is φ-mixing, an excellent and concise introduction to which is
given in Chapter 7.2 of [15]. The measure of mixing for two σ-algebras G and H is
defined for any 1 ≤ p ≤ ∞ as follows:

φp(G|H) = sup
A∈G

||P (A|H) − P (A)||p,(2.8)

where ||ξ||p denotes the Lp-norm of the random variable ξ. It can be shown that for
p = 1 we have 1

2φ1(G|H) = α(G,H), where

α(G,H) = sup
A∈G,B∈H

|P (AB) − P (A)P (B)|(2.9)

is the familiar measure of strong mixing. Similarly, we have for p = ∞

φ∞(G|H) = sup
A∈G,B∈H,P (B)>0

|P (A|B) − P (A)|(2.10)

which is the familiar measure of uniform mixing. A stochastic process (xn) is then
φp-mixing if with

φp(n) = φp(Fn|F+
n ),

where now Fn = σ{xi, i ≤ n}, F+
n = σ{xi, i ≥ n}, we have limn→∞ φp(n).

In contrast to L-mixing, the verification of even the weakest form of φ-mixing,
which is called for historical reasons strong mixing or α-mixing, is nontrivial even for
Gaussian processes (see Chapter 17 of [42]). On the other hand, measurable static
functions of φ-mixing processes are φ-mixing, while this may not be the case, e.g., for
discontinuous functions of L-mixing processes. (For a positive statement see [23,
Theorem II.7].)

From the point of view of usefulness both notions are equally useful for off-line
estimation. Namely, the key technical device in analyzing off-line estimators is a kind
of improved Hölder inequality, see Lemma 8.1 of section 8, or Chapter 7.2 of [15], or
Appendix III of [33]. In fact, it can be shown that the theorem remains valid even
if the assumption that (en) is L-mixing is completely removed, since the remaining
conditions imply the validity of certain improved Hölder inequalities. The situation is
quite different for recursive estimation methods, where L-mixing is heavily exploited.
Further discussion on this will be given in section 3.

The first step in the proof of Theorem 2.1 is to consider a second-order Taylor
series expansion of the terms on the left-hand side. The estimation error process is
handled using a standard transformation in the stochastic approximation literature.
Define a piecewise constant continuous-time extension of θ̂n, and, denoting the time
variable by t, introduce a new process by first normalizing (θ̂t − θ∗) to t1/2(θ̂t − θ∗)
and then using an exponential change of time-scale t = es. Thus we get a new process

ψs = es/2(θ̂es − θ∗).(2.11)
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A key observation is that the transformed process (ψs) is L-mixing with respect to
(Fes ,F+

es). For the definition of L-mixing in continuous time see the next section.
The proof of this fact is based on Theorem 2.2 and the following simple result given
as Theorem 3.3 in [24].

Lemma 2.1. Let (ut), t ≥ 0, be a zero-mean L-mixing process with respect to
some pair of families of σ-algebras (Ft,F+

t ). Let

xT = T−1/2

∫ T

1

utdt.(2.12)

Then the process (ys) = (xes) is L-mixing with respect to the pair of families of
σ-algebras (Fes ,F+

es).
With this observation it can be shown that the process εn(θ∗) and its gradient

are asymptotically independent of (θ̂N − θ∗), which is exploited in proving (2.4). On
the other hand, it can be shown that the result given in (2.5) is essentially a law of
large numbers in the new time-scale.

Now we come to the extensions of the above results for the case of online or
recursive estimation of θ∗. The most widely used recursive estimation methods for
ARMA processes is the recursive prediction error (RPE) method, which in the case
of Gaussian processes reduces to the recursive maximum-likelihood (RML) method;
see [6, 53]. This procedure serves as a benchmark for the general theory to be de-
veloped in section 3, in particular it is a prime example for the Djereveckii–Fradkov–
Ljung scheme or DFL scheme. For both theoretical and practical reasons we consider

RPE estimator processes
̂̂
θn using a resetting mechanism to enforce the boundedness

of the estimator. The convergence analysis for such a procedure has been given in
Theorem 4.2 of [19].

We will now give the details of the RPE method for ARMA processes and a set
of technical conditions that we use to guarantee convergence. The conditions are
simpler than those given in section 4 of [19]. We will shortly indicate how the present
conditions imply the conditions given for the DFL scheme in the next section. Most
of the discussion of these conditions will be deferred to the next section.

The definition of the RPE method without resetting is

̂̂
θn+1 =

̂̂
θn − 1

n + 1
(
̂̂
Rn)

−1 ∂

∂θ
εn+1 · εn+1,(2.13)

̂̂
Rn+1 =

̂̂
Rn +

1

n + 1

((
∂

∂θ
εn+1

)(
∂

∂θ
εn+1

)T

− ̂̂
Rn

)
(2.14)

with some initial conditions (
̂̂
θ0,

̂̂
R0), where εn and ∂

∂θ εn denote online estimates of

ε̄n(θ∗) and ∂
∂θ ε̄n(θ)|θ=θ∗ . These are obtained by using the most recent estimations of

B∗ and C∗ in the linear filters defining the current values of ε̄n(θ∗) and ∂
∂θ ε̄n(θ)|θ=θ∗ .

Thus, e.g., εn+1 is defined by the time-varying filter

(
̂̂
Cnε)n+1 = (

̂̂
Bny)n+1.(2.15)

For further details see [53].
The RPE method without resetting is a special case of a general recursive esti-

mation scheme, called the DFL scheme, to be described in details in the next section;
see (3.50)–(3.51). Note that together with θ∗ we also estimate the matrix R∗.
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It is well known from simulation examples that the RPE method may diverge,
unless some precaution is taken. This difficulty is often dealt with a controversial
“boundedness condition” first formulated in [51]. This will be discussed in detail in
the context of the DFL method. A convergent truncated RPE method has been given
in section 4 of [19], which we now describe. Let

DR = R+(p× p) and D = Dθ ×DR,

where R+(p × p) denotes the set of symmetric, positive definite p × p matrices. Let
Dθ0 ⊂ Dθ be a compact set containing θ∗ in its interior, and similarly let DR0 ⊂ DR

be a compact set containing R∗ in its interior and let D0 = Dθ0 ×DR0.

Resetting . If at any time n the next estimator (
̂̂
θn+1,

̂̂
Rn+1) would leave D0, then

we redefine its value by resetting it to the initial value, i.e.,

for (
̂̂
θn+1,

̂̂
Rn+1) �∈ intD0 reset as (

̂̂
θn+1,

̂̂
Rn+1) := (

̂̂
θ0,

̂̂
R0).(2.16)

To avoid being trapped to the boundary of the truncation domain the initial value

(
̂̂
θ0,

̂̂
R0) must be aligned to Dθ0 ×DR0, as described in Condition 3.4. This condition

is given in terms of the so-called associated ordinary differential equation (ODE).
Define for θ ∈ Dθ

R∗(θ) = lim
n→∞

Eεθn(θ)εθn(θ)T .(2.17)

Then obviously R∗ = R∗(θ∗). With this notation the associated ODE, with the time
variable v, is defined as

θ̇v = −R−1
v

∂

∂θ
W (θv),

Ṙv = R∗(θv) −Rv.(2.18)

The right-hand side is defined in Dθ × DR. This is the usual way of defining the
associated ODE; see [3, 53]. However in [19] as well as later in this paper we will
define the associated ODE by using a change of time-scale t = ev.

The condition ensuring that resetting works for the general recursive estimation
methods given in section 3, including the DFL scheme is Condition 3.4. Following
the arguments of section 4 of [19] it is easy to see that the first part of Condition 3.4,
requiring a certain kind of asymptotic stability of the associated ODE, follows for the
RPE method. Namely, it follows directly from [1] that (2.18) has a unique stationary
point in Dθ×DR, which is (θ∗, R∗). It is also easy to see that this equilibrium point is
asymptotically stable, since the eigenvalues of the Jacobian matrix of the right-hand
side of the ODE at (θ∗, R∗) are all −1. Now it is easy to show that the associated ODE
is globally asymptotically stable in Dθ ×DR. For the proof we need the observation
that W (θv) is nonincreasing as long as Rv is positive definite, and Rv is bounded and
positive definite as long as θv belongs to a fixed compact set.

Let xn = (
̂̂
θn,

̂̂
Rn) denote the estimator at time n, let z = (θ,R) denote a running

parameter, and let z(v, u, ξ) denote the solution of (2.18) with initial value ξ at time
u. Then it follows that for every ξ ∈ D0, v ≥ u ≥ 0 the solution z(v, u, ξ) ∈ D is
defined for 1 ≤ s ≤ t < ∞, it converges to x∗(θ∗, R∗) for t → ∞ and we have, with
some C0 and α = 1 − c with arbitrary small c > 0,∥∥∥∥ ∂

∂ξ
z(v, u, ξ)

∥∥∥∥ ≤ C0e
−α(v−u).(2.19)
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It follows, using a change of time-scale t = ev, that the first part of Condition 3.4 is
satisfied. Here ‖ · ‖ denotes the operator norm of a matrix.

To ensure the validity of the second part of Condition 3.4 we have to assume
that some a priori knowledge of the system-parameters θ∗ and the Hessian R∗, say

ξ0 = (
̂̂
θ0,

̂̂
R0) are available. They can be obtained, e.g., from an off-line estimation.

Condition 2.3. Let D0 = Dθ0 × DR0 ⊂ Dθ × DR be a compact truncation
domain such that x∗ = (θ∗, R∗) ∈ int D0. (i) It is assumed that there exists a compact
convex domain D′

0 ⊂ D such that for all v ≥ u ≥ 0,

z(v, u, ξ) ∈ D′
0 for ξ ∈ D0 and z(v, u, ξ) ∈ D for ξ ∈ D′

0.(2.20)

(ii) It is assumed that we have an initial estimate ξ0 = (
̂̂
θ0,

̂̂
R0) such that for any

v ≥ u ≥ 0 we have z(v, u, ξ0) ∈ int D0.
Remark. Since our objective is to restate Theorem 4.2 of [19], part (iii) of Con-

dition 3.4 of the present paper need not be required at this time, since it was not
required in [19] either; it is special addition for the present paper.

To ensure the stability of the time-varying filter (2.15) given as (
̂̂
Cnε)n+1 =

(
̂̂
Bny)n+1 we need a second condition imposed on the truncation domain (cf. Condi-

tion 3.7 given for the DFL method). Let us consider a fixed state-space realization of

the inverse system (2.3) and let the state-transition matrix be denoted by C̃. In [19]
this is given as the so-called companion matrix corresponding to the polynomial C
(see Condition 4.5 of [19]). Let DB0 ⊂ DB and DC0 ⊂ DC be compact domains and
let

Dθ0 = DB0 ×DC0.

Now Condition 3.7 would read as follows.
Condition 2.4. Let DC̃0 denote the set of matrices C̃, when C is taken from

DC0. Then DC̃0 is jointly stable in the sense that there exists a single q×q symmetric

positive definite matrix U and 0 < λ < 1 such that for all C̃ ∈ DC̃0,

C̃TUC̃ ≤ λU.

It follows that there exists some c > 0 such that for any sequence (C̃n) with
C̃n ∈ DC̃0 we have

||C̃n · · · C̃0|| ≤ cλn/2.(2.21)

A discussion of the joint stability condition. Condition 2.4 above is required
only to ensure that (2.21) holds. In the system identification literature it had been
occasionally implicitly assumed that the individual stability of each C̃ ∈ DC̃0 implies
(2.21); see, e.g., [34]. This is easily seen to be wrong. One way to ensure Condition 2.4
is to choose the truncation domain D0 small, but this is obviously not practical. A
better way is to use a suitable realization of the inverse system (2.3). To indicate the
potential of alternative realizations let us consider a Gilbert–Kalman realization of
the inverse system (see [44]). Assume that the roots of the polynomial C = C(z−1)
are all real and simple and let them be denoted by λi. Then we will have

C̃ = diag(λi),

and obviously any compact set of matrices DC̃0 is jointly stable. Potentially useful
alternative realizations are given in [55]. A second way of ensuring the validity of
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(2.21) is given in [3]. This will be discussed in connection with the DFL scheme in
the next section.

Finally we will need two additional conditions for the noise process. First, the
M -boundedness of (en) is further strengthened by assuming the existence and bound-
edness of certain exponential moments.

Condition 2.5. We assume that |en|2 is in class M∗; i.e., for some ε > 0 we
have

sup
n

E exp ε|en|2 < ∞.

This condition is certainly satisfied if (en) is a stationary Gaussian process. The
role of this condition will be discussed in section 3 in the context of the DFL scheme.

Secondly, we need to be more specific on the mixing rate of (en). The condition to
follow is motivated by Lemma 3.1 in [24], which states for continuous-time L-mixing
processes (cf. Definition 3.2) that, if (ut) is an L-mixing process, then γq(τ, u) ≤
4Γq(u)/τ for all q ≥ 1 and τ ≥ 0. The validity of a slightly stronger inequality is
required by the following condition in discrete time (cf. Condition 3.9 given for the
DFL scheme).

Condition 2.6. We assume that (en) is L+-mixing with respect to a pair of
families of σ-algebras (Fn,F+

n ).
The role of this condition is in the analysis of the difference between the “frozen

parameter” process εn(θ) evaluated at θ = θ̂n and its online estimate εn, see [19,
Lemma 5.6] restated as Lemma 3.2 of the present paper. From the purely technical
point of view, L+-mixing is used in [19, Theorem 6.1]. In view of the general theorem
for the DFL scheme, given as Theorem 3.3, we get the following result (see also
Theorem 4.2 of [19]):

Theorem 2.3. Let (yn) be an ARMA process satisfying the standard conditions,

Conditions 2.1 and 2.2. Consider the RPE estimator (
̂̂
θN ,

̂̂
RN ) defined by (2.13),

(2.14), modified by a resetting mechanism given under (2.16). Let the truncation
domain be of the form

D0 = Dθ0 ×DR0 with Dθ0 = DB0 ×DC0.

Assume that D0 satisfies Condition 2.3 and DC0 satisfies Condition 2.4. Finally let
the innovation process satisfy the additional conditions, Conditions 2.5 and 2.6. Then

for the recursive estimators (
̂̂
θN ,

̂̂
RN ) we have

̂̂
θN − θ∗ = OM (N−1/2) and

̂̂
RN −R∗ = OM (N−1/2).(2.22)

One of the special features of this result is that the moments of the estimation
error are bounded from above. While the above theorem is certainly of interest, it
is obviously much weaker than the characterization of the off-line estimator given in
Theorem 2.2. But Theorem 2.3 is a key technical tool in deriving a strong approxi-
mation theorem relating the RPE estimator to the off-line prediction error estimator.
This result is given in [22], stating that under the conditions of Theorem 4.2 of [19]
(and thus under the conditions of Theorem 2.3) we have

̂̂
θN − θ̂N = OM

(
logN

N

)
.(2.23)

Combining (2.23) with Theorem 2.2 we get the following result.
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Theorem 2.4. Under the conditions of Theorem 2.3 we have

̂̂
θN − θ∗ = −(R∗)−1 1

N

N∑
n=1

εθn(θ∗)en + OM

(
logN

N

)
.(2.24)

This strong approximation result provides a very precise characterization of
̂̂
θN .

The control of moments of the residual term is an essential feature of the result that
is very much exploited in deriving Theorems 2.7 and 2.8. A direct corollary of the
above theorem is the following.

Theorem 2.5. Under the conditions of Theorem 2.3 we have

EN(
̂̂
θN − θ∗)(

̂̂
θN − θ∗)T = σ2(R∗)−1 + O(N−1/2 logN).(2.25)

Finally, taking into account Theorem 2.2, (2.23), and Lemma 2.1 we get the
following result.

Theorem 2.6. Under the conditions of Theorem 2.3 the transformed process

ψs = es/2(
̂̂
θes − θ∗)(2.26)

is L-mixing with respect to (Fes ,F+
es).

The above three results, Theorems 2.4, 2.5, and 2.6, are the key tools in extending
Theorem 2.1 to adaptive predictors using recursive estimators rather than off-line
estimators (cf. [24]). Thus we get the following key result .

Theorem 2.7. Under the conditions of Theorem 2.3 we have

lim
N→∞

1

logN
lim

N→∞

N∑
n=1

(ε2
n(

̂̂
θn−1) − e2

n) = σ2(e)(p + q) a.s.(2.27)

In addition, the above proposition remains valid, if we replace εn(
̂̂
θn−1) by its

online computed approximation εn; see (2.15).
Theorem 2.8. Under the conditions of Theorem 2.3 we have

lim
N→∞

1

logN
lim

N→∞

N∑
n=1

(ε2
n − e2

n) = σ2(e)(p + q) a.s.(2.28)

The main contribution of the present paper is the extension of the technical re-
sults given as Theorems 2.4, 2.5, and 2.6 to general recursive estimation schemes
that include the DFL scheme with enforced boundedness, given as (3.53)–(3.54). The
extension of Theorem 2.4 uses the results of [17, 19] but requires an additional tech-
nical tool given in [21]. This extension will be given in section 3. The extensions of
Theorems 2.5 and 2.6 are obtained using straightforward, though numerous, approxi-
mations in sections 5 and 6. The present paper actively uses the results of [17, 19, 21].
To facilitate reading, these relevant results are summarized in section 8.

3. General recursive estimation schemes. The prime objective of this sec-
tion is to formulate a general recursive estimation method, the DFL scheme with
enforced boundedness, together with conditions that ensure its convergence. It is
given as Algorithm DFL under (3.53)–(3.54), developed in [11, 12, 51], see also the
books [3, 13, 53].

But first we present two closely related recursive algorithms: Algorithm CR
(continuous-time recursion), (3.16), and Algorithm DR (discrete-time recursion), (3.34),
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which can be interpreted as “frozen parameter” approximations to the DFL scheme.
The main results of the paper will be formulated and proved for the continuous-
time method, Algorithm CR. The connection between the continuous-time and the
discrete-time algorithms is straightforward. In contrast, the connection between Al-
gorithm DR and the DFL scheme is not straightforward at all, but it has been worked
out in [19, sections 6 and 7]. Details will be given while discussing the DFL method.

Our first tentative general method is a continuous-time recursive estimation pro-
cess without resetting, given by a random differential equation of the form

ẋt =
1

t
(H(t, xt, ω) + δH(t, ω)), x1 = ξ1,(3.1)

defined over the underlying probability space (Ω,F , P ). Here xt indicates an estimator
sequence and H = (H(t, x, ω)) is a random field defined in [1,∞) ×D, where D is a
bounded open domain in Rp×Ω and δH(t, ω)) is a perturbation term to be described
later. The advantage of continuous time is that some calculations can be carried out
more easily than in discrete time.

The technical conditions that we impose on H(t, x, ω) will be tuned to fit the DFL
scheme, given by (3.53) and (3.51) below. A continuous-time example for a random
field H(t, x, ω) that is motivated by the DFL scheme is the following:

H(t, x, ω) = ε(t, x, ω)η(t, x, ω),(3.2)

where ε(t, x, ω) and η(t, x, ω) are stationary, jointly Gaussian processes, defined by
finite-dimensional stable linear filters applied to a standard Wiener-process (ws):

ε(t, x, ω) =

∫ t

−∞
hε(t− s, x)dws, η(t, x, ω) =

∫ t

−∞
hη(t− s, x)dws,(3.3)

such that in an appropriate state-space representation the state-space matrices corre-
sponding to the impulse responses hε(τ, x) and hη(τ, x) are sufficiently smooth func-
tions of the parameter x. In the recursive maximum likelihood identification method
for discrete-time Gaussian ARMA processes ε(n, x, ω) would be the estimated input
noise, with x being the system-parameter and η(n, x, ω) would be its negative gradient
with respect to x, assuming stationary initialization for both processes. To specify the
conditions to be imposed we need some preliminary technical details. The notion of
M -bounded processes will now be extended to parameter-dependent, continuous-time
processes.

Definition 3.1. Let D0 ⊂ Rp be a compact set and let (ut(x)) be an Rk-valued
measurable stochastic process defined on Ω × R+ ×D0, where R+ = {t : t ≥ 0}. We
say that (ut(x)) is M -bounded (in D0) if for all q with 1 ≤ q < ∞ we have

Mq(u) = sup
t≥0

x∈D0

E1/q|ut(x)|q < ∞.(3.4)

If (ut(x)) is M -bounded, then we write = OM (1). We shall use the same termi-
nology if x or t degenerates into a single point. If ct is a sequence of positive numbers,
then we write ut(x) = OM (ct) if ut(x)/ct = OM (1).

The notion of L-mixing will now be extended to parameter-dependent, continuous-
time processes. Let a probability space (Ω,F , P ) be given together with a pair of fam-
ilies of σ-algebras (Ft,F+

t ) such that (i) Ft ⊂ F is monotone increasing, (ii) F+
t ⊂ F
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is monotone decreasing and F+
t is right continuous in t, i.e., F+

s = σ{
⋃

0< ε F
+
s+ε},

and (iii) Ft and F+
t are independent for all t. For s < 0 we set F+

s = F+
0 .

Definition 3.2. Let D0 ⊂ Rp be a compact set and let (ut(x)) be an Rk-valued
measurable stochastic process defined on Ω × R+ × D0. We say that u = (ut(x)) is
L-mixing with respect to (Ft,F+

t ), uniformly in x for x ∈ D0, if it is Ft-progressively
measurable, M -bounded (in D0) and if for all q ≥ 1 with

γq(τ, u) = γq(τ) = sup
t≥τ

x∈D0

E1/q|ut(x) − E (ut(x)|F+
t−τ )|q, τ ≥ 0,

we have

Γq = Γq(u) =

∫ ∞

0

γq(τ)dτ < ∞.(3.5)

We say that (ut(x)), t ≥ 0, x ∈ D0, is L+-mixing with respect to (Ft,F+
t ), uniformly

in x for x ∈ D0, if in addition for all q ≥ 1 there exist Cq, cq > 0 such that for all
τ ≥ 0

γq(τ, u) ≤ Cq(1 + τ)−1−cq .(3.6)

The definition extends to parameter-free processes (ut) and to discrete-time pro-
cesses (un(x)). In the latter case we set

Γq = Γq(u) =

∞∑
τ=0

γq(τ) < ∞.(3.7)

Condition 3.1. The process H = (H(t, x, ω)) is assumed to be defined in Ω ×
R+×D, where D ⊂ Rp is an open domain, it is three times continuously differentiable
with respect to x for x ∈ D almost surely and for any compact set D0 ⊂ D H and
its derivatives up to order 3 are M -bounded in D0. Furthermore (H(t, x, ω)) and its
first derivative Hx = (Hx(t, x, ω)) are L+-mixing with respect to (Ft,F+

t ), uniformly
in x ∈ D0.

In [19] we used the finite difference field of H = (H(t, x, ω)) to capture the
smoothness of H(t, x, ω). In general, we considered the process

Δu/Δx (t, x, x + h, ω) = |ut(x + h) − ut(x)|/|h|

defined for t ≥ 0, x �= x + h ∈ D. We say that u = (ut(x)) is M -Lipschitz continuous
with respect to x in D0, if the process Δu/Δx defined above is M -bounded; i.e., if
for all 1 ≤ q < ∞ we have

Mq(Δu/Δx) = sup
t≥0

x�=x+h∈D0

E1/q|ut(x + h) − ut(x)|q/|h| < ∞.

Condition 1.1. of [19] is then as follows.
Condition H. The processes (H(t, x, ω)) and (ΔH/Δx(t, x, x + h, ω)) are as-

sumed to be separable and L+-mixing with respect to (Ft,F+
t ), uniformly in x, x+h ∈

D.
It is easy to see that Condition H is implied by Condition 3.1.
A discussion of L-mixing. We give further details for comparing L-mixing and

φ-mixing as described in Chapter 7.2 of [15]. In L-mixing we consider projections on
the relative future defined by F+

t−τ and the resulting approximation error is

E1/q|ut − E (ut|F+
t−τ )|q ≤ γq(τ, u)(3.8)
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for τ ≥ 0. In φ-mixing we consider projections on the past and the corresponding
error from the mean, defined as

||P (A|H) − P (A)||p(3.9)

for A ∈ G. Assuming that there is a random variable Φ such that

||P (A|H) − P (A)|| ≤ Φ(3.10)

for all A ∈ G, we have the following proposition (see Proposition 2.6, (2.23), of
Chapter 7.2 of [15]). Let Z be a G-measurable random variable such that ||Z||s is
finite and let r, s > 1 be such that r−1 + s−1 = 1. Then

||E(Z|H) − E(Z)||p ≤ 2||Φ||1/rp ||E(|Z|s|H)||1/sp .(3.11)

Now if (ut), t ≥ 0, is L-mixing with respect to (Ft,F+
t ), then taking the conditional

expectation of ut − E (ut|F+
t−τ ) with respect to Ft−τ (cf. (3.8)), we get by Jensen’s

inequality and the assumed independence of Ft−τ and F+
t−τ

E1/q|E (ut|Ft−τ ) − E (ut)|q ≤ γq(τ, u).(3.12)

In this respect the two notions of mixing lead to similar conclusions.
We will need to strengthen the condition on the M -boundedness of Hx as follows

for reasons that will be discussed later, following Condition 3.8.
Condition 3.2. H(t, x, ω) is piecewise continuous in t almost surely, and for

any compact set D0 ⊂ D there exists a random variable Lt = Lt(ω) ≥ 0 such that for
all x ∈ D0

|Hx(t, x, ω)| ≤ Lt(ω)

and here Lt is in class M∗, i.e., for some ε > 0 we have

sup
t

E exp(εLt) < ∞.(3.13)

In [19] we had a weaker condition (see Condition 1.2 of [19]).
Condition L. H(t, x, ω) is piecewise continuous in t, and for any compact set

D0 ⊂ D is Lipschitz-continuous in x for x ∈ D0 almost surely with a (t, ω)-dependent
Lipschitz constant Lt = Lt(ω) ≥ 0; i.e., for x, x′ ∈ D0 we have

|H(t, x, ω) −H(t, x′, ω)| ≤ Lt(ω)|x− x′|,

where Lt is in class M∗.
Assuming that (δH(t, ω)) is piecewise continuous in t almost surely, a solution

(xt) of (3.1) exists almost surely in some finite or infinite interval. A central role
in the analysis of (xt) is played by the mean-field of H(t, x, ω). To simplify the
presentation it is assumed that the mean-field is essentially independent of t, but a
small perturbation is allowed: we have EH(t, x, ω) = G(x) + δG(t, x), where δG(t, x)
is small in a sense to be specified below.

Condition 3.3. We have for any compact set D0 ⊂ D and t ≥ 0, x ∈ D0

EH(t, x, ω) = G(x) + δG(t, x),
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where δG(t, x) = O(t−1/2−ε) uniformly in x ∈ D0, with some ε > 0. G(y) has
continuous and bounded partial derivatives up to third order. Finally, we assume that

G(x) = 0(3.14)

has a unique solution x∗ in D.
Remark. In [19] the slightly weaker condition δG(t, x) = O(t−1/2) has been used

(see Condition 1.3 of [19]). Also only differentiability up to order 2 was required.
Let us now consider the associated ODE

ẏt =
1

t
G(yt), ys = ξ, s ≥ 1.(3.15)

Under the condition above, (3.15) has a unique solution in some finite or infinite
interval, which we denote by y(t, s, ξ). It is well known that y(t, s, ξ) is a twice
continuously differentiable function of ξ. The celebrated ODE principle states that
the solution trajectories of the random differential equation (3.1), under additional
conditions, follow the solution trajectories of the associated ODE (3.15).

Interpreting (3.1) as a continuous-time stochastic approximation method for solv-
ing the nonlinear algebraic equation G(x) = 0, an obvious difference compared to
classical theory (see [54]) is that G is not defined on the whole space. Thus we are led
to the study of recursive estimation methods constrained to a fixed domain D. In fact
for theoretical reasons it is better to assume that the estimator process is constrained
to a compact domain D0 ⊂ D. One way to enforce boundedness of the estimation
process is to restart it whenever it would leave D0. Such a truncated version of (3.1) is
described by Algorithm CR below, following [19]. A short discussion on the resetting
mechanism to follow will be given in the context of the DFL scheme.

Algorithm CR. Consider a continuous-time recursion given by a random differen-
tial equation

ẋt =
1

t
(H(t, xt, ω) + δH(t, ω)), x1 = ξ1(3.16)

combined with the following resetting mechanism. Let D0 ⊂ D denote a compact
truncation domain such that x∗ ∈ int D0. Let us initialize (3.16) at some time σ ≥ 1
and let xσ = ξ1 ∈ intD0. Let

τ(σ) = min{t : t > σ, xt ∈ ∂D0},(3.17)

where ∂D0 denotes the boundary of D0. Then we reset x to x1 = ξ1, which is formally
stated by requiring that the right-hand side limit of xt at t = τ = τ(σ) will be ξ1:

xτ+ = ξ1.(3.18)

Thus we get a piecewise continuous trajectory (xt) defined in some finite or infinite
interval.

Remark. An alternative resetting mechanism, used in the analysis of discrete-time
processes, is obtained by putting

xt = ξ1 for n < t ≤ n + 1 if xτ ∈ ∂D0 for n < τ ≤ n + 1.(3.19)

To ensure that the estimator sequence is not bounced back and forth by resetting
we need to impose some condition on the shape and relative position of the truncation
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domain, x∗ and ξ1, which is captured via the flow induced by the ODE. For this, first
we need to define the star-like closure of the set D0, relative to x∗, as follows:

D∗
0 = {y : y = x∗ + λ(x− x∗), 0 ≤ λ ≤ 1, x ∈ D0}.

The condition below is a simplified and corrected version of Condition 1.5. of [19].
The simplification is that the condition on the position of the initial value x1 = ξ1
has been relaxed, while the correction is that an additional compact convex set D′

0

containing the truncation domain has been introduced that has been implicitly used
in the final step of the proof of Theorem 1.1. of [19]; see (2.10) of [19].

Condition 3.4. Let D0 ⊂ D be a compact truncation domain such that x∗ ∈
intD0. We assume the following. (i) There exists a compact convex set D′

0 ⊂ D such
that

y(t, s, ξ) ∈ D′
0 for ξ ∈ D0 and y(t, s, ξ) ∈ D for ξ ∈ D′

0(3.20)

for all t ≥ s ≥ 1. In addition limt→∞ y(t, s, ξ) = x∗ for ξ ∈ D and∥∥∥∥ ∂

∂ξ
y(t, s, ξ)

∥∥∥∥ ≤ C0(s/t)
α(3.21)

with some C0 ≥ 1, α > 0 for all ξ ∈ D′
0 and t ≥ s ≥ 1. (ii) We have an initial

estimate x1 = ξ1 such that for all t ≥ s ≥ 1 we have y(t, s, ξ1) ∈ int D0. (iii) Finally,
for the star-like closure of the set D0 we have D∗

0 ⊂ D.
In [19] we had a the following stability condition (Condition 1.5 of [19] with minor

corrections added).
Condition D. (i) For every ξ ∈ D0, t ≥ s ≥ 1, y(t, s, ξ) ∈ D is defined for

1 ≤ s ≤ t < ∞ and converges to x∗ for t → ∞ and we have with some C0, α > 0∥∥∥∥ ∂

∂ξ
y(t, s, ξ)

∥∥∥∥ ≤ C0(s/t)
α.(3.22)

(ii) We assume that the initial condition ξ1 is in int D00, where D00 ⊂ int D0 is a
compact domain which is invariant for (3.15) such that for any t > s ≥ 1,

y(t, s,D00) = {y(t, s, ξ) : ξ ∈ D00} ⊂ int D00.

Remark. Since our objective is to restate Theorem 4.2 of [19], part (iii) of Con-
dition 3.4 of the present paper need not be verified for this purpose, since it was not
required in [19]; it is special addition for the present paper.

Remark. The condition on the existence of D′
0 can be removed if D itself is convex.

Indeed, the ODE given by (3.15) becomes autonomous after a change of time-scale
t = ev (see below), thus the remaining condition in part (i) of Condition 3.4 implies
that the set

D′′
0 = {y : y = y(t, s, ξ), ξ ∈ D0, t ≥ s ≥ 1}

is invariant for the ODE. It is easy to see that it is also compact, so we can take
for D′

0 the convex envelope of D′′
0 . We will show below that part (ii) of Condition D

follows from part (ii) of Condition 3.4. Finally, part (iii) of Condition 3.4 is a minor
additional technical condition needed for the present paper.
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We shall use subscripts to indicate partial derivatives below. Using a change of
time-scale t = ev, s = eu, the inequality (3.21) is equivalent to the condition that, for
the solutions of the differential equation

d

dv
zv = G(zv), zu = ξ, u ≥ 0,(3.23)

denoted by z(v, u, ξ) we have the stability condition

‖zξ(v, u, ξ)‖ ≤ C0e
−α(u−v).

It can be shown that if for ξ = x∗ we can verify ‖zξ(v, u, x∗)‖ ≤ C ′
0e

−α(u−v) with
some C ′

0, then the above stability condition follows from the remaining components
of Condition 3.4. Equivalently, it can be shown that if ‖yξ(t, s, x∗)‖ ≤ C ′

0(s/t)
α with

some C ′
0, then (3.21) follows from the remaining components of Condition 3.4.

Setting

A∗ =
∂G(x)

∂x

∣∣
x=x∗ ,(3.24)

we have yξ(t, s, x
∗) = eA

∗(log t−log s). The exponent α can be related to the eigenvalues
of the Jacobian matrix A∗ as follows. Let

α∗ = mini{−
λi(A
∗)}, i = 1, . . . , p,(3.25)

where λi(A
∗) denote the eigenvalues of A∗ and 
 denotes real part. Then, denoting

the spectral norm by ||.||sp we have ||eA∗(log t−log s)||sp = e−α∗(log t−log s) = (s/t)α
∗
.

Since for any square matrix B we have limn ||Bn||1/n = ||B||sp, we conclude that by
taking

α = α∗
−,(3.26)

where α∗
− denotes any number that is smaller than α∗, we have

||eA∗(log t−log s)|| ≤ C0e
−α(log t−log s) = C0(s/t)

α(3.27)

with some C0 > 0. If the Jordan form of A∗ is diagonal, then we can take α = α∗.
Lemma 3.1. Condition 3.4(ii) implies Condition D(ii).
Proof. Both Condition 3.4(ii) and Condition D(ii) can be trivially rewritten in

terms of the solutions of the ODE (3.23), denoted by z(v, u, ξ). Let D+
0 ⊂ D be a

small open neighborhood of D0 such that

I(D+
0 ) =

⋃
ξ∈D+

0 ,t≥0

z(t, 0, ξ) ⊂ D.

Then it is easily seen that I(D+
0 ) is an open invariant set containing D0. It is a well-

known result of Krasovskii (see Theorem 5.3 of his 1963 book) that Conditions 3.3
and 3.4 imply the existence of a C2 Lyapunov function V with domain of definition
I(D+

0 ) such that V (z) > 0 for z �= x∗, V (x∗) = 0, and

d

dv
V (z(v, u, η)) < 0 for η ∈ D0, z(v, u, η) = z �= x∗,
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and V (z) tends to +∞ when z tends to the boundary of I(D+
0 ). Since the Jaco-

bian A∗ = (∂/∂z) G(z)|z=x∗ is strictly stable, V can be chosen so that its Hessian
(∂2/∂z2) V (z)|z=x∗ is positive definite.

Let us consider the level sets

UV (c) = {z : V (z) ≤ c} and SV (c) = {z : V (z) = c}.

For sufficiently small c the set SV (c) is C1 isomorphic to a sphere. Let us now reverse
time and consider the differential equation

d

du
zu = −G(zu), z0 = ζ ∈ SV (c),

the solution of which is denoted by z(u, 0, ζ). Let the solution z(u, 0, ζ) ∈ D0 exist
for u ≤ u∗(ζ) ≤ ∞. Obviously we have, with η ∈ D0, ζ = z(v, 0, η) ∈ SV (c),

z(v, 0, ζ) = η.

For any ζ ∈ SV (c) we choose a finite backward travel time denoted by w = w(ζ)
such that 0 < w(ζ) ≤ u∗(ζ), and such that w is a C1 function. Consider the set

D00 = {z : z = z(u, 0, ζ) with some ζ ∈ SV (c), 0 ≤ u ≤ w(ζ)} ∪ UV (c).

It is easy to see that D00 is compact and invariant for the ODE (3.23). Furthermore
it is easy to see that for any ζ ∈ SV (c) and 0 ≤ u < w(ζ) (with strict inequality) the
point z(u, 0, ζ) is in the interior of D00.

Now let c ≤ V (ξ1) and let ζ1 be the point where the trajectory z(v, 0, ξ1) hits
SV (c), say for v = v(ξ1). Choosing the backward travel time w so that w(ζ1) > v(ξ1),
the above defined set D00 will satisfy the second part of Condition D, and the lemma
follows.

Finally, consider the perturbation term δH(t, ω). Following [19] and motivated
by the application for the DFL scheme, we will use the following condition.

Condition 3.5. (δH(t, ω)) is a measurable M -bounded process, which is piece-
wise continuous in t almost surely, moreover there exists an ε > 0 such that for any
fixed q > 1 and for any s ≥ 1,

sup
s≤σ≤qs

∫ τ(σ)∧qσ

σ

1

r
|δH(r, ω)|dr = OM (s−1/2−ε).(3.28)

It is no loss of generality to assume that ε < 1/2. We assume that the ε’s showing up
here and in Condition 3.3 are identical.

Remark. In [19] the slightly weaker condition

sup
s≤σ≤qs

∫ τ(σ)∧qσ

σ

1

r
|δH(r, ω)|dr = OM (s−1/2)(3.29)

was required (see Condition 1.6 of [19]). This is sufficient to establish a rate of
convergence result for the moments.

The above condition seems to be hard to verify, since it involves τ(σ), which itself
is defined in terms of the process (xt). In fact, the condition seems to be artificially
tuned so that the proof can be carried out. An alternative, seemingly more useful,
condition implying Condition 3.5 would be

sup
s≤σ≤qs

∫ qσ

σ

1

r
|δH(r, ω)|dr = OM (s−1/2−ε),(3.30)
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which is independent of the stopping time τ(σ). The latter is certainly satisfied if
δH(r, ω) = OM (r−1/2−ε). The prominent role of Condition 3.5 will become clear in
the context of the DFL scheme, see (3.56) and Lemma 3.2. The following is given in
Theorem 1.1 of [19].

Theorem 3.1. Consider the continuous-time recursive estimation process defined
by (3.16) with the resetting mechanism (3.17) and (3.18). Assume that Conditions
3.1–3.5 are satisfied, moreover Condition 3.4 is satisfied with α > 1/2. Then the
solution (xt) is defined for all t ∈ [1,∞) with probability 1 and xt = OM (t−1/2).
Moreover, the following stronger result also holds: for any fixed 1 < q < ∞ we have

x∗
t = sup

t≤s≤qt
|xs| = OM (t−1/2).

As has been noted at the end of section 2 in [19], using the alternative resetting
method (3.19) does not affect the validity of Theorem 1.1 of [19].

Definition of α. In subsequent analysis a crucial role will be played by the gap
between α, introduced in Condition 3.4, and 1/2, therefore we introduce a separate
notation: we write

α = α− 1/2.(3.31)

An example: a recursive estimation method is called a stochastic Newton method if
the Jacobian matrix of the right-hand side of the associated ODE at x = x∗ is −I,
where I is an identity matrix. Then we can take α∗ = α = 1 and α = 1/2.

Let us now consider discrete-time processes of the form

xn+1 = xn +
1

n + 1
(H(n + 1, xn, ω) + δH(n + 1, ω)), x0 = ξ0 ∈ int D0.(3.32)

Boundedness of the estimator sequence will be enforced by a resetting mechanism.
Let D0 ⊂ D be a compact domain. If xn+1 leaves D0, then we redefine xn+1 to be
x0. To formalize this: at any time n let xn+1− denote the value of x computed at
time n + 1 by (3.32) and let

Bn+1 = {ω : xn+1− �∈ intD0}.(3.33)

Algorithm DR. A discrete-time recursive estimation process with resetting is
defined as follows: we define xn+1 by

xn + (1 − χ
Bn+1

)
1

n + 1
(H(n + 1, xn, ω) + δH(n + 1, ω)) + χBn+1

(x0 − xn).(3.34)

Remark. Note that the correction term on the right-hand side was H(n, xn, ω)
in [19]. The present notation fits the applications better: the estimator based on
observations up to time n is updated by a new observation received at time n + 1.

A standard way of analyzing this algorithm is to use continuous-time imbedding
and this route has been followed in [19]. A more recent approach, in which the error
that arises via this imbedding procedure is eliminated, is a discrete-time ODE method,
developed in [25]. Here we follow the approach of [19], with a minor modifications.
Let (Hc(t, x, ω)) be the piecewise constant continuous-time extensions of (H(n, x, ω)):

Hc(t, x, ω) = H(n, x, ω) for 1 ≤ n ≤ t < n + 1.(3.35)
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Define δHc(t, x, ω) in a similar manner. Let the exit time τ(σ) for any nonnegative
integer σ be defined as

τ(σ) = min{n : n integer, n > σ, xn− �∈ intD0}.(3.36)

Condition 3.6. (δH(n, ω)) is a measurable M -bounded process, moreover there
exists an ε > 0 such that for any fixed q > 1 and for any integers s ≥ σ ≥ 1, with [x]
denoting integer part, we have

sup
s≤σ≤[qs]

τ(σ)∧[qσ]∑
r=σ

1

r
|δH(r, ω)|dr = OM (s−1/2−ε).(3.37)

It is easy to see that Condition 3.5 follows with the modified resetting mecha-
nism (3.19). The following result is an easy corollary of Theorem 3.1 and has been
established in [19] as Theorem 1.2.

Theorem 3.2. Consider the discrete-time recursive estimation process with re-
setting defined by (3.34). Let (Hc(t, x, ω)) be the piecewise constant continuous-time
extensions of (H(n, x, ω)) defined under (3.35). Assume that Hc(t, x, ω) satisfies
Conditions 3.1–3.4 and the latter condition is satisfied with α > 1/2. Let δHc(n, ω)
satisfy Condition 3.6, with τ(σ) defined as in (3.36). Then we have xn = OM (n−1/2).

Let us now consider a general recursive estimation scheme developed in [11, 12,
51], see also [3, 13, 53], which will be called the DFL scheme. Its basic building block
is a parameter-dependent vector-valued process (φn(x)), with x ∈ D ⊂ Rp, where D
is an open domain, defined by the state-space equation

φn+1(x) = A(x)φn(x) + B(x)en,(3.38)

with some nonrandom initial condition φ1(x), the value of which is often assumed to
be zero. The dimensionality of φn(x) will be denoted by r. In the analysis of [19], as
in all other works on the analysis of the DFL scheme we have to ensure that for any
choice of x = xn ∈ D the time-varying system

φn+1 = A(xn)φn + B(xn)en, φ0 = 0,(3.39)

is bounded input-bounded output (BIBO) stable. This is ensured by the following
condition.

Condition 3.7. The functions A(x), B(x) are three times continuously differ-
entiable in D. Moreover, the family of matrices A(x), x ∈ D0, with D0 being the
preselected truncation domain, is jointly stable in the sense that there exist a single
symmetric positive definite r × r matrix V and 0 < λ < 1 such that for all x ∈ D0,

AT (x)V A(x) ≤ λV.

Discussion of the joint stability condition. In the case of recursive estimation of
linear stochastic systems the joint stability condition can be satisfied by an appropriate
realization of system (3.38). Namely, in these cases (3.38) has the structure

φ1,n+1 = A1φ1,n + B1en,(3.40)

φ2,n+1(x) = A2(x)φ2,n(x) + B2(x)φ1,n+1,(3.41)

where φ1,n is independent of x and is observable. Thus it is sufficient to ensure
the joint stability of (3.41), which has an observable input. For any fixed x and
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nonsingular T = T (x) we have the system equivalence

(A2(x), B2(x), I) = (T (x)A2(x)T−1(x), T (x)B2(x), T (x)−1),(3.42)

and the latter realization can also be used to compute φ2,n+1(x). Assume that A(x) is
stable for all x ∈ D. Choosing T (x) so that T (x)A2(x)T−1(x) is a contraction for all
x ∈ D and assuming that T (x) is continuous in x, it is easy to see that Condition 3.7 is
satisfied for the transformed system with any compact D0 ⊂ D. In addition, assuming
that (A2(x), B2(x), I) uniquely determines x, the same holds for the equivalent system
(T (x)A2(x)T−1(x), T (x)B2(x), T (x)−1).

Assuming joint stability of (A(x)), it follows that there exists some c > 0 such
that for any sequence (A(xn)) with xn ∈ D0 we have

||A(xn) · · ·A(x0)|| ≤ cλn/2.(3.43)

In fact, this is the key property that we need in the analysis. An alternative method
for ensuring the validity of (3.43) used in [3] is to require that the sequence (A(xn)),
or equivalently the sequence (xn), is slowly varying. This method will be discussed
later.

The input noise (en) is assumed to satisfy two conditions (see Conditions 2.5 and
2.6 of [19].)

Condition 3.8. We assume that (en) is a wide-sense stationary process and
that |en|2 is in class M∗; i.e., for some ε > 0 we have

sup
n

E exp ε|en|2 < ∞.

Condition 3.8 is standard in the Chinese school for recursive estimation (see,
e.g., [7]) and is certainly satisfied for wide-sense stationary Gaussian sequences. The
weaker condition that (en) is M -bounded is assumed also in the special case of (3.53),
given as Example 1, p. 215 of [3], (see Condition (A’5) on p. 290 of [3]). The existence
of finite moments of all orders for certain state variables is required also in the general
model of recursive estimation of [3], see Condition (A’5) on p. 290 of [3].

Discussion of Condition 3.8. Assume δH(r, ω) = 0 identically and that no reset-
ting takes place in the interval [1, t]. Then we have

xt − yt =

∫ t

1

1

r
(H(r, xr, ω) −G(yr)) dr.(3.44)

Now we can bound the right-hand side from above in two ways as∣∣∣∣∫ t

1

1

r
(H(r, xr, ω) −G(xr)) dr

∣∣∣∣ +

∫ t

1

1

r
L|xr − yr| dr,∣∣∣∣∫ t

1

1

r
(H(r, yr, ω) −G(yr)) dr

∣∣∣∣ +

∫ t

1

1

r
Lr|xr − yr| dr.(3.45)

In both cases we can apply the Bellman–Gronwall lemma. In the first case we need
only the Lipschitz continuity of G, while H may be even discontinuous (which is the
case, e.g., for the signed least mean squares (LMS) methods), but the first term is hard
to analyze, unless H is a Markov process for any fixed x (see Chapter 1 of Part II of [3]).
In the second case we need the Lipschitz continuity of H and Condition 3.8 has to be
imposed on Lr to ensure that the application of the Bellman–Gronwall lemma gives
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meaningful result. On the other hand, the analysis of the first term is significantly
simpler, since it is essentially the integral of a zero-mean L-mixing process.

Condition 3.9. We assume that (en) is L+-mixing with respect to a pair of
families of σ-algebras (Fn,F+

n ).
The role of this condition will be discussed in connection with Lemma 3.2, see

also [19, Lemma 5.6 and Theorem 6.1]. Now we are ready to define a random field
H(n, x, ω) in terms of φn(x) as follows:

H(n, x, ω) = Q(φn(x)),(3.46)

where for the sake of simplicity Q is a quadratic function from Rr to Rp. An alterna-
tive, more general definition would be

H(n, x, ω) = F (Q(φn(x)), x),(3.47)

where Q is quadratic and F is linear in Q and three times continuously differentiable
in its second variable x. Also define the mean-field

G(x) = lim
n→∞

E Q(φn(x)).(3.48)

It is easy to see that G(x) is well defined, since φn(x) is asymptotically wide-sense
stationary: in fact φn(x) = φ∗n(x) + OM (βn), where φ∗n(x) is wide-sense stationary
and 0 < β < 1, and thus

G(x) = E Q(φn(x)) + O(βn).(3.49)

The estimation problem in the context of the DFL scheme is then to solve the nonlinear
algebraic equation

G(x) = 0

based on observations of Q(φn(x)). It is assumed that a unique solution x∗ exists in
D and in fact x∗ ∈ D0. In identification problems the estimation of x∗ can be carried
out in an off-line fashion, but this is not the case in stochastic adaptive control. Thus
we focus on recursive estimation of x∗.

It is not difficult to see (cf. [19]) that under Conditions 3.7, 3.8, and 3.9 the
piecewise constant continuous-time extension of the random field H(n, x, ω) defined
by (3.46) satisfies Conditions 3.1, 3.2, and 3.3 with G defined under (3.48). In fact,
in the latter condition δG(t, x) decays exponentially fast to zero.

We use an iterative procedure, in which the estimate of x∗ at time n will be
denoted by xn. To update this estimate we should use the correction term Q(φn(xn)),
but this frozen parameter value cannot be easily computed. In fact in stochastic
adaptive control problems it cannot be computed at all. Hence we generate an online
approximation of Q(φn(xn)) and thus we arrive at the following first version of the
DFL method: define recursively

φn+1 = A(xn)φn + B(xn)en,(3.50)

xn+1 = xn +
1

n
Q(φn+1)(3.51)

with initial conditions x0 = ξ0 ∈ intD0 and φ0 a constant, nonrandom initial state.
It is assumed that Q(φn+1) is computable by coupling a physical system with our
computer.
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Discussion on the DFL scheme. The applicability of this general estimation
scheme in the theory of recursive identification of linear stochastic systems has been
discussed in more details [53], albeit its analysis has not been complete. Further ex-
amples of application are given in [3]. Here also a rigorous and detailed analysis of a
nonlinear modification of the DFL scheme is given, using a Markovian dynamics in
generating the state sequence (φn). This setup extends the range of applicability of
the method, but the verification of the existence of the solution of a Poisson equation,
(see Condition (A.4) of Chapter 1.1, Part II in [3]) seems to be hard. A special case
of the DFL scheme is stochastic linear regression, in which φn does not depend on x
at all and H(n, x, ω) is of the form

H(n, x, ω) = Q(l(φn, x))(3.52)

with l being linear in both φ and x, has been analyzed in [7, 14, 47].
It is well known from simulations that the DFL scheme may diverge, unless some

precaution is taken. The above procedure will therefore be modified so that the
estimates xn will be enforced to stay in a compact domain D0 ⊂ D, such that x∗ ∈
intD0. This will be achieved by a resetting mechanism: if xn+1 leaves D0 we redefine
it to be x0 = ξ0. To formalize this procedure let xn+1− denote the value of x computed
at time n + 1 by (3.51). Then if xn+1− �∈ intD0, then we reset it to its initial value
ξ0. To formalize the procedure let

Bn+1 = {ω : xn+1− �∈ intD0}.

Then we define the following algorithm.
Algorithm DFL. The DFL scheme with resetting:

φn+1 = A(xn)φn + B(xn)en,(3.53)

xn+1 = xn + (1 − χBn+1)
1

n + 1
Q(φn+1) + χBn+1(x0 − xn).(3.54)

An additional stopping time is used in [3] to ensure the validity of (3.43) by ensur-
ing that the sequence (A(xn)), or equivalently the sequence (xn), is slowly varying.
Following [3, (3.1.2) on p. 291] for any positive integer σ define the stopping time

ν(σ) = min{n : n integer, n > σ, |xn+1 − xn| > δ},(3.55)

where σ is some fixed positive number. It is well known that if δ is sufficiently small,
then (3.43) holds. However, the a priori determination of a right value of δ seems to
be hard.

Discussion of the “boundedness condition.” The eventual divergence of the DFL
scheme is often dealt with the controversial “boundedness condition” first formulated
in [51] requiring that the estimator process visits a compact domain of attraction of
the ODE infinitely often. A lucid exposition of the underlying principle is given in [52,
Lemma 1.12], which is considered there as the key tool for the ODE method. Almost
sure convergence using the above “boundedness condition” has also been established
for a nonlinear, Markovian extension of the DFL method in [3, Part II, Chapter 1.9,
Theorem 15]. Unfortunately, the “boundedness condition” is much too restrictive: it
is a condition on the process itself that we analyze and it is not clear at all if it is
satisfied even for basic methods such as RPE for ARMA processes.

One way to enforce the boundedness of the estimation process is to consider
a compact truncation domain containing the true parameter in its interior and to
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“project” the estimator back to this domain if it would leave it; see [51, 45]. It is
easy to see that this procedure may fail even for deterministic algorithms, namely the
ODE, which approximates the evolution of the discrete-time algorithm, may force us
to move out of the truncation domain.

A rigorous treatment of the boundedness problem has been given in [3], where
the estimator process is stopped if it leaves a prescribed compact domain containing
the true parameter in its interior. Denoting by Ω′ ⊂ Ω the event that the estimator
process is never stopped, the almost sure convergence of the estimator process has been
established on Ω′; see [3, Part II, Chapter 1.6, Proposition 11]. But convergence with
probability strictly smaller than 1 is not satisfactory from the practical point of view.
The above truncated version of the DFL methods has been given and analyzed in [19].

The definition of the truncation domain requires some a priori knowledge of the
system-parameters no matter what truncation procedure we use. This may seem to
be a restrictive assumption, but even deterministic iterative methods for optimization
may fail without good initialization.

In practice we start with an initial value and a truncation domain which may
or may not satisfy our conditions. If it does not and the solution trajectory of the
associated ODE starting at x0 = ξ0 does hit the boundary of D0, then a heuristic
argument, following [19], shows that the estimator process will be likely to hit the
neighborhood of the same point of the boundary of the truncation domain. This
phenomenon can be detected during the computations and a larger truncation domain
can be chosen. Such an adaptive choice of the truncation domain has not yet been
studied. A special case when the boundedness problem does not arise is the use of a
stochastic regression approach, such as extended least squares (ELS); see [53].

To connect the DFL scheme with Algorithm DR define

δH(n, ω) = Q(φn) −Q(φn(xn)).(3.56)

Then (3.54) can be written in the form of (3.34). A critical point in the analysis of
the DFL scheme is that the perturbation term δH(n, ω) is not given a priori, rather
it is defined via the recursive procedure itself. In fact, the analysis of δH(n, ω) is
a substantial component of the convergence analysis of the DFL-method, which has
been worked out in [19, sections 5 and 6], leading to the following result (cf. Lemma 5.6
of [19]).

Lemma 3.2. Consider the DFL scheme defined by (3.53)–(3.54). Assume that
Conditions 3.7, 3.8, and 3.9 are satisfied. In addition assume that Condition 3.4 is
satisfied with α > 1/2. Then (δH(n, ω)) defined by (3.56) is an M -bounded process,
moreover there exists an ε with 0 < ε < 1/2 such that for any fixed q > 1 and for any
integer s ≥ 1 and integers σ,

sup
s≤σ≤[qs]

τ(σ)∧[qσ]∑
σ

1

r
|δH(r, ω)|dr = OM (s−1/2−ε).(3.57)

In short, (δH(n, ω)) satisfies Condition 3.6. Postulating the validity of Condi-
tion 3.4 we conclude that all conditions of Theorem 3.2 are satisfied and thus we get
the following result.

Theorem 3.3. Consider the DFL scheme defined by (3.53)–(3.54). Assume that
Conditions 3.7, 3.8, and 3.9 are satisfied. In addition assume that Condition 3.4 is
satisfied with α > 1/2. Then we have xn = OM (n−1/2).

Discussion of the result. A special feature of the above result is that the mo-
ments of the estimation error are bounded from above. The only alternative result
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on the moments of the estimation error in the context of the DFL scheme seems to
be Proposition 24 of [3, Part II, Chapter 1.10] where the L2 moments of the error of
the stopped process is shown to be of the order 1/n.

Almost sure convergence of the DFL scheme has been stated in [51] using the
controversial “boundedness condition,” requiring that the estimator process visits a
compact domain of attraction of the ODE infinitely often. See also [52, Lemma 1.12]
for a related result. Almost sure convergence using the above “boundedness condition”
has also been established for a nonlinear, Markovian extension of the DFL method in
[3, Part II, Chapter 1.8, Theorem 15]. The almost sure convergence of the estimator
process has been established on a set Ω′ ⊂ Ω of probability strictly less than 1; see
[3, Part II, Chapter 1.6, Proposition 11 and Chapter 3.4, Theorem 17].

An alternative set of results are obtained for stochastic regression models devel-
oped in [47]. Results on the rate of almost sure convergence are given in [7, 14].
See also Theorem 2 of [4] or Theorem 1 of [10]. The main shortcoming of stochastic
regression, such as ELS, see [53], compared to the DFL scheme is that its range of
applicability is limited. For example, in estimating an ARMA process by ELS we
must impose the condition that the polynomial C − 1/2 is positive real.

Further discussion on mixing conditions. L-mixing and φ-mixing can both be
used to derive two main results of [19], (Theorems 1.1 and 1.2), restated here as
Theorems 3.1 and 3.2. In both results the key technical device is an improved Hölder
inequality, see Lemma 8.1 of section 8, or Chapter 7.2 of [15], or Appendix III of [33].
An improved Hölder inequality of [15] is restated as Lemma 8.2. The situation is
quite different for the DFL scheme, where L+-mixing has been heavily exploited for
deriving Theorem 3.3, in particular in proving Lemma 3.2 (see sections 5 and 6 of [19],
in particular Theorem 6.1 in [19]).

4. Strong approximation of the estimation error. The main result of the
present paper is a significant extension of Theorem 2.4 for the three, closely related
recursive estimation schemes presented in the previous section. These extensions will
be stated and proved in this section. The analysis will be carried out in detail for
Algorithm CR, given by (3.16) and the resetting mechanism (3.17) and (3.18); see
Theorem 4.1. The proof is nontrivial and relies on the results of [17, 19, 21]. The
corresponding results for Algorithms DR and DFL will then follow by relatively simple
arguments. The extension of the two other main results for the RPE method, given
in section 2 as Theorems 2.5 and 2.6, will be given in the next two sections. Note that
the conditions for the next theorem are identical with the conditions of Theorem 3.1.

Theorem 4.1. Consider the continuous-time recursive estimation scheme, Algo-
rithm CR, given by (3.16) with the resetting mechanism (3.17) and (3.18). Assume
that Conditions 3.1–3.5 are satisfied and Condition 3.4 is satisfied with α > 1/2.
Then the solution of (3.16), (xt), is defined for all t ∈ [1,∞) with probability 1 and
we have with

εx = min(α, ε)−,

where c− is any number smaller than c, α is given by (3.31), and ε is given in
Condition 3.5,

xt − x∗ =

∫ t

1

∂

∂ξ
y(t, s, x∗)

1

s
H(s, x∗, ω)ds + OM (t−1/2−εx).(4.1)

Discussion of the result. The bound OM (t−1/2−εx) cannot be improved in general.
Indeed, let δH(t, ω) = 0, then εx = α− = α−− 1/2, where α = α∗

− (see (3.31), (3.26),
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and (3.25)). Thus

−1/2 − εx = −α∗
−.

Consider now a linear process with additive, state-independent, bounded noise, i.e., let
H(t, x, ω) = A∗x + ut, where (ut) is a zero-mean L-mixing bounded process. Then
Algorithm CR reads

ẋt =
1

t
(A∗xt + ut), x1 = ξ1.(4.2)

Assuming that A∗ is stable, the boundedness of (ut) implies the boundedness of (xt),
hence taking a sufficiently large truncation domain no resetting will take place ever.
Obviously we have x∗ = 0 and we can write the exact equality

xt =

(
∂

∂ξ
y(t, 1, x∗)

)
· ξ1 +

∫ t

1

∂

∂ξ
y(t, s, x∗)

1

s
H(s, x∗, ω)ds(4.3)

with

∂

∂ξ
y(t, s, x∗) = eA

∗(log t−log s).

Thus the residual term, the first term on the right-hand side of (4.3), is eA
∗ log tξ1,

since now s = 1. Thus we have

||eA∗ log t||sp = t−α∗
,(4.4)

and since for any square matrix B we have ||B|| ≥ ||B||sp, we conclude that

||eA∗ log t|| ≥ t−α∗
.(4.5)

Thus there exists a ξ1 such that

|eA∗ log tξ1| ≥ t−α∗ |ξ1|,(4.6)

implying that the result of the theorem is sharp.
To interpret this result note that the matrix ( ∂

∂ξ )y(t, s, x∗) is the sensitivity ma-
trix, which indicates the relative effect of a perturbation of the initial condition at
time s on the solution of (3.15) at time t. Thus the dominant term on the right-
hand side represents the cumulative effect of the ideal correction terms 1

sH(s, x∗, ω)
at time t. A similar representation of the error xt − x∗ for classical Robbins–Monroe
processes, had been implicitly used already in [54]. The above dominant term has
been explicitly presented for a class of stopped stochastic approximation processes in
Lemma 3.1 of [65].

The novelty of the present result is that it is stated for a general recursive esti-
mation scheme, that can handle the widely used DFL scheme, a crucial boundedness
assumption enforced by a resetting mechanism and a tight upper bound for the resid-
ual term has been obtained. A relatively straightforward corollary of Theorem 4.1
is the following discrete-time result, in which the conditions are identical with the
conditions of Theorem 3.2.

Theorem 4.2. Consider the discrete-time recursive estimation process, Algo-
rithm DR, with resetting defined by (3.34). Let (Hc(t, x, ω)) be the piecewise con-
stant continuous-time extension of (H(n, x, ω)) defined under (3.35). Assume that
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(Hc(t, x, ω)) satisfies Conditions 3.1–3.4 and Condition 3.4 is satisfied with α > 1/2.
Let δH(n, ω) satisfy Condition 3.6, with τ(σ) defined in (3.36). Then we have, with
εx = min(α, ε)−, where α is given by (3.31) and ε is given by Condition 3.6,

xN − x∗ =

N∑
n=1

∂y

∂ξ
(N,n, x∗)

1

n
H(n, x∗, ω) + OM (N−1/2−εx).

Specializing the last result to the DFL scheme we get a result that is very useful
for applications (see section 7).

Theorem 4.3. Consider the DFL scheme defined by (3.53)–(3.54). Assume that
the state-space equation (3.38) satisfies Condition 3.7, the noise process (en) satisfies
Conditions 3.8 and 3.9, and the associated ODE satisfies Condition 3.4 with α > 1/2.
Let εx = min(α, ε)−, where α is defined under (3.31) and ε is given by Lemma 3.2.
Then we have

xN − x∗ =

N∑
n=1

∂y

∂ξ
(N,n, x∗)

1

n
Q(φn(x∗)) + OM (N−1/2−εx).

Remark. The proof of Lemma 5.6 in [19], based on Theorem 6.1 of the same
paper, implies that in Condition 3.5 we have ε < 1/2. Thus in the present case it is
not our choice to have ε < 1/2. It follows that the upper bound for the residual term
cannot be as small as OM (N−1), in contrast to what we had for the off-line prediction
error method for ARMA processes; see Theorem 2.2.

The above results take a particularly attractive form for partially stochastic New-
ton methods. A recursive estimation method is called a partially stochastic Newton
method if the Jacobian matrix of the right-hand side of the associated ODE at x = x∗

is of the form (
−I 0
X Y

)
,

where I is an identity matrix. An example, the standard recursive prediction error
estimation of ARMA processes, in which both the system-parameter θ∗ and the Hes-
sian of asymptotic cost function R∗ are estimated and the estimates of the system-
parameters are updated using Newton-like steps, is a partially stochastic Newton
method with respect to the system-parameters.

The above decomposition of the Jacobian is in one-to-one correspondence with
the splitting of the parameter vector x as x = (x1, x2). With this notation it is easy
to see that

∂

∂ξ1
y(t, s, ξ)|ξ=x∗ =

(
s

t
I, 0

)
for s ≤ t and the statement of Theorem 4.3 simplifies to the following.

Theorem 4.4. Assume that the conditions of Theorem 4.3 are satisfied and that
we can split the parameter vector x as x = (x1, x2) so that the estimation method is
a partially stochastic Newton method with respect to x1. Let (Q1, Q2) be the corre-
sponding splitting of Q. Then we have with the same εx as in Theorem 4.3

x1
N − x1∗ =

1

N

N∑
n=1

Q1(φn(x∗)) + OM (N−1/2−εx).
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Theorem 4.4 is an extension of Theorem 2.4 to general partially stochastic Newton
methods, but with a weaker error term, since εx < 1/2.

The result given as (2.23) can also be extended. Let the off-line estimator x̂N of
x∗ be defined as the solution of

UN (x) =

N∑
n=1

Q1(φn(x)) = 0

with respect to x. The handling of multiple solutions is precisely described in [18].
Then it is easy to see that Theorem 2.2 can be extended and noting that the Jacobian
matrix of the right-hand side of the associated ODE at x = x∗ is of the form given
above, we get for the first component of x̂

x̂1
N − x1∗ =

1

N

N∑
n=1

Q1(φn(x∗)) + OM (N−1).

Combining this with Theorem 4.4 and writing ̂̂xN = xN we get

̂̂x1

N − x̂1
N = OM (N−1/2−εx)(4.7)

which is an extension of (2.23), albeit with a weaker error term.
Discussion of the result. To compare these results with the results of [3, 45] we

note that the limit results of [3] are of classical nature: weak convergence and CLT
(central limit theorem), which are not strong enough for calculating performance
degradation that we called pathwise cumulative regret. The same remark applies to
the weak-convergence results of [45].

In the case of stochastic regression methods, developed in [47] and extended in
[7, 14], tight bounds for the almost sure rate of convergence of the estimator process
are given. But even these results are not applicable in general to get exact asymptotic
results for the pathwise cumulative regret, except in very special cases, such as the
minimum-variance self-tuning regulator for ARX systems; see [49]. For ARMAX
systems these techniques yield only qualitative results; see [48].

Further discussion on mixing conditions. The proof of Theorem 4.1 relies on a
moment inequality for weighted multiple integrals of L-mixing processes given in [21].
It is likely that this result can be extended to φ-mixing processes, since it is based
on the repeated use of an improved Hölder inequality, which does have its variant
for φ-mixing processes; see Lemmas 8.1 and 8.2 of section 8 and Chapter 7.2 of [15]
for further results. Thus it is likely that L-mixing and φ-mixing can both be used to
derive the results of the present section for Algorithms CR and DR, given as Theorems
4.1 and 4.2.

The situation is quite different for the DFL scheme, where L+-mixing has already
been heavily exploited for getting the rate of convergence of higher order moments; see
Theorem 3.3. Furthermore, L+-mixing is very much used in the context of all three
algorithms (Algorithm CR, Algorithm DR, and the DFL scheme) in deriving the
results of sections 4 and 5. Moreover, the formulation of the main result of section 5
is given in terms of the concept of L-mixing. It is not clear if a similar result holds
in the context of φ-mixing. Even the following simple related problem seems to be
open: under what conditions is the response of an exponentially stable linear filter,
with a φp-mixing process as its input, φp-mixing?
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Proof of Theorem 4.1. Assume x∗ = 0. Also we can assume that δG = 0,
namely the term δG(t, xt) can be merged with δH(t, ω). Indeed, the condition that
δG(t, x) = O(t−1/2−ε) uniformly in x for x ∈ D0, see Condition 3.3, implies that
Condition 3.5 remains valid when δH(t, ω) is replaced by δH(t, ω) + δG(t, xt).

Let us consider the process (xt) on the interval [s, qs) with s ≥ 1, q > 1, and let
yt denote the solution of the ODE (3.15) starting from xs at time s. Let Cs denote
the event that xt hits ∂D0 in [s, qs). Then we can write xt − yt as

(1 − χCs
)

∫ t

s

∂

∂ξ
y(t, r, xr) ·

1

r

(
H(r, xr, ω) + δH(r, ω)

)
dr + χCs(xt − yt)(4.8)

with H(r, x, ω) = H(x, r, ω) − G(r, x) by using Lemma 8.6. Let us now take into
account the fact that yξ(t, r, x) and H(r, x, ω) are continuously differentiable with
respect to x. Hence we can write

∂

∂ξ
y(t, r, xr) =

∂

∂ξ
y(t, r, 0) +

∫ 1

0

∂2

∂ξ2
y(t, r, λxr)dλ · xr

and

H(r, xr, ω) = H(r, 0, ω) +

∫ 1

0

∂

∂x
H(r, λxr, ω)dλ · xr.

Substituting into (4.8) we get that the first integral on the right-hand side of (4.8)
can be written as the sum of the following five terms:

I1 =

∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r
H(r, 0, ω)dr,

I2 =

∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r

∫ 1

0

∂

∂x
H(r, λxr, ω)dλ · xrdr,

I3 =

∫ t

s

∫ 1

0

∂2

∂ξ2
y(t, r, λxr)dλ · xr ·

1

r
H(r, 0, ω)dr,

I4 =

∫ t

s

∫ 1

0

∂2

∂ξ2
y(t, r, λxr)dλ · xr ·

1

r

∫ 1

0

∂

∂x
H(r, λ′xr, ω)dλ′ · xrdr,

I5 =

∫ t

s

∂

∂ξ
y(t, r, xr) ·

1

r
δH(r, ω)dr.

We will later also write I1 = I1,t = I1,t,s when we want to emphasize the dependence
of I1 on t and s. Then we can write

xt − yt = (1 − χCs
)(I1 + I2 + I3 + I4 + I5) + χCs

(xt − yt).(4.9)

We will approximate I2 and I3 so that we replace λxr and λ′xr by 0 and define

I∗2 =

∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r

∫ 1

0

∂

∂x
H(r, 0, ω)dλ · xrdr,

I∗3 =

∫ t

s

∫ 1

0

∂2

∂ξ2
y(t, r, 0)dλ · xr ·

1

r
H(t, 0, ω)dr.

For the sake of notational homogenity we will also write I1 = I∗1 .
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Lemma 4.1. We have for fixed q and any s ≤ t ≤ qs,

xt − yt = I∗1 + I∗2 + I∗3 + OM (s−1/2−ε).(4.10)

Remark. It will be clear from the proof of the lemma that in the case δH(t, ω) = 0
the last term becomes OM (s−1). Indeed the error term OM (s−1/2−ε) shows up only
in the last step of the proof, in the estimation of the effect of I5. Thus a key factor
in the accuracy of the ODE approximation is the perturbation term δH(t, ω).

Proof. Estimation of I2. We claim that for s ≤ t ≤ qs we have

I2 = I∗2 + OM (s−1).(4.11)

Indeed, fix λ and integrate first with respect to r. We expand ∂
∂xH

i
(r, λxr, ω) (for

i = 1, . . . , p) into a Taylor series about 0 once more to obtain

∂

∂x
H

i
(r, λxr, ω) =

∂

∂x
H

i
(r, 0, ω) +

(∫ 1

0

∂2

∂x2
H

i
(r, λ′λxr, ω)dλ′

)
· xr.

The expression under the integral term here can be shown to be OM (1) by the
same argument that we used above, since H is assumed to have continuous third
derivatives almost surely which are also M -bounded. Thus we get ∂

∂xH(r, λxr, ω) =
∂
∂xH(r, 0, ω) + OM (r−1/2). Integration with respect to λ from 0 to 1 and mul-

tiplication by r−1xr = OM (r−3/2) yield an error term OM (r−2). Finally, since
‖ ∂
∂ξy(t, r, 0)‖ ≤ C0(r/t)

α we get

I2 =

∫ t

s

∂

∂ξ
y(t, r, 0) · 1

r

∂

∂x
H(r, 0, ω) · xrdr + OM (s−1)(4.12)

as stated. Note that the dominant term can be estimated by using the moment
inequality given as Theorem 8.1. Thus we also get I2 = OM (s−1/2).

Estimation of I3. We claim that for s ≤ t ≤ qs we have

I3 = I∗3 + OM (s−1).(4.13)

Indeed, in the inner integrand of I3 we can write

∂2

∂ξ2
y(t, r, λxr) =

∂2

∂ξ2
y(t, r, 0) +

(∫ 1

0

∂3

∂ξ3
y(t, r, λ′λxr)dλ

′
)
· xr,(4.14)

where the last term is to be interpreted as the product of a 4-tensor with a 1-tensor
yielding a 3-tensor, thus interpreting · as a tensor product. Substituting (4.14) into
the expression of I3 we get for fixed λ, λ′ the product of the following two terms:

∂2

∂ξ2
y(t, r, 0) · xr ·

1

r
H(r, 0, ω) = OM (r−3/2),

∂3

∂ξ3
y(t, r, λ′λxr) · xr · xr ·

1

r
H(r, 0, ω) = OM (r−2),

where we used the fact that the partial derivatives of y(t, r, ξ) with respect to ξ are
bounded by a deterministic constant; see Lemma 8.8. Integrating from s to t the
contribution of the integral of the second term is OM (s−1), thus we get

I3 =

∫ t

s

(
∂2

∂ξ2
y(t, r, 0) · xr

)
· 1

r
H(r, 0, ω)dr + OM (s−1)(4.15)
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as stated. Note that the expected upper bound I3 = OM (s−1/2) cannot be readily
derived from the above approximation: we cannot use the moment inequality given
as Theorem 8.1 since the weights xr are random!

Estimation of I4. We claim that for s ≤ t ≤ qs we have

I4 = OM (t−1).(4.16)

Indeed, by Theorem 3.1 we have xr = OM (r−1/2), hence for fixed λ, λ′ the contribution
of the term r−1xr · xr, interpreted as an appropriate tensor product, is OM (r−2). On
the other hand, ‖yξξ(t, r, x)‖ ≤ C0, (r/t)

α ≤ C ′
1 with some C ′

0, C
′
1 > 0, uniformly in x

for x ∈ D0 (cf. Lemma 8.8). Third,∥∥∥∥ ∂

∂x
H(r, λ′xr, ω)

∥∥∥∥ ≤ sup
x∈D∗

0

∥∥∥∥ ∂

∂x
H(r, x, ω)

∥∥∥∥ Δ
= H∗

x(x, r, ω),(4.17)

where D∗
0 denotes the star-like closure of D0. Since by assumption D∗

0 ⊂ intD and
the partial derivative Hxx(r, x, ω) exists and is continuous almost surely and is M -
bounded, we get by the maximal inequality, given as Theorem 8.3, that the right-hand
side of (4.17) is OM (1). Hence we finally get, using the triangle inequality, that

I4 = OM

(∫ t

s

C0(r/t)
αr−2dr

)
= OM (s−1)

as stated.
Estimation of the effect of I5,t. We claim that for s ≤ t ≤ qs

(1 − χCs
) I5,t = OM (s−1/2−ε).(4.18)

Indeed, we have

(1 − χCs) |I5,t| ≤ (1 − χ
Cs)

∫ t∧τ(s)

s

∥∥∥∥ ∂

∂ξ
y(t, r, 0)

∥∥∥∥ 1

r
|δH(r, ω)| dr,

since for t > τ(s) we have 1−χ
Cs = 0. Noting that ‖yξ(t, r, 0)‖ ≤ C0 and taking into

account Condition 3.5 we get the claim.
Write now xt − yt as

I1 + I2 + I3 + I4 + (1 − χCs)I5 − χCs(I1 + I2 + I3 + I4) + χCs(xt − yt),(4.19)

and estimate the contribution of the last two terms. Note that

I1 + I2 + I3 + I4 =

∫ t

s

∂

∂ξ
y(t, r, xr) ·

1

r
H(r, xr, ω) dr = OM (1).(4.20)

Indeed, ||yξ(t, r, xr)|| ≤ C0 and H(r, xr, ω) is M -bounded; see the argument leading
to (4.17). Similarly |xt − yt| = OM (1), actually we have |xt − yt| = O(1). As for χCs

we have the following lemma that has been given as Lemma 2.3 in [19].
Lemma 4.2. Consider the continuous-time recursive estimation scheme given

by (3.16) with the resetting mechanism (3.17) and (3.18). Assume that Conditions
3.1–3.5 are satisfied. Let Cs denote the event that xt hits ∂D0 in the interval [s, qs).
Then for any m ≥ 1 we have P (Cs) = O(s−m).
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Thus the contribution of the last two terms in (4.19) is OM (s−m) for any m ≥ 1
and with this Lemma 4.1 has been proved.

Our next step is to show that the dominant term is I∗1 ; i.e., the terms I∗2 and
I∗3 are negligible. This is stated in the next lemma, which is the key lemma for the
proof of Theorem 4.1. Its proof requires a new tool, specially designed for the present
application: moment inequalities for double integrals of L-mixing processes.

Lemma 4.3. We have for s ≤ t ≤ qs

xt − yt = I∗1 + OM (s−1/2−ε).

Proof. In order to obtain sharper estimates of I∗2 and I∗3 let us write

I∗2 + I∗3 =

∫ t

s

grxr dr,(4.21)

where the matrix-valued process (gr) is defined by

gr =
∂

∂ξ
y(t, r, 0) · 1

r

∂

∂x
H(r, 0, ω) +

∂2

∂ξ2
y(t, r, 0) · 1

r
H(r, 0, ω).(4.22)

Thus we can write Lemma 4.1 as

xt = yt + I∗1 +

∫ t

s

grxrdr + OM (s−1/2−ε).(4.23)

If we had xr = x a small constant, then we could write the integral on the right-
hand side of (4.23) as

∫ t

s
grdr · x, which then could be estimated by the moment

inequality given as Theorem 8.1, since both Hx(r, 0, ω) and H(r, 0, ω) are zero-mean
L-mixing processes. If x is small, then the contribution of this term will be negligible.
To show that the second term in (4.23) is indeed negligible we iterate (4.23), i.e., sub-
stitute xr by the expression that is given by (4.23). Writing I∗1 = I∗1,t we get for xt

the expression

yt + I∗1,t +

∫ t

s

gr

(
yr + I∗1,r +

∫ r

s

gpxpdp + OM (s−1/2−ε)

)
dr + OM (s−1/2−ε).

(4.24)

Let us set

J1 =

∫ t

s

gryrdr, J2 =

∫ t

s

grI
∗
1,rdr, J3 =

∫ t

s

gr

∫ r

s

gpxp dp dr.

The last term of the double integral in (4.24) yields
∫ t

s
grOM (s−1/2−ε)dr = OM (s−1/2−ε)

since
∫ t

s
grdr = OM (1), therefore the effect of this term can be merged into the final

residual term of (4.24). Thus we get

xt − yt = I∗1,t + J1 + J2 + J3 + OM (s−1/2−ε).(4.25)

We show that J1 + J2 + J3 = OM (s−1).
Estimation of J1. To estimate J1 write it as

J1 =

∫ t

s

gry(r, s, xs)dr = L1(xs) with L1(x) =

∫ t

s

gry(r, s, x)dr.
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Note that L1(0) = 0. To estimate L1(xs) consider a Taylor series expansion of L1(x)
around 0:

L1(xs) =

∫ 1

0

L1x(λxs)dλ · xs,(4.26)

where L1x = (∂/∂x)L1(x). It is easy to see that in computing L1x differentiation and
integration can be interchanged, thus we can write

L1x(x) =

∫ t

s

(
∂

∂ξ
y(t, r, 0) · 1

r

∂

∂x
H(r, 0, ω) +

∂2

∂ξ2
y(t, r, 0) · 1

r
H(r, 0, ω)

)
· ∂
∂x

y(r, s, x) dr.

(4.27)

Since yξ(t, r, 0), yξξ(t, r, 0), and yx(r, s, x) are deterministic and bounded and Hx(r, 0, ω)
and H(r, 0, ω) are zero-mean L-mixing processes we get by the moment inequality,
given as Theorem 8.1, that for each fixed x ∈ D0

L1x(x) = OM

(∫ t

s

1

r2
dr

)1/2

= OM (s−1/2).

Using similar arguments and taking into account that G is three-times continuously
differentiable, we obtain that L1xx(x) = (∂2/∂x2)L1(x) = OM (s−1/2). Using now the
maximal inequality, given as Theorem 8.3, we get

‖L1x(λxs)‖ ≤ sup
x∈D∗

0

‖L1x(x)‖ = OM (s−1/2).

Taking into account that xs = OM (s−1/2) we finally get

J1 = L1(xs) = OM (s−1).(4.28)

Estimation of J2. To estimate J2 let us use the definition of I∗1,t and write

J2 =

∫ t

s

gr

∫ r

s

f1,vH(v, 0, ω)dv,

where the modulating function f1,v is

f1,v =
∂

∂ξ
y(r, v, 0) · 1

v
.

Write gr as

gr = f2,1,r
∂

∂x
H(r, 0, ω) + f2,2,rH(r, 0, ω),

where the modulating functions are

f2,1,r =
∂

∂ξ
y(t, r, 0) · 1

r
and f2,2,r =

1

r

∂2

∂ξ2
y(t, r, 0) · 1

r
.

Noting that yξ(t, r, 0) and yξξ(t, r, 0) are bounded and applying the moment inequality
for double integrals of L-mixing processes, given as Theorem 8.2 in section 8, we get

J2 = OM (s−1).(4.29)
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Estimation of J3. For J3 we get, after interchanging the order of integration,

J3 =

∫ t

s

gpxp

(∫ t

p

grdr

)
dp.

For the inner integral we have ∫ t

p

grdr = OM (p−1/2)

by the moment inequality given as Theorem 8.1. Since gp = OM (p−1) we have
gpxp = OM (p−3/2) and thus the integrand of the outer integral is of the order of
magnitude OM (p−2). It follows that

J3 = OM (s−1).(4.30)

Thus we conclude that indeed J1 + J2 + J3 = OM (s−1), and substituting this into
(4.25) the proof of Lemma 4.3 is complete.

Pasting together. Let us now take a subdivision of the half-line [1,∞) by the
points qi with q > 1 and let us consider an interval qn ≤ t < qn+1. Let us define for
i ≥ 1

δi = I∗1,qi,qi−1 =

∫ qi

qi−1

∂

∂ξ
y(qi, r, 0)

1

r
H(r, 0, ω)dr.

Note that δi = OM (q−i/2).
Lemma 4.4. We have for qn ≤ t < qn+1

xt − yt =

n∑
i=1

∂

∂ξ
y(t, qi, 0)δi + I∗1,t,qn + OM (q−n(1/2+εx)).(4.31)

Proof. Using Lemma 8.7 of section 8 with si = qi, i = 0, 1, . . . , n, sn+1 = t, we
get the following expression for xt − yt:

n∑
i=1

∫ 1

0

∂

∂ξ
y(t, qi, w(λ)) dλ ·

(
xqi − y(qi, qi−1, xqi−1)

)
+ (xt − y(t, qn, xqn)) ,(4.32)

where w(i, λ) = (1−λ)y(qi, qi−1, xqi−1)+λxqi . Taking into account Lemma 4.3 write

the ith local tracking error xqi−y(qi, qi−1, xqi−1) in the form I∗1,qi,qi−1+OM (q−(i−1)(1/2+ε)) =

δi + OM (q−(i−1)(1/2+ε)) to get

xt − yt =

n∑
i=1

∫ 1

0

∂

∂ξ
y(t, qi, w(λ))dλ ·

(
δi + OM (q−(i−1)(1/2+ε))

)
(4.33)

+ I∗1,t,qn + OM (q−n(1/2+ε)).

To estimate the cumulative effect of the error terms OM (q−(i−1)(1/2+ε)) note that we
have

‖yξ(t, qi, w(i, λ))‖ ≤ C0(q
i/t)α ≤ C0(q

i/qn)α = C0q
−α(n−i),
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thus we get an upper bound

n∑
i=1

∫ 1

0

C0q
−α(n−i) ·OM (q−(i−1)(1/2+ε)) + OM (q−n(1/2+ε)).(4.34)

This expression can be estimated from above by using the remark after Lemma 8.5
of section 8, given as (8.6), applied for the sequences (q−αi) and (q−(1/2+ε)i), the
convolution of which is bounded from above by C max(q−αn, q−(1/2+ε)n) assuming
that α �= 1/2+ε. Since max(−α,−(1/2+ε)) = −min(α, 1/2+ε) = −(1/2+min(α, ε)),
we get

xt − yt =

n∑
i=1

∫ 1

0

∂

∂ξ
y(t, qi, w(i, λ))dλ · δi + I∗1,t,qn + OM (q−n(1/2+εx)).(4.35)

To further simplify the right-hand side of (4.34) we replace w(i, λ) by 0. Note that
by Lemma 8.8 of section 8∥∥∥∥ ∂

∂ξ
y(t, qi, w(i, λ)) − ∂

∂ξ
y(t, qi, 0)

∥∥∥∥ ≤ C ′
0(q

i/t)α|w(i, λ)|,

and hence cumulative error of this approximation is majorized by C ′
0

∑n
i=1(q

i/t)α ·
|w(i, λ)| · δi. Note that w(i, λ) = OM (q−i/2), uniformly in λ since xqi = OM (q−i/2)
by Theorem 3.1 and |yqi | = |y(qi, qi−1, xqi−1)| ≤ C0|xqi−1 |, therefore w(i, λ) · δi =

OM (q−i) uniformly in λ. Thus the the cumulative error of the last approximation is
bounded from above by

C ′
0

n∑
i=1

(qi/t)α ·OM (q−i) ≤
n∑

i=1

q−α(n−i) ·OM (q−i) = OM (q−nα′
)

with α′ = min(α, 1)−, by the remark after Lemma 8.5, given as (8.6). Since 1/2+ε <
1, we have α′ ≥ min(α, 1/2 + ε)− = εx and with this the proof of the lemma is
complete.

Now the ith term on right-hand side of (4.31) can be written as

∂

∂ξ
y(t, qi, 0)

∫ qi

qi−1

∂

∂ξ
y(qi, r, 0)

1

r
H(r, 0, ω)dr(4.36)

=

∫ qi

qi−1

∂

∂ξ
y(t, r, 0)

1

r
H(r, 0, ω)dr,

thus the cumulative contribution of the dominant terms in (4.31) is exactly what is
the dominant term in Theorem 4.1. Since yt = O(t−α) = O(t−(1/2+α)) the term can
be merged into the residual term OM (q−n(1/2+εx)) and thus the proof of Theorem 4.1
has been completed.

Proof of Theorem 4.2. Let (Hc(t, x, ω)) be the piecewise constant extension of
(H(n, x, ω)) defined under (3.35) and define a piecewise linear extension of (xn) for
1 ≤ n ≤ t ≤ n + 1 by

xl
t = (t− n)xn + (n + 1 − t)xn−1 if xn− ∈ intD0, xl

1 = x0 = ξ0.(4.37)
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On the other hand, if xn− �∈ intD0, then we reset xl to its initial value ξ0 at time
t = n and put a hold on the recursion until t = n + 1; i.e., we set

xl
t = ξ0 for 1 ≤ n < t ≤ n + 1 if xn− �∈ intD0.(4.38)

Now it is easy to see that in intervals n ≤ t ≤ n+1 where no resetting takes place
(xl

t) satisfies a differential equation of the form

ẋl
t =

1

t
(Hc(t, x, ω) + δH(t, ω)),(4.39)

where δH(t, ω) = δHc(n, ω)+OM (t−1), cf. [19, (2.13)]. The conditions of Theorem 4.1
can be easily verified for the above procedure, except that we use the alternative
resetting mechanism given by (3.17) and (3.19). Thus we get by Theorem 4.1

xl
t − x∗ =

∫ t

1

∂

∂ξ
y(t, s, x∗)

1

s
Hc(s, x∗, ω)ds + OM (t−1/2−εx).(4.40)

Let t = N be an integer and let n ≤ s < n + 1, with n being integer. We have∥∥∥∥ ∂

∂ξ
y(t, s, x∗) − ∂

∂ξ
y(t, n, x∗)

∥∥∥∥ ≤ C ′
0

(s
t

)α 1

t
.(4.41)

Indeed, by Lemma 8.8

||yrξ(t, r, x∗)|| ≤ C ′
0(r/t)

α ·
∥∥∥∥1

t
Gξ(x

∗)

∥∥∥∥ .
Integrating yrξ(t, r, ξ) between n and s we get (4.41). Now replacing yξ(t, s, x

∗)
by yξ(t, n, x

∗) in (4.40), noting that 1
s − 1

n = O( 1
s2 ) and taking into account that

H
c
(t, x∗, ω) is M -bounded we get that the cumulative error is of the order of magni-

tude

OM

(∫ t

1

(s
t

)α

· 1

s2
ds

)
= OM (t−1),(4.42)

which can be merged into the residual term OM (t−1/2−εx) and thus the proof of
Theorem 4.2 is complete.

Proof of Theorem 4.3. Defining H and δH as in (3.46) and (3.56), the conditions
of Theorem 4.1 have been verified in section 5 of [19]. In particular, the critical
Condition 3.5 is verified in Lemma 5.6 in [19] (restated as Lemma 3.2 in the present
paper), thus the claim follows.

5. The transformed error process is L-mixing. In this section we derive
a useful corollary of Theorem 4.1, stating that an appropriate transformation of the
error process xt − x∗ is L-mixing. Define the transformed process

x̃r = er/2(xer − x∗).(5.1)

The weak limit of the shifted process (x̃r+ρ), when ρ → ∞, is established in [5] and
Theorem 13, Chapter 4.5, Part II of [3], under conditions, which are different from
the conditions of the present paper. It is proven that (x̃r+ρ) converges weakly to the
solution of the linear stochastic differential equation

dz̃r = (A∗ + I/2)z̃r + dw̃r,(5.2)
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with zero initial condition; in short,

(x̃r+ρ)→(z̃r)(5.3)

in a weak sense, where (cf. (3.24))

A∗ =
∂G(x)

∂x

∣∣
x=x∗ ,

assuming that (A∗+I/2) is stable. Here dw̃r is the stochastic differential of a Wiener-
process, with some covariance matrix P ∗dt. The weak limit (z̃r) is an L-mixing
process with respect to the pair of σ-algebras (F̃r, F̃+

r ) generated by the past and
future increments of the Wiener-process (w̃r), respectively. Hence it is indicated, but
not implied by (5.3), that the transformed process (x̃r) itself is also L-mixing with
respect to some pair of σ-algebras (F̃r, F̃+

r ). We prove that this is indeed the case.
The emphasis is on the nonasymptotic nature of our result. An analogous result

for off-line prediction error estimators of ARMA parameters has been proved in [24].
It extends to RPE estimators due to the strong approximation result given in [22].
It has also been shown in [24] that this result is instrumental in deriving a pathwise
characterization of performance degradation of an online adaptive predictor. Like in
section 4, we assume that δG(t, y) = 0, which implies EH(s, x∗, ω) = 0 exactly for
all s.

Theorem 5.1. Consider the continuous-time recursive estimation scheme given
by (3.16) with the resetting mechanism (3.17) and (3.18). Assume that the conditions
of Theorem 4.1 are satisfied. Then the transformed process (x̃r) is L-mixing with
respect to (Fer ,F+

er ).
Proof. Approximation, dynamic representation, and discretization of the process

(x̃r). By Theorem 4.1 the dominant term in the error process is∫ t

1

∂

∂ξ
y(t, s, x∗)

1

s
H(s, x∗, ω)ds,

and the error term is OM (t−1/2+εx). We transform the dominant term and the residual
term OM (t−1/2+εx) in the same way as the error process itself (cf. (5.1)): we multiply
by t1/2 and introduce the new variables t = er and s = ep.

Now, since ∂
∂ξy(t, s, x

∗) is the solution of the variational equation

∂

∂t

∂

∂ξ
y(t, s, x∗) =

1

t
A∗ ∂

∂ξ
y(t, s, x∗)

with initial condition ∂
∂ξy(s, s, x

∗) = I, we get, using an exponential change of time-
scale followed by an inverse change of time-scale, that

∂

∂ξ
y(t, s, x∗) = eA

∗ log(t/s).

Thus the dominant term in the error process gets transformed into

x̃1,r = er/2
∫ r

0

eA
∗(r−p)H(ep, x∗, ω)dp.(5.4)

Now Theorem 4.1 implies the following.
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Claim. We have

x̃r − x̃1,r = OM (e−εxr).(5.5)

A dynamic representation of x̃1,r is obtained by differentiating (5.4) with respect
to r. Then we get that x̃1,r satisfies the differential equation

d

dr
x̃1,r = (A∗ + I/2)x̃1,r + er/2H(er, x∗, ω), r ≥ 0.(5.6)

The dynamics satisfied by (x̃1,r) is similar to the dynamics satisfied by (zr), given by
(5.2), but the process er/2H(er, x∗, ω) is not a good approximation to the increments
of a Wiener-process; it is not even M -bounded. This difficulty can be avoided using
discretization and averaging. Take a small, fixed positive number h and consider the
discrete-time sampled process x̃1,nh. It satisfies the discrete-time dynamics

x̃1,(n+1)h = e(A∗+I/2)hx̃1,nh +

∫ (n+1)h

nh

e(A∗+I/2)((n+1)h−p)ep/2H(ep, x∗, ω)dp.

Note that the input process is obtained as a weighted average of the input process of
(5.6) over the interval [nh, (n + 1)h]. Denote the second term on the right-hand side,
which is the input process for the discretized system, by (ũ1,n); i.e., set

ũ1,n+1 =

∫ (n+1)h

nh

e(A∗+I/2)((n+1)h−p)ep/2H(ep, x∗, ω)dp.(5.7)

The discrete-time dynamics.

x̃1,(n+1)h = e(A∗+I/2)hx̃1,nh + ũ1,n+1, n ≥ 0,(5.8)

with zero initial condition. In what follows we develop a series of approximations of
the process ũ1,n+1.

An averaging effect for the process (ũ1,n). Going back to the original time-scale
in (5.7) we can write ũ1,n+1 as

ũ1,n+1 =

∫ e(n+1)h

enh

(
s

e(n+1)h

)(−A∗−I/2)
1

s1/2
H(s, x∗, ω)ds.(5.9)

Claim U1. For the order of magnitude of (ũ1,n+1) we have

ũ1,n+1 = OM (h1/2).(5.10)

Indeed, using the moment inequality given as Theorem 8.1 we get that for any
q ≥ 1

E1/q|ũ1,n+1|q ≤ Cq

(∫ e(n+1)h

e(nh

∥∥∥∥∥
(

s

e(n+1)h

)(−A∗−I/2)
1

s1/2

∥∥∥∥∥
2

ds

)1/2

· M1/2
q (H(x∗))Γ1/2

q (H(x∗)).

Note that for enh ≤ s ≤ e(n+1)h, 0 < h ≤ h0, with some 0 < h0 fixed,∥∥∥∥∥
(

s

e(n+1)h

)(−A∗−I/2)
∥∥∥∥∥ = ||e(p−(n+1)h)(−A∗−I/2)|| ≤ C,(5.11)
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where C is independent of n and h, since the set of matrices e(p−(n+1)h)(−A∗−I/2) with
p varying between nh and (n + 1)h is compact. Thus we get

E1/q|ũ1,n+1|q ≤ Cq

(∫ e(n+1)h

enh

C2 1

s
ds

)1/2

·M1/2
q (H(x∗))Γ1/2

q (H(x∗)),

and the right-hand side is O(h1/2) indeed, as stated.
Truncated averaging: The process (ũ2,n) and choosing δn and εδ. To eliminate

the dependence in the process (ũ1,n) we follow standard procedures, as described,
e.g., in [42]. First we remove a small portion of the integral by decreasing the upper
limit of the integration to e(n+1)h − δn+1 with some positive δn+1. Since the original
range of the integration has length e(n+1)h − enh = O(henh) a reasonable choice for
δn+1 is

δn+1 = heεδnh(5.12)

with 0 < εδ < 1. Thus we define

ũ2,n+1 =

∫ e(n+1)h−δn+1

enh

(
s

e(n+1)h

)(−A∗−I/2)
1

s1/2
H(s, x∗, ω)ds.(5.13)

Claim U2. We have for h > 0

ũ1,n+1 − ũ2,n+1 = OM (h1/2e−(1−εδ)nh/2) and ũ1,n+1 − ũ2,n+1 = OM (h1/2).(5.14)

For the proof first note that

e(n+1)h − δn+1 ≥ enh.(5.15)

Indeed, this is equivalent to δn+1 ≤ e(n+1)h−enh = enh(eh−1) and since δn+1 < henh

and h < (eh − 1), the validity of (5.15) follows.
The error of the approximation is

ũ1,n+1 − ũ2,n+1 =

∫ e(n+1)h

e(n+1)h−δn+1

(
s

e(n+1)h

)(−A∗−I/2)
1

s1/2
H(s, x∗, ω)ds,

which can be estimated by the moment inequality given as Theorem 8.1. Thus we get
that E1/q|ũ1,n+1 − ũ2,n+1|q is bounded from above by

Cq

(∫ e(n+1)h

e(n+1)h−δn+1

∥∥∥∥∥
(

s

e(n+1)h

)(−A∗−I/2)
1

s1/2

∥∥∥∥∥
2

ds

)1/2

·M1/2
q (H(x∗))Γ1/2

q (H(x∗)).

Taking into account the kernel estimate given above as (5.11) we get for E1/q|ũ1,n+1−
ũ2,n+1|q the upper bound

Cq

(∫ e(n+1)h

e(n+1)h−δn+1

C2

s
ds

)1/2

·M1/2
q (H(x∗))Γ1/2

q (H(x∗)).(5.16)

For the integral term we have(∫ e(n+1)h

e(n+1)h−δn+1

1

s
ds

)1/2

= (log e(n+1)h − log(e(n+1)h − δn+1))
1/2,
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which is majorized by (
δn+1/(e

(n+1)h − δn+1)

)1/2

.

Since e(n+1)h − δn+1 ≥ enh, we can continue the above inequality to get(∫ e(n+1)h

e(n+1)h−δn+1

1

s
ds

)1/2

≤
(
δn+1/e

nh

)1/2

.

Taking into account the definition of δn+1 we get(
δn+1/e

nh

)1/2

=

(
heεδnh/enh

)1/2

= h1/2e(εδ−1)nh/2.

Combining the latter inequalities with (5.16) we get the first part of Claim U2, given
as (5.14), while the second part is a trivial consequence.

The independent sequence (ũ3,n). This is a key step in our arguments. We
complete the construction of an approximating process of (ũ1,n) by projecting ũ2,n+1

on the relative future F+
enh−δn

. In fact, assuming that the conditional expectation
operator and integration can be interchanged, we define

ũ3,n+1 =

∫ e(n+1)h−δn+1

enh

(
s

e(n+1)h

)(−A∗−I/2)
1

s1/2
E(H(s, x∗, ω)|F+

enh−δn
)ds.(5.17)

It is obvious that (ũ3,n) constitutes an independent sequence of random variables
adapted to Fenh .

Remark. We will now approximate the process ũ2,n+1 and get two dual error
bounds. The first error bound ensures that the error is exponentially decaying, but
there is multiplicative factor h−c with c > 0, while the second bound ensures that the
approximating process itself is of the order OM (h1/2).

Claim U3. We have with c > 0 that shows up in Condition 3.1 (see the definition
of L+-mixing), the following two estimates:

ũ2,n+1 − ũ3,n+1 = OM (h−ce−(1/2+cεδ)nh) and ũ2,n+1 − ũ3,n+1 = OM (h1/2).(5.18)

First we show that (ũ3,n+1) is an M -bounded sequence. Indeed, write ũ3,n+1 as

ũ3,n+1 = E

(∫ e(n+1)h−δn+1

enh

(
s

e(n+1)h

)(−A∗−I/2)
1

s1/2
H(s, x∗, ω)ds

∣∣∣∣ F+
enh−δn

)
and estimate the Lq-norm of the right-hand side using Jensen’s inequality. Taking
into account (5.10), modified so that upper limit of the integration is reduced to the
nonrandom upper limit e(n+1)h − δn+1, we get the claimed M -boundedness of (ũ3,n+1)
and in fact we get

ũ3,n+1 = OM (h1/2),(5.19)

and thus the second part of the Claim U3 is proved.
To bound the approximation error more accurately define for enh ≤ s ≤ e(n+1)h−

δn+1

vs =

∣∣∣∣∣
(

s

e(n+1)h

)(−A∗−I/2)
1

s1/2

(
H(s, x∗, ω) − E(H(s, x∗, ω)|F+

enh−δn
)

)∣∣∣∣∣ .
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Then obviously

|ũ2,n+1 − ũ3,n+1| ≤
∫ e(n+1)h−δn+1

enh

vsds.

and by the triangle inequality for the Lq-norm for q ≥ 1,

E1/q|ũ2,n+1 − ũ3,n+1|q ≤
∫ e(n+1)h−δn+1

enh

E1/qvqsds.(5.20)

To estimate vs, note that ||(s/e(n+1)h)(−A∗−I/2)|| ≤ C with some C for all s, n, and
h with 0 < h ≤ h0 and s−1/2 ≤ e−nh/2. On the other hand, we have for any q ≥ 1

E1/q|(H(s, x∗, ω) − E(H(s, x∗, ω)|F+
enh−δn

))|q ≤ γq(s− (enh − δn), H(x∗)),

and thus

E1/qvqs ≤ Ce−nh/2γq(s− (enh − δn), H(x∗)).

It follows that E1/q|ũ3,n+1 − ũ2,n+1|q can be bounded from above by

Ce−nh/2

∫ e(n+1)h−δn+1

enh

γq(s− (enh − δn), H(x∗))ds.(5.21)

By Condition 3.1 γq(s− (enh − δn), H(x∗)) ≤ C(1 + δn)−1−c. Furthermore, note that
the range of τ(s) = s− (enh−δn) is included in the semi-infinite interval [δn,∞); thus∫ e(n+1)h−δn+1

enh

γq(s− (enh − δn), H(x∗))ds ≤
∫ ∞

δn

γq(τ,H(x∗))dτ

≤ C ′(1 + δn)−c < C ′δ−c
n .

Combining this with (5.21) and taking into account the definitions of the lag δn given
by (5.12), we get for any 1 ≤ q < ∞

E1/q|ũ2,n+1 − ũ3,n+1|q ≤ Cqe
−nh/2h−ce−cεδnh

with some Cq, which is independent of n and h and this is equivalent to the first part
of Claim U3, given as (5.18).

The final approximating process (x̃3,nh). We are going to define a final approxi-
mation to x̃nh that plays a key role in subsequent analysis. This is obtained from the
discrete-time dynamics (5.8) so that ũ1,n+1 is replaced by ũ3,n+1. Thus we define the
process (x̃3,(n+1)h) by

x̃3,(n+1)h = e(A∗+I/2)hx̃3,nh + ũ3,n+1, n ≥ 0,(5.22)

with zero initial condition. Let

F̃r = Fer and F̃+
r = F+

er .

We claim that the approximating process (x̃3,nh) is L-mixing with respect to (F̃nh, F̃+
nh).
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Indeed, since the real parts of the eigenvalues of A∗ are less than or equal to α∗

and α < α∗, the spectral norm of e(A∗+I/2)h is less than e−αh and hence there exists
a C > 0 such that for any positive integer m

||e(A∗+I/2)mh|| ≤ Ce−αmh.(5.23)

The input process (ũ3,n) is an M -bounded, independent, F̃nh-adapted sequence, hence

it is L-mixing with respect to (F̃nh, F̃+
nh). Thus the output process (x̃3,nh) is L-mixing

with respect to (F̃nh, F̃+
nh), by Lemma 8.4, as stated.

To get an accurate bound for the estimation error x̃nh − x̃3,nh let us introduce
the notations

εx2 = min(α, (1 − εδ)/2),(5.24)

εx3 = min(α, 1/2 + cεδ).(5.25)

Obviously εx2, εx3 > 0. To formulate the next result note that if (ξt) and (ηt) are
stochastic processes such that ξt = OM (ct) and ηt = OM (dt), where ct, dt > 0, then,
trivially,

ξt + ηt = OM (ct + dt).(5.26)

Lemma 5.1. The final approximation error x̃(n+1)h − x̃3,(n+1)h is given by

x̃(n+1)h − x̃3,(n+1)h = OM (e−εxnh + h1/2e−εx2nh + h−ce−εx3nh) = OM (1).(5.27)

Proof. The proof is almost trivial. It is easy to see, using the moment inequality
given as Theorem 8.1, that both (x̃nh) and (x̃3,nh) are M -bounded, which implies the
second part of the claim. To prove the first part, first note that the first term on
the right-hand side comes from (5.5). Next note that the error process (x̃1,(n+1)h −
x̃3,(n+1)h) satisfies

(x̃1,(n+1)h − x̃3,(n+1)h) = e(A∗+I/2)h(x̃1,nh − x̃3,nh) + (ũ1,n+1 − ũ3,n+1), n ≥ 0,

with zero initial conditions. For the input process (ũ1,n+1 − ũ3,n+1) the combination
of the upper bounds given in Claims U2 and U3, or equivalently in (5.14) and (5.18),
is used. Applying Lemma 8.5 we get the second and third terms on the right-hand
side of (5.27), which is thus proved.

To complete the proof of Theorem 5.1 we first note that defining

rn = x̃3,nh − x̃nh,

this residual process is L-mixing with respect to (F̃nh, F̃+
nh). Indeed, (rn) is M -

bounded and F̃nh-measurable. On the other hand, writing (5.27) in the form rn =
OM (e−ε′xnh) we get for any integer τ ≥ 0

γq(τ, r) = sup
n≥τ

E1/q|rn − E [rn|F+
n−τ ] |q ≤ 2 sup

n≥τ
E1/q|rn|q ≤ 2Cqe

−ε′xτh(5.28)

with some finite Cq. The right-hand side is obviously summable over τ and thus we
get the claim.

Since the class of L-mixing processes is closed under addition, it follows that x̃nh

is also L-mixing with respect to (F̃nh, F̃+
nh). The second remark we need is that the
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processes (x̃nh+d) and (x̃3,nh+d), with 0 ≤ d < h fixed, can be analyzed similarly
and it is easy to see that all the relevant estimates are valid uniformly in d. Thus
we conclude that the processes (x̃nh+d) are L-mixing with respect to (F̃nh+d, F̃+

nh+d),
uniformly in d for 0 ≤ d < h. Applying Corollary 3.5 of [24], restated as Lemma 8.3 in
section 8, implies that the continuous-time process (x̃r) itself is L-mixing with respect
to (F̃r, F̃+

r ) = (Fer ,F+
er ) and the proof is complete.

6. The asymptotic covariance matrix. The asymptotic covariance matrix
for Algorithm DFL, (3.53)–(3.54), has been rigorously derived in Theorem 13, Chap-
ter 4.5, Part II of [3] in a series model, where the initial time tends to infinity, and
thus the probability of exiting the truncation domain tends to 0. The asymptotic
covariance matrix of Robbins–Monroe-type recursive estimators has been known for
long time; cf., e.g., [54]. Here the correction term H(n, x, ω) is assumed to form an
independent sequence; see Condition A.3 in Chapter 2.3 of [54]. The asymptotic co-
variance matrix for the RPE estimator of ARMA processes has been first given in [60]
using the eventually false a priori assumption that the nontruncated estimator se-
quence converges almost surely. It is likely that the analysis of the cited paper carries
over to truncated estimators.

The purpose of this section is to derive the asymptotic covariance matrix for the
general continuous-time recursive estimator process, Algorithm CR, given in (3.16)
equipped with a resetting mechanism defined under (3.17) and (3.18). The study of
the discrete-time procedure, Algorithm DR, given in (3.34) and Algorithm DFL, given
under (3.53)–(3.54), with resetting mechanisms defined in section 3, can be reduced to
the study of Algorithm CR, as pointed out in sections 3 and 4. The main advance of
this section relative to the cited result of [3] is that the asymptotic covariance matrix
for the DFL scheme with enforced boundedness is obtained for a single process.

We also get a rate of convergence for the covariance-matrix sequence, which is
useful in applications such as the analysis of performance degradation to statistical
parametric uncertainty. For the present section we need the following additional
condition.

Condition 6.1. We assume that (H(s, x∗, ω)) is asymptotically wide-sense sta-
tionary in the following sense: there exists a zero-mean, wide-sense stationary process
(H0(s, x

∗, ω)) such that

ηs = H(s, x∗, ω) −H0(s, x
∗, ω) = OM (s−1−εH )(6.1)

with some εH > 0.
This condition is easily verified in system identification. In fact, if we consider

the general estimation scheme of section 3 defined by (3.53)–(3.54), then it is easy
to see that we have ηs = OM (e−βs) with some β > 0. Now we have the following
modification of Theorem 4.1.

Theorem 6.1. Consider the continuous-time recursive estimation scheme given
by (3.16) with the resetting mechanism (3.17) and (3.18). Assume that the conditions
of Theorem 4.1 are satisfied and in addition Condition 6.1 is also satisfied. Recall
that εx = min(α, ε)−, where α is defined under (3.31) and ε is given in Condition 3.5.
Then we have

xt − x∗ =

∫ t

1

∂

∂ξ
y(t, s, x∗)

1

s
H0(s, x

∗, ω)ds + OM (t−1/2−εx),(6.2)

and the wide-sense stationary process (H0(s, x
∗, ω)) is L+-mixing.
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Proof. Consider the expression for the error xt − x∗ that has been given in
Theorem 4.1, or in (4.1). The difference between (4.1) and (6.2) is in the dominant
terms and this difference can be majorized by∫ t

1

∣∣∣∣ ∂∂ξ y(t, s, x∗)
1

s
ηs

∣∣∣∣ ds ≤ ∫ t

1

C0(s/t)
α

∣∣∣∣1sηs
∣∣∣∣ ds,

due to Condition 3.4. Taking the Lq-norm of both sides with some q ≥ 1 and applying
the triangle inequality for Lq-norms we get an upper bound of the form

Cq

∫ t

1

C0(s/t)
α 1

s
s−1−εHds,

which is majorized by C ′
qt

−1−εH . Thus the difference between the dominant terms is

certainly OM (t−1/2−εx) and thus (6.2) follows.
To prove that (H0(s, x

∗, ω)) is L+-mixing, note that repeating the argument lead-
ing to (5.28) gives that for any integer τ ≥ 0

γq(τ, η) ≤ 2Cqτ
−1−εH ,

and hence (ηs) is L+-mixing. Since the class of L+-mixing processes is closed under ad-
dition, it follows that (H0(s, x

∗, ω)) is also L+-mixing and the proof is complete.
Remark. There is no loss of generality to assume that

γq(τ,H0) ≤ Cq(1 + τ)−1−cq

for all τ ≥ 0 with the same Cq, cq as in Condition 3.1 requiring that H and ΔH/Δx
be L+-mixing.

To formulate the basic result of this section we need some notations. Denoting
the autocovariance matrix of H0(s, x

∗, ω) by ρ(τ), i.e., setting

ρ(τ) = E [H0(s + τ, x∗, ω)HT
0 (s, x∗, ω)] = E [H0(τ, x

∗, ω)HT
0 (0, x∗, ω)],

we define a basic quantity:

P ∗ =

∫ ∞

−∞
ρ(τ)dτ.(6.3)

Since the process (H0(s, x
∗, ω)) is L-mixing, the above integral converges. Indeed,

since H0 = (H0(s, x
∗, ω)) is a wide-sense stationary zero-mean L-mixing process,

using Lemma 8.1 with p = q = 2, we get

ρ(τ) ≤ Cγ2(|τ |, H0)(6.4)

with some C > 0, thus integrability follows.
It is easy to see, cf. Lemma 6.4 below, that the matrix P ∗ is the asymptotic

covariance matrix of the arithmetic mean

1

2T

∫ T

−T

H0(s, x
∗, ω)ds,

i.e., we have

P ∗ = lim
T→∞

2T E

[(
1

2T

∫ T

−T

H0(s, x
∗, ω)ds

)(
1

2T

∫ T

−T

H0(s, x
∗, ω)ds

)T
]
.(6.5)
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We will also need the notation introduced in (3.24):

A∗ =
∂G(x)

∂x

∣∣∣∣
x=x∗

.

The value of the asymptotic covariance matrix can be easily guessed. Namely,
the assumed validity of (5.3) implies that, t1/2(xt − x∗) is asymptotically normally
distributed with zero mean and covariance matrix S∗, which satisfies the Lyapunov
equation (6.6) below. This result on the asymptotic covariance matrix of the estimator
has strong roots in the classical theory of stochastic approximation; see [54]. The
closest to our result is Theorem 13, Chapter 4.5, Part II of [3].

Theorem 6.2. Consider the continuous-time recursive estimation scheme given
by (3.16) with the resetting mechanism (3.17) and (3.18). Assume that the conditions
of Theorem 4.1 are satisfied and in addition (H(s, x∗, ω)) satisfies Condition 6.1.
Then the asymptotic covariance matrix of the error process (xt − x∗), defined by

S∗ = lim
t→∞

tE[(xt − x∗)(xt − x∗)T ],

exists and it satisfies the Lyapunov equation

(A∗ + I/2)S∗ + S∗(A∗ + I/2)T + P ∗ = 0,(6.6)

where A∗ is defined, (see also (3.24)) and P ∗ is defined by (6.3). More exactly we
have with some εxx > 0

E[(xt − x∗)(xt − x∗)T ] =
1

t
S∗ + O(t−1−εxx).

Remark. In the case of a stochastic Newton method, i.e. when A∗ = −I, we get

S∗ = P ∗.

In the context of Algorithm DFL, (3.53)–(3.54), this can be directly seen from Theo-
rem 4.4.

Take the example of the recursive least squares (LSQ) estimation of an AR(p)
process given

yn = (θ∗)Tφn + en,

where θ∗ is the p-dimensional AR-parameter, φn = (−yn−1, . . . ,−yn−p)
T , and en is

the noise term with variance σ2(e). AR processes are special in the sense that the
off-line LSQ estimator can be computed exactly in a recursive fashion, thus the off-line
and online estimators, if properly initialized, coincide and their asymptotic covariance
is the same. A nontrivial corollary of Theorem 6.2 is that this is still the case if both
estimators are forced to stay inside a compact domain using truncation for the off-line
estimator and resetting for the online estimator.

Let

R∗ = Eφnφ
T
n

assuming stationarity of φn. Then, under well-known conditions the asymptotic co-
variance matrix of the LSQ estimator is known to be

S∗ = σ2(e)(R∗)−1.
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For the recursive least squares (RLSQ) estimator we have the updating term, with
x = θ,

Hn(s, θ, ω) = R−1φn(yn − φT
nθ)

from which we get

G(θ) = θ∗ − θ,

thus the RLSQ method is a stochastic Newton method. Since

Hn(s, θ∗, ω) = R−1φnen,

we get

P ∗ = σ2(e)(R∗)−1

which indeed agrees with S∗.
Remark. For the discrete-time method, Algorithm DR, we have

xl
t − x∗ =

∫ t

1

∂

∂ξ
y(t, s, x∗)

1

s
Hc(s, x∗, ω)ds + OM (t−1/2−εx);

see (4.40) and the analysis given below is applicable. Note however that now we get
the familiar expression, see [54],

P ∗ =

∫ ∞

−∞
E [Hc

0(τ, x∗, ω)HcT
0 (0, x∗, ω)]dτ =

∞∑
−∞

E [H0(m,x∗, ω)HT
0 (0, x∗, ω)].

(6.7)

Proof of Theorem 6.2.
Reduction to the process (x̃3,nh). The claim of the theorem can be reformulated in

terms of the transformed process, with t = er, as follows: we have with some εxx > 0

E[x̃rx̃
T
r ] = S∗ + O(e−εxxr).(6.8)

Now by Lemma 5.1 we have with r = nh the following expression for xt−x∗ = e−r/2x̃r:

1

enh/2
x̃3,nh +

1

enh/2
OM (e−εxnh + h1/2e−εx2nh + h−ce−εx3nh).(6.9)

Multiplying both sides by enh/2, squaring them, and taking into account the second
part of Lemma 5.1, we get the following key lemma.

Lemma 6.1. We have with r = nh,

E[x̃rx̃
T
r ] = E[x̃3,nhx̃

T
3,nh] + O(e−εxnh + h1/2e−εx2nh + h−ce−εx3nh).(6.10)

This error estimate seems to be fragile, due to Terms 3 and 4 on the right-hand
side, in view of the fact that the left-hand side is O(h), but this weakness will be
eliminated at the very end of the proof of Theorem 6.2 by appropriate choice of h.

Thus the study of the covariance matrix of xt is reduced to the study of the
covariance matrix of x̃3,nh, which will be denoted by Rx̃

3,n:

Rx̃
3,n = E [x̃3,nhx̃

T
3,nh].
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Now change n to n + 1 and note that x̃3,(n+1)h is defined via the discrete-time
dynamical system (5.22), in which the input process (ũ3,n+1) consists of a sequence
of independent random variables. The covariance matrix of ũ3,m will be denoted by

Rũ
3,m = E[ũ3,mũT

3,m].

In what follows we shall develop a sequence of approximations of ũ3,m to get a nice
approximation for Rũ

3,m.
The approximating process (ũ4,m). Let us recall, see (5.9), that in the original

time-scale we have

ũ1,m+1 =

∫ e(m+1)h

emh

(
s

e(m+1)h

)(−A∗−I/2)
1

s1/2
H(s, x∗, ω)ds.

Approximate ũ1,m+1 by replacing the kernel within the integrand by 1; i.e., set

ũ4,m+1 =

∫ e(m+1)h

emh

1

s1/2
H(s, x∗, ω)ds.

Claim U4. We have

ũ1,m+1 − ũ4,m+1 = OM (h3/2).(6.11)

To prove the claim note that the approximation error can be written as

ũ1,m+1 − ũ4,m+1 =

∫ e(m+1)h

emh

((
s

e(m+1)h

)(−A∗−I/2)

− I

)
1

s1/2
H(s, x∗, ω)ds.

Using the moment inequality given as Theorem 8.1 we get for any q ≥ 2 that
E1/q|ũ1,m+1 − ũ4,m+1|q is bounded from above by

Cq

(∫ e(m+1)h

emh

∥∥∥∥∥
((

s

e(m+1)h

)(−A∗−I/2)

− I

)
1

s1/2

∥∥∥∥∥
2

ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗)).

Now, ‖(s/e(m+1)h)(−A∗−I/2) − I‖ = ‖e(−A∗−I/2)(log s−(m+1)h) − I‖ ≤ ch, with some c,
which depends only on A∗, for 0 < h ≤ h0, since −h ≤ (log s− (m+1)h) ≤ 0. (Apply
a Taylor series expansion of the matrix exponential to get the desired inequality.)
Thus we get

E1/q|ũ1,m+1 − ũ4,m+1|q ≤ Cq

(∫ e(m+1)h

emh

(ch)2
1

s
ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗)),

and from here

E1/q|ũ1,m+1 − ũ4,m+1|q ≤ Ch3/2,

where C is independent of h and thus Claim U4 follows.
The approximating process (ũ5,m+1). This approximation is obtained by replacing

1
s1/2 within the integral by a constant:

ũ5,m+1 =
1

emh/2

∫ e(m+1)h

emh

H(s, x∗, ω)ds.
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Claim U5. We have

ũ4,m+1 − ũ5,m+1 = OM (h3/2).(6.12)

Indeed, we have

ũ5,m+1 − ũ4,m+1 =

∫ e(m+1)h

emh

(
1

emh/2
− 1

s1/2

)
H(s, x∗, ω)ds,

and we can apply the moment inequality given as Theorem 8.1. For this purpose we
estimate the integrand

0 ≤
(

1

emh/2
− 1

s1/2

)
≤

(
1

emh/2
− 1

e(m+1)h/2

)
≤ 1

(emh/2)2
(e(m+1)h/2 − emh/2)

≤ 1

emh/2
(eh/2 − 1) ≤ 1

emh/2
h

for small h. Thus we get the following upper bound for E1/q|ũ5,m+1 − ũ4,m+1|q with
q ≥ 2:

Cq

(∫ e(m+1)h

emh

(
1

emh/2
− 1

s1/2

)2

ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗))

≤ Cq

(∫ e(m+1)h

emh

h2

emh
ds

)1/2

M1/2
q (H(x∗))Γ1/2

q (H(x∗)) = O(h3/2),

and the claim follows.
The approximating process (ũ6,m+1). This approximation is obtained by replacing

H(s, x∗, ω) by H0(s, x
∗, ω) in the definition of ũ6,m+1, i.e., we define

ũ6,m+1 =
1

emh/2

∫ e(m+1)h

emh

H0(s, x
∗, ω)ds.(6.13)

Claim U6. We have

ũ5,m+1 − ũ6,m+1 = OM (he−mh(1/2+εH)) and ũ5,m+1 − ũ6,m+1 = OM (h1/2).(6.14)

Indeed, we have, using (6.1),

ũ5,m+1 − ũ6,m+1 =
1

emh/2

∫ e(m+1)h

emh

ηsds

=
1

emh/2
(e(m+1)h − emh)OM (e−mh(1+εH)) = OM (he−mh(1/2+εH))

and the first part of the claim follows. The second part is a direct consequence of
Theorem 8.1.

Summarizing the equations expressing the approximation errors between the suc-
cessive values ũ3, ũ2, ũ1, ũ4, ũ5, ũ6 given by (5.14), (5.18), (6.11), (6.12), (6.14) we get
the following lemma.

Lemma 6.2. Let c be as in Condition 3.1, requiring that H be L+-mixing. Then
we have

ũ3,m = ũ6,m + δũ,(6.15)
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where

δũ = OM (h−ce−(1/2+cεδ)mh + h1/2e−(1−εδ)mh/2 + h3/2 + he−mh(1/2+εH)),

and all error terms are also OM (h1/2).
Squaring this equation we get, for Rũ

3,m+1 = E [ũ3,mũT
3,m],

Rũ
3,m+1 = E [ũ6,mũT

6,m] + δR,(6.16)

where

δR = O(h1/2−ce−(1/2+cεδ)mh + he−(1−εδ)mh/2 + h2 + h3/2e−mh(1/2+εH)).

The covariance matrix of ũ6,m+1. Next we show that the covariance matrix of the
approximation ũ6,m+1 can be expressed in terms of the matrix P ∗. This is no surprise
in view of the assumed validity of (6.5), but to capture the rate of convergence extra
work is needed.

Lemma 6.3. Let c be as in Condition 3.1, requiring that H be L+-mixing. Then
we have

E[ũ6,m+1ũ
T
6,m+1] = hP ∗ + O(h1−ce−cmh).(6.17)

Proof. Consider normalized arithmetic means of the form

sA,B =
1

(B −A)1/2

∫ B

A

H0(s, x
∗, ω)ds

with A < B. It is obvious that

E [sA,B sTA,B ] =
1

B −A

∫ B

A

∫ B

A

ρ(s− s′) ds ds′,

where ρ(τ) is the autocovariance function of the process H0 = (H0(s, x
∗, ω)).

Note that if H0 = (H0(s, x
∗, ω)) is a wide-sense stationary zero-mean L+-mixing

process then we have, using (6.4) and the inequality γ2(|τ |, H0) ≤ C(1 + |τ |)−c,

ρ(τ) ≤ C(1 + |τ |)−c(6.18)

with some C, c > 0. Applying Lemma 6.4 below with

A = emh and B = e(m+1)h,

we have (B − A) = emh(h + O(h2)) for small h. Thus we get, using the inequality
(1 + B −A)−c < C ′(B −A)−c,

1

B −A

∫ B

A

∫ B

A

ρ(s− s′) ds ds′ = P ∗ + O(e−cmhh−c),

and from here we get for the covariance matrix of ũ6,m+1,

E[ũ6,m+1ũ
T
6,m+1] =

1

emh

∫ e(m+1)h

emh

∫ e(m+1)h

emh

ρ(s− s′)dsds′ =
B −A

emh
(P ∗ + O(e−cmhh−c)),

and Lemma 6.3 follows.
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Lemma 6.4. Let (ρ(τ)), −∞ < τ < ∞, be a matrix-valued measurable function
process, satisfying ||ρ(τ)|| ≤ C(1 + |τ |)−c with some C, c > 0. Then we have for any
A < B

1

B −A

∫ B

A

∫ B

A

ρ(s− s′)ds ds′ = P ∗ + O((1 + B −A)−c).

Proof. Introduce the new variables τ = s − s′, μ = s + s′. This change of
coordinates has a Jacobian with determinant 2, i.e., dτ dμ = 2ds ds′. The new
variable τ takes its values between −(B − A) and B − A and for each fixed τ the
possible values of μ are in the interval (2A + |τ |, 2B − |τ |). Thus

PA,B =
1

B −A

∫ B−A

−(B−A)

∫ 2B−|τ |

2A+|τ |
ρ(τ)

1

2
dτ dμ

=
1

B −A

∫ B−A

−(B−A)

(2B − 2A− 2|τ |)ρ(τ)
1

2
dτ dμ =

∫ B−A

−(B−A)

(
1 − |τ |

B −A

)
ρ(τ)dτ.

From here it follows immediately that ||PA,B || can be written as∥∥∥∥∥ 1

B −A

∫ B

A

∫ B

A

ρ(s− s′)ds ds′

∥∥∥∥∥ ≤
∫ B−A

−(B−A)

||ρ(τ)||dτ ≤
∫ ∞

−∞
||ρ(τ)||dτ.(6.19)

This inequality will be used subsequently. Now, write∫ B−A

−(B−A)

(
1 − |τ |

B −A

)
ρ(τ)dτ =

∫ B−A

−(B−A)

ρ(τ)dτ −
∫ B−A

−(B−A)

|τ |
B −A

ρ(τ)dτ.

Then ∫ B−A

−(B−A)

ρ(τ)dτ − P ∗ =

∫ B−A

−(B−A)

ρ(τ)dτ −
∫ ∞

−∞
ρ(τ)dτ

= −
∫ −(B−A)

−∞
ρ(τ)dτ −

∫ ∞

B−A

ρ(τ)dτ.

Taking into account that ||ρ(τ)|| ≤ C(1 + |τ |)−1−c, we get that∥∥∥∥∥−
∫ −(B−A)

−∞
ρ(τ)dτ −

∫ ∞

B−A

ρ(τ)dτ

∥∥∥∥∥ ≤ 2C

c
(1 + B −A)−c.(6.20)

On the other hand,∫ B−A

−(B−A)

|τ |
B −A

||ρ(τ)||dτ ≤
∫ B−A

−(B−A)

|τ |
B −A

C(1 + |τ |)−1−cdτ.

Write |τ |C(1+|τ |)−1−c ≤ (1+|τ |)C(1+|τ |)−1−c = C(1+|τ |)−c and use the symmetry
of the last integrand above to get the upper bound

2

∫ B−A

0

1

B −A
C(1 + τ)−cdτ ≤ 2

B −A

C

(−c + 1)
(1 + τ)−c+1|B−A

0

=
2

B −A

C

(−c + 1)
((1 + B −A)−c+1 − 1)) ≤ C ′(1 + B −A)−c

and combining this with (6.20) the proposition of the lemma follows.
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The final approximation of Rũ
3,m+1. Combining (6.16) and (6.17) we get

Rũ
3,m+1 = E[ũ3,mũT

3,m](6.21)

= hP ∗ + O(h1−ce−cmh + h1/2−ce−(1/2+cεδ)mh

+ he−(1−εδ)mh/2 + h2 + h3/2e−mh(1/2+εH)).

To simplify notations write the residual terms in the form hβie−εimh, i = 1, . . . , 5,
with

β1 = 1 − c, ε1 = c,
β2 = 1/2 − c, ε2 = 1/2 + cεδ,
β3 = 1, ε3 = (1 − εδ)/2,
β4 = 2, ε4 = 0,
β5 = 3/2, ε5 = 1/2 + εH .

(6.22)

Obviously we have εi > 0 for i �= 4. For i = 4 we have ε4 = 0, but then β4 = 2. With
this notations we can formulate the following lemma.

Lemma 6.5. We have with hβie−εimh, i = 1, . . . , 5, defined under (6.22)

Rũ
3,m+1 = E [ũ3,mũT

3,m] = hP ∗ +

5∑
i=1

O(hβie−εimh).(6.23)

The discrete-time Lyapunov equation. Consider the discrete-time dynamics fol-
lowed by (x̃3,nh), given by (5.22). Since the input process is a sequence of indepen-
dent random variables it follows that the covariance matrix of x̃3,nh, denoted by Rx̃

3,n

Rx̃
3,n+1, satisfies the Lyapunov equation

Rx̃
3,n+1 = e(A∗+I/2)hRx̃

3,ne
(A∗+I/2)Th + Rũ

3,n+1,

with zero initial condition. Substituting Rũ
3,n+1 from (6.23) and setting n = m, we

get

Rx̃
3,m+1 = e(A∗+I/2)hRx̃

3,me(A∗+I/2)Th + hP ∗ +

5∑
i=1

O(hβie−εimh).(6.24)

Solving this iteratively in the range 0 ≤ m ≤ n we get

Rx̃
3,n+1 =

n∑
m=0

e(A∗+I/2)(n−m)h hP ∗ e(A∗+I/2)T (n−m)h

+

n∑
m=0

e(A∗+I/2)(n−m)h

( 5∑
i=1

hβie−εimh

)
e(A∗+I/2)T (n−m)h.(6.25)

The contributions of the terms hβie−εimh, i = 1, . . . , 5, are estimated as follows:

Δi =

∥∥∥∥∥
n∑

m=0

e(A∗+I/2)(n−m)hChβie−εimhe(A∗+I/2)T (n−m)h

∥∥∥∥∥
≤ C ′

n∑
m=0

e−2α(n−m)h · hβie−εimh.
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Applying Lemma 8.5 we get, assuming that 2α �= εi, with

εi = min(2α, εi)(6.26)

the upper bound

Δi ≤ C ′hβie−εinh/|e2αh − eεih| = O(hβi−1e−εinh),(6.27)

and thus

Rx̃
3,n+1 =

n∑
m=0

e(A∗+I/2)(n−m)h hP ∗ e(A∗+I/2)T (n−m)h

+

n∑
m=0

O(hβi−1e−εinh).(6.28)

Obviously we have εi > 0 for i �= 4. For i = 4 we have ε4 = 0, but then β4 = 2.
Next we consider the first dominant term on the right-hand side of (6.28) and

define its approximation by setting m′ = n−m and extending the summation to ∞:

Rx̃d
3,n+1 =

n∑
m=0

e(A∗+I/2)(n−m)hhP ∗e(A∗+I/2)T (n−m)h,(6.29)

Rx̃
3∗ =

∞∑
m′=0

e(A∗+I/2)m′hhP ∗e(A∗+I/2)Tm′h.(6.30)

Claim. We have

Rx̃d
3,n+1 −Rx̃

3∗ = O(e−2αnh).(6.31)

Indeed, writing m′ = n−m and taking out the left factor e(A∗+I/2)(n+1)h and the

right factor e(A∗+I/2)T (n+1)h we have

Rx̃d
3,n+1 −Rx̃

3∗ =

∞∑
m′=n+1

e(A∗+I/2)m′hhP ∗e(A∗+I/2)Tm′h

= e(A∗+I/2)(n+1)h

( ∞∑
m=0

e(A∗+I/2)mhhP ∗e(A∗+I/2)Tmh

)
e(A∗+I/2)T (n+1)h,

the operator norm of which is obviously majorized by C ′e−2αnh, as claimed.
Lemma 6.6. We have

Rx̃
3∗ − S∗ = O(h).(6.32)

Proof. The covariance matrix Rx̃
3∗ is the solution of the algebraic Lyapunov equa-

tion

Rx̃
3∗ = e(A∗+I/2)hRx̃

3∗e
(A∗+I/2)Th + hP ∗.

Taking into account the equality e(A∗+I/2)h = I + (A∗ + I/2)h + O(h2), this can be
written as

Rx̃
3∗ = (I + (A∗ + I/2)h + O(h2))Rx̃

3∗(I + (A∗ + I/2)Th + O(h2)) + hP ∗,
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which is simplified to

0 = (A∗ + I/2)Rx̃
3∗ + Rx̃

3∗(A
∗ + I/2)T + P ∗ + O(h),

and the stability of (A∗ + I/2) implies the claim.
Combining (6.28), (6.31), and (6.32) we get, assuming that 2α �= εi,

Rx̃
3,n+1 = S∗ + O(e−2αnh + h) +

5∑
i=1

O(hβi−1e−εinh).(6.33)

The final approximation of Rx̃
3,n+1. For a given r we choose h and n in the

following way: let εh > 0 and let h satisfy

e−εhr ≤ h ≤ 2e−εhr,(6.34)

and in addition let r be an integer multiple of h, say, r = nh. Then from (6.33) we
get

Rx̃
3,n+1 = S∗ + O(e−2αnh + e−εhnh) +

5∑
i=1

O(e−(βi−1)εhnhe−εinh).(6.35)

Combining this with (6.10) and substituting h = e−εhr = e−εhnh we get

E[x̃nhx̃
T
nh] = S∗ + O(e−2αnh + e−εhnh) +

5∑
i=1

O(e−(βi−1)εhnhe−εinh)

+ O(e−εxnh + e−εhnh/2e−εx2nh + ecεhnhe−εx3nh).(6.36)

The generic form of the error terms is O(e−γnh), where the values of γ are the follow-
ing:

2α, εh, (βi − 1)εh + εi, i = 1, . . . , 5,
εx, εh/2 + εx2, cεh − εx3.

Obviously for sufficiently small εh all these constants are positive and thus (6.8) and
the claim of Theorem 6.2 follows.

7. Two applications. The usefulness of the results of the present paper is
demonstrated by describing two applications. In the first example the pathwise cu-
mulative regret is quantified for an online adaptive predictor of multivariable linear
stochastic systems; see (7.8). It is a previously unpublished result, presented at
MTNS ’96. In the second example a similar measure of performance degradation for
the minimum-variance self-tuning regulator is considered. This problem, that had
been formulated as far back as 1971 in [2] in a slightly different context from ours,
has been solved only in 1994; see [28]. The result of [28] is restated in (7.19). A
further application for indirect adaptive control of multivariable linear stochastic sys-
tems is given in [27]. All these applications rely on the results of the present paper,
in particular Theorems 4.3, 5.1, and 6.2.

Multivariable adaptive prediction. Let (yn), 0 ≤ n < ∞, be a vector-valued, wide-
sense stationary stochastic process defined by a finite-dimensional linear stochastic
system:

y = H(θ∗)e.(7.1)
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Here H(θ) = I + C(θ)(q−1I − A(θ))−1B(θ) is a square, causal, rational transfer
function of the backward shift operator q−1.

Condition 7.1. H(θ) is defined for θ ∈ D, where D ⊂ Rp is an open set and
in its state-space realization the matrices (A(θ), B(θ), C(θ)) are twice continuously
differentiable functions of θ. Moreover, H(θ) is stable and inverse stable.

Condition 7.2. The system-noise process (en), 0 ≤ n < ∞, is an M -bounded,
vector-valued wide-sense stationary orthogonal process. In addition there is an increas-
ing sequence of σ-fields (Fn), 0 ≤ n < ∞, such that (en) is a martingale difference
process with constant conditional covariance:

E [en|Fn−1] = 0, E(ene
T
n |Fn−1) = Λ∗

almost surely, with Λ∗ > 0.
These conditions will be called the standard conditions for multivariable linear

stochastic systems. In the multivariable version of the prediction error method we
have to estimate θ∗ and Λ∗ jointly to improve efficiency. Let θ ∈ D and let Λ be a
symmetric positive definite matrix and then define the second order stationary process
ε(θ) by

ε(θ) = H−1(θ)y.

Then define the cost function

VN (θ,Λ) =
1

2

N∑
n=1

εTn (θ)Λ−1εn(θ) +
N

2
log detΛ.(7.2)

If (en) is an i.i.d. sequence of Gaussian random vectors with distribution N(0,Λ∗),
then VN (θ,Λ) is the negative conditional log-likelihood function, except for an additive
constant. This cost function will be minimized in (θN ,ΛN ) and the minimizing value,

the off-line estimator of (θ∗,Λ∗) will be denoted by (θ̂N , Λ̂N ). A more precise definition

of (θ̂N , Λ̂N ), taking into account the possibility of the existence of several local minima,
can be given following [18].

Define the asymptotic cost function by

W (θ,Λ) = lim
n→∞

1

2
E [εTn (θ)Λ−1εn(θ)] +

1

2
log detΛ.(7.3)

It is easy to see that for any symmetric, positive definite Λ,

Wθ(θ
∗,Λ) = 0.(7.4)

The Hessian of W with respect to θ at (θ∗,Λ∗) is

R∗ = Wθθ(θ
∗,Λ∗) = lim

n→∞
E [εTθn(θ∗)(Λ∗)−1εθn(θ∗)].(7.5)

The above cost function can be treated with the extension of the DFL scheme indicated
by an alternative definition of the random filed H(n, x, ω) in (3.47).

Condition 7.3. Equation (7.4) has a unique solution θ = θ∗ for any symmetric,
positive definite Λ and the Hessian matrix Wθθ(θ

∗,Λ∗) is positive definite.
The performance index of interest is the squared absolute value of the prediction

error. Let Σθθ be the asymptotic covariance matrix of the off-line prediction error
estimator θ̂n. Then it is well known that Σθθ = (R∗)−1. Let

T ∗ = 2
∂2

∂θ2
lim
n→∞

E [εTn (θ)εn(θ)]
∣∣
θ=θ∗(7.6)
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be the second order sensitivity matrix of the performance index. Then we have the
following result.

Theorem 7.1. Let us consider a multivariable system satisfying Conditions 7.1,
7.2, and 7.3. In addition assume that (en) is L-mixing. Then we have almost surely

lim
N→∞

N∑
n=1

(|εn(θ̂n−1)|2 − |en|2)/ logN =
1

2
TrT ∗Σθθ.(7.7)

The expression 1
2TrT ∗ will be called the normalized cost of adaptation. An im-

portant difference between ARMA and multivariable systems is that, unless Λ∗ �= cI,
with c being a scalar, the trace formula given on the right-hand side of (7.7) cannot
be further simplified. However, it can be shown that 1

2TrT ∗Σθθ is invariant with re-
spect to diffeomorphic transformation of the parameter space, while restriction of the
parameter space, i.e., writing θ = g(η) with dim η < dim θ, with g being a smooth
function, reduces the normalized cost of adaptation. Note that, the normalized cost
of adaptation is not determined solely by structural parameters, it may depend also
on the actual multivariable system, unlike in the ARMA case.

To extend this result for adaptive predictors defined in terms of recursive estima-
tors we rely on Theorem 4.3 and we get the following result.

Claim. Let
̂̂
θn be a recursive estimator of θ∗ with asymptotic covariance ma-

trix Σθθ. Then under appropriate technical conditions, obtained by specializing the
conditions of Theorem 4.3, we have

lim
N→∞

N∑
n=1

(|εn(
̂̂
θn−1)|2 − |en|2)/ logN =

1

2
TrT ∗Σθθ(7.8)

almost surely. In analogy with the ARMA case, if we use a stochastic Newton method,
then we have

Σθθ = Σθθ.

The minimum-variance self-tuning regulator. Consider now a stochastic control
system in ARMAX(n,m, p) representation defined by the relation

A∗(q−1)y = q−1B∗(q−1)u + C∗(q−1)e,(7.9)

where A∗(q−1), B∗(q−1), and C∗(q−1) are polynomials of the backward shift oper-
ator q−1 of degree n,m, p, respectively. Their coefficients are denoted by a∗i , b

∗
i , c

∗
i ,

respectively, with a∗0 = 1, a∗n �= 0, b∗0 �= 0, b∗m �= 0, c∗0 = 1, c∗p �= 0. Here u is the
input process, e is the noise process, and y is the output process. The notation u
is a shorthand for (u(t)), 0 ≤ t ≤ ∞. Assume that the polynomials B∗ and C∗ are
stable and that degC∗ ≤ degA∗. By extending the vector (c∗1, . . . , c

∗
p) with zeros, if

necessary, we can actually assume that degA∗ = degC∗. The stochastic process e
is a zero-mean wide-sense stationary orthogonal process; i.e., for all t, s ≥ 0 we have
Ee(t) = 0 and E [e(s)e(t)] = σ2(e)δst, where δst is the Kronecker symbol.

The minimum-variance control for the ARMAX system given under (7.9) is given
by (cf. [2])

q−1B∗u = (A∗ − C∗)y.(7.10)
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Using this control law we get, under the assumption that the initial values are all
zero, y(t) = e(t). Equation (7.10) can be written in the form

u(t− 1) = −(η∗)Tφ(t),(7.11)

where

η∗ =
1

b∗0
(a∗1 − c∗1, . . . , a

∗
n − c∗n, b

∗
1, . . . , b

∗
m)T(7.12)

and

φ(t) = (−y(t− 1), . . . ,−y(t− n), u(t− 2), . . . , u(t−m− 1)).(7.13)

If the values of the parameters of the stochastic control system are unknown, then
a stochastic adaptive control procedure will be needed. Within stochastic adaptive
control a special procedure is the self-tuning regulation, that has been proposed in [2]
for minimum-variance control. For a new perspective of this procedure see [63]. This
is a stochastic approximation procedure defined as follows: let η̂(0) be an initial
estimate of η∗ and let η̂(t − 1) be an estimate computed at time t − 1. Then define
the control action by

u(t− 1) = −η̂(t− 1) φ(t).(7.14)

This is followed by observing y(t) which is generated by (7.9). Finally we generate
the next estimates η̂(t) by

η̂(t) = η̂(t− 1) + R−1 1

t
φ(t)y(t),(7.15)

where R is a symmetric positive definite matrix. A basic question in the context of
stochastic adaptive control is the characterization of the performance degradation

y2(t) − e2(t)(7.16)

and to establish its pathwise properties. This problem was first formulated in [2]. It
has been open for a long time, until a solution was presented in [28], using the results
of the present paper.

The performance of the minimum-variance self-tuning regulator had been studied
in [48, 49]. In [48] the right order of magnitude for the so-called cumulative regret was
found for general ARMAX systems. In [49] the right constant in a tight upper bound
for cumulative regret had been obtained for ARX systems. For a survey see [46].
Note, however, that in these papers the so-called indirect adaptive control procedures
had been considered, where identifiability is ensured by the injection of rare shocks
with diminishing frequency into the system. Similar results were obtained in [31, 32].

Let D ⊂ Rn+m be a set of candidate controller parameters to be specified below.
For any η ∈ D and for t ≥ 0 we consider the control law

u(t− 1) = −ηTφ(t),

where φ(t) is defined above in (7.13). Thus we get a closed-loop system in which
both u and y depend on η. To stress this dependence we write u(t) = ū(t, η) and
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y(t) = ȳ(t, η). Let D denote the open set of η’s in Rm+n such that the closed-loop
system is stable. Define the nonlinear vector-valued function

G(η)
Δ
= lim

t→∞
E [ φ̄(t, η)ȳ(t, η)].(7.17)

It is easy to see that we have G(η∗) = 0.
Let S∗ denote the asymptotic covariance matrix of η̂(t); i.e., let

S∗ = lim
t→∞

t · E [(η̂(t) − η∗)(η̂(t) − η∗)T ],

assuming that the limit exists. Define the second order sensitivity matrix

T ∗ = lim
t→∞

E

[
∂2

∂η2
|η=η∗

ȳ2(t, η)

]
.(7.18)

Claim (see [28]). Consider the minimum-variance self-tuning regulator for an
ARMAX(n,m, p) system given by (7.15). Then, under appropriate technical condi-
tions, obtained by specializing the conditions of Theorem 4.3, we have the following
pathwise characterization of the cumulative performance degradation:

lim
N→∞

N∑
t=1

(y2(t) − e2(t))/ logN =
1

2
Tr T ∗S∗(7.19)

almost surely. Moreover, for any symmetric positive definite R we have

1

2
Tr T ∗S∗ ≥ σ2(e)(m + n).(7.20)

The inequality (7.20) is an equality if and only if R = −Gη(η
∗) and C∗ = 1.

The proof of (7.19) follows [24]. We note in passing that it has been a common
belief that Gη(η

∗) is not computable. However, using a technique of Hjalmarsson
(cf. [39]) it can be shown that for certain interesting physical systems Gη(η

∗) is in
fact computable. The proof of (7.19) follows [24].

Conclusion. Performance degradation due to statistical uncertainty, also called
regret, is of great interest in adaptive prediction and control of stochastic systems.
To quantify the pathwise cumulative regret we need technical tools similar to those
developed in [24] in the context of adaptive prediction of ARMA processes. These new
tools have been developed in this paper. The usefulness of the results in stochastic
adaptive control has been demonstrated for the minimum-variance self-tuning regula-
tor for ARMAX systems in section 7; see also [28]. A further application for indirect
adaptive control of multivariable linear stochastic systems is given in [27].

The results can be also applied in the context of identification for control; see
[29, 40, 41]. For any fixed feedback strategy the covariance matrix of the estimation
error and consequently the cumulative regret over any finite horizon will depend on the
feedback strategy. The cumulative regret over finite horizon distorts the performance
of the controller and this distortion can be precisely characterized using the results
of the present paper. Thus a controller with optimal overall performance over a fixed
finite horizon can be developed, at least in theory, i.e., pretending that we know the
systems dynamics.

A further potential area of application is adaptive experimental design, see [30],
in which the objective function to be minimized is the trace of the covariance matrix
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of the estimation error, which can be computed experimentally for any fixed input
pattern.

Another more classical possible application is the derivation of limit results such
as LIL and invariance principles along the lines of [38].

The scope of applications can be enlarged by extending the technical results them-
selves. The extension of the results of the present paper to Kiefer–Wolfwitz-type
stochastic approximation procedures, such as the simultaneous perturbation stochas-
tic approximation, or SPSA, method due to Spall [61, 62] seems to be possible.

8. Auxiliary results.
Lemma 8.1. Let (xt), t ≥ 0, be a zero-mean L-mixing process with respect to

(Ft,F+
t ) and let y be an Fs-measurable random variable for some 0 ≤ s ≤ t, such

that its moments, which appear in the inequality below, are finite. Then for every
1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1 we have

|Exty| ≤ 2γp(t− s, x)E1/q|y|q.

Analogous inequalities for strong mixing stationary sequences are given in [9]
and for uniformly mixing stationary sequences in [42]. A concise survey of these
inequalities is given in Chapter 7.2 of [15] and Appendix III of [33]. Here we restate
an improved Hölder inequality under the weakest condition on mixing, namely strong-
mixing or α-mixing (cf. Corollary 2.5 of Chapter 7.2 of [15]).

Lemma 8.2. Let p, q, r > 1 be such that p−1 + q−1 + r−1 = 1. Let Y and Z
be H-measurable and G-measurable random variables such that ||Y ||q and ||Z||r are
finite, respectively. Then

|E[Y Z] − E[Y ]E[Z]| ≤ Cα(H,G)1/p||Y ||q||Z||r.(8.1)

The improved Hölder inequality of Lemma 8.1 plays a key role in deriving the
following moment inequality (cf. Theorem 1.1 in [17]).

Theorem 8.1. Let (ut), t ≥ 0, be a zero-mean L-mixing process. Let (ft) be a
function in L2[0, T ]. Then we have for all m ≥ 2 with Cm = 2(m− 1)1/2

E1/m

∣∣∣∣∣
∫ T

0

fsusds

∣∣∣∣∣
m

≤ Cm

(∫ T

0

f2
t dt

)1/2

M1/2
m (u) · Γ1/2

m (u).

Extension of the statement to vector-valued processes is an elementary exercise,
but obviously the constant Cm will be different. Extension to random (ft) is not pos-
sible in general, but an extension is possible for multiple integrals with deterministic
kernel (cf. [21]). Here we need only the following special result.

Theorem 8.2. Let (ut) and (vt) be zero-mean L-mixing processes. Then we
have

IT0 =

∫ T

T0

1

t
ut

∫ t

T0

1

s
vsdsdt = OM (T−1

0 ).

The following simple lemma is stated as Corollary 3.5 in [24].
Lemma 8.3. Let (Ft,F+

t ) be a pair of families of σ-algebras as in section 3
and let (xt), t ≥ 0, be an Ft-adapted, measurable stochastic process. Then (xt) is
L-mixing with respect to (Ft,F+

t ) if and only if the processes (xn+d) are L-mixing
with respect to (Fn+d,F+

n+d), uniformly in d for 0 ≤ d < 1.
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Let us consider a stochastic process (un(θ)) with θ ∈ D ⊂ Rp, where D is an open
set, which is measurable, separable, M -bounded, and M -Lipschitz continuous in θ for
θ ∈ D. By Kolmogorov’s theorem the realizations of (xn(θ)) are continuous in θ with
probability 1, hence we can define for almost all ω

u∗
n = max

θ∈D0

|un(θ)|,

where D0 ⊂ D is a compact domain. The following result is given as Theorem 3.4
in [17].

Theorem 8.3. Assume that (un(θ)) is a stochastic process which is measurable,
separable, M -bounded, and M -Lipschitz continuous in θ for θ ∈ D. Let u∗

n be the
random variable defined above. Then we have for all positive integers q and s > p

Mq(u
∗) ≤ C(Mqs(u) + Mqs(Δu/Δθ)),

where C depends only on p, q, s, and D0, D.
A continuous-time version of the following lemma was given in [17] as Lemma 2.4.
Lemma 8.4. Let (un), n ≥ 0, be a zero-mean L-mixing Rp-valued process and

define another Rp-valued process (xn) by

xn+1 = Axn + un, x0 = 0,

where the spectral norm of A is smaller than 1, say, we have ||An|| ≤ Cαn with some
C > 0 and 0 < α < 1. Then the output process (xn) is L-mixing.

The first part of the following result was stated in Lemma 7.4 of [19]. The second
part of the quoted lemma was not correctly stated and is therefore restated and proved
here.

Lemma 8.5. Let (un), n ≥ 0, be an M -bounded process and define a process (xn)
by

xn+1 = λxn + ρnun, x0 = 0,(8.2)

where 0 < λ < ρ. Then for any m ≥ 1 we have

E1/m|xn|m ≤ ρn

ρ− λ
Mm(u).

On the other hand, if 0 < ρ < λ, then we have

E1/m|xn|m ≤ λn

λ− ρ
Mm(u).

Proof. Let 0 < λ < ρ and set zn = ρ−nxn. Then we have, after multiplying (8.2)
by ρ−(n+1),

zn+1 = λρ−1zn + ρ−1un,

which can be solved explicitly for zn to get

zn =

n−1∑
i=0

(λρ−1)iρ−1un−1−i.
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Using the triangle inequality for the Lm(Ω,F , P )-norm and the condition 0 < λ < ρ
we get

Mm(z) ≤ (1 − λρ−1)−1ρ−1Mm(u)

from which the first proposition follows.
A useful reformulation of the above argument is the following: writing

xn = ρnzn =

n−1∑
i=0

λiρn−1−iun−1−i(8.3)

we have

E1/m|xn|m ≤
n−1∑
i=0

λiρn−1−iE1/m|un−1−i|m ≤
n−1∑
i=0

λiρn−1−iMq(u).(8.4)

Thus it is sufficient to establish that for 0 < λ < ρ

n−1∑
i=0

λiρn−1−i ≤ ρn

ρ− λ
(8.5)

and this is obtained from the above argument with un = 1 for all n. The advantage of
this reformulation is that the left-hand side is the convolution of the sequences (λn)
and (ρn) and thus it is symmetric in λ and ρ.

In the case when 0 < ρ < λ we use (8.4) to estimate E1/m|xn|m, but the role of
λ and ρ is interchanged; thus we get

E1/m|xn|m ≤ λn

λ− ρ
Mm(u).

Remark. A simple corollary is that

n−1∑
i=0

λiρn−1−i ≤ max (λn, ρn)

|ρ− λ| .(8.6)

The lemma below has been used for ODE analysis of stochastic approximation
processes in [16]. The conditions are similar to Condition 3.4(i). Consider the ODE

ẏt = F (t, yt), ys = ξ, s ≥ 1.(8.7)

The solution of the above ODE will be denoted by y(t, s, ξ) in the time interval where
it exists and is unique.

Condition 8.1. F = (F (t, y)) is defined for t ≥ 1, y ∈ D, where D ⊂ Rp is an
open set and F is continuously differentiable in (t, y). It is assumed that there exists a
compact domain D′

0 ⊂ D such that y(t, s, ξ) ∈ D for all ξ ∈ D′
0 and 1 ≤ s ≤ t < ∞.

Lemma 8.6. Assume that Condition 8.1 is satisfied. Let (xt), 1 ≤ t < ∞, be
a continuous, piecewise continuously differentiable curve such that xt ∈ D′

0 for t ≥ 1
and x1 = y1 = ξ ∈ D′

0. Then for t ≥ 1

xt − yt =

∫ t

1

∂

∂ξ
y(t, r, xr) (ẋr − F (r, xr)) dr.(8.8)
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Proof. Write zr = y(t, r, xr). Obviously the left-hand side of (8.8) can be written
as zt − z1 and we have

zt − z1 =

∫ t

1

żrdr =

∫ t

1

(yr(t, r, xr) + yξ(t, r, xr)ẋr) dr.(8.9)

Taking into account the equality yr(t, r, xr) = −yξ(t, r, xr) · F (t, xr) we get the
lemma.

A discretized version of the above lemma has been used implicitly in the final step
of the proof of Theorem 1.1 of [19], see (2.10) of [19]. We now formulate this lemma
with explicit conditions. It has been used in the proof of Lemma 4.4.

Condition 8.2. Let D′
0 ⊂ D be a compact domain as in Condition 8.1. Assume

that D′
0 is convex and that there exists a compact set D0 ⊂ D′

0 such that for all x ∈ D0

and t ≥ s ≥ 1 we have y(t, s, x) ∈ D′
0.

Let 1 = s0 ≤ s2 ≤ · · · ≤ sn ≤ sn+1 = t and let (xsi) ∈ D0, i = 0, 1, . . . , n, be a
sequence such that x1 = y1 = ξ ∈ D0. These points are considered as approximations
to ysi = y(si, 1, ξ). We will estimate the tracking error xt−yt in terms of local tracking
errors

(xsi − y(si, si−1, xsi−1)).

Lemma 8.7. Let F = (F (t, y)) satisfy Conditions 8.1 and 8.2 and let (xsi) ∈ D0,
i = 0, 1, . . . , n, be a sequence such that x1 = y1 = ξ. Then

xt − yt = (xt − y(t, sn, xsn)) +

n∑
i=1

∫ 1

0

∂

∂ξ
y(t, si, w(i, λ)) dλ · (xsi − y(si, si−1, xsi−1)),

where w(i, λ) = (1 − λ)y(si, si−1, xsi−1
) + λxsi .

Proof. Consider the sequence zi = y(t, si, xsi), i = 0, 1, . . . , n. Then z0 = yt and
we can write

xt − yt = (xt − zn) +

n∑
i=1

(zi − zi−1)

= (xt − y(t, sn, xsn)) +

n∑
i=1

(y(t, si, xsi) − y(t, si−1, xsi−1
)).

(8.10)

Now for 1 ≤ s ≤ s′ ≤ t we have y(t, s, x) = y(t, s′, y(s′, s, x)). Setting s = si−1,
s′ = si, x = xsi−1

, the ith term of the right-hand side of (8.10) thus becomes

y(t, si, xsi) −y(t, si, y(si, si−1, xsi−1))

=

∫ 1

0

∂

∂ξ
y(t, si, w(i, λ)) dλ · (xsi − y(si, si−1, xsi−1))

with w(i, λ) = (1 − λ)y(si, si−1, xsi−1
) + λxsi for 0 ≤ λ ≤ 1. Note that w(i, λ) ∈ D′

0

for i = 1, . . . , n since D′
0 is convex and thus y(t, si, w(i, λ)) is well defined, and the

lemma follows.
Let G = (G(y)) be defined in an open set D ⊂ Rp and consider the ODE

ẏt =
1

t
G(yt), ys = ξ, s ≥ 1.(8.11)



RECURSIVE ESTIMATORS 2185

We will have conditions that ensure that the above ODE has a unique solution in
some finite or infinite interval, which we denote by y(t, s, ξ). We assume the validity
of the following condition, which is weaker than Conditions 3.3 and 3.4.

Condition 8.3. G has continuous partial derivatives up to second order for
y ∈ D. There exist compact sets D0 ⊂ D′

0 ⊂ D such that for all ξ ∈ D0, t ≥ s ≥ 1,
we have y(t, s, ξ) ∈ D′

0 and

‖yξ(t, s, ξ)‖ ≤ C0(s/t)
α(8.12)

with some C0 ≥ 1, α > 0. Let ||∂iG(y)/∂yi|| ≤ L for y ∈ D′
0 and i = 0, 1, 2.

We prove that the stability expressed by the condition above is in a sense inherited
by the second order derivatives of y(t, s, ξ).

Lemma 8.8. Let G satisfy Condition 8.3. Then for all ξ ∈ D0, t ≥ s ≥ 1,

‖yξξ(t, s, ξ)‖ ≤ Lα−1C3
0 · (s/t)α,

‖ysξ(t, s, ξ)‖ ≤ (Lα−1 + 1)LC3
0 · 1

s
(s/t)α.

Remark. From the proof below it follows that if G is three times continuously
differentiable, then with some constant C ′

0 we have ‖yξξξ(t, s, ξ)‖ ≤ C ′
0(s/t)

α.
Proof. Use a change of time-scale t = ev, s = eu, and consider the differential

equation

d

dv
zv = G(zv), zu = ξ, u ≥ 0,

with its solution being denoted by z(v, u, ξ), v ≥ u ≥ 0. Then (8.12) implies

‖zξ(v, u, ξ)‖ ≤ C0e
−α(u−v),(8.13)

and the propositions of the lemma are equivalent to, after the substitution u = log t
and v = log s,

‖zξξ(v, u, ξ)‖ ≤ Lα−1C3
0 · e−α(v−u),

‖zuξ(v, u, ξ)‖ ≤ (Lα−1 + 1)LC3
0 · e−α(v−u).

Now we have

∂

∂v
zξ(v, u, ξ) = Gy(z(v, u, ξ)) · zξ(v, u, ξ), zξ(u, u, ξ) = I.(8.14)

It is easy to see that zξξ(v, u, ξ) exists and is continuous in (v, u, ξ). From (8.14) we
get

∂

∂v
zξξ(v, u, ξ) = Gyy(z(v, u, ξ)) · zξ(v, u, ξ)zξ(v, u, ξ) + +Gy(z(v, u, ξ)) · zξξ(v, u, ξ)

with zξξ(u, u, ξ) = 0. Since the operator norm of the first term is majorized by
LC2

0e
−2α(u−v) and since the time-varying linear differential equation with transition

matrix Gy(z(v, u, ξ)) is exponentially stable due to (8.13), we get the first claim of
the lemma from the identity∫ t

0

e−α(v−r)e−2αrdr = e−αv

∫ v

0

e−αrdr < α−1e−αv.
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To estimate the mixed derivatives, take into account zu(v, u, ξ) = −zξ(v, u, ξ) · G(ξ)
to get

zuξ(v, u, ξ) = −zξξ(v, u, ξ) ·G(ξ) − zξ(v, u, ξ) ·Gξ(ξ),

from which the second claim follows using (8.13) and the proven first part of the
lemma.
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Abstract. We reduce the problem of impulse elimination via state feedback in singular differen-
tial equations to algebra. Our results are developed for systems over an arbitrary Hermite domain.
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1. Introduction. We are interested in the problem of designing a state feedback
law u = K (t)x for a time-varying singular differential equation

E (t)
.
x = A (t)x + B (t)u(1)

such that the closed-loop system

E (t)
.
x = (A (t) + B (t)K (t))x(2)

exhibits no impulsive transients. The matrices E, A, and B are assumed to have
entries in an appropriate set of functions on R (possibly constant) with E (t) , A (t) ∈
Rn×n, B (t) ∈ Rn×m, and K (t) ∈ Rm×n. This problem has been treated in a variety
of contexts over the past 25 years [10], [16], [12], [13], [4], [17], [18]. For example, we
originally posed and solved the problem for the time-invariant (i.e., constant matrix)
case in [10].

For time-invariant systems, the fact that solutions of (2) can exhibit impulsive
behavior was originally established in [14] and [15, Ch. 22]. One method of analysis is
based on the Weierstrass decomposition [8, Thm. 3, p. 28]: Given E,A with det(sE−
A) �≡ 0, there exist nonsingular P,Q ∈ Rn×n such that

PEQ =

[
I 0
0 N

]
, PAQ =

[
X 0
0 I

]
,

where N is nilpotent. If N �= 0, the solution of (1) contains an impulsive term of the
form

z = −
∑

δ(k−1)Nkzo.(3)

(See [19] for details.) More generally, when E (t) and A (t) are analytic functions, it
is shown in [3] that an expression similar to (3) holds under mild assumptions.
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Since impulses must be interpreted as unbounded, conventional notions of closed-
loop stability dictate that K be chosen to make (2) impulse free. For the time-invariant
case, we established a necessary and sufficient condition ([10, Thm. 6]) under which
such a matrix K exists. This condition can be written

ImE + AKerE + ImB = Rn.

Since then, two alternative proofs of this result have appeared. (See [12, Thm. 2.5.1]
and [13, Thm. 3-2.1].)

The work of Campbell and Petzold [3] extended the theory of singular systems
(1) to the time-varying setting, where E, A, and B are matrices over the real analytic
functions on R. More recently, the corresponding impulse elimination problem was
solved by Wang in [4, Thm. 4.1]. In this case, necessary and sufficient conditions for
impulse elimination are

ImE (t) + A (t) KerE (t) + ImB (t) = Rn ∀t,
rankE (t) = constant.

Our contention is that the impulse elimination problem is primarily a problem in
algebra. Indeed, after careful examination (and some modification), the arguments in
[4] can be reduced to algebraic manipulations over a certain class of rings. Pursuing
this idea not only leads to a unification of the time-invariant and analytic time-varying
theories, but also yields a more general framework in which the impulse elimination
problem for other classes of time-varying systems can be solved with little extra effort.

An important consequence of our approach is that it allows the entries of K
to be restricted to certain function rings (although E, A, and B must share the
same restriction). Hence, we are able to solve a wide variety of constrained feedback
problems which have not been considered in the literature.

Our algebraic theory is the subject of sections 2 and 3. In section 4, we apply our
results to various types of time-varying singular systems.

2. Algebraic preliminaries. Let R be a commutative ring (with identity). If
x1, . . . , xk ∈ R, a Bezout identity is an equation of the form

∑
aixi = 1 (ai ∈ R). For

a matrix M ∈ Rp×q, let

rankM = max

{
k M has a nonzero kth-order minor

}
(4)

and

ρM = max

{
k the kth-order minors of M satisfy a Bezout identity

}
.(5)

Obviously, rankM ≥ ρM for any M. It can be shown that rankM and ρM are
invariant under left and right unimodular transformations. (See [1, p. 25].) If R = R,
then rankM = ρM. We denote this common value by rankR M.

Consider the set G of all triples (P,Q,D) , where P,Q,D ∈ Rn×n and P,Q are
unimodular. Define the binary operation

(P1, Q1, D1) ∗ (P2, Q2, D2) = (P2P1, Q1Q2, D1Q2 + Q1D2) .

It is routine to verify that G has the structure of a group. Now consider pairs (E,A) ,
where E,A ∈ Rn×n. We may define a right group action on the set of all (E,A)
according to

(E,A) · (P,Q,D) = (PEQ,P (AQ + ED)) .(6)
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The orbit of particular (E,A) is the set of all pairs (Ẽ, Ã) such that (Ẽ, Ã) = (E,A) ·
(P,Q,D) for some P,Q,D. It is easy to verify that the set of all orbits forms a partition
of Rn×n ×Rn×n.

Following the terminology of Campbell and Petzold [3], we say (E,A) is in stan-
dard canonical form if

E =

[
I 0
0 N

]
, A =

[
X 0
0 I

]
,(7)

where N is strictly upper triangular with E,A identically partitioned. Similar to
their notion of “analytic solvability” for systems (1), we say (E,A) ∈ Rn×n×Rn×n is
algebraically solvable if its orbit under (6) contains a member in standard canonical
form. (The degenerate cases (I,X) and (N, I) are also allowed.) We say that (E,A)
has unit index if the orbit of (E,A) contains a member in standard canonical form
with N = 0. It is clear from the definitions that algebraic solvability is invariant under
the group action (6).

The question arises whether a unit index orbit can contain a member in standard
canonical form with N �= 0. Fortunately, the next result answers this question in the
negative.

Theorem 2.1. Suppose (E,A) has unit index and (E,A)·(P,Q,D) is in standard
canonical form (7). Then N = 0.

Proof. Suppose (E,A) belongs to an orbit with two members in standard canon-
ical form, one with N = 0 and the other with N �= 0. Then there exist D and
unimodular P and Q such that

P

[
I 0
0 0

]
=

[
I 0
0 N

]
Q−1,

P

([
X 0
0 I

]
+

[
I 0
0 0

]
DQ−1

)
=

[
Y 0
0 I

]
Q−1

for some X and Y and some strictly upper triangular N �= 0. Let[
D11 D12

D21 D22

]
= DQ−1, P1 = P

[
I D12

0 I

]
,

and X1 = X + D11. Then

P1

[
I 0
0 0

]
= P

[
I D12

0 I

] [
I 0
0 0

]
= P

[
I 0
0 0

]
=

[
I 0
0 N

]
Q−1,(8)

P1

[
X1 0
0 I

]
= P

[
I D12

0 I

] [
X1 0
0 I

]
(9)

= P

[
X + D11 D12

0 I

]
= P

([
X 0
0 I

]
+

[
I 0
0 0

]
DQ−1

)
=

[
Y 0
0 I

]
Q−1.

Let [
P11 P12

P21 P22

]
= P1,

[
Q11 Q12

Q21 Q22

]
= Q−1.
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From (8), P21 = NQ21 and NQ22 = 0. From (9), P22 = Q22. Since N is strictly
triangular and nonzero, there exist an integer q > 1 and x such that Nq = 0 and
Nq−1x �= 0. Since P1 is unimodular, there exist y and z such that[

0
x

]
= P1

[
y
z

]
,

x = P21y + P22z = NQ21y + Q22z.

Multiplying by Nq−1 yields

Nq−1x = NqQ21y + Nq−1Q22z = 0,

which is a contradiction.
In practice, algebraic solvability may be difficult to establish, so we introduce a

more direct condition that will suit our purposes just as well. We say that (E,A) is
presolvable if any one of the following conditions holds:

(PS1) ImE + AKerE = Rn,
(PS2) ImE ∩AKerE �= 0,
(PS3) KerE ∩ KerA �= 0.

Algebraic solvability and standard canonical form are related to existence and unique-
ness of solutions of (1), as discussed in [3]. However, presolvability is a purely algebraic
condition, having no simple connection to the dynamics of (1). Nevertheless, we can
prove the following.

Theorem 2.2.

(1) Algebraic solvability implies presolvability.
(2) Presolvability is invariant under the group action (6).
Proof. (1) There exist P, Q, and D that put (E,A) in standard canonical form.

Suppose N = 0. Then

P (ImE + AKerE) = P
(
ImE + AKerE + EDQ−1 KerE

)
= ImPEQ + PAQKerPEQ + PEDKerPEQ

⊃ ImPEQ + P (AQ + ED) KerPEQ

= Im

[
I
0

]
+ Im

[
0
I

]
= Rn,

so (PS1) holds.
If N �= 0, there exists an integer q > 1 such that Nq = 0 and Nq−1 �= 0. Choose

any x ∈ Rn such that Nq−1x �= 0, set y = Nq−2x, and z = Ny. Then z �= 0. Let

v = Q

[
0
y

]
−D

[
0
z

]
, w = Q

[
0
z

]
.

Then w �= 0 and

P (Ev −Aw) = PEQ

[
0
y

]
− P (AQ + ED)

[
0
z

]
=

[
0

Ny − z

]
= 0,

so Ev = Aw. Also,

P (Ew) = PEQ

[
0
z

]
=

[
0
Nz

]
= 0,
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so w ∈ KerE and Aw ∈ ImE ∩ AKerE. If Aw �= 0, (PS2) holds; if Aw = 0, (PS3)
holds.

(2) To prove invariance of presolvability, first suppose (PS1) holds for (E,A).
Then

ImPEQ + P (AQ + ED) KerPEQ = P
(
ImE +

(
A + EDQ−1

)
KerE

)
= P

(
ImE +

(
A + EDQ−1

)
KerE + EDQ−1 KerE

)
⊃ P

(
ImE +

((
A + EDQ−1

)
− EDQ−1

)
KerE

)
= Rn,

so (PS1) also holds for (E,A) · (P,Q,D) and (E,A) · (P,Q,D) is presolvable.
Now assume that (PS2) holds for (E,A) , but not for (E,A) · (P,Q,D). Then

there exist x, y such that Ex = 0 and Ey = Ax �= 0. Hence, x �= 0,

P (AQ + ED)Q−1x = PE
(
y + DQ−1x

)
∈ ImPEQ ∩ P (AQ + ED) KerPEQ = 0,

0 �= Q−1x ∈ KerPEQ ∩ KerP (AQ + ED) .(10)

This establishes (PS3), and therefore, presolvability relative to (E,A) · (P,Q,D) .
Finally, suppose that (PS3) holds for (E,A), but (E,A) · (P,Q,D) fails to satisfy

(PS2). Then there exists x �= 0 such that Ex = Ax = 0 and

P (AQ + ED)Q−1x = PEDQ−1x ∈ ImPEQ ∩ P (AQ + ED) KerPEQ = 0.

Hence, (10) again holds, verifying (PS3) and presolvability of (E,A) · (P,Q,D).
If (E,A) has unit index, it turns out that the matrix D plays no essential role in

establishing standard canonical form. This is made precise in the next theorem.
Theorem 2.3. If (E,A) has unit index, then there exists a unimodular Q ∈ Rn×n

such that, for every D ∈ Rn×n, there exists a unimodular P ∈ Rn×n which yields
standard canonical form (7) with N = 0.

Proof. Suppose (P1, Q1, D1) achieves standard canonical form for some X1 and
with N = 0. Let Q = Q1 and let D be given. Setting[

D11 D12

D21 D22

]
= Q−1

1 (D −D1) , P2 =

[
I −D12

0 I

]
,

X = X1 + D11, and P = P2P1 yields

PEQ = P2 (P1EQ1) =

[
I 0
0 0

]
,

P (AQ + ED) = P2

(
P1 (AQ1 + ED1) + (P1EQ1)Q

−1
1 (D −D1)

)
=

[
I −D12

0 I

]([
X1 0
0 I

]
+

[
D11 D12

0 0

])
=

[
X 0
0 I

]
.

For an arbitrary commutative ring R, we can establish necessary conditions under
which (E,A) has unit index. First we need a lemma.
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Lemma 2.4. Let M ∈ Rn×n. If there exist unimodular P,Q ∈ Rn×n such that

PMQ =

[
I 0
0 0

]
,(11)

then rankM = ρM.
Proof. Suppose the identity matrix in (11) is n1×n1. Then it is clear by definitions

(4) and (5) that

rankPMQ = n1 = ρPMQ.

The result follows from invariance of rank and ρ under unimodular transformations.
Theorem 2.5. If (E,A) has unit index, then
(1) rankE = ρE,
(2) ImE + AKerE = Rn,
(3) (E,A) is presolvable.
Proof. (1) This follows from standard canonical form and Lemma 2.4.
(2) Invoking standard canonical form,

P (ImE + AKerE) = P
(
ImE + AKerE + EDQ−1 KerE

)
= ImPEQ + PAQKerPEQ + PEDKerPEQ

⊃ ImPEQ + P (AQ + ED) KerPEQ

= Im

[
I
0

]
+

[
X 0
0 I

]
Im

[
0
I

]
= Im

[
I
0

]
+ Im

[
0
I

]
= Rn.

(3) This is obvious from part (2).
Let B ∈ Rn×m. The group action (6) may be extended to triples (E,A,B) ac-

cording to

(E,A,B) · (P,Q,D) = (PEQ,P (AQ + ED) , PB) .(12)

In [16] we introduced the concept of “impulse controllability,” which is funda-
mental to the study of state feedback in singular systems. We can adapt this idea
to the algebraic setting by taking its feedback characterization as the definition. We
say that K ∈ Rm×n is impulse eliminating if (E,A + BK) has unit index. The triple
(E,A,B) is impulse controllable if there exists an impulse eliminating K.

Theorem 2.6. Impulse controllability is invariant under (12).
Proof. Suppose (E,A,B) is impulse controllable, and let K be impulse eliminat-

ing. Choose any P,Q,D, and let K1 = KQ. Then

(PEQ,P (AQ + ED) + (PB)K1) = (PEQ,P ((A + BK)Q + ED)) ,

which lies in the same orbit as (E,A + BK) and, hence, has unit index. Thus
(PEQ,P (AQ + ED) , PB) is impulse controllable.

Theorem 2.7. If (E,A,B) is impulse controllable, then
(1) rankE = ρE,
(2) ImE + AKerE + ImB = Rn.



IMPULSE ELIMINATION OVER A HERMITE DOMAIN 2195

Proof. Suppose (E,A + BK) has unit index. From Theorem 2.5, part (1),
rankE = ρE. By Theorem 2.5, part (2),

ImE + AKerE + ImB ⊃ ImE + AKerE + BK KerE
⊃ ImE + (A + BK) KerE = Rn.

We conclude this section by proving a pair of lemmas which will be useful in what
follows, and which hold for any commutative ring.

Lemma 2.8. Let M ∈ Rp×q. The following statements are equivalent:
(1) ImM = Rp,
(2) M has a right inverse,
(3) ρM = p.
Proof. (1)⇒(2) Let e1, . . . , ep be the canonical unit vectors in Rp. Since ImM =

Rp, there exist x1, . . . , xp ∈ Rq such that Mxi = ei. Let L =
[
x1 · · · xp

]
. Then

MLei = Mxi = ei, so ML = I.
(2)⇒(3) Suppose ML = I. From the Binet–Cauchy formula,∑

1≤j1<···<jp≤q

M

(
1 · · · p
j1 · · · jp

)
L

(
j1 · · · jp
1 · · · p

)
= det I = 1,

so ρM = p.
(3)⇒(1) There exist xj1···jp ∈ R such that

∑
1≤j1<···<jp≤q

xj1···jpM

(
1 · · · p
j1 · · · jp

)
= 1.(13)

Traversing the ith row and expanding by minors yields

M

(
1 · · · p
j1 · · · jp

)
=

p∑
l=1

(−1)
i+jl mijlM

(
1 · · · i− 1 i + 1 · · · p
j1 · · · jl−1 jl+1 · · · jp

)
,

(14)

where M = [mij ] . Combining (13) and (14), we obtain yij ∈ R such that
∑

j yijmij =
1. Let k �= i and replace the ith row of M with the kth row. This yields the calculation

p∑
l=1

(−1)
i+jl mkjlM

(
1 · · · i− 1 i + 1 · · · p
j1 · · · jl−1 jl+1 · · · jp

)
= M

(
1 · · · i− 1 k i + 1 · · · p

j1 · · · jp

)
= 0.

Hence,
∑

j yijmkj = 0. Let

yi =

⎡⎢⎣ yi1
...
yiq

⎤⎥⎦ .

Then Myi is equal to the ith unit vector ei. Let x ∈ Rp and

z =
[
y1 · · · yp

]
x.



2196 DANIEL COBB

Then

Mz =
[
My1 · · · Myp

]
x =

[
e1 · · · ep

]
x = x.

Since x is arbitrary, ImM = Rp.
Lemma 2.9. Let

E =

[
E11 0
0 0

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
,

where E11 ∈ Rn1×n1 , Aij ∈ Rni×nj , and Bi ∈ Rni×m.
(1) (E,A) has unit index iff E11 and A22 are unimodular.
(2) ρE = n1 and ImE + AKerE + ImB = Rn iff E11 is unimodular and

ρ
[
A22 B2

]
= n2.

Proof. (1) (Necessary) From Theorem 2.3, there exist unimodular P and Q so
that (PEQ,PAQ) is in standard canonical form with N = 0. Let[

P11 P12

P21 P22

]
= P,

[
Q11 Q12

Q21 Q22

]
= Q−1.

Then

PE =

[
I 0
0 0

]
Q−1

implies Q12 = 0, so Q11 and Q22 are unimodular. Also, P11E11 = Q11 and P21E11 = 0,
so E11 is unimodular and P21 = 0. It follows from

PA =

[
X 0
0 I

]
Q−1

that P22A22 = Q22, so A22 is unimodular.
(Sufficient) Let

P =

[
E−1

11 −E−1
11 A12A

−1
22

0 A−1
22

]
, Q =

[
I 0

−A−1
22 A21 I

]
,

and D = 0. Then

PEQ =

[
I 0
0 0

]
, P (AQ + ED) =

[
E−1

11

(
A11 −A12A

−1
22 A21

)
0

0 I

]
.

(2) (Necessary) Unimodularity of E11 follows from the definition of ρ. Thus

KerE = Im

[
0
I

]
, Im

[
E11 A12 B1

0 A22 B2

]
= ImE + AKerE + ImB = Rn.

For any w ∈ Rn2 , there exist x, y, z such that[
0
w

]
=

[
E11 A12 B1

0 A22 B2

]⎡⎣ x
y
z

⎤⎦ ,

so

w =
[
A22 B2

] [ y
z

]
and Im

[
A22 B2

]
= Rn2 . The result follows from Lemma 2.8.
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(Sufficient) The definition of ρ gives ρE = n1. Let v ∈ Rn1 and w ∈ Rn2 . Then
there exist y and z such that A22y + B2z = w. Set x = E−1

11 (v −A12y −B1z) . Then

[
E11 A12 B1

0 A22 B2

]⎡⎣ x
y
z

⎤⎦ =

[
v
w

]
,

so

ImE + AKerE + ImB = Im

[
E11 A12 B1

0 A22 B2

]
= Rn.

3. Pencils over a Hermite domain. We say R is a Hermite domain if it is an
integral domain and, for every a, b ∈ R, there exist u, v, x, y ∈ R such that ux+vy = 1
and ax+by = 0 [2, p. 469]. It should be noted that the definition of a Hermite domain
varies in the literature. For example, [6, p. 345] gives a definition which is different
from, but is implied by, the one given in [2]. In particular, every Bezout domain is
Hermite [2, Thm. 3.2], and, therefore, every principal ideal domain, field, etc. is also
a Hermite domain. For the remainder of this section, our standing assumption is that
R is a Hermite domain (as in [2]).

One advantage of working in a Hermite domain is that matrices over R can be
triangularized: For any M ∈ Rp×q (p �= q), there exists a lower triangular L ∈
Rmin{p,q}×min{p,q} and a unimodular Q ∈ Rq×q such that

MQ =

⎧⎪⎨⎪⎩
[
L 0

]
, p < q,[

L
0

]
, p > q.

A similar result, in which KerM plays a special role, was established for real analytic
functions in [5]. The arguments used in [5] are essentially algebraic and can be adapted
to any Hermite domain. Since these ideas are central to our results, we develop the
underlying algebraic arguments in detail, culminating in Theorem 3.3 and its corollary.

Lemma 3.1. Let M ∈ R2×2 with at least one first-row entry nonzero. There
exists a unimodular Q ∈ R2×2 such that MQ is lower triangular with its 1, 1 entry
nonzero.

Proof. Let
[
a b

]
be the first row of M and choose u, v, x, y ∈ R such that

ux + vy = 1 and ax + by = 0. Let

Q =

[
v x
−u y

]
.

Then MQ is lower triangular and detQ = 1, so Q is unimodular. The first row of
MQ is

[
a b

]
Q �= 0, but the 1, 2 entry of MQ is zero, so its 1, 1 entry must be

nonzero.
Lemma 3.2. Let M ∈ Rp×q with at least one first-row entry nonzero. There

exists a unimodular Q ∈ Rq×q such that MQ has the form

MQ =

[
a 0
b C

]
(15)

with a �= 0.
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Proof. Q will be constructed as a series of column permutations and transforma-
tions of the form ⎡⎢⎢⎣

v x
I

−u y
I

⎤⎥⎥⎦ ,

where u, v, x, and y are as in the proof of Lemma 3.1. The product of such transfor-
mations is unimodular.

Begin operating on M by permuting its columns so that either the 1, 1 or 1, 2
entry is nonzero. Applying Lemma 3.1 to the upper left 2 × 2 submatrix yields a
matrix of the form ⎡⎣ d 0 e

f g h
j k L

⎤⎦ ,

where d, f, g ∈ R and d �= 0. The 1, 3 entry may be brought to zero by applying
Lemma 3.1 to the 2 × 2 submatrix formed from the first two rows and the first and
third columns. Proceeding inductively across the first row, we achieve the form (15)
with a �= 0.

Theorem 3.3. Let M ∈ Rp×q. If rankM = k > 0, then there exist L ∈ Rp×k

with rankL = k and a unimodular Q ∈ Rq×q such that

MQ =
[
L 0

]
.(16)

Proof. Although we will make use of row permutations in achieving our result,
these may be reversed at the end without disturbing the form (16). Since M �= 0,
there exists a row permutation that places a nonzero entry in the first row. Applying
Lemma 3.2, we achieve the form (15) with a �= 0. Suppose rankC ≥ k. Then C has
a kth-order minor μ �= 0, and aμ is a (k + 1)th-order minor of MQ. Since R is an
integral domain, aμ �= 0, which contradicts rankM = k. Thus rankC ≤ k − 1.

If k > 1, the same arguments may then be applied to C, yielding a matrix of the
form ⎡⎣ a 0 0

d e 0
f g H

⎤⎦ ,

where e ∈ R−{0} and rankH ≤ k− 2. Proceeding inductively, we eventually achieve
(16) with k nonzero columns. Since Q is unimodular, rankL = rankM = k.

Corollary 3.4. Let M ∈ Rp×q.
(1) If ρM = p, then there exists a unimodular Q such that

MQ =
[
I 0

]
.

(2) If rankM = k, then there exist L ∈ Rk×k with rankL = k and unimodular P
and Q such that

PMQ =

[
L 0
0 0

]
.
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(3) If rankM = ρM, then there exist unimodular P and Q such that

PMQ =

[
I 0
0 0

]
.

(4) If rankM = ρM = p, then there exists L ∈ R(q−p)×q such that
[
M
L

]
is uni-

modular.
Proof. (1) From Theorem 3.3, there exists Q1 and L such that

MQ1 =
[
L 0

]
.

But ρL = ρM = p, so L is unimodular. Let

Q = Q1

[
L−1 0
0 I

]
.

(2) From Theorem 3.3, there exist L1 ∈ Rk×kand L2 ∈ R(p−k)×k with

rank

[
L1

L2

]
= k

and a unimodular Q such that

MQ =

[
L1 0
L2 0

]
.

Also, there exist L ∈ Rk×k with rankL = k and a unimodular P such that[
LT

1 LT
2

]
PT =

[
LT 0

]
.

Hence,

PMQ =
(
(MQ)

T
PT

)T

=

([
LT

1 LT
2

0 0

]
PT

)T

=

[
LT 0
0 0

]T
.

(3) Suppose rankM = k. From part (2), there exist L,P1, Q such that

P1MQ =

[
L 0
0 0

]
,

where L ∈ Rk×k. Since ρM = k, L is unimodular. Let

P =

[
L−1 0
0 I

]
P1.

(4) From part (1), there exists a unimodular Q such that

MQ =
[
I 0

]
.

Then [
J
L

]
= Q−1
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is unimodular, and

J =
[
I 0

]
Q−1 = M.

Corollary 3.4, part (4) is contained in Lemma 59, p. 345 of [6]. However, our
proof is more directly applicable to our development.

Another advantage of working in an integral domain is that, if M ∈ Rp×p, x ∈ Rp,
and Mx = 0, then either x = 0 or detM = 0, since

(detM)x = (adjM)Mx = 0.

We will make frequent use of this fact in developing our main results.
The next result is complementary to Theorem 2.5, part (2).
Theorem 3.5. If ImE + AKerE = Rn, then (E,A) has unit index.
Proof. If E = 0, then ImA = Rn. From Lemma 2.8, A is unimodular. Then the

standard canonical form with N = 0 is achieved by letting P = A−1, Q = I, and
D = 0. If E �= 0, we apply Corollary 3.4, part (2) to obtain

PEQ =

[
E11 0
0 0

]
, PAQ =

[
A11 A12

A21 A22

]
with detE11 �= 0. Let [

x1

x2

]
= x ∈ Rn.

Since R is an integral domain, PEQx = 0 implies x1 = 0, so

KerPEQ = Im

[
0
I

]
,

Im

[
E11 A12

0 A22

]
= ImPEQ + PAQKerPEQ = P (ImE + AKerE) = Rn.

From Lemma 2.8, E11 and A22 are unimodular. From Lemma 2.9, part (1), (E,A)
has a unit index.

The next theorem, complementary to Theorem 2.7, is our main result.
Theorem 3.6. If
(1) rankE = ρE,
(2) ImE + AKerE + ImB = Rn,
(3) (E,A) is presolvable,

then (E,A,B) is impulse controllable.
Proof. Presolvability of (E,A) admits three cases. If (PS1) holds, (E,A) has unit

index from Theorem 3.5. Setting K = 0, (E,A + BK) has unit index and (E,A,B)
is impulse controllable. To analyze the remaining cases, we invoke Corollary 3.4, part
(3). Let [

I 0
0 0

]
= PEQ,

[
A11 A12

A21 A22

]
= PAQ,

[
B1

B2

]
= PB,

where partitioning conforms to n = n1 + n2. If (PS2) holds,

Im

[
I
0

]
∩ Im

[
A12

A22

]
= ImPEQ ∩ PAQKerPEQ = P (ImE ∩AKerE) �= 0,
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so there exist x and y such that[
y
0

]
=

[
A12

A22

]
x �= 0.

Hence, x �= 0 and A22x = 0. Since R is an integral domain, detA22 = 0. Similarly, if
(PS3) holds,

Ker

[
A12

A22

]
= KerPEQ ∩ KerPAQ = Q−1 (KerE ∩ KerA) �= 0,

so there exists x �= 0 such that [
A12

A22

]
x = 0.

Hence, A22x = 0 and detA22 = 0. In either case, we need consider only singular A22.
Note that

Im

[
I A12 B1

0 A22 B2

]
= ImPEQ + PAQKerPEQ + ImPB

= P (ImE + AKerE + ImB)

= Rn,

so Im
[
A22 B2

]
= Rn2 . Let r = rankA22. From Corollary 3.4, part (2), there exist

P1 and Q1 such that

P1A22Q1 =

[
Â 0
0 0

]
,

where Â ∈ Rr×r. Let [
B
C

]
= P1B2.

Then

Im

[
Â B
0 C

]
= Im

[
P1A22Q1 P1B2

]
= P1 Im

[
A22 B2

]
= Rn2

and ImC = Rn2−r. From Corollary 3.4, part (1) and Lemma 2.8, there exists a
unimodular Q2 such that

CQ2 =
[
I 0

]
.

Let [
B̃ B̂

]
= BQ2

and

P2 =

[
I −B̃
0 I

]
.
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Then

Im

[
Â 0 B̂
0 I 0

]
= Im

(
P2

[
Â B
0 C

] [
I 0
0 Q2

])
= P2 Im

[
Â B
0 C

]
= Rn2 ,

and Im[Â B̂ ] = Rr, so Lemma 2.8 guarantees the existence of a right inverse. From
Corollary 3.4, part (4), there are W and Y such that

U =

[
Â B̂
W Y

]
is unimodular. Let K1 ∈ Rm×n1 be arbitrary,

K2 = Q2

[
W Y
0 I

]
Q−1

1 , K =
[
K1 K2

]
Q−1.

Then

P2P1 (A22 + B2K2)Q1 = P2P1A22Q1 + (P2P1B2Q2)
(
Q−1

2 K2Q1

)
=

[
Â 0
0 0

]
+

[
0 B̂
I 0

] [
W Y
0 I

]
= U,

so A22 + B2K2 is unimodular. From Lemma 2.9, part (1),

(PEQ,P (A + BK)Q) =

([
I 0
0 0

]
,

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

])
has a unit index, so (E,A + BK) has a unit index and (E,A,B) is impulse control-
lable.

Let I be the set of all impulse eliminating K. The arguments used in the proof of
Theorem 3.6 can be generalized to construct a large subset of I. We begin by fixing
P1, P2, Q,Q1, Q2, A22, B2, Â, B̂ as above. Then, for any K1,W, Y, T, V with V and

U =

[
Â B̂
W Y

]
unimodular, we set

K2 = Q2

[
W Y
0 I

] [
I 0
T V

]
Q−1

1 .

It follows that

P2P1 (A22 + B2K2)Q1 =

[
Â 0
0 0

]
+

[
0 B̂
I 0

] [
W Y
0 I

]
= U

[
I 0
T V

]
is unimodular. Setting K =

[
K1 K2

]
Q−1 guarantees that (E,A + BK) has unit

index.
We note that the map π (K1,W, Y, T, V ) = K is one-to-one. Indeed, if we choose

K in the range of π, then K1 is uniquely determined, and setting L = Q−1
2 K2Q1

yields [
W Y
0 I

] [
I 0
T V

]
=

[
L11 L12

L21 L22

]
,
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so

T = L21, V = L22, Y = L12L
−1
22 , W = L11 − L12L

−1
22 L21.

Hence, π may be considered a parametrization of the set of all impulse eliminating K
with unimodular V (i.e., the 2,2 block of Q−1

2 K2Q1). Unfortunately, this may not be
a complete parametrization of I, as the example

E =

[
0 0
0 0

]
, A =

[
1 0
0 0

]
, B =

[
0 0
1 0

]
illustrates. Here, direct calculation shows that I consists of all matrices of the form

K =

[
k11 k12

k21 k22

]
with k12 a unit. However, π only yields those matrices of the form

K =

[
W + Y T Y V

T V

]
with V and Y units. Although π does predict that k12 = Y V must be a unit, it does
not allow k22 = V to be a nonunit, in spite the admissibility of such values. Hence,
the range of π is a proper subset of I.

4. Applications to time-varying singular systems. In this section, we con-
sider time-varying differential equations

E (t)
.
x = A (t)x + B (t)u,(17)

where the entries of E, A, and B belong to a ring of real-valued functions on R.
We assume E (t) , A (t) ∈ Rn×n and B (t) ∈ Rn×m. The interesting case occurs when
E (t) is singular on a subset of R. Such systems have been studied at length under the
assumption that E, A, and B are either constant [7] or real analytic [3], [4]. We will
show that these cases fit into our algebraic framework and examine certain additional
classes of functions that can be treated in our setting. Our work does not apply to
problems where E, A, B, and K are allowed to have arbitrary entries in Cn (as in
[17] and [18]), since Cn is not Hermite.

In studying (17), it is useful to consider a change of variables of the form x =
Q (t) z, where Q (t) is everywhere nonsingular and where both Q and Q−1 belong to
a given class of functions. Assuming differentiability of Q, direct substitution yields
the equivalent system

P (t)E (t)Q (t)
.
z = P (t)

(
A (t)Q (t) − E (t)

.

Q (t)
)
z + P (t)B (t)u,(18)

where P (t) is also nonsingular for every t. (Note the relationship of (18) to the group
action (12).)

Another important consideration in working with any kind of differential equation
is that of solvability. Roughly, this means that (17) exhibits existence and uniqueness
of solutions over a large class of forcing functions u. In the case of equations based
on matrices over the real analytic functions A (R), Campbell and Petzold [3] define
(E,A) to be analytically solvable if, for every Cn function u, the system

E (t)
.
x = A (t)x + u(19)
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has at least one C1 solution x on R and no two distinct solutions coincide for any t.
They then proceed to show that analytic solvability is equivalent to the existence of
analytic nonsingular matrices P and Q that put (18) into standard canonical form.
Hence, analytic solvability is equivalent to algebraic solvability.

In the time-invariant setting, analytic solvability of (17) reduces to the condition
that the matrix pencil (E,A) be regular, i.e.,

det (sE −A) �≡ 0.(20)

(See [8, pp. 45–49].) From [8, Thm. 3, p. 28], (20) is equivalent to the existence of
nonsingular P,Q ∈ Rn×n that put the pencil into Weierstrass canonical form:

PEQ =

[
I 0
0 N

]
, PAQ =

[
X 0
0 I

]
,(21)

where N is nilpotent. Since
.

Q = 0, (21) and (7) are the same, so (20) is equivalent
to algebraic solvability.

In addition to solvability, we note that the unit index property is a natural concept
in both the constant and real analytic settings, occurring iff N ≡ 0.

In order to study the impulsive behavior of singular systems, we must adopt a
more sophisticated viewpoint based on distribution theory. In (19) we may investigate
the consequences of applying an input u, which is arbitrary C1 up to time t = t0 and
drops abruptly to 0 at t0. As discussed in [15, Ch. 22], the resulting solution exists as
a distribution and is, in fact, the unique distribution x satisfying x (t) = 0 for t < t0
and

E (t)
.
x = A (t)x + δt0E (t0)x0,(22)

where δt0 is the unit impulse and x0 = limt→t−0
x (t) . Equation (22) gives a precise

meaning to the natural response of (17) with arbitrary initial conditions.
Our principal objective is to find a matrix K (t) , whose entries reside in the same

ring of functions as the entries of E, A, and B, and such that the state feedback law
u = K (t)x yields a unit index closed-loop system

E (t)
.
x = (A (t) + B (t)K (t))x + δt0E (t0)x0.(23)

Thus we are simultaneously treating a wide variety of constrained feedback problems,
which have not been considered in the literature.

In order to apply our results to (17), we first need to identify a function ring R
that satisfies the conditions that (1) R is an Hermite domain, (2) R is closed under
differentiation, (3) solvability in the classical sense implies presolvability, and (4) the
analytic and algebraic notions of the unit index property coincide. Note that it follows
from (4) that the analytic and algebraic notions of impulse controllability must also
coincide. Once these conditions are established, we are guaranteed that the results of
sections 2 and 3 apply to systems over R. In particular, Theorems 2.7 and 3.6 give
necessary and sufficient algebraic conditions under which (17) is impulse controllable.
It remains only to translate conditions (1) and (2) from Theorems 2.7 and 3.6 into
analytic terms.

For the remainder of this paper, we restrict ourselves to subrings R (with identity)
of A (R) . Properties (1) and (2) will have to be established case by case. On the other
hand, (3) and (4) hold automatically for A (R) as a consequence of previous results.
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Indeed, condition (3) may be established by examining the proof of Theorem 2 in
[3]. In light of our Theorem 3.3 and its corollary, the arguments used by Campbell
and Petzold carry over verbatim to R, demonstrating that analytic solvability of
(E,A) guarantees algebraic solvability and, therefore, presolvability. To establish (4),
suppose (E,A) is analytically (and algebraically) solvable. If N ≡ 0, then (E,A) has

unit index in the algebraic sense with D = −
.

Q. Conversely, suppose (E,A) has an
algebraic unit index. Then, from Theorem 2.3, we may choose Q such that setting

D = −
.

Q yields P that achieves (21) with N = 0. Hence, the two notions of unit index
coincide. This establishes that our algebraic theory applies to any Hermite subring
of A (R) which is closed under differentiation.

Time-invariant systems. To treat time-invariant systems

E
.
x = Ax + Bu,

set R = R. Since R is a field, it is Hermite. Viewing R as the set of constant
functions, it is closed under differentiation. We therefore conclude that Theorems 2.7
and 3.6 specialize to the characterization of time-invariant impulse controllability first
established in [16]. The proofs of Theorems 2.7 and 3.6 thus constitute an alternative
to the known proofs of this result, as presented in [10, Thm. 6], [12, Thm. 2.5.1], and
[13, Thm. 3-2.1].

General analytic systems. For R = A (R) , [5, Lem. 1] shows that A (R) is
Hermite. (In fact, it is shown in [11, Thm. 1.19], that A (R) is a Bezout domain.) R
is closed under differentiation, so conditions (1) and (2) of Theorems 2.7 and 3.6 are
necessary and sufficient for impulse controllability. It remains to link the algebraic
conditions to analytic conditions on E (t) , A (t) , and B (t) .

Theorem 4.1. Conditions (1) and (2) of Theorems 2.7 and 3.6 hold for R =
A (R) iff rankR E (t) is constant and ImE (t) + A (t) KerE (t) + ImB (t) = Rn for
every t ∈ R.

Proof. (Sufficient) Suppose rankR E (t) = k. Then rankE = k and, from Corollary
3.4, part (2), there exist unimodular P and Q such that

PEQ =

[
E11 0
0 0

]
,

where E11 ∈ Rk×k and rankE11 = k. But rankR E11 (t) must also be constant, so E11

is unimodular. Let [
A11 A12

A21 A22

]
= PAQ,

[
B1

B2

]
= PB.

Then

Im

[
E11 (t) A12 (t) B1 (t)

0 A22 (t) B2 (t)

]
= ImE (t) + A (t) KerE (t) + ImB (t) = Rn

for every t, so rankR

[
A22 (t) B2 (t)

]
= n − k. Let {μi (t)} be the (n− k)th-order

minors of
[
A22 (t) B2 (t)

]
. Each μi is an analytic function and the μi have no

common zero. Hence, u =
∑

μ2
1 has no zero and is therefore a unit of R. Also,∑(μi

u

)
μi = 1,
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so ρ
[
A22 B2

]
= n−k. From Corollary 3.4, part (1), there exists a unimodular Q1

such that [
A22 B2

]
Q1 =

[
I 0

]
.

If x ∈ Rn−k, then [
A22 B2

]
Q1

[
x
0

]
= x,

so x ∈ Im
[
A22 B2

]
. But x is arbitrary, so Im

[
A22 B2

]
= Rn−k. The theorem

follows from Lemma 2.8 and Lemma 2.9, part (2).
(Necessary) From Corollary 3.4, part (3), there exist unimodular P and Q such

that

P (t)E (t)Q (t) =

[
I 0
0 0

]
for every t. Hence, rankR E (t) is constant. Let x ∈ Rn. Viewing x as a constant
function, it follows from ImE + AKerE + ImB = Rn that there exist u ∈ Rm and
y, z ∈ Rn such that Ez = 0 and Ey + Az + Bu = x. But this means E (t) z (t) = 0
and E (t) y (t) + A (t) z (t) + B (t)u (t) = x for every t, so ImE (t) + A (t) KerE (t) +
ImB (t) = Rn.

Theorem 4.1 shows that Theorems 2.7 and 3.6 specialize to Theorem 4.1 of [4] for
systems over the real analytic functions.

Now we apply our theory to classes of time-varying singular systems (17) which
have not been previously studied.

Polynomial systems. Let R = R [t] be the polynomials on R with real coeffi-
cients. R [t] is a subring of A (R) containing 1 and a principal ideal domain, so it is
Hermite. R [t] is closed under differentiation. Theorem 4.1 applies to R [t] without
modification.

Periodic systems. Let P (τ) be the analytic functions on R with period τ > 0.
(τ need not be the fundamental period.) P (τ) is a subring of A (R) containing 1 and
is closed under differentiation.

Theorem 4.2. P (τ) is a Bezout domain.
Proof. We need to show that every finitely generated ideal in P (τ) is principal.

It suffices to show that, for every a, b ∈ P (τ) , there exists c ∈ P (τ) such that
cR = aR + bR. In view of [9, Thm. 3.7, p. 78], a and b have finitely many zeros in
any bounded interval. Let {z1, . . . , zq} be the common zeros of a and b in the interval
[0, τ) , counting multiplicities, and define

c (t) =
∏
k

(
e2πi t

τ − e2πi
zk
τ

)
.

Then c ∈ P (τ) with zeros {zk} , and c is a common divisor of a and b. Let a = a/c
and b = b/c. If x, y ∈ R, then

ax + by = c
(
ax + by

)
∈ cR,

so aR + bR ⊂ cR. To prove the converse, note that a and b have no common zero, so

u = a2 + b
2

has no zero and is, therefore, a unit of R. For any r ∈ R, set x = ar/u
and y = br/u. Then

cr = cr
a2 + b

2

u
= ax + by ∈ aR + bR,

so cR ⊂ aR + bR.
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It follows from Theorem 4.2 that P (τ) is a Hermite domain. It can be further
shown that P (τ) is a principal ideal domain. Theorem 4.1 applies to P (τ) without
modification.

Systems analytic at ∞. Let A∞ (R) be the subring of A (R) consisting of all
functions analytic at ∞. (x analytic at ∞ means that x

(
1
t

)
is analytic at 0.) From

the chain rule,

.
x

(
1

t

)
= −t2

d

dt

(
x

(
1

t

))
,

so A∞ (R) is closed under differentiation.
Theorem 4.3. A∞ (R) and P (τ) are isomorphic.
Proof. Let

φ (t) =

{
tan

(
π t

τ

)
, t �=

(
k + 1

2

)
τ ,

∞, t =
(
k + 1

2

)
τ .

φ has period τ and is analytic, except for poles at
(
k + 1

2

)
τ . 1/φ is analytic about(

k + 1
2

)
τ , where it has a zero. For any x ∈ A∞ (R) , define xp (t) = x (φ (t)) . Then

xp has period τ . Since x
(

1
t

)
is analytic about 0, xp is analytic about

(
k + 1

2

)
τ and

therefore on all of R. Hence, the map h : x → xp takes A∞ (R) into P (τ) and is
obviously a ring homomorphism. Since the range of φ is R, xp ≡ 0 implies x ≡ 0,
and h is 1 − 1. Given any xp ∈ P (τ) , x (t) = xp

(
τ
π arctan (t)

)
defines a function in

A∞ (R). But τ
π arctan (φ (t)) = t, so h (x) = xp and h is onto.

It follows from Theorems 4.2 and 4.3 that A∞ (R) is a Hermite domain.
The conditions of Theorem 4.1 must be augmented to handle analyticity at ∞.
Theorem 4.4. Conditions (1) and (2) of Theorems 2.7 and 3.6 hold for R =

A∞ (R) iff

rank
R

E (t) = rank
R

E (∞) ,

ImE (t) + A (t) KerE (t) + ImB (t) = ImE (∞) + A (∞) KerE (∞) + ImB (∞) = Rn

for every t ∈ R.
Proof. (Sufficient) Suppose rankR E (t) = k. As in the proof of Theorem 4.1, there

exist unimodular P and Q such that

PEQ =

[
E11 0
0 0

]
,

where E11 ∈ Rk×k and rankE11 = k. But rankR E11 (t) = rankR E11 (∞) = k, so E11

is unimodular. Then

Im

[
E11 (t) A12 (t) B1 (t)

0 A22 (t) B2 (t)

]
= ImE (t) + A (t) KerE (t) + ImB (t) = Rn

for every t (including t = ∞), so rankR

[
A22 (t) B2 (t)

]
= n − k and the minors

{μi} have no common finite or infinite zero. The remainder of the sufficiency proof
proceeds without modification.

(Necessary) From Corollary 3.4, part (3), there exist unimodular P and Q such
that

P (t)E (t)Q (t) = P (∞)E (∞)Q (∞) =

[
I 0
0 0

]
.
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Hence, rankR E (t) = rankR E (∞) . Let x ∈ Rn. Viewing x as a constant function,
there exist u ∈ Rm and y, z ∈ Rn such that Ez = 0 and Ey +Az +Bu = x. But this
means

E (t) z (t) = E (∞) z (∞) = 0,

E (t) y (t) + A (t) z (t) + B (t)u (t) = E (∞) y (∞) + A (∞) z (∞) + B (∞)u (∞) = x.

Since x is arbitrary, the theorem follows.
Example. We close this section with a simple example illustrating how our results

may be applied to periodic systems. Let

T (t) =

[
cos t sin t
− sin t cos t

]
,

and note that T is unimodular over P (2π). Consider the singular system with

E =

[
0 T
0 0

]
, A =

[
I 0
0 I

]
, B =

[
0
I

]
.

(E,A,B) is already in standard canonical form, so it is analytically and algebraically
solvable. A simple calculation shows that u ≡ 0 leads to⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−δt0x03

−δt0x04

0
0

⎤⎥⎥⎦ .

We wish to find an analytic periodic state feedback matrix K (t) to eliminate impulses
in the closed-loop system.

Note that rankR E (t) = 2,

KerE (t) = Im

[
I
0

]
,

ImE (t) + A (t) KerE (t) + ImB (t) = Im

[
T (t) I 0

0 0 I

]
= R4

for every t. Theorems 3.6 and 4.1 guarantee that (E,A,B) is impulse controllable.
As in the proof of Theorem 3.6, we obtain the unimodular matrices

P =

[
I 0
0 I

]
, Q =

[
0 I
TT 0

]
.

Then [
A11 A12

A21 A22

]
= PAQ = Q,

so A22 = 0, r = 0, and P1 = Q1 = P2 = Q2 = I. Let K1, V, Y ∈ (P (2π))
2×2

with
V, Y unimodular, and apply the parametrization π, as described at the end of section
3. This yields the state feedback matrix

K =
[
K1 Y V

]
Q−1 =

[
K1 Y V

] [ 0 T
I 0

]
=

[
Y V K1T

]
∈ (P (2π))

2×4
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and the periodic closed-loop system[
0 T (t)
0 0

]
.
x =

[
I 0

Y (t)V (t) I + K1 (t)T (t)

]
x.(24)

Our theory guarantees that (24) has a unit index. This can be verified directly by
interchanging the block columns of (24) and applying Lemma 2.9, part (1).

5. Conclusion. Our work demonstrates that the solutions of the state feedback
impulse elimination problem, as originally developed for the time-invariant and time-
varying cases in [10] and [4], share a common algebraic basis. Once exposed, this
structure lends itself naturally to numerous generalizations, requiring only a small
amount of analytic effort to turn the problem into algebra. The rings discussed in
this paper are only a few of the many possibilities. For example, it is easy to show that
similar conclusions hold for the real analytic functions with an isolated singularity at
∞, those with a pole or removable singularity at ∞, those with a zero of order at least
k at a fixed point in R∪{∞} , rational functions with no pole in R, etc. Perhaps the
greatest challenge is to fully exploit our theory by proposing a Hermite domain which
is not principal ideal domain, Bezout, etc. We leave this challenge for further research.

Acknowledgement. The author wishes to thank Nigel Boston for his many
helpful suggestions during the course of this research.
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HIGH-GAIN STATE FEEDBACK ANALYSIS BASED ON SINGULAR
SYSTEM THEORY∗

DANIEL COBB† AND JACOB EAPEN†

Abstract. We consider linear, time-invariant state-space systems under high-gain state feed-
back. The analysis is couched in terms of singular system theory and Grassman manifolds. Our work
is distinguished from that of other authors by the fact that we do not allow a gain-dependent state
coordinate change. Simple necessary and sufficient conditions are proven under which a singular sys-
tem is a high-gain limit of a given state-space system. It is shown that the feedback matrix achieves a
limit on an appropriate Grassmanian, so infinite gains constitute well-defined mathematical objects.
The special cases of minimum-order stable and zeroth-order limits are studied in depth, including
an analysis of solution behavior. Finally, the classical “cheap control” problem is interpreted within
the context of our results.
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1. Introduction. Consider the linear, time-invariant state-space system

ẋ = Ax + Bu,(1)

where A ∈ Rn×n and B ∈ Rn×m. For any K ∈ Rm×n, we may apply state feedback

u = −Kx + v,(2)

yielding the closed-loop system

ẋ = (A−BK)x + Bv.(3)

In this paper, we are interested in the “high-gain limits” of (3) as ‖K‖ → ∞.
We seek a characterization of all such limits for a given system (1). In addition, we
will specialize our results to certain important classes of limits and develop conditions
under which a limit of (2) constitutes a well-defined system in its own right. We will
then apply our results to the classical “cheap control” problem.

Numerous references deal with the issue of high-gain limits under state feedback.
For example, early papers such as [1] treat high gain in a classical singular perturbation
context. Much of this work can be viewed largely as a special case of our results. The
details will be provided in sections 4–6.

More recent efforts, such as [2], [3], and [4], study high-gain limits in great depth.
However, this body of work is fundamentally different from ours in that a K-dependent
coordinate change is allowed, while our approach admits no coordinate change. The
consequences of the two approaches are strikingly different. Indeed, consider the
1st-order system

.
x = u
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with feedback

u = −kx + v.

Our analysis (and that of [1]) dictates that the closed-loop system be written

−1

k

.
x = x− 1

k
v,

yielding x = 0 in the limit. Note that controllability is progressively weakened as k
increases, and lost entirely for k = ∞. This is precisely the effect one would observe
in practice, with the variable x representing the fixed (i.e., K-independent) state of
the plant.

On the other hand, the analyses in [2], [3], and [4] allow a K-dependent coordinate
change. In this case, the kth closed-loop system becomes

pkqk
.
z = −pkkqkz + pkv,

where x = qkz, and pk, qk are arbitrary nonzero sequences. For any g �= 0, setting

pk = 1, qk =
1

kg

yields the controllable limit z = gv. The problem here is that the loss of controlla-
bility is masked by the coordinate change z = kgx, which scales the physical state x
progressively higher as k → ∞.

Another phenomenon that can occur with a K-dependent coordinate change is
illustrated by the example

.
x =

[
0 1
0 0

]
x +

[
0
1

]
u,(4)

u = −
[
k2 1

]
x.

Let x = Qkz and premultiply (4) by Pk, where Pk, Qk are nonsingular. Then

PkQk
.
z = Pk

[
0 1

−k2 −1

]
Qkz,(5)

which is equivalent to a system of the form

Xk
.
z = z.(6)

If Qk = I,

Xk =

[
− 1

k2 − 1
k2

1 0

]
→
[
0 0
1 0

]
,(7)

irrespective of Pk. On the other hand, setting Pk = I and

Qk =

[
1
k 0
0 1

]
yields

Xk =

[− 1
k2 − 1

k

1
k 0

]
→ 0.(8)
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Substituting (7) and (8) into (6) produces vastly different results. In particular, (7)
produces impulses, while (8) does not. (See [9, Ch. 22].) Losing track of the impulsive
behavior in (6) and (8) is again due to the progressive redefinition of the state.

Our approach disallows coordinate changes of the state x. A moment’s reflection
indicates that, in our setting, the high-gain limits of (3) form a subset of those in [2],
[3], and [4]. Nevertheless, characterization of these “fixed coordinate” limits requires
an independent analysis. Although the limits we obtain must satisfy the necessary
conditions proven in [2] and [3], we will establish alternative conditions, which are
arguably simpler and both necessary and sufficient. We will also conduct a careful
analysis of stable and “zeroth-order” limits, which heretofore have not been explicitly
studied in the literature, at least at this level of generality.

One of our objectives is to establish results which are dual to those we developed
for observers in [6]. To this end, much of our work relies on the theory of differentiable
manifolds. (See, e.g., [10].)

Throughout the paper, we assume for convenience that rankB = m. For a system
where this is not the case, an input coordinate change û = Tu can be used to reduce
the problem to our framework.

2. Preliminaries. Before we can talk about the limits of (1), we need some ele-
mentary results from singular system theory. Consider the matrix differential equation

Eẋ = Fx + Gu,(9)

where E,F ∈ Rn×n and G ∈ Rn×m. We assume the matrix pencil (E,F ) is regular,
i.e.,

Δ(s) = |sE − F | �≡ 0.

The roots of Δ are the eigenvalues of the system. Consider the Stiefel manifold
Vn

(
Rn×(2n+m)

)
of all

[
E F G

]
∈ Rn×(2n+m) with full rank. Also, let

Σ (n,m) =

{[
E F G

]
Δ �≡ 0

}
.

Since Δ �≡ 0 implies
[
E F

]
has full rank, Σ (n,m) ⊂ Vn

(
Rn×(2n+m)

)
. Both Σ (n,m)

and Vn

(
Rn×(2n+m)

)
are complementary to algebraic varieties in Rn×(2n+m) and are,

therefore, open and dense in Rn×(2n+m).
Since premultiplication of (9) by a nonsingular matrix M does not affect the

dynamics of (9), it is natural to identify systems of the form (9), which are related by
such a transformation. On the other hand, right multiplication of E and A amounts
to a coordinate change, so we avoid such transformations, retaining the coordinate-
dependent nature of conventional state-space theory. We claim that this approach
leads to a simpler theory overall.

With these ideas in mind, we couch our problem in terms of the Grassman man-
ifold Gn

(
R2n+m

)
. A Grassmanian is obtained by applying the equivalence relation[
E1 F1 G1

]
≈
[
E2 F2 G2

]
iff(10)

∃ nonsingular M �
[
E1 F1 G1

]
= M

[
E2 F2 G2

]
to Vn

(
Rn×(2n+m)

)
and forming the quotient manifold Gn

(
R2n+m

)
with dimension

n (n + m) . Charts on Gn

(
R2n+m

)
may be constructed by setting n columns of
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[E F G] to the n × n identity matrix and varying the remaining entries. Do-

ing this in all
(
2n+m

n

)
ways generates an atlas for Gn

(
R2n+m

)
. We denote points in

Gn

(
R2n+m

)
by [E,F,G] . Setting

L(n,m) =

{
[E,F,G] ∈ Gn

(
R2n+m

)
Δ �≡ 0

}
is consistent with the quotient structure of Gn

(
R2n+m

)
, since premultiplication of[

E F G
]

by a nonsingular M scales Δ by a nonzero constant. Let

μ : Vn

(
R2n+m

)
→ Gn

(
R2n+m

)
be the submersion defined by

[
E F G

]
→ [E,F,G] . Then μ is continuous and open

(see [10, Prop. 6.1.5]). Hence, L(n,m) = μ (Σ (n,m)) is an open, dense submanifold
of Gn

(
R2n+m

)
. This makes L(n,m) an analytic manifold of dimension n (n + m) . We

studied L(n,m) in [5].
We will make frequent use of the Weierstrass decomposition ([8, pp. 24–28]): For

any regular pencil (E,F ), there exists nonsingular M,N such that

MEN =

[
I 0
0 Ef

]
, MFN =

[
Fs 0
0 I

]
,(11)

where Ef is nilpotent. Ef and Fs are unique up to similarity. Define the order of
(E,F ) to be ord (E,F ) = deg Δ (i.e., the dimension of Fs) and the index ind (E,F )
to be the smallest integer q ≥ 1 such that Eq

f = 0. The functions ord and ind are
uniquely defined on Σ (n,m) . In fact, both are invariant under the equivalence (11),
so we may apply them to points in L(n,m) :

ord [E,F,G] = ord (E,F ) ,

ind [E,F,G] = ind (E,F ) .

Eigenvalues are also invariant over orbits in Vn(Rn×(2n+m)), so we may refer to a point
[E,F,G] as being stable if all its eigenvalues λ satisfy Reλ < 0 and ind[E,F,G] = 1.

We will need to consider solutions of (9). To this end, we review some basic
facts from the theory of distributions. (See, e.g., [11].) Let D be the space of C∞

functions φ : R → R with bounded support, and let D′ denote the dual space of D. A
distribution f is any member of D′. Each locally L1 function f (i.e., L1 on bounded
intervals) may be considered a distribution, since it determines a functional φ →

∫
fφ.

The unit impulse δ is defined to be the evaluation functional 〈δ, φ〉 = φ(0). Every

distribution has a derivative defined by 〈ḟ , φ〉 = −〈f, φ̇〉; thus 〈δ(i), φ〉 = (−1)iφ(i)(0).
A sequence of distributions fk is said to converge weak* to f if 〈fk, φ〉 → 〈f, φ〉 for
every φ ∈ D. One advantage of working with distributions is that differentiation is a
weak*-continuous operation. Besides weak* convergence, we will sometimes refer to
uniform convergence fk → f on an interval in I ⊂ R. This simply means that there
exist locally L1 functions gk, g defined on I such that 〈fk, φ〉 = 〈gk, φ〉, 〈f, φ〉 = 〈g, φ〉
for all φ with support in I and gk → g uniformly. Let U ⊂ R be the largest open set
such that suppφ ⊂ U implies 〈f, φ〉 = 0. The support of f is supp f = U c. Let D′

+ be
the distributions with support in [0,∞).

In order to apply arbitrary initial conditions x0 to (9), it is convenient to consider
the augmented system

Eẋ = Fx + Gu + δEx0,(12)
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which yields a unique solution x ∈ D′
+. (See [9, Ch. 22] for details.). Let[

Gs

Gf

]
= MG,

[
xs

xf

]
= N−1x,

[
x0s

x0f

]
= N−1x0(13)

and exp (Fs) : R → Rdeg Δ×deg Δ be given by

exp(Fs)t =

{
etFs , t ≥ 0,
0, t < 0.

Define the state-transition matrix

Φ = N

⎡⎣exp(Fs) 0

0 −
q−1∑
i=0

δ(i)Ei
f

⎤⎦M.(14)

Direct calculation shows that Φ is the inverse Laplace transform of (sE −A)
−1

, so
Φ may be viewed as a map on Σ(n, 0), obviously 1 − 1. Since Φ is 1 − 1, it varies
over each orbit in Σ(n, 0), so Φ cannot be defined consistently on L(n, 0). Φ may be
extended trivially to Σ(n,m), with similar consequences. The state transition matrix
relates to the system (12) as follows.

Theorem 1.

(1) E
.

Φ = AΦ + δI.
(2) The solution of (12) is x = ΦEx0 + Φ ∗Gu.
(3) The system (12) is asymptotically stable iff ΦE is bounded and decays asymp-

totically to 0.
Proof. (1) and (2) follow by direct calculation.
(3) By asymptotic stability, we mean that, for u ≡ 0, we have conditions (a)

x (t) → 0 as t → ∞ for every x0, and (b) supt |x (t)| → 0 as x0 → 0. Boundedness and
decay of ΦE are equivalent to the eigenvalues λ of Fs satisfying Reλ < 0 and Ef = 0.

(Sufficient) From (11) and (14),

ΦE = N

[
exp (Fs) 0

0 0

]
N−1,

so conditions (a) and (b) are met relative to ΦEx0.
(Necessary) We have Φ (t)Ex0 → 0 for every x0, so

ΦE = N

⎡⎣exp (Fs) 0

0 −
q−1∑
i=0

δ(i)Ei+1
f

⎤⎦N−1 → 0,

which implies Fs is stable. Furthermore, ΦEx0 is bounded for every x0, so ΦE is
bounded, which implies it contains no impulses, i.e., Ef = 0.

3. The manifold of closed-loop systems. The present paper closely follows
the development of [6], where the dual problem of the limiting behavior of state
observers under high-gain feedback was studied. One might speculate that the state
feedback case should be obtained from [6] merely be taking the “transpose” of all
theorems. While some theorems do transfer over in this way, much of the state
feedback theory is different. One way to see that this must be true is to observe that,
in both cases, systems are identified when they are related by left multiplication by a
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nonsingular M. In contrast, pure transposition of the observer problem would require
right multiplication by M, leading to a K-dependent coordinate change, which we
explicitly avoid.

The closed-loop system (3) for a given plant (1) imbeds naturally into L(n,m) via
the map K → [I, A− BK,B]. We denote the image of Rm×n under this map by Cr.
We further denote the closure of Cr in L(n,m) by C and consider the set Cs = C −Cr.
C may be regarded as the set of all limits of (3), Cr the full-order limits (i.e., ordinary
state-space systems) and Cs the singular limits (i.e., generalized state-space systems).
Another way to define C, Cr, and Cs is via the submersion μ. Let

Ωr =

{[
M M (A−BK) MB

]
M nonsingular

}
.

Obviously, Ωr ⊂ Σ(n,m). Let Ω be the closure of Ωr in Σ(n,m), and Ωs = Ω−Ωr. It
is easy to see that C = μ (Ω) , Cr = μ (Ωr) , and Cs = μ (Ωs) .

We need the following lemma to prove Theorem ??, which establishes the basic
structure of C.

Lemma 2. Let X,Y ∈ Rn×n with rank [X Y ] = n. There exist Kk ∈ Rm×n and
nonsingular Xk ∈ Rn×n such that Xk → X and XkBKk → Y iff rank [XB Y ] = m.

Proof. (Necessary) For large k,

rank
[
XB Y

]
≤ rank

[
XkB XkBKk

]
= rank

[
B BKk

]
= m.

Suppose

rank
[
XB Y

]
< m,

and let R ⊂ Rn be a subspace such that

ImB ⊕R = Rn.

Then dimR = n−m, and

rank
[
X Y

]
= dim (ImX + ImY )

= dim (XR + ImXB + ImY )

≤ dimXR + dim (ImXB + ImY )

≤ dimR + rank
[
XB Y

]
< n.

From this contradiction, we conclude

rank
[
XB Y

]
= m.

(Sufficient) Let

R = ImXB ∩ ImY,

S = KerX ∩ ImB,

p = dimR, and q = dimS. Then

m = q + rankXB,
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and there exists a nonsingular T ∈ Rn×n such that

Y T =
[
Y1 Y2

]
with ImY1 = R and

ImXB ∩ ImY2 = 0.

Hence, we may select H ∈ Rm×p such that XBH = Y1. Also,

rankXB + rankY2 = rank
[
XB Y2

]
≤ rank

[
XB Y

]
= m,

so

rankY2 ≤ q.

We may choose J ∈ Rm×q such that ImBJ = S. Then XBJ = 0, and

rankBJ = q ≥ rankY2.

Thus there exists Z ∈ Rn×n such that ZBJ = Y2.
Let Zk = X + 1

kZ and, for each k, select nonsingular Zkj → Zk as j → ∞. We
may select a sequence jk ↑ ∞ such that

‖Zkjk − Zk‖ <
1

k2

for every k. Setting Xk = Zkjk , we have

‖Xk −X‖ ≤ ‖Xk − Zk‖ + ‖Zk −X‖ =
1

k2
+

1

k
‖Z‖ ,

so Xk → X. Let Kk =
[
H kJ

]
T−1. Then

XkBKk =
[
XkBH k (Xk − Zk)BJ + kZkBJ

]
T−1

=
[
XkBH k (Zkjk − Zk)BJ + kXBJ + ZBJ

]
T−1

→
[
Y1 Y2

]
T−1

= Y.

Theorem 3.

(1) C = {[X,XA− Y,XB] ∈ L(n,m) | rank
[
XB Y

]
= m}.

(2) C is a regular submanifold of L(n,m) with dimension nm.
(3) Cr is a (relatively) open, dense submanifold of C
(4) [X,XA− Y,XB] ∈ Cs iff rank

[
XB Y

]
= m with X singular.

Proof. (1) Let

Ωe =

{[
X XA− Y XB

]
∈ Vn

(
R2n+m

)
rank

[
XB Y

]
= m

}
.

Setting X = M and Y = MBK yields[
X XA− Y XB

]
=
[
M M (A−BK) MB

]
,

rank
[
XB Y

]
= rank

[
MB MBK

]
= rank

[
B BK

]
= m,
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so Ωr ⊂ Ωe ∩Σ (n,m) . It suffices to show that the closure of Ωr in Vn

(
R2n+m

)
is Ωe,

because then the closure of Ωr in Σ (n,m) is Ω = Ωe ∩ Σ (n,m) , and part (1) follows
from μ (Ωr) = Cr, μ (Ω) = C.

For any nonsingular T ∈ Rn×n, let

LT =

[
T−1 T−1A T−1B
0 −I 0

]
.

Choose X,Y such that[
X Y

]
LI =

[
X XA− Y XB

]
∈ Ωe.

LT has independent rows, so rank
[
X Y

]
= n. From Lemma 2, there exist sequences

Xk and Kk, with Xk nonsingular, such that Xk → X and XkBKk → Y. Hence,[
Xk Xk (A−BKk) XkB

]
→
[
X XA− Y XB

]
,

and the closure of Ωr contains Ωe. Conversely, if[
Xk Xk (A−BKk) XkB

]
→
[
X F G

]
∈ Vn

(
R2n+m

)
,

then Xk → X and G = XB. Let Y = XA− F. Then

rank
[
X Y

]
= rank

[
X Y

] [I A
0 −I

]
= rank

[
X F

]
= rank

[
X F G

]
= n,

XkBKk = XkA−Xk (A−BKk) → Y,

so, from Lemma 2,

rank
[
XB Y

]
= m.

Hence,
[
X F G

]
∈ Ωe, and Ωe contains the closure of Ωr.

(2) This part of the proof will be based on the following construction. Choose a
nonsingular T such that

T−1B =

[
0
I

]
,

and consider the diagram

ĥ ĝ
Vm (Rm+n) → Vn

(
R2n
)

→ Vn

(
R2n+m

)
↓ π ↓ ν ↓ μ

Gm (Rm+n) → Gn

(
R2n
)

→ Gn

(
R2n+m

)
,

h g

where

ĝ
([

X̃ Y
])

=
[
X̃ Y

]
LT ,

ĥ (Z) =

[
I 0
0 Z

]
,
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and μ, ν, and π are the standard submersions. We note that

ĝ
(
M
[
X̃ Y

])
= Mĝ

([
X̃ Y

])
,

and

ĥ (NZ) =

[
I 0
0 N

]
ĥ (Z)

for any nonsingular M,N, so g and h may be defined to make the diagram commute.
We are mainly interested in the compositions f = g ◦ h and f̂ = ĝ ◦ ĥ. Note that ĝ, ĥ,
and hence f̂ are 1 − 1. Furthermore, if

ĝ
([

X̃a Ya

])
= Mĝ

([
X̃ Y

])
,

we obtain

ĝ
([

X̃a Ya

])
= ĝ
(
M
[
X̃ Y

])
,

so [
X̃a Ya

]
= M

[
X̃ Y

]
and g is 1 − 1. Now suppose

ĥ (Za) = Mĥ (Z) .

Then [
I 0
0 Za

]
=

[
M11 M12

M21 M22

] [
I 0
0 Z

]
.

Inspection of the block matrix equations yields Za = M22Z with M22 nonsingular, so
h and f are 1 − 1.

Let Ce = μ (Ωe) . Since L(n,m) is open in Gn

(
R2n+m

)
, it suffices to demonstrate

that Ce satisfies (2), because then C = Ce ∩ L(n,m) inherits the same properties. We
begin by showing that f (Gm (Rm+n)) = Ce. Consider any point [X,XA− Y,XB] ∈
Ce. Setting X̃ = XT and partitioning[

X̃1 X̃2

]
= X̃,

with X̃1 ∈ Rn×(n−m), X̃2 ∈ Rn×m, we obtain

rank
[
X̃2 Y

]
= rank

[
X̃T−1B Y

]
= rank

[
XB Y

]
= m,

rank
[
X̃1 X̃2 Y

]
= rank

[
XT Y

]
= rank

[
X Y

]
= n,

so rank X̃1 = n−m. Hence, there exists Z1 ∈ Rm×m, Z2 ∈ Rm×n, and a nonsingular
M such that

M
[
X̃1 X̃2 Y

]
=

[
I 0 0
0 Z1 Z2

]
,
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and

rank
[
Z1 Z2

]
= m.

It follows that

f ([Z1, Z2]) = g
([

X̃, Y
])

= [X,XA− Y,XB] ,

which yields the desired result. In fact, letting functions φ range over an atlas of
Gm (Rn+m) ,

{
φ ◦ f−1

}
becomes an atlas for Ce, making f an analytic diffeomorphism

between Gm (Rn+m) and Ce.
As a map into Gn

(
R2n+m

)
, we can prove that f is analytic by showing that

g and h are analytic. Let ξ ∈ Gn

(
R2n
)
, and choose charts φ on Gn

(
R2n
)

and

ψ ∈ Gn

(
R2n+m

)
such that ξ and g (ξ) lie in the domains of φ and ψ, respectively.

Then ψ◦g◦φ−1 is a rational function, where the denominator has no zero, and is thus
analytic. Since φ, ψ are arbitrary, g is analytic. Analyticity of h is proved similarly.

To show that Ce is a submanifold of Gn

(
R2n+m

)
, we must also prove that f

has full rank. We need to show that the derived linear function f∗ at each point of
Gm (Rn+m) is 1 − 1. From [10, Prop. 4.3.1], f∗ = g∗ ◦ h∗, so it suffices to prove that
g∗ and h∗ are 1 − 1. Since g ◦ ν = μ ◦ ĝ, the same theorem guarantees

g∗ ◦ ν∗ = μ∗ ◦ ĝ∗.

Since ĝ is 1 − 1 and μ∗, ν∗ are onto,

rank g∗ = rank (μ∗ ◦ ĝ∗)
≥ rank ĝ∗ −

(
dimVn

(
R2n+m

)
− rankμ∗

)
= 2n2 − (n (2n + m) − n (n + m))

= n2,

so g∗ is 1 − 1. Unfortunately, this calculation does not work for h∗. To prove h∗ is
1 − 1, consider any point ξ ∈ Gm (Rn+m) and a chart φ whose coordinate domain
contains ξ. Applying φ amounts to choosing m columns {ci} of

[
Z1 Z2

]
, setting

them equal to the m×m identity matrix, and allowing the remaining entries to vary,
forming an m × n matrix Z̃. In a neighborhood of h(ξ), each point of Gn(R2n) may

be represented as
[
I S1

0 S2

]
, where the columns {ci} of

[
S1

S2

]
are
[
0
I

]
. This generates a

chart ψ of Gn

(
R2n
)
, whose coordinate domain contains h (ξ) . It is easy to see that

ψ
(
h
(
φ−1

(
Z̃
)))

=

[
0

Z̃

]
.

From [10, p. 58], h∗ has matrix representation
∂(ψ◦h◦φ−1)

∂Z̃
. But ψ ◦ h ◦ φ−1 is linear,

so

h∗

(
Z̃
)

=

[
0

Z̃

]
,

which is 1 − 1. Hence, we conclude that Ce is an nm-dimensional submanifold of
Gn

(
R2n+m

)
.

Finally we prove regularity of Ce. We need to show that the topologies that Ce
inherits from Gm (Rm+n) (through f) and from Gn

(
R2n+m

)
(as a subset) coincide.
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Since f is analytic, it is continuous, and f−1 (W ∩ f (Gm (Rm+n))) = f−1 (W ) is
open in Gm (Rm+n) for every open W ⊂ Gn

(
R2n+m

)
. To prove the converse, let

U ⊂ Gm (Rm+n) be open. Then π−1 (U) is open. For any Z ∈ π−1 (U) there exists
ε > 0 such that the ball B (Z, ε) ⊂ π−1 (U) . Then NB (Z, ε) ⊂ π−1 (U) for every
nonsingular N. Let

L̃ =

⎡⎣T A
0 −I
0 0

⎤⎦ ,
and define

WZ =

⎧⎨⎩M−1B

⎛⎝f̂ (Z) ,
ε

2
∥∥∥L̃∥∥∥

⎞⎠ M nonsingular

⎫⎬⎭
= μ−1

⎛⎝μ

⎛⎝B

⎛⎝f̂ (Z) ,
ε

2
∥∥∥L̃∥∥∥

⎞⎠⎞⎠⎞⎠ ,

W =
⋃

Z∈π−1(U)

WZ .

Since μ is open, each WZ and, therefore, W are open. It suffices to show that

f̂
(
π−1 (U)

)
= W ∩ f̂

(
Vm

(
Rm+n

))
.(15)

Indeed, since W is a union of orbits in Vn(R2n+m), μ(W ∩A) = μ(W )∩ μ(A) for any
A, from which it follows that

f (U) = μ
(
f̂
(
π−1 (U)

))
= μ

(
W ∩ f̂

(
Vm

(
Rm+n

)))
= μ (W ) ∩ μ

(
f̂
(
Vm

(
Rm+n

)))
= μ (W ) ∩ Ce,

so f (U) is (relatively) open in Ce.
To prove (15), first note that Z ∈ π−1 (U) implies f̂ (Z) ∈ WZ , so

f̂
(
π−1 (U)

)
⊂ W ∩ f̂

(
Vm

(
Rm+n

))
.

Conversely, suppose Za ∈ Vm(Rm+n), Δ ∈ B
(
0, ε

2‖L̃‖

)
, and nonsingular M satisfy

M−1
(
f̂ (Z) + Δ

)
= f̂ (Za) .

Then ∥∥∥Mf̂ (Za) − f̂ (Z)
∥∥∥ < ε

2
∥∥∥L̃∥∥∥ .
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But

Mf̂ (Za) − f̂ (Z) =

(
M

[
I 0
0 Za

]
−
[
I 0
0 Z

])
LT

and LT L̃ = I, so∥∥∥∥M [
I 0
0 Za

]
−
[
I 0
0 Z

]∥∥∥∥ ≤ ∥∥∥Mf̂ (Za) − f̂ (Z)
∥∥∥∥∥∥L̃∥∥∥ < ε

2
.

Partitioning M, we obtain

‖M22Za − Z‖ <
ε

2

(assuming an appropriate norm). Let N be a nonsingular matrix such that∥∥N−1 −M22

∥∥ < ε

2 ‖Za‖
.

Then ∥∥N−1Za − Z
∥∥ ≤ ∥∥N−1 −M22

∥∥ ‖Za‖ + ‖M22Za − Z‖ < ε,

so Za ∈ NB (Z, ε) . Hence,

f̂
(
π−1 (U)

)
⊃ M−1B

⎛⎝f̂ (Z) ,
ε

2
∥∥∥L̃∥∥∥

⎞⎠ ∩ f̂
(
Vm

(
Rm+n

))
for every nonsingular M, and

f̂
(
π−1 (U)

)
⊃ W ∩ f̂

(
Vm

(
Rm+n

))
.

(3) Density of Cr follows from the definition of C. To show Cr is open in C, it
suffices to show that Ωr is open in Ω. Let σ ∈ Ωr and σk ∈ Ω with σk → σ. Then
there exist M,Xk, Yk ∈ Rn×n, and K ∈ Rm×n, with M nonsingular and

rank
[
XkB Yk

]
= m,

such that

σ =
[
M M (A−BK) MB

]
,

σk =
[
Xk XkA− Yk XkB

]
.

Since σk → σ, Xk → M, thus Xk is nonsingular for large k and

rank
[
B X−1

k Yk

]
= m.

Then ImX−1
k Yk ⊂ ImB, so there exists Kk ∈ Rm×n such that X−1

k Yk = BKk.
Therefore,

σk =
[
Xk Xk (A−BKk) XkB

]
∈ Ωr,

and Ωr is open in Ω.
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(4) (Sufficient) This follows from the definition of Ωs and Cs = μ (Ωs) .
(Necessary) Assume X is nonsingular. From part (1),

rank
[
B X−1Y

]
= rank

[
XB Y

]
= m,

so ImX−1Y ⊂ ImB, and there exists K ∈ Rm×n such that X−1Y = BK. It follows
that

[X,XA− Y,XB] = [X,X (A−BK) , XB] ∈ Cr,

which is a contradiction.
Theorem 3, part (4) characterizes all degenerate closed-loop systems Cs. This

corresponds to applying a sequence of feedback matrices Kk such that ‖Kk‖ → ∞,
driving some or all eigenvalues to ∞ in magnitude. Since Cs is obtained with no state
coordinate change, Cs must be a subset of the high-gain limits considered in [2] and
[3]. In particular, each point in Cs must satisfy the necessary conditions established
in [2, Thm. 1] and [3, Cor. 4.3]. Compared with these results, our characterization of
Cs has a very different form, is necessary and sufficient, and is arguably simpler.

4. Stable and zeroth-order limits. In this section, we study certain subsets
of C which have special significance. In particular, we examine those systems in C
which are stable (i.e., all eigenvalues satisfy Reλ < 0) and those with order 0. We
begin with a discussion of an important submanifold of C, which will help simplify
the development. Let

CI = {[X, I,XB] ∈ C} .

CI is simply the set of points in C with no eigenvalue at 0. Each point in CI corresponds
to a system

X
.
x = x + XBv + δXx0(16)

with state transition matrix determined by

X
.

Φ = Φ + δI.

From Theorem 3, part (1), we obtain

CI =

{
[X, I,XB] ∈ Gn

(
R2n+m

)
rank

[
XB XA− I

]
= m

}
.

The next result gives several alternative characterizations of CI .
Theorem 4. For any X ∈ Rn×n, the following are equivalent:
(1) rank [XB XA− I] = m.

(2) Ker [X I] ⊂ Im
[
B A
0 −1

]
.

(3) Im (AX − I) ⊂ ImB.
(4) There exists U ∈ Rm×n such that AX + BU = I.
Proof. (1 ⇐⇒ 2) From elementary linear algebra,

rank
[
XB XA− I

]
= rank

[
X I

] [B A
0 −I

]
(17)

≥ rank

[
B A
0 −I

]
−
(
2n− rank

[
X I

])
= (n + m) − (2n− n)

= m
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with equality iff

Ker
[
X I

]
⊂ Im

[
B A
0 −I

]
.

(2 ⇐⇒ 3) Condition (2) is equivalent to saying that, for each x, there exist y, z
such that [

B A
0 −I

] [
y
z

]
=

[
−x
Xx

]
.(18)

Writing out the equations, (18) is the same as By = (AX − I)x, which is a restate-
ment of (3).

(3 ⇐⇒ 4) Condition (3) says that there exists U such that AX−I = −BU, which
is the same as (4).

Theorem 4, part (4) indicates that CI is nonempty iff
[
A B

]
has full rank; i.e.,

iff 0 is a controllable mode of (1). In this case, the affine set

W =

{[
X
U

]
∈ R2n×n AX + BU = I

}
will prove central to our theory. The next result gives a precise relationship between
CI and W.

Theorem 5.

(1) [X, I,XB] ∈ CI iff there exists U ∈ Rm×n such that
[
X
U

]
∈ W. In this case, U

is unique.
(2) Let Kk ∈ Rm×n. Then [I, A − BKk, B] → [X, I,XB] ∈ CI as k → ∞ iff

A− BKk is nonsingular for large k and (A− BKk)
−1 → X. In this case, −Kk(A−

BKk)
−1 → U.

(3) CI is a (relatively) open, dense submanifold of C, diffeomorphic to W.
Proof.
(1) All but uniqueness is a restatement of Theorem 4, part (4). Uniqueness follows

from BU = I −AX and rankB = m.
(2) If (A−BKk)

−1 → X,

[I, A−BKk, B] =
[
(A−BKk)

−1
, I, (A−BKk)

−1
B
]
→ [X, I,XB] .(19)

To prove the converse, we note that μ is a submersion, so there exist nonsingular Mk

such that

Mk

[
I A−BKk B

]
→
[
X I XB

]
.

Hence, Mk → X and Mk (A−BKk) → I, so A−BKk is nonsingular for large k, and

(A−BKk)
−1

= (Mk (A−BKk))
−1

Mk → X.

If [X, I,XB] ∈ CI , part (1) indicates that there exists a unique U such that AX +
BU = I. Then

BKk (A−BKk)
−1

= A (A−BKk)
−1 − I → AX − I = −BU,

Kk (A−BKk)
−1 → −U.
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(3) Consider the open, dense subset

ΩI =

{[
X Y

]
LI ∈ Vn

(
R2n+m

)
rank

[
XB Y

]
= m, det (AX − Y ) �= 0

}
of Ω. Since μ is a submersion, CI = μ (ΩI) is open and dense in C. The map

f :

[
X
U

]
→ [X, I,XB]

takes W onto CI by (1). Since U is uniquely determined by X, f is 1 − 1. Both W
and CI are covered by single coordinate domains. One may construct an affine chart
φ for W and apply the chart

ψ : [X, I,XB] → X

to CI . Then ψ ◦ f ◦ φ−1 is an affine diffeomorphism, so f is a diffeomorphism.
Since closed-loop systems in CI (or, alternatively, W) have no eigenvalue at 0, CI

contains all stable limits and all zeroth-order limits. The structure of W is dual to
the structure of the manifold V we studied in [5].

Restricting to CI yields a surprising result related to controllability of the closed-
loop system (16).

Theorem 6. Let [X, I,XB] ∈ CI . Then rankX ≥ n−m with equality iff XB = 0.
Proof.

[
A B

]
has full rank, so we may choose nonsingular M,N such that

MB =

[
0
I

]
, MAN =

[
I 0

Ã21 Ã22

]
.(20)

Let [
X̃11 X̃12

X̃21 X̃22

]
= N−1XM−1,

[
Ũ1 Ũ2

]
= UM−1.

Then[
X̃11 X̃12

A21X̃11 + A22X̃21 + Ũ1 A21X̃12 + A22X̃22 + Ũ2

]
= M (AX + BU)M−1 = I,

so X and XB have the form

X = N

[
I 0

X21 X22

]
M, XB = N

[
0

X22

]
.

Hence, rankX ≥ n−m with equality iff X22 = 0.
Theorem 6 states that high-gain limits of (3), where the rank of X degenerates

maximally, have the unfortunate property that the input v exerts no control what-
soever on the system. This is undoubtedly a limitation for control problems where
closed-loop tracking to a reference input is required.

Now we consider the special cases of minimum-order stable and zeroth-order lim-
its. By applying essentially the same arguments as in [5], several results are obtained
immediately. These are summarized in Theorems 7 and 8. The first is based on the
following construction. Choose any nonsingular matrix T such that

T−1B =

[
0
I

]
,(21)
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and let [
Ã11 Ã12

Ã21 Ã22

]
= T−1AT,(22)

where Ã22 ∈ Rm×m. If (A,B) is stabilizable,

rank

[
λI − Ã11 −Ã12 0

−Ã21 λI − Ã22 I

]
= n

for every λ with Reλ ≥ 0. Hence, rank
[
λI − Ã11 Ã12

]
= n −m (i.e., (Ã11, Ã12) is

stabilizable). We may thus choose Λ such that Ã11 − Ã12Λ is stable and set

X = T

⎡⎢⎣
(
Ã11 − Ã12Λ

)−1

0

−Λ
(
Ã11 − Ã12Λ

)−1

0

⎤⎥⎦T−1,(23)

U =

[
−
(
Ã21 − Ã22Λ

)(
Ã11 − Ã12Λ

)−1

I

]
T−1.(24)

By direct calculation, AX + BU = I, so
[
X
U

]
∈ W and ξ = [X, I, 0] ∈ CI . Note that

ind ξ = 1 and (Ã11 − Ã12Λ)−1 is stable, so ξ is stable. From Theorem 1, part (1), the
state transition matrix is

Φ = T

⎡⎢⎣
(
Ã11 − Ã12Λ

)
exp
(
Ã11 − Ã12Λ

)
0

−Λ
((

Ã11 − Ã12Λ
)

exp
(
Ã11 − Ã12Λ

)
+ δI

)
−δI

⎤⎥⎦T−1,(25)

so

ΦX = T

⎡⎣ exp
(
Ã11 − Ã12Λ

)
0

−Λ exp
(
Ã11 − Ã12Λ

)
0

⎤⎦T−1.(26)

Letting [
x̃01

x̃02

]
= T−1x0,

we obtain the solution of (16):

x = T

[
I
−Λ

]
exp
(
Ã11 − Ã12Λ

)
x̃01.

Theorem 7.

(1) Cs contains a stable point iff (A,B) is stabilizable.
(2) If ξ ∈ Cs is stable, then ord ξ ≥ n−m with equality iff ξ = [X, I, 0] , where X

has the structure (23).
Proof. See [6, Thms. 4.2 and 4.3].
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We are also interested in the zeroth-order closed-loop limits

C0 =

{
ξ ∈ C ord ξ = 0

}
.

C0 corresponds precisely to those ξ = [X, I,XB] ∈ CI with X nilpotent. From
Theorem 1, part (1), the state transition matrix is

Φ = −
q−1∑
i=0

δ(i)Xi,(27)

so the solution of (16) is

x = ΦXx0 + Φ ∗ v = −
n−1∑
i=0

Xi+1Bv(i) −
n−1∑
i=1

δ(i−1)Xix0.

The system corresponds to successive differentiation of the input v plus a “noise”
term.

Theorem 8.

(1) C0 is nonempty iff (A,B) is controllable.
(2) If (A,B) is controllable and m = 1, C0 is a singleton.
(3) If (A,B) is controllable, m = 1, ξk ∈ Cr, and all eigenvalues λik of ξk satisfy

|λik| → ∞, then ξk converges to the unique point in C0.
(4) If (A,B) is controllable and m > 1, C0 is uncountable and unbounded (as a

subset of W).
(5) Every ξ ∈ C0 satisfies ind ξ ≥ n

m .
Proof. See [6, Thms. 5.1–5.3].
Next, we consider Cr approximations [I, A−BKk, B] to certain points in Cs. This

is important in applications, since points with singular X can be achieved as limits
only as ‖Kk‖ → ∞ in (3). In view of (12), the closed-loop system (3) can be written
equivalently as

(A−BKk)
−1 .

x = x + (A−BKk)
−1

Bv + δ (A−BKk)
−1

x0,(28)

yielding state transition matrix

Φk = (A−BKk) exp (A−BKk)(29)

and solution

xk = Φk (A−BKk)
−1

x0 + Φk ∗Bv.(30)

We are interested in finding a sequence {Kk} that yields not only convergence of
[I, A−BKk, B] in C, but also the strongest possible convergence of the forced and
natural response in (30).

We begin by considering stable systems.
Theorem 9. Let ξ ∈ Cs be stable with ord ξ = n−m, and let

Kk =
[
Ã21 + kΛ Ã22 + kI

]
T−1,(31)

ξk = [I, A−BKk, B] .



HIGH-GAIN STATE FEEDBACK ANALYSIS 2227

Then
(1) ξk → ξ,

(2) Φk (A−BKk)
−1

is uniformly bounded,
(3) Φk → Φ uniformly on [ε,∞) for every ε > 0,
(4) Φk → Φ weak*,

where Φ is given by (25).
Proof.
(1)–(3) See [6, Thm. 6.2].

(4) From (2), (3), (A−BKk)
−1

Φk → XΦ weak*. Since differentiation is weak*
continuous,

Φk = (A−BKk)
−1

.

Φk − δI → X
.

Φ − δI = X.

The results of [1] can be interpreted in terms of Theorems 7 and 9. In [1], the
special case

Kμ = − 1

μ
K(32)

is considered, where K is a fixed matrix and μ > 0 is small. Adopting (21) and (22)
and setting [

K̃1 K̃2

]
= KT,

it is assumed in [1, equations (32) and (33)] that K̃2 and Ã11− Ã12K̃
−1
2 K̃1 are stable.

Under these conditions, (32) constitutes an alternative to (31). Indeed, define

Γμ = μÃ22 + K̃2, Δμ = Ã11 − Ã12Γ
−1
μ

(
μÃ21 + K̃1

)
,

and note that Γμ and Δμ are stable for small μ > 0. Block matrix inversion reveals

X = T

[
Δ−1

μ −μΔ−1
μ Ã12Γ

−1
μ

−Γ−1
μ

(
μÃ21 + K̃1

)
Δ−1

μ μ
(
Γ−1
μ + Γ−1

μ

(
μÃ21 + K̃1

)
Δ−1

μ Ã12Γ
−1
μ

)]T−1

→ T

⎡⎢⎣
(
Ã11 − Ã12K̃

−1
2 K̃1

)−1

0

−K̃−1
2 K̃1

(
Ã11 − Ã12K̃

−1
2 K̃1

)−1

0

⎤⎥⎦T−1,

which is the same as (23) with Λ = K̃−1
2 K̃1. Although the structures (31) and (32)

are slightly different, the methods of [6, Thm. 6.2] can easily be modified to prove
Theorem 9 relative to (32). Note that, in [1], only asymptotic stability for each μ > 0
is actually proven.

Now consider zeroth-order systems ξ ∈ C0. Theorem 8, part (1), guarantees that

(A,B) is controllable. From [15, pp. 342–343], there exist K̃ ∈ Rm×n, w ∈ Rm such

that (A − BK̃,Bw) is controllable with A − BK̃ nilpotent. Thus there exists a
nonsingular N such that

N−1
(
A−BK̃

)
N =

⎡⎢⎢⎢⎢⎣
0 1

. . .
. . .

. . . 1
0

⎤⎥⎥⎥⎥⎦ , N−1Bw =

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦ .
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Theorem 10. Let

βik =

(
n
i

)
kn−i, K̂k =

[
β0k · · · βn−1,k

]
,

Kk = K̃ + wK̂kN
−1,

ξk = [I, A−BKk, B] .

Then

(1) ξk converges to a point in C0,

(2) Φk → Φ uniformly on [ε,∞) for every ε > 0,

(3) Φk → Φ weak*,

where Φ is given by (27).

Proof.

(1) From Theorem 5, part (2), it suffices to prove that (A − BKk)
−1 → X for

some nilpotent X. This follows by the same arguments as in [6, Thm. 6.3].

(2), (3) See [6, Thm. 6.3].

Note that, in Theorem 10, boundedness of the natural response matrix
Φk(A−BKk)

−1 was dropped. This is a consequence of the appearance of impulses in
Φ when ξ ∈ C0 and X �= 0. We can, in fact, prove a stronger result, which demonstrates
the disastrous effect of driving the system to a limit with ord ξ < n−m.

Theorem 11. Let m < n, 1 < p ≤ ∞, and ξk ∈ C be stable for all k. If the
eigenvalues λik of ξk satisfy maxi {|λik|} → ∞ as k → ∞, then ‖ΦkXk‖p → ∞.

Proof. See [6, Thm. 6.4].

5. The limiting compensator. The state feedback law (2) may be written

[
I K

] [u
x

]
= v.(33)

This suggests that compensators of the form (2) are naturally identified with points
[I,K] in the Grassmanian Gm (Rm+n) . In the proof of Theorem ??, we considered
the maps g : Gn

(
R2n
)
→ Gn

(
R2n+m

)
and h : Gm (Rm+n) → Gn

(
R2n
)

defined by

g
([

X̃, Y
])

=
[
X̃T−1, X̃T−1A− Y, X̃T−1B

]
,(34)

h ([Z1, Z2]) =

([
I 0
0 Z1

]
,

[
0
Z2

])
,(35)

where T is given by (21). The composition f = g ◦ h was shown to be an analytic
diffeomorphism between the manifolds Gm (Rm+n) and Ce = f (Gm (Rm+n)) , with
Ce regular in Gn

(
R2n+m

)
. Consider the open, dense submanifolds F = f−1 (C) and

Fr = f−1 (Cr) of Gm (Rm+n) , and let Fs = f−1 (Cs) . The next result establishes basic
properties of state feedback (33).

Theorem 12.

(1) Fr = {[I,K] ∈ Gm(Rm+n) | K ∈ Rm×n}.
(2) Fs = {[Z1, Z2] ∈ F | detZ1 = 0}.
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Proof. (1) The result follows by the calculation

f ([I,K]) = g (h ([I,K]))

= g

([
I 0
0 I

]
,

[
0
K

])
=
[
T−1, T−1A− T−1BK,T−1B

]
= [I, A−BK,B] .

(2) This follows from Fr = {[Z1, Z2] ∈ Gm(Rm+n) | detZ1 �= 0} and Fs =
F − Fr.

The properties of f guarantee that, if Kk is any sequence of feedback matrices
such that the closed-loop system (3) converges in C, then the sequence [I,Kk] also
converges in Gm (Rm+n). By Theorem 12, degeneration of (3) to a point in Cs occurs
iff [I,Kk] converges to a point in Fs. In other words, the limiting compensator always
exists, and it is singular iff the limiting closed-loop system is singular. Compensators
in Fs are not physically realizable, since they correspond to feedback laws of the form

Z1u = −Z2x + v

with Z1 singular. Yet, as a mathematical object, each compensator in F determines
a well-defined closed-loop system.

For the special case of minimum-order stable limits, as in Theorem 7, we can
obtain the form of Z1 and Z2 explicitly.

Theorem 13. If ξ = [X, I,XB] is given by (23), then f−1 (ξ) =
[
0,
[
Λ I

]]
.

Proof. Choose a representative
[
Z1 Z2

]
for f−1 (ξ) . From (23), (34), and (35),

[
I 0
0 Z1

]
T−1 = MT

⎡⎢⎣
(
Ã11 − Ã12Λ

)−1

0

−Λ
(
Ã11 − Ã12Λ

)−1

0

⎤⎥⎦T−1

for some nonsingular M. Hence, Z1 = 0 and[
Ã11 − Ã12Λ

0

]
= MT

[
I
−Λ

]
.

Letting [
M̃11 M̃12

M̃21 M̃22

]
= MT,

we obtain M̃21 = M̃22Λ. Also, from (34) and (35),[
0
Z2

]
=

[
I 0
0 0

]
T−1A−M,

so

Z2 = −M̃22

[
Λ I

]
.

Since rank
[
Z1 Z2

]
= m, M̃22 is nonsingular. Premultiplication of

[
Z1 Z2

]
by

−M̃−1
22 yields the desired result.
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We conclude this section by examining behavior of the input function u under
high-gain feedback. For simplicity, we will consider only the case where v = 0. If we
apply the feedback gains Kk to (3), then both u and x depend on k and are related
by the feedback law

uk = Kkxk.

In Theorems 9 and 10, we established cases under which the state-transition matrix
Φk converges in two different topologies. More generally, consider the linear subspace

D′
0 = C [0,∞) + span

{
δ,

.

δ,
..

δ, . . .
}
⊂ D′

+,

where C [0,∞) is the set of continuous functions on R with support in [0,∞) . Both
weak* convergence and uniform convergence on every [ε,∞) correspond to specific
topologies on D0. It is easy to show that both make D0 a topological vector space.

Theorem 14. Suppose D0 is given a topology that makes it a topological vector
space. If [I, A−BKk, B] → [X, I,XB] ∈ CI and Φk → Φ in D0, then uk → UΦx0 in
D0.

Proof. From (29) and Theorem 5, part (2),

UΦ + Kk (A−BKk)
−1

Φk =
(
U + Kk (A−BKk)

−1
)

Φ + Kk (A−BKk)
−1

(Φk − Φ)

→ 0,

so

uk = −Kk (A−BKk)
−1

Φkx0 → UΦx0.

Theorem 14 can be extended to v �= 0 through the choice of an appropriate space
of inputs v and exploiting the properties of the convolution operator. We leave the
details to the reader.

6. Application to cheap control. A classical problem in the theory of linear-
quadratic optimal control is the “cheap control” problem, where an input function
u∗ (t) is sought to minimize the cost

J(ε) =

∫ ∞

0

xTx + εuTudt

subject to (1), with fixed initial condition x0 and small ε ≥ 0. For ε > 0, this problem
has been extensively studied (e.g., see [13], [7], [12], [14]). The solution is obtained
by constructing the unique positive definite symmetric solution P (ε) of the algebraic
Riccati equation

P (ε)A + ATP (ε) − 1

ε
P (ε)BBTP (ε) + I = 0.

Then, for each x0, the optimal u and x are related by the feedback law

u∗ = −1

ε
BTP (ε)x∗,

yielding the closed-loop system(
A− 1

ε
BBTP (ε)

)−1
.
x
∗

= x∗ + δ

(
A− 1

ε
BBTP (ε)

)−1

x0

(cf. (28)).
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For ε = 0, we adopt (21) and (22), let[
Q̃11 Q̃12

Q̃T
12 Q̃22

]
= TTT,

and let Γ be the unique positive definite symmetric solution of the reduced Riccati
equation

Γ
(
Ã11 − Ã12Q̃

−1
22 Q̃

T
12

)
+
(
Ã11 − Ã12Q̃

−1
22 Q̃

T
12

)T
Γ

− ΓÃ12Q̃
−1
22 Ã

T
12Γ + Q̃11 − Q̃12Q̃

−1
22 Q̃

T
12 = 0.

Setting

Λ = Q̃−1
22

(
AT

12Γ + Q̃T
12

)
(36)

leads to values of X, U, and Φ according to (23), (24), and (25). It is shown in [14,
Cor. 2.6.1] that J (0) is minimized, subject to (1), by x∗ = Φx0 and u∗ = UΦx0.
Furthermore, [14, Thm. 2.7.1] indicates that(

A− 1

ε
BBTP (ε)

)−1

→ X

as ε → 0+. These facts are now interpreted in the context of the present paper.
Theorem 15. For each ε ≥ 0, let ξ∗ε ∈ Cr be the optimal closed-loop system

in the cheap control problem. Then ξ∗ε → ξ∗0 in C as ε → 0+, where ξ∗0 is stable
and ord ξ∗0 = n − m. The limiting system ξ∗0 is determined uniquely by the singular
compensator

[
0,
[
Λ I

]]
∈ Gm (Rm+n) as in Theorem 13, where Λ is given by (36).

7. Conclusions. In this paper, we have developed a general theory of high-
gain state feedback, retaining a fixed state coordinate system. For many control
problems, this approach lends itself to a more natural interpretation of results than if
the coordinates were allowed to vary with the feedback gain. Relationships to other
seminal work in the area have been drawn. As in our earlier similar work on high-gain
observers, the present paper has focused primarily on system parameter convergence
and behavior of solutions, particularly in the cases of stable and zeroth-order limits.
A unique aspect of our results is that even infinite state feedback gains are identified
with specific mathematical objects. As future work, we hope to be able to extend our
results to observer-based output feedback and, ultimately, to general output feedback.
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RENDEZVOUS IN HIGHER DIMENSIONS∗

STEVE ALPERN† AND VIC BASTON‡

Abstract. Two players are placed on the integer lattice Zn (consisting of points in n-dimensional
space with all coordinates integers) so that their vector difference is of length 2 and parallel to one
of the axes. Their aim is to move to an adjacent node in each period, so that they meet (occupy
same node) in least expected time R (n) , called the rendezvous value. We assume they have no
common notion of directions or orientations (i.e., no common notion of “clockwise”). We extend
the known result R (1) = 3.25 of Alpern and Gal to obtain R (2) = 197/32 = 6. 16, and the bounds
2n ≤ R (n) ≤

(

32n3 + 12n2 − 2n− 3
)

/12n2. For n = 2 we characterize the set of all optimal
strategies and show that none of them simultaneously maximizes the probability of meeting by time
t for all t. This behavior differs from that found by Anderson and Fekete, and the authors, for the
related problem where the players are initially placed at diagonals of one of the squares of the lattice
Z2.

Key words. rendezvous, search, game, plane

AMS subject classifications. 90B40, 90D99

DOI. 10.1137/S0363012904443531

1. Introduction. This paper generalizes the (player-asymmetric) rendezvous
problem on the line [6] to higher dimensions. That problem, which we call here
Γ (1) , asks how two unit-speed players initially placed a fixed distance D apart on
the line, and faced in random directions (which they each call “forward”), can meet
in minimum expected time. Neither knows the direction to the other, nor do they
have a common notion of a “positive” or “forward” direction. By taking D = 2 we
may model the line as the lattice Z = Z1 of integers, with the players moving to
adjacent nodes (integers) in each integer period, until the first (meeting) time that
they occupy the same node. (Taking D even ensures they will not pass each other on
the line without meeting.) A strategy for each player can be taken as a sequence of
F ’s (for forward) and B’s (for backward), which determines a player’s motion relative
to his starting node and his initial direction. Adopting Player I’s coordinate system,
with his initial node as 0 and his forward direction to the right, we equiprobably
place Player II at the nodes -2 and +2. We may consider that there are four agents of
Player II, two starting at -2 (facing in either direction) and two at +2. It was shown
in [6] that the strategy pair

(F, F,B,B,B,B) (for Player I) and (F,B,B,B, F, F ) (for II)(1)

is optimal, having minimum expected meeting time 13/4 (called the rendezvous value
and, since the line has dimension n = 1, denoted here by R (1) = 13/4 = 3.25).
It is easy to verify the expected meeting time 13/4 for this strategy pair (though
establishing optimality is obviously harder). If the two players start facing each
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other (that is, Player II starts at +2 facing left), then since they both start with
a forward move they meet at time t = 1 at node +1. This corresponds to the
upper right entry in the meeting time matrix (2) for the four agents of Player II,
and the reader should verify the other three. The expected meeting time is therefore
(2 + 1 + 6 + 4) /4 = 13/4.

location\direction → ←
+2 2 1
−2 6 4

(2)

The optimal strategy (1) for Γ (1) is almost a wait for mommy (WFM) strategy in
which Player I (Mommy) optimally searches out the possible initial starting points of
II (Child), while II stays still. In fact (F, F,B,B,B,B) is such a Mommy strategy,
though II does not wait. However, note that II is indeed back at his starting node at
the two times t = 2, 6 that I might search it. At the intermediate time t = 4, Player II
searches out a possible starting point of I. So we may call this strategy an alternating
wait for mommy (AWFM) strategy, in which the players alternate taking the role of
Mommy and searching out starting points of the other. Such strategies will play a
role in the higher dimensional games. (The analysis of more general linear rendezvous
problems can be found in [11] and [5].)

To generalize this problem to n dimensions, we consider the game Γ (n) in which
the two players are initially placed in the lattice Zn (n-vectors of integers, with nodes
adjacent if they differ by 1 in one coordinate and are identical in the others) so that
their vector difference is of length 2 and parallel to one of the coordinate axes. We
assume that they do not know the initial location of the other, and that they have no
common ordering of the axes (in particular, no common notion of clockwise for the
planar problem, n = 2). Note that while restricting the players to move in the lattice
Zn rather than the Euclidean space Rn does not essentially change the problem when
n = 1, it certainly does so for n > 1.

The organization and main results of the paper are as follows. In section 2, we give
a rigorous definition of the rendezvous problem on the planar lattice Z2, for a general
distribution of the initial vector between the players. The presentation is similar but
simpler than that given in [3] and contains some general optimality conditions.

In sections 3 and 4 we solve the planar rendezvous problem Γ (2) , establishing
(Theorem 14) that the rendezvous value is R (2) = 197/32. Although the AWFM
strategy is not optimal, a variation of it called the nearly alternating wait for mommy
(NAWFM) strategy (drawn in Figure 4) is optimal. We also determine the full set
of optimal strategies (Theorem 15). We show that, unlike the situation in Γ (1) , no
strategy in Γ (2) is uniformly optimal, in the sense that it simultaneously maximizes
the probability of meeting by time t, for all t.

The results on planar rendezvous which we establish in section 4 may be con-
trasted with related results with different assumptions. It is shown in [4] that the
players can do better (lower expected meeting time) if they have a common notion of
clockwise. Our results may also be contrasted with those for the planar rendezvous
model introduced by Anderson and Fekete [9] and extended by the authors [3], for
the diagonal start problem (players start at opposite diagonals of a square in the Z2

lattice). In that model all optimal strategies are uniformly optimal and having a
common notion of clockwise does not help the players.

In section 5, we obtain (Theorem 16) bounds on the rendezvous value R (n) ,
showing that it is asymptotically bounded above by 8n/3. These results are the first
obtained for rendezvous in more than two dimensions, and are reported in the book [7],
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which attributes them to an earlier version of this paper. Section 6 gives a discussion
of some of our results.

The version of rendezvous search adopted in this paper is the so-called player-
asymmetric (or just asymmetric) version, in which the players can have distinct
strategies. For example, they may have mobile phones and agree which role each
will take, e.g., one Mommy and one Child in the WFM strategy pair. The other,
player-symmetric version (where they both must adopt the same mixed strategy) will
not be discussed here, but can be found in [1], [8], and [10].

A general survey of the rendezvous search problem can be found in [2] and a
unified presentation of results up to 2003 can be found in Book II of [7]. The main
works on planar rendezvous are [9] and [13], together with our work cited above.

2. Rendezvous in the plane: Strategies and agents. In this section we
give a formal presentation of rendezvous on the planar lattice Z2 without a common
notion of clockwise. A similar but more general presentation is given in [3]. The
(lattice) distance d between two nodes is defined as the sum of the edges in a shortest
connecting path, or equivalently d ((z1, z2) , (w1, w2)) = |z1 − w1|+ |z2 − w2|. At time
t = 0, nature places the two players on even nodes with the vector v from I to II
drawn from a given distribution. (A node z ∈ Z2 is called even if the sum of its
coordinates is even; otherwise it is called odd.) In every time period each player must
move to an adjacent node. This restriction, combined with the “even distance” initial
placement (originating in the interval network of Howard [12]), ensures that the two
players will always have the same parity and that they cannot pass each other on an
edge without meeting at a node.

We analyze the progress of the game in terms of Player I’s coordinate system (and
sense of clockwise). In this perspective, the initial random placement is achieved by
nature placing I at the origin facing north (N ) and placing II at the even node vi, with
probability pi, i = 1, . . . ,K, facing equiprobably in any of the four possible directions,
and with either the same or opposite notion of clockwise as Player I. Aside from this
section, dealing with arbitrary initial locations vi, we will be mainly concerned with
the game Γ (2) described in the Introduction. We denote this general planar game
by Γ = Γ (v1, . . . , vk; p1, . . . , pK) . In terms of this more general framework, the game
Γ (2) can be defined in the following way.

Definition 1. The game Γ (2) begins with Player I initially placed at the origin
(0, 0) and II initially placed equiprobably at one of the four nodes v1 = (0, 2) , v2 =
(2, 0) , v3 = (0,−2) , v4 = (−2, 0) .

When the game begins, the players have no common notion of locations or di-
rections in the plane, and no common notion of clockwise. As observers, we adopt
I’s coordinate system. The orientations of Player II can be seen as transformations
(or rigid motions, or symmetries) of the “standard orientation” of Player I. Figure 1
shows the eight equiprobable orientations.

The orientations in the top row (k = 0) all have the same notion of clockwise as
Player I (the usual one), with the upper left orientation the standard one, and the
one in column j obtained from it by applying the 90◦ clockwise rotation R to it j
times. The orientations in the bottom row (k = 1) have the other (reversed) notion
of clockwise, and can be obtained from the one above by a single application of the
reflection φ about the vertical axis. Formally,

Rj = clockwise rotation by angle j π/2, j = 0, 1, 2, 3,(3)

φ (w1, w2) = (−w1, w2) , and the eight orientations of II are(4)

φkRj , j = 0, 1, 2, 3; k = 0, 1.(5)



2236 STEVE ALPERN AND VIC BASTON

k=0

k=1

j=0 j=1 j=2 j=3
N

E

S

W N

E

S

W

N

E

S

W N

E
S

W
N

S

W
E

W

E

SN

S

N

EW

E

W

S N

Fig. 1. Eight orientations in the plane.

The orientations determine how Player II will move when given an instruction (strat-
egy). For example, if the instruction is for II to go E (east), then (in Player I’s
coordinate system, which we also adopt as observers) he will go S (south) if he has
orientation j = 1, k = 0; he will go N if he has orientation j = 3, k = 1.

We can now define a strategy and show how a pair of strategies determines a set
of meeting times for the two players, one for each initial configuration (initial location
vi and initial orientation j, k).

Definition 2. A strategy for a player (in Γ or Γ (2)) is a sequence of directions
Dt ∈ {N = (0, 1) , E = (1, 0) , S = (0,−1) ,W = (−1, 0)} , t = 1, 2, . . . . A player pur-
suing this strategy moves successively one unit in his direction D0, D1, . . . , according
to his initial orientation. Equivalently, it can be seen as his net displacement f (t) at
time t from his initial location, given by f (0) = (0, 0) and for t ≥ 1,

f (t) =

t∑
m=1

Dm.(6)

So for example the strategy beginning N,E,E, (I’s strategy, thick grey line in
Figure 2) corresponds to a net displacement function f with

[f (0) , f (1) , f (2) , f (3)] = [(0, 0) , (0, 1) , (1, 1) , (2, 1)] .(7)

We shall deal with strategy pairs (f, g) where Player I adopts f and II adopts g.
Sometimes we will use the symmetric notation (f1, f2). In this setting, the location
of Player I at time t is simply f (t) , while the location of II (in I’s coordinate system)
depends on his initial configuration, as described below. If the initial configuration
(i, j, k) gives Player II initial location vi and orientation φkRj , then the location of
Player II at time t under strategy g is given by

gi,j,k (t) = vi + φkRj (g (t)) .(8)

It is useful to note that if g (t) = (x, y) , then the displacements of the eight agents
starting at vi at time t are of the form (±x,±y) or (±y,±x) . If none of the conditions
xy = 0 (at least one 0) or |x| = |y| hold, there are eight distinct displacements; if
exactly one of these conditions holds there are four distinct displacements; if both
hold (x = y = 0), all agents are back at their starting node vi.

Definition 3. The 8K (in our example, 32) paths gi,j,k are called the agents of
Player II. We call gi,j,k the agent starting at vi in direction j, with the same (if k = 0)
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Fig. 2. Meetings at t ≤ 3 for (N,E,E,...), (N,N,E,...).

or different (if k = 1) notion of clockwise as I. Each agent from vi is the actual path
of Player II with probability pi/8. We will sometimes use the simpler two subscript
agent notation gi,j = gi,j,0 and g′i,j = gi,j,1.

The time taken for agent gi,j,k to be met by Player I is called its meeting time
and denoted

ωi,j,k (f, g) = min {t : f (t) = gi,j,k (t)} ,(9)

and the time required to meet all the agents is called maximum time M (f, g) , where

M (f, g) = max
i,j,k

ωi,j,k (f, g) .(10)

For each time t we calculate the number of agents xt that Player I meets (for the
first time) at time t as

xt = xt (f, g) = # {(i, j, k) : ωi,j,k (f, g) = t} ,(11)

and we call the sequence [x1, x2, . . . , xM ] the agent number profile, or sometimes just
agent profile, or just profile. Figure 2 illustrates several important concepts for the
case where the strategy pair begins with (N,E,E,...) for I and (N,N,E,...) for II.
Player I’s path (0, 0) , (0, 1), (1, 1), (2, 1) for t ≤ 3 is shown in a thick grey line. The
possible paths taken by II if he starts at v1 = (0, 2) , that is, the 8 paths g1,j,k (t) ,
j = 0, . . . 3, k = 0, 1, are drawn in medium black lines starting at v1 = (0, 2) . Note
that all the paths g1,j,0 (t) = g1,j (t) in our notation make right turns at move 3, while
the g′1,j = g1,j,1 make left turns. Note that Player I meets agents g′1,2 and g1,2 at node
(0, 1) at time 1, and meets agent g1,1 at node (2, 1) at time 3. Thus in our notation we
have ω1,2,0 = ω1,2,1 = 1 and ω1,1,0 = 3. Note that when there are no turns since the
last return to a starting point (a single direction is repeated), agents with a common
notion of that direction will be at the same location, so if one is met, the other will
be also. Since Player I will not meet agents from any nodes other than v1 by time 3,
it can be seen that he meets two agents at time t = 1, no agents at time t = 2, and
one agent at time t = 3, so that x1 = 2, x2 = 0, x3 = 1, and the agent number profile
begins [2, 0, 1, . . . ] . For comparison with a later table (18) we write this as a table of
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ωi,j,k, with blank entries depending on the strategy for t > 3.

ωi,j,k k = 0 k = 1
j 0 1 2 3 0 1 2 3

i = 1 3 1 1
(12)

Given a strategy pair (f, g) , the expected value of the meeting times ωi,j,k is
called the expected meeting time and denoted T (f, g) . Thus

T (f, g) =
1

8

∑
i,j,k

piωi,j,k (f, g) , or simply(13)

=
1

32

∑
i,j,k

ωi,j,k (f, g) for Γ (2) .(14)

If M = M (f, g) is finite, we may also calculate T (f, g) for Γ (2) by the meeting
number sequence x = [x1, x2, . . . , xM ] as

T (f, g) =
1

32

M∑
t=1

t xt.(15)

The rendezvous value R for the game Γ is the least expected time,

R (Γ) = min
f,g

T (f, g) ,(16)

and any pair f, g achieving the minimum is called optimal.

We know that R (Γ) is finite because M, and hence T , is finite for the WFM strategy.
A stronger notion of optimality is the following.
Definition 4. A strategy pair is called uniformly optimal if for all t it maximizes

the probability that the players have met by time t. (Note that if there is a uniformly
optimal strategy, then all optimal strategies must be uniformly optimal.)

A uniformly optimal strategy maximizes the expected utility U (ω) of the meeting
time ω as long as the utility function U is nonincreasing in ω (earlier meetings are
preferred to later ones); an optimal strategy is only required to accomplish this for
the particular utility function U (ω) = −ω.

The authors have shown that, given the order in which the agents are met, any
optimal strategy pair is greedy in the sense that the next agent is met as quickly as
possible, with both players taking geodesics to the next meeting point. The following
result was proved without the assumption that the players must move in each period
(that is, staying still was allowed), and hence shows that our assumption here that
they must move does not take away any optimal strategies.

Theorem 5 (see [3]). Let (f1, f2) be an optimal strategy pair. Define ω0 = 0
and let ω1 < ω2 < · · · < ωN denote the associated set of meeting times with the 8K
agents, listed in increasing order. Let d denote the graph distance on the lattice Z2.
Then

d
(
fi
(
ωm−1

)
, fi (ω

m)
)

= ωm − ωm−1, for i = 1, 2 and m = 1, . . . , N.(17)

In other words, both players move in time-minimizing paths between consecutive meet-
ing points. In particular, neither player ever stays still, and consequently both players
are at even (odd) nodes at all even (odd) times. Furthermore, if the agent gi,j,k is
met at time ωm, then that meeting point f1 (ωm) = gi,j,k (ωm) is a lattice midpoint of
the locations of I and agent gi,j,k of II at time ωm−1, and hence occurs at the earliest
possible time (given their locations at time ωm−1).
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Fig. 3. An AWFM strategy (f̆ , ğ) for n = 2.

3. Analysis of Γ(2). In this section we develop some fundamental lemmas for
the problem Γ (2) . In the following section these lemmas will be applied to solve
Γ (2) , in the sense of finding all optimal strategies and the rendezvous value. It will
be convenient to introduce the notation S = {(0, 2) , (2, 0) , (0,−2) , (−2, 0)} for the
set of Player II starting nodes, and S0 for the set S augmented by Player I’s starting
point (0, 0) . Note that all nodes in S0 have even parity.

The main results of this section are Theorems 13, 14, and 15, which together
determine the rendezvous value R (Γ (2)) = 197/32 and the complete set of optimal
strategies for Γ (2) . Since we know players following optimal strategies will move in
every period (never stay still), we will henceforth only consider strategies with this
property. Since the players both start (in S0) at nodes of even parity, it follows that
both are at even nodes at even times and at odd nodes at odd times.

3.1. Special strategies. We now define some particular strategies, AWFM
(valid for all Γ (n)) and NAWFM (for Γ (2)). In [7], a family of strategies called
AWFM was proposed for the general parallel start game Γ (n) . The players alternate
taking the role of Mommy (searching out the starting points of the other) and Child
(coming back to one’s starting point to be found there when the other comes looking).
We will use these strategies to analyze the n−dimensional case in the final section.

Definition 6. A strategy in Γ (n) is called AWFM if (a) Player I successively
visits the 2n possible starting locations of II (in any order) at times T1 = {2, 6, . . . ,
2+4 (2n− 1)}, while returning to his start (0, 0) at the intermediate times T2 = {4, 8,
. . . , 4 (2n− 1)}, and (b) Player II makes his first move a single unit in any direction,
is back at his start at times T1, and visits all but one of the possible initial locations
of I at times T2. The maximum time for this strategy is clearly M = 2 + 4 (2n− 1) ,
or M = 14 for n = 2.

It was shown in [7] that, for n = 2, any AWFM strategy (as illustrated in Figure
3) gives the maximal probability of meeting by time t for any t ≤ 7, and suggested
that this strategy might in fact be optimal (like the n = 1 version, where optimality
was established in [6]), or even uniformly optimal.

The meeting time sequence x for (f̆ , ğ) (and indeed for any AWFM strategy) is
given by

x = [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 0, 2] with T
(
f̆ , ğ

)
=

198

32
.

The strategy (f̃ , g̃) drawn in Figure 4 has a lower expected meeting time T than

AWFM. Note that I’s strategy f̃ is the same as that for AWFM (f̆) up to time 10,
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Fig. 4. The NAWFM strategy (f̃ , g̃).

but then I goes from (0,−2) to (2, 0) without going back through his starting point
(0, 0) . For this reason we call (f̃ , g̃) the NAWFM strategy.

The expected meeting time for the NAWFM strategy pair (f̃ , g̃) can be evaluated
by considering the following table of ωi,j,k(f̃ , g̃) and setting xt to be the number of
t’s found in the table. The entries ωi,j,k in the following table are calculated as in the
earlier simpler table (12) which was based on the strategy of Figure 2.

ωi,j,k

(
f̃ , g̃

)
k = 0 k = 1

j 0 1 2 3 0 1 2 3

i = 1, (0, 2) 2 2 1 2 2 2 1 2
i = 2, (2, 0) 4 8 12 13 14 12 4 8
i = 3, (0,−2) 10 4 8 10 9 10 8 10
i = 4, (−2, 0) 6 6 4 6 4 6 6 6

(18)

This gives the agent number profile of

x = x
(
f̃ , g̃

)
= [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 1, 1](19)

(e.g., there are six 2’s, so x2 = 6), and hence by (14) or (15),

T
(
f̃ , g̃

)
=

197

32
.(20)

3.2. Nodes with multiple agents. It will turn out from our subsequent anal-
ysis that optimal strategies necessarily involve some simultaneous meetings of Player
I with two or more agents of Player II. Since this necessitates several agents being si-
multaneously at a common node, we now analyze how this can occur (both for agents
from the same starting node and from different starting nodes).

Lemma 7 (same starting point). Suppose that there are m > 1 distinct agents
from a common starting node v who are all at the same node z �= v at the same time
t. Then

(i) m = 2 and the agents have distinct notions of clockwise.
(ii) The line between v and z makes an angle rπ/4 with the vertical, r ∈ {0, 1, 2, 3} .
(iii) If r is odd, then the two agents have distinct notions of north (distinct j) and

will move to distinct locations at the next move.
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Proof. (i) The four rotations Rj take any nonzero vector into four distinct vectors,
so agents at the same location must have different notions of clockwise, and hence
there can be at most two of them.

(ii) By part (i), the m = 2 agents at z have distinct notions of clockwise (k equal
to 0 and 1) and so by (8) have respective locations

v + Rj (g (t)) and v + φRj′ (g (t)) , both equal to z.

(Recall that φ is the reflection (w1, w2) → (−w1, w2) about the vertical axis, and Rj

is the clockwise rotation by jπ/2, j = 0, 1, 2, 3). Consequently both Rjand φRj′ take
g(t) into w = z−v, and hence w is a nonzero fixed point of (φRj′)(Rj)−1 = φRj′−j =
φRn, n = j′ − j. If n = 0, w lies on the vertical axis (invariant set for φ), so r = 0;
if n = 1, φRn(w1, w2) = (−w2,−w1), so the fixed points form the line w2 = −w1, an
angle 3π/4 with the vertical; if n = 2, then φRn(w) = (w1,−w2) with the fixed point
line w2 = −w2 (the horizontal axis), so r = 2; if n = 3, then the fixed set w of φRn

is the line w1 = w2, so r = 1. Note that in all cases, n and r have the same parity.
(iii) By the previous remark, if r is odd, then n = j′ − j is odd, so the rotations

Rj and Rj′ are not the same or opposite (j �= −j′), and hence the moves of the two
agents (namely Rj (g (t + 1) − g (t)) and φRj′ (g (t + 1) − g (t))) will be distinct, in
fact at right angles to each other. (This can also be seen from Figure 1, which shows
that two such agents will have no direction notion in common.)

Lemma 8 (different starting points). Suppose that agents from m > 1 distinct
starting points are simultaneously at a common node z. Then

(i) If m = 2, z lies on the (Euclidean) perpendicular bisector B (a, b) of the two
starting points a, b.

(ii) If m > 2, z is the origin (0, 0) .
Proof. The vectors z − v, for the distinct starting points v, are equivalent under

rotations, and in particular all have the same Euclidean length (moreover, the set
of the absolute values of their two coordinates are the same). Since the Euclidean
equidistant set of two points a, b at even lattice distance is their perpendicular bisector
B (a, b), this gives (i). The only point equidistant from three starting points is the
origin (in either metric), giving (ii).

Lemma 9. There can be at most two agents at a common location z at any odd
time t. Hence xt ≤ 2 for odd t.

Proof. Assume xt ≥ 3. Since t is odd, z has odd parity, and hence z �= (0, 0) . Hence
by Lemma 8(ii) , the agents come from at most two distinct starting nodes a, b ∈ S.
Since by Lemma 7(i) at most two agents can come from a single starting point, we
conclude that a �= b and xt ≤ 4. By Lemma 8(i), z belongs to the perpendicular
bisector B (a, b) of a and b, which can only contain odd parity nodes z if a = −b, and
either z1 or z2 is 0. Without loss of generality we may assume a = (2, 0), b = (−2, 0) ,
and z1 = 0. Since by Lemma 7(ii) the vectors z − a and z − b make angles rπ/4 with
the vertical, the coordinate z2 must be 2, 0, or −2, but all these possibilities result in
an even parity z, whereas z is odd, contradicting the assumption.

3.3. Starting point meetings (SPMs). Lemma 7(i) says that the only place
to simultaneously meet more than two agents from a common starting node v is at v
itself. Consequently, meetings of this type are important and will be given a special
name.

Definition 10. We say there is an SPM at time t and node z if either I meets
an agent of II at z = (0, 0) (called Type I) or Player I meets an agent starting at
z ∈ S at that node z (called Type II). We denote this (either case) as SPM(t).
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Note that the type of the SPM is the name of the Player who is back at his
starting point at the time of the meeting. Some elementary properties of SPMs are
given below.

Lemma 11 (starting point meetings).
(i) SPM(t) implies t is even, xt+1 = 0, and xt ≤ 6.
(ii) xt > 4 implies SPM(t), and hence for even t, xt+xt+1 ≤ 6 (so xi ≤ 6 for all i).
(iii) xt + xt+1 ≤ 4 if no SPM at even time t.
(iv) If SPM(t) and SPM(t+2), then the corresponding types are distinct.
Proof. (i) Since an SPM must occur at a node z in S0, which contains only even

nodes, the time t must be even. Note that at an SPM, one of the players is at his
start, while the other is some vector Rj (0, 2) away from his start. Since the difference
between their starts has the form Rk (0, 2) , their difference at an SPM is of the form
Rk (0, 2)+Rj (0, 2) , and their distance is 4. So the earliest time for the next meeting
is t + 2, and hence xt+1 = 0. Suppose the SPM is of Type II. At time t − 1, Player
I will be at some node z′ adjacent to z, and there will also be exactly two agents
(counting both met and unmet agents) at z′ from the starting point z. Since there
are only 8 agents who start at z, I can meet at most 8 − 2 = 6 new agents at time t
at z. If the SPM is of Type I, there will be 8 agents at the origin at time t (including
ones already met) since g (t) will be a rotation of (2, 0) . As in the previous argument,
I will have met two of them on the previous move. So in either case we have xt ≤ 6.

(ii) If the first part of (ii) is true, the second part (the “hence”) follows from
xt +xt+1 ≤ 6+0 = 6, by part (i) and Lemma 9. So we need only prove the first part.

Suppose I meets xt > 4 agents at some location z at some (even) time t, and there
is no SPM. So z �= (0, 0) (otherwise we have a Type I SPM). Suppose z /∈ S. Since at
most two agents can come from any starting point (Lemma 7(i)), the agents who met
at time t must come from at least three distinct starting nodes, and hence (Lemma
8(ii)) z = (0, 0), again contradicting our assumption. So we may assume that z ∈ S
and II is not back at his starting point (otherwise we have a Type II SPM). Since
we know z �= (0, 0) , Lemma 8(ii) says I can meet agents from at most two starting
points. Since II is not back at his start at time t, Lemma 7(i) says there are at most
two from each, so in total at most four, contradicting the assumption xt > 4, and we
are done.

(iii) Assuming there is no SPM at time t, part (ii) implies that xt ≤ 4. If xt ≤ 2,
the result follows from Lemma 9 (without any other assumptions), so we can assume
that xt ≥ 3. Hence by Lemma 7(i), agents from at least two starting points a and b
must be met at time t at a node z, and by Lemma 8(i), z ∈ B (a, b) .

Suppose z ∈ S, in which case we can assume without loss of generality that
z = (0, 2) , with a = (2, 0) and b = (−2, 0) . In this case g (t) is a rotation of (2, 2) ,
which means the unmet agents at time t are at lattice distance 4 from z and cannot
be met before time t + 2. So xt + xt+1 ≤ xt + 0 ≤ 4, as required.

Suppose z /∈ S. Since z �= (0, 0) (this would be an SPM), we can assume that I
meets two agents from a and at least one from b. By Lemma 7(ii), we know that z−a
makes an angle rπ/4 with the vertical. If a = −b (“opposite” starting points) then
the only nodes z with this property on B (a, b) are in S0, which we have ruled out. So
assume without loss of generality that a = (2, 0) and b = (0, 2) , in which case the only
z’s in B (a, b) with the required angle property are (1, 1) and (2, 2) . If z = (2, 2), then
g (t) is a rotation of (2, 0) , and the same observation as in the previous paragraph
gives xt+1 = 0, and we are done. If z = (1, 1) , then g (t) = (1, 1) and there will be
four met and unmet agents at z at time t. However, by Lemma 7(iii) these agents will
occupy all four nodes adjacent to z at time t−1, and again at time t+1. By the t−1
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observation, we have xt ≤ 3, and by the t+1 observation and Lemma 9 we know that
of the maximum of two agents at I’s location z′ at t + 1, one has already been met,
so xt+1 ≤ 1. Hence xt + xt+1 ≤ 3 + 1 = 4, as required.

(iv) If SPM(t) is of Type II and occurs at some v ∈ S, then SPM(t+2) cannot
occur at another v′ ∈ S (also be of Type II), because d (v, v′) = 4. If SPM(t) is of
Type I, then at time t all unmet agents are at distance 4 from the origin, and hence
cannot get there for another Type I meeting before time t + 4. So consecutive SPMs
cannot be of the same type.

Lemma 12. If SPM(t) but not SPM(t + 2) , then xt+2 ≤ 2 and xt+2 + xt+3 ≤ 3.
Proof. Since SPM(t), one of the players is at his start at time t. By renaming

them, if necessary, we may assume that Player I is at the origin at time t (Type I).
The proof now divides into cases according to the location z of Player I at time t+ 2.
z = (0, 0) At time t, unmet agents are at distance 4 from z, so at time t+2 they are

at distance at least 2 from z, and hence xt+2 = 0. Since t+3 is odd, xt+3 ≤ 2
by Lemma 9 and the result follows.

z ∈ S By symmetry, we may assume z = (0, 2) . We may assume that at time t + 2
Player II is not at his starting point (g (t + 2) �= (0, 0)), since otherwise we
have SPM(t + 2) . If xt+2 ≤ 1, the result follows from Lemma 9, so we may
assume xt+2 ≥ 2. The agents who met at time t+2 must have starting points
(−2, 0) or (2, 0) , since those from (0,−2) were at distance at least 4 from z
at time t. The agents who met at time t+ 2 must be at locations (−2, 2) and
(2, 2) at time t. Although there may be two agents at each of these nodes at
time t, at most one of these (from each) can get to z by time t + 2, since
they have different notions of clockwise. Thus xt+2 ≤ 2. In this case we have
g (t + 2) = (2, 2), so all unmet agents at time t + 2 are at distance from z of
at least 4 and cannot be met at time t + 3. Hence xt+2 + xt+3 ≤ 2.

z = (±1,±1) By symmetry we take z = (1, 1) . It is easy to check that the only
new agents met at time t + 2 were at (2, 2) at time t. There are at most
four of these, two each starting from (0, 2) and (2, 0) . Those from the same
starting point have different notions of clockwise (by Lemma 7(i)), and since
g (t + 2) is a rotation of (1, 1) , they will be at different locations at time
t + 2. Hence at most one from each of (0, 2) and (2, 0) will meet I at (1, 1)
at time t + 2, and so xt+2 ≤ 2. If xt+2 < 2, then the result follows from
Lemma 9. Assuming xt+2 = 2, the situation is as stated above, and the
only nodes with unmet agents within distance 2 of (1, 1) at time t + 2 are
(3, 1) , (−1, 1) , (1, 3) , and (1,−1), that is, the four starting points added to
(1, 1) . Player I can meet agents from only one of these nodes at time t + 3,
at respective nodes z′ = (2, 1) , (0, 1) , (1, 2) , and (1, 0) . If z′ is (2, 1) (the
analysis for (1, 2) is similar), the only agents there come from w = (3, 1) at
t + 2 and (by Lemma 7 (iii)) go to different locations (namely z′ and (3, 0))
at time t + 3. So in this case xt+3 = 1 and we are done. If z′ is (0, 1) (the
case (1, 0) is similar), then any agents he meets there were at w = (−1, 1) at
time t + 2 and come from one of the starting points ((−2, 0) and (0, 2)). By
Lemma 7(i), there can be at most one of these.

4. Optimal strategies. In this section we first obtain a partial characterization
of optimal strategies, show that the NAWFM strategy (f̃ , g̃) is optimal, and finally
give a complete characterization of optimality. We can always rename the players so
that the first SPM, if there are any, is of Type II. We adopt this labeling throughout
this section. The following important result determines the existence and type of the
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potential SPMs at all even times except for t = 14. We shall see later that optimal
strategies may or may not have an SPM at time 14.

Theorem 13. Any optimal strategy pair in Γ (2) has SPMs of alternating Types
II, I, II, I, II, at times 2, 4, 6, 8, and 10, and no SPM at time 12.

Proof. To any meeting profile [x1, x2, . . . ] , where xt denotes the number of new
agents met at time t, we associate the integer T ∗ =

∑
t txt, which is 32 times the

expected meeting time. To aid the reader, we will highlight the numbers xt in the
profile relevant to the argument by grouping them with a ︷︸︸︷ . The NAWFM strategy
has the agent number profile [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 1, 1] , for which T ∗ = 197
(expected meeting time 197/32), and hence any optimal strategy has T ∗ ≤ 197. We
will establish the SPM claims successively for t = 2, 4, 6, 8, 10, and 12 by rejecting as
optimal any strategy which produces a partial agent number sequence [x1, . . . , xk] for
which the smallest possible value of T ∗ exceeds 197. Note that for any strategy we
have x1 = 2.
SPM(2) Suppose that x2 + x3 ≤ 4. Then by Lemma 11(ii) the meeting profile min-

imizing T ∗ is [2,
︷︸︸︷
4, 0 , 6, 0, 6, 0, 6, 0, 6, 0, 2], with T ∗ = 202 > 197. Hence any

optimal strategy has x2+x3 > 4, which by Lemma 11(iii) implies the required
result SPM(2).

SPM(4) If there is no SPM at time 4, then by Lemma 12 and the established result
SPM(2), we have x4 + x5 ≤ 3. So by Lemma 11(ii), the minimizing profile is

[2, 6, 0,
︷︸︸︷
3, 0 , 6, 0, 6, 0, 6, 0, 3], with T ∗ = 206 > 197, contradicting optimality.

SPM(6) If there is no SPM at time 6, then by SPM(4) and Lemma 12 we have x6 +

x7 ≤ 3. Hence by Lemma 11(ii), the minimizing profile is [2, 6, 0, 6, 0,
︷︸︸︷
3, 0 , 6, 0,

6, 0, 3], with T ∗ = 200 > 197.
We now summarize our findings for t ≤ 7. Since the SPMs at t = 2, 4, 6 are of

alternating type, it is easy to verify that the meeting profile for any optimal strategy
starts with

[2, 6, 0, 6, 0, 6, 0] ,with contribution T ∗∗ to T ∗ of(21)

T ∗∗ = (2 × 1) + (6 × 2) + (6 × 4) + (6 × 6) = 74.(22)

Furthermore, there are precisely two starting nodes a, b ∈ S, which have not been
Type II SPMs (not been visited by I) by time 6. From each of these nodes, two agents
have been met at time 4 (the Type I SPM at the origin), and the remaining six agents
have not been met by time 6.

Suppose x8+x9 ≤ 2. Then by (21) and Lemma 11(ii), the best profile is [2, 6, 0, 6, 0,
6, 0, 2, 0, 6, 0, 4], with T ∗ = 198 > 197. Hence

x8 + x9 ≥ 3 and (since x9 ≤ 2 by Lemma 9)(23)

x8 > 0.(24)

We now continue to establish further SPMs.
SPM(8) Suppose there is no SPM at time 8. Then by the established SPM at time

6 and Lemma 12, we have x8 ≤ 2 and x8 + x9 ≤ 3. Hence by (23)

x8 + x9 = 3 and x9 ≥ 1.(25)

If we also have x10 + x11 ≤ 4, then [2, 6, 0, 6, 0, 6, 0,
︷︸︸︷
2, 1 ,

︷︸︸︷
4, 0 , 5] is the best

profile, with T ∗ = 74 + 125 = 199 > 197. Hence we have x10 + x11 ≥ 5.



RENDEZVOUS IN HIGHER DIMENSIONS 2245

So by Lemma 11(iii) we have SPM(10), and by Lemma 11(i) we have that
x11 = 0. Hence x10 ≥ 5. The SPM at time 10 cannot be Type I, since in that
case Player I could meet at most two agents each from the unvisited nodes a
and b, contradicting the result x10 ≥ 5. Thus it is of Type II, with Player I
meeting at least five agents at the node (say) a. Since there were six agents
from a unmet at time 7, he can have met at most 6− 5 = 1 of these at times
8 and 9. Since (25) x9 ≥ 1 and the only agents that Player I can meet at time
9 come from a (since they are back at a at the Type II SPM at time 10), we
must have x9 = 1, and hence by (25), x8 = 2. Thus the other agent met by I
at some node c at time 8 must come from b. Since the SPM at time 6 was of
Type II, this agent was back at b then, so d (b, c) ≤ 8 − 6 = 2. Now Player I
goes from some node e ∈ S at time 6 (since there was a Type II SPM then),
to c at time 8, and to a ∈ S at time 10. Since d(e, a) = 4, it follows that the
distance from c to all three nodes a, b, e ∈ S is no more than 2. Hence c must
be the origin, and since I met an agent at c at time 8, there was an SPM at
time 8, contradicting our initial assumption.

By alternation of types for consecutive SPMs, the SPM at time 8 must be of Type
I, so at most two agents from each of the unvisited starting points a and b can be met
at time 8, and (by Lemma 11(i)) none at time 9, meaning x8 ≤ 4 and x9 = 0.
SPM(10) Suppose there is no SPM at time 10. Then, since we have established

SPM(8), it follows from Lemma 12 that x10 ≤ 2 and x10 + x11 ≤ 3. If
x8 +x9 ≤ 3, it follows from the previous remark and (21) that the best profile

satisfying the known constraints is [
︷ ︸︸ ︷
2, 6, 0, 6, 0, 6, 0,

︷︸︸︷
3, 0 ,

︷︸︸︷
2, 1 , 6]. But this has

T ∗ = 201 > 197, so x8 + x9 ≥ 4, and by the remarks above this paragraph
x8 = 4. Thus, after time 8, I can meet at most four agents at any SPM of
Type II, and hence (by Lemma 7(i)) at most four agents at any time after 8.

Hence the best profile is [
︷ ︸︸ ︷
2, 6, 0, 6, 0, 6, 0,

︷︸︸︷
4, 0 ,

︷︸︸︷
2, 1 , 4, 1], with T ∗ = 198 > 197.

Hence there is an SPM at time 10, which must be of Type II, at node (say) a.
Not SPM(12) Suppose there is an SPM at time 12, which by alternation would

have to be of Type I. By Lemma 7(i), I can meet at most two agents from
the sole unvisited node b at time 12, so x12 ≤ 2 and (by Lemma 11(i))
x13 = 0. Hence the best profile would be [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 0, 2], with
T ∗ = 198 > 197. So there is no SPM at time 12.

We can now use the pattern of SPMs established for optimal strategies in Theorem
13 to determine the unique optimal agent number profile and thus the rendezvous
value of Γ (2) .

Theorem 14. The rendezvous value for Γ (2) is 197/32 and the NAWFM strategy
(f̃ , g̃) is optimal. Furthermore, every optimal strategy has the agent number profile
[2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 1, 1] .

Proof. Consider an agent number profile x corresponding to an optimal strategy.
According to (21) the profile must begin with [2, 6, 0, 6, 0, 6, 0] . Theorem 13 says that
at time t = 8 there is a Type I SPM (at the origin), so I will meet there two agents
from each of the two starting nodes he has not visited. Hence x8 = 4 and x9 = 0 (by
Lemma 11(i)). At time t = 10, Theorem 13 says that I will visit his third Player II
starting point. Of the eight agents who started there, two were met at the origin at
each of the Type I SPMs at t = 4 and 8, so x10 = 8 − 2 − 2 = 4, and again x11 = 0.
So the agent number profile x must be of the form

[2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, x12, x13, x14] .
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Fig. 5. Analysis for t = 10 to 14.

Since there is no SPM at time 12, it follows from Lemma 12 that x12 ≤ 2 and
x12 + x13 ≤ 3. So the best profile satisfying all known constraints is[

2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0,
︷︸︸︷
2, 1 , 1

]
,

which is (19) the profile of the NAWFM strategy (f̃ , g̃) and has T ∗ = 197. Hence
NAWFM is optimal, and the rendezvous value is 197/32.

We now use the last two theorems to derive the full set of optimal strategy pairs
for Γ. We describe the situation in I’s coordinate system, but we will not use the agent
analysis for II. We begin our analysis at the end of move 10 (t = 10). According to
Theorem 13, I is at one of the previously unvisited nodes of S, say a, and II (all four
remaining agents of) is at the other one, b. Player I can deduce that II is at b, while
II knows only that the vector to I is one of the four rotations of (2, 2) . We know from
the optimal profile of Theorem 14 that they must meet with conditional probability
1/2 at times 12 (two agents of the remaining 4) and 13 (one agent of the remaining 2)
and conditional probability 1 at time 14 (the remaining agent must be met). We will
find it easier to use a conditional probability analysis, rather than an agent analysis.

If a and b are opposite starting points (a = −b) in S, then the only possible
location for a meeting at time 12 is the unique midpoint of a and b, namely the origin.
But this would constitute an SPM at time 12, which we have ruled out in Theorem
13. The situation from times 10 to 14 is illustrated in Figure 5, with a = (0,−2) and
b = (2, 0). Let w denote I’s location at time 12. For a meeting, w has to be at one of
the three midpoints of a and b : the origin, (1,−1), or (2,−2). The first would imply
SPM(12), so can be excluded (Theorem 13). The last would require each player to
move 2 units in the same direction on moves 11 and 12. This would leave the players 4
units apart if they fail to meet at time 12, in which case there could not be a meeting
at time 13. So w must be the unique Euclidean midpoint of a and b. In our drawing,
this gives w = (1,−1) . Since the optimal profile has no meeting at time 11, I may get
to w in either of the two possible ways (indicated by a diagonal arrow). To achieve
a possible meeting at w at time 12, II must move to a diagonally opposite node from
his location b at time 10 (must make a turn at time 12). Since he does not know
where w is, such a move sequence might lead him to any of the four nodes w, z, y, and
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(3,−1)). How can II choose among these four directions so as to reach w at time 12
with conditional probability 1/2?

To answer this question, recall (from Theorem 13) that there were Type I SPMs
at times 4 and 8. This means Player II has visited two of the possible Player I starting
points, that is, two of the three nodes A, B, and C. (He has not visited the actual
starting point at the origin or the game would be over.) Now there are two cases.
Either (1) he did not visit C (visited two opposite starting nodes of I, A and B) or
(2) he visited C (two adjacent possible starting nodes of I, C and either A or B). He
will know which case he is in according to whether he searched adjacent or opposite
nodes.

Suppose (1) that Player II did not visit C, and so visited A and B. In this
case he can distinguish the vertical coordinate (directions of his searches) from the
horizontal (unsearched directions), and for example could determine the origin (I’s
starting point) with probability 1/2 (he could equiprobably reach the origin or C in
two moves). However, the node w (which he needs to reach at time 12 with conditional
probability 1/2) is indistinguishable from three other nodes z, y, and (3,−1) , and so
could not be reached with conditional probability greater than 1/4. Hence he cannot
ensure a meeting at time 12 with the required conditional probability 1/2, and so a
strategy that did not visit C cannot be optimal.

So an optimal strategy for II must have visited C, that is, previously searched two
adjacent possible starting nodes of I. In this case II can determine w with the required
conditional probability 1/2 as the node e in the direction opposite the midpoint of the
two Player I starting nodes he has visited. (If he visited A and C, then e = w; if B and
C, then e = z.) Optimal play must bring him to w with conditional probability 1/2,
so he must move to e (in either of the two possible ways, since the optimal profile has
no meeting at t = 11) at time 12. This is indicated by the thin lines going out from
b. (This is not a mixed strategy; II goes for his uniquely defined node e.) Assuming
II does not meet I at time 12, his location at that time must be e = z, and I can
deduce this. So to achieve a possible meeting at time 13 (required by the optimal
profile), I must move to the unique lattice midpoint of w and z (the node (1,0) in
our figure). Player II can conclude at time 12 that Player I is either at w or y. So he
must move back toward b equiprobably in either way (toward w or toward y). (Again,
this is not a mixed strategy—in agent formulation, one of the two remaining agents
will go towards b clockwise, and the other counterclockwise.) If the players have not
met by time 13, they both can deduce the location of the other; I is at (1, 0) and II
is at (2, 1) . Now they can agree to meet for sure at time 14 at either of their two
midpoints: (i) b or (ii) z. This leads to two types of strategy, according to whether
they both choose (i) or they both choose (ii).

Hence we have established the following theorem.
Theorem 15. A strategy pair is optimal in Γ (2) if and only if it is one of the

following two types, (i) and (ii).
Player I orders the starting points of II as V1, V2, V3, V4 in any way so long as

the first two are adjacent (V1 �= −V2). On the first 10 moves, he goes to V1 and back,
V2 and back, and to V3. On moves 11 and 12 he goes (in either of the two ways) to the
unique Euclidean midpoint w of V3 and V4. At time 13 he goes to the unique midpoint
of the origin, w, and V4. At time 14, he either (i) goes to V4 or (ii) goes in the same
direction as on move 13.

Player II goes in any direction on move 1, returning to his start on move 2. On
moves 3 to 6, and on moves 7 to 10, he goes, respectively, to two adjacent possible
starting nodes W1 and W2 and back to his start. On moves 11 and 12, he goes (in
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Fig. 7. Strategy with meeting probability 31/32 by time 12.

either of the two possible ways) to the node e diagonally opposite his start and in the
direction opposite to the Euclidean midpoint of W1 and W2. On move 13, he goes to
either of the two midpoints of e and his start. On move 14, he goes either to (i) his
starting point or (ii) back to e.

The strategy (f̃ , g̃) is of type (i). In Figure 6 we give an example of an optimal
strategy of type (ii).

Although the NAWFM strategy is optimal, it is not uniformly optimal—it does
not maximize the probability of meeting by time t for all t. In particular, it does not
maximize the probability of meeting by time 12. After move 12, Player I has met 30
of the 32 agents, so the probability that the players have met by time 12 is 30/32. Con-
sider the 12 move strategy for Player I given by (N,W,S,W,E,E, S, S,N,N,E,E, . . . ) ,
and drawn in Figure 7. Assuming Player II is back at his start at times 4, 8, and
12, the only agents not met by time 12 have starting point (0, 2) . Of the eight agents
who started there, two could be met at (0, 1) at time 1, one (only one since this
involves a turn) could be met at (−1, 1) at time 2, and two could be met at the
origin at both times 6 and 10. This would leave only one agent unmet by time 12,
or a 31/32 probability of rendezvous by that time, better than NAWFM. In fact, the
agents can be met at the times mentioned above if Player II adopts the move sequence
(N,E,W, S, S, S,N,N,W,W,E,E, . . . ) . Hence the NAWFM strategy is optimal but
not uniformly optimal and, as mentioned in Definition 4, there cannot be any uni-
formly optimal strategy for the game Γ = ΓP . As mentioned in [3], this is qualitatively
distinct from the situation for the diagonal start game ΓD, where there is a uniformly
optimal strategy (and hence all optimal strategies are uniformly optimal). The (uni-
formly) optimal strategies for the diagonal start game (without common clockwise)
are as follows (Corollary 23 of [3]): Player I cyclically orders adjacent (distance 2)
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starting nodes as v1, v2, v3, v4 in any manner. He moves to the midpoint of v1 and
v4 at time 1, and then cyclically searches the vertices vi at time 2i. Player II moves
in any direction Di (of the four possible) at times i = 1, 3, 5, 7, going in the opposite
direction −Di at times i+ 1. The only restriction is that D7 = ±D1, that is, II must
move in the same or opposite direction on move 7 as he did on move 1 (not at right an-
gles). The particular strategy pair of (N,W,S, S,E,E,N,N) , (N,S,N, S,N, S,N, S)
was earlier shown to be optimal for the common clockwise version of the diagonal
start problem by Anderson and Fekete [9], and an easy symmetric argument shows
that it does equally well (same expected meeting time) in the no common clockwise
version.

5. Rendezvous in higher dimensions. This section determines an upper
bound for the rendezvous value R (n) of the game Γ (n) which generalizes the game
Γ (2) of the previous section (as well as the game Γ (1) solved in [6]) to n dimensions.
The strategy pair giving this bound is the AWFM (Definition 6), which assumes no
common ordering of the coordinate axes. Some ideas on lower bounds are also given
at the end of the section.

Theorem 16. Suppose that two players are initially placed on the n-dimensional
integer lattice so that their difference vector is two units long and parallel to one of
the coordinate axes. Assume that the players have no common notion of location and
no common labeling of the coordinates axes. The rendezvous value R (n) for this game
Γ(n) satisfies the inequality

2n ≤ R (n) ≤ 32n3 + 12n2 − 2n− 3

12n2
.(26)

Consequently, we have the asymptotic result

2 ≤ lim
n→∞

R (n) /n ≤ 8

3
.(27)

Proof. We will need to consider two subsidiary problems Γ1 (m) and Γ2 (m) , for
m = 1, . . . , 2n. Both of these problems begin at time t = 0 with the placement of
Players I and II, respectively, at a pair of nodes A and B which are two units apart
along a line parallel to some coordinate axis. Then Player I is displaced to a node A′

along a similar two unit line which is not the one leading to B. Player I is told the
node A. In the problem Γ1 (m) , Player I is told m − 1 directions which are certain
to include the direction to B, and Player II is told m such directions. In problem
Γ2 (m) , both players are told m such directions. Special cases of these problems, for
n = 2, are drawn in Figures 8 and 9.

In order to estimate the rendezvous value R (n) of the original problem Γ (n) , we
must obtain estimates on the respective asymmetric rendezvous values w1 (m) and
w2 (m) of Γ1 (m) and Γ2 (m) for various m (corresponding to the dimension n, which
is implicit in our notation).

Suppose that in the problem Γ1 (m), the first two moves of the players are as
follows: Player I goes to the node A (which he knows) while Player II goes 2 steps
randomly in one of the m indicated directions. With probability 1/m, II will pick the
direction to A, and the meeting time will be t = 2. Otherwise the two players will be
in the initial position of the other problem Γ2 (m− 1) , with the roles (of I and II)
reversed. Hence we have

w1 (m) ≤ 1

m
(2) +

m− 1

m
(2 + w2 (m− 1)) .(28)



2250 STEVE ALPERN AND VIC BASTON

A B

A'

Fig. 8. Start in Γ1(3).

A B

A'

Fig. 9. Start in Γ2(3).

Similarly, in the initial position of Γ2 (m) , the same type of strategy for the first two
moves gives

w2 (m) ≤ 1

m
(2) +

m− 1

m
(2 + w1 (m)) .(29)

From these two inequalities we obtain upper bounds wi (m) ≤ w̄i (m) by solving the
associated equalities. This gives us the solutions

w̄1 (m) =
4m + 1

3
,(30)

w̄2 (m) =
−1 + 3m + 4m2

3m
.(31)

This is consistent with the trivial base case Γ2 (1) , where I and II start 4 units
apart with knowledge of the other’s direction, with rendezvous value w2 (1) = 2
corresponding to a meeting at A. This case is illustrated in Figure 10.

We now consider the original game Γ (n) . Suppose that in their first two moves
one player (I) goes two units in his forward direction, while the other (II) goes in some

direction and then back to his start. With probability 1/ (2n)
2

the two players will
go towards each other and meet at time t = 1. If Player I goes in the direction of II
(probability 1/2n) and II does not go in the direction of I (probability (2n− 1) / (2n)),
then the two will meet at time t = 2 at II’s initial location. In the remaining case,
I will find himself displaced two units from his start and know of one direction from
his start which does not lead to II’s starting location. Meanwhile, II will be at his
start and not know of any of the 2n directions which are not correct. Consequently
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A' A B

Fig. 10. Start in Γ2(1).

the situation at time t = 2 will be identical to that of the problem Γ1 (2n) . Therefore
we have the estimate

R (n) ≤
(

1

(2n)
2

)
1 +

(
1

2n

)(
2n− 1

2n

)
2 +

(
2n− 1

2n

)
(2 + w1 (2n)) .

Estimating w1 by the formula (30) for w̄1, and simplifying, we get

R (n) ≤ 32n3 + 12n2 − 2n− 3

12n2
, and hence

lim
n→∞

R (n) /n ≤ 8

3
, the required right inequality.

We note again that the value of the right-hand side of the top inequality is 13/4
for n = 1, which is the exact asymmetric rendezvous value for the line as derived in [6]
for known initial distance D = 2. The strategy pair which gives this expected meeting
time is the one which converts Γ (n) into Γ1 (2n) and thereafter converts each problem
Γ1 (m) into Γ2 (m− 1) and each problem Γ2 (m) into Γ1 (m) , m = 2n, 2n − 1, . . . , 1
(assuming the players don’t meet earlier). It is an AWFM strategy.

We can obtain a lower bound on R (n) by giving the players some additional in-
formation and determining their optimal strategy pair in that situation. The simplest
way to do this is to give the players common notions of directions. In this case it
is well known (see [6] or [9] for one- or two-dimensional arguments) that the players
should always move in opposite directions, and that the rendezvous problem is conse-
quently equivalent to one where Player II is stationary and Player I moves with their
combined speeds, here equal to 2. The least expected time for Player I to reach the
2n possible locations of the stationary Player II, moving with speed 2, is obtained by
a path which reaches these locations at the 2n times 1, 3, 5, . . . , 2i− 1, . . . , 2 (2n)− 1,
while returning to his start in between. The expected time is consequently given by

1

2n

2n∑
i=1

(2i− 1) = 2n.

Thus the asymptotic value of Ra (n) /n lies between 2 and 8/3, completing the proof
of Theorem 16.

A player-symmetric version of this n-dimensional problem, where both players
must follow the same mixed strategy, is analyzed in [7, section 18.2.2]. An alternative
treatment of the player-asymmetric problem is outlined in section 18.2.1, based on a
direct evaluation of the expected meeting meeting time for the NAWFM strategy. An
anonymous referee has observed that this can be simply evaluated by defining random
variables X and Y to be, respectively, the first time that I reaches the starting point
of II and the first time that II reaches the starting point of I. The meeting time
min (X,Y ) can then be calculated from standard results on random variables.
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6. Discussion of results. A natural question that arises from our analysis is
whether one might be able to obtain a relatively simple analytical expression for the
rendezvous value R(n) of Γ(n) for n ≥ 3. The indications from the results on Γ(2) are
somewhat equivocal. Theorem 14 states that every optimal strategy pair in Γ(2) has
the same agent number profile and the same holds for Γ(1). Furthermore, Theorem
13 tells us that, in all optimal strategy pairs of Γ(2), the players initially move to an
SPM position and then go as quickly as possible from one SPM position to another
until a player has met most of the other player’s agents. The reason for this is that a
player can meet comparatively few agents of the other player at points which are not
either possible starting points of that player or his own starting point. It is intuitively
clear that this property holds for Γ(n) with n ≥ 3 so we would expect there would be
a similar emphasis on SPM positions for these problems. It also suggests that R(n)
is likely to be much nearer the upper bound than the lower bound in Theorem 16,
particularly when account is taken of the fact that the lower bound is obtained by
considering a corresponding problem in which the players are given important extra
information. On the other hand, Theorem 15 detailing the optimal strategy pairs
for Γ(2) demonstrates that although the players have some freedom in the order in
which the SPM positions are visited, it is not unrestricted. For Γ(2), by looking at
the moves which enabled the final agents to be met, it was comparatively easy to see
what modifications to AWFM were needed if better expected meeting times were to
be achieved and the restrictions on the SPM positions arose from these modifications.
However, even if optimal strategy pairs in Γ(n) are modifications of AWFM, the
number of possible modifications is likely to increase substantially as n increases and,
in addition, there is the difficulty of picturing the situation, particularly with regard
to agents.
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WHAT PERIODIC SIGNALS CAN AN EXPONENTIALLY
STABILIZABLE LINEAR FEEDFORWARD CONTROL SYSTEM

ASYMPTOTICALLY TRACK?∗

EERO IMMONEN† AND SEPPO POHJOLAINEN†

Abstract. We study asymptotic tracking and rejection of continuous periodic signals in the
context of exponentially stabilizable linear infinite-dimensional systems. Our reference signals are
in Sobolev-type spaces H(ωn, fn) and they (as well as the disturbance signals) are generated by an
infinite-dimensional exogenous system. We show that there exists a feedforward controller which
achieves output regulation if and only if the so-called regulator equations are satisfied and a decom-
posability condition holds. For SISO systems this result allows us to completely answer the question
posed in the title: We show that if the stabilized plant does not have transmission zeros at the
frequencies iωn of the reference signals, then all reference signals in H(ωn, fn) can be asymptotically
tracked in the presence of disturbances if and only if(

HK(iωn)−1[1 −Hd(n)]f−1
n

)
n∈I

∈ �2.

Here HK(iωn), n ∈ I, is the transfer function of the stabilized plant evaluated at iωn, and (Hd(n))n∈I

is a sequence of disturbance coefficients for the stabilized plant. Moreover, the sequence (fn)n∈I

consists of weights for the Fourier coefficients of the reference signals. We give four examples to
illustrate the theory.

Key words. output regulation, infinite-dimensional systems, regulator equations, Fourier series,
Sobolev spaces, periodic signals

AMS subject classifications. 93B99, 93C25, 93D99

DOI. 10.1137/040613093

1. Introduction. In this paper we study regulation of periodic signals in the
context of exponentially stabilizable linear infinite-dimensional systems. By regulation
we mean that the output of the system asymptotically tracks given suitably smooth
periodic reference signals generated by an infinite-dimensional exogenous system and
asymptotically rejects disturbance signals generated by the same exogenous system.

Periodic signals are often encountered, e.g., in acoustics, electric motors, and
mechanical systems [12], and various forms of this regulation problem have been in-
tensively studied for several decades. The regulation problem for finite-dimensional
signals (generated by finite-dimensional exosystems) and finite-dimensional linear sys-
tems was solved quite completely in the 1970s by Francis, Wonham, Davison, and oth-
ers [7, 9, 10]. Many authors have since generalized these results for infinite-dimensional
systems and finite-dimensional reference/disturbance signals: Pohjolainen [17, 18],
Hämäläinen and Pohjolainen [11], Logemann and Owens [16], Byrnes et al. [3], and
others.

For finite-dimensional reference and disturbance signals it is well known that there
are two basic control configurations that guarantee regulation: the feedforward and
feedback controllers [7]. The feedforward controller does not lead to a robust design.
Robustness means that the control configuration can achieve regulation in spite of
variations in the system’s and controller’s parameters.
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In the feedback control design the controller must incorporate a model of the ex-
ogenous system according to the internal model principle. This introduces additional
dynamics in the feedback loop and thus makes stabilization of the closed loop system
a more difficult task, especially in the infinite-dimensional case. The advantage of the
feedback controller is that it provides robustness. This is often stated in the following
form: Stability of the closed loop system implies regulation.

In this paper we consider the problem of constructing a feedforward controller
for exponentially stabilizable infinite-dimensional systems and uniformly continuous
periodic reference and disturbance signals. Since such periodic signals may con-
tain an infinite number of distinct frequency components, they must be generated
by an infinite-dimensional exogenous system. Hence our results extend the infinite-
dimensional feedforward controllers of [3, 16] to allow for infinite-dimensional reference
and disturbance signals.

Our approach has been inspired by [4, 5], where the regulation problem with
an infinite-dimensional exogenous system was formulated but not rigorously solved.
The solution presented in this paper relies on a construction of a scale of Sobolev-
type spaces of periodic uniformly continuous functions. This construction makes it
possible to completely resolve the existence of a regulating feedforward controller in
the single input single output (SISO) case; a characterization in terms of solvability
of the so-called regulator equations [3, 9] is given in Theorem 3.1.

In Theorem 4.5 and Corollary 4.7 we assume that the transfer function of the
stabilized plant is invertible on the spectrum of the exosystem. We prove that in this
case a necessary and sufficient condition for the solvability of the regulation problem
is that the transfer function does not approach zero asymptotically too rapidly on
that spectrum. In the engineering language this condition says that the amount of
damping on the high frequency components determines precisely how nonsmooth the
reference/disturbance signals are that the system can asymptotically track/reject.
The condition given in terms of weighting coefficients in the aforementioned Sobolev-
type spaces makes it possible to single out those spaces which contain signals that
can be tracked/rejected by a given system.

To the authors’ knowledge the results of this article are new even for finite-
dimensional systems. Moreover, they complement and improve those in [14], where
the exosystem was built so that it can generate (at least) one given scalar-valued refer-
ence signal with �1 Fourier coefficients. In [14] the authors found a sufficient condition
for the asymptotic tracking of this reference signal to occur, under the assumption of
exponential stabilizability of the plant. In this paper, the exosystem is constructed
so that precisely all reference signals in a Sobolev-type space can be generated; we
pose—and completely solve—the problem of asymptotic tracking of all such reference
signals and construct the actual control law which achieves output regulation. The
construction of this paper also shows that the exogenous signal generator can, in a
certain sense, be made isomorphic to a function space (Theorem 2.8). This feature
yields two important observations which cannot be made from the results of [14]:
(i) the approach of this paper suggests a direct generalization via considering refer-
ence signals in more general function spaces (e.g., vector-valued continuous periodic
functions in the MIMO case), and (ii) the exosystem becomes an artificial device—we
do not need to know its dynamical behavior in order to achieve output regulation (see
Theorem 4.5 and Corollary 4.6). More profoundly, as opposed to [14], the results of
this paper yield (for SISO systems) a complete answer, via the new condition (4.17),
to the question posed in the title.

We conclude this section with a brief outline of the contents of the article. In
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section 2 we define the plant and the reference signals that we want to asymptoti-
cally track; for this we introduce the Sobolev-type spaces H(fn, ωn). Furthermore,
we construct the exogenous system that we assume is generating the reference and
disturbance signals. We also formulate the output regulation problem (ωn, fn)-RP in
section 2. In section 3 we show that for exponentially stabilizable plants the solv-
ability of the (ωn, fn)-RP is equivalent to the solvability of the regulator equations
and a decomposability condition. This result is then applied in section 4, where the
solution of the regulator equations is considered. We obtain an explicit expression
for a candidate operator L in the solution of the (ωn, fn)-RP. The continuity of L
determines whether or not this regulation problem is solvable, and it can be verified
by checking condition (4.17). Furthermore, assuming solvability of the output regu-
lation problem, we explicitly write out, in terms of the reference signals, the control
law achieving output regulation in Corollary 4.6. We conclude section 4 with two re-
sults which show that the capability of output regulation is in some cases an intrinsic
property of the plant—different stabilizing feedbacks result in the same capability of
output regulation. Finally, in the four examples of section 5 we solve the (ωn, fn)-RP
in several situations: We consider a finite-dimensional plant, a delay-differential equa-
tion, and a heat equation with Neumann boundary conditions. In the last example we
show that there are infinite-dimensional systems which cannot track all reference sig-
nals in any standard Sobolev space Hα

per(0, p) of periodic functions [15], even if there
are no transmission zeros at the frequencies of the reference signals. These examples
demonstrate an important new result of the paper: Transmission zeros are not the
only cause of output regulation problems, even for finite-dimensional systems. The
intrinsic “smoothness” of the plant in part determines which signals can be regulated.
For certain finite-dimensional systems this smoothness is characterized by the relative
degree of the plant, as shown in section 5.

1.1. Notation and conventions. For complex separable Hilbert spaces E and
F , L(E,F ) denotes the space of bounded linear operators E → F , and E′ denotes the
space of bounded linear functionals on E. Inner product on E is denoted by 〈·, ·〉E (the
subscript E is omitted if no confusion can arise). Norm on E is denoted by ‖·‖E (the
subscript E is omitted if no confusion can arise). The product space E×F is endowed
with the norm

√
‖·‖2

E + ‖·‖2
F which makes it a Hilbert space. The resolvent set of a

closed linear operator S : E → F is denoted by ρ(S). R(λ, S) denotes (whenever it

exists) the resolvent operator (λI − S)−1. If Ẽ is a subspace of E, then S|Ẽ denotes

the restriction of S to Ẽ. For s > 1
2 , Hs

per(0, p) denotes the Sobolev space of those

p-periodic functions f (see [15]) satisfying
∑∞

k=−∞(1 + | 2πkp |2)s|f̂(k)|2 < ∞, where

f̂(k), k ∈ Z, denotes a Fourier coefficient. �(z) denotes the real part of a complex
number z. A sequence (fn) ⊂ C is O(gn) for some positive sequence (gn) ⊂ R as
n → ∞ if |fn| ≤ Mgn for some M > 0 and all sufficiently large n ≥ 0.

2. Formulation of the problem. In this section, we define the plant and the
reference signals that we want to asymptotically track. Furthermore, we construct
the exogenous systems that we assume are generating the reference signals. We also
formulate the output regulation problem (ωn, fn)-RP.

2.1. The plant. We consider a plant described by the following (possibly infi-
nite-dimensional) control system for t ≥ 0:

ż(t) = Az(t) + Bu(t) + Udist(t),(2.1a)

y(t) = Cz(t) + Du(t),(2.1b)
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z(0) = z0 ∈ Z,(2.1c)

where z(t) ∈ Z is the state of the system (Z is a separable complex Hilbert space),
A generates a C0-semigroup of linear operators TA(t) on Z, u(t) ∈ U is an input,
and y(t) ∈ Y is the output. The input space U is a complex separable Hilbert space
and the output space Y = C. The control operator B ∈ L(U,Z), the observation
operator C ∈ L(Z, Y ) = Z ′, and the feedthrough operator D ∈ L(U, Y ). The pair
(A,B) is assumed to be exponentially stabilizable; i.e., we assume that there exists
K ∈ L(Z,U) such that A+BK generates an exponentially stable C0-semigroup on Z.
The term Udist(t) represents a disturbance (to be defined shortly). Finally, since we
allow z0 to be outside of D(A), (2.1a) is to be considered in the mild sense [6].

2.2. Sobolev spaces H(fn, ωn) and the exogenous system. Throughout
this article, we assume that the periodic reference signals are in Sobolev spaces
H(ωn, fn).

Definition 2.1. Let I ⊂ Z, let p > 0, and let ωn = 2πn
p for every n ∈ I.

Let (fn)n∈I ⊂ R such that fn ≥ 1 for each n ∈ I and (f−1
n )n∈I ∈ �2. The Sobolev

space H(fn, ωn) is defined as {u : R → C | u(t) =
∑

n∈I ane
iωnt for each t ∈ R,∑

n∈I |fn|2|an|2 < ∞, and (an)n∈I ⊂ C }.
Proposition 2.2. Each u ∈ H(fn, ωn) is uniformly continuous and p-periodic.

Moreover, H(fn, ωn) is a Hilbert space with respect to the inner product 〈u, v〉f =∑
n∈I anbn|fn|2. Here u(t) =

∑
n∈I ane

iωnt and v(t) =
∑

n∈I bne
iωnt for every t ∈ R.

Moreover, bn denotes the complex conjugate of bn.

Proof. The uniform continuity and p-periodicity of u(t) are evident. It is also
easy to see that H(fn, ωn) is an inner product space. The completeness arguments
follow those in [2, pp. 124–125].

These Sobolev spaces generalize certain Sobolev spaces of periodic functions [15]
in the following way.

Proposition 2.3. Let I = Z, γ > 1
2 , and fn =

√
1 + ω2

n

γ
for each n ∈ Z. Then

H(fn, ωn) = Hγ
per(0, p).

Proof. By definition, Hγ
per(0, p) is the Sobolev space of p-periodic functions u

satisfying
∑∞

k=−∞(1 + | 2πkp |2)γ |û(k)|2 < ∞, where û(k), k ∈ Z, denotes a Fourier

coefficient (see [15]). Hence Hγ
per(0, p) ⊂ H(fn, ωn). To prove the converse inclusion,

we need only observe that absolutely and uniformly convergent trigonometric series
of periodic functions are Fourier series (see, e.g., [2, p. 202]).

Let the sequences (ωn)n∈I and (fn)n∈I be fixed in the remainder of this sub-
section. We next construct an exogenous system which generates the functions in
H(fn, ωn). To this end, let W be a Hilbert space with inner product 〈·, ·〉 and an
orthonormal basis (φn)n∈I . Set S =

∑
n∈I iωn〈·, φn〉φn with D(S) = {w ∈ W |∑

n∈I |ωn|2|〈w, φn〉|2 < ∞}. It is clear that S generates the C0-semigroup TS(t) =∑
n∈I e

iωnt〈·, φn〉φn in W .

Lemma 2.4. Consider the sequence (fn)n∈I . Let F : D(F) ⊂ W → W be such
that

Fw =
∑
n∈I

fn〈w, φn〉φn, D(F) =

{
w ∈ W

∣∣∣ ∑
n∈I

|fn|2|〈w, φn〉|2 < ∞
}
.(2.2)

Then the operator F is linear, closed, and densely defined in W . Moreover, F−1 ∈
L(W ).
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Proof. The linearity of F is evident. Clearly all elements w ∈ W for which
〈w, φn〉 = 0 for |n| ≥ M lie in D(F) and form a dense set in W . Hence F is densely
defined in W . Let (wk)k≥0 ⊂ D(F) be a sequence such that wk → w as k → ∞ and
Fwk → y ∈ W as k → ∞. Since the sequence (Fwk)k≥0 converges, it is bounded, and
supk≥0

∑
n∈I |fn|2|〈wk, φn〉|2 < ∞. This implies that

∑
n∈I |fn|2|〈w, φn〉|2 < ∞, i.e.,

w ∈ D(F). Now for each n ∈ I, 〈y, φn〉 = limk→∞〈Fwk, φn〉 = limk→∞ fn〈wk, φn〉 =
fn〈w, φn〉 = 〈Fw, φn〉, and so Fw = y. This proves that F is a closed operator. It
is plain to see that F−1 =

∑
n∈I f

−1
n 〈·, φn〉φn and that F−1 is bounded in W since

(f−1
n )n∈I ∈ �2.

Theorem 2.5. With F as in (2.2), define 〈x, y〉F = 〈Fx,Fy〉 for every x, y ∈
D(F). Then 〈·, ·〉F is an inner product on D(F), and the space WF = (D(F), 〈·, ·〉F )
is a Hilbert space such that

1. WF ↪→ W ;
2. the restriction TS(t)|WF of TS(t) to WF is a C0-semigroup on WF .

Proof. Let ‖·‖F denote the norm induced by 〈·, ·〉F . It is readily verified that
〈·, ·〉F satisfies the axioms of inner product because fn ≥ 1 for every n ∈ I. By
Lemma 2.4, F is a closed operator with a bounded inverse. Let | · |F denote the graph
norm in D(F). That WF is a Hilbert space now follows from the estimates (valid for
every w ∈ D(F))

|w|F = ‖w‖W + ‖Fw‖W = ‖F−1Fw‖W + ‖Fw‖W(2.3)

≤
[
‖F−1‖L(W ) + 1

]
‖Fw‖W =

[
‖F−1‖L(W ) + 1

]
‖w‖F(2.4)

≤
[
‖F−1‖L(W ) + 1

]
(‖Fw‖W + ‖w‖W )(2.5)

=
[
‖F−1‖L(W ) + 1

]
|w|F(2.6)

and the fact that D(F) is a Banach space when endowed with the graph norm. Ad-
ditionally, since fn ≥ 1 for every n ∈ I, we have that

‖w‖2
W =

∑
n∈I

|〈w, φn〉|2 ≤
∑
n∈I

|fn|2|〈w, φn〉|2 = ‖w‖2
F ∀w ∈ D(F),(2.7)

which shows that WF ↪→ W .
It remains to show that the restriction TS(t)|WF of TS(t) to WF is a C0-semigroup.

For arbitrary w ∈ D(F),

‖TS(t)w‖2
F =

∑
n∈I

|fn|2|eiωnt|2|〈w, φn〉|2 =
∑
n∈I

|fn|2|〈w, φn〉|2 = ‖w‖2
F ,(2.8)

which shows that WF is TS(t)-invariant and that TS(t)|WF is an isometry (and hence
bounded) for each t ≥ 0. The semigroup property of TS(t)|WF is easy to verify using
the semigroup property of TS(t) in W and the TS(t)-invariance of WF . We show the
strong continuity of TS(t)|WF . Let w ∈ D(F). Then

‖TS(t)|WFw − w‖2
F =

∑
n∈I

|fn|2|eiωnt − 1|2|〈w, φn〉|2 =
∑
n∈I

|(eiωnt − 1)fn〈w, φn〉|2
(2.9)

= ‖TS(t)Fw −Fw‖2
W → 0 as t → 0+(2.10)

because TS(t) is strongly continuous on W . This completes the proof.
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Lemma 2.6. Let Q : D(Q) ⊂ W → C be such that

Qw =
∑
n∈I

〈w, φn〉 ∀w ∈ D(Q) =

{
w ∈ W

∣∣∣ ∣∣∣∑
n∈I

〈w, φn〉
∣∣∣ < ∞

}
.(2.11)

Then Q ∈ L(WF ,C), where WF is defined as in Theorem 2.5.
Proof. Since (f−1

n )n∈I ∈ �2, we have for some M > 0 by the Schwarz inequality
that

|Qw| ≤
∑
n∈I

|〈w, φn〉||fnf−1
n | ≤ M‖w‖F ∀w ∈ WF ,(2.12)

and so Q ∈ L(WF ,C).
Definition 2.7 (the exogenous system). Let SF denote the generator of TS(t)|WF

on WF (cf. Theorem 2.5). With the above definitions and notation, the exogenous sys-
tem is given as

ẇ(t) = SFw(t), w(0) = w0 ∈ WF ,(2.13a)

yref (t) = Qw(t), t ≥ 0,(2.13b)

Udist(t) = Pw(t)(2.13c)

on the state space WF . Here P ∈ L(WF , Z) is some known disturbance operator and
(2.13a) is to be considered in the mild sense.

The exosystem (2.13) is capable of generating precisely the reference signals in
the Sobolev space H(fn, ωn). Moreover, for each yref ∈ H(fn, ωn), there is exactly
one initial state w0 ∈ WF such that QTS(t)|WFw0 = yref (t) for t ≥ 0. These facts
follow from the next theorem.

Theorem 2.8. There exists a bounded linear bijection T : H(fn, ωn) → WF such
that for yref ∈ H(fn, ωn) we have that T yref = w0 with QTS(t)|WFw0 = yref (t) for
each t ≥ 0.

Proof. Let yref ∈ H(fn, ωn) be such that yref (t) =
∑

n∈I ane
iωnt. By our assump-

tion, the estimate
∑

n∈I |fn|2|an|2 < ∞ holds. Define a mapping T : H(fn, ωn) → WF
as

T yref =
∑
n∈I

anφn = w0.(2.14)

Then T is linear and bounded. By the definition of WF , it is clear that T is
surjective. If T yref = 0, then an = 0 for every n ∈ I by the orthonormality
of (φn)n∈I in W . Consequently yref = 0, and hence T is injective. Moreover,
TS(t)|WFw0 =

∑
n∈I e

iωntanφn for each t ≥ 0, and so

QTS(t)|WFw0 =
∑
n∈I

ane
iωnt = yref (t) ∀t ≥ 0.(2.15)

The proof is complete.

2.3. The output regulation problem (ωn, fn)-RP. Let (ωn)n∈I and (fn)n∈I

be as in Definition 2.1. Let WF be as in Theorem 2.5 and let SF be as in (2.13a).
The task is to find a feedback control law

u(t) = Kz(t) + Lw(t)(2.16)

such that K ∈ L(Z,U), L ∈ L(WF , U), and
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• A + BK is the generator of an exponentially stable C0-semigroup TA+BK(t)
on Z;

• for the closed loop system on Z ×WF given by

ż(t) = (A + BK)z(t) + (BL + P )w(t),(2.17a)

ẇ(t) = SFw(t),(2.17b)

the tracking error

e(t) = y(t) − yref (t) = (C + DK)z(t) + (DL−Q)w(t) → 0 as t → ∞
(2.18)

for all initial conditions z(0) = z0 ∈ Z and w(0) = w0 ∈ WF .

3. A characterization of the solvability of the (ωn, fn)-RP. In Theo-
rem 3.1 below we present a characterization for the solvability of the output regulation
problem (ωn, fn)-RP in terms of the solvability of the so-called regulator equations, a
decomposition property, and two continuity conditions. The result is an extension of
Theorem IV.1 in [3] and Theorem 3.1 in [14]. In [3] Byrnes et al. proved this result
for finite-dimensional exogenous systems, while in [14] the authors generalized Theo-
rem IV.1 in [3] to cover output regulation of at least one given periodic reference signal
(generated by an infinite-dimensional exosystem) in the case in which the feedthrough
operator D = 0. In the exogenous system of [14] both the observation operator Q and
the initial state w(0) depend on the signal to be regulated; Theorem 3.1 in [14] pro-
vides a necessary and sufficient condition that this reference signal can be regulated.
In Theorem 3.1 below we obtain a complete characterization for output regulation of
all reference signals in a Sobolev-type space.

Theorem 3.1. Let I ⊂ Z, (ωn)n∈I , and (fn)n∈I be fixed. Let the pair (A,B) be
exponentially stabilizable with K ∈ L(Z,U). Then there exists an L ∈ L(WF , U) such
that the (ωn, fn)-RP is solvable using the control law u(t) = Kz(t)+Lw(t) if and only
if there exists a decomposition L = Γ−KΠ, where Γ ∈ L(WF , U) and Π ∈ L(WF , Z)
satisfy the following regulator equations for every n ∈ I:

AΠφn + BΓφn + Pφn = ΠSFφn,(3.1a)

CΠφn + DΓφn = 1.(3.1b)

Proof (necessity). By the assumptions, the control law u(t) = Kz(t) + Lw(t)
solves the (ωn, fn)-RP. Hence by definition L ∈ L(WF , U). Since A + BK gen-
erates the exponentially stable C0-semigroup TA+BK(t) on Z, the growth bound
ω(TA+BK) = inft>0(

1
t log ‖TA+BK(t)‖) < 0. On the other hand, TS(t)|WF is an iso-

metric (semi)group on each of the spaces WF , so its growth bound is 0. Corollary 8
in [21] then guarantees that the linear operator Π : WF → Z defined as

Πw =

∫ ∞

0

TA+BK(t)(BL + P )TS(−t)|WFwdt ∀w ∈ WF(3.2)

is the unique bounded (i.e., L(WF , Z)) solution of the Sylvester-type operator equa-
tion ΠSF = (A+BK)Π+BL+P in D(SF ). Consequently, if we choose Γ = L+KΠ ∈
L(WF , U), it is clear that ΠSFφn = AΠφn + BΓφn + Pφn for each n ∈ Z. We also
have the decomposition L = Γ −KΠ.
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We next show that also the second regulator equation (3.1b) is satisfied with these
choices of Π and Γ. To this end, consider the composite operator A on the composite
state space Z ×WF (see (2.17)) defined as

A =

(
A + BK BL + P

0 SF

)
.(3.3)

Since A + BK generates the C0-semigroup TA+BK(t) on Z and SF generates the
C0-semigroup TS(t)|WF on WF , it is clear that A generates a C0-semigroup TA(t) on
Z×WF because BL+P ∈ L(WF , Z) (see also [6, Lemma 3.2.2]). An easy calculation
reveals that this semigroup is given by

TA(t) =

(
TA+BK(t)

∫ t

0
TA+BK(τ)(BL + P )TS(t− τ)|WFdτ

0 TS(t)|WF

)
.(3.4)

Now choose an arbitrary eigenvector φn, n ∈ I, of SF . Then

TA(t)
(Πφn

φn

)
=

(
TA+BK(t)Πφn +

∫ t

0
TA+BK(τ)(BL + P )eiωn(t−τ)φndτ

eiωntφn

)
.(3.5)

According to the first regulator equation (3.1a), for each t ≥ τ ≥ 0 we have that

(BL + P )eiωn(t−τ)φn =
[
ΠSF − (A + BK)Π

]
eiωn(t−τ)φn.(3.6)

A direct calculation then shows that for 0 < τ < t (recall that Π(D(SF )) ⊂ D(A) =
D(A + BK))

d

dτ

(
TA+BK(τ)Πeiωn(t−τ)φn

)
= TA+BK(τ)(A + BK)Πeiωn(t−τ)φn(3.7)

− TA+BK(τ)Πiωne
iωn(t−τ)φn(3.8)

= TA+BK(τ)
[
(A + BK)Π − ΠSF

]
eiωn(t−τ)φn.(3.9)

Hence for t ≥ 0, ∫ t

0

TA+BK(τ)(BL + P )eiωn(t−τ)φndτ(3.10)

=

∫ t

0

TA+BK(τ)
[
ΠSF − (A + BK)Π

]
eiωn(t−τ)φndτ(3.11)

= −
∫ t

0

d

dτ

(
TA+BK(τ)Πeiωn(t−τ)φn

)
dτ(3.12)

= −TA+BK(t)Πφn + Πeiωntφn,(3.13)

and so

TA(t)
(Πφn

φn

)
=

(
TA+BK(t)Πφn − TA+BK(t)Πφn + Πeiωntφn

eiωntφn

)
=

(
Πeiωntφn

eiωntφn

)
.

(3.14)

Since the (ωn, fn)-RP is solvable, the tracking error corresponding to the particular
initial states z(0) = Πφn ∈ Z and w(0) = φn ∈ WF (for arbitrary n ∈ I) satisfies

e(t) = (C + DK,DL−Q)TA(t)
(Πφn

φn

)
= (CΠ + DKΠ + DL−Q)eiωntφn(3.15)

= (CΠ + DΓ −Q)eiωntφn,(3.16)
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which tends to 0 as t → ∞. But this is possible only if CΠφn +DΓφn = Qφn = 1 for
every n ∈ I. Hence also the second regulator equation (3.1b) is satisfied.

(Sufficiency) Choose L = Γ − KΠ ∈ L(WF , U), where Π ∈ L(WF , Z) and Γ ∈
L(WF , U) satisfy the regulator equations (3.1) for every n ∈ I. Consider the control
law u(t) = Kz(t) + Lw(t). Since by the assumptions the C0-semigroup TA+BK(t)
generated by A +BK is exponentially stable, it remains to show that the error term
e(t) → 0 as t → ∞ for any z(0) = z0 ∈ Z and w(0) = w0 ∈ WF .

Let z0 ∈ Z and w0 ∈ WF be arbitrary. Consider the semigroup TA(t) (see (3.4))
generated by A (see (3.3)) on Z ×WF . Then

TA(t)
(

z0
w0

)
=

(
TA+BK(t)z0 +

∫ t

0
TA+BK(τ)(BL + P )TS(t− τ)|WFw0dτ

TS(t)|WFw0

)
.(3.17)

Now an application of the Lebesgue dominated convergence theorem and relations
(3.11)–(3.13) yields∫ t

0

TA+BK(τ)(BL + P )TS(t− τ)|WFw0dτ(3.18)

=

∫ t

0

TA+BK(τ)(BL + P )
∑
n∈I

eiωn(t−τ)〈w0, φn〉φndτ(3.19)

=
∑
n∈I

〈w0, φn〉
∫ t

0

TA+BK(τ)(BL + P )eiωn(t−τ)φndτ(3.20)

=
∑
n∈I

〈w0, φn〉
[
−TA+BK(t)Πφn + Πeiωntφn

]
(3.21)

= ΠTS(t)|WFw0 − TA+BK(t)Πw0 ∀t ≥ 0,(3.22)

since Π ∈ L(WF , Z) and w0 ∈ WF .
Using this information we can work out the explicit expression for the tracking

error e(t) as follows.

(3.23)

e(t) = (C + DK,DL−Q)TA(t)
(

z0
w0

)
(3.24)

= (C + DK)TA+BK(t)z0 + (C + DK)

∫ t

0

TA+BK(τ)(BL + P )TS(t− τ)|WFw0dτ

(3.25)

+ (DL−Q)TS(t)|WFw0

(3.26)

= (C + DK)TA+BK(t)(z0 − Πw0) + (CΠ + DKΠ + DL−Q)TS(t)|WFw0

(3.27)

= (C + DK)TA+BK(t)(z0 − Πw0) + (CΠ + DΓ −Q)TS(t)|WFw0

(3.28)

= (C + DK)TA+BK(t)(z0 − Πw0) ∀t ≥ 0

by the second regulator equation (3.1b) and the fact that the operator CΠ+DΓ−Q ∈
L(WF , Y ).
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By our assumption, TA+BK(t) is exponentially stable. Consequently, e(t) → 0 for
every z0 ∈ Z and w0 ∈ WF . This shows that the control law u(t) = Kz(t) + Lw(t)
solves the (ωn, fn)-RP. The proof is complete.

Remark 3.2. In the sufficiency part of Theorem 3.1, mere weak stability of the
semigroup TA+BK(t) (i.e., that f(TA+BK(t)z0) → 0 for every z0 ∈ Z and every f ∈ Z ′

as t → ∞) would guarantee that |e(t)| → 0 as t → ∞. Whenever the semigroup
TA+BK(t) is exponentially stable, we in fact obtain exponentially fast decay of |e(t)|.

Remark 3.3. Theorem 3.1 shows that if u(t) = Kz(t)+Lw(t) solves the (ωn, fn)-
RP, then necessarily L = Γ−KΠ, i.e., the operators K and L cannot be independent
of each other. This shows that although small additive bounded perturbations to K
do not affect exponential stability of TA+BK(t) [8], such perturbations do in general
destroy output regulation. To the authors’ knowledge this fact has not been explicitly
stated before in related earlier work, e.g., [3, 14].

4. Solution of the regulator equations—SISO systems. In this section we
solve the regulator equations (3.1) for SISO systems under the assumption that the
stabilized plant does not have transmission zeros at the Fourier frequencies iωn of the
reference signals. These solutions are then used to construct a candidate operator L for
the solution of the output regulation problem (ωn, fn)-RP; its continuity determines
whether or not the problem is solvable. Using this explicit series representation for L,
in condition (4.17) we completely characterize the solvability of the (ωn, fn)-RP by
the growth of the transfer function of the stabilized plant on the imaginary axis.
Furthermore, we obtain an explicit expression, in terms of the reference signals, for
the control law which achieves output regulation. Our arguments are similar to those
in [14]; however, our results are more complete here. In particular, for SISO systems
we derive the verifiable condition (4.17) which completely answers the question posed
in the title.

Throughout this section, we assume that the plant is a SISO system and that the
sequences (ωn)n∈I and (fn)n∈I (see Definition 2.1) are fixed. Moreover, we assume
that the stabilizing feedback K ∈ L(Z,U) for the pair (A,B) is fixed.

Definition 4.1. The transfer function H(s) of the plant is defined as H(s) =
CR(s,A)B + D for every s ∈ ρ(A). The transfer function HK(s) of the stabilized
plant is defined as HK(s) = (C + DK)R(s,A + BK)B + D for s ∈ ρ(A + BK). The
sequence of disturbance coefficients for the stabilized plant is defined as (Hd(n))n∈I =
((C + DK)R(iωn, A + BK)Pφn)n∈I ⊂ C.

Definition 4.2. The plant (respectively, stabilized plant) has a transmission zero
at s = s0 if H(s0) = 0 (respectively, HK(s0) = 0).

The next lemma shows that in ρ(A) the concept of transmission zero does not
depend on K; for the case D = 0 the result was stated in Lemma V.2 of [3].

Lemma 4.3. Let s0 ∈ ρ(A)∩ρ(A+BK). Then the plant has a transmission zero
at s = s0 if and only if the stabilized plant has a transmission zero at s = s0.

Proof. Let s = s0 be a transmission zero of the plant. Clearly CR(s0, A)B+D = 0
if and only if

ker

(
C D

s0I −A −B

)
�= {0},(4.1)

where the domain of definition of the operator R = ( C D
s0I−A −B ) is D(A) × C. Let
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0 �= ( x
u ) ∈ kerR. Then since x = R(s0, A)Bu, we must have that u �= 0. Moreover,(

C D
s0I −A −B

)(
I 0
K I

)(
I 0

−K I

)(
x
u

)
= 0,(4.2)

which implies (
C + DK D

s0I −A−BK −B

)(
x

u−Kx

)
= 0.(4.3)

Let RK = ( C+DK D
s0I−A−BK −B ) with D(RK) = D(R). If x = 0, then 0 �= ( 0

u ) ∈ kerRK .
On the other hand, if x �= 0, then 0 �= ( x

u−Kx ) ∈ kerRK . In any case kerRK �= {0}.
The above means that (C + DK)R(s0, A + BK)B + D = 0, i.e., that the stabilized
plant has a transmission zero at s = s0.

Similar arguments show that the converse also holds. We omit the details.
Proposition 4.4. Let n ∈ I. If the stabilized plant does not have a transmission

zero at s = iωn, and if we define Lφn = HK(iωn)−1[1 −Hd(n)], then

Πφn = R(iωn, A + BK)
[
BLφn + Pφn

]
,(4.4)

Γφn = Lφn + KΠφn(4.5)

are solutions of the regulator equations (3.1).
Proof. Since Sφn = iωnφn, it is clear that if we solve the equations

(A + BK)Πφn + BLφn + Pφn = iωnΠφn,(4.6a)

(C + DK)Πφn + DLφn = 1(4.6b)

for Πφn and Lφn, and then set Γφn = Lφn+KΠφn, we simultaneously solve regulator
equations (3.1) for Πφn and Γφn. From (4.6a) we obtain

(A + BK)Πφn + BLφn + Pφn = iωnΠφn ⇔ Πφn = R(iωn, A + BK)(BLφn + Pφn)
(4.7)

because A + BK generates an exponentially stable C0-semigroup. Applying this
expression for Πφn to (4.6b) yields

(C + DK)R(iωn, A + BK)(BLφn + Pφn) + DLφn = 1(4.8)

⇔
[
(C + DK)R(iωn, A + BK)B + D

]
Lφn + (C + DK)R(iωn, A + BK)Pφn = 1

(4.9)

⇔ HK(iωn)Lφn + Hd(n) = 1(4.10)

⇔ HK(iωn)−1
[
1 −Hd(n)

]
= Lφn(4.11)

by the assumption that HK(iωn) �= 0. Hence equations (4.6) have a unique solution
which is also a solution of the regulator equations (3.1).

Theorem 4.5. Suppose that for every n ∈ I, s = iωn is not a transmission zero
of the stabilized plant. Define

L =
∑
n∈I

HK(iωn)−1[1 −Hd(n)]〈·, φn〉.(4.12)

Then the (ωn, fn)-RP is solvable using the control law u(t) = Kz(t) + Lw(t) if and
only if L ∈ L(WF , U).
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Proof (necessity). If the control law u(t) = Kz(t)+Lw(t) solves the (ωn, fn)-RP,
then by definition L must be in L(WF , U).

(Sufficiency) Suppose that L ∈ L(WF , U). Then the linear operator Π :
WF → Z defined by Πw =

∫∞
0

TA+BK(τ)(BL + P )TS(−τ)|WFwdτ for each w ∈
WF is in L(WF , Z). Since TS(−t)|WFφn = e−iωntφn and R(iωn, A + BK)z =∫∞
0

e−iωntTA+BK(t)zdt for every z ∈ Z (Proposition 5.1.5 in [1]), we have that
Πφn = R(iωn, A + BK)(BL + P )φn for each n. Consequently, by Proposition 4.4
the operators Π and Γ = KΠ + L ∈ L(WF , U) solve the regulator equations (3.1) for
every n ∈ I. Theorem 3.1 then guarantees that the (ωn, fn)-RP is solvable with the
control law u(t) = Kz(t) + Lw(t).

Corollary 4.6. Suppose that the assumptions of Theorem 4.5 are satisfied
and that L defined in (4.12) is in L(WF , U), so that (ωn, fn)-RP is solvable using
u(t) = Kz(t)+Lw(t). Then for every yref ∈ H(fn, ωn) the corresponding control law
uyref

(t) which achieves output regulation of yref (t) is given by

uyref
(t) = Kz(t) +

∑
n∈I

HK(iωn)−1[1 −Hd(n)]yne
iωnt ∀t ≥ 0,(4.13)

where yref (t) =
∑

n∈I yne
iωnt for each t.

Proof. Let yref ∈ H(fn, ωn) be fixed, and let yref (t) =
∑

n∈I yne
iωnt for each t.

By Theorem 2.8 the corresponding initial state of the exosystem w(0) =
∑

n∈I ynφn ∈
WF . Using continuity we work out Lw(t) = LTS(t)|WFw(0) as

LTS(t)|WFw(0) =
∑
n∈I

ynLTS(t)|WFφn(4.14)

=
∑
n∈I

ynLe
iωntφn(4.15)

=
∑
n∈I

yne
iωntHK(iωn)−1[1 −Hd(n)] ∀t ≥ 0(4.16)

because φn ∈ WF for every n ∈ I and TS(t)|WFφn = TS(t)φn = eiωntφn for each
n ∈ I. The proof is completed by the observation that in our construction the control
law u(t) = Kz(t)+LTS(t)|WFw(0) achieves asymptotic tracking of QTS(t)|WFw(0) =
yref (t).

In particular, if there are no disturbances and the plant is already exponen-
tially stable, then the control law (4.13) reduces to the remarkably simple uyref

(t) =∑
n∈I H(iωn)−1yne

iωnt. Corollary 4.6 shows, under certain assumptions, that once
we know that (ωn, fn)-RP is solvable, knowledge of the dynamical behavior of the
exogenous system is irrelevant for asymptotic tracking of the reference signals (we
need to have knowledge of the sequence (Pφn)n∈I ⊂ Z though): It is irrelevant how
the control signal (4.13) is generated.

The following corollary characterizes the solvability of the (ωn, fn)-RP by the
asymptotic behavior of HK(iωn)−1[1 −Hd(n)] as n → ±∞.

Corollary 4.7. Suppose that the assumptions of Theorem 4.5 are satisfied. Let
L be defined as in (4.12). Then the control law u(t) = Kz(t) + Lw(t) solves the
(ωn, fn)-RP if and only if(

HK(iωn)−1[1 −Hd(n)]f−1
n

)
n∈I

∈ �2.(4.17)

In the disturbance-free case (i.e., whenever P = 0), the above condition reduces to
(HK(iωn)−1f−1

n )n∈I ∈ �2.
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Proof. Since WF is a Hilbert space, by the Riesz representation theorem L ∈
L(WF , U) = L(WF ,C) if and only if there exists a unique element l ∈ WF such
that Lw = 〈w, l〉F for every w ∈ WF . Then we must have that 〈φn, l〉|fn|2 =
HK(iωn)−1[1 − Hd(n)], or 〈l, φn〉 = HK(iωn)−1[1 −Hd(n)]|fn|−2 for every n ∈ I.
But the element l thus defined is in WF if and only if∑

n∈I

|〈l, φn〉|2|fn|2 =
∑
n∈I

|HK(iωn)−1[1 −Hd(n)]|2|fn|−2 < ∞.(4.18)

This and Theorem 4.5 give the desired result.
The above results formalize the intuitive idea that in order to be able to track

a periodic reference signal, the stabilized plant should not attenuate high frequency
oscillations too drastically and at the same time the reference signal should be smooth
enough. We conclude this section with some results which in some cases simplify the
verification of condition (4.17).

Theorem 4.8. Let A generate an exponentially stable C0-semigroup and let
A+BK, for K ∈ L(Z,U), also generate an exponentially stable C0-semigroup. Then
there exist m,M ≥ 0 (which do not depend on n ∈ I) such that ‖CR(iωn, A)B‖ ≤
m‖CR(iωn, A + BK)B‖ ≤ M‖CR(iωn, A)B‖ for each n ∈ I.

Proof. By an elementary calculation, we have that CR(iωn, A)B[I + KR(iωn,
A+BK)B] = CR(iωn, A+BK)B and that CR(iωn, A)B = CR(iωn, A+BK)B[I −
KR(iωn, A)B] for every n ∈ I. Since A and A + BK generate exponentially stable
C0-semigroups, ‖R(iωn, A)‖ and ‖R(iωn, A + BK)‖ are uniformly bounded in n, ac-
cording to the Riemann–Lebesgue lemma [6]. The desired conclusion now follows by
some obvious norm estimates.

According to Theorem 4.8, if D = 0, if there are no disturbances, and if both A
and A+BK generate exponentially stable C0-semigroups, then (H(iωn)f−1

n )n∈I ∈ �2

if and only if (HK(iωn)f−1
n )n∈I ∈ �2. In particular, the capability of output regulation

is an intrinsic property of the plant which is independent of the stabilizing feedback K.
Corollary 4.9. Let A and A+BK, where K ∈ L(Z,U), generate exponentially

stable analytic C0-semigroups.
1. For D = 0, condition (4.17) holds if (H(iωn)−1[1 −Hd(n)]f−1

n )n∈I ∈ �2.
2. For D �= 0, condition (4.17) holds if H(iωn) �= 0 for each n ∈ I and ([1 −

Hd(n)]f−1
n )n∈I ∈ �2.

Proof. The case D = 0 is settled by Theorem 4.8.
Let D �= 0. By exponential stability and Lemma 4.3, for all n ∈ I we have

HK(iωn) �= 0. Since A and A+BK generate exponentially stable analytic semigroups,
we have limn→±∞ HK(iωn) = D �= 0. Consequently, for some δ > 0 we have δ <
infn∈I |HK(iωn)| < supn∈I |HK(iωn)| < ∞, and so∣∣HK(iωn)−1[1 −Hd(n)]f−1

n

∣∣ ≤ 1

δ

∣∣[1 −Hd(n)]f−1
n

∣∣ ∀n ∈ I.(4.19)

This shows that condition (4.17) holds if ([1 −Hd(n)]f−1
n )n∈I ∈ �2.

5. Examples.
Example 5.1. Consider a finite-dimensional exponentially stable SISO plant that

is not subject to any disturbances (i.e., P = 0). Consider reference signals in the

Sobolev space Hγ
per(0, p), γ > 1

2 ; i.e., set I = Z and fn =
√

1 + ω2
n

γ
for each n ∈ Z.

Let N denote the relative degree of the transfer function H(s) of the plant, and assume
that there are no transmission zeros in the set of Fourier frequencies { iωn | n ∈ Z }
of the reference signals.
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By the relative degree condition, H(iωn)−1 is O(|ωn|N ) as n → ±∞. If we define
L as in (4.12) (with K = 0 since the plant is already stable), then it is easy to see
that L ∈ L(WF , U) if γ > N + 1

2 . This implies that for such γ, all reference signals
yref ∈ Hγ

per(0, p) can be asymptotically tracked using the control law u(t) = Lw(t)

by Theorem 4.5. On the other hand, for γ ≤ N + 1
2 , there are reference signals in

Hγ
per(0, p) which cannot be asymptotically tracked by Corollary 4.7.

Example 5.2. Consider the following scalar delay differential equation [19] with
control and observation. Let a > 0, r �= 0, τ1 > τ2 > 0, and

ẋ(t) = −ax(t) − b
[
x(t− τ1) + x(t− τ2)

]
+ u(t),(5.1a)

y(t) = rx(t), t ≥ 0.(5.1b)

Taking initial conditions for x(·) into account, the pair (5.1) can be formulated as a
plant of the form (2.1) in which D = 0 and Udist = 0 [6]. Moreover, it can be shown
(see, e.g., [6, Lemma 4.3.9]) that the transfer function H(s) = CR(s,A)B of the plant
is given by

H(s) =
r

s + a + b(e−sτ1 + e−sτ2)
(5.2)

for those s ∈ C at which the denominator is not equal to zero.
The semigroup generated by A is exponentially stable if and only if s + a +

b(e−sτ1 + e−sτ2) �= 0 for all s ∈ { z ∈ C | �(z) ≥ 0 } [6, Theorem 5.1.7]. Ruan
and Wei [19] give a complete characterization (in terms of a, b, τ1, and τ2) of those
instances in which all roots of equation s + a + b(e−sτ1 + e−sτ2) = 0 have negative
real parts. In their characterization, the parameter b lies on an interval (b−0 , b

+
0 ). We

assume that the semigroup generated by A is exponentially stable. By the above
discussion, then iωn ∈ ρ(A) and H(iωn) �= 0 for every n ∈ Z.

It is evident that for every γ > 3
2 ,

∑∞
n=−∞ |H(iωn)−1|2(1+ω2

n)−γ < ∞, and that

for every γ ≤ 3
2 ,

∑∞
n=−∞ |H(iωn)−1|2(1+ω2

n)−γ = ∞. Consequently, by Corollary 4.7

the system can track all reference signals in Hγ
per(0, p) for γ > 3

2 . On the other hand,

for γ ≤ 3
2 in every Sobolev space Hγ

per(0, p) there are reference signals which cannot
be asymptotically tracked.

Example 5.3. Consider a disturbance-free controlled one-dimensional heat equa-

tion on the interval [0, 1] with Neumann boundary conditions ∂z(x,t)
∂t = ∂2z(x,t)

∂2x +Bu(t),
∂z(0,t)

∂t = ∂z(1,t)
∂t = 0, z(x, 0) = ψ(x). The output is given as y(t) = Cz(t). The

bounded control operator B : C → L2(0, 1) is defined by Bu = b(x)u, with b(x) =
2χ[ 12 ,1]

(x). Here χ[ε,δ](x) denotes the characteristic function of the interval [ε, δ]. The

bounded observation operator C : L2(0, 1) → C is defined by Cψ =
∫ 1

0
c(x)ψ(x)dx,

with c(x) = 2χ[0, 12 ](x).

It is well known how to put this system in the form (2.1) [3, 6, 14]. It can also

be shown [3] that the transfer function of this heat plant is H(s) = 2 sinh(
√
s/2)

s
√
s cosh(

√
s/2)

for

s ∈ ρ(A). Now iωn = i2πn
p ∈ ρ(A) for n �= 0 [3], and iωn is not a transmission zero of

this plant for n �= 0.
Let I = Z \ {0}, and let fn =

√
1 + ω2

n

γ
. Let K be any bounded exponentially

stabilizing feedback for the pair (A,B) (such a K is of course known to exist [3]).
Then by Lemma 4.3, HK(iωn)−1 exists for n �= 0. Let us define L as in (4.12) (with
P = 0 and D = 0). By some elementary calculations [14], in this case HK(iωn)−1 =
H(iωn)−1[I−KR(iωn, A)B] for every n ∈ I. It is easy to see that ‖I−KR(iωn, A)B‖
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is uniformly bounded for n �= 0. Moreover, H(iωn)−1 = O(|ωn|
3
2 ) as n → ±∞.

Consequently (HK(iωn)−1
√

1 + ω2
n

−γ
)n∈I ∈ �2 if γ > 2. By Corollary 4.7, this system

is capable of asymptotically tracking those periodic reference signals in Hγ
per(0, p),

with γ > 2, that lack the constant term in the Fourier series description. More
accurate information on the signals which can be asymptotically tracked could be
obtained by working out the explicit expression for HK(s).

We remark that Byrnes et al. (see sections III and VI of [3]) have thoroughly
studied and simulated output regulation problems for the above heat plant in the
case of constant and sinusoidal reference/disturbance signals. On the other hand,
while in [14] the above system was used to track one p-periodic reference signal, here
we may use Corollary 4.6 to track all sufficiently smooth p-periodic signals which lack
the constant term in the Fourier series description.

Example 5.4. In this example we show that there exist infinite-dimensional sys-
tems which cannot track all reference signals in Hγ

per(0, p) for any γ > 1
2 , even if there

are no transmission zeros in the set of Fourier frequencies of the reference signals.
This is in strong contrast to the finite-dimensional case, as is seen from Example 5.1
above. We refer the reader to [6, 20] for relevant notation and definitions.

Let f ∈ D(R) be a test function such that supp(f) ⊂ [0, a], where 0 < a < ∞. Let
Z = { g ∈ H1(0, a) | g(a) = 0 }, where H1(0, a) denotes the standard Sobolev space.
Since Z is the null space of a continuous linear functional, it is a closed subspace
of H1(0, a). Let A be the generator of the left shift semigroup TA(t) on Z defined
as (TA(t)g)(x) = g(x + t) for x + t ≤ a, and (TA(t)g)(x) = 0 otherwise, for every
g ∈ Z. Clearly TA(t) is exponentially stable [8]. Let C be the point evaluation at
the origin, i.e., Cg = g(0) for every g ∈ Z. It is easy to show (see, e.g., [13]) that
C ∈ L(Z,C). Finally, let Bu = fu for u ∈ C. Then evidently B ∈ L(C, Z). Moreover,
the system (2.1) (with D = 0 and Udist = 0) has f(t) as its impulse response [6]. In
fact, CTA(t)B = [f(x + t)]x=0 = f(t) for every t ≥ 0.

By applying Fourier transforms, we see that H(iω) = F(f)(iω) is a rapidly de-
creasing function. Hence supω∈R(1 + ω2)N |H(iω)| < ∞ for every N ∈ N. For the
purpose of output regulation, we may assume that H(iωn) �= 0 for every n ∈ Z. Oth-
erwise there would exist m ∈ Z such that the regulator equations (3.1) are not solvable
for this m, and hence there would exist an infinite-dimensional system which cannot
track all reference signals in Hγ

per(0, p) for any γ > 1
2 . But by the above, H(iωn)−1

grows faster than every polynomial in n as n → ±∞. By Corollary 4.7 and the fact
that L (if it exists in L(WF ,C)) is unique in this case, for arbitrary γ > 1

2 there al-
ways exists yref ∈ Hγ

per(0, p) which this system cannot asymptotically track using the
control law u(t) = Lw(t). In other words, if the system can asymptotically track all
signals in H(ωn, fn), then H(ωn, fn) ⊂ C∞(R) (the space of infinitely smooth func-
tions on R). Moreover, the situation cannot be remedied using an auxiliary stabilizing
feedback Kz(t) by Theorem 4.8.

6. Conclusions. In this article we have studied regulation of periodic signals
with a feedforward controller. We have constructed a scale of Sobolev-type spaces
H(ωn, fn) for the reference signals. This construction played a key role as we showed
that solvability of the regulation problem is equivalent to solvability of the regulator
equations and a decomposability condition. In the case of SISO systems, assuming
that the transfer function of the stabilized plant is invertible on the spectrum of
the exosystem, we have completely characterized the reference signals which can be
asymptotically tracked in the presence of disturbances.

Possible directions for future research include the design of a feedback controller
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with robustness properties and the study of the internal model principle for infinite-
dimensional exogenous systems. Additionally, the idea introduced in this article that
the exogenous system is in a sense equivalent to the reference function space should
be useful in generalizing our results for MIMO systems and reference functions which
are not periodic.

Acknowledgments. The authors thank the reviewers for their many useful com-
ments for improving the original manuscript.
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Abstract. In this paper we study coupled matrix equations, which are encountered in many
systems and control applications. First, we extend the well-known Jacobi and Gauss–Seidel iterations
and present a large family of iterative methods, which are then applied to develop iterative solutions
to coupled Sylvester matrix equations. The basic idea is to regard the unknown matrices to be
solved as parameters of a system to be identified and to obtain the iterative solutions by applying a
hierarchical identification principle. Next, we generalize the Sylvester equations to general coupled
matrix equations, and propose a gradient-based iterative algorithm for the solutions, using a block-
matrix inner product—the star (�) product; we prove that the iterative algorithm always converges
to the (unique) solutions for any initial values. One advantage of the algorithms proposed is that
they require less storage space in implementation than existing numerical methods. Finally, we test
the algorithms and show their effectiveness using numerical examples.

Key words. matrix equations, gradient search principle, Jacobi iteration, Gauss–Seidel itera-
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1. Introduction. In stability analysis of control systems and robust control [6],
we often need to solve (coupled) matrix equations of the following forms:

• Continuous-time (CT) Sylvester equation: AX + XB = C.
• Discrete-time (DT) Sylvester equation: AXBT + X = C.
• Generalized Sylvester matrix equation: AXBT + CXDT = F .
• Coupled Sylvester matrix equations: AX +Y B = C and DX +Y E = F .

Here, X and Y are unknown matrices in Rm×n; A,B,C, etc. represent constant
(coefficient) matrices of appropriate dimensions (to be specified later).

The conventional method of solution is to expand the matrix equations to form
a set of equations of the form Ax = b by means of the Kronecker product. However,
the dimensions of the associated matrix A are very high when m and n are large.
Computational difficulties arise because excessive computer memory is required for
computation and inversion of large matrices of size (mn) × (mn) or even (2mn) ×
(2mn).

Other methods are based on matrix transformations into forms for which solutions
may be readily computed; examples of such forms include the Jordan canonical form
[17], the companion form [4, 3], and the Hessenberg–Schur form [2, 15]. In this
area, Chu gave an algorithm for solving generalized/coupled Sylvester equations [7];
Syrmos, Misra, and Aripirala [29], Stykel [28], and Takaba, Morihhira, and Katayama
[30] discussed numerical solutions to generalized coupled Lyapunov equations; many
authors studied least squares solutions of matrix equations of the form AXB∗ +
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CY D∗ = E based on the singular value decomposition of coefficient matrices [14, 1,
32, 26]; Jonsson and K̊agström proposed recursive block algorithms for solving CT
Sylvester equations, CT Lyapunov equations, and coupled Sylvester matrix equations
[19, 20]; and finally, Borno presented a parallel algorithm for solving the coupled
Lyapunov equations [5].

However, the above-mentioned algorithms all require computing some additional
matrix transformation/decomposition; moreover, they are not suitable for more gen-
eral coupled matrix equations of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

A11X1B11 + A12X2B12 + · · · + A1pXpB1p = C1,
A21X1B21 + A22X2B22 + · · · + A2pXpB2p = C2,

...
Ap1X1Bp1 + Ap2X2Bp2 + · · · + AppXpBpp = Cp.

(1)

Here, Xj ∈ Rm×n are the unknown matrices to be solved. For such coupled matrix
equations, the above-mentioned methods require dealing with matrices whose dimen-
sions grow quickly as m, n, and p increase—a major disadvantage. We would like to
comment that the coupled matrix equations in (1) are quite general and include many
matrix equations, e.g., the ones mentioned above [29, 28] as special cases; in partic-
ular, they also encompass generalized (coupled) Lyapunov and Sylvester equations
which occur in the study of linear jump parameter systems [5].

Iterative algorithms are popular in the areas of matrix algebra and system iden-
tification [16, 22, 24, 25]. For example, Starke and Niethammer reported an iterative
method for solutions of CT Sylvester equations by using the SOR (successive over-
relaxation) technique [27], and Mukaidani, Xu, and Mizukami discussed an iterative
algorithm for generalized algebraic Lyapunov equations [24]. In our work, we focus on
numerical solutions for coupled Sylvester matrix equations and general coupled ma-
trix equations in (1), and we present the gradient-based iterative algorithms by using
the gradient search principle and the hierarchical identification principle. We mention
that least squares iterative algorithms were given in [9] for coupled matrix equations
and gradient-based iterative algorithms in [10] for noncoupled matrix equations.

For matrix equations, exact solutions are important, but it is often not necessary
to compute exact solutions for many applications such as stability analysis in con-
trol systems, and approximate solutions are sufficient. Also, if parameters in system
matrices contain uncertainty, it is not possible to obtain exact solutions for robust
stability analysis [9, 10, 13, 24, 23, 21].

The paper is organized as follows. In section 2, we extend the well-known Jacobi
and Gauss–Seidel iterations and present a large family of iterative methods for linear
equations. In sections 3 and 4, we derive gradient-based iterative algorithms for, re-
spectively, coupled Sylvester matrix equations and general coupled matrix equations,
and we study the convergence properties of the algorithms. In section 5 we present
two examples to illustrate the effectiveness of the algorithms proposed in the paper.
Finally, we offer some concluding remarks in section 6.

2. A large family of iterative methods. Consider the equation

Ax = b, A ∈ Rn×n, b ∈ Rn.(2)

Here, A = [aij ] is a full-rank matrix with nonzero diagonal elements and x ∈ Rn is an
unknown vector to be computed. Letting D denote the diagonal part, L and U the
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strictly lower and upper triangular parts of A, we have

D = diag[a11, a22, . . . , ann] ∈ Rn×n,

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0

a21 0
. . .

...

a31 a32 0
. . .

...
...

. . .
. . . 0

an1 an2 · · · an,n−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×n,

U =

⎡⎢⎢⎢⎢⎢⎢⎣

0 a12 a13 · · · a1n

0 0 a23 a2n

...
. . .

. . .
. . .

...
...

. . .
. . . an−1,n

0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n.

The matrices just defined satisfy L + D + U = A. In this case both the Jacobi and
Gauss–Seidel iterations [16] can be applied to give an iterative solution x(k) of x in
the form of

Mx(k) = Nx(k − 1) + b, k = 1, 2, 3, . . . ;

for the Jacobi method, M = D and N = −(L + U); for the Gauss–Seidel method,
M = L + D and N = −U .

The main drawback of the Jacobi and Gauss–Seidel iterations is that they do not
guarantee that x(k) converges to the exact solution x = A−1b. This inspires us to
study new iterative methods.

Let Gk ∈ Rn×n be a matrix to be determined and let μ > 0 be the step size or
the convergence factor. We present a large family of iterative methods as follows:

x(k) = x(k − 1) + μGk[b−Ax(k − 1)], k = 1, 2, 3, . . . .(3)

This family includes the Jacobi and Gauss–Seidel iterations as special cases. For
example, when Gk = D−1 and μ = 1, we get the Jacobi method; when Gk = (L+D)−1

and μ = 1, we obtain the Gauss–Seidel method.
Theorem 1. For the iterative algorithm in (3), assume system (2) has a unique

solution. Then the iterative solution x(k) in (3) converges to the exact solution x
(i.e., limk→∞ x(k) = x) for any initial values x(0) if there exists ε > 0 independent
of k such that

μ(GkA)T(GkA) + εI ≤ (GkA)T + (GkA) for all k.(4)

Here I represents an identity matrix of appropriate dimensions. In fact, if (GkA)T +
(GkA) is positive definite, a conservative choice of the convergence factor can be given
by

0 < μ <
λmin[(GkA)T + (GkA)]

λmax[(GkA)T(GkA)]
for all k,

where λmax(λmin) denotes the maximum (resp., minimum) eigenvalue.



2272 FENG DING AND TONGWEN CHEN

Note that for time-invariant systems of the form x(k) = Hx(k − 1), H ∈ Rn×n;
the fact that all eigenvalues of H are inside the unit circle guarantees the convergence
of x(k) to zero as k → ∞. But for time-varying systems of the form x(k) = Hkx(k −
1), Hk ∈ Rn×n, such a conclusion is no longer true because the condition that all
the eigenvalues of Hk are inside the unit circle is neither sufficient nor necessary for
stability—see the appendix for some stability examples. In the following, we give a
proof of Theorem 1 based on the Lyapunov stability theorem.

Proof. Define the error vector

x̃(k) = x(k) − x.

Substituting (3) into the above equation and using (2) yield

x̃(k) = x̃(k − 1) + μGk [Ax−Ax(k − 1)]

= x̃(k − 1) − μGkAx̃(k − 1)

= [I − μGkA]x̃(k − 1).

Define a nonnegative definite Lyapunov function

S(k) = x̃T(k)x̃(k).

Hence

S(k) = x̃T(k − 1)[I − μ(GkA)T][I − μGkA]x̃(k − 1)

= x̃T(k − 1)x̃(k − 1) − μx̃T(k − 1)[GkA + (GkA)T − μ(GkA)T(GkA)]x̃(k − 1)

= S(k − 1) − μx̃T(k − 1)[GkA + (GkA)T − μ(GkA)T(GkA)]x̃(k − 1).

Using (4), it is not difficult to get

ΔS(k) := S(k) − S(k − 1)

= −μx̃T(k − 1)[GkA + (GkA)T − μ(GkA)T(GkA)]x̃(k − 1)

≤ −μεx̃T(k − 1)x̃(k − 1) ≤ 0.

So we have S(k) → 0 as k → ∞. This proves Theorem 1.
It is well known that if all eigenvalues of (I − D−1A) are inside the unit circle,

the Jacobi iterative solution will converge to the exact solution, and if all eigenvalues
of [I − (L+D)−1A] are inside the unit circle, the Gauss–Seidel solution will converge
to the exact solution. Thus introducing a convergence factor μ in the Jacobi and the
Gauss–Seidel iterations can relax their convergence conditions because for appropriate
values of μ, (I − μD−1A) and [I − μ(L+D)−1A] may have all eigenvalues inside the
unit circle. We can also draw the following corollaries from Theorem 1.

Corollary 1. If we take Gk = D−1, then the Jacobi iteration with the conver-
gence factor μ,

x(k) = x(k − 1) + μD−1[b−Ax(k − 1)],

yields limk→∞ x(k) = x if ATD−1 + D−1A is a positive-definite matrix, and

0 < μ <
λmin[ATD−1 + D−1A]

λmax[ATD−2A]
.
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Corollary 2. If we take Gk = (L+D)−1, then the Gauss–Seidel iteration with
the convergence factor μ,

x(k) = x(k − 1) + μ(L + D)−1[b−Ax(k − 1)],

also yields limk→∞ x(k) = x if AT(L + D)−T + (L + D)−1A > 0, and

0 < μ <
λmin[AT(L + D)−T + (L + D)−1A]

λmax[AT(L + D)−T(L + D)−1A]
.

Corollary 3. If we take Gk = AT, then the gradient iterative algorithm [9],{
x(k) = x(k − 1) + μAT[b−Ax(k − 1)], k = 1, 2, 3, . . . ,
0 < μ < 2

λmax[ATA] or 0 < μ < 2
‖A‖2 ,

(5)

yields limk→∞ x(k) = x. Here, ‖X‖2 = tr[XXT].
Corollary 4. If A is a nonsquare m × n full column-rank matrix and we

take Gk = (ATA)−1AT, then the following least squares iterative algorithm leads to
limk→∞ x(k) = x [9]:

x(k) = x(k − 1) + μ(ATA)−1AT[b−Ax(k − 1)], 0 < μ < 2.

Later we will use the iterative algorithm in (5) to develop iteration techniques for
general coupled matrix equations.

3. Coupled Sylvester equations. In this section, we apply a hierarchical iden-
tification principle to solve the coupled Sylvester matrix equation{

AX + Y B = C,
DX + Y E = F.

(6)

Here A, D ∈ Rm×m, B, E ∈ Rn×n, and C, F ∈ Rm×n are given constant matrices;
X, Y ∈ Rm×n are the unknown matrices to be solved.

First, let us introduce some notation. In is the n × n identity matrix. For two
matrices M and N , M ⊗ N is their Kronecker product. For two m × n matrices X
and Y with

X = [ x1, x2, . . . , xn ] ∈ Rm×n,

col[X] is an mn-dimensional vector formed by columns of X,

col[X] =

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ ,

and

col[X,Y ] =

[
col[X]
col[Y ]

]
∈ R2mn.

The following result is well known.
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Lemma 1. System (6) has a unique solution

col[X,Y ] = S−1
2 col[C,F ](7)

if and only if the matrix

S2 :=

[
In ⊗A BT ⊗ Im
In ⊗D ET ⊗ Im

]
∈ R(2mn)×(2mn)

is nonsingular and the corresponding homogeneous matrix equation (AX + Y B =
0, DX + Y E = 0) has a unique solution: X = Y = 0.

According to the hierarchical identification principle [11, 12], system (6) is de-
composed into two subsystems and then, based on the gradient search principle, the
parameters of each subsystem are identified. In this way we derive the iterative algo-
rithm. The details are as follows.

Define two matrices

b1 :=

[
C − Y B
F − Y E

]
,(8)

b2 := [C −AX, F −DX].(9)

Then from (6), we obtain two fictitious subsystems

S1 :

[
A
D

]
X = b1,

S2 : Y [B, E] = b2.

Let X(k) and Y (k) be the estimates or iterative solutions of X and Y , associated
with subsystems S1 and S2. Then using the gradient search principle or applying
Corollary 3 to S1 and S2 leads to the following recursive equations:

X(k) = X(k − 1) + μ

[
A
D

]T {
b1 −

[
A
D

]
X(k − 1)

}
,(10)

Y (k) = Y (k − 1) + μ{b2 − Y (k − 1)[B, E]}[B, E]T.(11)

Here, μ > 0 is the iterative step size or convergence factor to be given later. Substi-
tuting (8) into (10) and (9) into (11) gives

X(k) = X(k − 1) + μ

[
A
D

]T {[
C − Y B
F − Y E

]
−
[

A
D

]
X(k − 1)

}
= X(k − 1) + μ

[
A
D

]T [
C − Y B −AX(k − 1)
F − Y E −DX(k − 1)

]
,(12)

Y (k) = Y (k − 1) + μ{[C −AX, F −DX] − Y (k − 1)[B, E]}[B, E]T

= Y (k − 1) + μ[C −AX − Y (k − 1)B, F −DX − Y (k − 1)E][B, E]T.(13)

Because the expressions on the right-hand sides of (12) and (13) contain the unknown
parameter matrices Y and X, it is impossible to realize the algorithm in (12) and
(13). According to the hierarchical identification principle, the unknown variables
Y in (12) and X in (13) are replaced by their estimates Y (k − 1) and X(k − 1) at
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time k − 1. Hence, we obtain the iterative solutions X(k) and Y (k) for the coupled
Sylvester equation in (6):

X(k) = X(k − 1)

+μ

[
A
D

]T [
C −AX(k − 1) − Y (k − 1)B
F −DX(k − 1) − Y (k − 1)E

]
,(14)

Y (k) = Y (k − 1)

+μ[C −AX(k − 1) − Y (k − 1)B, F −DX(k − 1) − Y (k − 1)E][B, E]T.(15)

The convergence factor may be taken to satisfy

0 < μ <
2

λmax[ATA] + λmax[DTD] + λmax[BBT] + λmax[EET]
=: μ0(16)

or

0 < μ <
2

‖A‖2 + ‖B‖2 + ‖D‖2 + ‖E‖2
.

To initialize the algorithm, we take X(0) = Y (0) = 0 or some small real matrix,
e.g., X(0) = Y (0) = 10−61m×n with 1m×n being an m × n matrix whose elements
are all 1.

Theorem 2. If the coupled Sylvester equation in (6) has unique solutions X
and Y , then for any initial values, the iterative solutions X(k) and Y (k) given by the
algorithm in (14)–(15) converge to the solutions X and Y :

lim
k→∞

X(k) = X, lim
k→∞

Y (k) = Y.

The proof of Theorem 2 is omitted here but can be given later with the proof of
Theorem 3.

In order to enhance the convergence properties, normally we should choose a large
convergence factor μ which leads to a fast convergence rate of X(k) to X and Y (k) to
Y ; but too large μ may violate the condition of this theorem (also see (23)). Usually,
there exists some best μ so that a fast convergence rate can be achieved—see the
examples to be studied later.

4. General coupled matrix equations. In this section, we will generalize the
Sylvester system of equations and introduce the block-matrix inner product to develop
iterative solutions for a more general coupled matrix equations of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

A11X1B11 + A12X2B12 + · · · + A1pXpB1p = C1,
A21X1B21 + A22X2B22 + · · · + A2pXpB2p = C2,

...
Ap1X1Bp1 + Ap2X2Bp2 + · · · + AppXpBpp = Cp.

(17)

Here, Aij ∈ Rm×m, Bij ∈ Rn×n, and Ci ∈ Rm×n are given constant matrices;
Xi ∈ Rm×n are the unknown matrices to be determined.

Here, we succinctly express the iterative solutions by using the block-matrix inner
product [9]—the star product, denoted by �—which differs from the Hadamard (inner)
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product [18, 8, 31] or the general matrix multiplication. Let

X =

⎡⎢⎢⎢⎣
X1

X2

...
Xp

⎤⎥⎥⎥⎦ ∈ R(mp)×n, Y =

⎡⎢⎢⎢⎣
Y1

Y2

...
Yp

⎤⎥⎥⎥⎦ ∈ R(np)×m, Xi, Y
T
i ∈ Rm×n,

SA =

⎡⎢⎢⎢⎣
A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

...
Ap1 Ap2 · · · App

⎤⎥⎥⎥⎦ , SB =

⎡⎢⎢⎢⎣
B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...
Bp1 Bp2 · · · Bpp

⎤⎥⎥⎥⎦ ,

SBT =

⎡⎢⎢⎢⎣
BT

11 BT
12 · · · BT

1p

BT
21 BT

22 · · · BT
2p

...
...

...
BT

p1 BT
p2 · · · BT

pp

⎤⎥⎥⎥⎦ ,

Sp =

⎡⎢⎢⎢⎣
BT

11 ⊗A11 BT
12 ⊗A12 · · · BT

1p ⊗A1p

BT
21 ⊗A21 BT

22 ⊗A22 · · · BT
2p ⊗A2p

...
...

...
BT

p1 ⊗Ap1 BT
p2 ⊗Ap2 · · · BT

pp ⊗App

⎤⎥⎥⎥⎦ .

Then the block-matrix star product is defined as

X � Y =

⎡⎢⎢⎢⎣
X1

X2

...
Xp

⎤⎥⎥⎥⎦ �

⎡⎢⎢⎢⎣
Y1

Y2

...
Yp

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X1Y1

X2Y2

...
XpYp

⎤⎥⎥⎥⎦ ,

X � SB =

⎡⎢⎢⎢⎣
X1B11 X1B12 · · · X1B1p

X2B21 X2B22 · · · X2B2p

...
...

...
XpBp1 XpBp2 · · · XpBpp

⎤⎥⎥⎥⎦ .

The definitions of SA � X and SA � SB can be found in [9]. In the above definitions,
we assume that the dimensions of matrices are compatible. The block matrix star
Kronecker product, denoted by �, is defined by

SBT � SA = Sp .

For the Hadamard product (denoted by ◦), we have X ◦ Y = Y ◦X, but X ◦ SA

is not defined. For the star product, taking into account the dimension compatibility,
we have AB�C = A(B�C) 	= (AB)�C (the multiplier and multiplicand matrices are
not necessarily of the same size); in general, A�B 	= B �A, A�B �C = (A�B) �C 	=
A � (B � C).

Let Imp×m = [Im, Im, . . . , Im]T ∈ R(mp)×m. Then the star product has the
following properties:

IT
mp×mX � Y = [X1, X2, . . . , Xp]Y =

p∑
i=1

XiYi,
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tr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩XT
i

⎡⎢⎢⎢⎣
A1i

A2i

...
Api

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

C̃1

C̃2

...

C̃p

⎤⎥⎥⎥⎦ �

⎡⎢⎢⎢⎣
BT

1i

BT
2i
...

BT
pi

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = tr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
A1iXiB1i

A2iXiB2i

...
ApiXiBpi

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

C̃1

C̃2

...

C̃p

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣
A1i

A2i

...
Api

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

C̃1

C̃2

...

C̃p

⎤⎥⎥⎥⎦ �

⎡⎢⎢⎢⎣
BT

1i

BT
2i
...

BT
pi

⎤⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥∥

2

≤
p∑

j=1

‖AjiBji‖2

∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣
C̃1

C̃2

...

C̃p

⎤⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

.

Lemma 2. Equation (17) has unique solutions Xi if and only if the matrix Sp is
nonsingular; in this case, the unique solutions are given by

col[X1, X2, . . . , Xp] = S−1
p col[C1, C2, . . . , Cp].

and if Ci = 0 (i = 1, 2, · · · , p), the corresponding homogeneous equation in (17) has
unique solutions Xi = 0 (i = 1, 2, . . . , p).

The iterative solution for the general coupled matrix equation in (17) is obtained
by generalizing that for the coupled Sylvester equation in (6); to do this, we first
consider the coupled Sylvester equation in (6) in the more general form{

AXIB + IAY B = C,
DXIE + IDY E = F,

whose iterative solution in (14)–(15) can be expressed as

X(k) = X(k − 1)

+μ

[
A
D

]T {[
C −AX(k − 1)IB − IAY (k − 1)B
F −DX(k − 1)IE − IDY (k − 1)E

]
� [IB , IE ]T

}
,(18)

Y (k) = Y (k − 1)

+μ

[
IA
ID

]T {[
C −AX(k − 1)IE − IDY (k − 1)B
F −DX(k − 1)IE − IDY (k − 1)E

]
� [B, E]T

}
.(19)

If IA, IB , ID, and IE are identity matrices of appropriate dimensions, then the algo-
rithm in (18) and (19) is equivalent to the algorithm given in (14) and (15).

Let Xi(k) be the estimates or iterative solutions of Xi. For (17), we propose the
following iterative algorithm to compute the solutions Xi (i = 1, 2, . . . , p):

Xi(k) = Xi(k − 1)

+μ

⎡⎢⎢⎢⎣
A1i

A2i

...
Api

⎤⎥⎥⎥⎦
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 −
p∑

j=1

A1jXj(k − 1)B1j

C2 −
p∑

j=1

A2jXj(k − 1)B2j

...

Cp −
p∑

j=1

ApjXj(k − 1)Bpj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� [B1i, B2i, . . . , Bpi]

T,(20)

0 < μ < 2

⎛⎝ p∑
i=1

p∑
j=1

‖AijBij‖2

⎞⎠−1

=: μ0.(21)
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Theorem 3. If the matrix equation in (17) has unique solutions Xi, i =
1, 2, . . . , p, then the iterative solutions Xi(k) given by the algorithm in (20) and
(21) converge to the solutions Xi for any initial value:

lim
k→∞

Xi(k) = Xi, i = 1, 2, . . . , p.

Proof. Define the estimation error matrices

X̃i(k) = Xi(k) −Xi.

Let

⎡⎢⎢⎢⎣
C̃1(k)

C̃2(k)
...

C̃p(k)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∑
j=1

A1jX̃j(k − 1)B1j

p∑
j=1

A2jX̃j(k − 1)B2j

...
p∑

j=1

ApjX̃j(k − 1)Bpj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By using (17) and (20), it is not difficult to get

X̃i(k) = X̃i(k − 1) − μ

⎡⎢⎢⎢⎣
A1i

A2i

...
Api

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

C̃1(k)

C̃2(k)
...

C̃p(k)

⎤⎥⎥⎥⎦ � [B1i, B2i, . . . , Bpi]
T.

Taking the norm on the above equation and using the star product properties, we
have

‖X̃i(k)‖2 ≤ ‖X̃i(k − 1)‖2 − 2μ tr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
A1iX̃i(k − 1)B1i

A2iX̃i(k − 1)B2i

...

ApiX̃i(k − 1)Bpi

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

C̃1(k)

C̃2(k)
...

C̃p(k)

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+μ2

p∑
j=1

‖AjiBji‖2

∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣
C̃1(k)

C̃2(k)
...

C̃p(k)

⎤⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

.(22)

Define a nonnegative definite function:

V (k) =

p∑
i=1

‖X̃i(k)‖2.
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By using (22), it follows that

V (k) ≤ V (k − 1) − 2μ

∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣
C̃1(k)

C̃2(k)
...

C̃p(k)

⎤⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

+ μ2

p∑
i=1

p∑
j=1

‖AjiBji‖2

∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣
C̃1(k)

C̃2(k)
...

C̃p(k)

⎤⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

= V (k − 1) − μ

⎛⎝2 − μ

p∑
i=1

p∑
j=1

‖AijBij‖2

⎞⎠ p∑
i=1

‖C̃i(k)‖2

≤ V (0) − μ

⎛⎝2 − μ

p∑
i=1

p∑
j=1

‖AijBij‖2

⎞⎠ ∞∑
l=1

p∑
i=1

‖C̃i(l)‖2.(23)

If the convergence factor μ is chosen to satisfy

0 < μ < 2

⎛⎝ p∑
i=1

p∑
j=1

‖AijBij‖2

⎞⎠−1

,

then

∞∑
k=1

p∑
i=1

‖C̃i(k)‖2 < ∞.

It follows that as k → ∞,

p∑
i=1

‖C̃i(k)‖2 =

p∑
j=1

‖AijX̃j(k − 1)Bij‖2 = 0

or

p∑
j=1

AijX̃j(k − 1)Bij → 0, i = 1, 2, . . . , p.

According to Lemma 2, this complete the proof of Theorem 3.

Let

X(k) =

⎡⎢⎢⎢⎣
X1(k)
X2(k)

...
Xp(k)

⎤⎥⎥⎥⎦ ∈ R(mp)×n, C =

⎡⎢⎢⎢⎣
C1

C2

...
Cp

⎤⎥⎥⎥⎦ ∈ R(mp)×n.

Then (17) can be simply expressed as

SA � X � SBInp×n = C.
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By using the star product properties, (20) can be written in the following more com-
pact form:

X(k) = X(k − 1) + μST
A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 −
p∑

j=1

A1jXj(k − 1)B1j

C2 −
p∑

j=1

A2jXj(k − 1)B2j

...

Cp −
p∑

j=1

ApjXj(k − 1)Bpj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� SBT

= X(k − 1) + μST
A[C − SA � X(k − 1) � SBInp×n] � SBT .(24)

The convergence factor in the algorithm in (20) or (24) may also be taken as

0 < μ < 2

⎧⎨⎩
p∑

i=1

p∑
j=1

λmax[AijA
T
ij ]λmax[BijB

T
ij ]

⎫⎬⎭
−1

.

5. Examples. In this section, we present two examples to illustrate the perfor-
mance of the proposed algorithms.

Example 1. Suppose that the coupled Sylvester matrix equations are AX +Y B =
C and DX + Y E = F with

A =

[
2.00 1.00

−1.00 2.00

]
, B =

[
1.00 −0.20
0.20 1.00

]
, C =

[
13.20 10.60
0.60 8.40

]
,

D =

[
−2.00 −0.50

0.50 2.00

]
, E =

[
−1.00 −3.00

2.00 −4.00

]
, F =

[
−9.50 −18.00
16.00 3.50

]
.

Then the unique solutions of X and Y from (7) are

X =

[
x11 x12

x21 x22

]
=

[
4.00 3.00
3.00 4.00

]
,

Y =

[
y11 y12

y21 y22

]
=

[
2.00 1.00

−2.00 3.00

]
.

Taking X(0) = Y (0) = 10−612×2, we apply the algorithm in (14) and (15) to
compute X(k) and Y (k). The iterative solutions X(k) and Y (k) are shown in Table 1,
where

δ =

√
‖X(k) −X‖2 + ‖Y (k) − Y ‖2

‖X‖2 + ‖Y ‖2

is the relative iteration error. The errors δ with different convergence factors μ are
shown in Figure 1. From Table 1 and Figure 1, it is clear that the errors are be-
coming smaller and smaller and go to zero as k increases. This indicates that the
proposed algorithm is effective. The effect of changing the convergence factor μ is
also illustrated in Figure 1. We see that for μ = 1/101.16, 1/38.47, 1/30, 1/20, the
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Table 1

The iterative solutions (μ = 1/20.00).

k x11 x12 x21 x22 y11 y12 y21 y22 δ (%)
2 3.49715 1.07818 3.22924 2.30096 2.17503 0.26353 −1.60310 2.30842 34.50146582
4 3.74044 1.70293 3.36547 3.08953 2.26460 0.70926 −1.88191 2.79275 20.73545753
6 3.81220 2.11537 3.25459 3.46987 2.21517 0.90624 −1.98444 2.91727 13.42666154
8 3.86856 2.39509 3.15907 3.67547 2.16522 0.98697 −2.02647 2.95577 8.94369709
10 3.91045 2.58580 3.09671 3.79372 2.12397 1.01811 −2.04035 2.97133 6.05894632
12 3.93954 2.71596 3.05859 3.86493 2.09134 1.02761 −2.04137 2.97985 4.15211551
14 3.95922 2.80489 3.03571 3.90943 2.06629 1.02779 −2.03709 2.98556 2.86862687
16 3.97245 2.86574 3.02197 3.93810 2.04752 1.02436 −2.03112 2.98970 1.99358825
18 3.98135 2.90743 3.01365 3.95705 2.03373 1.01995 −2.02514 2.99275 1.39157217
20 3.98735 2.93606 3.00856 3.96983 2.02375 1.01570 −2.01982 2.99498 0.97468241
22 3.99142 2.95576 3.00542 3.97860 2.01661 1.01205 −2.01537 2.99658 0.68460255
24 3.99418 2.96934 3.00345 3.98471 2.01155 1.00910 −2.01178 2.99770 0.48201790
26 3.99605 2.97871 3.00220 3.98901 2.00799 1.00679 −2.00895 2.99849 0.34012071
28 3.99733 2.98520 3.00141 3.99207 2.00550 1.00503 −2.00676 2.99902 0.24048339
30 3.99820 2.98969 3.00091 3.99426 2.00377 1.00371 −2.00507 2.99938 0.17036544
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Fig. 1. The relative error δ versus k. μ = [‖A‖2 + ‖B‖2 + ‖D‖2 + ‖E‖2]−1 = 1/101.16,
μ0 = 2/38.47, μ = {λmax[ATA] + λmax[DTD] + λmax[BBT] + λmax[EET]}−1 = 1/38.47.

larger the convergence factor μ is, the faster the convergence rate of the algorithm
(or, the smaller the iteration error). However, if we keep enlarging μ, e.g., μ = 1/18,
the iteration error will become larger. Thus, there exists a best convergence factor
such that the fastest convergence rate is obtained. This is still a topic left for the
future.

Example 2. Suppose that the coupled matrix equations are

A11X1B11 + A12X2B12 = C1,
A21X1B21 + A22X2B22 = C2,
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Fig. 2. The relative error δ versus k. μ = (
∑2

i=1

∑2
j=1 ‖AijBij‖2)−1 = 1/357.5, μ0 = 2/239.7,

μ = {
∑2

i=1

∑2
j=1 λmax[AT

ijAij ]λmax[BT
ijBij ]}−1 = 1/239.7.

where

A11 =

[
3.00 −2.00

−1.00 1.00

]
, B11 =

[
1.00 1.00

−1.00 −2.00

]
, A12 =

[
2.00 1.00
1.00 −2.00

]
,

B12 =

[
1.00 −2.00

−1.00 2.00

]
, C1 =

[
1.30 −3.60

−2.10 −1.30

]
,

A21 =

[
1.00 2.00
1.50 −1.00

]
, B21 =

[
2.00 −1.00
1.00 2.00

]
, A22 =

[
1.00 −2.00
2.00 −1.00

]
,

B22 =

[
1.00 −1.00

−2.00 1.00

]
, C2 =

[
17.40 24.10
12.55 2.20

]
.

Taking X1(0) = X2(0) = 10−612×2, we apply the algorithm in (20)–(21) to compute
X1(k) and X2(k). The iterative errors δ with different convergence factors μ are
shown in Figure 2.

From Figure 2, we conclude that as μ increases from μ = 1/357.5, 1/239.7, 1/150
to 1/75, the iteration errors become smaller and smaller and eventually go to zero.
This confirms the proposed theorems. In simulation, as we gradually enlarge μ, e.g.,
when μ > 1/70, the errors become larger, and the algorithm diverges for μ > 1/65.

6. Conclusions. Gradient iterative algorithms for solving Sylvester coupled ma-
trix equations and general coupled matrix equations are studied by using the gradient
search principle. The analysis indicates that, as in the least squares iterative algo-
rithms in [9], the gradient iterative algorithms can achieve good convergence properties
for any initial values. The family of iterative methods proposed for linear (coupled)
matrix equations can be extended to study iterative solutions of other linear or non-
linear matrix equations, e.g., Riccati equations.

Appendix. Examples on stability. For a time-varying system,

x(k) = Hkx(k − 1), Hk ∈ Rn×n, x(0) = x0 	= 0,(25)
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even if Hk is stable for any k, i.e., all eigenvalues of Hk are inside the unit circle, there
is no guarantee that system (25) is stable, implying x(k) → 0. For example, take

Hk =
1

8

[
0 9 + (−1)k7

9 − (−1)k7 0

]
.

The two eigenvalues of Hk, ± 1√
2
, are inside the unit circle, but the transition matrix

of the system is given by

Lk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
0 2−2k

2k 0

]
, k is odd,

[
2k 0
0 2−2k

]
, k is even.

Clearly, the system x(k) = Hkx(k − 1) is unstable.
For another example, take

Hk =

[
1 − (−1)k 0

0 1 + (−1)k

]
or

Hk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
2 0
0 0

]
, k is odd,

[
0 0
0 2

]
, k is even.

One eigenvalue of Hk is 2, outside the unit circle, but the system x(k) = Hkx(k − 1)
is exponentially stable.
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Abstract. A minimal time problem with linear dynamics and convex target is considered. It is
shown, essentially, that the epigraph of the minimal time function T (·) is ϕ-convex (i.e., it satisfies a
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1. Introduction. The regularity of the minimal time function T (·) is a widely
studied topic (see, e.g., [5, 24, 6, 7, 8, 25, 3] and references therein), under different
viewpoints. In particular, it is proved in [7] that with linear dynamics and convex
target, T (·) is semiconvex provided the Petrov condition holds. The latter is equivalent
to the Lipschitz continuity of T (·) near the target and thus is a type of strong local
controllability condition. Since T (·) is not necessarily convex (see p. 100 in [14]) even
for a point-target, this is a natural regularity class for a linear minimum time problem.

Classical examples, however, exhibit minimal time functions that are not locally
Lipschitz even though the system is small time locally controllable (see, e.g., [3, Ex-
ample 2.7, p. 242]). Therefore, it is natural to seek conditions that identify regularity
properties of T (·) in situations where T (·) is not locally Lipschitz. This motivated
the results in [12], where a class of lower semicontinuous functions was studied whose
epigraph satisfy an external sphere condition with locally uniform radius; this prop-
erty, for general sets, is often referred to as positive reach [16], ϕ-convexity [15], or
proximal smoothness [11]. Such functions are semiconvex if and only if they are lo-
cally Lipschitz and therefore are a good candidate to extend the result in [7] under
more general controllability conditions. In [12], functions with ϕ-convex epigraph
were shown to have several fine properties. In particular, a function in this class
is of locally bounded variation; moreover, a.e. x admits a neighborhood where the
function is indeed semiconvex, and as a consequence it is twice differentiable almost
everywhere.

It will be shown below that the epigraph of T (·) is ϕ-convex, under suitable
controllability assumptions. More precisely, we prove that for a linear control problem
with a convex target S, the epigraph of T (·) is ϕ-convex (Theorem 3.7), provided T
is continuous. Our assumptions are satisfied in several situations, including, e.g., the

∗Received by the editors April 27, 2005; accepted for publication (in revised form) September
21, 2005; published electronically February 3, 2006. Work partially supported by MIUR project
“Viscosity, metric, and control theoretic methods for nonlinear partial differential equations.”

http://www.siam.org/journals/sicon/44-6/63007.html
†Dipartimento di Matematica Pura e Applicata, Università di Padova, via Belzoni 7, 35131
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case where the system fulfils the Kalman rank condition and the target is the origin.
An example where small time controllability does not hold, yet is covered by Theorem
3.7, is presented in section 2.4.

Our analysis depends on a representation formula for the normal cone to sublevel
sets of T , which is proved using simple tools of convex analysis together with Pon-
tryagin’s maximum principle. The techniques used here are essentially linear, due to
the repeated use of explicit formulas. The main difficulty to handle is the possibil-
ity of having points where both the subdifferential and the superdifferential of T are
empty, due to the lack of Lipschitz continuity. Finally, the regularity results in [12]
are applied to T (·), and the corresponding properties of T are listed in Corollary 3.8.

We recall that for nonlinear dynamics, the semiconvexity of T (·) is generally not
present (see, e.g., [6, Example 4.3]). However, in analogy with [6] and [8], one may
expect regularity results of a similar nature under more restrictive assumptions on the
target and dynamics. We mention that proving such a nonlinear result by methods
analogous to ours must overcome two main difficulties: first, the existing nonlinear
results rely either on the Lipschitz continuity of T (·) (see [7]) or are rather general,
but provide substantially weaker estimates (see [8]); second, weaker controllability
conditions lead to singularities of T (·) that are of both semiconvex and semiconcave
type (see [4]) together with cusp points. Hence it is not clear how to obtain a nonlinear
version of our Theorem 3.1, and this will be a topic of future research.

2. Preliminaries. This section briefly introduces concepts from nonsmooth anal-
ysis, geometric measure theory, and control theory.

2.1. Nonsmooth analysis. A standard reference for the nonsmooth concepts
introduced here is [10]. Let K ⊆ Rn be closed. We denote, for x ∈ Rn,

dK(x) = min{‖y − x‖ : y ∈ K} (the distance of x from K),
πK(x) = {y ∈ K : ‖y − x‖ = dK(x)} (the projections of x onto K),

B(K, ρ) = {y ∈ Rn : dK(y) ≤ ρ}.

A vector v is a proximal normal to K at x ∈ K (notated by v ∈ NP
K(x)) if there exists

σ = σ(v, x) ≥ 0 such that

〈v, y − x〉 ≤ σ‖y − x‖2 for all y ∈ K.(2.1)

For v 	= 0, then v ∈ NP
K(x) if and only if this there exists λ > 0 such that πK(x+λv) =

{x}. If K is convex, then NP
K(x) equals the normal cone NK(x) to K at x as defined

in convex analysis, namely, the set of vectors v ∈ Rn for which

〈v, y − x〉 ≤ 0 for all y ∈ K.

Suppose f : Rn → R∪{+∞} is lower semicontinuous and epi(f) := {(x, ξ) : ξ ≥ f(x)}
and dom(f) = {x ∈ Rn : f(x) < +∞} are its epigraph and (effective) domain,
respectively. Let x ∈ dom(f). A vector ζ ∈ Rn is a proximal subgradient of f at x
(notated by ζ ∈ ∂P f(x)) if (ξ,−1) ∈ NP

epi(f)(x, f(x)); equivalently (see [10, Theorem

1.2.5]), ξ ∈ ∂P f(x) if and only if there exist σ, η > 0 such that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2 for all y ∈ B(x, η).(2.2)

The following class of sets (see [11, section 4]) will play a major role in our analysis.
Definition 2.1. Suppose K ⊆ Rn is closed and r > 0. Then K is r-proximally

smooth if the distance function dK is continuously differentiable on B(K, r) \K.
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Geometrically, in virtue of [11, Theorem 4.1], this means that every nonzero proximal
normal to K is realized by an r-ball, i.e.,

〈v, y − x〉 ≤ 1

2r
‖y − x‖2(2.3)

for all x, y ∈ K and v ∈ NP
K(x), ‖v‖ = 1. Moreover, if K is proximally smooth,

then the Clarke normal cone to K at x coincides with NP
K(x) for all x ∈ K, and in

particular NP
K(x) is nontrivial (see [11]) at all points x on the boundary of K.

Proximal smoothness is rather restrictive for noncompact sets such as epigraphs.
The following generalization allows for the constant in (2.3) to depend on x.

Definition 2.2. Suppose K ⊆ Rn is closed and ϕ : K → [0,+∞) is continuous.
We say that K is ϕ-convex if

〈v, y − x〉 ≤ ϕ(x)‖y − x‖2(2.4)

for all x, y ∈ K and v ∈ NP
K(x) with ‖v‖ = 1.

Comparing (2.3) and (2.4) reveals that K is r-proximally smooth if and only if
it is ϕ-convex with ϕ(x) = 1

2r for all x ∈ K. Such sets are also referred to as prox-
regular in [22], and several characterizations are known (see [16, 11, 22]). However,
they will not be used here. We recall that, in particular, convex sets, or sets with a
C1,1-boundary, are ϕ-convex.

If K is the epigraph of a continuous function T (·), then the ϕ-convexity condition
(2.4) takes the form

〈(ζ, ξ), (y, β) − (x, α)〉 ≤ ϕ(x, α)(‖ζ‖ + |ξ|) (‖y − x‖2 + |β − α|2)(2.5)

for all x, y ∈ dom(T ), α ≥ T (x), β ≥ T (y), (ζ, ξ) ∈ NP
epi(T )(x, α), with ϕ : epi(T ) →

[0,+∞) continuous.

2.2. Geometric measure theory. The study of some fine regularity properties
of ϕ-convex sets and functions with ϕ-convex epigraph is taken up in [12] and will be
quoted here. Stating these requires concepts from geometric measure theory [1, 20].

For 0 ≤ k ≤ n, the k-dimensional Hausdorff measure in Rn is denoted by Hk.
The Hausdorff dimension of a set E is H − dim(E) := inf{k ≥ 0 : Hk(E) = 0}. A
set E ⊆ Rn is countably k-rectifiable if there exist countably many Lipschitz functions
fi : Rk → Rn such that

Hk

(
E \

+∞⋃
i=0

fi(R
k)

)
= 0.

Let Ω ⊂ Rn be open, and u ∈ L1(Ω); we say that u is a function of bounded variation
in Ω (u ∈ BV (Ω)) if the distributional derivative of u is representable by a finite
Radon measure in Ω, i.e., if∫

Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDiu for all ϕ ∈ C∞
c (Ω), i = 1, . . . , n,

for some finite Radon measure Du = (D1u, . . . ,Dnu).



2288 G. COLOMBO, A. MARIGONDA AND P. R. WOLENSKI

2.3. Control theory: Generalities. We consider throughout the paper a lin-
ear control system of the form⎧⎨⎩

ẏ(t) = Ay(t) + u(t) a.e.,
u(t) ∈ U a.e.,
y(0) = x,

(2.6)

where A ∈ Matn×n(R). The control set U ⊂ Rn is compact and convex, and the
control function u(·) is measurable. For all t > 0, we denote by U t

ad the set of
admissible controls, i.e., the measurable functions u : [0, t] → Rn, such that u(t) ∈ U
a.e. on [0, t]. For any u(·) ∈ U t

ad, the unique Carathéodory solution of (2.6) is denoted
by yx,u(·).

Suppose we are now given a closed nonempty set S ⊂ Ω, which is called the target
set. For fixed x /∈ S, the minimal time T (x) to reach S from x is defined by

T (x) := inf{T ≥ 0 : ∃u(·) such that yx,u(T ) ∈ S}.

When the set of controls u(·) steering x to S is empty, then T (x) = +∞. Since the
velocity sets F (y) := {Ay + u : u ∈ U} are convex, then standard arguments (see
[9, Theorem 9.2.i, p. 311]) show the infimum is actually a minimum (provided it is
finite); that is, there exists an optimal control steering x to S in the minimal time.

The reachable set from a point x ∈ Ω in time T is the set

RT (x) = {y(T ) : y(·) satisfies (2.6)}.

If x̄ ∈ RT (x), then x̄ is realized by the control function ū(·) if x̄ = yx,ū(T ). Note that
x̄ ∈ RT (x) is realized by ū(·) if and only if the (equivalent) formulas

x̄ = eATx +

∫ T

0

eA(T−t)ū(t) dt and x = e−AT x̄−
∫ T

0

e−Atū(t) dt(2.7)

hold. It is well known that RT (x) is convex and compact. It is convenient to also
notate as RT

−(x̄) the reversed-time reachable set from a point x̄, which is the reachable
set associated to the dynamics ẏ = −Ay − u. Namely,

RT
−(x̄) = {y(T ) : ẏ(t) = −Ay(t) − u(t), u(·) ∈ UT

ad a.e., y(0) = x̄}.

It is clear that x̄ ∈ RT (x) if and only if x ∈ RT
−(x̄). For r > 0, let

S(r) = {x ∈ Rn : T (x) ≤ r},
R = {x ∈ Rn : T (x) < +∞},

and observe

S(r) =
⋃

x̄∈S, 0≤T≤r

RT
−(x̄).

Recall that a closed set S ⊆ Ω is strongly invariant for the system (2.6) if for all
x ∈ S and T > 0, one has RT (x) ⊆ S. Analogously, S is weakly invariant (or viable)
if for all x ∈ S and all small T > 0, there exists a trajectory of (2.6) which remains
in S for all t ∈ [0, T ].
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A major tool in our analysis is the minimized Hamiltonian h : Rn × Rn → R,
given by

h(x, ζ) = 〈Ax, ζ〉 + min
u∈U

〈u, ζ〉.(2.8)

It is known that a set S is weakly invariant for the dynamics (2.6) if h(x, ζ) ≤ 0 for
all x ∈ S and ζ ∈ NP

S (x) (see [24], [10, Theorem 2.10]).
The adjoint equation associated with (2.6) is{

ṗ(t) = −A�p(t),

p(T ) = p̄,
(2.9)

and an adjoint arc is

p(t) = eA
�(T−t)p̄,(2.10)

which is the solution of (2.9). Pontryagin’s maximum principle is stated next.
Proposition 2.3 (maximum principle). Suppose x̄ ∈ RT (x) is realized by ū(·).

Then x̄ ∈ bdry RT (x) (= the boundary of RT (x)) if and only if there exists p̄ 	= 0 so
that the solution p̄(·) of (2.9) satisfies

〈p̄(t), ū(t)〉 = max
u∈U

〈p̄(t), u〉(2.11)

for almost all t ∈ [0, T ]. Moreover, in this case, p(t) ∈ NRt(x)

(
yx,ū(t)

)
for each

t ∈ [0, T ].
A standard reference for the proof is [17, section 13].

2.4. Continuity of the minimal time function. Continuity properties of the
minimal time function is a widely studied topic, mainly in connection with controlla-
bility. We refer to Chapter IV in [3] and references therein for an introduction to the
subject.

Definition 2.4. The control system (2.6) is small time controllable (STC) near
the target S if S ⊆ int S(r) for all small r > 0.

We collect some known results relating STC to continuity of T (·), with main
emphasis on a target more general than a singleton, in the following theorem.

Theorem 2.5. Assume (for simplicity) that S is compact.
(1) Suppose S = {0} and 0 ∈ rel intS(r) for all r > 0. Then T (·) is continuous

on R.
(2) (Generalized Petrov condition.) Suppose there exist δ > 0 and a continuous

nondecreasing function μ : [0, δ] → [0,+∞) with the properties

(a) μ(0) = 0, μ(ρ) > 0 for ρ > 0, and
∫ δ

0
dρ
μ(ρ) < +∞;

(b) for all x ∈ B(S, δ) \ S there exists s̄ ∈ πS(x) such that

h(x, x− s̄) ≤ −μ(‖x− s̄‖)‖x− s̄‖.(2.12)

Then the system (2.6) is STC near S and the minimal time function is con-
tinuous in a neighborhood of S.

(3) (Second order Petrov condition.) Suppose that S is the closure of an open set
with C2-boundary, and assume that there exist δ > 0 and η > 0 such that for
all x ∈ B(S, δ) \ S,
(a) h(x,DdS(x)) ≤ 0,
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(b) 〈DdS(x), A2x〉 + 2
〈
〈D2dS(x), Ax〉, Ax

〉
≤ −η.

Then the system (2.6) is STC near S and the minimal time function is Hölder
continuous with exponent 1/2 in a neighborhood of S.

(4) Suppose S = {0} and U = {Bu : u ∈ Rm, u ∈ [−1, 1]m}, B ∈ Matn×m(R).
The following are equivalent for a fixed integer k, k = 0, 1, . . . , n− 1.
(a) T (·) is Hölder continuous in Rn with exponent 1/(k + 1);
(b) (Kalman rank condition)

rank[B,AB, . . . , AkB] = n.

Proof. The proof of (1) is in [14, Theorem II.4.3]. Various versions of (2), obtained
with different methods, can be found, e.g., in [24], [6], [7, Chapter 8, section 8.2], [23],
[18], [21], [19]. Condition (3) is a particular case of a controllability result contained
in [19]. The proof of (4) can be found in [2, Chapter 2, section 6].

We will consider a slightly more general situation, where the continuity of the
minimal time function is not directly linked to an STC condition. We illustrate this
with a simple example.

Example 1. Let α > 1 and S = {(x, y) ∈ R2 : y ≥ |x|α}. Let U = [−1, 1] and
consider the linear control system{

ẋ = u ∈ U ,
ẏ = 0.

(2.13)

None of the conditions listed in Theorem 2.5 is satisfied in a neighborhood of S, and
actually R = R × [0,+∞) is not a neighborhood of S. Let x > 0, 0 ≤ y < xα.
Then T (x, y) = x− y1/α, which is continuous on R \ S but not locally Lipschitz. We
observe that for all (x, y), there exists a control u(x, y) (actually u(x, y) = −sgn(x))
such that A(x, y)+u(x, y) = (u(x, y), 0) points toward S. However, the angle between
the vector pointing to S and the external normal to S is not uniformly bounded away
from 0, and in fact this angle tends to 0 as (x, y) → (0, 0). We estimate its rate of
convergence to 0 along the x-axis. Let ξ(x) = x+αx2α−1. Observe that the segment
joining (ξ(x), 0) and (x, xα) is orthogonal to the graph of y = xα at (x, xα). Moreover,
ξ(x) ∼ x for x → 0 and

dS((ξ(x), 0)) = xα
√

1 + α2x2(α−1) ∼ xα for x → 0.

Finally,

min
u∈[−1,1]

〈
(u, 0),

(ξ(x), 0) − (x, xα)

dS(ξ(x), 0)

〉
=

x− ξ(x)

dS(ξ(x), 0)

= − αxα−1

√
1 + α2x2(α−1)

≤ −const (dS(ξ(x), 0))
α−1
α .

In this example, the angle satisfies an estimate of the type (2.12). However, this
estimate does not hold in an entire neighborhood of S, and the continuity of T in R
is not covered by any of the statements in Theorem 2.5. The forthcoming paper [19]
contains a result covering the Hölder continuity of T in R also in the above example.



REGULARITY OF THE MINIMAL TIME 2291

3. The epigraph of the minimal time function, and differentiability
properties. We repeat the setting we are concerned with. We consider the linear
system ⎧⎨⎩

ẏ(t) = Ay(t) + u(t) a.e.,
y(0) = x,
u(t) ∈ U a.e.

(3.1)

with U ⊆ Rn compact and convex. Let S 	= ∅ be the target set.
Let δ > 0 be given, and set Rδ = S(δ) \ S. We make the following further

assumptions:
(H1) S is closed and convex, and h(x, ζ) ≤ 0 for all x ∈ S and ζ ∈ NS(x);
(H2) T (·) is continuous in S(δ).

Observe that (H1) and (H2) do not imply STC, because S(δ) is not required to be a
neighborhood of S. Such a situation is illustrated by Example 1.

The following result is an easy consequence of (H1).
Proposition 3.1. Under the above assumption (H1), the sets S(r) are compact

and convex, and if r1 ≤ r2 we have S(r1) ⊆ S(r2). Therefore R is convex.
We need a few technical lemmas. A version of Lemmas 3.2 and 3.3 already

appeared in [13, section 2]. We repeat the proofs here, in order to make this paper
more self-contained. The first two concern a representation of the normal cone to the
level sets of T and of the proximal subdifferential of T .

Lemma 3.2. Let (H1) hold, and let r ≥ 0, x ∈ Rn with T (x) = r, and x̄ ∈
S ∩Rr(x). Then

NS(r)(x) =
{
− eA

�rp̄ : p̄ ∈ [−NS(x̄)] ∩NRr(x)(x̄)
}
,(3.2)

and therefore the right-hand side is independent of x̄ ∈ S ∩Rr(x).
Proof (see also [13, Theorems 4 and 8]).
“⊆ .” Let ζ ∈ NS(r)(x). Then, by convexity,

〈ζ, y − x〉 ≤ 0 for all y ∈ S(r).(3.3)

Let ū(·) ∈ Ur
ad be an admissible control that realizes x̄, and thus (2.7) holds with

T = r. The rest of the proof is broken into two claims.

Claim 1. e−A
�
rζ ∈ NS(x̄).

Proof of Claim 1. Let ȳ ∈ S, and define

y = e−Arȳ −
∫ r

0

e−Atū(t) dt,(3.4)

which therefore belongs to S(r). We have

〈e−A
�
rζ, ȳ − x̄〉 = 〈ζ, e−Arȳ − e−Arx̄〉

= 〈ζ, y − x〉 (by (2.7) and (3.4))

≤ 0 (by (3.3) and since y ∈ S(r)).

It follows that e−A
�
rζ ∈ NS(x̄).

Claim 2. −e−A
�
rζ ∈ NRr(x)(x̄).
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Proof. First note that x ∈ Rr
−(x̄) ⊆ S(r), and therefore ζ ∈ NRr

−(x̄)(x). By
Proposition 2.3 applied to the reversed time data −A and −U , we have that for all
t ∈ [0, r], 〈

−e−A
�
tζ, ū(t)

〉
= max

u∈U

〈
−e−A

�
tζ, u

〉
.(3.5)

Now suppose ȳ ∈ Rr(x), so that

ȳ = eArx +

∫ r

0

eA(r−t)u(t) dt

for some u(·) ∈ Ur
ad. We have〈

−e−A
�
rζ, ȳ − x̄

〉
=

〈
−e−A

�
rζ,

∫ r

0

eA(r−t)
(
u(t) − ū(t)

)
dt

〉
=

∫ r

0

〈
−e−A

�
tζ, u(t) − ū(t)

〉
dt

≤ 0,

where the last inequality follows from (3.5). The validity of Claim 2 is now established.
It is clear that the “⊆” inclusion in (3.2) follows from Claims 1 and 2.
“⊇.” Let x̄ ∈ S ∩ Rr(x), and let p̄ ∈ [−NS(x̄)] ∩ NRr(x)(x̄). Let y ∈ S(r) and

ȳ ∈ S ∩Rr(y). Respectively, let u(·), ū(·) ∈ UT
ad realize ȳ, x̄, and thus

y = e−Arȳ −
∫ r

0

e−Atu(t) dt,

x = e−Arx̄−
∫ r

0

e−Atū(t) dt.

(3.6)

We have 〈
−eA

�
rp̄, y − x

〉
=

〈
−p̄, eAr

(
y − x

)〉
=

〈
−p̄, ȳ − x̄

〉
+

∫ r

0

〈−p(t), ū(t) − u(t)〉 dt

by (3.6). Since −p̄ ∈ NS(x̄), the first term on the right-hand side of the previ-
ous expression is nonpositive. By the maximum principle, the second term is also

nonpositive. Hence the assertion −eA
�
rp̄ ∈ NS(r)(x) follows, and the proof is

concluded.
Lemma 3.3. Let the assumption (H1) hold. Let x ∈ S(r), T (x) = r > 0 and let

x̄ ∈ S ∩Rr(x). Then a vector ζ belongs to ∂PT (x) if and only if

h(x, ζ) = −1

and

−e−A�rζ ∈
[
−NS(x̄)

]
∩NRr(x)(x̄).

Proof. By Theorem 5.1 in [25],

∂PT (x) = NS(r)(x)
⋂ {

ζ : h(x, ζ) = −1
}
.(3.7)

Then the statement follows from Lemma 3.2.
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The next three lemmas concern the Hamiltonian, mainly in connection with nor-
mal vectors to the epigraph of T .

Lemma 3.4. Let r > 0, x0 ∈ S(r). If ζ ∈ NS(r)(x0), then h(x0, ζ) ≤ 0.
Proof. By contradiction, let ζ ∈ NS(r)(x0) be such that h(x0, ζ) > 0. By definition

of Hamiltonian, we have ζ 	= 0. Let x(·) be an optimal trajectory starting from
x(0) = x0 and let u(·) be an optimal control realizing x(·). Let z = x0 + ζ. We are
now going to contradict the dynamic programming principle. Indeed, by convexity
of S(r), it is enough to show that there exists η > 0 such that x(t) ∈ B(z, ‖ζ‖) for
all t ∈ (0, η). In fact this implies that x(t) /∈ S(r) for all t ∈ (0, η), i.e., there exists
0 < t̄ < T (x0) such that T (x(t̄)) > T (x0), which is against the optimality of x(·). We
have

d

dt
‖x(t) − z‖2 =

d

dt
〈x(t) − x0 − ζ, x(t) − x0 − ζ〉

= 2〈ẋ(t), x(t) − x0 − ζ〉
= 2〈ẋ(t), x(t) − x0〉 − 2〈Ax(t) + u(t), ζ〉
≤ 2

(
K2t− h(x(t), ζ)

)
,

where K is a bound on ‖ẋ‖. According to our hypothesis h(x(0), ζ) > 0, so for small
t we have by continuity d

dt‖x(t) − z‖2 < 0, which implies x(t) ∈ B(z, ‖ζ‖).
Lemma 3.5. Let (H1) hold. Let r > 0, and let x0 ∈ Rn be such that T (x0) = r.

If (ζ, 0) ∈ NP
epi(T )(x0, T (x0)), then ζ ∈ NS(r)(x0) and h(x0, ζ) ≤ 0.

Proof. In view of Lemma 3.4, it is enough to show that ζ ∈ NS(r)(x0). To this
aim, observe that there exists σ > 0 such that

〈(ζ, 0), (y, ξ) − (x0, T (x0))〉 ≤ σ(‖x0 − y‖2 + |T (x0) − ξ|2)(3.8)

for all (y, ξ) ∈ epi(T ). In particular, for y ∈ S(r) and ξ = r the inequality (3.8) yields

〈ζ, y − x0〉 ≤ σ‖x0 − y‖2,

and this says that ζ ∈ NP
S(r)(x0). Since S(r) is convex, this fact is equivalent to

ζ ∈ NS(r)(x0). The proof is concluded.
Lemma 3.6. Let r > 0, x0 ∈ S(r), T (x0) = r. If (ζ,−1) ∈ NP

epi(T )(x0, T (x0)),

then h(x0, ζ) = −1.
Proof. By hypothesis, ζ ∈ ∂PT (x0); then apply Lemma 3.3.
The following is the main result of the paper.
Theorem 3.7. Consider the system (3.1) with the assumptions (H1), (H2). Then

there exists a continuous function ϕ such that the epigraph of T|Rδ
is ϕ-convex.

Proof. The proof consists of two steps. In the first step we establish an inequality
of the type (2.5) for a particular choice of points in epi(T ) by assuming that S is
compact. In the second, we show that the inequality proved in the first step holds in
general.

Step 1. Let S be compact. We claim that there exists K = K(δ) > 0 with
the following property: for all x1, x2 ∈ Rδ, for all (ζ, ξ) ∈ NP

epi(T )(x1, T (x1)) with

ξ ∈ {0,−1} it holds

〈(ζ, ξ), (x2, T (x2)) − (x1, T (x1))〉 ≤ K(‖ζ‖ + |ξ|)(‖x2 − x1‖2 + |T (x2) − T (x1)|2).
(3.9)

Proof of Step 1. Let r1 = T (x1), r2 = T (x2). Let ui be an optimal control
steering xi to x̄i ∈ S in time ri for i = 1, 2. Take (ζ, ξ) ∈ NP

epi(T )(x1, T (x1)).
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We have the following possibilities:
1. ξ = −1: in this case ζ ∈ ∂PT (x1) and, by Lemma 3.3, we have h(x1, ζ) = −1

and there exists p ∈ NRr1 (x1)(x̄1) ∩ [−NS(x̄1)] such that ζ = −eA
�r1p.

2. ξ = 0: in this case, by Lemma 3.5 we have ζ ∈ NS(r1)(x1) and h(x1, ζ) ≤ 0,
and by Lemma 3.2 there exists p ∈ NRr1 (x1)(x̄1) ∩ [−NS(x̄1)] such that ζ =

−eA
�r1p.

In both cases, we have the existence of p ∈ NRr1 (x1)(x̄1) ∩ [−NS(x̄1)] such that

ζ = −eA
�r1p. By the Pontryagin maximum principle,

〈p(t), u1(t)〉 = max
u∈U

〈p(t), u〉

for a.e. t, where p(t) = eA
�(r1−t)p, and ζ = −p(0)(= −p).

Now suppose r2 ≤ r1 and define

y := eA(r1−r2)x1 +

∫ r1−r2

0

eA(r1−r2−t)u1(t) dt

= e−Ar2 x̄1 −
∫ r1

r1−r2

eA(r1−r2−t)u1(t) dt.

We have

〈ζ, x2 − x1〉 = 〈p(r1 − r2) − p(0), x2 − x1〉 + 〈−p(r1 − r2), x2 − y〉
+ 〈−p(r1 − r2), y − x1〉

=: (I) + (II) + (III).

We estimate separately each term of the above sum:

|(I)| =
∣∣∣〈(eA�r2 − eA

�r1)p, x2 − x1〉
∣∣∣ =

∣∣∣〈eA�r2(Id − eA
�(r1−r2))p, x2 − x1〉

∣∣∣
≤ k′2(r1 − r2)‖p‖ ‖x2 − x1‖ ≤ k′′2‖p‖(‖x2 − x1‖2 + |r2 − r1|2),

where k′2, k
′′
2 ∈ R are positive constants, and Id denotes the identity matrix. Further-

more, observe that ‖p‖ ≤ k‖ζ‖, with k independent of ζ, r1, r2 because δ is finite. So
it holds

|(I)| ≤ k2‖ζ‖(‖x2 − x1‖2 + |r2 − r1|2),

where k2 is a positive constant independent of x2, x1, r2, r1, ζ.
Let us now consider (II). First observe that

x2 − y = e−r2A(x̄2 − x̄1) +

∫ r1

r1−r2

eA(r1−r2−t)u1(t) dt−
∫ r2

0

e−Atu2(t) dt

= e−r2A(x̄2 − x̄1) +

∫ r1

r1−r2

eA(r1−r2−t)(u1(t) − u2(t− r1 + r2)) dt.

Then

(II) = 〈−eA
�r2p, x2 − y〉 = 〈−p, x̄2 − x̄1〉 +

∫ r1

r1−r2

〈p(t), u2(t− r1 + r2) − u1(t)〉 dt.
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By observing that −p ∈ NS(x̄1) and by the maximum principle, we have that (II) ≤ 0.
Let us now consider (III). First, observe that

y − x1 =

∫ r1−r2

0

ẋ1(t) dt =

∫ r1−r2

0

(Ax1(t) + u1(t)) dt,

where

x1(t) := eAtx1 +

∫ t

0

eA(r1−t)u1(t) dt

is the optimal trajectory associated with x1 and u1(t).
Let us define

k′′3 = max{‖A‖‖x‖ + ‖u‖ : x ∈ Rδ, u ∈ U}.

Then we have that

(III) =

∫ r1−r2

0

〈p(t)−p(r1− r2), Ax1(t)+u1(t)〉 dt+
∫ r1−r2

0

〈−p(t), Ax1(t)+u1(t)〉 dt.

We have also the following estimate, valid for all t ∈ [0, r1 − r2]:

|〈p(t) − p(r1 − r2), Ax1(t) + u1(t)〉| ≤ k′′3‖p(t) − p(r1 − r2)‖
≤ k′3‖p‖(r1 − r2)

≤ k3‖ζ‖(r1 − r2).

So the first integral in (III) can be majorized by

k3‖ζ‖|r1 − r2|2,

where k3 is a positive constant independent of x1, x2, r1, r2, ζ. By the maximum
principle, the second integral in (III) is∫ r1−r2

0

[〈−p(t), Ax1(t)〉 − max
u∈U

〈p(t), u〉] dt.

The following estimates hold, for a suitable constant k4, independent of x1, x2, r1, r2, ζ:∫ r1−r2

0

〈−p(t), Ax1(t)〉 =

∫ r1−r2

0

[
〈p(0) − p(t), Ax1(t)〉

+ 〈−p(0), A(x1(t) − x1)〉
]
dt

+

∫ r1−r2

0

〈−p(0), Ax1〉 dt

≤ k4‖ζ‖|r1 − r2|2 +

∫ r1−r2

0

〈ζ, Ax1〉 dt,∫ r1−r2

0

−max
u∈U

〈p(t), u〉 dt =

∫ r1−r2

0

min
u∈U

〈p(0) − p(t), u〉 dt

+

∫ r1−r2

0

min
u∈U

〈−p(0), u〉 dt

≤ k4‖ζ‖|r1 − r2|2 +

∫ r1−r2

0

min
u∈U

〈ζ, u〉 dt.



2296 G. COLOMBO, A. MARIGONDA AND P. R. WOLENSKI

Therefore,

(III) ≤ k′4‖ζ‖ |r1 − r2|2 + (r1 − r2)h(x1, ζ).

Now we have to distinguish two cases:
1. If ξ = −1, then h(x1, ζ) = −1 and so putting together the estimates on (I),

(II), and (III) we obtain that

〈ζ, x2 − x1〉 ≤ r2 − r1 + k′‖ζ‖|r1 − r2|2 + k′′‖ζ‖(‖x2 − x1‖2 + |r2 − r1|2),

which may be written, for a suitable constant k5 independent of x1, x2, r1, r2, ζ,
as

〈(ζ,−1), (x2, T (x2))−(x1, T (x1))〉 ≤ k5(‖ζ‖+1)(‖x2−x1‖2+|T (x2)−T (x1)|2)

for all x1, x2 ∈ Rδ and for all (ζ,−1) ∈ NP
epi(T )(x1).

2. If ξ = 0, then h(x1, ζ) ≤ 0 and so

(III) ≤ k′4‖ζ‖ |r1 − r2|2.

Putting the estimates together, we obtain

〈ζ, x2 − x1〉 ≤ k′‖ζ‖ |r1 − r2|2 + k′′‖ζ‖(‖x2 − x1‖2 + |r2 − r1|2),

which may be written, for a suitable constant k5 independent of x1, x2, r1, r2, ζ,
as

〈(ζ, 0), (x2, T (x2)) − (x1, T (x1))〉 ≤ k5‖ζ‖(‖x2 − x1‖2 + |T (x2) − T (x1)|2)

for all x1, x2 ∈ Rδ and for all (ζ, 0) ∈ NP
epi(T )(x1).

In both cases, we obtain (3.9).
The case r2 > r1 is similar. Let ui(·) ∈ Uri

ad be controls steering xi to xi ∈
S in the optimal times ri, i = 1, 2, together with adjoint arcs pi : [0, ri] → Rn,

pi(t) = eA
�

(ri−t)pi. Now set p̃(t) = eA
�

(r2−t)p1 for t ∈ [0, r2] and observe that, for
t ∈ [r2−r1, r2], u1(t−(r2−r1)) ∈ Argmaxu∈U 〈p̃(t), u〉. Choose now, for t ∈ [0, r2−r1],
ū(t) ∈ U such that ū(t) ∈ Argmaxu∈U 〈p̃(t), u〉, and set

ũ(t) =

{
ū(t), t ∈ [0, r2 − r1],
u1(t− (r2 − r1)), t ∈ (r2 − r1, r2].

Define

y = e−A(r2−r1)x1 −
∫ r2−r1

0

e−Atū(t) dt = e−Ar2 x̄1 −
∫ r2

0

e−Atũ(t) dt.

Now the estimates proceed analogously to the previous case r2 ≤ r1, with p̃, ũ in place
of p1, u1. The proof of Step 1 is concluded.

Step 2. Let T : Rn → R+ ∪ {+∞} be lower semicontinuous and proper, with a
ϕ-convex domain D = {x ∈ Rn : T (x) < +∞} and such that

1. T is continuous on D.
2. For all R > 0 there exists σ = σ(R) > 0 such that for all x, y ∈ D ∩ B̄(0, R)

and for all (ζ, ξ) ∈ NP
epi(T )(x, T (x)) with ξ ∈ {0, 1} it holds

〈(ζ, ξ), (y, T (y)) − (x, T (x))〉 ≤ σ(‖ζ‖ + |ξ|)(‖y − x‖2 + |T (y) − T (x)|2).

Then there exists a continuous ϕ such that epi(T ) is ϕ-convex.
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Proof of Step 2. We have to prove that given (x, α), (y, β) ∈ epi(T ) with ‖x‖, ‖y‖ ≤
R and (ζ, ξ) ∈ NP

epi(T )(x, α) with ξ ∈ {0,−1}, there exists σ′ = σ′(R) > 0 such that

〈(ζ, ξ), (y, β) − (x, α)〉 ≤ σ′(‖ζ‖ + |ξ|)(‖y − x‖2 + |α− β|2).

Let α > T (x). Two cases may occur:

1. If (x, α) ∈ int epi(T ), then NP
epi(T )(x, α) = {(0, 0)}, and there is nothing to

prove.
2. Suppose (x, α) ∈ bdry epi(T ). Let (ζ, ξ) 	= (0, 0) be such that (ζ, ξ) ∈

NP
epi(T )(x, α). Without loss of generality, suppose that ‖(ζ, ξ)‖ = 1. As-

sume that (ζ, ξ) is realized by an r-ball, with 2rσ ≤ 1. We claim that ξ = 0.
In fact, by contradiction, let ξ 	= 0; since (ζ, ξ) is normal to an epigraph, we
necessarily have that ξ < 0. Then there exists 0 < ε < α− T (x) such that

‖(x, α− ε) − (x + rζ, α + rξ)‖2 < r2.

This means that (x, α − ε) ∈ B((x + rζ, α + rξ), r), which is a contradic-
tion since (x, α − ε) ∈ epi(T ). So, if (x, α) ∈ bdry epi(T ) and 0 	= (ζ, 0) ∈
NP

epi(T )(x, α), by the continuity of T on D and the same argument of Lemma
3.5 we have that ζ ∈ ND. Since D is ϕ-convex,

〈ζ, y − x〉 ≤ ϕ(x)‖ζ‖ ‖y − x‖2 for all x, y ∈ D,

and so

〈(ζ, 0), (y, β) − (x, α)〉 ≤ (σ ∨ ϕ(x))‖ζ‖(‖y − x‖2 + |α− β|2).

It remains to consider the case α = T (x). Define

z = x +
1

2σ

ζ

‖(ζ, ξ)‖ , χ = T (x) +
1

2σ

ξ

‖(ζ, ξ)‖ .

Let (y, β) ∈ epi(T ) with β > T (y) and y 	= x. The segment connecting (z, χ) and
(y, β) contains a point (y′, β′) which lies on the boundary of epi(T ), so β′ = T (y′).
Thus we have

d((x, T (x)), (z, χ)) < d((y′, T (y)), (z, χ)) < d((y, β), (z, χ)).

By direct computation the desired inequality follows. By the arbitrariness of R, the
proof is concluded.

Remark. (1) The problem in Example 1 satisfies the assumptions of Theorem 3.7,
although STC does not hold.

(2) If (H1) and (H2) are valid in the whole of R, then there exists a continuous
function ϕ such that the epigraph of T is ϕ-convex. Indeed, it is enough to apply
Theorem 3.7 in Rδ for all δ > 0.

In [12], functions with ϕ-convex epigraph were studied. As a corollary of the
above result, we list some regularity properties of the minimal time function, which
are direct consequences of Theorem 3.7 and of [12].
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Corollary 3.8. Let the assumption of Theorem 3.7 hold. Then,
1. for a.e. x ∈ Rδ, there exists ε = ε(x) such that T is semiconvex on B(x, ε(x));
2. in particular, T is twice differentiable a.e. on Rδ, in the sense that for a.e.

x ∈ Rδ there exists a symmetric n× n matrix Xx such that

DT (y) = DT (x) + Xx(y − x) + o(‖y − x‖)

for y → x, y ∈ dom(DT ) and, as y → x, y ∈ dom(T ),

∣∣∣∣T (y) − T (x) − 〈DT (x), y − x〉 − 1

2
〈Xx(y − x), y − x〉

∣∣∣∣ = o(‖y − x‖2);

(3.10)

3. for a.e. x ∈ Rδ, there exist ε = ε(x) > 0 and c = c(x) ≥ 0 such that for all

ν ∈ Rn, with ‖ν‖ = 1, we have ∂2T
∂ν2 ≥ −c in the sense of distributions in

B(x, ε);
4. set, for 1 ≤ k ≤ n,

Σk = {x ∈ int dom(T ) : H− dim(∂PT (x)) ≥ k};

then Σk is countably Hn−k-rectifiable;
5. let int dom(T ) be nonempty; then, for all open set Ω ⊆ int dom(T ), T ∈

BV (Ω); moreover, for a.e. x ∈ Ω, there exists ε = ε(x) such that DT ∈
BV (B(x, ε)).

Proof. Extend T to Rn by setting T (x) = +∞ if x /∈ Rδ. By standard arguments,
T is lower semicontinuous on Rn. By Theorem 3.7, epi(T ) is ϕ-convex. Then the
statements (1)–(5) are direct consequences of corresponding properties proved in [12],
to which all the following citations refer. Statement 1 follows from Theorem 6.1; 2 and
3 are Corollaries 6.1 and 6.2, respectively; 4 is Proposition 5.1, while 5 is Propositions
7.1 and 7.2.
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